Merge tag 'nds32-for-linus-5.5-rc1' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / fs / jbd2 / journal.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * linux/fs/jbd2/journal.c
4  *
5  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6  *
7  * Copyright 1998 Red Hat corp --- All Rights Reserved
8  *
9  * Generic filesystem journal-writing code; part of the ext2fs
10  * journaling system.
11  *
12  * This file manages journals: areas of disk reserved for logging
13  * transactional updates.  This includes the kernel journaling thread
14  * which is responsible for scheduling updates to the log.
15  *
16  * We do not actually manage the physical storage of the journal in this
17  * file: that is left to a per-journal policy function, which allows us
18  * to store the journal within a filesystem-specified area for ext2
19  * journaling (ext2 can use a reserved inode for storing the log).
20  */
21
22 #include <linux/module.h>
23 #include <linux/time.h>
24 #include <linux/fs.h>
25 #include <linux/jbd2.h>
26 #include <linux/errno.h>
27 #include <linux/slab.h>
28 #include <linux/init.h>
29 #include <linux/mm.h>
30 #include <linux/freezer.h>
31 #include <linux/pagemap.h>
32 #include <linux/kthread.h>
33 #include <linux/poison.h>
34 #include <linux/proc_fs.h>
35 #include <linux/seq_file.h>
36 #include <linux/math64.h>
37 #include <linux/hash.h>
38 #include <linux/log2.h>
39 #include <linux/vmalloc.h>
40 #include <linux/backing-dev.h>
41 #include <linux/bitops.h>
42 #include <linux/ratelimit.h>
43 #include <linux/sched/mm.h>
44
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/jbd2.h>
47
48 #include <linux/uaccess.h>
49 #include <asm/page.h>
50
51 #ifdef CONFIG_JBD2_DEBUG
52 ushort jbd2_journal_enable_debug __read_mostly;
53 EXPORT_SYMBOL(jbd2_journal_enable_debug);
54
55 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
56 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
57 #endif
58
59 EXPORT_SYMBOL(jbd2_journal_extend);
60 EXPORT_SYMBOL(jbd2_journal_stop);
61 EXPORT_SYMBOL(jbd2_journal_lock_updates);
62 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
63 EXPORT_SYMBOL(jbd2_journal_get_write_access);
64 EXPORT_SYMBOL(jbd2_journal_get_create_access);
65 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
66 EXPORT_SYMBOL(jbd2_journal_set_triggers);
67 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
68 EXPORT_SYMBOL(jbd2_journal_forget);
69 EXPORT_SYMBOL(jbd2_journal_flush);
70 EXPORT_SYMBOL(jbd2_journal_revoke);
71
72 EXPORT_SYMBOL(jbd2_journal_init_dev);
73 EXPORT_SYMBOL(jbd2_journal_init_inode);
74 EXPORT_SYMBOL(jbd2_journal_check_used_features);
75 EXPORT_SYMBOL(jbd2_journal_check_available_features);
76 EXPORT_SYMBOL(jbd2_journal_set_features);
77 EXPORT_SYMBOL(jbd2_journal_load);
78 EXPORT_SYMBOL(jbd2_journal_destroy);
79 EXPORT_SYMBOL(jbd2_journal_abort);
80 EXPORT_SYMBOL(jbd2_journal_errno);
81 EXPORT_SYMBOL(jbd2_journal_ack_err);
82 EXPORT_SYMBOL(jbd2_journal_clear_err);
83 EXPORT_SYMBOL(jbd2_log_wait_commit);
84 EXPORT_SYMBOL(jbd2_log_start_commit);
85 EXPORT_SYMBOL(jbd2_journal_start_commit);
86 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
87 EXPORT_SYMBOL(jbd2_journal_wipe);
88 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
89 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
90 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
91 EXPORT_SYMBOL(jbd2_journal_force_commit);
92 EXPORT_SYMBOL(jbd2_journal_inode_ranged_write);
93 EXPORT_SYMBOL(jbd2_journal_inode_ranged_wait);
94 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
95 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
96 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
97 EXPORT_SYMBOL(jbd2_inode_cache);
98
99 static void __journal_abort_soft (journal_t *journal, int errno);
100 static int jbd2_journal_create_slab(size_t slab_size);
101
102 #ifdef CONFIG_JBD2_DEBUG
103 void __jbd2_debug(int level, const char *file, const char *func,
104                   unsigned int line, const char *fmt, ...)
105 {
106         struct va_format vaf;
107         va_list args;
108
109         if (level > jbd2_journal_enable_debug)
110                 return;
111         va_start(args, fmt);
112         vaf.fmt = fmt;
113         vaf.va = &args;
114         printk(KERN_DEBUG "%s: (%s, %u): %pV", file, func, line, &vaf);
115         va_end(args);
116 }
117 EXPORT_SYMBOL(__jbd2_debug);
118 #endif
119
120 /* Checksumming functions */
121 static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
122 {
123         if (!jbd2_journal_has_csum_v2or3_feature(j))
124                 return 1;
125
126         return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
127 }
128
129 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
130 {
131         __u32 csum;
132         __be32 old_csum;
133
134         old_csum = sb->s_checksum;
135         sb->s_checksum = 0;
136         csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
137         sb->s_checksum = old_csum;
138
139         return cpu_to_be32(csum);
140 }
141
142 /*
143  * Helper function used to manage commit timeouts
144  */
145
146 static void commit_timeout(struct timer_list *t)
147 {
148         journal_t *journal = from_timer(journal, t, j_commit_timer);
149
150         wake_up_process(journal->j_task);
151 }
152
153 /*
154  * kjournald2: The main thread function used to manage a logging device
155  * journal.
156  *
157  * This kernel thread is responsible for two things:
158  *
159  * 1) COMMIT:  Every so often we need to commit the current state of the
160  *    filesystem to disk.  The journal thread is responsible for writing
161  *    all of the metadata buffers to disk.
162  *
163  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
164  *    of the data in that part of the log has been rewritten elsewhere on
165  *    the disk.  Flushing these old buffers to reclaim space in the log is
166  *    known as checkpointing, and this thread is responsible for that job.
167  */
168
169 static int kjournald2(void *arg)
170 {
171         journal_t *journal = arg;
172         transaction_t *transaction;
173
174         /*
175          * Set up an interval timer which can be used to trigger a commit wakeup
176          * after the commit interval expires
177          */
178         timer_setup(&journal->j_commit_timer, commit_timeout, 0);
179
180         set_freezable();
181
182         /* Record that the journal thread is running */
183         journal->j_task = current;
184         wake_up(&journal->j_wait_done_commit);
185
186         /*
187          * Make sure that no allocations from this kernel thread will ever
188          * recurse to the fs layer because we are responsible for the
189          * transaction commit and any fs involvement might get stuck waiting for
190          * the trasn. commit.
191          */
192         memalloc_nofs_save();
193
194         /*
195          * And now, wait forever for commit wakeup events.
196          */
197         write_lock(&journal->j_state_lock);
198
199 loop:
200         if (journal->j_flags & JBD2_UNMOUNT)
201                 goto end_loop;
202
203         jbd_debug(1, "commit_sequence=%u, commit_request=%u\n",
204                 journal->j_commit_sequence, journal->j_commit_request);
205
206         if (journal->j_commit_sequence != journal->j_commit_request) {
207                 jbd_debug(1, "OK, requests differ\n");
208                 write_unlock(&journal->j_state_lock);
209                 del_timer_sync(&journal->j_commit_timer);
210                 jbd2_journal_commit_transaction(journal);
211                 write_lock(&journal->j_state_lock);
212                 goto loop;
213         }
214
215         wake_up(&journal->j_wait_done_commit);
216         if (freezing(current)) {
217                 /*
218                  * The simpler the better. Flushing journal isn't a
219                  * good idea, because that depends on threads that may
220                  * be already stopped.
221                  */
222                 jbd_debug(1, "Now suspending kjournald2\n");
223                 write_unlock(&journal->j_state_lock);
224                 try_to_freeze();
225                 write_lock(&journal->j_state_lock);
226         } else {
227                 /*
228                  * We assume on resume that commits are already there,
229                  * so we don't sleep
230                  */
231                 DEFINE_WAIT(wait);
232                 int should_sleep = 1;
233
234                 prepare_to_wait(&journal->j_wait_commit, &wait,
235                                 TASK_INTERRUPTIBLE);
236                 if (journal->j_commit_sequence != journal->j_commit_request)
237                         should_sleep = 0;
238                 transaction = journal->j_running_transaction;
239                 if (transaction && time_after_eq(jiffies,
240                                                 transaction->t_expires))
241                         should_sleep = 0;
242                 if (journal->j_flags & JBD2_UNMOUNT)
243                         should_sleep = 0;
244                 if (should_sleep) {
245                         write_unlock(&journal->j_state_lock);
246                         schedule();
247                         write_lock(&journal->j_state_lock);
248                 }
249                 finish_wait(&journal->j_wait_commit, &wait);
250         }
251
252         jbd_debug(1, "kjournald2 wakes\n");
253
254         /*
255          * Were we woken up by a commit wakeup event?
256          */
257         transaction = journal->j_running_transaction;
258         if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
259                 journal->j_commit_request = transaction->t_tid;
260                 jbd_debug(1, "woke because of timeout\n");
261         }
262         goto loop;
263
264 end_loop:
265         del_timer_sync(&journal->j_commit_timer);
266         journal->j_task = NULL;
267         wake_up(&journal->j_wait_done_commit);
268         jbd_debug(1, "Journal thread exiting.\n");
269         write_unlock(&journal->j_state_lock);
270         return 0;
271 }
272
273 static int jbd2_journal_start_thread(journal_t *journal)
274 {
275         struct task_struct *t;
276
277         t = kthread_run(kjournald2, journal, "jbd2/%s",
278                         journal->j_devname);
279         if (IS_ERR(t))
280                 return PTR_ERR(t);
281
282         wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
283         return 0;
284 }
285
286 static void journal_kill_thread(journal_t *journal)
287 {
288         write_lock(&journal->j_state_lock);
289         journal->j_flags |= JBD2_UNMOUNT;
290
291         while (journal->j_task) {
292                 write_unlock(&journal->j_state_lock);
293                 wake_up(&journal->j_wait_commit);
294                 wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
295                 write_lock(&journal->j_state_lock);
296         }
297         write_unlock(&journal->j_state_lock);
298 }
299
300 /*
301  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
302  *
303  * Writes a metadata buffer to a given disk block.  The actual IO is not
304  * performed but a new buffer_head is constructed which labels the data
305  * to be written with the correct destination disk block.
306  *
307  * Any magic-number escaping which needs to be done will cause a
308  * copy-out here.  If the buffer happens to start with the
309  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
310  * magic number is only written to the log for descripter blocks.  In
311  * this case, we copy the data and replace the first word with 0, and we
312  * return a result code which indicates that this buffer needs to be
313  * marked as an escaped buffer in the corresponding log descriptor
314  * block.  The missing word can then be restored when the block is read
315  * during recovery.
316  *
317  * If the source buffer has already been modified by a new transaction
318  * since we took the last commit snapshot, we use the frozen copy of
319  * that data for IO. If we end up using the existing buffer_head's data
320  * for the write, then we have to make sure nobody modifies it while the
321  * IO is in progress. do_get_write_access() handles this.
322  *
323  * The function returns a pointer to the buffer_head to be used for IO.
324  *
325  *
326  * Return value:
327  *  <0: Error
328  * >=0: Finished OK
329  *
330  * On success:
331  * Bit 0 set == escape performed on the data
332  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
333  */
334
335 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
336                                   struct journal_head  *jh_in,
337                                   struct buffer_head **bh_out,
338                                   sector_t blocknr)
339 {
340         int need_copy_out = 0;
341         int done_copy_out = 0;
342         int do_escape = 0;
343         char *mapped_data;
344         struct buffer_head *new_bh;
345         struct page *new_page;
346         unsigned int new_offset;
347         struct buffer_head *bh_in = jh2bh(jh_in);
348         journal_t *journal = transaction->t_journal;
349
350         /*
351          * The buffer really shouldn't be locked: only the current committing
352          * transaction is allowed to write it, so nobody else is allowed
353          * to do any IO.
354          *
355          * akpm: except if we're journalling data, and write() output is
356          * also part of a shared mapping, and another thread has
357          * decided to launch a writepage() against this buffer.
358          */
359         J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
360
361         new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
362
363         /* keep subsequent assertions sane */
364         atomic_set(&new_bh->b_count, 1);
365
366         spin_lock(&jh_in->b_state_lock);
367 repeat:
368         /*
369          * If a new transaction has already done a buffer copy-out, then
370          * we use that version of the data for the commit.
371          */
372         if (jh_in->b_frozen_data) {
373                 done_copy_out = 1;
374                 new_page = virt_to_page(jh_in->b_frozen_data);
375                 new_offset = offset_in_page(jh_in->b_frozen_data);
376         } else {
377                 new_page = jh2bh(jh_in)->b_page;
378                 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
379         }
380
381         mapped_data = kmap_atomic(new_page);
382         /*
383          * Fire data frozen trigger if data already wasn't frozen.  Do this
384          * before checking for escaping, as the trigger may modify the magic
385          * offset.  If a copy-out happens afterwards, it will have the correct
386          * data in the buffer.
387          */
388         if (!done_copy_out)
389                 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
390                                            jh_in->b_triggers);
391
392         /*
393          * Check for escaping
394          */
395         if (*((__be32 *)(mapped_data + new_offset)) ==
396                                 cpu_to_be32(JBD2_MAGIC_NUMBER)) {
397                 need_copy_out = 1;
398                 do_escape = 1;
399         }
400         kunmap_atomic(mapped_data);
401
402         /*
403          * Do we need to do a data copy?
404          */
405         if (need_copy_out && !done_copy_out) {
406                 char *tmp;
407
408                 spin_unlock(&jh_in->b_state_lock);
409                 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
410                 if (!tmp) {
411                         brelse(new_bh);
412                         return -ENOMEM;
413                 }
414                 spin_lock(&jh_in->b_state_lock);
415                 if (jh_in->b_frozen_data) {
416                         jbd2_free(tmp, bh_in->b_size);
417                         goto repeat;
418                 }
419
420                 jh_in->b_frozen_data = tmp;
421                 mapped_data = kmap_atomic(new_page);
422                 memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
423                 kunmap_atomic(mapped_data);
424
425                 new_page = virt_to_page(tmp);
426                 new_offset = offset_in_page(tmp);
427                 done_copy_out = 1;
428
429                 /*
430                  * This isn't strictly necessary, as we're using frozen
431                  * data for the escaping, but it keeps consistency with
432                  * b_frozen_data usage.
433                  */
434                 jh_in->b_frozen_triggers = jh_in->b_triggers;
435         }
436
437         /*
438          * Did we need to do an escaping?  Now we've done all the
439          * copying, we can finally do so.
440          */
441         if (do_escape) {
442                 mapped_data = kmap_atomic(new_page);
443                 *((unsigned int *)(mapped_data + new_offset)) = 0;
444                 kunmap_atomic(mapped_data);
445         }
446
447         set_bh_page(new_bh, new_page, new_offset);
448         new_bh->b_size = bh_in->b_size;
449         new_bh->b_bdev = journal->j_dev;
450         new_bh->b_blocknr = blocknr;
451         new_bh->b_private = bh_in;
452         set_buffer_mapped(new_bh);
453         set_buffer_dirty(new_bh);
454
455         *bh_out = new_bh;
456
457         /*
458          * The to-be-written buffer needs to get moved to the io queue,
459          * and the original buffer whose contents we are shadowing or
460          * copying is moved to the transaction's shadow queue.
461          */
462         JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
463         spin_lock(&journal->j_list_lock);
464         __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
465         spin_unlock(&journal->j_list_lock);
466         set_buffer_shadow(bh_in);
467         spin_unlock(&jh_in->b_state_lock);
468
469         return do_escape | (done_copy_out << 1);
470 }
471
472 /*
473  * Allocation code for the journal file.  Manage the space left in the
474  * journal, so that we can begin checkpointing when appropriate.
475  */
476
477 /*
478  * Called with j_state_lock locked for writing.
479  * Returns true if a transaction commit was started.
480  */
481 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
482 {
483         /* Return if the txn has already requested to be committed */
484         if (journal->j_commit_request == target)
485                 return 0;
486
487         /*
488          * The only transaction we can possibly wait upon is the
489          * currently running transaction (if it exists).  Otherwise,
490          * the target tid must be an old one.
491          */
492         if (journal->j_running_transaction &&
493             journal->j_running_transaction->t_tid == target) {
494                 /*
495                  * We want a new commit: OK, mark the request and wakeup the
496                  * commit thread.  We do _not_ do the commit ourselves.
497                  */
498
499                 journal->j_commit_request = target;
500                 jbd_debug(1, "JBD2: requesting commit %u/%u\n",
501                           journal->j_commit_request,
502                           journal->j_commit_sequence);
503                 journal->j_running_transaction->t_requested = jiffies;
504                 wake_up(&journal->j_wait_commit);
505                 return 1;
506         } else if (!tid_geq(journal->j_commit_request, target))
507                 /* This should never happen, but if it does, preserve
508                    the evidence before kjournald goes into a loop and
509                    increments j_commit_sequence beyond all recognition. */
510                 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
511                           journal->j_commit_request,
512                           journal->j_commit_sequence,
513                           target, journal->j_running_transaction ?
514                           journal->j_running_transaction->t_tid : 0);
515         return 0;
516 }
517
518 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
519 {
520         int ret;
521
522         write_lock(&journal->j_state_lock);
523         ret = __jbd2_log_start_commit(journal, tid);
524         write_unlock(&journal->j_state_lock);
525         return ret;
526 }
527
528 /*
529  * Force and wait any uncommitted transactions.  We can only force the running
530  * transaction if we don't have an active handle, otherwise, we will deadlock.
531  * Returns: <0 in case of error,
532  *           0 if nothing to commit,
533  *           1 if transaction was successfully committed.
534  */
535 static int __jbd2_journal_force_commit(journal_t *journal)
536 {
537         transaction_t *transaction = NULL;
538         tid_t tid;
539         int need_to_start = 0, ret = 0;
540
541         read_lock(&journal->j_state_lock);
542         if (journal->j_running_transaction && !current->journal_info) {
543                 transaction = journal->j_running_transaction;
544                 if (!tid_geq(journal->j_commit_request, transaction->t_tid))
545                         need_to_start = 1;
546         } else if (journal->j_committing_transaction)
547                 transaction = journal->j_committing_transaction;
548
549         if (!transaction) {
550                 /* Nothing to commit */
551                 read_unlock(&journal->j_state_lock);
552                 return 0;
553         }
554         tid = transaction->t_tid;
555         read_unlock(&journal->j_state_lock);
556         if (need_to_start)
557                 jbd2_log_start_commit(journal, tid);
558         ret = jbd2_log_wait_commit(journal, tid);
559         if (!ret)
560                 ret = 1;
561
562         return ret;
563 }
564
565 /**
566  * Force and wait upon a commit if the calling process is not within
567  * transaction.  This is used for forcing out undo-protected data which contains
568  * bitmaps, when the fs is running out of space.
569  *
570  * @journal: journal to force
571  * Returns true if progress was made.
572  */
573 int jbd2_journal_force_commit_nested(journal_t *journal)
574 {
575         int ret;
576
577         ret = __jbd2_journal_force_commit(journal);
578         return ret > 0;
579 }
580
581 /**
582  * int journal_force_commit() - force any uncommitted transactions
583  * @journal: journal to force
584  *
585  * Caller want unconditional commit. We can only force the running transaction
586  * if we don't have an active handle, otherwise, we will deadlock.
587  */
588 int jbd2_journal_force_commit(journal_t *journal)
589 {
590         int ret;
591
592         J_ASSERT(!current->journal_info);
593         ret = __jbd2_journal_force_commit(journal);
594         if (ret > 0)
595                 ret = 0;
596         return ret;
597 }
598
599 /*
600  * Start a commit of the current running transaction (if any).  Returns true
601  * if a transaction is going to be committed (or is currently already
602  * committing), and fills its tid in at *ptid
603  */
604 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
605 {
606         int ret = 0;
607
608         write_lock(&journal->j_state_lock);
609         if (journal->j_running_transaction) {
610                 tid_t tid = journal->j_running_transaction->t_tid;
611
612                 __jbd2_log_start_commit(journal, tid);
613                 /* There's a running transaction and we've just made sure
614                  * it's commit has been scheduled. */
615                 if (ptid)
616                         *ptid = tid;
617                 ret = 1;
618         } else if (journal->j_committing_transaction) {
619                 /*
620                  * If commit has been started, then we have to wait for
621                  * completion of that transaction.
622                  */
623                 if (ptid)
624                         *ptid = journal->j_committing_transaction->t_tid;
625                 ret = 1;
626         }
627         write_unlock(&journal->j_state_lock);
628         return ret;
629 }
630
631 /*
632  * Return 1 if a given transaction has not yet sent barrier request
633  * connected with a transaction commit. If 0 is returned, transaction
634  * may or may not have sent the barrier. Used to avoid sending barrier
635  * twice in common cases.
636  */
637 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
638 {
639         int ret = 0;
640         transaction_t *commit_trans;
641
642         if (!(journal->j_flags & JBD2_BARRIER))
643                 return 0;
644         read_lock(&journal->j_state_lock);
645         /* Transaction already committed? */
646         if (tid_geq(journal->j_commit_sequence, tid))
647                 goto out;
648         commit_trans = journal->j_committing_transaction;
649         if (!commit_trans || commit_trans->t_tid != tid) {
650                 ret = 1;
651                 goto out;
652         }
653         /*
654          * Transaction is being committed and we already proceeded to
655          * submitting a flush to fs partition?
656          */
657         if (journal->j_fs_dev != journal->j_dev) {
658                 if (!commit_trans->t_need_data_flush ||
659                     commit_trans->t_state >= T_COMMIT_DFLUSH)
660                         goto out;
661         } else {
662                 if (commit_trans->t_state >= T_COMMIT_JFLUSH)
663                         goto out;
664         }
665         ret = 1;
666 out:
667         read_unlock(&journal->j_state_lock);
668         return ret;
669 }
670 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
671
672 /*
673  * Wait for a specified commit to complete.
674  * The caller may not hold the journal lock.
675  */
676 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
677 {
678         int err = 0;
679
680         read_lock(&journal->j_state_lock);
681 #ifdef CONFIG_PROVE_LOCKING
682         /*
683          * Some callers make sure transaction is already committing and in that
684          * case we cannot block on open handles anymore. So don't warn in that
685          * case.
686          */
687         if (tid_gt(tid, journal->j_commit_sequence) &&
688             (!journal->j_committing_transaction ||
689              journal->j_committing_transaction->t_tid != tid)) {
690                 read_unlock(&journal->j_state_lock);
691                 jbd2_might_wait_for_commit(journal);
692                 read_lock(&journal->j_state_lock);
693         }
694 #endif
695 #ifdef CONFIG_JBD2_DEBUG
696         if (!tid_geq(journal->j_commit_request, tid)) {
697                 printk(KERN_ERR
698                        "%s: error: j_commit_request=%u, tid=%u\n",
699                        __func__, journal->j_commit_request, tid);
700         }
701 #endif
702         while (tid_gt(tid, journal->j_commit_sequence)) {
703                 jbd_debug(1, "JBD2: want %u, j_commit_sequence=%u\n",
704                                   tid, journal->j_commit_sequence);
705                 read_unlock(&journal->j_state_lock);
706                 wake_up(&journal->j_wait_commit);
707                 wait_event(journal->j_wait_done_commit,
708                                 !tid_gt(tid, journal->j_commit_sequence));
709                 read_lock(&journal->j_state_lock);
710         }
711         read_unlock(&journal->j_state_lock);
712
713         if (unlikely(is_journal_aborted(journal)))
714                 err = -EIO;
715         return err;
716 }
717
718 /* Return 1 when transaction with given tid has already committed. */
719 int jbd2_transaction_committed(journal_t *journal, tid_t tid)
720 {
721         int ret = 1;
722
723         read_lock(&journal->j_state_lock);
724         if (journal->j_running_transaction &&
725             journal->j_running_transaction->t_tid == tid)
726                 ret = 0;
727         if (journal->j_committing_transaction &&
728             journal->j_committing_transaction->t_tid == tid)
729                 ret = 0;
730         read_unlock(&journal->j_state_lock);
731         return ret;
732 }
733 EXPORT_SYMBOL(jbd2_transaction_committed);
734
735 /*
736  * When this function returns the transaction corresponding to tid
737  * will be completed.  If the transaction has currently running, start
738  * committing that transaction before waiting for it to complete.  If
739  * the transaction id is stale, it is by definition already completed,
740  * so just return SUCCESS.
741  */
742 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
743 {
744         int     need_to_wait = 1;
745
746         read_lock(&journal->j_state_lock);
747         if (journal->j_running_transaction &&
748             journal->j_running_transaction->t_tid == tid) {
749                 if (journal->j_commit_request != tid) {
750                         /* transaction not yet started, so request it */
751                         read_unlock(&journal->j_state_lock);
752                         jbd2_log_start_commit(journal, tid);
753                         goto wait_commit;
754                 }
755         } else if (!(journal->j_committing_transaction &&
756                      journal->j_committing_transaction->t_tid == tid))
757                 need_to_wait = 0;
758         read_unlock(&journal->j_state_lock);
759         if (!need_to_wait)
760                 return 0;
761 wait_commit:
762         return jbd2_log_wait_commit(journal, tid);
763 }
764 EXPORT_SYMBOL(jbd2_complete_transaction);
765
766 /*
767  * Log buffer allocation routines:
768  */
769
770 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
771 {
772         unsigned long blocknr;
773
774         write_lock(&journal->j_state_lock);
775         J_ASSERT(journal->j_free > 1);
776
777         blocknr = journal->j_head;
778         journal->j_head++;
779         journal->j_free--;
780         if (journal->j_head == journal->j_last)
781                 journal->j_head = journal->j_first;
782         write_unlock(&journal->j_state_lock);
783         return jbd2_journal_bmap(journal, blocknr, retp);
784 }
785
786 /*
787  * Conversion of logical to physical block numbers for the journal
788  *
789  * On external journals the journal blocks are identity-mapped, so
790  * this is a no-op.  If needed, we can use j_blk_offset - everything is
791  * ready.
792  */
793 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
794                  unsigned long long *retp)
795 {
796         int err = 0;
797         unsigned long long ret;
798
799         if (journal->j_inode) {
800                 ret = bmap(journal->j_inode, blocknr);
801                 if (ret)
802                         *retp = ret;
803                 else {
804                         printk(KERN_ALERT "%s: journal block not found "
805                                         "at offset %lu on %s\n",
806                                __func__, blocknr, journal->j_devname);
807                         err = -EIO;
808                         __journal_abort_soft(journal, err);
809                 }
810         } else {
811                 *retp = blocknr; /* +journal->j_blk_offset */
812         }
813         return err;
814 }
815
816 /*
817  * We play buffer_head aliasing tricks to write data/metadata blocks to
818  * the journal without copying their contents, but for journal
819  * descriptor blocks we do need to generate bona fide buffers.
820  *
821  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
822  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
823  * But we don't bother doing that, so there will be coherency problems with
824  * mmaps of blockdevs which hold live JBD-controlled filesystems.
825  */
826 struct buffer_head *
827 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type)
828 {
829         journal_t *journal = transaction->t_journal;
830         struct buffer_head *bh;
831         unsigned long long blocknr;
832         journal_header_t *header;
833         int err;
834
835         err = jbd2_journal_next_log_block(journal, &blocknr);
836
837         if (err)
838                 return NULL;
839
840         bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
841         if (!bh)
842                 return NULL;
843         atomic_dec(&transaction->t_outstanding_credits);
844         lock_buffer(bh);
845         memset(bh->b_data, 0, journal->j_blocksize);
846         header = (journal_header_t *)bh->b_data;
847         header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
848         header->h_blocktype = cpu_to_be32(type);
849         header->h_sequence = cpu_to_be32(transaction->t_tid);
850         set_buffer_uptodate(bh);
851         unlock_buffer(bh);
852         BUFFER_TRACE(bh, "return this buffer");
853         return bh;
854 }
855
856 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh)
857 {
858         struct jbd2_journal_block_tail *tail;
859         __u32 csum;
860
861         if (!jbd2_journal_has_csum_v2or3(j))
862                 return;
863
864         tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize -
865                         sizeof(struct jbd2_journal_block_tail));
866         tail->t_checksum = 0;
867         csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
868         tail->t_checksum = cpu_to_be32(csum);
869 }
870
871 /*
872  * Return tid of the oldest transaction in the journal and block in the journal
873  * where the transaction starts.
874  *
875  * If the journal is now empty, return which will be the next transaction ID
876  * we will write and where will that transaction start.
877  *
878  * The return value is 0 if journal tail cannot be pushed any further, 1 if
879  * it can.
880  */
881 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
882                               unsigned long *block)
883 {
884         transaction_t *transaction;
885         int ret;
886
887         read_lock(&journal->j_state_lock);
888         spin_lock(&journal->j_list_lock);
889         transaction = journal->j_checkpoint_transactions;
890         if (transaction) {
891                 *tid = transaction->t_tid;
892                 *block = transaction->t_log_start;
893         } else if ((transaction = journal->j_committing_transaction) != NULL) {
894                 *tid = transaction->t_tid;
895                 *block = transaction->t_log_start;
896         } else if ((transaction = journal->j_running_transaction) != NULL) {
897                 *tid = transaction->t_tid;
898                 *block = journal->j_head;
899         } else {
900                 *tid = journal->j_transaction_sequence;
901                 *block = journal->j_head;
902         }
903         ret = tid_gt(*tid, journal->j_tail_sequence);
904         spin_unlock(&journal->j_list_lock);
905         read_unlock(&journal->j_state_lock);
906
907         return ret;
908 }
909
910 /*
911  * Update information in journal structure and in on disk journal superblock
912  * about log tail. This function does not check whether information passed in
913  * really pushes log tail further. It's responsibility of the caller to make
914  * sure provided log tail information is valid (e.g. by holding
915  * j_checkpoint_mutex all the time between computing log tail and calling this
916  * function as is the case with jbd2_cleanup_journal_tail()).
917  *
918  * Requires j_checkpoint_mutex
919  */
920 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
921 {
922         unsigned long freed;
923         int ret;
924
925         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
926
927         /*
928          * We cannot afford for write to remain in drive's caches since as
929          * soon as we update j_tail, next transaction can start reusing journal
930          * space and if we lose sb update during power failure we'd replay
931          * old transaction with possibly newly overwritten data.
932          */
933         ret = jbd2_journal_update_sb_log_tail(journal, tid, block,
934                                               REQ_SYNC | REQ_FUA);
935         if (ret)
936                 goto out;
937
938         write_lock(&journal->j_state_lock);
939         freed = block - journal->j_tail;
940         if (block < journal->j_tail)
941                 freed += journal->j_last - journal->j_first;
942
943         trace_jbd2_update_log_tail(journal, tid, block, freed);
944         jbd_debug(1,
945                   "Cleaning journal tail from %u to %u (offset %lu), "
946                   "freeing %lu\n",
947                   journal->j_tail_sequence, tid, block, freed);
948
949         journal->j_free += freed;
950         journal->j_tail_sequence = tid;
951         journal->j_tail = block;
952         write_unlock(&journal->j_state_lock);
953
954 out:
955         return ret;
956 }
957
958 /*
959  * This is a variation of __jbd2_update_log_tail which checks for validity of
960  * provided log tail and locks j_checkpoint_mutex. So it is safe against races
961  * with other threads updating log tail.
962  */
963 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
964 {
965         mutex_lock_io(&journal->j_checkpoint_mutex);
966         if (tid_gt(tid, journal->j_tail_sequence))
967                 __jbd2_update_log_tail(journal, tid, block);
968         mutex_unlock(&journal->j_checkpoint_mutex);
969 }
970
971 struct jbd2_stats_proc_session {
972         journal_t *journal;
973         struct transaction_stats_s *stats;
974         int start;
975         int max;
976 };
977
978 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
979 {
980         return *pos ? NULL : SEQ_START_TOKEN;
981 }
982
983 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
984 {
985         return NULL;
986 }
987
988 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
989 {
990         struct jbd2_stats_proc_session *s = seq->private;
991
992         if (v != SEQ_START_TOKEN)
993                 return 0;
994         seq_printf(seq, "%lu transactions (%lu requested), "
995                    "each up to %u blocks\n",
996                    s->stats->ts_tid, s->stats->ts_requested,
997                    s->journal->j_max_transaction_buffers);
998         if (s->stats->ts_tid == 0)
999                 return 0;
1000         seq_printf(seq, "average: \n  %ums waiting for transaction\n",
1001             jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
1002         seq_printf(seq, "  %ums request delay\n",
1003             (s->stats->ts_requested == 0) ? 0 :
1004             jiffies_to_msecs(s->stats->run.rs_request_delay /
1005                              s->stats->ts_requested));
1006         seq_printf(seq, "  %ums running transaction\n",
1007             jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
1008         seq_printf(seq, "  %ums transaction was being locked\n",
1009             jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
1010         seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
1011             jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
1012         seq_printf(seq, "  %ums logging transaction\n",
1013             jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
1014         seq_printf(seq, "  %lluus average transaction commit time\n",
1015                    div_u64(s->journal->j_average_commit_time, 1000));
1016         seq_printf(seq, "  %lu handles per transaction\n",
1017             s->stats->run.rs_handle_count / s->stats->ts_tid);
1018         seq_printf(seq, "  %lu blocks per transaction\n",
1019             s->stats->run.rs_blocks / s->stats->ts_tid);
1020         seq_printf(seq, "  %lu logged blocks per transaction\n",
1021             s->stats->run.rs_blocks_logged / s->stats->ts_tid);
1022         return 0;
1023 }
1024
1025 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
1026 {
1027 }
1028
1029 static const struct seq_operations jbd2_seq_info_ops = {
1030         .start  = jbd2_seq_info_start,
1031         .next   = jbd2_seq_info_next,
1032         .stop   = jbd2_seq_info_stop,
1033         .show   = jbd2_seq_info_show,
1034 };
1035
1036 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
1037 {
1038         journal_t *journal = PDE_DATA(inode);
1039         struct jbd2_stats_proc_session *s;
1040         int rc, size;
1041
1042         s = kmalloc(sizeof(*s), GFP_KERNEL);
1043         if (s == NULL)
1044                 return -ENOMEM;
1045         size = sizeof(struct transaction_stats_s);
1046         s->stats = kmalloc(size, GFP_KERNEL);
1047         if (s->stats == NULL) {
1048                 kfree(s);
1049                 return -ENOMEM;
1050         }
1051         spin_lock(&journal->j_history_lock);
1052         memcpy(s->stats, &journal->j_stats, size);
1053         s->journal = journal;
1054         spin_unlock(&journal->j_history_lock);
1055
1056         rc = seq_open(file, &jbd2_seq_info_ops);
1057         if (rc == 0) {
1058                 struct seq_file *m = file->private_data;
1059                 m->private = s;
1060         } else {
1061                 kfree(s->stats);
1062                 kfree(s);
1063         }
1064         return rc;
1065
1066 }
1067
1068 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1069 {
1070         struct seq_file *seq = file->private_data;
1071         struct jbd2_stats_proc_session *s = seq->private;
1072         kfree(s->stats);
1073         kfree(s);
1074         return seq_release(inode, file);
1075 }
1076
1077 static const struct file_operations jbd2_seq_info_fops = {
1078         .owner          = THIS_MODULE,
1079         .open           = jbd2_seq_info_open,
1080         .read           = seq_read,
1081         .llseek         = seq_lseek,
1082         .release        = jbd2_seq_info_release,
1083 };
1084
1085 static struct proc_dir_entry *proc_jbd2_stats;
1086
1087 static void jbd2_stats_proc_init(journal_t *journal)
1088 {
1089         journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1090         if (journal->j_proc_entry) {
1091                 proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1092                                  &jbd2_seq_info_fops, journal);
1093         }
1094 }
1095
1096 static void jbd2_stats_proc_exit(journal_t *journal)
1097 {
1098         remove_proc_entry("info", journal->j_proc_entry);
1099         remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1100 }
1101
1102 /* Minimum size of descriptor tag */
1103 static int jbd2_min_tag_size(void)
1104 {
1105         /*
1106          * Tag with 32-bit block numbers does not use last four bytes of the
1107          * structure
1108          */
1109         return sizeof(journal_block_tag_t) - 4;
1110 }
1111
1112 /*
1113  * Management for journal control blocks: functions to create and
1114  * destroy journal_t structures, and to initialise and read existing
1115  * journal blocks from disk.  */
1116
1117 /* First: create and setup a journal_t object in memory.  We initialise
1118  * very few fields yet: that has to wait until we have created the
1119  * journal structures from from scratch, or loaded them from disk. */
1120
1121 static journal_t *journal_init_common(struct block_device *bdev,
1122                         struct block_device *fs_dev,
1123                         unsigned long long start, int len, int blocksize)
1124 {
1125         static struct lock_class_key jbd2_trans_commit_key;
1126         journal_t *journal;
1127         int err;
1128         struct buffer_head *bh;
1129         int n;
1130
1131         journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1132         if (!journal)
1133                 return NULL;
1134
1135         init_waitqueue_head(&journal->j_wait_transaction_locked);
1136         init_waitqueue_head(&journal->j_wait_done_commit);
1137         init_waitqueue_head(&journal->j_wait_commit);
1138         init_waitqueue_head(&journal->j_wait_updates);
1139         init_waitqueue_head(&journal->j_wait_reserved);
1140         mutex_init(&journal->j_barrier);
1141         mutex_init(&journal->j_checkpoint_mutex);
1142         spin_lock_init(&journal->j_revoke_lock);
1143         spin_lock_init(&journal->j_list_lock);
1144         rwlock_init(&journal->j_state_lock);
1145
1146         journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1147         journal->j_min_batch_time = 0;
1148         journal->j_max_batch_time = 15000; /* 15ms */
1149         atomic_set(&journal->j_reserved_credits, 0);
1150
1151         /* The journal is marked for error until we succeed with recovery! */
1152         journal->j_flags = JBD2_ABORT;
1153
1154         /* Set up a default-sized revoke table for the new mount. */
1155         err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1156         if (err)
1157                 goto err_cleanup;
1158
1159         spin_lock_init(&journal->j_history_lock);
1160
1161         lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle",
1162                          &jbd2_trans_commit_key, 0);
1163
1164         /* journal descriptor can store up to n blocks -bzzz */
1165         journal->j_blocksize = blocksize;
1166         journal->j_dev = bdev;
1167         journal->j_fs_dev = fs_dev;
1168         journal->j_blk_offset = start;
1169         journal->j_maxlen = len;
1170         /* We need enough buffers to write out full descriptor block. */
1171         n = journal->j_blocksize / jbd2_min_tag_size();
1172         journal->j_wbufsize = n;
1173         journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *),
1174                                         GFP_KERNEL);
1175         if (!journal->j_wbuf)
1176                 goto err_cleanup;
1177
1178         bh = getblk_unmovable(journal->j_dev, start, journal->j_blocksize);
1179         if (!bh) {
1180                 pr_err("%s: Cannot get buffer for journal superblock\n",
1181                         __func__);
1182                 goto err_cleanup;
1183         }
1184         journal->j_sb_buffer = bh;
1185         journal->j_superblock = (journal_superblock_t *)bh->b_data;
1186
1187         return journal;
1188
1189 err_cleanup:
1190         kfree(journal->j_wbuf);
1191         jbd2_journal_destroy_revoke(journal);
1192         kfree(journal);
1193         return NULL;
1194 }
1195
1196 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1197  *
1198  * Create a journal structure assigned some fixed set of disk blocks to
1199  * the journal.  We don't actually touch those disk blocks yet, but we
1200  * need to set up all of the mapping information to tell the journaling
1201  * system where the journal blocks are.
1202  *
1203  */
1204
1205 /**
1206  *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1207  *  @bdev: Block device on which to create the journal
1208  *  @fs_dev: Device which hold journalled filesystem for this journal.
1209  *  @start: Block nr Start of journal.
1210  *  @len:  Length of the journal in blocks.
1211  *  @blocksize: blocksize of journalling device
1212  *
1213  *  Returns: a newly created journal_t *
1214  *
1215  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1216  *  range of blocks on an arbitrary block device.
1217  *
1218  */
1219 journal_t *jbd2_journal_init_dev(struct block_device *bdev,
1220                         struct block_device *fs_dev,
1221                         unsigned long long start, int len, int blocksize)
1222 {
1223         journal_t *journal;
1224
1225         journal = journal_init_common(bdev, fs_dev, start, len, blocksize);
1226         if (!journal)
1227                 return NULL;
1228
1229         bdevname(journal->j_dev, journal->j_devname);
1230         strreplace(journal->j_devname, '/', '!');
1231         jbd2_stats_proc_init(journal);
1232
1233         return journal;
1234 }
1235
1236 /**
1237  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1238  *  @inode: An inode to create the journal in
1239  *
1240  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1241  * the journal.  The inode must exist already, must support bmap() and
1242  * must have all data blocks preallocated.
1243  */
1244 journal_t *jbd2_journal_init_inode(struct inode *inode)
1245 {
1246         journal_t *journal;
1247         char *p;
1248         unsigned long long blocknr;
1249
1250         blocknr = bmap(inode, 0);
1251         if (!blocknr) {
1252                 pr_err("%s: Cannot locate journal superblock\n",
1253                         __func__);
1254                 return NULL;
1255         }
1256
1257         jbd_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n",
1258                   inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size,
1259                   inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1260
1261         journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev,
1262                         blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits,
1263                         inode->i_sb->s_blocksize);
1264         if (!journal)
1265                 return NULL;
1266
1267         journal->j_inode = inode;
1268         bdevname(journal->j_dev, journal->j_devname);
1269         p = strreplace(journal->j_devname, '/', '!');
1270         sprintf(p, "-%lu", journal->j_inode->i_ino);
1271         jbd2_stats_proc_init(journal);
1272
1273         return journal;
1274 }
1275
1276 /*
1277  * If the journal init or create aborts, we need to mark the journal
1278  * superblock as being NULL to prevent the journal destroy from writing
1279  * back a bogus superblock.
1280  */
1281 static void journal_fail_superblock (journal_t *journal)
1282 {
1283         struct buffer_head *bh = journal->j_sb_buffer;
1284         brelse(bh);
1285         journal->j_sb_buffer = NULL;
1286 }
1287
1288 /*
1289  * Given a journal_t structure, initialise the various fields for
1290  * startup of a new journaling session.  We use this both when creating
1291  * a journal, and after recovering an old journal to reset it for
1292  * subsequent use.
1293  */
1294
1295 static int journal_reset(journal_t *journal)
1296 {
1297         journal_superblock_t *sb = journal->j_superblock;
1298         unsigned long long first, last;
1299
1300         first = be32_to_cpu(sb->s_first);
1301         last = be32_to_cpu(sb->s_maxlen);
1302         if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1303                 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1304                        first, last);
1305                 journal_fail_superblock(journal);
1306                 return -EINVAL;
1307         }
1308
1309         journal->j_first = first;
1310         journal->j_last = last;
1311
1312         journal->j_head = first;
1313         journal->j_tail = first;
1314         journal->j_free = last - first;
1315
1316         journal->j_tail_sequence = journal->j_transaction_sequence;
1317         journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1318         journal->j_commit_request = journal->j_commit_sequence;
1319
1320         journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1321
1322         /*
1323          * As a special case, if the on-disk copy is already marked as needing
1324          * no recovery (s_start == 0), then we can safely defer the superblock
1325          * update until the next commit by setting JBD2_FLUSHED.  This avoids
1326          * attempting a write to a potential-readonly device.
1327          */
1328         if (sb->s_start == 0) {
1329                 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1330                         "(start %ld, seq %u, errno %d)\n",
1331                         journal->j_tail, journal->j_tail_sequence,
1332                         journal->j_errno);
1333                 journal->j_flags |= JBD2_FLUSHED;
1334         } else {
1335                 /* Lock here to make assertions happy... */
1336                 mutex_lock_io(&journal->j_checkpoint_mutex);
1337                 /*
1338                  * Update log tail information. We use REQ_FUA since new
1339                  * transaction will start reusing journal space and so we
1340                  * must make sure information about current log tail is on
1341                  * disk before that.
1342                  */
1343                 jbd2_journal_update_sb_log_tail(journal,
1344                                                 journal->j_tail_sequence,
1345                                                 journal->j_tail,
1346                                                 REQ_SYNC | REQ_FUA);
1347                 mutex_unlock(&journal->j_checkpoint_mutex);
1348         }
1349         return jbd2_journal_start_thread(journal);
1350 }
1351
1352 /*
1353  * This function expects that the caller will have locked the journal
1354  * buffer head, and will return with it unlocked
1355  */
1356 static int jbd2_write_superblock(journal_t *journal, int write_flags)
1357 {
1358         struct buffer_head *bh = journal->j_sb_buffer;
1359         journal_superblock_t *sb = journal->j_superblock;
1360         int ret;
1361
1362         /* Buffer got discarded which means block device got invalidated */
1363         if (!buffer_mapped(bh))
1364                 return -EIO;
1365
1366         trace_jbd2_write_superblock(journal, write_flags);
1367         if (!(journal->j_flags & JBD2_BARRIER))
1368                 write_flags &= ~(REQ_FUA | REQ_PREFLUSH);
1369         if (buffer_write_io_error(bh)) {
1370                 /*
1371                  * Oh, dear.  A previous attempt to write the journal
1372                  * superblock failed.  This could happen because the
1373                  * USB device was yanked out.  Or it could happen to
1374                  * be a transient write error and maybe the block will
1375                  * be remapped.  Nothing we can do but to retry the
1376                  * write and hope for the best.
1377                  */
1378                 printk(KERN_ERR "JBD2: previous I/O error detected "
1379                        "for journal superblock update for %s.\n",
1380                        journal->j_devname);
1381                 clear_buffer_write_io_error(bh);
1382                 set_buffer_uptodate(bh);
1383         }
1384         if (jbd2_journal_has_csum_v2or3(journal))
1385                 sb->s_checksum = jbd2_superblock_csum(journal, sb);
1386         get_bh(bh);
1387         bh->b_end_io = end_buffer_write_sync;
1388         ret = submit_bh(REQ_OP_WRITE, write_flags, bh);
1389         wait_on_buffer(bh);
1390         if (buffer_write_io_error(bh)) {
1391                 clear_buffer_write_io_error(bh);
1392                 set_buffer_uptodate(bh);
1393                 ret = -EIO;
1394         }
1395         if (ret) {
1396                 printk(KERN_ERR "JBD2: Error %d detected when updating "
1397                        "journal superblock for %s.\n", ret,
1398                        journal->j_devname);
1399                 jbd2_journal_abort(journal, ret);
1400         }
1401
1402         return ret;
1403 }
1404
1405 /**
1406  * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1407  * @journal: The journal to update.
1408  * @tail_tid: TID of the new transaction at the tail of the log
1409  * @tail_block: The first block of the transaction at the tail of the log
1410  * @write_op: With which operation should we write the journal sb
1411  *
1412  * Update a journal's superblock information about log tail and write it to
1413  * disk, waiting for the IO to complete.
1414  */
1415 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1416                                      unsigned long tail_block, int write_op)
1417 {
1418         journal_superblock_t *sb = journal->j_superblock;
1419         int ret;
1420
1421         if (is_journal_aborted(journal))
1422                 return -EIO;
1423
1424         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1425         jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1426                   tail_block, tail_tid);
1427
1428         lock_buffer(journal->j_sb_buffer);
1429         sb->s_sequence = cpu_to_be32(tail_tid);
1430         sb->s_start    = cpu_to_be32(tail_block);
1431
1432         ret = jbd2_write_superblock(journal, write_op);
1433         if (ret)
1434                 goto out;
1435
1436         /* Log is no longer empty */
1437         write_lock(&journal->j_state_lock);
1438         WARN_ON(!sb->s_sequence);
1439         journal->j_flags &= ~JBD2_FLUSHED;
1440         write_unlock(&journal->j_state_lock);
1441
1442 out:
1443         return ret;
1444 }
1445
1446 /**
1447  * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1448  * @journal: The journal to update.
1449  * @write_op: With which operation should we write the journal sb
1450  *
1451  * Update a journal's dynamic superblock fields to show that journal is empty.
1452  * Write updated superblock to disk waiting for IO to complete.
1453  */
1454 static void jbd2_mark_journal_empty(journal_t *journal, int write_op)
1455 {
1456         journal_superblock_t *sb = journal->j_superblock;
1457
1458         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1459         lock_buffer(journal->j_sb_buffer);
1460         if (sb->s_start == 0) {         /* Is it already empty? */
1461                 unlock_buffer(journal->j_sb_buffer);
1462                 return;
1463         }
1464
1465         jbd_debug(1, "JBD2: Marking journal as empty (seq %u)\n",
1466                   journal->j_tail_sequence);
1467
1468         sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1469         sb->s_start    = cpu_to_be32(0);
1470
1471         jbd2_write_superblock(journal, write_op);
1472
1473         /* Log is no longer empty */
1474         write_lock(&journal->j_state_lock);
1475         journal->j_flags |= JBD2_FLUSHED;
1476         write_unlock(&journal->j_state_lock);
1477 }
1478
1479
1480 /**
1481  * jbd2_journal_update_sb_errno() - Update error in the journal.
1482  * @journal: The journal to update.
1483  *
1484  * Update a journal's errno.  Write updated superblock to disk waiting for IO
1485  * to complete.
1486  */
1487 void jbd2_journal_update_sb_errno(journal_t *journal)
1488 {
1489         journal_superblock_t *sb = journal->j_superblock;
1490         int errcode;
1491
1492         lock_buffer(journal->j_sb_buffer);
1493         errcode = journal->j_errno;
1494         if (errcode == -ESHUTDOWN)
1495                 errcode = 0;
1496         jbd_debug(1, "JBD2: updating superblock error (errno %d)\n", errcode);
1497         sb->s_errno    = cpu_to_be32(errcode);
1498
1499         jbd2_write_superblock(journal, REQ_SYNC | REQ_FUA);
1500 }
1501 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1502
1503 static int journal_revoke_records_per_block(journal_t *journal)
1504 {
1505         int record_size;
1506         int space = journal->j_blocksize - sizeof(jbd2_journal_revoke_header_t);
1507
1508         if (jbd2_has_feature_64bit(journal))
1509                 record_size = 8;
1510         else
1511                 record_size = 4;
1512
1513         if (jbd2_journal_has_csum_v2or3(journal))
1514                 space -= sizeof(struct jbd2_journal_block_tail);
1515         return space / record_size;
1516 }
1517
1518 /*
1519  * Read the superblock for a given journal, performing initial
1520  * validation of the format.
1521  */
1522 static int journal_get_superblock(journal_t *journal)
1523 {
1524         struct buffer_head *bh;
1525         journal_superblock_t *sb;
1526         int err = -EIO;
1527
1528         bh = journal->j_sb_buffer;
1529
1530         J_ASSERT(bh != NULL);
1531         if (!buffer_uptodate(bh)) {
1532                 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1533                 wait_on_buffer(bh);
1534                 if (!buffer_uptodate(bh)) {
1535                         printk(KERN_ERR
1536                                 "JBD2: IO error reading journal superblock\n");
1537                         goto out;
1538                 }
1539         }
1540
1541         if (buffer_verified(bh))
1542                 return 0;
1543
1544         sb = journal->j_superblock;
1545
1546         err = -EINVAL;
1547
1548         if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1549             sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1550                 printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1551                 goto out;
1552         }
1553
1554         switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1555         case JBD2_SUPERBLOCK_V1:
1556                 journal->j_format_version = 1;
1557                 break;
1558         case JBD2_SUPERBLOCK_V2:
1559                 journal->j_format_version = 2;
1560                 break;
1561         default:
1562                 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1563                 goto out;
1564         }
1565
1566         if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1567                 journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1568         else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1569                 printk(KERN_WARNING "JBD2: journal file too short\n");
1570                 goto out;
1571         }
1572
1573         if (be32_to_cpu(sb->s_first) == 0 ||
1574             be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1575                 printk(KERN_WARNING
1576                         "JBD2: Invalid start block of journal: %u\n",
1577                         be32_to_cpu(sb->s_first));
1578                 goto out;
1579         }
1580
1581         if (jbd2_has_feature_csum2(journal) &&
1582             jbd2_has_feature_csum3(journal)) {
1583                 /* Can't have checksum v2 and v3 at the same time! */
1584                 printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1585                        "at the same time!\n");
1586                 goto out;
1587         }
1588
1589         if (jbd2_journal_has_csum_v2or3_feature(journal) &&
1590             jbd2_has_feature_checksum(journal)) {
1591                 /* Can't have checksum v1 and v2 on at the same time! */
1592                 printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1593                        "at the same time!\n");
1594                 goto out;
1595         }
1596
1597         if (!jbd2_verify_csum_type(journal, sb)) {
1598                 printk(KERN_ERR "JBD2: Unknown checksum type\n");
1599                 goto out;
1600         }
1601
1602         /* Load the checksum driver */
1603         if (jbd2_journal_has_csum_v2or3_feature(journal)) {
1604                 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1605                 if (IS_ERR(journal->j_chksum_driver)) {
1606                         printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1607                         err = PTR_ERR(journal->j_chksum_driver);
1608                         journal->j_chksum_driver = NULL;
1609                         goto out;
1610                 }
1611         }
1612
1613         if (jbd2_journal_has_csum_v2or3(journal)) {
1614                 /* Check superblock checksum */
1615                 if (sb->s_checksum != jbd2_superblock_csum(journal, sb)) {
1616                         printk(KERN_ERR "JBD2: journal checksum error\n");
1617                         err = -EFSBADCRC;
1618                         goto out;
1619                 }
1620
1621                 /* Precompute checksum seed for all metadata */
1622                 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1623                                                    sizeof(sb->s_uuid));
1624         }
1625
1626         journal->j_revoke_records_per_block =
1627                                 journal_revoke_records_per_block(journal);
1628         set_buffer_verified(bh);
1629
1630         return 0;
1631
1632 out:
1633         journal_fail_superblock(journal);
1634         return err;
1635 }
1636
1637 /*
1638  * Load the on-disk journal superblock and read the key fields into the
1639  * journal_t.
1640  */
1641
1642 static int load_superblock(journal_t *journal)
1643 {
1644         int err;
1645         journal_superblock_t *sb;
1646
1647         err = journal_get_superblock(journal);
1648         if (err)
1649                 return err;
1650
1651         sb = journal->j_superblock;
1652
1653         journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1654         journal->j_tail = be32_to_cpu(sb->s_start);
1655         journal->j_first = be32_to_cpu(sb->s_first);
1656         journal->j_last = be32_to_cpu(sb->s_maxlen);
1657         journal->j_errno = be32_to_cpu(sb->s_errno);
1658
1659         return 0;
1660 }
1661
1662
1663 /**
1664  * int jbd2_journal_load() - Read journal from disk.
1665  * @journal: Journal to act on.
1666  *
1667  * Given a journal_t structure which tells us which disk blocks contain
1668  * a journal, read the journal from disk to initialise the in-memory
1669  * structures.
1670  */
1671 int jbd2_journal_load(journal_t *journal)
1672 {
1673         int err;
1674         journal_superblock_t *sb;
1675
1676         err = load_superblock(journal);
1677         if (err)
1678                 return err;
1679
1680         sb = journal->j_superblock;
1681         /* If this is a V2 superblock, then we have to check the
1682          * features flags on it. */
1683
1684         if (journal->j_format_version >= 2) {
1685                 if ((sb->s_feature_ro_compat &
1686                      ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1687                     (sb->s_feature_incompat &
1688                      ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1689                         printk(KERN_WARNING
1690                                 "JBD2: Unrecognised features on journal\n");
1691                         return -EINVAL;
1692                 }
1693         }
1694
1695         /*
1696          * Create a slab for this blocksize
1697          */
1698         err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1699         if (err)
1700                 return err;
1701
1702         /* Let the recovery code check whether it needs to recover any
1703          * data from the journal. */
1704         if (jbd2_journal_recover(journal))
1705                 goto recovery_error;
1706
1707         if (journal->j_failed_commit) {
1708                 printk(KERN_ERR "JBD2: journal transaction %u on %s "
1709                        "is corrupt.\n", journal->j_failed_commit,
1710                        journal->j_devname);
1711                 return -EFSCORRUPTED;
1712         }
1713
1714         /* OK, we've finished with the dynamic journal bits:
1715          * reinitialise the dynamic contents of the superblock in memory
1716          * and reset them on disk. */
1717         if (journal_reset(journal))
1718                 goto recovery_error;
1719
1720         journal->j_flags &= ~JBD2_ABORT;
1721         journal->j_flags |= JBD2_LOADED;
1722         return 0;
1723
1724 recovery_error:
1725         printk(KERN_WARNING "JBD2: recovery failed\n");
1726         return -EIO;
1727 }
1728
1729 /**
1730  * void jbd2_journal_destroy() - Release a journal_t structure.
1731  * @journal: Journal to act on.
1732  *
1733  * Release a journal_t structure once it is no longer in use by the
1734  * journaled object.
1735  * Return <0 if we couldn't clean up the journal.
1736  */
1737 int jbd2_journal_destroy(journal_t *journal)
1738 {
1739         int err = 0;
1740
1741         /* Wait for the commit thread to wake up and die. */
1742         journal_kill_thread(journal);
1743
1744         /* Force a final log commit */
1745         if (journal->j_running_transaction)
1746                 jbd2_journal_commit_transaction(journal);
1747
1748         /* Force any old transactions to disk */
1749
1750         /* Totally anal locking here... */
1751         spin_lock(&journal->j_list_lock);
1752         while (journal->j_checkpoint_transactions != NULL) {
1753                 spin_unlock(&journal->j_list_lock);
1754                 mutex_lock_io(&journal->j_checkpoint_mutex);
1755                 err = jbd2_log_do_checkpoint(journal);
1756                 mutex_unlock(&journal->j_checkpoint_mutex);
1757                 /*
1758                  * If checkpointing failed, just free the buffers to avoid
1759                  * looping forever
1760                  */
1761                 if (err) {
1762                         jbd2_journal_destroy_checkpoint(journal);
1763                         spin_lock(&journal->j_list_lock);
1764                         break;
1765                 }
1766                 spin_lock(&journal->j_list_lock);
1767         }
1768
1769         J_ASSERT(journal->j_running_transaction == NULL);
1770         J_ASSERT(journal->j_committing_transaction == NULL);
1771         J_ASSERT(journal->j_checkpoint_transactions == NULL);
1772         spin_unlock(&journal->j_list_lock);
1773
1774         if (journal->j_sb_buffer) {
1775                 if (!is_journal_aborted(journal)) {
1776                         mutex_lock_io(&journal->j_checkpoint_mutex);
1777
1778                         write_lock(&journal->j_state_lock);
1779                         journal->j_tail_sequence =
1780                                 ++journal->j_transaction_sequence;
1781                         write_unlock(&journal->j_state_lock);
1782
1783                         jbd2_mark_journal_empty(journal,
1784                                         REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
1785                         mutex_unlock(&journal->j_checkpoint_mutex);
1786                 } else
1787                         err = -EIO;
1788                 brelse(journal->j_sb_buffer);
1789         }
1790
1791         if (journal->j_proc_entry)
1792                 jbd2_stats_proc_exit(journal);
1793         iput(journal->j_inode);
1794         if (journal->j_revoke)
1795                 jbd2_journal_destroy_revoke(journal);
1796         if (journal->j_chksum_driver)
1797                 crypto_free_shash(journal->j_chksum_driver);
1798         kfree(journal->j_wbuf);
1799         kfree(journal);
1800
1801         return err;
1802 }
1803
1804
1805 /**
1806  *int jbd2_journal_check_used_features () - Check if features specified are used.
1807  * @journal: Journal to check.
1808  * @compat: bitmask of compatible features
1809  * @ro: bitmask of features that force read-only mount
1810  * @incompat: bitmask of incompatible features
1811  *
1812  * Check whether the journal uses all of a given set of
1813  * features.  Return true (non-zero) if it does.
1814  **/
1815
1816 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1817                                  unsigned long ro, unsigned long incompat)
1818 {
1819         journal_superblock_t *sb;
1820
1821         if (!compat && !ro && !incompat)
1822                 return 1;
1823         /* Load journal superblock if it is not loaded yet. */
1824         if (journal->j_format_version == 0 &&
1825             journal_get_superblock(journal) != 0)
1826                 return 0;
1827         if (journal->j_format_version == 1)
1828                 return 0;
1829
1830         sb = journal->j_superblock;
1831
1832         if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1833             ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1834             ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1835                 return 1;
1836
1837         return 0;
1838 }
1839
1840 /**
1841  * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1842  * @journal: Journal to check.
1843  * @compat: bitmask of compatible features
1844  * @ro: bitmask of features that force read-only mount
1845  * @incompat: bitmask of incompatible features
1846  *
1847  * Check whether the journaling code supports the use of
1848  * all of a given set of features on this journal.  Return true
1849  * (non-zero) if it can. */
1850
1851 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1852                                       unsigned long ro, unsigned long incompat)
1853 {
1854         if (!compat && !ro && !incompat)
1855                 return 1;
1856
1857         /* We can support any known requested features iff the
1858          * superblock is in version 2.  Otherwise we fail to support any
1859          * extended sb features. */
1860
1861         if (journal->j_format_version != 2)
1862                 return 0;
1863
1864         if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1865             (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1866             (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1867                 return 1;
1868
1869         return 0;
1870 }
1871
1872 /**
1873  * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1874  * @journal: Journal to act on.
1875  * @compat: bitmask of compatible features
1876  * @ro: bitmask of features that force read-only mount
1877  * @incompat: bitmask of incompatible features
1878  *
1879  * Mark a given journal feature as present on the
1880  * superblock.  Returns true if the requested features could be set.
1881  *
1882  */
1883
1884 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1885                           unsigned long ro, unsigned long incompat)
1886 {
1887 #define INCOMPAT_FEATURE_ON(f) \
1888                 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1889 #define COMPAT_FEATURE_ON(f) \
1890                 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1891         journal_superblock_t *sb;
1892
1893         if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1894                 return 1;
1895
1896         if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1897                 return 0;
1898
1899         /* If enabling v2 checksums, turn on v3 instead */
1900         if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
1901                 incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
1902                 incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
1903         }
1904
1905         /* Asking for checksumming v3 and v1?  Only give them v3. */
1906         if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
1907             compat & JBD2_FEATURE_COMPAT_CHECKSUM)
1908                 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
1909
1910         jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1911                   compat, ro, incompat);
1912
1913         sb = journal->j_superblock;
1914
1915         /* Load the checksum driver if necessary */
1916         if ((journal->j_chksum_driver == NULL) &&
1917             INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1918                 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1919                 if (IS_ERR(journal->j_chksum_driver)) {
1920                         printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1921                         journal->j_chksum_driver = NULL;
1922                         return 0;
1923                 }
1924                 /* Precompute checksum seed for all metadata */
1925                 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1926                                                    sizeof(sb->s_uuid));
1927         }
1928
1929         lock_buffer(journal->j_sb_buffer);
1930
1931         /* If enabling v3 checksums, update superblock */
1932         if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1933                 sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
1934                 sb->s_feature_compat &=
1935                         ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1936         }
1937
1938         /* If enabling v1 checksums, downgrade superblock */
1939         if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
1940                 sb->s_feature_incompat &=
1941                         ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
1942                                      JBD2_FEATURE_INCOMPAT_CSUM_V3);
1943
1944         sb->s_feature_compat    |= cpu_to_be32(compat);
1945         sb->s_feature_ro_compat |= cpu_to_be32(ro);
1946         sb->s_feature_incompat  |= cpu_to_be32(incompat);
1947         unlock_buffer(journal->j_sb_buffer);
1948         journal->j_revoke_records_per_block =
1949                                 journal_revoke_records_per_block(journal);
1950
1951         return 1;
1952 #undef COMPAT_FEATURE_ON
1953 #undef INCOMPAT_FEATURE_ON
1954 }
1955
1956 /*
1957  * jbd2_journal_clear_features () - Clear a given journal feature in the
1958  *                                  superblock
1959  * @journal: Journal to act on.
1960  * @compat: bitmask of compatible features
1961  * @ro: bitmask of features that force read-only mount
1962  * @incompat: bitmask of incompatible features
1963  *
1964  * Clear a given journal feature as present on the
1965  * superblock.
1966  */
1967 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1968                                 unsigned long ro, unsigned long incompat)
1969 {
1970         journal_superblock_t *sb;
1971
1972         jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1973                   compat, ro, incompat);
1974
1975         sb = journal->j_superblock;
1976
1977         sb->s_feature_compat    &= ~cpu_to_be32(compat);
1978         sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1979         sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
1980         journal->j_revoke_records_per_block =
1981                                 journal_revoke_records_per_block(journal);
1982 }
1983 EXPORT_SYMBOL(jbd2_journal_clear_features);
1984
1985 /**
1986  * int jbd2_journal_flush () - Flush journal
1987  * @journal: Journal to act on.
1988  *
1989  * Flush all data for a given journal to disk and empty the journal.
1990  * Filesystems can use this when remounting readonly to ensure that
1991  * recovery does not need to happen on remount.
1992  */
1993
1994 int jbd2_journal_flush(journal_t *journal)
1995 {
1996         int err = 0;
1997         transaction_t *transaction = NULL;
1998
1999         write_lock(&journal->j_state_lock);
2000
2001         /* Force everything buffered to the log... */
2002         if (journal->j_running_transaction) {
2003                 transaction = journal->j_running_transaction;
2004                 __jbd2_log_start_commit(journal, transaction->t_tid);
2005         } else if (journal->j_committing_transaction)
2006                 transaction = journal->j_committing_transaction;
2007
2008         /* Wait for the log commit to complete... */
2009         if (transaction) {
2010                 tid_t tid = transaction->t_tid;
2011
2012                 write_unlock(&journal->j_state_lock);
2013                 jbd2_log_wait_commit(journal, tid);
2014         } else {
2015                 write_unlock(&journal->j_state_lock);
2016         }
2017
2018         /* ...and flush everything in the log out to disk. */
2019         spin_lock(&journal->j_list_lock);
2020         while (!err && journal->j_checkpoint_transactions != NULL) {
2021                 spin_unlock(&journal->j_list_lock);
2022                 mutex_lock_io(&journal->j_checkpoint_mutex);
2023                 err = jbd2_log_do_checkpoint(journal);
2024                 mutex_unlock(&journal->j_checkpoint_mutex);
2025                 spin_lock(&journal->j_list_lock);
2026         }
2027         spin_unlock(&journal->j_list_lock);
2028
2029         if (is_journal_aborted(journal))
2030                 return -EIO;
2031
2032         mutex_lock_io(&journal->j_checkpoint_mutex);
2033         if (!err) {
2034                 err = jbd2_cleanup_journal_tail(journal);
2035                 if (err < 0) {
2036                         mutex_unlock(&journal->j_checkpoint_mutex);
2037                         goto out;
2038                 }
2039                 err = 0;
2040         }
2041
2042         /* Finally, mark the journal as really needing no recovery.
2043          * This sets s_start==0 in the underlying superblock, which is
2044          * the magic code for a fully-recovered superblock.  Any future
2045          * commits of data to the journal will restore the current
2046          * s_start value. */
2047         jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2048         mutex_unlock(&journal->j_checkpoint_mutex);
2049         write_lock(&journal->j_state_lock);
2050         J_ASSERT(!journal->j_running_transaction);
2051         J_ASSERT(!journal->j_committing_transaction);
2052         J_ASSERT(!journal->j_checkpoint_transactions);
2053         J_ASSERT(journal->j_head == journal->j_tail);
2054         J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
2055         write_unlock(&journal->j_state_lock);
2056 out:
2057         return err;
2058 }
2059
2060 /**
2061  * int jbd2_journal_wipe() - Wipe journal contents
2062  * @journal: Journal to act on.
2063  * @write: flag (see below)
2064  *
2065  * Wipe out all of the contents of a journal, safely.  This will produce
2066  * a warning if the journal contains any valid recovery information.
2067  * Must be called between journal_init_*() and jbd2_journal_load().
2068  *
2069  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2070  * we merely suppress recovery.
2071  */
2072
2073 int jbd2_journal_wipe(journal_t *journal, int write)
2074 {
2075         int err = 0;
2076
2077         J_ASSERT (!(journal->j_flags & JBD2_LOADED));
2078
2079         err = load_superblock(journal);
2080         if (err)
2081                 return err;
2082
2083         if (!journal->j_tail)
2084                 goto no_recovery;
2085
2086         printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2087                 write ? "Clearing" : "Ignoring");
2088
2089         err = jbd2_journal_skip_recovery(journal);
2090         if (write) {
2091                 /* Lock to make assertions happy... */
2092                 mutex_lock_io(&journal->j_checkpoint_mutex);
2093                 jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2094                 mutex_unlock(&journal->j_checkpoint_mutex);
2095         }
2096
2097  no_recovery:
2098         return err;
2099 }
2100
2101 /*
2102  * Journal abort has very specific semantics, which we describe
2103  * for journal abort.
2104  *
2105  * Two internal functions, which provide abort to the jbd layer
2106  * itself are here.
2107  */
2108
2109 /*
2110  * Quick version for internal journal use (doesn't lock the journal).
2111  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
2112  * and don't attempt to make any other journal updates.
2113  */
2114 void __jbd2_journal_abort_hard(journal_t *journal)
2115 {
2116         transaction_t *transaction;
2117
2118         if (journal->j_flags & JBD2_ABORT)
2119                 return;
2120
2121         printk(KERN_ERR "Aborting journal on device %s.\n",
2122                journal->j_devname);
2123
2124         write_lock(&journal->j_state_lock);
2125         journal->j_flags |= JBD2_ABORT;
2126         transaction = journal->j_running_transaction;
2127         if (transaction)
2128                 __jbd2_log_start_commit(journal, transaction->t_tid);
2129         write_unlock(&journal->j_state_lock);
2130 }
2131
2132 /* Soft abort: record the abort error status in the journal superblock,
2133  * but don't do any other IO. */
2134 static void __journal_abort_soft (journal_t *journal, int errno)
2135 {
2136         int old_errno;
2137
2138         write_lock(&journal->j_state_lock);
2139         old_errno = journal->j_errno;
2140         if (!journal->j_errno || errno == -ESHUTDOWN)
2141                 journal->j_errno = errno;
2142
2143         if (journal->j_flags & JBD2_ABORT) {
2144                 write_unlock(&journal->j_state_lock);
2145                 if (!old_errno && old_errno != -ESHUTDOWN &&
2146                     errno == -ESHUTDOWN)
2147                         jbd2_journal_update_sb_errno(journal);
2148                 return;
2149         }
2150         write_unlock(&journal->j_state_lock);
2151
2152         __jbd2_journal_abort_hard(journal);
2153
2154         if (errno) {
2155                 jbd2_journal_update_sb_errno(journal);
2156                 write_lock(&journal->j_state_lock);
2157                 journal->j_flags |= JBD2_REC_ERR;
2158                 write_unlock(&journal->j_state_lock);
2159         }
2160 }
2161
2162 /**
2163  * void jbd2_journal_abort () - Shutdown the journal immediately.
2164  * @journal: the journal to shutdown.
2165  * @errno:   an error number to record in the journal indicating
2166  *           the reason for the shutdown.
2167  *
2168  * Perform a complete, immediate shutdown of the ENTIRE
2169  * journal (not of a single transaction).  This operation cannot be
2170  * undone without closing and reopening the journal.
2171  *
2172  * The jbd2_journal_abort function is intended to support higher level error
2173  * recovery mechanisms such as the ext2/ext3 remount-readonly error
2174  * mode.
2175  *
2176  * Journal abort has very specific semantics.  Any existing dirty,
2177  * unjournaled buffers in the main filesystem will still be written to
2178  * disk by bdflush, but the journaling mechanism will be suspended
2179  * immediately and no further transaction commits will be honoured.
2180  *
2181  * Any dirty, journaled buffers will be written back to disk without
2182  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
2183  * filesystem, but we _do_ attempt to leave as much data as possible
2184  * behind for fsck to use for cleanup.
2185  *
2186  * Any attempt to get a new transaction handle on a journal which is in
2187  * ABORT state will just result in an -EROFS error return.  A
2188  * jbd2_journal_stop on an existing handle will return -EIO if we have
2189  * entered abort state during the update.
2190  *
2191  * Recursive transactions are not disturbed by journal abort until the
2192  * final jbd2_journal_stop, which will receive the -EIO error.
2193  *
2194  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2195  * which will be recorded (if possible) in the journal superblock.  This
2196  * allows a client to record failure conditions in the middle of a
2197  * transaction without having to complete the transaction to record the
2198  * failure to disk.  ext3_error, for example, now uses this
2199  * functionality.
2200  *
2201  * Errors which originate from within the journaling layer will NOT
2202  * supply an errno; a null errno implies that absolutely no further
2203  * writes are done to the journal (unless there are any already in
2204  * progress).
2205  *
2206  */
2207
2208 void jbd2_journal_abort(journal_t *journal, int errno)
2209 {
2210         __journal_abort_soft(journal, errno);
2211 }
2212
2213 /**
2214  * int jbd2_journal_errno () - returns the journal's error state.
2215  * @journal: journal to examine.
2216  *
2217  * This is the errno number set with jbd2_journal_abort(), the last
2218  * time the journal was mounted - if the journal was stopped
2219  * without calling abort this will be 0.
2220  *
2221  * If the journal has been aborted on this mount time -EROFS will
2222  * be returned.
2223  */
2224 int jbd2_journal_errno(journal_t *journal)
2225 {
2226         int err;
2227
2228         read_lock(&journal->j_state_lock);
2229         if (journal->j_flags & JBD2_ABORT)
2230                 err = -EROFS;
2231         else
2232                 err = journal->j_errno;
2233         read_unlock(&journal->j_state_lock);
2234         return err;
2235 }
2236
2237 /**
2238  * int jbd2_journal_clear_err () - clears the journal's error state
2239  * @journal: journal to act on.
2240  *
2241  * An error must be cleared or acked to take a FS out of readonly
2242  * mode.
2243  */
2244 int jbd2_journal_clear_err(journal_t *journal)
2245 {
2246         int err = 0;
2247
2248         write_lock(&journal->j_state_lock);
2249         if (journal->j_flags & JBD2_ABORT)
2250                 err = -EROFS;
2251         else
2252                 journal->j_errno = 0;
2253         write_unlock(&journal->j_state_lock);
2254         return err;
2255 }
2256
2257 /**
2258  * void jbd2_journal_ack_err() - Ack journal err.
2259  * @journal: journal to act on.
2260  *
2261  * An error must be cleared or acked to take a FS out of readonly
2262  * mode.
2263  */
2264 void jbd2_journal_ack_err(journal_t *journal)
2265 {
2266         write_lock(&journal->j_state_lock);
2267         if (journal->j_errno)
2268                 journal->j_flags |= JBD2_ACK_ERR;
2269         write_unlock(&journal->j_state_lock);
2270 }
2271
2272 int jbd2_journal_blocks_per_page(struct inode *inode)
2273 {
2274         return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
2275 }
2276
2277 /*
2278  * helper functions to deal with 32 or 64bit block numbers.
2279  */
2280 size_t journal_tag_bytes(journal_t *journal)
2281 {
2282         size_t sz;
2283
2284         if (jbd2_has_feature_csum3(journal))
2285                 return sizeof(journal_block_tag3_t);
2286
2287         sz = sizeof(journal_block_tag_t);
2288
2289         if (jbd2_has_feature_csum2(journal))
2290                 sz += sizeof(__u16);
2291
2292         if (jbd2_has_feature_64bit(journal))
2293                 return sz;
2294         else
2295                 return sz - sizeof(__u32);
2296 }
2297
2298 /*
2299  * JBD memory management
2300  *
2301  * These functions are used to allocate block-sized chunks of memory
2302  * used for making copies of buffer_head data.  Very often it will be
2303  * page-sized chunks of data, but sometimes it will be in
2304  * sub-page-size chunks.  (For example, 16k pages on Power systems
2305  * with a 4k block file system.)  For blocks smaller than a page, we
2306  * use a SLAB allocator.  There are slab caches for each block size,
2307  * which are allocated at mount time, if necessary, and we only free
2308  * (all of) the slab caches when/if the jbd2 module is unloaded.  For
2309  * this reason we don't need to a mutex to protect access to
2310  * jbd2_slab[] allocating or releasing memory; only in
2311  * jbd2_journal_create_slab().
2312  */
2313 #define JBD2_MAX_SLABS 8
2314 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2315
2316 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2317         "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2318         "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2319 };
2320
2321
2322 static void jbd2_journal_destroy_slabs(void)
2323 {
2324         int i;
2325
2326         for (i = 0; i < JBD2_MAX_SLABS; i++) {
2327                 kmem_cache_destroy(jbd2_slab[i]);
2328                 jbd2_slab[i] = NULL;
2329         }
2330 }
2331
2332 static int jbd2_journal_create_slab(size_t size)
2333 {
2334         static DEFINE_MUTEX(jbd2_slab_create_mutex);
2335         int i = order_base_2(size) - 10;
2336         size_t slab_size;
2337
2338         if (size == PAGE_SIZE)
2339                 return 0;
2340
2341         if (i >= JBD2_MAX_SLABS)
2342                 return -EINVAL;
2343
2344         if (unlikely(i < 0))
2345                 i = 0;
2346         mutex_lock(&jbd2_slab_create_mutex);
2347         if (jbd2_slab[i]) {
2348                 mutex_unlock(&jbd2_slab_create_mutex);
2349                 return 0;       /* Already created */
2350         }
2351
2352         slab_size = 1 << (i+10);
2353         jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2354                                          slab_size, 0, NULL);
2355         mutex_unlock(&jbd2_slab_create_mutex);
2356         if (!jbd2_slab[i]) {
2357                 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2358                 return -ENOMEM;
2359         }
2360         return 0;
2361 }
2362
2363 static struct kmem_cache *get_slab(size_t size)
2364 {
2365         int i = order_base_2(size) - 10;
2366
2367         BUG_ON(i >= JBD2_MAX_SLABS);
2368         if (unlikely(i < 0))
2369                 i = 0;
2370         BUG_ON(jbd2_slab[i] == NULL);
2371         return jbd2_slab[i];
2372 }
2373
2374 void *jbd2_alloc(size_t size, gfp_t flags)
2375 {
2376         void *ptr;
2377
2378         BUG_ON(size & (size-1)); /* Must be a power of 2 */
2379
2380         if (size < PAGE_SIZE)
2381                 ptr = kmem_cache_alloc(get_slab(size), flags);
2382         else
2383                 ptr = (void *)__get_free_pages(flags, get_order(size));
2384
2385         /* Check alignment; SLUB has gotten this wrong in the past,
2386          * and this can lead to user data corruption! */
2387         BUG_ON(((unsigned long) ptr) & (size-1));
2388
2389         return ptr;
2390 }
2391
2392 void jbd2_free(void *ptr, size_t size)
2393 {
2394         if (size < PAGE_SIZE)
2395                 kmem_cache_free(get_slab(size), ptr);
2396         else
2397                 free_pages((unsigned long)ptr, get_order(size));
2398 };
2399
2400 /*
2401  * Journal_head storage management
2402  */
2403 static struct kmem_cache *jbd2_journal_head_cache;
2404 #ifdef CONFIG_JBD2_DEBUG
2405 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2406 #endif
2407
2408 static int __init jbd2_journal_init_journal_head_cache(void)
2409 {
2410         J_ASSERT(!jbd2_journal_head_cache);
2411         jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2412                                 sizeof(struct journal_head),
2413                                 0,              /* offset */
2414                                 SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU,
2415                                 NULL);          /* ctor */
2416         if (!jbd2_journal_head_cache) {
2417                 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2418                 return -ENOMEM;
2419         }
2420         return 0;
2421 }
2422
2423 static void jbd2_journal_destroy_journal_head_cache(void)
2424 {
2425         kmem_cache_destroy(jbd2_journal_head_cache);
2426         jbd2_journal_head_cache = NULL;
2427 }
2428
2429 /*
2430  * journal_head splicing and dicing
2431  */
2432 static struct journal_head *journal_alloc_journal_head(void)
2433 {
2434         struct journal_head *ret;
2435
2436 #ifdef CONFIG_JBD2_DEBUG
2437         atomic_inc(&nr_journal_heads);
2438 #endif
2439         ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2440         if (!ret) {
2441                 jbd_debug(1, "out of memory for journal_head\n");
2442                 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2443                 ret = kmem_cache_zalloc(jbd2_journal_head_cache,
2444                                 GFP_NOFS | __GFP_NOFAIL);
2445         }
2446         if (ret)
2447                 spin_lock_init(&ret->b_state_lock);
2448         return ret;
2449 }
2450
2451 static void journal_free_journal_head(struct journal_head *jh)
2452 {
2453 #ifdef CONFIG_JBD2_DEBUG
2454         atomic_dec(&nr_journal_heads);
2455         memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2456 #endif
2457         kmem_cache_free(jbd2_journal_head_cache, jh);
2458 }
2459
2460 /*
2461  * A journal_head is attached to a buffer_head whenever JBD has an
2462  * interest in the buffer.
2463  *
2464  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2465  * is set.  This bit is tested in core kernel code where we need to take
2466  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2467  * there.
2468  *
2469  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2470  *
2471  * When a buffer has its BH_JBD bit set it is immune from being released by
2472  * core kernel code, mainly via ->b_count.
2473  *
2474  * A journal_head is detached from its buffer_head when the journal_head's
2475  * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2476  * transaction (b_cp_transaction) hold their references to b_jcount.
2477  *
2478  * Various places in the kernel want to attach a journal_head to a buffer_head
2479  * _before_ attaching the journal_head to a transaction.  To protect the
2480  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2481  * journal_head's b_jcount refcount by one.  The caller must call
2482  * jbd2_journal_put_journal_head() to undo this.
2483  *
2484  * So the typical usage would be:
2485  *
2486  *      (Attach a journal_head if needed.  Increments b_jcount)
2487  *      struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2488  *      ...
2489  *      (Get another reference for transaction)
2490  *      jbd2_journal_grab_journal_head(bh);
2491  *      jh->b_transaction = xxx;
2492  *      (Put original reference)
2493  *      jbd2_journal_put_journal_head(jh);
2494  */
2495
2496 /*
2497  * Give a buffer_head a journal_head.
2498  *
2499  * May sleep.
2500  */
2501 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2502 {
2503         struct journal_head *jh;
2504         struct journal_head *new_jh = NULL;
2505
2506 repeat:
2507         if (!buffer_jbd(bh))
2508                 new_jh = journal_alloc_journal_head();
2509
2510         jbd_lock_bh_journal_head(bh);
2511         if (buffer_jbd(bh)) {
2512                 jh = bh2jh(bh);
2513         } else {
2514                 J_ASSERT_BH(bh,
2515                         (atomic_read(&bh->b_count) > 0) ||
2516                         (bh->b_page && bh->b_page->mapping));
2517
2518                 if (!new_jh) {
2519                         jbd_unlock_bh_journal_head(bh);
2520                         goto repeat;
2521                 }
2522
2523                 jh = new_jh;
2524                 new_jh = NULL;          /* We consumed it */
2525                 set_buffer_jbd(bh);
2526                 bh->b_private = jh;
2527                 jh->b_bh = bh;
2528                 get_bh(bh);
2529                 BUFFER_TRACE(bh, "added journal_head");
2530         }
2531         jh->b_jcount++;
2532         jbd_unlock_bh_journal_head(bh);
2533         if (new_jh)
2534                 journal_free_journal_head(new_jh);
2535         return bh->b_private;
2536 }
2537
2538 /*
2539  * Grab a ref against this buffer_head's journal_head.  If it ended up not
2540  * having a journal_head, return NULL
2541  */
2542 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2543 {
2544         struct journal_head *jh = NULL;
2545
2546         jbd_lock_bh_journal_head(bh);
2547         if (buffer_jbd(bh)) {
2548                 jh = bh2jh(bh);
2549                 jh->b_jcount++;
2550         }
2551         jbd_unlock_bh_journal_head(bh);
2552         return jh;
2553 }
2554
2555 static void __journal_remove_journal_head(struct buffer_head *bh)
2556 {
2557         struct journal_head *jh = bh2jh(bh);
2558
2559         J_ASSERT_JH(jh, jh->b_jcount >= 0);
2560         J_ASSERT_JH(jh, jh->b_transaction == NULL);
2561         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2562         J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2563         J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2564         J_ASSERT_BH(bh, buffer_jbd(bh));
2565         J_ASSERT_BH(bh, jh2bh(jh) == bh);
2566         BUFFER_TRACE(bh, "remove journal_head");
2567
2568         /* Unlink before dropping the lock */
2569         bh->b_private = NULL;
2570         jh->b_bh = NULL;        /* debug, really */
2571         clear_buffer_jbd(bh);
2572 }
2573
2574 static void journal_release_journal_head(struct journal_head *jh, size_t b_size)
2575 {
2576         if (jh->b_frozen_data) {
2577                 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2578                 jbd2_free(jh->b_frozen_data, b_size);
2579         }
2580         if (jh->b_committed_data) {
2581                 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2582                 jbd2_free(jh->b_committed_data, b_size);
2583         }
2584         journal_free_journal_head(jh);
2585 }
2586
2587 /*
2588  * Drop a reference on the passed journal_head.  If it fell to zero then
2589  * release the journal_head from the buffer_head.
2590  */
2591 void jbd2_journal_put_journal_head(struct journal_head *jh)
2592 {
2593         struct buffer_head *bh = jh2bh(jh);
2594
2595         jbd_lock_bh_journal_head(bh);
2596         J_ASSERT_JH(jh, jh->b_jcount > 0);
2597         --jh->b_jcount;
2598         if (!jh->b_jcount) {
2599                 __journal_remove_journal_head(bh);
2600                 jbd_unlock_bh_journal_head(bh);
2601                 journal_release_journal_head(jh, bh->b_size);
2602                 __brelse(bh);
2603         } else {
2604                 jbd_unlock_bh_journal_head(bh);
2605         }
2606 }
2607
2608 /*
2609  * Initialize jbd inode head
2610  */
2611 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2612 {
2613         jinode->i_transaction = NULL;
2614         jinode->i_next_transaction = NULL;
2615         jinode->i_vfs_inode = inode;
2616         jinode->i_flags = 0;
2617         jinode->i_dirty_start = 0;
2618         jinode->i_dirty_end = 0;
2619         INIT_LIST_HEAD(&jinode->i_list);
2620 }
2621
2622 /*
2623  * Function to be called before we start removing inode from memory (i.e.,
2624  * clear_inode() is a fine place to be called from). It removes inode from
2625  * transaction's lists.
2626  */
2627 void jbd2_journal_release_jbd_inode(journal_t *journal,
2628                                     struct jbd2_inode *jinode)
2629 {
2630         if (!journal)
2631                 return;
2632 restart:
2633         spin_lock(&journal->j_list_lock);
2634         /* Is commit writing out inode - we have to wait */
2635         if (jinode->i_flags & JI_COMMIT_RUNNING) {
2636                 wait_queue_head_t *wq;
2637                 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2638                 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2639                 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2640                 spin_unlock(&journal->j_list_lock);
2641                 schedule();
2642                 finish_wait(wq, &wait.wq_entry);
2643                 goto restart;
2644         }
2645
2646         if (jinode->i_transaction) {
2647                 list_del(&jinode->i_list);
2648                 jinode->i_transaction = NULL;
2649         }
2650         spin_unlock(&journal->j_list_lock);
2651 }
2652
2653
2654 #ifdef CONFIG_PROC_FS
2655
2656 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2657
2658 static void __init jbd2_create_jbd_stats_proc_entry(void)
2659 {
2660         proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2661 }
2662
2663 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2664 {
2665         if (proc_jbd2_stats)
2666                 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2667 }
2668
2669 #else
2670
2671 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2672 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2673
2674 #endif
2675
2676 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2677
2678 static int __init jbd2_journal_init_inode_cache(void)
2679 {
2680         J_ASSERT(!jbd2_inode_cache);
2681         jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2682         if (!jbd2_inode_cache) {
2683                 pr_emerg("JBD2: failed to create inode cache\n");
2684                 return -ENOMEM;
2685         }
2686         return 0;
2687 }
2688
2689 static int __init jbd2_journal_init_handle_cache(void)
2690 {
2691         J_ASSERT(!jbd2_handle_cache);
2692         jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2693         if (!jbd2_handle_cache) {
2694                 printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2695                 return -ENOMEM;
2696         }
2697         return 0;
2698 }
2699
2700 static void jbd2_journal_destroy_inode_cache(void)
2701 {
2702         kmem_cache_destroy(jbd2_inode_cache);
2703         jbd2_inode_cache = NULL;
2704 }
2705
2706 static void jbd2_journal_destroy_handle_cache(void)
2707 {
2708         kmem_cache_destroy(jbd2_handle_cache);
2709         jbd2_handle_cache = NULL;
2710 }
2711
2712 /*
2713  * Module startup and shutdown
2714  */
2715
2716 static int __init journal_init_caches(void)
2717 {
2718         int ret;
2719
2720         ret = jbd2_journal_init_revoke_record_cache();
2721         if (ret == 0)
2722                 ret = jbd2_journal_init_revoke_table_cache();
2723         if (ret == 0)
2724                 ret = jbd2_journal_init_journal_head_cache();
2725         if (ret == 0)
2726                 ret = jbd2_journal_init_handle_cache();
2727         if (ret == 0)
2728                 ret = jbd2_journal_init_inode_cache();
2729         if (ret == 0)
2730                 ret = jbd2_journal_init_transaction_cache();
2731         return ret;
2732 }
2733
2734 static void jbd2_journal_destroy_caches(void)
2735 {
2736         jbd2_journal_destroy_revoke_record_cache();
2737         jbd2_journal_destroy_revoke_table_cache();
2738         jbd2_journal_destroy_journal_head_cache();
2739         jbd2_journal_destroy_handle_cache();
2740         jbd2_journal_destroy_inode_cache();
2741         jbd2_journal_destroy_transaction_cache();
2742         jbd2_journal_destroy_slabs();
2743 }
2744
2745 static int __init journal_init(void)
2746 {
2747         int ret;
2748
2749         BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2750
2751         ret = journal_init_caches();
2752         if (ret == 0) {
2753                 jbd2_create_jbd_stats_proc_entry();
2754         } else {
2755                 jbd2_journal_destroy_caches();
2756         }
2757         return ret;
2758 }
2759
2760 static void __exit journal_exit(void)
2761 {
2762 #ifdef CONFIG_JBD2_DEBUG
2763         int n = atomic_read(&nr_journal_heads);
2764         if (n)
2765                 printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
2766 #endif
2767         jbd2_remove_jbd_stats_proc_entry();
2768         jbd2_journal_destroy_caches();
2769 }
2770
2771 MODULE_LICENSE("GPL");
2772 module_init(journal_init);
2773 module_exit(journal_exit);
2774