Linux 6.9-rc1
[linux-2.6-microblaze.git] / fs / iomap / direct-io.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2010 Red Hat, Inc.
4  * Copyright (c) 2016-2021 Christoph Hellwig.
5  */
6 #include <linux/module.h>
7 #include <linux/compiler.h>
8 #include <linux/fs.h>
9 #include <linux/fscrypt.h>
10 #include <linux/pagemap.h>
11 #include <linux/iomap.h>
12 #include <linux/backing-dev.h>
13 #include <linux/uio.h>
14 #include <linux/task_io_accounting_ops.h>
15 #include "trace.h"
16
17 #include "../internal.h"
18
19 /*
20  * Private flags for iomap_dio, must not overlap with the public ones in
21  * iomap.h:
22  */
23 #define IOMAP_DIO_CALLER_COMP   (1U << 26)
24 #define IOMAP_DIO_INLINE_COMP   (1U << 27)
25 #define IOMAP_DIO_WRITE_THROUGH (1U << 28)
26 #define IOMAP_DIO_NEED_SYNC     (1U << 29)
27 #define IOMAP_DIO_WRITE         (1U << 30)
28 #define IOMAP_DIO_DIRTY         (1U << 31)
29
30 struct iomap_dio {
31         struct kiocb            *iocb;
32         const struct iomap_dio_ops *dops;
33         loff_t                  i_size;
34         loff_t                  size;
35         atomic_t                ref;
36         unsigned                flags;
37         int                     error;
38         size_t                  done_before;
39         bool                    wait_for_completion;
40
41         union {
42                 /* used during submission and for synchronous completion: */
43                 struct {
44                         struct iov_iter         *iter;
45                         struct task_struct      *waiter;
46                 } submit;
47
48                 /* used for aio completion: */
49                 struct {
50                         struct work_struct      work;
51                 } aio;
52         };
53 };
54
55 static struct bio *iomap_dio_alloc_bio(const struct iomap_iter *iter,
56                 struct iomap_dio *dio, unsigned short nr_vecs, blk_opf_t opf)
57 {
58         if (dio->dops && dio->dops->bio_set)
59                 return bio_alloc_bioset(iter->iomap.bdev, nr_vecs, opf,
60                                         GFP_KERNEL, dio->dops->bio_set);
61         return bio_alloc(iter->iomap.bdev, nr_vecs, opf, GFP_KERNEL);
62 }
63
64 static void iomap_dio_submit_bio(const struct iomap_iter *iter,
65                 struct iomap_dio *dio, struct bio *bio, loff_t pos)
66 {
67         struct kiocb *iocb = dio->iocb;
68
69         atomic_inc(&dio->ref);
70
71         /* Sync dio can't be polled reliably */
72         if ((iocb->ki_flags & IOCB_HIPRI) && !is_sync_kiocb(iocb)) {
73                 bio_set_polled(bio, iocb);
74                 WRITE_ONCE(iocb->private, bio);
75         }
76
77         if (dio->dops && dio->dops->submit_io)
78                 dio->dops->submit_io(iter, bio, pos);
79         else
80                 submit_bio(bio);
81 }
82
83 ssize_t iomap_dio_complete(struct iomap_dio *dio)
84 {
85         const struct iomap_dio_ops *dops = dio->dops;
86         struct kiocb *iocb = dio->iocb;
87         loff_t offset = iocb->ki_pos;
88         ssize_t ret = dio->error;
89
90         if (dops && dops->end_io)
91                 ret = dops->end_io(iocb, dio->size, ret, dio->flags);
92
93         if (likely(!ret)) {
94                 ret = dio->size;
95                 /* check for short read */
96                 if (offset + ret > dio->i_size &&
97                     !(dio->flags & IOMAP_DIO_WRITE))
98                         ret = dio->i_size - offset;
99         }
100
101         /*
102          * Try again to invalidate clean pages which might have been cached by
103          * non-direct readahead, or faulted in by get_user_pages() if the source
104          * of the write was an mmap'ed region of the file we're writing.  Either
105          * one is a pretty crazy thing to do, so we don't support it 100%.  If
106          * this invalidation fails, tough, the write still worked...
107          *
108          * And this page cache invalidation has to be after ->end_io(), as some
109          * filesystems convert unwritten extents to real allocations in
110          * ->end_io() when necessary, otherwise a racing buffer read would cache
111          * zeros from unwritten extents.
112          */
113         if (!dio->error && dio->size && (dio->flags & IOMAP_DIO_WRITE))
114                 kiocb_invalidate_post_direct_write(iocb, dio->size);
115
116         inode_dio_end(file_inode(iocb->ki_filp));
117
118         if (ret > 0) {
119                 iocb->ki_pos += ret;
120
121                 /*
122                  * If this is a DSYNC write, make sure we push it to stable
123                  * storage now that we've written data.
124                  */
125                 if (dio->flags & IOMAP_DIO_NEED_SYNC)
126                         ret = generic_write_sync(iocb, ret);
127                 if (ret > 0)
128                         ret += dio->done_before;
129         }
130         trace_iomap_dio_complete(iocb, dio->error, ret);
131         kfree(dio);
132         return ret;
133 }
134 EXPORT_SYMBOL_GPL(iomap_dio_complete);
135
136 static ssize_t iomap_dio_deferred_complete(void *data)
137 {
138         return iomap_dio_complete(data);
139 }
140
141 static void iomap_dio_complete_work(struct work_struct *work)
142 {
143         struct iomap_dio *dio = container_of(work, struct iomap_dio, aio.work);
144         struct kiocb *iocb = dio->iocb;
145
146         iocb->ki_complete(iocb, iomap_dio_complete(dio));
147 }
148
149 /*
150  * Set an error in the dio if none is set yet.  We have to use cmpxchg
151  * as the submission context and the completion context(s) can race to
152  * update the error.
153  */
154 static inline void iomap_dio_set_error(struct iomap_dio *dio, int ret)
155 {
156         cmpxchg(&dio->error, 0, ret);
157 }
158
159 void iomap_dio_bio_end_io(struct bio *bio)
160 {
161         struct iomap_dio *dio = bio->bi_private;
162         bool should_dirty = (dio->flags & IOMAP_DIO_DIRTY);
163         struct kiocb *iocb = dio->iocb;
164
165         if (bio->bi_status)
166                 iomap_dio_set_error(dio, blk_status_to_errno(bio->bi_status));
167         if (!atomic_dec_and_test(&dio->ref))
168                 goto release_bio;
169
170         /*
171          * Synchronous dio, task itself will handle any completion work
172          * that needs after IO. All we need to do is wake the task.
173          */
174         if (dio->wait_for_completion) {
175                 struct task_struct *waiter = dio->submit.waiter;
176
177                 WRITE_ONCE(dio->submit.waiter, NULL);
178                 blk_wake_io_task(waiter);
179                 goto release_bio;
180         }
181
182         /*
183          * Flagged with IOMAP_DIO_INLINE_COMP, we can complete it inline
184          */
185         if (dio->flags & IOMAP_DIO_INLINE_COMP) {
186                 WRITE_ONCE(iocb->private, NULL);
187                 iomap_dio_complete_work(&dio->aio.work);
188                 goto release_bio;
189         }
190
191         /*
192          * If this dio is flagged with IOMAP_DIO_CALLER_COMP, then schedule
193          * our completion that way to avoid an async punt to a workqueue.
194          */
195         if (dio->flags & IOMAP_DIO_CALLER_COMP) {
196                 /* only polled IO cares about private cleared */
197                 iocb->private = dio;
198                 iocb->dio_complete = iomap_dio_deferred_complete;
199
200                 /*
201                  * Invoke ->ki_complete() directly. We've assigned our
202                  * dio_complete callback handler, and since the issuer set
203                  * IOCB_DIO_CALLER_COMP, we know their ki_complete handler will
204                  * notice ->dio_complete being set and will defer calling that
205                  * handler until it can be done from a safe task context.
206                  *
207                  * Note that the 'res' being passed in here is not important
208                  * for this case. The actual completion value of the request
209                  * will be gotten from dio_complete when that is run by the
210                  * issuer.
211                  */
212                 iocb->ki_complete(iocb, 0);
213                 goto release_bio;
214         }
215
216         /*
217          * Async DIO completion that requires filesystem level completion work
218          * gets punted to a work queue to complete as the operation may require
219          * more IO to be issued to finalise filesystem metadata changes or
220          * guarantee data integrity.
221          */
222         INIT_WORK(&dio->aio.work, iomap_dio_complete_work);
223         queue_work(file_inode(iocb->ki_filp)->i_sb->s_dio_done_wq,
224                         &dio->aio.work);
225 release_bio:
226         if (should_dirty) {
227                 bio_check_pages_dirty(bio);
228         } else {
229                 bio_release_pages(bio, false);
230                 bio_put(bio);
231         }
232 }
233 EXPORT_SYMBOL_GPL(iomap_dio_bio_end_io);
234
235 static void iomap_dio_zero(const struct iomap_iter *iter, struct iomap_dio *dio,
236                 loff_t pos, unsigned len)
237 {
238         struct inode *inode = file_inode(dio->iocb->ki_filp);
239         struct page *page = ZERO_PAGE(0);
240         struct bio *bio;
241
242         bio = iomap_dio_alloc_bio(iter, dio, 1, REQ_OP_WRITE | REQ_SYNC | REQ_IDLE);
243         fscrypt_set_bio_crypt_ctx(bio, inode, pos >> inode->i_blkbits,
244                                   GFP_KERNEL);
245         bio->bi_iter.bi_sector = iomap_sector(&iter->iomap, pos);
246         bio->bi_private = dio;
247         bio->bi_end_io = iomap_dio_bio_end_io;
248
249         __bio_add_page(bio, page, len, 0);
250         iomap_dio_submit_bio(iter, dio, bio, pos);
251 }
252
253 /*
254  * Figure out the bio's operation flags from the dio request, the
255  * mapping, and whether or not we want FUA.  Note that we can end up
256  * clearing the WRITE_THROUGH flag in the dio request.
257  */
258 static inline blk_opf_t iomap_dio_bio_opflags(struct iomap_dio *dio,
259                 const struct iomap *iomap, bool use_fua)
260 {
261         blk_opf_t opflags = REQ_SYNC | REQ_IDLE;
262
263         if (!(dio->flags & IOMAP_DIO_WRITE))
264                 return REQ_OP_READ;
265
266         opflags |= REQ_OP_WRITE;
267         if (use_fua)
268                 opflags |= REQ_FUA;
269         else
270                 dio->flags &= ~IOMAP_DIO_WRITE_THROUGH;
271
272         return opflags;
273 }
274
275 static loff_t iomap_dio_bio_iter(const struct iomap_iter *iter,
276                 struct iomap_dio *dio)
277 {
278         const struct iomap *iomap = &iter->iomap;
279         struct inode *inode = iter->inode;
280         unsigned int fs_block_size = i_blocksize(inode), pad;
281         loff_t length = iomap_length(iter);
282         loff_t pos = iter->pos;
283         blk_opf_t bio_opf;
284         struct bio *bio;
285         bool need_zeroout = false;
286         bool use_fua = false;
287         int nr_pages, ret = 0;
288         size_t copied = 0;
289         size_t orig_count;
290
291         if ((pos | length) & (bdev_logical_block_size(iomap->bdev) - 1) ||
292             !bdev_iter_is_aligned(iomap->bdev, dio->submit.iter))
293                 return -EINVAL;
294
295         if (iomap->type == IOMAP_UNWRITTEN) {
296                 dio->flags |= IOMAP_DIO_UNWRITTEN;
297                 need_zeroout = true;
298         }
299
300         if (iomap->flags & IOMAP_F_SHARED)
301                 dio->flags |= IOMAP_DIO_COW;
302
303         if (iomap->flags & IOMAP_F_NEW) {
304                 need_zeroout = true;
305         } else if (iomap->type == IOMAP_MAPPED) {
306                 /*
307                  * Use a FUA write if we need datasync semantics, this is a pure
308                  * data IO that doesn't require any metadata updates (including
309                  * after IO completion such as unwritten extent conversion) and
310                  * the underlying device either supports FUA or doesn't have
311                  * a volatile write cache. This allows us to avoid cache flushes
312                  * on IO completion. If we can't use writethrough and need to
313                  * sync, disable in-task completions as dio completion will
314                  * need to call generic_write_sync() which will do a blocking
315                  * fsync / cache flush call.
316                  */
317                 if (!(iomap->flags & (IOMAP_F_SHARED|IOMAP_F_DIRTY)) &&
318                     (dio->flags & IOMAP_DIO_WRITE_THROUGH) &&
319                     (bdev_fua(iomap->bdev) || !bdev_write_cache(iomap->bdev)))
320                         use_fua = true;
321                 else if (dio->flags & IOMAP_DIO_NEED_SYNC)
322                         dio->flags &= ~IOMAP_DIO_CALLER_COMP;
323         }
324
325         /*
326          * Save the original count and trim the iter to just the extent we
327          * are operating on right now.  The iter will be re-expanded once
328          * we are done.
329          */
330         orig_count = iov_iter_count(dio->submit.iter);
331         iov_iter_truncate(dio->submit.iter, length);
332
333         if (!iov_iter_count(dio->submit.iter))
334                 goto out;
335
336         /*
337          * We can only do deferred completion for pure overwrites that
338          * don't require additional IO at completion. This rules out
339          * writes that need zeroing or extent conversion, extend
340          * the file size, or issue journal IO or cache flushes
341          * during completion processing.
342          */
343         if (need_zeroout ||
344             ((dio->flags & IOMAP_DIO_NEED_SYNC) && !use_fua) ||
345             ((dio->flags & IOMAP_DIO_WRITE) && pos >= i_size_read(inode)))
346                 dio->flags &= ~IOMAP_DIO_CALLER_COMP;
347
348         /*
349          * The rules for polled IO completions follow the guidelines as the
350          * ones we set for inline and deferred completions. If none of those
351          * are available for this IO, clear the polled flag.
352          */
353         if (!(dio->flags & (IOMAP_DIO_INLINE_COMP|IOMAP_DIO_CALLER_COMP)))
354                 dio->iocb->ki_flags &= ~IOCB_HIPRI;
355
356         if (need_zeroout) {
357                 /* zero out from the start of the block to the write offset */
358                 pad = pos & (fs_block_size - 1);
359                 if (pad)
360                         iomap_dio_zero(iter, dio, pos - pad, pad);
361         }
362
363         /*
364          * Set the operation flags early so that bio_iov_iter_get_pages
365          * can set up the page vector appropriately for a ZONE_APPEND
366          * operation.
367          */
368         bio_opf = iomap_dio_bio_opflags(dio, iomap, use_fua);
369
370         nr_pages = bio_iov_vecs_to_alloc(dio->submit.iter, BIO_MAX_VECS);
371         do {
372                 size_t n;
373                 if (dio->error) {
374                         iov_iter_revert(dio->submit.iter, copied);
375                         copied = ret = 0;
376                         goto out;
377                 }
378
379                 bio = iomap_dio_alloc_bio(iter, dio, nr_pages, bio_opf);
380                 fscrypt_set_bio_crypt_ctx(bio, inode, pos >> inode->i_blkbits,
381                                           GFP_KERNEL);
382                 bio->bi_iter.bi_sector = iomap_sector(iomap, pos);
383                 bio->bi_write_hint = inode->i_write_hint;
384                 bio->bi_ioprio = dio->iocb->ki_ioprio;
385                 bio->bi_private = dio;
386                 bio->bi_end_io = iomap_dio_bio_end_io;
387
388                 ret = bio_iov_iter_get_pages(bio, dio->submit.iter);
389                 if (unlikely(ret)) {
390                         /*
391                          * We have to stop part way through an IO. We must fall
392                          * through to the sub-block tail zeroing here, otherwise
393                          * this short IO may expose stale data in the tail of
394                          * the block we haven't written data to.
395                          */
396                         bio_put(bio);
397                         goto zero_tail;
398                 }
399
400                 n = bio->bi_iter.bi_size;
401                 if (dio->flags & IOMAP_DIO_WRITE) {
402                         task_io_account_write(n);
403                 } else {
404                         if (dio->flags & IOMAP_DIO_DIRTY)
405                                 bio_set_pages_dirty(bio);
406                 }
407
408                 dio->size += n;
409                 copied += n;
410
411                 nr_pages = bio_iov_vecs_to_alloc(dio->submit.iter,
412                                                  BIO_MAX_VECS);
413                 /*
414                  * We can only poll for single bio I/Os.
415                  */
416                 if (nr_pages)
417                         dio->iocb->ki_flags &= ~IOCB_HIPRI;
418                 iomap_dio_submit_bio(iter, dio, bio, pos);
419                 pos += n;
420         } while (nr_pages);
421
422         /*
423          * We need to zeroout the tail of a sub-block write if the extent type
424          * requires zeroing or the write extends beyond EOF. If we don't zero
425          * the block tail in the latter case, we can expose stale data via mmap
426          * reads of the EOF block.
427          */
428 zero_tail:
429         if (need_zeroout ||
430             ((dio->flags & IOMAP_DIO_WRITE) && pos >= i_size_read(inode))) {
431                 /* zero out from the end of the write to the end of the block */
432                 pad = pos & (fs_block_size - 1);
433                 if (pad)
434                         iomap_dio_zero(iter, dio, pos, fs_block_size - pad);
435         }
436 out:
437         /* Undo iter limitation to current extent */
438         iov_iter_reexpand(dio->submit.iter, orig_count - copied);
439         if (copied)
440                 return copied;
441         return ret;
442 }
443
444 static loff_t iomap_dio_hole_iter(const struct iomap_iter *iter,
445                 struct iomap_dio *dio)
446 {
447         loff_t length = iov_iter_zero(iomap_length(iter), dio->submit.iter);
448
449         dio->size += length;
450         if (!length)
451                 return -EFAULT;
452         return length;
453 }
454
455 static loff_t iomap_dio_inline_iter(const struct iomap_iter *iomi,
456                 struct iomap_dio *dio)
457 {
458         const struct iomap *iomap = &iomi->iomap;
459         struct iov_iter *iter = dio->submit.iter;
460         void *inline_data = iomap_inline_data(iomap, iomi->pos);
461         loff_t length = iomap_length(iomi);
462         loff_t pos = iomi->pos;
463         size_t copied;
464
465         if (WARN_ON_ONCE(!iomap_inline_data_valid(iomap)))
466                 return -EIO;
467
468         if (dio->flags & IOMAP_DIO_WRITE) {
469                 loff_t size = iomi->inode->i_size;
470
471                 if (pos > size)
472                         memset(iomap_inline_data(iomap, size), 0, pos - size);
473                 copied = copy_from_iter(inline_data, length, iter);
474                 if (copied) {
475                         if (pos + copied > size)
476                                 i_size_write(iomi->inode, pos + copied);
477                         mark_inode_dirty(iomi->inode);
478                 }
479         } else {
480                 copied = copy_to_iter(inline_data, length, iter);
481         }
482         dio->size += copied;
483         if (!copied)
484                 return -EFAULT;
485         return copied;
486 }
487
488 static loff_t iomap_dio_iter(const struct iomap_iter *iter,
489                 struct iomap_dio *dio)
490 {
491         switch (iter->iomap.type) {
492         case IOMAP_HOLE:
493                 if (WARN_ON_ONCE(dio->flags & IOMAP_DIO_WRITE))
494                         return -EIO;
495                 return iomap_dio_hole_iter(iter, dio);
496         case IOMAP_UNWRITTEN:
497                 if (!(dio->flags & IOMAP_DIO_WRITE))
498                         return iomap_dio_hole_iter(iter, dio);
499                 return iomap_dio_bio_iter(iter, dio);
500         case IOMAP_MAPPED:
501                 return iomap_dio_bio_iter(iter, dio);
502         case IOMAP_INLINE:
503                 return iomap_dio_inline_iter(iter, dio);
504         case IOMAP_DELALLOC:
505                 /*
506                  * DIO is not serialised against mmap() access at all, and so
507                  * if the page_mkwrite occurs between the writeback and the
508                  * iomap_iter() call in the DIO path, then it will see the
509                  * DELALLOC block that the page-mkwrite allocated.
510                  */
511                 pr_warn_ratelimited("Direct I/O collision with buffered writes! File: %pD4 Comm: %.20s\n",
512                                     dio->iocb->ki_filp, current->comm);
513                 return -EIO;
514         default:
515                 WARN_ON_ONCE(1);
516                 return -EIO;
517         }
518 }
519
520 /*
521  * iomap_dio_rw() always completes O_[D]SYNC writes regardless of whether the IO
522  * is being issued as AIO or not.  This allows us to optimise pure data writes
523  * to use REQ_FUA rather than requiring generic_write_sync() to issue a
524  * REQ_FLUSH post write. This is slightly tricky because a single request here
525  * can be mapped into multiple disjoint IOs and only a subset of the IOs issued
526  * may be pure data writes. In that case, we still need to do a full data sync
527  * completion.
528  *
529  * When page faults are disabled and @dio_flags includes IOMAP_DIO_PARTIAL,
530  * __iomap_dio_rw can return a partial result if it encounters a non-resident
531  * page in @iter after preparing a transfer.  In that case, the non-resident
532  * pages can be faulted in and the request resumed with @done_before set to the
533  * number of bytes previously transferred.  The request will then complete with
534  * the correct total number of bytes transferred; this is essential for
535  * completing partial requests asynchronously.
536  *
537  * Returns -ENOTBLK In case of a page invalidation invalidation failure for
538  * writes.  The callers needs to fall back to buffered I/O in this case.
539  */
540 struct iomap_dio *
541 __iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter,
542                 const struct iomap_ops *ops, const struct iomap_dio_ops *dops,
543                 unsigned int dio_flags, void *private, size_t done_before)
544 {
545         struct inode *inode = file_inode(iocb->ki_filp);
546         struct iomap_iter iomi = {
547                 .inode          = inode,
548                 .pos            = iocb->ki_pos,
549                 .len            = iov_iter_count(iter),
550                 .flags          = IOMAP_DIRECT,
551                 .private        = private,
552         };
553         bool wait_for_completion =
554                 is_sync_kiocb(iocb) || (dio_flags & IOMAP_DIO_FORCE_WAIT);
555         struct blk_plug plug;
556         struct iomap_dio *dio;
557         loff_t ret = 0;
558
559         trace_iomap_dio_rw_begin(iocb, iter, dio_flags, done_before);
560
561         if (!iomi.len)
562                 return NULL;
563
564         dio = kmalloc(sizeof(*dio), GFP_KERNEL);
565         if (!dio)
566                 return ERR_PTR(-ENOMEM);
567
568         dio->iocb = iocb;
569         atomic_set(&dio->ref, 1);
570         dio->size = 0;
571         dio->i_size = i_size_read(inode);
572         dio->dops = dops;
573         dio->error = 0;
574         dio->flags = 0;
575         dio->done_before = done_before;
576
577         dio->submit.iter = iter;
578         dio->submit.waiter = current;
579
580         if (iocb->ki_flags & IOCB_NOWAIT)
581                 iomi.flags |= IOMAP_NOWAIT;
582
583         if (iov_iter_rw(iter) == READ) {
584                 /* reads can always complete inline */
585                 dio->flags |= IOMAP_DIO_INLINE_COMP;
586
587                 if (iomi.pos >= dio->i_size)
588                         goto out_free_dio;
589
590                 if (user_backed_iter(iter))
591                         dio->flags |= IOMAP_DIO_DIRTY;
592
593                 ret = kiocb_write_and_wait(iocb, iomi.len);
594                 if (ret)
595                         goto out_free_dio;
596         } else {
597                 iomi.flags |= IOMAP_WRITE;
598                 dio->flags |= IOMAP_DIO_WRITE;
599
600                 /*
601                  * Flag as supporting deferred completions, if the issuer
602                  * groks it. This can avoid a workqueue punt for writes.
603                  * We may later clear this flag if we need to do other IO
604                  * as part of this IO completion.
605                  */
606                 if (iocb->ki_flags & IOCB_DIO_CALLER_COMP)
607                         dio->flags |= IOMAP_DIO_CALLER_COMP;
608
609                 if (dio_flags & IOMAP_DIO_OVERWRITE_ONLY) {
610                         ret = -EAGAIN;
611                         if (iomi.pos >= dio->i_size ||
612                             iomi.pos + iomi.len > dio->i_size)
613                                 goto out_free_dio;
614                         iomi.flags |= IOMAP_OVERWRITE_ONLY;
615                 }
616
617                 /* for data sync or sync, we need sync completion processing */
618                 if (iocb_is_dsync(iocb)) {
619                         dio->flags |= IOMAP_DIO_NEED_SYNC;
620
621                        /*
622                         * For datasync only writes, we optimistically try using
623                         * WRITE_THROUGH for this IO. This flag requires either
624                         * FUA writes through the device's write cache, or a
625                         * normal write to a device without a volatile write
626                         * cache. For the former, Any non-FUA write that occurs
627                         * will clear this flag, hence we know before completion
628                         * whether a cache flush is necessary.
629                         */
630                         if (!(iocb->ki_flags & IOCB_SYNC))
631                                 dio->flags |= IOMAP_DIO_WRITE_THROUGH;
632                 }
633
634                 /*
635                  * Try to invalidate cache pages for the range we are writing.
636                  * If this invalidation fails, let the caller fall back to
637                  * buffered I/O.
638                  */
639                 ret = kiocb_invalidate_pages(iocb, iomi.len);
640                 if (ret) {
641                         if (ret != -EAGAIN) {
642                                 trace_iomap_dio_invalidate_fail(inode, iomi.pos,
643                                                                 iomi.len);
644                                 ret = -ENOTBLK;
645                         }
646                         goto out_free_dio;
647                 }
648
649                 if (!wait_for_completion && !inode->i_sb->s_dio_done_wq) {
650                         ret = sb_init_dio_done_wq(inode->i_sb);
651                         if (ret < 0)
652                                 goto out_free_dio;
653                 }
654         }
655
656         inode_dio_begin(inode);
657
658         blk_start_plug(&plug);
659         while ((ret = iomap_iter(&iomi, ops)) > 0) {
660                 iomi.processed = iomap_dio_iter(&iomi, dio);
661
662                 /*
663                  * We can only poll for single bio I/Os.
664                  */
665                 iocb->ki_flags &= ~IOCB_HIPRI;
666         }
667
668         blk_finish_plug(&plug);
669
670         /*
671          * We only report that we've read data up to i_size.
672          * Revert iter to a state corresponding to that as some callers (such
673          * as the splice code) rely on it.
674          */
675         if (iov_iter_rw(iter) == READ && iomi.pos >= dio->i_size)
676                 iov_iter_revert(iter, iomi.pos - dio->i_size);
677
678         if (ret == -EFAULT && dio->size && (dio_flags & IOMAP_DIO_PARTIAL)) {
679                 if (!(iocb->ki_flags & IOCB_NOWAIT))
680                         wait_for_completion = true;
681                 ret = 0;
682         }
683
684         /* magic error code to fall back to buffered I/O */
685         if (ret == -ENOTBLK) {
686                 wait_for_completion = true;
687                 ret = 0;
688         }
689         if (ret < 0)
690                 iomap_dio_set_error(dio, ret);
691
692         /*
693          * If all the writes we issued were already written through to the
694          * media, we don't need to flush the cache on IO completion. Clear the
695          * sync flag for this case.
696          */
697         if (dio->flags & IOMAP_DIO_WRITE_THROUGH)
698                 dio->flags &= ~IOMAP_DIO_NEED_SYNC;
699
700         /*
701          * We are about to drop our additional submission reference, which
702          * might be the last reference to the dio.  There are three different
703          * ways we can progress here:
704          *
705          *  (a) If this is the last reference we will always complete and free
706          *      the dio ourselves.
707          *  (b) If this is not the last reference, and we serve an asynchronous
708          *      iocb, we must never touch the dio after the decrement, the
709          *      I/O completion handler will complete and free it.
710          *  (c) If this is not the last reference, but we serve a synchronous
711          *      iocb, the I/O completion handler will wake us up on the drop
712          *      of the final reference, and we will complete and free it here
713          *      after we got woken by the I/O completion handler.
714          */
715         dio->wait_for_completion = wait_for_completion;
716         if (!atomic_dec_and_test(&dio->ref)) {
717                 if (!wait_for_completion) {
718                         trace_iomap_dio_rw_queued(inode, iomi.pos, iomi.len);
719                         return ERR_PTR(-EIOCBQUEUED);
720                 }
721
722                 for (;;) {
723                         set_current_state(TASK_UNINTERRUPTIBLE);
724                         if (!READ_ONCE(dio->submit.waiter))
725                                 break;
726
727                         blk_io_schedule();
728                 }
729                 __set_current_state(TASK_RUNNING);
730         }
731
732         return dio;
733
734 out_free_dio:
735         kfree(dio);
736         if (ret)
737                 return ERR_PTR(ret);
738         return NULL;
739 }
740 EXPORT_SYMBOL_GPL(__iomap_dio_rw);
741
742 ssize_t
743 iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter,
744                 const struct iomap_ops *ops, const struct iomap_dio_ops *dops,
745                 unsigned int dio_flags, void *private, size_t done_before)
746 {
747         struct iomap_dio *dio;
748
749         dio = __iomap_dio_rw(iocb, iter, ops, dops, dio_flags, private,
750                              done_before);
751         if (IS_ERR_OR_NULL(dio))
752                 return PTR_ERR_OR_ZERO(dio);
753         return iomap_dio_complete(dio);
754 }
755 EXPORT_SYMBOL_GPL(iomap_dio_rw);