Merge tag 'for-5.3-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave...
[linux-2.6-microblaze.git] / fs / jbd2 / journal.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * linux/fs/jbd2/journal.c
4  *
5  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6  *
7  * Copyright 1998 Red Hat corp --- All Rights Reserved
8  *
9  * Generic filesystem journal-writing code; part of the ext2fs
10  * journaling system.
11  *
12  * This file manages journals: areas of disk reserved for logging
13  * transactional updates.  This includes the kernel journaling thread
14  * which is responsible for scheduling updates to the log.
15  *
16  * We do not actually manage the physical storage of the journal in this
17  * file: that is left to a per-journal policy function, which allows us
18  * to store the journal within a filesystem-specified area for ext2
19  * journaling (ext2 can use a reserved inode for storing the log).
20  */
21
22 #include <linux/module.h>
23 #include <linux/time.h>
24 #include <linux/fs.h>
25 #include <linux/jbd2.h>
26 #include <linux/errno.h>
27 #include <linux/slab.h>
28 #include <linux/init.h>
29 #include <linux/mm.h>
30 #include <linux/freezer.h>
31 #include <linux/pagemap.h>
32 #include <linux/kthread.h>
33 #include <linux/poison.h>
34 #include <linux/proc_fs.h>
35 #include <linux/seq_file.h>
36 #include <linux/math64.h>
37 #include <linux/hash.h>
38 #include <linux/log2.h>
39 #include <linux/vmalloc.h>
40 #include <linux/backing-dev.h>
41 #include <linux/bitops.h>
42 #include <linux/ratelimit.h>
43 #include <linux/sched/mm.h>
44
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/jbd2.h>
47
48 #include <linux/uaccess.h>
49 #include <asm/page.h>
50
51 #ifdef CONFIG_JBD2_DEBUG
52 ushort jbd2_journal_enable_debug __read_mostly;
53 EXPORT_SYMBOL(jbd2_journal_enable_debug);
54
55 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
56 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
57 #endif
58
59 EXPORT_SYMBOL(jbd2_journal_extend);
60 EXPORT_SYMBOL(jbd2_journal_stop);
61 EXPORT_SYMBOL(jbd2_journal_lock_updates);
62 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
63 EXPORT_SYMBOL(jbd2_journal_get_write_access);
64 EXPORT_SYMBOL(jbd2_journal_get_create_access);
65 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
66 EXPORT_SYMBOL(jbd2_journal_set_triggers);
67 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
68 EXPORT_SYMBOL(jbd2_journal_forget);
69 EXPORT_SYMBOL(jbd2_journal_flush);
70 EXPORT_SYMBOL(jbd2_journal_revoke);
71
72 EXPORT_SYMBOL(jbd2_journal_init_dev);
73 EXPORT_SYMBOL(jbd2_journal_init_inode);
74 EXPORT_SYMBOL(jbd2_journal_check_used_features);
75 EXPORT_SYMBOL(jbd2_journal_check_available_features);
76 EXPORT_SYMBOL(jbd2_journal_set_features);
77 EXPORT_SYMBOL(jbd2_journal_load);
78 EXPORT_SYMBOL(jbd2_journal_destroy);
79 EXPORT_SYMBOL(jbd2_journal_abort);
80 EXPORT_SYMBOL(jbd2_journal_errno);
81 EXPORT_SYMBOL(jbd2_journal_ack_err);
82 EXPORT_SYMBOL(jbd2_journal_clear_err);
83 EXPORT_SYMBOL(jbd2_log_wait_commit);
84 EXPORT_SYMBOL(jbd2_log_start_commit);
85 EXPORT_SYMBOL(jbd2_journal_start_commit);
86 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
87 EXPORT_SYMBOL(jbd2_journal_wipe);
88 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
89 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
90 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
91 EXPORT_SYMBOL(jbd2_journal_force_commit);
92 EXPORT_SYMBOL(jbd2_journal_inode_add_write);
93 EXPORT_SYMBOL(jbd2_journal_inode_add_wait);
94 EXPORT_SYMBOL(jbd2_journal_inode_ranged_write);
95 EXPORT_SYMBOL(jbd2_journal_inode_ranged_wait);
96 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
97 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
98 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
99 EXPORT_SYMBOL(jbd2_inode_cache);
100
101 static void __journal_abort_soft (journal_t *journal, int errno);
102 static int jbd2_journal_create_slab(size_t slab_size);
103
104 #ifdef CONFIG_JBD2_DEBUG
105 void __jbd2_debug(int level, const char *file, const char *func,
106                   unsigned int line, const char *fmt, ...)
107 {
108         struct va_format vaf;
109         va_list args;
110
111         if (level > jbd2_journal_enable_debug)
112                 return;
113         va_start(args, fmt);
114         vaf.fmt = fmt;
115         vaf.va = &args;
116         printk(KERN_DEBUG "%s: (%s, %u): %pV", file, func, line, &vaf);
117         va_end(args);
118 }
119 EXPORT_SYMBOL(__jbd2_debug);
120 #endif
121
122 /* Checksumming functions */
123 static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
124 {
125         if (!jbd2_journal_has_csum_v2or3_feature(j))
126                 return 1;
127
128         return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
129 }
130
131 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
132 {
133         __u32 csum;
134         __be32 old_csum;
135
136         old_csum = sb->s_checksum;
137         sb->s_checksum = 0;
138         csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
139         sb->s_checksum = old_csum;
140
141         return cpu_to_be32(csum);
142 }
143
144 /*
145  * Helper function used to manage commit timeouts
146  */
147
148 static void commit_timeout(struct timer_list *t)
149 {
150         journal_t *journal = from_timer(journal, t, j_commit_timer);
151
152         wake_up_process(journal->j_task);
153 }
154
155 /*
156  * kjournald2: The main thread function used to manage a logging device
157  * journal.
158  *
159  * This kernel thread is responsible for two things:
160  *
161  * 1) COMMIT:  Every so often we need to commit the current state of the
162  *    filesystem to disk.  The journal thread is responsible for writing
163  *    all of the metadata buffers to disk.
164  *
165  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
166  *    of the data in that part of the log has been rewritten elsewhere on
167  *    the disk.  Flushing these old buffers to reclaim space in the log is
168  *    known as checkpointing, and this thread is responsible for that job.
169  */
170
171 static int kjournald2(void *arg)
172 {
173         journal_t *journal = arg;
174         transaction_t *transaction;
175
176         /*
177          * Set up an interval timer which can be used to trigger a commit wakeup
178          * after the commit interval expires
179          */
180         timer_setup(&journal->j_commit_timer, commit_timeout, 0);
181
182         set_freezable();
183
184         /* Record that the journal thread is running */
185         journal->j_task = current;
186         wake_up(&journal->j_wait_done_commit);
187
188         /*
189          * Make sure that no allocations from this kernel thread will ever
190          * recurse to the fs layer because we are responsible for the
191          * transaction commit and any fs involvement might get stuck waiting for
192          * the trasn. commit.
193          */
194         memalloc_nofs_save();
195
196         /*
197          * And now, wait forever for commit wakeup events.
198          */
199         write_lock(&journal->j_state_lock);
200
201 loop:
202         if (journal->j_flags & JBD2_UNMOUNT)
203                 goto end_loop;
204
205         jbd_debug(1, "commit_sequence=%u, commit_request=%u\n",
206                 journal->j_commit_sequence, journal->j_commit_request);
207
208         if (journal->j_commit_sequence != journal->j_commit_request) {
209                 jbd_debug(1, "OK, requests differ\n");
210                 write_unlock(&journal->j_state_lock);
211                 del_timer_sync(&journal->j_commit_timer);
212                 jbd2_journal_commit_transaction(journal);
213                 write_lock(&journal->j_state_lock);
214                 goto loop;
215         }
216
217         wake_up(&journal->j_wait_done_commit);
218         if (freezing(current)) {
219                 /*
220                  * The simpler the better. Flushing journal isn't a
221                  * good idea, because that depends on threads that may
222                  * be already stopped.
223                  */
224                 jbd_debug(1, "Now suspending kjournald2\n");
225                 write_unlock(&journal->j_state_lock);
226                 try_to_freeze();
227                 write_lock(&journal->j_state_lock);
228         } else {
229                 /*
230                  * We assume on resume that commits are already there,
231                  * so we don't sleep
232                  */
233                 DEFINE_WAIT(wait);
234                 int should_sleep = 1;
235
236                 prepare_to_wait(&journal->j_wait_commit, &wait,
237                                 TASK_INTERRUPTIBLE);
238                 if (journal->j_commit_sequence != journal->j_commit_request)
239                         should_sleep = 0;
240                 transaction = journal->j_running_transaction;
241                 if (transaction && time_after_eq(jiffies,
242                                                 transaction->t_expires))
243                         should_sleep = 0;
244                 if (journal->j_flags & JBD2_UNMOUNT)
245                         should_sleep = 0;
246                 if (should_sleep) {
247                         write_unlock(&journal->j_state_lock);
248                         schedule();
249                         write_lock(&journal->j_state_lock);
250                 }
251                 finish_wait(&journal->j_wait_commit, &wait);
252         }
253
254         jbd_debug(1, "kjournald2 wakes\n");
255
256         /*
257          * Were we woken up by a commit wakeup event?
258          */
259         transaction = journal->j_running_transaction;
260         if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
261                 journal->j_commit_request = transaction->t_tid;
262                 jbd_debug(1, "woke because of timeout\n");
263         }
264         goto loop;
265
266 end_loop:
267         del_timer_sync(&journal->j_commit_timer);
268         journal->j_task = NULL;
269         wake_up(&journal->j_wait_done_commit);
270         jbd_debug(1, "Journal thread exiting.\n");
271         write_unlock(&journal->j_state_lock);
272         return 0;
273 }
274
275 static int jbd2_journal_start_thread(journal_t *journal)
276 {
277         struct task_struct *t;
278
279         t = kthread_run(kjournald2, journal, "jbd2/%s",
280                         journal->j_devname);
281         if (IS_ERR(t))
282                 return PTR_ERR(t);
283
284         wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
285         return 0;
286 }
287
288 static void journal_kill_thread(journal_t *journal)
289 {
290         write_lock(&journal->j_state_lock);
291         journal->j_flags |= JBD2_UNMOUNT;
292
293         while (journal->j_task) {
294                 write_unlock(&journal->j_state_lock);
295                 wake_up(&journal->j_wait_commit);
296                 wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
297                 write_lock(&journal->j_state_lock);
298         }
299         write_unlock(&journal->j_state_lock);
300 }
301
302 /*
303  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
304  *
305  * Writes a metadata buffer to a given disk block.  The actual IO is not
306  * performed but a new buffer_head is constructed which labels the data
307  * to be written with the correct destination disk block.
308  *
309  * Any magic-number escaping which needs to be done will cause a
310  * copy-out here.  If the buffer happens to start with the
311  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
312  * magic number is only written to the log for descripter blocks.  In
313  * this case, we copy the data and replace the first word with 0, and we
314  * return a result code which indicates that this buffer needs to be
315  * marked as an escaped buffer in the corresponding log descriptor
316  * block.  The missing word can then be restored when the block is read
317  * during recovery.
318  *
319  * If the source buffer has already been modified by a new transaction
320  * since we took the last commit snapshot, we use the frozen copy of
321  * that data for IO. If we end up using the existing buffer_head's data
322  * for the write, then we have to make sure nobody modifies it while the
323  * IO is in progress. do_get_write_access() handles this.
324  *
325  * The function returns a pointer to the buffer_head to be used for IO.
326  *
327  *
328  * Return value:
329  *  <0: Error
330  * >=0: Finished OK
331  *
332  * On success:
333  * Bit 0 set == escape performed on the data
334  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
335  */
336
337 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
338                                   struct journal_head  *jh_in,
339                                   struct buffer_head **bh_out,
340                                   sector_t blocknr)
341 {
342         int need_copy_out = 0;
343         int done_copy_out = 0;
344         int do_escape = 0;
345         char *mapped_data;
346         struct buffer_head *new_bh;
347         struct page *new_page;
348         unsigned int new_offset;
349         struct buffer_head *bh_in = jh2bh(jh_in);
350         journal_t *journal = transaction->t_journal;
351
352         /*
353          * The buffer really shouldn't be locked: only the current committing
354          * transaction is allowed to write it, so nobody else is allowed
355          * to do any IO.
356          *
357          * akpm: except if we're journalling data, and write() output is
358          * also part of a shared mapping, and another thread has
359          * decided to launch a writepage() against this buffer.
360          */
361         J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
362
363         new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
364
365         /* keep subsequent assertions sane */
366         atomic_set(&new_bh->b_count, 1);
367
368         jbd_lock_bh_state(bh_in);
369 repeat:
370         /*
371          * If a new transaction has already done a buffer copy-out, then
372          * we use that version of the data for the commit.
373          */
374         if (jh_in->b_frozen_data) {
375                 done_copy_out = 1;
376                 new_page = virt_to_page(jh_in->b_frozen_data);
377                 new_offset = offset_in_page(jh_in->b_frozen_data);
378         } else {
379                 new_page = jh2bh(jh_in)->b_page;
380                 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
381         }
382
383         mapped_data = kmap_atomic(new_page);
384         /*
385          * Fire data frozen trigger if data already wasn't frozen.  Do this
386          * before checking for escaping, as the trigger may modify the magic
387          * offset.  If a copy-out happens afterwards, it will have the correct
388          * data in the buffer.
389          */
390         if (!done_copy_out)
391                 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
392                                            jh_in->b_triggers);
393
394         /*
395          * Check for escaping
396          */
397         if (*((__be32 *)(mapped_data + new_offset)) ==
398                                 cpu_to_be32(JBD2_MAGIC_NUMBER)) {
399                 need_copy_out = 1;
400                 do_escape = 1;
401         }
402         kunmap_atomic(mapped_data);
403
404         /*
405          * Do we need to do a data copy?
406          */
407         if (need_copy_out && !done_copy_out) {
408                 char *tmp;
409
410                 jbd_unlock_bh_state(bh_in);
411                 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
412                 if (!tmp) {
413                         brelse(new_bh);
414                         return -ENOMEM;
415                 }
416                 jbd_lock_bh_state(bh_in);
417                 if (jh_in->b_frozen_data) {
418                         jbd2_free(tmp, bh_in->b_size);
419                         goto repeat;
420                 }
421
422                 jh_in->b_frozen_data = tmp;
423                 mapped_data = kmap_atomic(new_page);
424                 memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
425                 kunmap_atomic(mapped_data);
426
427                 new_page = virt_to_page(tmp);
428                 new_offset = offset_in_page(tmp);
429                 done_copy_out = 1;
430
431                 /*
432                  * This isn't strictly necessary, as we're using frozen
433                  * data for the escaping, but it keeps consistency with
434                  * b_frozen_data usage.
435                  */
436                 jh_in->b_frozen_triggers = jh_in->b_triggers;
437         }
438
439         /*
440          * Did we need to do an escaping?  Now we've done all the
441          * copying, we can finally do so.
442          */
443         if (do_escape) {
444                 mapped_data = kmap_atomic(new_page);
445                 *((unsigned int *)(mapped_data + new_offset)) = 0;
446                 kunmap_atomic(mapped_data);
447         }
448
449         set_bh_page(new_bh, new_page, new_offset);
450         new_bh->b_size = bh_in->b_size;
451         new_bh->b_bdev = journal->j_dev;
452         new_bh->b_blocknr = blocknr;
453         new_bh->b_private = bh_in;
454         set_buffer_mapped(new_bh);
455         set_buffer_dirty(new_bh);
456
457         *bh_out = new_bh;
458
459         /*
460          * The to-be-written buffer needs to get moved to the io queue,
461          * and the original buffer whose contents we are shadowing or
462          * copying is moved to the transaction's shadow queue.
463          */
464         JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
465         spin_lock(&journal->j_list_lock);
466         __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
467         spin_unlock(&journal->j_list_lock);
468         set_buffer_shadow(bh_in);
469         jbd_unlock_bh_state(bh_in);
470
471         return do_escape | (done_copy_out << 1);
472 }
473
474 /*
475  * Allocation code for the journal file.  Manage the space left in the
476  * journal, so that we can begin checkpointing when appropriate.
477  */
478
479 /*
480  * Called with j_state_lock locked for writing.
481  * Returns true if a transaction commit was started.
482  */
483 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
484 {
485         /* Return if the txn has already requested to be committed */
486         if (journal->j_commit_request == target)
487                 return 0;
488
489         /*
490          * The only transaction we can possibly wait upon is the
491          * currently running transaction (if it exists).  Otherwise,
492          * the target tid must be an old one.
493          */
494         if (journal->j_running_transaction &&
495             journal->j_running_transaction->t_tid == target) {
496                 /*
497                  * We want a new commit: OK, mark the request and wakeup the
498                  * commit thread.  We do _not_ do the commit ourselves.
499                  */
500
501                 journal->j_commit_request = target;
502                 jbd_debug(1, "JBD2: requesting commit %u/%u\n",
503                           journal->j_commit_request,
504                           journal->j_commit_sequence);
505                 journal->j_running_transaction->t_requested = jiffies;
506                 wake_up(&journal->j_wait_commit);
507                 return 1;
508         } else if (!tid_geq(journal->j_commit_request, target))
509                 /* This should never happen, but if it does, preserve
510                    the evidence before kjournald goes into a loop and
511                    increments j_commit_sequence beyond all recognition. */
512                 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
513                           journal->j_commit_request,
514                           journal->j_commit_sequence,
515                           target, journal->j_running_transaction ?
516                           journal->j_running_transaction->t_tid : 0);
517         return 0;
518 }
519
520 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
521 {
522         int ret;
523
524         write_lock(&journal->j_state_lock);
525         ret = __jbd2_log_start_commit(journal, tid);
526         write_unlock(&journal->j_state_lock);
527         return ret;
528 }
529
530 /*
531  * Force and wait any uncommitted transactions.  We can only force the running
532  * transaction if we don't have an active handle, otherwise, we will deadlock.
533  * Returns: <0 in case of error,
534  *           0 if nothing to commit,
535  *           1 if transaction was successfully committed.
536  */
537 static int __jbd2_journal_force_commit(journal_t *journal)
538 {
539         transaction_t *transaction = NULL;
540         tid_t tid;
541         int need_to_start = 0, ret = 0;
542
543         read_lock(&journal->j_state_lock);
544         if (journal->j_running_transaction && !current->journal_info) {
545                 transaction = journal->j_running_transaction;
546                 if (!tid_geq(journal->j_commit_request, transaction->t_tid))
547                         need_to_start = 1;
548         } else if (journal->j_committing_transaction)
549                 transaction = journal->j_committing_transaction;
550
551         if (!transaction) {
552                 /* Nothing to commit */
553                 read_unlock(&journal->j_state_lock);
554                 return 0;
555         }
556         tid = transaction->t_tid;
557         read_unlock(&journal->j_state_lock);
558         if (need_to_start)
559                 jbd2_log_start_commit(journal, tid);
560         ret = jbd2_log_wait_commit(journal, tid);
561         if (!ret)
562                 ret = 1;
563
564         return ret;
565 }
566
567 /**
568  * Force and wait upon a commit if the calling process is not within
569  * transaction.  This is used for forcing out undo-protected data which contains
570  * bitmaps, when the fs is running out of space.
571  *
572  * @journal: journal to force
573  * Returns true if progress was made.
574  */
575 int jbd2_journal_force_commit_nested(journal_t *journal)
576 {
577         int ret;
578
579         ret = __jbd2_journal_force_commit(journal);
580         return ret > 0;
581 }
582
583 /**
584  * int journal_force_commit() - force any uncommitted transactions
585  * @journal: journal to force
586  *
587  * Caller want unconditional commit. We can only force the running transaction
588  * if we don't have an active handle, otherwise, we will deadlock.
589  */
590 int jbd2_journal_force_commit(journal_t *journal)
591 {
592         int ret;
593
594         J_ASSERT(!current->journal_info);
595         ret = __jbd2_journal_force_commit(journal);
596         if (ret > 0)
597                 ret = 0;
598         return ret;
599 }
600
601 /*
602  * Start a commit of the current running transaction (if any).  Returns true
603  * if a transaction is going to be committed (or is currently already
604  * committing), and fills its tid in at *ptid
605  */
606 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
607 {
608         int ret = 0;
609
610         write_lock(&journal->j_state_lock);
611         if (journal->j_running_transaction) {
612                 tid_t tid = journal->j_running_transaction->t_tid;
613
614                 __jbd2_log_start_commit(journal, tid);
615                 /* There's a running transaction and we've just made sure
616                  * it's commit has been scheduled. */
617                 if (ptid)
618                         *ptid = tid;
619                 ret = 1;
620         } else if (journal->j_committing_transaction) {
621                 /*
622                  * If commit has been started, then we have to wait for
623                  * completion of that transaction.
624                  */
625                 if (ptid)
626                         *ptid = journal->j_committing_transaction->t_tid;
627                 ret = 1;
628         }
629         write_unlock(&journal->j_state_lock);
630         return ret;
631 }
632
633 /*
634  * Return 1 if a given transaction has not yet sent barrier request
635  * connected with a transaction commit. If 0 is returned, transaction
636  * may or may not have sent the barrier. Used to avoid sending barrier
637  * twice in common cases.
638  */
639 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
640 {
641         int ret = 0;
642         transaction_t *commit_trans;
643
644         if (!(journal->j_flags & JBD2_BARRIER))
645                 return 0;
646         read_lock(&journal->j_state_lock);
647         /* Transaction already committed? */
648         if (tid_geq(journal->j_commit_sequence, tid))
649                 goto out;
650         commit_trans = journal->j_committing_transaction;
651         if (!commit_trans || commit_trans->t_tid != tid) {
652                 ret = 1;
653                 goto out;
654         }
655         /*
656          * Transaction is being committed and we already proceeded to
657          * submitting a flush to fs partition?
658          */
659         if (journal->j_fs_dev != journal->j_dev) {
660                 if (!commit_trans->t_need_data_flush ||
661                     commit_trans->t_state >= T_COMMIT_DFLUSH)
662                         goto out;
663         } else {
664                 if (commit_trans->t_state >= T_COMMIT_JFLUSH)
665                         goto out;
666         }
667         ret = 1;
668 out:
669         read_unlock(&journal->j_state_lock);
670         return ret;
671 }
672 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
673
674 /*
675  * Wait for a specified commit to complete.
676  * The caller may not hold the journal lock.
677  */
678 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
679 {
680         int err = 0;
681
682         read_lock(&journal->j_state_lock);
683 #ifdef CONFIG_PROVE_LOCKING
684         /*
685          * Some callers make sure transaction is already committing and in that
686          * case we cannot block on open handles anymore. So don't warn in that
687          * case.
688          */
689         if (tid_gt(tid, journal->j_commit_sequence) &&
690             (!journal->j_committing_transaction ||
691              journal->j_committing_transaction->t_tid != tid)) {
692                 read_unlock(&journal->j_state_lock);
693                 jbd2_might_wait_for_commit(journal);
694                 read_lock(&journal->j_state_lock);
695         }
696 #endif
697 #ifdef CONFIG_JBD2_DEBUG
698         if (!tid_geq(journal->j_commit_request, tid)) {
699                 printk(KERN_ERR
700                        "%s: error: j_commit_request=%u, tid=%u\n",
701                        __func__, journal->j_commit_request, tid);
702         }
703 #endif
704         while (tid_gt(tid, journal->j_commit_sequence)) {
705                 jbd_debug(1, "JBD2: want %u, j_commit_sequence=%u\n",
706                                   tid, journal->j_commit_sequence);
707                 read_unlock(&journal->j_state_lock);
708                 wake_up(&journal->j_wait_commit);
709                 wait_event(journal->j_wait_done_commit,
710                                 !tid_gt(tid, journal->j_commit_sequence));
711                 read_lock(&journal->j_state_lock);
712         }
713         read_unlock(&journal->j_state_lock);
714
715         if (unlikely(is_journal_aborted(journal)))
716                 err = -EIO;
717         return err;
718 }
719
720 /* Return 1 when transaction with given tid has already committed. */
721 int jbd2_transaction_committed(journal_t *journal, tid_t tid)
722 {
723         int ret = 1;
724
725         read_lock(&journal->j_state_lock);
726         if (journal->j_running_transaction &&
727             journal->j_running_transaction->t_tid == tid)
728                 ret = 0;
729         if (journal->j_committing_transaction &&
730             journal->j_committing_transaction->t_tid == tid)
731                 ret = 0;
732         read_unlock(&journal->j_state_lock);
733         return ret;
734 }
735 EXPORT_SYMBOL(jbd2_transaction_committed);
736
737 /*
738  * When this function returns the transaction corresponding to tid
739  * will be completed.  If the transaction has currently running, start
740  * committing that transaction before waiting for it to complete.  If
741  * the transaction id is stale, it is by definition already completed,
742  * so just return SUCCESS.
743  */
744 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
745 {
746         int     need_to_wait = 1;
747
748         read_lock(&journal->j_state_lock);
749         if (journal->j_running_transaction &&
750             journal->j_running_transaction->t_tid == tid) {
751                 if (journal->j_commit_request != tid) {
752                         /* transaction not yet started, so request it */
753                         read_unlock(&journal->j_state_lock);
754                         jbd2_log_start_commit(journal, tid);
755                         goto wait_commit;
756                 }
757         } else if (!(journal->j_committing_transaction &&
758                      journal->j_committing_transaction->t_tid == tid))
759                 need_to_wait = 0;
760         read_unlock(&journal->j_state_lock);
761         if (!need_to_wait)
762                 return 0;
763 wait_commit:
764         return jbd2_log_wait_commit(journal, tid);
765 }
766 EXPORT_SYMBOL(jbd2_complete_transaction);
767
768 /*
769  * Log buffer allocation routines:
770  */
771
772 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
773 {
774         unsigned long blocknr;
775
776         write_lock(&journal->j_state_lock);
777         J_ASSERT(journal->j_free > 1);
778
779         blocknr = journal->j_head;
780         journal->j_head++;
781         journal->j_free--;
782         if (journal->j_head == journal->j_last)
783                 journal->j_head = journal->j_first;
784         write_unlock(&journal->j_state_lock);
785         return jbd2_journal_bmap(journal, blocknr, retp);
786 }
787
788 /*
789  * Conversion of logical to physical block numbers for the journal
790  *
791  * On external journals the journal blocks are identity-mapped, so
792  * this is a no-op.  If needed, we can use j_blk_offset - everything is
793  * ready.
794  */
795 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
796                  unsigned long long *retp)
797 {
798         int err = 0;
799         unsigned long long ret;
800
801         if (journal->j_inode) {
802                 ret = bmap(journal->j_inode, blocknr);
803                 if (ret)
804                         *retp = ret;
805                 else {
806                         printk(KERN_ALERT "%s: journal block not found "
807                                         "at offset %lu on %s\n",
808                                __func__, blocknr, journal->j_devname);
809                         err = -EIO;
810                         __journal_abort_soft(journal, err);
811                 }
812         } else {
813                 *retp = blocknr; /* +journal->j_blk_offset */
814         }
815         return err;
816 }
817
818 /*
819  * We play buffer_head aliasing tricks to write data/metadata blocks to
820  * the journal without copying their contents, but for journal
821  * descriptor blocks we do need to generate bona fide buffers.
822  *
823  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
824  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
825  * But we don't bother doing that, so there will be coherency problems with
826  * mmaps of blockdevs which hold live JBD-controlled filesystems.
827  */
828 struct buffer_head *
829 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type)
830 {
831         journal_t *journal = transaction->t_journal;
832         struct buffer_head *bh;
833         unsigned long long blocknr;
834         journal_header_t *header;
835         int err;
836
837         err = jbd2_journal_next_log_block(journal, &blocknr);
838
839         if (err)
840                 return NULL;
841
842         bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
843         if (!bh)
844                 return NULL;
845         lock_buffer(bh);
846         memset(bh->b_data, 0, journal->j_blocksize);
847         header = (journal_header_t *)bh->b_data;
848         header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
849         header->h_blocktype = cpu_to_be32(type);
850         header->h_sequence = cpu_to_be32(transaction->t_tid);
851         set_buffer_uptodate(bh);
852         unlock_buffer(bh);
853         BUFFER_TRACE(bh, "return this buffer");
854         return bh;
855 }
856
857 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh)
858 {
859         struct jbd2_journal_block_tail *tail;
860         __u32 csum;
861
862         if (!jbd2_journal_has_csum_v2or3(j))
863                 return;
864
865         tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize -
866                         sizeof(struct jbd2_journal_block_tail));
867         tail->t_checksum = 0;
868         csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
869         tail->t_checksum = cpu_to_be32(csum);
870 }
871
872 /*
873  * Return tid of the oldest transaction in the journal and block in the journal
874  * where the transaction starts.
875  *
876  * If the journal is now empty, return which will be the next transaction ID
877  * we will write and where will that transaction start.
878  *
879  * The return value is 0 if journal tail cannot be pushed any further, 1 if
880  * it can.
881  */
882 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
883                               unsigned long *block)
884 {
885         transaction_t *transaction;
886         int ret;
887
888         read_lock(&journal->j_state_lock);
889         spin_lock(&journal->j_list_lock);
890         transaction = journal->j_checkpoint_transactions;
891         if (transaction) {
892                 *tid = transaction->t_tid;
893                 *block = transaction->t_log_start;
894         } else if ((transaction = journal->j_committing_transaction) != NULL) {
895                 *tid = transaction->t_tid;
896                 *block = transaction->t_log_start;
897         } else if ((transaction = journal->j_running_transaction) != NULL) {
898                 *tid = transaction->t_tid;
899                 *block = journal->j_head;
900         } else {
901                 *tid = journal->j_transaction_sequence;
902                 *block = journal->j_head;
903         }
904         ret = tid_gt(*tid, journal->j_tail_sequence);
905         spin_unlock(&journal->j_list_lock);
906         read_unlock(&journal->j_state_lock);
907
908         return ret;
909 }
910
911 /*
912  * Update information in journal structure and in on disk journal superblock
913  * about log tail. This function does not check whether information passed in
914  * really pushes log tail further. It's responsibility of the caller to make
915  * sure provided log tail information is valid (e.g. by holding
916  * j_checkpoint_mutex all the time between computing log tail and calling this
917  * function as is the case with jbd2_cleanup_journal_tail()).
918  *
919  * Requires j_checkpoint_mutex
920  */
921 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
922 {
923         unsigned long freed;
924         int ret;
925
926         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
927
928         /*
929          * We cannot afford for write to remain in drive's caches since as
930          * soon as we update j_tail, next transaction can start reusing journal
931          * space and if we lose sb update during power failure we'd replay
932          * old transaction with possibly newly overwritten data.
933          */
934         ret = jbd2_journal_update_sb_log_tail(journal, tid, block,
935                                               REQ_SYNC | REQ_FUA);
936         if (ret)
937                 goto out;
938
939         write_lock(&journal->j_state_lock);
940         freed = block - journal->j_tail;
941         if (block < journal->j_tail)
942                 freed += journal->j_last - journal->j_first;
943
944         trace_jbd2_update_log_tail(journal, tid, block, freed);
945         jbd_debug(1,
946                   "Cleaning journal tail from %u to %u (offset %lu), "
947                   "freeing %lu\n",
948                   journal->j_tail_sequence, tid, block, freed);
949
950         journal->j_free += freed;
951         journal->j_tail_sequence = tid;
952         journal->j_tail = block;
953         write_unlock(&journal->j_state_lock);
954
955 out:
956         return ret;
957 }
958
959 /*
960  * This is a variation of __jbd2_update_log_tail which checks for validity of
961  * provided log tail and locks j_checkpoint_mutex. So it is safe against races
962  * with other threads updating log tail.
963  */
964 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
965 {
966         mutex_lock_io(&journal->j_checkpoint_mutex);
967         if (tid_gt(tid, journal->j_tail_sequence))
968                 __jbd2_update_log_tail(journal, tid, block);
969         mutex_unlock(&journal->j_checkpoint_mutex);
970 }
971
972 struct jbd2_stats_proc_session {
973         journal_t *journal;
974         struct transaction_stats_s *stats;
975         int start;
976         int max;
977 };
978
979 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
980 {
981         return *pos ? NULL : SEQ_START_TOKEN;
982 }
983
984 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
985 {
986         return NULL;
987 }
988
989 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
990 {
991         struct jbd2_stats_proc_session *s = seq->private;
992
993         if (v != SEQ_START_TOKEN)
994                 return 0;
995         seq_printf(seq, "%lu transactions (%lu requested), "
996                    "each up to %u blocks\n",
997                    s->stats->ts_tid, s->stats->ts_requested,
998                    s->journal->j_max_transaction_buffers);
999         if (s->stats->ts_tid == 0)
1000                 return 0;
1001         seq_printf(seq, "average: \n  %ums waiting for transaction\n",
1002             jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
1003         seq_printf(seq, "  %ums request delay\n",
1004             (s->stats->ts_requested == 0) ? 0 :
1005             jiffies_to_msecs(s->stats->run.rs_request_delay /
1006                              s->stats->ts_requested));
1007         seq_printf(seq, "  %ums running transaction\n",
1008             jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
1009         seq_printf(seq, "  %ums transaction was being locked\n",
1010             jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
1011         seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
1012             jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
1013         seq_printf(seq, "  %ums logging transaction\n",
1014             jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
1015         seq_printf(seq, "  %lluus average transaction commit time\n",
1016                    div_u64(s->journal->j_average_commit_time, 1000));
1017         seq_printf(seq, "  %lu handles per transaction\n",
1018             s->stats->run.rs_handle_count / s->stats->ts_tid);
1019         seq_printf(seq, "  %lu blocks per transaction\n",
1020             s->stats->run.rs_blocks / s->stats->ts_tid);
1021         seq_printf(seq, "  %lu logged blocks per transaction\n",
1022             s->stats->run.rs_blocks_logged / s->stats->ts_tid);
1023         return 0;
1024 }
1025
1026 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
1027 {
1028 }
1029
1030 static const struct seq_operations jbd2_seq_info_ops = {
1031         .start  = jbd2_seq_info_start,
1032         .next   = jbd2_seq_info_next,
1033         .stop   = jbd2_seq_info_stop,
1034         .show   = jbd2_seq_info_show,
1035 };
1036
1037 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
1038 {
1039         journal_t *journal = PDE_DATA(inode);
1040         struct jbd2_stats_proc_session *s;
1041         int rc, size;
1042
1043         s = kmalloc(sizeof(*s), GFP_KERNEL);
1044         if (s == NULL)
1045                 return -ENOMEM;
1046         size = sizeof(struct transaction_stats_s);
1047         s->stats = kmalloc(size, GFP_KERNEL);
1048         if (s->stats == NULL) {
1049                 kfree(s);
1050                 return -ENOMEM;
1051         }
1052         spin_lock(&journal->j_history_lock);
1053         memcpy(s->stats, &journal->j_stats, size);
1054         s->journal = journal;
1055         spin_unlock(&journal->j_history_lock);
1056
1057         rc = seq_open(file, &jbd2_seq_info_ops);
1058         if (rc == 0) {
1059                 struct seq_file *m = file->private_data;
1060                 m->private = s;
1061         } else {
1062                 kfree(s->stats);
1063                 kfree(s);
1064         }
1065         return rc;
1066
1067 }
1068
1069 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1070 {
1071         struct seq_file *seq = file->private_data;
1072         struct jbd2_stats_proc_session *s = seq->private;
1073         kfree(s->stats);
1074         kfree(s);
1075         return seq_release(inode, file);
1076 }
1077
1078 static const struct file_operations jbd2_seq_info_fops = {
1079         .owner          = THIS_MODULE,
1080         .open           = jbd2_seq_info_open,
1081         .read           = seq_read,
1082         .llseek         = seq_lseek,
1083         .release        = jbd2_seq_info_release,
1084 };
1085
1086 static struct proc_dir_entry *proc_jbd2_stats;
1087
1088 static void jbd2_stats_proc_init(journal_t *journal)
1089 {
1090         journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1091         if (journal->j_proc_entry) {
1092                 proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1093                                  &jbd2_seq_info_fops, journal);
1094         }
1095 }
1096
1097 static void jbd2_stats_proc_exit(journal_t *journal)
1098 {
1099         remove_proc_entry("info", journal->j_proc_entry);
1100         remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1101 }
1102
1103 /*
1104  * Management for journal control blocks: functions to create and
1105  * destroy journal_t structures, and to initialise and read existing
1106  * journal blocks from disk.  */
1107
1108 /* First: create and setup a journal_t object in memory.  We initialise
1109  * very few fields yet: that has to wait until we have created the
1110  * journal structures from from scratch, or loaded them from disk. */
1111
1112 static journal_t *journal_init_common(struct block_device *bdev,
1113                         struct block_device *fs_dev,
1114                         unsigned long long start, int len, int blocksize)
1115 {
1116         static struct lock_class_key jbd2_trans_commit_key;
1117         journal_t *journal;
1118         int err;
1119         struct buffer_head *bh;
1120         int n;
1121
1122         journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1123         if (!journal)
1124                 return NULL;
1125
1126         init_waitqueue_head(&journal->j_wait_transaction_locked);
1127         init_waitqueue_head(&journal->j_wait_done_commit);
1128         init_waitqueue_head(&journal->j_wait_commit);
1129         init_waitqueue_head(&journal->j_wait_updates);
1130         init_waitqueue_head(&journal->j_wait_reserved);
1131         mutex_init(&journal->j_barrier);
1132         mutex_init(&journal->j_checkpoint_mutex);
1133         spin_lock_init(&journal->j_revoke_lock);
1134         spin_lock_init(&journal->j_list_lock);
1135         rwlock_init(&journal->j_state_lock);
1136
1137         journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1138         journal->j_min_batch_time = 0;
1139         journal->j_max_batch_time = 15000; /* 15ms */
1140         atomic_set(&journal->j_reserved_credits, 0);
1141
1142         /* The journal is marked for error until we succeed with recovery! */
1143         journal->j_flags = JBD2_ABORT;
1144
1145         /* Set up a default-sized revoke table for the new mount. */
1146         err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1147         if (err)
1148                 goto err_cleanup;
1149
1150         spin_lock_init(&journal->j_history_lock);
1151
1152         lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle",
1153                          &jbd2_trans_commit_key, 0);
1154
1155         /* journal descriptor can store up to n blocks -bzzz */
1156         journal->j_blocksize = blocksize;
1157         journal->j_dev = bdev;
1158         journal->j_fs_dev = fs_dev;
1159         journal->j_blk_offset = start;
1160         journal->j_maxlen = len;
1161         n = journal->j_blocksize / sizeof(journal_block_tag_t);
1162         journal->j_wbufsize = n;
1163         journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *),
1164                                         GFP_KERNEL);
1165         if (!journal->j_wbuf)
1166                 goto err_cleanup;
1167
1168         bh = getblk_unmovable(journal->j_dev, start, journal->j_blocksize);
1169         if (!bh) {
1170                 pr_err("%s: Cannot get buffer for journal superblock\n",
1171                         __func__);
1172                 goto err_cleanup;
1173         }
1174         journal->j_sb_buffer = bh;
1175         journal->j_superblock = (journal_superblock_t *)bh->b_data;
1176
1177         return journal;
1178
1179 err_cleanup:
1180         kfree(journal->j_wbuf);
1181         jbd2_journal_destroy_revoke(journal);
1182         kfree(journal);
1183         return NULL;
1184 }
1185
1186 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1187  *
1188  * Create a journal structure assigned some fixed set of disk blocks to
1189  * the journal.  We don't actually touch those disk blocks yet, but we
1190  * need to set up all of the mapping information to tell the journaling
1191  * system where the journal blocks are.
1192  *
1193  */
1194
1195 /**
1196  *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1197  *  @bdev: Block device on which to create the journal
1198  *  @fs_dev: Device which hold journalled filesystem for this journal.
1199  *  @start: Block nr Start of journal.
1200  *  @len:  Length of the journal in blocks.
1201  *  @blocksize: blocksize of journalling device
1202  *
1203  *  Returns: a newly created journal_t *
1204  *
1205  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1206  *  range of blocks on an arbitrary block device.
1207  *
1208  */
1209 journal_t *jbd2_journal_init_dev(struct block_device *bdev,
1210                         struct block_device *fs_dev,
1211                         unsigned long long start, int len, int blocksize)
1212 {
1213         journal_t *journal;
1214
1215         journal = journal_init_common(bdev, fs_dev, start, len, blocksize);
1216         if (!journal)
1217                 return NULL;
1218
1219         bdevname(journal->j_dev, journal->j_devname);
1220         strreplace(journal->j_devname, '/', '!');
1221         jbd2_stats_proc_init(journal);
1222
1223         return journal;
1224 }
1225
1226 /**
1227  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1228  *  @inode: An inode to create the journal in
1229  *
1230  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1231  * the journal.  The inode must exist already, must support bmap() and
1232  * must have all data blocks preallocated.
1233  */
1234 journal_t *jbd2_journal_init_inode(struct inode *inode)
1235 {
1236         journal_t *journal;
1237         char *p;
1238         unsigned long long blocknr;
1239
1240         blocknr = bmap(inode, 0);
1241         if (!blocknr) {
1242                 pr_err("%s: Cannot locate journal superblock\n",
1243                         __func__);
1244                 return NULL;
1245         }
1246
1247         jbd_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n",
1248                   inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size,
1249                   inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1250
1251         journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev,
1252                         blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits,
1253                         inode->i_sb->s_blocksize);
1254         if (!journal)
1255                 return NULL;
1256
1257         journal->j_inode = inode;
1258         bdevname(journal->j_dev, journal->j_devname);
1259         p = strreplace(journal->j_devname, '/', '!');
1260         sprintf(p, "-%lu", journal->j_inode->i_ino);
1261         jbd2_stats_proc_init(journal);
1262
1263         return journal;
1264 }
1265
1266 /*
1267  * If the journal init or create aborts, we need to mark the journal
1268  * superblock as being NULL to prevent the journal destroy from writing
1269  * back a bogus superblock.
1270  */
1271 static void journal_fail_superblock (journal_t *journal)
1272 {
1273         struct buffer_head *bh = journal->j_sb_buffer;
1274         brelse(bh);
1275         journal->j_sb_buffer = NULL;
1276 }
1277
1278 /*
1279  * Given a journal_t structure, initialise the various fields for
1280  * startup of a new journaling session.  We use this both when creating
1281  * a journal, and after recovering an old journal to reset it for
1282  * subsequent use.
1283  */
1284
1285 static int journal_reset(journal_t *journal)
1286 {
1287         journal_superblock_t *sb = journal->j_superblock;
1288         unsigned long long first, last;
1289
1290         first = be32_to_cpu(sb->s_first);
1291         last = be32_to_cpu(sb->s_maxlen);
1292         if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1293                 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1294                        first, last);
1295                 journal_fail_superblock(journal);
1296                 return -EINVAL;
1297         }
1298
1299         journal->j_first = first;
1300         journal->j_last = last;
1301
1302         journal->j_head = first;
1303         journal->j_tail = first;
1304         journal->j_free = last - first;
1305
1306         journal->j_tail_sequence = journal->j_transaction_sequence;
1307         journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1308         journal->j_commit_request = journal->j_commit_sequence;
1309
1310         journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1311
1312         /*
1313          * As a special case, if the on-disk copy is already marked as needing
1314          * no recovery (s_start == 0), then we can safely defer the superblock
1315          * update until the next commit by setting JBD2_FLUSHED.  This avoids
1316          * attempting a write to a potential-readonly device.
1317          */
1318         if (sb->s_start == 0) {
1319                 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1320                         "(start %ld, seq %u, errno %d)\n",
1321                         journal->j_tail, journal->j_tail_sequence,
1322                         journal->j_errno);
1323                 journal->j_flags |= JBD2_FLUSHED;
1324         } else {
1325                 /* Lock here to make assertions happy... */
1326                 mutex_lock_io(&journal->j_checkpoint_mutex);
1327                 /*
1328                  * Update log tail information. We use REQ_FUA since new
1329                  * transaction will start reusing journal space and so we
1330                  * must make sure information about current log tail is on
1331                  * disk before that.
1332                  */
1333                 jbd2_journal_update_sb_log_tail(journal,
1334                                                 journal->j_tail_sequence,
1335                                                 journal->j_tail,
1336                                                 REQ_SYNC | REQ_FUA);
1337                 mutex_unlock(&journal->j_checkpoint_mutex);
1338         }
1339         return jbd2_journal_start_thread(journal);
1340 }
1341
1342 /*
1343  * This function expects that the caller will have locked the journal
1344  * buffer head, and will return with it unlocked
1345  */
1346 static int jbd2_write_superblock(journal_t *journal, int write_flags)
1347 {
1348         struct buffer_head *bh = journal->j_sb_buffer;
1349         journal_superblock_t *sb = journal->j_superblock;
1350         int ret;
1351
1352         /* Buffer got discarded which means block device got invalidated */
1353         if (!buffer_mapped(bh))
1354                 return -EIO;
1355
1356         trace_jbd2_write_superblock(journal, write_flags);
1357         if (!(journal->j_flags & JBD2_BARRIER))
1358                 write_flags &= ~(REQ_FUA | REQ_PREFLUSH);
1359         if (buffer_write_io_error(bh)) {
1360                 /*
1361                  * Oh, dear.  A previous attempt to write the journal
1362                  * superblock failed.  This could happen because the
1363                  * USB device was yanked out.  Or it could happen to
1364                  * be a transient write error and maybe the block will
1365                  * be remapped.  Nothing we can do but to retry the
1366                  * write and hope for the best.
1367                  */
1368                 printk(KERN_ERR "JBD2: previous I/O error detected "
1369                        "for journal superblock update for %s.\n",
1370                        journal->j_devname);
1371                 clear_buffer_write_io_error(bh);
1372                 set_buffer_uptodate(bh);
1373         }
1374         if (jbd2_journal_has_csum_v2or3(journal))
1375                 sb->s_checksum = jbd2_superblock_csum(journal, sb);
1376         get_bh(bh);
1377         bh->b_end_io = end_buffer_write_sync;
1378         ret = submit_bh(REQ_OP_WRITE, write_flags, bh);
1379         wait_on_buffer(bh);
1380         if (buffer_write_io_error(bh)) {
1381                 clear_buffer_write_io_error(bh);
1382                 set_buffer_uptodate(bh);
1383                 ret = -EIO;
1384         }
1385         if (ret) {
1386                 printk(KERN_ERR "JBD2: Error %d detected when updating "
1387                        "journal superblock for %s.\n", ret,
1388                        journal->j_devname);
1389                 jbd2_journal_abort(journal, ret);
1390         }
1391
1392         return ret;
1393 }
1394
1395 /**
1396  * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1397  * @journal: The journal to update.
1398  * @tail_tid: TID of the new transaction at the tail of the log
1399  * @tail_block: The first block of the transaction at the tail of the log
1400  * @write_op: With which operation should we write the journal sb
1401  *
1402  * Update a journal's superblock information about log tail and write it to
1403  * disk, waiting for the IO to complete.
1404  */
1405 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1406                                      unsigned long tail_block, int write_op)
1407 {
1408         journal_superblock_t *sb = journal->j_superblock;
1409         int ret;
1410
1411         if (is_journal_aborted(journal))
1412                 return -EIO;
1413
1414         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1415         jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1416                   tail_block, tail_tid);
1417
1418         lock_buffer(journal->j_sb_buffer);
1419         sb->s_sequence = cpu_to_be32(tail_tid);
1420         sb->s_start    = cpu_to_be32(tail_block);
1421
1422         ret = jbd2_write_superblock(journal, write_op);
1423         if (ret)
1424                 goto out;
1425
1426         /* Log is no longer empty */
1427         write_lock(&journal->j_state_lock);
1428         WARN_ON(!sb->s_sequence);
1429         journal->j_flags &= ~JBD2_FLUSHED;
1430         write_unlock(&journal->j_state_lock);
1431
1432 out:
1433         return ret;
1434 }
1435
1436 /**
1437  * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1438  * @journal: The journal to update.
1439  * @write_op: With which operation should we write the journal sb
1440  *
1441  * Update a journal's dynamic superblock fields to show that journal is empty.
1442  * Write updated superblock to disk waiting for IO to complete.
1443  */
1444 static void jbd2_mark_journal_empty(journal_t *journal, int write_op)
1445 {
1446         journal_superblock_t *sb = journal->j_superblock;
1447
1448         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1449         lock_buffer(journal->j_sb_buffer);
1450         if (sb->s_start == 0) {         /* Is it already empty? */
1451                 unlock_buffer(journal->j_sb_buffer);
1452                 return;
1453         }
1454
1455         jbd_debug(1, "JBD2: Marking journal as empty (seq %u)\n",
1456                   journal->j_tail_sequence);
1457
1458         sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1459         sb->s_start    = cpu_to_be32(0);
1460
1461         jbd2_write_superblock(journal, write_op);
1462
1463         /* Log is no longer empty */
1464         write_lock(&journal->j_state_lock);
1465         journal->j_flags |= JBD2_FLUSHED;
1466         write_unlock(&journal->j_state_lock);
1467 }
1468
1469
1470 /**
1471  * jbd2_journal_update_sb_errno() - Update error in the journal.
1472  * @journal: The journal to update.
1473  *
1474  * Update a journal's errno.  Write updated superblock to disk waiting for IO
1475  * to complete.
1476  */
1477 void jbd2_journal_update_sb_errno(journal_t *journal)
1478 {
1479         journal_superblock_t *sb = journal->j_superblock;
1480         int errcode;
1481
1482         lock_buffer(journal->j_sb_buffer);
1483         errcode = journal->j_errno;
1484         if (errcode == -ESHUTDOWN)
1485                 errcode = 0;
1486         jbd_debug(1, "JBD2: updating superblock error (errno %d)\n", errcode);
1487         sb->s_errno    = cpu_to_be32(errcode);
1488
1489         jbd2_write_superblock(journal, REQ_SYNC | REQ_FUA);
1490 }
1491 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1492
1493 /*
1494  * Read the superblock for a given journal, performing initial
1495  * validation of the format.
1496  */
1497 static int journal_get_superblock(journal_t *journal)
1498 {
1499         struct buffer_head *bh;
1500         journal_superblock_t *sb;
1501         int err = -EIO;
1502
1503         bh = journal->j_sb_buffer;
1504
1505         J_ASSERT(bh != NULL);
1506         if (!buffer_uptodate(bh)) {
1507                 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1508                 wait_on_buffer(bh);
1509                 if (!buffer_uptodate(bh)) {
1510                         printk(KERN_ERR
1511                                 "JBD2: IO error reading journal superblock\n");
1512                         goto out;
1513                 }
1514         }
1515
1516         if (buffer_verified(bh))
1517                 return 0;
1518
1519         sb = journal->j_superblock;
1520
1521         err = -EINVAL;
1522
1523         if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1524             sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1525                 printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1526                 goto out;
1527         }
1528
1529         switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1530         case JBD2_SUPERBLOCK_V1:
1531                 journal->j_format_version = 1;
1532                 break;
1533         case JBD2_SUPERBLOCK_V2:
1534                 journal->j_format_version = 2;
1535                 break;
1536         default:
1537                 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1538                 goto out;
1539         }
1540
1541         if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1542                 journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1543         else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1544                 printk(KERN_WARNING "JBD2: journal file too short\n");
1545                 goto out;
1546         }
1547
1548         if (be32_to_cpu(sb->s_first) == 0 ||
1549             be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1550                 printk(KERN_WARNING
1551                         "JBD2: Invalid start block of journal: %u\n",
1552                         be32_to_cpu(sb->s_first));
1553                 goto out;
1554         }
1555
1556         if (jbd2_has_feature_csum2(journal) &&
1557             jbd2_has_feature_csum3(journal)) {
1558                 /* Can't have checksum v2 and v3 at the same time! */
1559                 printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1560                        "at the same time!\n");
1561                 goto out;
1562         }
1563
1564         if (jbd2_journal_has_csum_v2or3_feature(journal) &&
1565             jbd2_has_feature_checksum(journal)) {
1566                 /* Can't have checksum v1 and v2 on at the same time! */
1567                 printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1568                        "at the same time!\n");
1569                 goto out;
1570         }
1571
1572         if (!jbd2_verify_csum_type(journal, sb)) {
1573                 printk(KERN_ERR "JBD2: Unknown checksum type\n");
1574                 goto out;
1575         }
1576
1577         /* Load the checksum driver */
1578         if (jbd2_journal_has_csum_v2or3_feature(journal)) {
1579                 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1580                 if (IS_ERR(journal->j_chksum_driver)) {
1581                         printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1582                         err = PTR_ERR(journal->j_chksum_driver);
1583                         journal->j_chksum_driver = NULL;
1584                         goto out;
1585                 }
1586         }
1587
1588         if (jbd2_journal_has_csum_v2or3(journal)) {
1589                 /* Check superblock checksum */
1590                 if (sb->s_checksum != jbd2_superblock_csum(journal, sb)) {
1591                         printk(KERN_ERR "JBD2: journal checksum error\n");
1592                         err = -EFSBADCRC;
1593                         goto out;
1594                 }
1595
1596                 /* Precompute checksum seed for all metadata */
1597                 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1598                                                    sizeof(sb->s_uuid));
1599         }
1600
1601         set_buffer_verified(bh);
1602
1603         return 0;
1604
1605 out:
1606         journal_fail_superblock(journal);
1607         return err;
1608 }
1609
1610 /*
1611  * Load the on-disk journal superblock and read the key fields into the
1612  * journal_t.
1613  */
1614
1615 static int load_superblock(journal_t *journal)
1616 {
1617         int err;
1618         journal_superblock_t *sb;
1619
1620         err = journal_get_superblock(journal);
1621         if (err)
1622                 return err;
1623
1624         sb = journal->j_superblock;
1625
1626         journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1627         journal->j_tail = be32_to_cpu(sb->s_start);
1628         journal->j_first = be32_to_cpu(sb->s_first);
1629         journal->j_last = be32_to_cpu(sb->s_maxlen);
1630         journal->j_errno = be32_to_cpu(sb->s_errno);
1631
1632         return 0;
1633 }
1634
1635
1636 /**
1637  * int jbd2_journal_load() - Read journal from disk.
1638  * @journal: Journal to act on.
1639  *
1640  * Given a journal_t structure which tells us which disk blocks contain
1641  * a journal, read the journal from disk to initialise the in-memory
1642  * structures.
1643  */
1644 int jbd2_journal_load(journal_t *journal)
1645 {
1646         int err;
1647         journal_superblock_t *sb;
1648
1649         err = load_superblock(journal);
1650         if (err)
1651                 return err;
1652
1653         sb = journal->j_superblock;
1654         /* If this is a V2 superblock, then we have to check the
1655          * features flags on it. */
1656
1657         if (journal->j_format_version >= 2) {
1658                 if ((sb->s_feature_ro_compat &
1659                      ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1660                     (sb->s_feature_incompat &
1661                      ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1662                         printk(KERN_WARNING
1663                                 "JBD2: Unrecognised features on journal\n");
1664                         return -EINVAL;
1665                 }
1666         }
1667
1668         /*
1669          * Create a slab for this blocksize
1670          */
1671         err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1672         if (err)
1673                 return err;
1674
1675         /* Let the recovery code check whether it needs to recover any
1676          * data from the journal. */
1677         if (jbd2_journal_recover(journal))
1678                 goto recovery_error;
1679
1680         if (journal->j_failed_commit) {
1681                 printk(KERN_ERR "JBD2: journal transaction %u on %s "
1682                        "is corrupt.\n", journal->j_failed_commit,
1683                        journal->j_devname);
1684                 return -EFSCORRUPTED;
1685         }
1686
1687         /* OK, we've finished with the dynamic journal bits:
1688          * reinitialise the dynamic contents of the superblock in memory
1689          * and reset them on disk. */
1690         if (journal_reset(journal))
1691                 goto recovery_error;
1692
1693         journal->j_flags &= ~JBD2_ABORT;
1694         journal->j_flags |= JBD2_LOADED;
1695         return 0;
1696
1697 recovery_error:
1698         printk(KERN_WARNING "JBD2: recovery failed\n");
1699         return -EIO;
1700 }
1701
1702 /**
1703  * void jbd2_journal_destroy() - Release a journal_t structure.
1704  * @journal: Journal to act on.
1705  *
1706  * Release a journal_t structure once it is no longer in use by the
1707  * journaled object.
1708  * Return <0 if we couldn't clean up the journal.
1709  */
1710 int jbd2_journal_destroy(journal_t *journal)
1711 {
1712         int err = 0;
1713
1714         /* Wait for the commit thread to wake up and die. */
1715         journal_kill_thread(journal);
1716
1717         /* Force a final log commit */
1718         if (journal->j_running_transaction)
1719                 jbd2_journal_commit_transaction(journal);
1720
1721         /* Force any old transactions to disk */
1722
1723         /* Totally anal locking here... */
1724         spin_lock(&journal->j_list_lock);
1725         while (journal->j_checkpoint_transactions != NULL) {
1726                 spin_unlock(&journal->j_list_lock);
1727                 mutex_lock_io(&journal->j_checkpoint_mutex);
1728                 err = jbd2_log_do_checkpoint(journal);
1729                 mutex_unlock(&journal->j_checkpoint_mutex);
1730                 /*
1731                  * If checkpointing failed, just free the buffers to avoid
1732                  * looping forever
1733                  */
1734                 if (err) {
1735                         jbd2_journal_destroy_checkpoint(journal);
1736                         spin_lock(&journal->j_list_lock);
1737                         break;
1738                 }
1739                 spin_lock(&journal->j_list_lock);
1740         }
1741
1742         J_ASSERT(journal->j_running_transaction == NULL);
1743         J_ASSERT(journal->j_committing_transaction == NULL);
1744         J_ASSERT(journal->j_checkpoint_transactions == NULL);
1745         spin_unlock(&journal->j_list_lock);
1746
1747         if (journal->j_sb_buffer) {
1748                 if (!is_journal_aborted(journal)) {
1749                         mutex_lock_io(&journal->j_checkpoint_mutex);
1750
1751                         write_lock(&journal->j_state_lock);
1752                         journal->j_tail_sequence =
1753                                 ++journal->j_transaction_sequence;
1754                         write_unlock(&journal->j_state_lock);
1755
1756                         jbd2_mark_journal_empty(journal,
1757                                         REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
1758                         mutex_unlock(&journal->j_checkpoint_mutex);
1759                 } else
1760                         err = -EIO;
1761                 brelse(journal->j_sb_buffer);
1762         }
1763
1764         if (journal->j_proc_entry)
1765                 jbd2_stats_proc_exit(journal);
1766         iput(journal->j_inode);
1767         if (journal->j_revoke)
1768                 jbd2_journal_destroy_revoke(journal);
1769         if (journal->j_chksum_driver)
1770                 crypto_free_shash(journal->j_chksum_driver);
1771         kfree(journal->j_wbuf);
1772         kfree(journal);
1773
1774         return err;
1775 }
1776
1777
1778 /**
1779  *int jbd2_journal_check_used_features () - Check if features specified are used.
1780  * @journal: Journal to check.
1781  * @compat: bitmask of compatible features
1782  * @ro: bitmask of features that force read-only mount
1783  * @incompat: bitmask of incompatible features
1784  *
1785  * Check whether the journal uses all of a given set of
1786  * features.  Return true (non-zero) if it does.
1787  **/
1788
1789 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1790                                  unsigned long ro, unsigned long incompat)
1791 {
1792         journal_superblock_t *sb;
1793
1794         if (!compat && !ro && !incompat)
1795                 return 1;
1796         /* Load journal superblock if it is not loaded yet. */
1797         if (journal->j_format_version == 0 &&
1798             journal_get_superblock(journal) != 0)
1799                 return 0;
1800         if (journal->j_format_version == 1)
1801                 return 0;
1802
1803         sb = journal->j_superblock;
1804
1805         if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1806             ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1807             ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1808                 return 1;
1809
1810         return 0;
1811 }
1812
1813 /**
1814  * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1815  * @journal: Journal to check.
1816  * @compat: bitmask of compatible features
1817  * @ro: bitmask of features that force read-only mount
1818  * @incompat: bitmask of incompatible features
1819  *
1820  * Check whether the journaling code supports the use of
1821  * all of a given set of features on this journal.  Return true
1822  * (non-zero) if it can. */
1823
1824 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1825                                       unsigned long ro, unsigned long incompat)
1826 {
1827         if (!compat && !ro && !incompat)
1828                 return 1;
1829
1830         /* We can support any known requested features iff the
1831          * superblock is in version 2.  Otherwise we fail to support any
1832          * extended sb features. */
1833
1834         if (journal->j_format_version != 2)
1835                 return 0;
1836
1837         if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1838             (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1839             (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1840                 return 1;
1841
1842         return 0;
1843 }
1844
1845 /**
1846  * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1847  * @journal: Journal to act on.
1848  * @compat: bitmask of compatible features
1849  * @ro: bitmask of features that force read-only mount
1850  * @incompat: bitmask of incompatible features
1851  *
1852  * Mark a given journal feature as present on the
1853  * superblock.  Returns true if the requested features could be set.
1854  *
1855  */
1856
1857 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1858                           unsigned long ro, unsigned long incompat)
1859 {
1860 #define INCOMPAT_FEATURE_ON(f) \
1861                 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1862 #define COMPAT_FEATURE_ON(f) \
1863                 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1864         journal_superblock_t *sb;
1865
1866         if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1867                 return 1;
1868
1869         if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1870                 return 0;
1871
1872         /* If enabling v2 checksums, turn on v3 instead */
1873         if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
1874                 incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
1875                 incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
1876         }
1877
1878         /* Asking for checksumming v3 and v1?  Only give them v3. */
1879         if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
1880             compat & JBD2_FEATURE_COMPAT_CHECKSUM)
1881                 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
1882
1883         jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1884                   compat, ro, incompat);
1885
1886         sb = journal->j_superblock;
1887
1888         /* Load the checksum driver if necessary */
1889         if ((journal->j_chksum_driver == NULL) &&
1890             INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1891                 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1892                 if (IS_ERR(journal->j_chksum_driver)) {
1893                         printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1894                         journal->j_chksum_driver = NULL;
1895                         return 0;
1896                 }
1897                 /* Precompute checksum seed for all metadata */
1898                 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1899                                                    sizeof(sb->s_uuid));
1900         }
1901
1902         lock_buffer(journal->j_sb_buffer);
1903
1904         /* If enabling v3 checksums, update superblock */
1905         if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1906                 sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
1907                 sb->s_feature_compat &=
1908                         ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1909         }
1910
1911         /* If enabling v1 checksums, downgrade superblock */
1912         if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
1913                 sb->s_feature_incompat &=
1914                         ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
1915                                      JBD2_FEATURE_INCOMPAT_CSUM_V3);
1916
1917         sb->s_feature_compat    |= cpu_to_be32(compat);
1918         sb->s_feature_ro_compat |= cpu_to_be32(ro);
1919         sb->s_feature_incompat  |= cpu_to_be32(incompat);
1920         unlock_buffer(journal->j_sb_buffer);
1921
1922         return 1;
1923 #undef COMPAT_FEATURE_ON
1924 #undef INCOMPAT_FEATURE_ON
1925 }
1926
1927 /*
1928  * jbd2_journal_clear_features () - Clear a given journal feature in the
1929  *                                  superblock
1930  * @journal: Journal to act on.
1931  * @compat: bitmask of compatible features
1932  * @ro: bitmask of features that force read-only mount
1933  * @incompat: bitmask of incompatible features
1934  *
1935  * Clear a given journal feature as present on the
1936  * superblock.
1937  */
1938 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1939                                 unsigned long ro, unsigned long incompat)
1940 {
1941         journal_superblock_t *sb;
1942
1943         jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1944                   compat, ro, incompat);
1945
1946         sb = journal->j_superblock;
1947
1948         sb->s_feature_compat    &= ~cpu_to_be32(compat);
1949         sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1950         sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
1951 }
1952 EXPORT_SYMBOL(jbd2_journal_clear_features);
1953
1954 /**
1955  * int jbd2_journal_flush () - Flush journal
1956  * @journal: Journal to act on.
1957  *
1958  * Flush all data for a given journal to disk and empty the journal.
1959  * Filesystems can use this when remounting readonly to ensure that
1960  * recovery does not need to happen on remount.
1961  */
1962
1963 int jbd2_journal_flush(journal_t *journal)
1964 {
1965         int err = 0;
1966         transaction_t *transaction = NULL;
1967
1968         write_lock(&journal->j_state_lock);
1969
1970         /* Force everything buffered to the log... */
1971         if (journal->j_running_transaction) {
1972                 transaction = journal->j_running_transaction;
1973                 __jbd2_log_start_commit(journal, transaction->t_tid);
1974         } else if (journal->j_committing_transaction)
1975                 transaction = journal->j_committing_transaction;
1976
1977         /* Wait for the log commit to complete... */
1978         if (transaction) {
1979                 tid_t tid = transaction->t_tid;
1980
1981                 write_unlock(&journal->j_state_lock);
1982                 jbd2_log_wait_commit(journal, tid);
1983         } else {
1984                 write_unlock(&journal->j_state_lock);
1985         }
1986
1987         /* ...and flush everything in the log out to disk. */
1988         spin_lock(&journal->j_list_lock);
1989         while (!err && journal->j_checkpoint_transactions != NULL) {
1990                 spin_unlock(&journal->j_list_lock);
1991                 mutex_lock_io(&journal->j_checkpoint_mutex);
1992                 err = jbd2_log_do_checkpoint(journal);
1993                 mutex_unlock(&journal->j_checkpoint_mutex);
1994                 spin_lock(&journal->j_list_lock);
1995         }
1996         spin_unlock(&journal->j_list_lock);
1997
1998         if (is_journal_aborted(journal))
1999                 return -EIO;
2000
2001         mutex_lock_io(&journal->j_checkpoint_mutex);
2002         if (!err) {
2003                 err = jbd2_cleanup_journal_tail(journal);
2004                 if (err < 0) {
2005                         mutex_unlock(&journal->j_checkpoint_mutex);
2006                         goto out;
2007                 }
2008                 err = 0;
2009         }
2010
2011         /* Finally, mark the journal as really needing no recovery.
2012          * This sets s_start==0 in the underlying superblock, which is
2013          * the magic code for a fully-recovered superblock.  Any future
2014          * commits of data to the journal will restore the current
2015          * s_start value. */
2016         jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2017         mutex_unlock(&journal->j_checkpoint_mutex);
2018         write_lock(&journal->j_state_lock);
2019         J_ASSERT(!journal->j_running_transaction);
2020         J_ASSERT(!journal->j_committing_transaction);
2021         J_ASSERT(!journal->j_checkpoint_transactions);
2022         J_ASSERT(journal->j_head == journal->j_tail);
2023         J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
2024         write_unlock(&journal->j_state_lock);
2025 out:
2026         return err;
2027 }
2028
2029 /**
2030  * int jbd2_journal_wipe() - Wipe journal contents
2031  * @journal: Journal to act on.
2032  * @write: flag (see below)
2033  *
2034  * Wipe out all of the contents of a journal, safely.  This will produce
2035  * a warning if the journal contains any valid recovery information.
2036  * Must be called between journal_init_*() and jbd2_journal_load().
2037  *
2038  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2039  * we merely suppress recovery.
2040  */
2041
2042 int jbd2_journal_wipe(journal_t *journal, int write)
2043 {
2044         int err = 0;
2045
2046         J_ASSERT (!(journal->j_flags & JBD2_LOADED));
2047
2048         err = load_superblock(journal);
2049         if (err)
2050                 return err;
2051
2052         if (!journal->j_tail)
2053                 goto no_recovery;
2054
2055         printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2056                 write ? "Clearing" : "Ignoring");
2057
2058         err = jbd2_journal_skip_recovery(journal);
2059         if (write) {
2060                 /* Lock to make assertions happy... */
2061                 mutex_lock_io(&journal->j_checkpoint_mutex);
2062                 jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2063                 mutex_unlock(&journal->j_checkpoint_mutex);
2064         }
2065
2066  no_recovery:
2067         return err;
2068 }
2069
2070 /*
2071  * Journal abort has very specific semantics, which we describe
2072  * for journal abort.
2073  *
2074  * Two internal functions, which provide abort to the jbd layer
2075  * itself are here.
2076  */
2077
2078 /*
2079  * Quick version for internal journal use (doesn't lock the journal).
2080  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
2081  * and don't attempt to make any other journal updates.
2082  */
2083 void __jbd2_journal_abort_hard(journal_t *journal)
2084 {
2085         transaction_t *transaction;
2086
2087         if (journal->j_flags & JBD2_ABORT)
2088                 return;
2089
2090         printk(KERN_ERR "Aborting journal on device %s.\n",
2091                journal->j_devname);
2092
2093         write_lock(&journal->j_state_lock);
2094         journal->j_flags |= JBD2_ABORT;
2095         transaction = journal->j_running_transaction;
2096         if (transaction)
2097                 __jbd2_log_start_commit(journal, transaction->t_tid);
2098         write_unlock(&journal->j_state_lock);
2099 }
2100
2101 /* Soft abort: record the abort error status in the journal superblock,
2102  * but don't do any other IO. */
2103 static void __journal_abort_soft (journal_t *journal, int errno)
2104 {
2105         int old_errno;
2106
2107         write_lock(&journal->j_state_lock);
2108         old_errno = journal->j_errno;
2109         if (!journal->j_errno || errno == -ESHUTDOWN)
2110                 journal->j_errno = errno;
2111
2112         if (journal->j_flags & JBD2_ABORT) {
2113                 write_unlock(&journal->j_state_lock);
2114                 if (!old_errno && old_errno != -ESHUTDOWN &&
2115                     errno == -ESHUTDOWN)
2116                         jbd2_journal_update_sb_errno(journal);
2117                 return;
2118         }
2119         write_unlock(&journal->j_state_lock);
2120
2121         __jbd2_journal_abort_hard(journal);
2122
2123         if (errno) {
2124                 jbd2_journal_update_sb_errno(journal);
2125                 write_lock(&journal->j_state_lock);
2126                 journal->j_flags |= JBD2_REC_ERR;
2127                 write_unlock(&journal->j_state_lock);
2128         }
2129 }
2130
2131 /**
2132  * void jbd2_journal_abort () - Shutdown the journal immediately.
2133  * @journal: the journal to shutdown.
2134  * @errno:   an error number to record in the journal indicating
2135  *           the reason for the shutdown.
2136  *
2137  * Perform a complete, immediate shutdown of the ENTIRE
2138  * journal (not of a single transaction).  This operation cannot be
2139  * undone without closing and reopening the journal.
2140  *
2141  * The jbd2_journal_abort function is intended to support higher level error
2142  * recovery mechanisms such as the ext2/ext3 remount-readonly error
2143  * mode.
2144  *
2145  * Journal abort has very specific semantics.  Any existing dirty,
2146  * unjournaled buffers in the main filesystem will still be written to
2147  * disk by bdflush, but the journaling mechanism will be suspended
2148  * immediately and no further transaction commits will be honoured.
2149  *
2150  * Any dirty, journaled buffers will be written back to disk without
2151  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
2152  * filesystem, but we _do_ attempt to leave as much data as possible
2153  * behind for fsck to use for cleanup.
2154  *
2155  * Any attempt to get a new transaction handle on a journal which is in
2156  * ABORT state will just result in an -EROFS error return.  A
2157  * jbd2_journal_stop on an existing handle will return -EIO if we have
2158  * entered abort state during the update.
2159  *
2160  * Recursive transactions are not disturbed by journal abort until the
2161  * final jbd2_journal_stop, which will receive the -EIO error.
2162  *
2163  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2164  * which will be recorded (if possible) in the journal superblock.  This
2165  * allows a client to record failure conditions in the middle of a
2166  * transaction without having to complete the transaction to record the
2167  * failure to disk.  ext3_error, for example, now uses this
2168  * functionality.
2169  *
2170  * Errors which originate from within the journaling layer will NOT
2171  * supply an errno; a null errno implies that absolutely no further
2172  * writes are done to the journal (unless there are any already in
2173  * progress).
2174  *
2175  */
2176
2177 void jbd2_journal_abort(journal_t *journal, int errno)
2178 {
2179         __journal_abort_soft(journal, errno);
2180 }
2181
2182 /**
2183  * int jbd2_journal_errno () - returns the journal's error state.
2184  * @journal: journal to examine.
2185  *
2186  * This is the errno number set with jbd2_journal_abort(), the last
2187  * time the journal was mounted - if the journal was stopped
2188  * without calling abort this will be 0.
2189  *
2190  * If the journal has been aborted on this mount time -EROFS will
2191  * be returned.
2192  */
2193 int jbd2_journal_errno(journal_t *journal)
2194 {
2195         int err;
2196
2197         read_lock(&journal->j_state_lock);
2198         if (journal->j_flags & JBD2_ABORT)
2199                 err = -EROFS;
2200         else
2201                 err = journal->j_errno;
2202         read_unlock(&journal->j_state_lock);
2203         return err;
2204 }
2205
2206 /**
2207  * int jbd2_journal_clear_err () - clears the journal's error state
2208  * @journal: journal to act on.
2209  *
2210  * An error must be cleared or acked to take a FS out of readonly
2211  * mode.
2212  */
2213 int jbd2_journal_clear_err(journal_t *journal)
2214 {
2215         int err = 0;
2216
2217         write_lock(&journal->j_state_lock);
2218         if (journal->j_flags & JBD2_ABORT)
2219                 err = -EROFS;
2220         else
2221                 journal->j_errno = 0;
2222         write_unlock(&journal->j_state_lock);
2223         return err;
2224 }
2225
2226 /**
2227  * void jbd2_journal_ack_err() - Ack journal err.
2228  * @journal: journal to act on.
2229  *
2230  * An error must be cleared or acked to take a FS out of readonly
2231  * mode.
2232  */
2233 void jbd2_journal_ack_err(journal_t *journal)
2234 {
2235         write_lock(&journal->j_state_lock);
2236         if (journal->j_errno)
2237                 journal->j_flags |= JBD2_ACK_ERR;
2238         write_unlock(&journal->j_state_lock);
2239 }
2240
2241 int jbd2_journal_blocks_per_page(struct inode *inode)
2242 {
2243         return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
2244 }
2245
2246 /*
2247  * helper functions to deal with 32 or 64bit block numbers.
2248  */
2249 size_t journal_tag_bytes(journal_t *journal)
2250 {
2251         size_t sz;
2252
2253         if (jbd2_has_feature_csum3(journal))
2254                 return sizeof(journal_block_tag3_t);
2255
2256         sz = sizeof(journal_block_tag_t);
2257
2258         if (jbd2_has_feature_csum2(journal))
2259                 sz += sizeof(__u16);
2260
2261         if (jbd2_has_feature_64bit(journal))
2262                 return sz;
2263         else
2264                 return sz - sizeof(__u32);
2265 }
2266
2267 /*
2268  * JBD memory management
2269  *
2270  * These functions are used to allocate block-sized chunks of memory
2271  * used for making copies of buffer_head data.  Very often it will be
2272  * page-sized chunks of data, but sometimes it will be in
2273  * sub-page-size chunks.  (For example, 16k pages on Power systems
2274  * with a 4k block file system.)  For blocks smaller than a page, we
2275  * use a SLAB allocator.  There are slab caches for each block size,
2276  * which are allocated at mount time, if necessary, and we only free
2277  * (all of) the slab caches when/if the jbd2 module is unloaded.  For
2278  * this reason we don't need to a mutex to protect access to
2279  * jbd2_slab[] allocating or releasing memory; only in
2280  * jbd2_journal_create_slab().
2281  */
2282 #define JBD2_MAX_SLABS 8
2283 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2284
2285 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2286         "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2287         "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2288 };
2289
2290
2291 static void jbd2_journal_destroy_slabs(void)
2292 {
2293         int i;
2294
2295         for (i = 0; i < JBD2_MAX_SLABS; i++) {
2296                 kmem_cache_destroy(jbd2_slab[i]);
2297                 jbd2_slab[i] = NULL;
2298         }
2299 }
2300
2301 static int jbd2_journal_create_slab(size_t size)
2302 {
2303         static DEFINE_MUTEX(jbd2_slab_create_mutex);
2304         int i = order_base_2(size) - 10;
2305         size_t slab_size;
2306
2307         if (size == PAGE_SIZE)
2308                 return 0;
2309
2310         if (i >= JBD2_MAX_SLABS)
2311                 return -EINVAL;
2312
2313         if (unlikely(i < 0))
2314                 i = 0;
2315         mutex_lock(&jbd2_slab_create_mutex);
2316         if (jbd2_slab[i]) {
2317                 mutex_unlock(&jbd2_slab_create_mutex);
2318                 return 0;       /* Already created */
2319         }
2320
2321         slab_size = 1 << (i+10);
2322         jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2323                                          slab_size, 0, NULL);
2324         mutex_unlock(&jbd2_slab_create_mutex);
2325         if (!jbd2_slab[i]) {
2326                 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2327                 return -ENOMEM;
2328         }
2329         return 0;
2330 }
2331
2332 static struct kmem_cache *get_slab(size_t size)
2333 {
2334         int i = order_base_2(size) - 10;
2335
2336         BUG_ON(i >= JBD2_MAX_SLABS);
2337         if (unlikely(i < 0))
2338                 i = 0;
2339         BUG_ON(jbd2_slab[i] == NULL);
2340         return jbd2_slab[i];
2341 }
2342
2343 void *jbd2_alloc(size_t size, gfp_t flags)
2344 {
2345         void *ptr;
2346
2347         BUG_ON(size & (size-1)); /* Must be a power of 2 */
2348
2349         if (size < PAGE_SIZE)
2350                 ptr = kmem_cache_alloc(get_slab(size), flags);
2351         else
2352                 ptr = (void *)__get_free_pages(flags, get_order(size));
2353
2354         /* Check alignment; SLUB has gotten this wrong in the past,
2355          * and this can lead to user data corruption! */
2356         BUG_ON(((unsigned long) ptr) & (size-1));
2357
2358         return ptr;
2359 }
2360
2361 void jbd2_free(void *ptr, size_t size)
2362 {
2363         if (size < PAGE_SIZE)
2364                 kmem_cache_free(get_slab(size), ptr);
2365         else
2366                 free_pages((unsigned long)ptr, get_order(size));
2367 };
2368
2369 /*
2370  * Journal_head storage management
2371  */
2372 static struct kmem_cache *jbd2_journal_head_cache;
2373 #ifdef CONFIG_JBD2_DEBUG
2374 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2375 #endif
2376
2377 static int __init jbd2_journal_init_journal_head_cache(void)
2378 {
2379         J_ASSERT(!jbd2_journal_head_cache);
2380         jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2381                                 sizeof(struct journal_head),
2382                                 0,              /* offset */
2383                                 SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU,
2384                                 NULL);          /* ctor */
2385         if (!jbd2_journal_head_cache) {
2386                 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2387                 return -ENOMEM;
2388         }
2389         return 0;
2390 }
2391
2392 static void jbd2_journal_destroy_journal_head_cache(void)
2393 {
2394         kmem_cache_destroy(jbd2_journal_head_cache);
2395         jbd2_journal_head_cache = NULL;
2396 }
2397
2398 /*
2399  * journal_head splicing and dicing
2400  */
2401 static struct journal_head *journal_alloc_journal_head(void)
2402 {
2403         struct journal_head *ret;
2404
2405 #ifdef CONFIG_JBD2_DEBUG
2406         atomic_inc(&nr_journal_heads);
2407 #endif
2408         ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2409         if (!ret) {
2410                 jbd_debug(1, "out of memory for journal_head\n");
2411                 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2412                 ret = kmem_cache_zalloc(jbd2_journal_head_cache,
2413                                 GFP_NOFS | __GFP_NOFAIL);
2414         }
2415         return ret;
2416 }
2417
2418 static void journal_free_journal_head(struct journal_head *jh)
2419 {
2420 #ifdef CONFIG_JBD2_DEBUG
2421         atomic_dec(&nr_journal_heads);
2422         memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2423 #endif
2424         kmem_cache_free(jbd2_journal_head_cache, jh);
2425 }
2426
2427 /*
2428  * A journal_head is attached to a buffer_head whenever JBD has an
2429  * interest in the buffer.
2430  *
2431  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2432  * is set.  This bit is tested in core kernel code where we need to take
2433  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2434  * there.
2435  *
2436  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2437  *
2438  * When a buffer has its BH_JBD bit set it is immune from being released by
2439  * core kernel code, mainly via ->b_count.
2440  *
2441  * A journal_head is detached from its buffer_head when the journal_head's
2442  * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2443  * transaction (b_cp_transaction) hold their references to b_jcount.
2444  *
2445  * Various places in the kernel want to attach a journal_head to a buffer_head
2446  * _before_ attaching the journal_head to a transaction.  To protect the
2447  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2448  * journal_head's b_jcount refcount by one.  The caller must call
2449  * jbd2_journal_put_journal_head() to undo this.
2450  *
2451  * So the typical usage would be:
2452  *
2453  *      (Attach a journal_head if needed.  Increments b_jcount)
2454  *      struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2455  *      ...
2456  *      (Get another reference for transaction)
2457  *      jbd2_journal_grab_journal_head(bh);
2458  *      jh->b_transaction = xxx;
2459  *      (Put original reference)
2460  *      jbd2_journal_put_journal_head(jh);
2461  */
2462
2463 /*
2464  * Give a buffer_head a journal_head.
2465  *
2466  * May sleep.
2467  */
2468 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2469 {
2470         struct journal_head *jh;
2471         struct journal_head *new_jh = NULL;
2472
2473 repeat:
2474         if (!buffer_jbd(bh))
2475                 new_jh = journal_alloc_journal_head();
2476
2477         jbd_lock_bh_journal_head(bh);
2478         if (buffer_jbd(bh)) {
2479                 jh = bh2jh(bh);
2480         } else {
2481                 J_ASSERT_BH(bh,
2482                         (atomic_read(&bh->b_count) > 0) ||
2483                         (bh->b_page && bh->b_page->mapping));
2484
2485                 if (!new_jh) {
2486                         jbd_unlock_bh_journal_head(bh);
2487                         goto repeat;
2488                 }
2489
2490                 jh = new_jh;
2491                 new_jh = NULL;          /* We consumed it */
2492                 set_buffer_jbd(bh);
2493                 bh->b_private = jh;
2494                 jh->b_bh = bh;
2495                 get_bh(bh);
2496                 BUFFER_TRACE(bh, "added journal_head");
2497         }
2498         jh->b_jcount++;
2499         jbd_unlock_bh_journal_head(bh);
2500         if (new_jh)
2501                 journal_free_journal_head(new_jh);
2502         return bh->b_private;
2503 }
2504
2505 /*
2506  * Grab a ref against this buffer_head's journal_head.  If it ended up not
2507  * having a journal_head, return NULL
2508  */
2509 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2510 {
2511         struct journal_head *jh = NULL;
2512
2513         jbd_lock_bh_journal_head(bh);
2514         if (buffer_jbd(bh)) {
2515                 jh = bh2jh(bh);
2516                 jh->b_jcount++;
2517         }
2518         jbd_unlock_bh_journal_head(bh);
2519         return jh;
2520 }
2521
2522 static void __journal_remove_journal_head(struct buffer_head *bh)
2523 {
2524         struct journal_head *jh = bh2jh(bh);
2525
2526         J_ASSERT_JH(jh, jh->b_jcount >= 0);
2527         J_ASSERT_JH(jh, jh->b_transaction == NULL);
2528         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2529         J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2530         J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2531         J_ASSERT_BH(bh, buffer_jbd(bh));
2532         J_ASSERT_BH(bh, jh2bh(jh) == bh);
2533         BUFFER_TRACE(bh, "remove journal_head");
2534         if (jh->b_frozen_data) {
2535                 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2536                 jbd2_free(jh->b_frozen_data, bh->b_size);
2537         }
2538         if (jh->b_committed_data) {
2539                 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2540                 jbd2_free(jh->b_committed_data, bh->b_size);
2541         }
2542         bh->b_private = NULL;
2543         jh->b_bh = NULL;        /* debug, really */
2544         clear_buffer_jbd(bh);
2545         journal_free_journal_head(jh);
2546 }
2547
2548 /*
2549  * Drop a reference on the passed journal_head.  If it fell to zero then
2550  * release the journal_head from the buffer_head.
2551  */
2552 void jbd2_journal_put_journal_head(struct journal_head *jh)
2553 {
2554         struct buffer_head *bh = jh2bh(jh);
2555
2556         jbd_lock_bh_journal_head(bh);
2557         J_ASSERT_JH(jh, jh->b_jcount > 0);
2558         --jh->b_jcount;
2559         if (!jh->b_jcount) {
2560                 __journal_remove_journal_head(bh);
2561                 jbd_unlock_bh_journal_head(bh);
2562                 __brelse(bh);
2563         } else
2564                 jbd_unlock_bh_journal_head(bh);
2565 }
2566
2567 /*
2568  * Initialize jbd inode head
2569  */
2570 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2571 {
2572         jinode->i_transaction = NULL;
2573         jinode->i_next_transaction = NULL;
2574         jinode->i_vfs_inode = inode;
2575         jinode->i_flags = 0;
2576         jinode->i_dirty_start = 0;
2577         jinode->i_dirty_end = 0;
2578         INIT_LIST_HEAD(&jinode->i_list);
2579 }
2580
2581 /*
2582  * Function to be called before we start removing inode from memory (i.e.,
2583  * clear_inode() is a fine place to be called from). It removes inode from
2584  * transaction's lists.
2585  */
2586 void jbd2_journal_release_jbd_inode(journal_t *journal,
2587                                     struct jbd2_inode *jinode)
2588 {
2589         if (!journal)
2590                 return;
2591 restart:
2592         spin_lock(&journal->j_list_lock);
2593         /* Is commit writing out inode - we have to wait */
2594         if (jinode->i_flags & JI_COMMIT_RUNNING) {
2595                 wait_queue_head_t *wq;
2596                 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2597                 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2598                 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2599                 spin_unlock(&journal->j_list_lock);
2600                 schedule();
2601                 finish_wait(wq, &wait.wq_entry);
2602                 goto restart;
2603         }
2604
2605         if (jinode->i_transaction) {
2606                 list_del(&jinode->i_list);
2607                 jinode->i_transaction = NULL;
2608         }
2609         spin_unlock(&journal->j_list_lock);
2610 }
2611
2612
2613 #ifdef CONFIG_PROC_FS
2614
2615 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2616
2617 static void __init jbd2_create_jbd_stats_proc_entry(void)
2618 {
2619         proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2620 }
2621
2622 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2623 {
2624         if (proc_jbd2_stats)
2625                 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2626 }
2627
2628 #else
2629
2630 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2631 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2632
2633 #endif
2634
2635 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2636
2637 static int __init jbd2_journal_init_inode_cache(void)
2638 {
2639         J_ASSERT(!jbd2_inode_cache);
2640         jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2641         if (!jbd2_inode_cache) {
2642                 pr_emerg("JBD2: failed to create inode cache\n");
2643                 return -ENOMEM;
2644         }
2645         return 0;
2646 }
2647
2648 static int __init jbd2_journal_init_handle_cache(void)
2649 {
2650         J_ASSERT(!jbd2_handle_cache);
2651         jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2652         if (!jbd2_handle_cache) {
2653                 printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2654                 return -ENOMEM;
2655         }
2656         return 0;
2657 }
2658
2659 static void jbd2_journal_destroy_inode_cache(void)
2660 {
2661         kmem_cache_destroy(jbd2_inode_cache);
2662         jbd2_inode_cache = NULL;
2663 }
2664
2665 static void jbd2_journal_destroy_handle_cache(void)
2666 {
2667         kmem_cache_destroy(jbd2_handle_cache);
2668         jbd2_handle_cache = NULL;
2669 }
2670
2671 /*
2672  * Module startup and shutdown
2673  */
2674
2675 static int __init journal_init_caches(void)
2676 {
2677         int ret;
2678
2679         ret = jbd2_journal_init_revoke_record_cache();
2680         if (ret == 0)
2681                 ret = jbd2_journal_init_revoke_table_cache();
2682         if (ret == 0)
2683                 ret = jbd2_journal_init_journal_head_cache();
2684         if (ret == 0)
2685                 ret = jbd2_journal_init_handle_cache();
2686         if (ret == 0)
2687                 ret = jbd2_journal_init_inode_cache();
2688         if (ret == 0)
2689                 ret = jbd2_journal_init_transaction_cache();
2690         return ret;
2691 }
2692
2693 static void jbd2_journal_destroy_caches(void)
2694 {
2695         jbd2_journal_destroy_revoke_record_cache();
2696         jbd2_journal_destroy_revoke_table_cache();
2697         jbd2_journal_destroy_journal_head_cache();
2698         jbd2_journal_destroy_handle_cache();
2699         jbd2_journal_destroy_inode_cache();
2700         jbd2_journal_destroy_transaction_cache();
2701         jbd2_journal_destroy_slabs();
2702 }
2703
2704 static int __init journal_init(void)
2705 {
2706         int ret;
2707
2708         BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2709
2710         ret = journal_init_caches();
2711         if (ret == 0) {
2712                 jbd2_create_jbd_stats_proc_entry();
2713         } else {
2714                 jbd2_journal_destroy_caches();
2715         }
2716         return ret;
2717 }
2718
2719 static void __exit journal_exit(void)
2720 {
2721 #ifdef CONFIG_JBD2_DEBUG
2722         int n = atomic_read(&nr_journal_heads);
2723         if (n)
2724                 printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
2725 #endif
2726         jbd2_remove_jbd_stats_proc_entry();
2727         jbd2_journal_destroy_caches();
2728 }
2729
2730 MODULE_LICENSE("GPL");
2731 module_init(journal_init);
2732 module_exit(journal_exit);
2733