Merge tag 'i2c-for-5.19' of git://git.kernel.org/pub/scm/linux/kernel/git/wsa/linux
[linux-2.6-microblaze.git] / fs / hugetlbfs / inode.c
1 /*
2  * hugetlbpage-backed filesystem.  Based on ramfs.
3  *
4  * Nadia Yvette Chambers, 2002
5  *
6  * Copyright (C) 2002 Linus Torvalds.
7  * License: GPL
8  */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/sched/signal.h>         /* remove ASAP */
15 #include <linux/falloc.h>
16 #include <linux/fs.h>
17 #include <linux/mount.h>
18 #include <linux/file.h>
19 #include <linux/kernel.h>
20 #include <linux/writeback.h>
21 #include <linux/pagemap.h>
22 #include <linux/highmem.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/capability.h>
26 #include <linux/ctype.h>
27 #include <linux/backing-dev.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagevec.h>
30 #include <linux/fs_parser.h>
31 #include <linux/mman.h>
32 #include <linux/slab.h>
33 #include <linux/dnotify.h>
34 #include <linux/statfs.h>
35 #include <linux/security.h>
36 #include <linux/magic.h>
37 #include <linux/migrate.h>
38 #include <linux/uio.h>
39
40 #include <linux/uaccess.h>
41 #include <linux/sched/mm.h>
42
43 static const struct super_operations hugetlbfs_ops;
44 static const struct address_space_operations hugetlbfs_aops;
45 const struct file_operations hugetlbfs_file_operations;
46 static const struct inode_operations hugetlbfs_dir_inode_operations;
47 static const struct inode_operations hugetlbfs_inode_operations;
48
49 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
50
51 struct hugetlbfs_fs_context {
52         struct hstate           *hstate;
53         unsigned long long      max_size_opt;
54         unsigned long long      min_size_opt;
55         long                    max_hpages;
56         long                    nr_inodes;
57         long                    min_hpages;
58         enum hugetlbfs_size_type max_val_type;
59         enum hugetlbfs_size_type min_val_type;
60         kuid_t                  uid;
61         kgid_t                  gid;
62         umode_t                 mode;
63 };
64
65 int sysctl_hugetlb_shm_group;
66
67 enum hugetlb_param {
68         Opt_gid,
69         Opt_min_size,
70         Opt_mode,
71         Opt_nr_inodes,
72         Opt_pagesize,
73         Opt_size,
74         Opt_uid,
75 };
76
77 static const struct fs_parameter_spec hugetlb_fs_parameters[] = {
78         fsparam_u32   ("gid",           Opt_gid),
79         fsparam_string("min_size",      Opt_min_size),
80         fsparam_u32oct("mode",          Opt_mode),
81         fsparam_string("nr_inodes",     Opt_nr_inodes),
82         fsparam_string("pagesize",      Opt_pagesize),
83         fsparam_string("size",          Opt_size),
84         fsparam_u32   ("uid",           Opt_uid),
85         {}
86 };
87
88 #ifdef CONFIG_NUMA
89 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
90                                         struct inode *inode, pgoff_t index)
91 {
92         vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy,
93                                                         index);
94 }
95
96 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
97 {
98         mpol_cond_put(vma->vm_policy);
99 }
100 #else
101 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
102                                         struct inode *inode, pgoff_t index)
103 {
104 }
105
106 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
107 {
108 }
109 #endif
110
111 static void huge_pagevec_release(struct pagevec *pvec)
112 {
113         int i;
114
115         for (i = 0; i < pagevec_count(pvec); ++i)
116                 put_page(pvec->pages[i]);
117
118         pagevec_reinit(pvec);
119 }
120
121 /*
122  * Mask used when checking the page offset value passed in via system
123  * calls.  This value will be converted to a loff_t which is signed.
124  * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
125  * value.  The extra bit (- 1 in the shift value) is to take the sign
126  * bit into account.
127  */
128 #define PGOFF_LOFFT_MAX \
129         (((1UL << (PAGE_SHIFT + 1)) - 1) <<  (BITS_PER_LONG - (PAGE_SHIFT + 1)))
130
131 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
132 {
133         struct inode *inode = file_inode(file);
134         struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
135         loff_t len, vma_len;
136         int ret;
137         struct hstate *h = hstate_file(file);
138
139         /*
140          * vma address alignment (but not the pgoff alignment) has
141          * already been checked by prepare_hugepage_range.  If you add
142          * any error returns here, do so after setting VM_HUGETLB, so
143          * is_vm_hugetlb_page tests below unmap_region go the right
144          * way when do_mmap unwinds (may be important on powerpc
145          * and ia64).
146          */
147         vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND;
148         vma->vm_ops = &hugetlb_vm_ops;
149
150         ret = seal_check_future_write(info->seals, vma);
151         if (ret)
152                 return ret;
153
154         /*
155          * page based offset in vm_pgoff could be sufficiently large to
156          * overflow a loff_t when converted to byte offset.  This can
157          * only happen on architectures where sizeof(loff_t) ==
158          * sizeof(unsigned long).  So, only check in those instances.
159          */
160         if (sizeof(unsigned long) == sizeof(loff_t)) {
161                 if (vma->vm_pgoff & PGOFF_LOFFT_MAX)
162                         return -EINVAL;
163         }
164
165         /* must be huge page aligned */
166         if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
167                 return -EINVAL;
168
169         vma_len = (loff_t)(vma->vm_end - vma->vm_start);
170         len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
171         /* check for overflow */
172         if (len < vma_len)
173                 return -EINVAL;
174
175         inode_lock(inode);
176         file_accessed(file);
177
178         ret = -ENOMEM;
179         if (!hugetlb_reserve_pages(inode,
180                                 vma->vm_pgoff >> huge_page_order(h),
181                                 len >> huge_page_shift(h), vma,
182                                 vma->vm_flags))
183                 goto out;
184
185         ret = 0;
186         if (vma->vm_flags & VM_WRITE && inode->i_size < len)
187                 i_size_write(inode, len);
188 out:
189         inode_unlock(inode);
190
191         return ret;
192 }
193
194 /*
195  * Called under mmap_write_lock(mm).
196  */
197
198 static unsigned long
199 hugetlb_get_unmapped_area_bottomup(struct file *file, unsigned long addr,
200                 unsigned long len, unsigned long pgoff, unsigned long flags)
201 {
202         struct hstate *h = hstate_file(file);
203         struct vm_unmapped_area_info info;
204
205         info.flags = 0;
206         info.length = len;
207         info.low_limit = current->mm->mmap_base;
208         info.high_limit = arch_get_mmap_end(addr, len, flags);
209         info.align_mask = PAGE_MASK & ~huge_page_mask(h);
210         info.align_offset = 0;
211         return vm_unmapped_area(&info);
212 }
213
214 static unsigned long
215 hugetlb_get_unmapped_area_topdown(struct file *file, unsigned long addr,
216                 unsigned long len, unsigned long pgoff, unsigned long flags)
217 {
218         struct hstate *h = hstate_file(file);
219         struct vm_unmapped_area_info info;
220
221         info.flags = VM_UNMAPPED_AREA_TOPDOWN;
222         info.length = len;
223         info.low_limit = max(PAGE_SIZE, mmap_min_addr);
224         info.high_limit = arch_get_mmap_base(addr, current->mm->mmap_base);
225         info.align_mask = PAGE_MASK & ~huge_page_mask(h);
226         info.align_offset = 0;
227         addr = vm_unmapped_area(&info);
228
229         /*
230          * A failed mmap() very likely causes application failure,
231          * so fall back to the bottom-up function here. This scenario
232          * can happen with large stack limits and large mmap()
233          * allocations.
234          */
235         if (unlikely(offset_in_page(addr))) {
236                 VM_BUG_ON(addr != -ENOMEM);
237                 info.flags = 0;
238                 info.low_limit = current->mm->mmap_base;
239                 info.high_limit = arch_get_mmap_end(addr, len, flags);
240                 addr = vm_unmapped_area(&info);
241         }
242
243         return addr;
244 }
245
246 unsigned long
247 generic_hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
248                                   unsigned long len, unsigned long pgoff,
249                                   unsigned long flags)
250 {
251         struct mm_struct *mm = current->mm;
252         struct vm_area_struct *vma;
253         struct hstate *h = hstate_file(file);
254         const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
255
256         if (len & ~huge_page_mask(h))
257                 return -EINVAL;
258         if (len > TASK_SIZE)
259                 return -ENOMEM;
260
261         if (flags & MAP_FIXED) {
262                 if (prepare_hugepage_range(file, addr, len))
263                         return -EINVAL;
264                 return addr;
265         }
266
267         if (addr) {
268                 addr = ALIGN(addr, huge_page_size(h));
269                 vma = find_vma(mm, addr);
270                 if (mmap_end - len >= addr &&
271                     (!vma || addr + len <= vm_start_gap(vma)))
272                         return addr;
273         }
274
275         /*
276          * Use mm->get_unmapped_area value as a hint to use topdown routine.
277          * If architectures have special needs, they should define their own
278          * version of hugetlb_get_unmapped_area.
279          */
280         if (mm->get_unmapped_area == arch_get_unmapped_area_topdown)
281                 return hugetlb_get_unmapped_area_topdown(file, addr, len,
282                                 pgoff, flags);
283         return hugetlb_get_unmapped_area_bottomup(file, addr, len,
284                         pgoff, flags);
285 }
286
287 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
288 static unsigned long
289 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
290                           unsigned long len, unsigned long pgoff,
291                           unsigned long flags)
292 {
293         return generic_hugetlb_get_unmapped_area(file, addr, len, pgoff, flags);
294 }
295 #endif
296
297 static size_t
298 hugetlbfs_read_actor(struct page *page, unsigned long offset,
299                         struct iov_iter *to, unsigned long size)
300 {
301         size_t copied = 0;
302         int i, chunksize;
303
304         /* Find which 4k chunk and offset with in that chunk */
305         i = offset >> PAGE_SHIFT;
306         offset = offset & ~PAGE_MASK;
307
308         while (size) {
309                 size_t n;
310                 chunksize = PAGE_SIZE;
311                 if (offset)
312                         chunksize -= offset;
313                 if (chunksize > size)
314                         chunksize = size;
315                 n = copy_page_to_iter(&page[i], offset, chunksize, to);
316                 copied += n;
317                 if (n != chunksize)
318                         return copied;
319                 offset = 0;
320                 size -= chunksize;
321                 i++;
322         }
323         return copied;
324 }
325
326 /*
327  * Support for read() - Find the page attached to f_mapping and copy out the
328  * data. Its *very* similar to generic_file_buffered_read(), we can't use that
329  * since it has PAGE_SIZE assumptions.
330  */
331 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
332 {
333         struct file *file = iocb->ki_filp;
334         struct hstate *h = hstate_file(file);
335         struct address_space *mapping = file->f_mapping;
336         struct inode *inode = mapping->host;
337         unsigned long index = iocb->ki_pos >> huge_page_shift(h);
338         unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
339         unsigned long end_index;
340         loff_t isize;
341         ssize_t retval = 0;
342
343         while (iov_iter_count(to)) {
344                 struct page *page;
345                 size_t nr, copied;
346
347                 /* nr is the maximum number of bytes to copy from this page */
348                 nr = huge_page_size(h);
349                 isize = i_size_read(inode);
350                 if (!isize)
351                         break;
352                 end_index = (isize - 1) >> huge_page_shift(h);
353                 if (index > end_index)
354                         break;
355                 if (index == end_index) {
356                         nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
357                         if (nr <= offset)
358                                 break;
359                 }
360                 nr = nr - offset;
361
362                 /* Find the page */
363                 page = find_lock_page(mapping, index);
364                 if (unlikely(page == NULL)) {
365                         /*
366                          * We have a HOLE, zero out the user-buffer for the
367                          * length of the hole or request.
368                          */
369                         copied = iov_iter_zero(nr, to);
370                 } else {
371                         unlock_page(page);
372
373                         /*
374                          * We have the page, copy it to user space buffer.
375                          */
376                         copied = hugetlbfs_read_actor(page, offset, to, nr);
377                         put_page(page);
378                 }
379                 offset += copied;
380                 retval += copied;
381                 if (copied != nr && iov_iter_count(to)) {
382                         if (!retval)
383                                 retval = -EFAULT;
384                         break;
385                 }
386                 index += offset >> huge_page_shift(h);
387                 offset &= ~huge_page_mask(h);
388         }
389         iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
390         return retval;
391 }
392
393 static int hugetlbfs_write_begin(struct file *file,
394                         struct address_space *mapping,
395                         loff_t pos, unsigned len,
396                         struct page **pagep, void **fsdata)
397 {
398         return -EINVAL;
399 }
400
401 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
402                         loff_t pos, unsigned len, unsigned copied,
403                         struct page *page, void *fsdata)
404 {
405         BUG();
406         return -EINVAL;
407 }
408
409 static void remove_huge_page(struct page *page)
410 {
411         ClearPageDirty(page);
412         ClearPageUptodate(page);
413         delete_from_page_cache(page);
414 }
415
416 static void
417 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end,
418                       zap_flags_t zap_flags)
419 {
420         struct vm_area_struct *vma;
421
422         /*
423          * end == 0 indicates that the entire range after start should be
424          * unmapped.  Note, end is exclusive, whereas the interval tree takes
425          * an inclusive "last".
426          */
427         vma_interval_tree_foreach(vma, root, start, end ? end - 1 : ULONG_MAX) {
428                 unsigned long v_offset;
429                 unsigned long v_end;
430
431                 /*
432                  * Can the expression below overflow on 32-bit arches?
433                  * No, because the interval tree returns us only those vmas
434                  * which overlap the truncated area starting at pgoff,
435                  * and no vma on a 32-bit arch can span beyond the 4GB.
436                  */
437                 if (vma->vm_pgoff < start)
438                         v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
439                 else
440                         v_offset = 0;
441
442                 if (!end)
443                         v_end = vma->vm_end;
444                 else {
445                         v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT)
446                                                         + vma->vm_start;
447                         if (v_end > vma->vm_end)
448                                 v_end = vma->vm_end;
449                 }
450
451                 unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end,
452                                      NULL, zap_flags);
453         }
454 }
455
456 /*
457  * remove_inode_hugepages handles two distinct cases: truncation and hole
458  * punch.  There are subtle differences in operation for each case.
459  *
460  * truncation is indicated by end of range being LLONG_MAX
461  *      In this case, we first scan the range and release found pages.
462  *      After releasing pages, hugetlb_unreserve_pages cleans up region/reserve
463  *      maps and global counts.  Page faults can not race with truncation
464  *      in this routine.  hugetlb_no_page() holds i_mmap_rwsem and prevents
465  *      page faults in the truncated range by checking i_size.  i_size is
466  *      modified while holding i_mmap_rwsem.
467  * hole punch is indicated if end is not LLONG_MAX
468  *      In the hole punch case we scan the range and release found pages.
469  *      Only when releasing a page is the associated region/reserve map
470  *      deleted.  The region/reserve map for ranges without associated
471  *      pages are not modified.  Page faults can race with hole punch.
472  *      This is indicated if we find a mapped page.
473  * Note: If the passed end of range value is beyond the end of file, but
474  * not LLONG_MAX this routine still performs a hole punch operation.
475  */
476 static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
477                                    loff_t lend)
478 {
479         struct hstate *h = hstate_inode(inode);
480         struct address_space *mapping = &inode->i_data;
481         const pgoff_t start = lstart >> huge_page_shift(h);
482         const pgoff_t end = lend >> huge_page_shift(h);
483         struct pagevec pvec;
484         pgoff_t next, index;
485         int i, freed = 0;
486         bool truncate_op = (lend == LLONG_MAX);
487
488         pagevec_init(&pvec);
489         next = start;
490         while (next < end) {
491                 /*
492                  * When no more pages are found, we are done.
493                  */
494                 if (!pagevec_lookup_range(&pvec, mapping, &next, end - 1))
495                         break;
496
497                 for (i = 0; i < pagevec_count(&pvec); ++i) {
498                         struct page *page = pvec.pages[i];
499                         u32 hash = 0;
500
501                         index = page->index;
502                         if (!truncate_op) {
503                                 /*
504                                  * Only need to hold the fault mutex in the
505                                  * hole punch case.  This prevents races with
506                                  * page faults.  Races are not possible in the
507                                  * case of truncation.
508                                  */
509                                 hash = hugetlb_fault_mutex_hash(mapping, index);
510                                 mutex_lock(&hugetlb_fault_mutex_table[hash]);
511                         }
512
513                         /*
514                          * If page is mapped, it was faulted in after being
515                          * unmapped in caller.  Unmap (again) now after taking
516                          * the fault mutex.  The mutex will prevent faults
517                          * until we finish removing the page.
518                          *
519                          * This race can only happen in the hole punch case.
520                          * Getting here in a truncate operation is a bug.
521                          */
522                         if (unlikely(page_mapped(page))) {
523                                 BUG_ON(truncate_op);
524
525                                 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
526                                 i_mmap_lock_write(mapping);
527                                 mutex_lock(&hugetlb_fault_mutex_table[hash]);
528                                 hugetlb_vmdelete_list(&mapping->i_mmap,
529                                         index * pages_per_huge_page(h),
530                                         (index + 1) * pages_per_huge_page(h),
531                                         ZAP_FLAG_DROP_MARKER);
532                                 i_mmap_unlock_write(mapping);
533                         }
534
535                         lock_page(page);
536                         /*
537                          * We must free the huge page and remove from page
538                          * cache (remove_huge_page) BEFORE removing the
539                          * region/reserve map (hugetlb_unreserve_pages).  In
540                          * rare out of memory conditions, removal of the
541                          * region/reserve map could fail. Correspondingly,
542                          * the subpool and global reserve usage count can need
543                          * to be adjusted.
544                          */
545                         VM_BUG_ON(HPageRestoreReserve(page));
546                         remove_huge_page(page);
547                         freed++;
548                         if (!truncate_op) {
549                                 if (unlikely(hugetlb_unreserve_pages(inode,
550                                                         index, index + 1, 1)))
551                                         hugetlb_fix_reserve_counts(inode);
552                         }
553
554                         unlock_page(page);
555                         if (!truncate_op)
556                                 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
557                 }
558                 huge_pagevec_release(&pvec);
559                 cond_resched();
560         }
561
562         if (truncate_op)
563                 (void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed);
564 }
565
566 static void hugetlbfs_evict_inode(struct inode *inode)
567 {
568         struct resv_map *resv_map;
569
570         remove_inode_hugepages(inode, 0, LLONG_MAX);
571
572         /*
573          * Get the resv_map from the address space embedded in the inode.
574          * This is the address space which points to any resv_map allocated
575          * at inode creation time.  If this is a device special inode,
576          * i_mapping may not point to the original address space.
577          */
578         resv_map = (struct resv_map *)(&inode->i_data)->private_data;
579         /* Only regular and link inodes have associated reserve maps */
580         if (resv_map)
581                 resv_map_release(&resv_map->refs);
582         clear_inode(inode);
583 }
584
585 static void hugetlb_vmtruncate(struct inode *inode, loff_t offset)
586 {
587         pgoff_t pgoff;
588         struct address_space *mapping = inode->i_mapping;
589         struct hstate *h = hstate_inode(inode);
590
591         BUG_ON(offset & ~huge_page_mask(h));
592         pgoff = offset >> PAGE_SHIFT;
593
594         i_mmap_lock_write(mapping);
595         i_size_write(inode, offset);
596         if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
597                 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0,
598                                       ZAP_FLAG_DROP_MARKER);
599         i_mmap_unlock_write(mapping);
600         remove_inode_hugepages(inode, offset, LLONG_MAX);
601 }
602
603 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
604 {
605         struct hstate *h = hstate_inode(inode);
606         loff_t hpage_size = huge_page_size(h);
607         loff_t hole_start, hole_end;
608
609         /*
610          * For hole punch round up the beginning offset of the hole and
611          * round down the end.
612          */
613         hole_start = round_up(offset, hpage_size);
614         hole_end = round_down(offset + len, hpage_size);
615
616         if (hole_end > hole_start) {
617                 struct address_space *mapping = inode->i_mapping;
618                 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
619
620                 inode_lock(inode);
621
622                 /* protected by i_rwsem */
623                 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
624                         inode_unlock(inode);
625                         return -EPERM;
626                 }
627
628                 i_mmap_lock_write(mapping);
629                 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
630                         hugetlb_vmdelete_list(&mapping->i_mmap,
631                                               hole_start >> PAGE_SHIFT,
632                                               hole_end >> PAGE_SHIFT, 0);
633                 i_mmap_unlock_write(mapping);
634                 remove_inode_hugepages(inode, hole_start, hole_end);
635                 inode_unlock(inode);
636         }
637
638         return 0;
639 }
640
641 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
642                                 loff_t len)
643 {
644         struct inode *inode = file_inode(file);
645         struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
646         struct address_space *mapping = inode->i_mapping;
647         struct hstate *h = hstate_inode(inode);
648         struct vm_area_struct pseudo_vma;
649         struct mm_struct *mm = current->mm;
650         loff_t hpage_size = huge_page_size(h);
651         unsigned long hpage_shift = huge_page_shift(h);
652         pgoff_t start, index, end;
653         int error;
654         u32 hash;
655
656         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
657                 return -EOPNOTSUPP;
658
659         if (mode & FALLOC_FL_PUNCH_HOLE)
660                 return hugetlbfs_punch_hole(inode, offset, len);
661
662         /*
663          * Default preallocate case.
664          * For this range, start is rounded down and end is rounded up
665          * as well as being converted to page offsets.
666          */
667         start = offset >> hpage_shift;
668         end = (offset + len + hpage_size - 1) >> hpage_shift;
669
670         inode_lock(inode);
671
672         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
673         error = inode_newsize_ok(inode, offset + len);
674         if (error)
675                 goto out;
676
677         if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
678                 error = -EPERM;
679                 goto out;
680         }
681
682         /*
683          * Initialize a pseudo vma as this is required by the huge page
684          * allocation routines.  If NUMA is configured, use page index
685          * as input to create an allocation policy.
686          */
687         vma_init(&pseudo_vma, mm);
688         pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
689         pseudo_vma.vm_file = file;
690
691         for (index = start; index < end; index++) {
692                 /*
693                  * This is supposed to be the vaddr where the page is being
694                  * faulted in, but we have no vaddr here.
695                  */
696                 struct page *page;
697                 unsigned long addr;
698
699                 cond_resched();
700
701                 /*
702                  * fallocate(2) manpage permits EINTR; we may have been
703                  * interrupted because we are using up too much memory.
704                  */
705                 if (signal_pending(current)) {
706                         error = -EINTR;
707                         break;
708                 }
709
710                 /* Set numa allocation policy based on index */
711                 hugetlb_set_vma_policy(&pseudo_vma, inode, index);
712
713                 /* addr is the offset within the file (zero based) */
714                 addr = index * hpage_size;
715
716                 /*
717                  * fault mutex taken here, protects against fault path
718                  * and hole punch.  inode_lock previously taken protects
719                  * against truncation.
720                  */
721                 hash = hugetlb_fault_mutex_hash(mapping, index);
722                 mutex_lock(&hugetlb_fault_mutex_table[hash]);
723
724                 /* See if already present in mapping to avoid alloc/free */
725                 page = find_get_page(mapping, index);
726                 if (page) {
727                         put_page(page);
728                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
729                         hugetlb_drop_vma_policy(&pseudo_vma);
730                         continue;
731                 }
732
733                 /*
734                  * Allocate page without setting the avoid_reserve argument.
735                  * There certainly are no reserves associated with the
736                  * pseudo_vma.  However, there could be shared mappings with
737                  * reserves for the file at the inode level.  If we fallocate
738                  * pages in these areas, we need to consume the reserves
739                  * to keep reservation accounting consistent.
740                  */
741                 page = alloc_huge_page(&pseudo_vma, addr, 0);
742                 hugetlb_drop_vma_policy(&pseudo_vma);
743                 if (IS_ERR(page)) {
744                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
745                         error = PTR_ERR(page);
746                         goto out;
747                 }
748                 clear_huge_page(page, addr, pages_per_huge_page(h));
749                 __SetPageUptodate(page);
750                 error = huge_add_to_page_cache(page, mapping, index);
751                 if (unlikely(error)) {
752                         restore_reserve_on_error(h, &pseudo_vma, addr, page);
753                         put_page(page);
754                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
755                         goto out;
756                 }
757
758                 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
759
760                 SetHPageMigratable(page);
761                 /*
762                  * unlock_page because locked by add_to_page_cache()
763                  * put_page() due to reference from alloc_huge_page()
764                  */
765                 unlock_page(page);
766                 put_page(page);
767         }
768
769         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
770                 i_size_write(inode, offset + len);
771         inode->i_ctime = current_time(inode);
772 out:
773         inode_unlock(inode);
774         return error;
775 }
776
777 static int hugetlbfs_setattr(struct user_namespace *mnt_userns,
778                              struct dentry *dentry, struct iattr *attr)
779 {
780         struct inode *inode = d_inode(dentry);
781         struct hstate *h = hstate_inode(inode);
782         int error;
783         unsigned int ia_valid = attr->ia_valid;
784         struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
785
786         error = setattr_prepare(&init_user_ns, dentry, attr);
787         if (error)
788                 return error;
789
790         if (ia_valid & ATTR_SIZE) {
791                 loff_t oldsize = inode->i_size;
792                 loff_t newsize = attr->ia_size;
793
794                 if (newsize & ~huge_page_mask(h))
795                         return -EINVAL;
796                 /* protected by i_rwsem */
797                 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
798                     (newsize > oldsize && (info->seals & F_SEAL_GROW)))
799                         return -EPERM;
800                 hugetlb_vmtruncate(inode, newsize);
801         }
802
803         setattr_copy(&init_user_ns, inode, attr);
804         mark_inode_dirty(inode);
805         return 0;
806 }
807
808 static struct inode *hugetlbfs_get_root(struct super_block *sb,
809                                         struct hugetlbfs_fs_context *ctx)
810 {
811         struct inode *inode;
812
813         inode = new_inode(sb);
814         if (inode) {
815                 inode->i_ino = get_next_ino();
816                 inode->i_mode = S_IFDIR | ctx->mode;
817                 inode->i_uid = ctx->uid;
818                 inode->i_gid = ctx->gid;
819                 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
820                 inode->i_op = &hugetlbfs_dir_inode_operations;
821                 inode->i_fop = &simple_dir_operations;
822                 /* directory inodes start off with i_nlink == 2 (for "." entry) */
823                 inc_nlink(inode);
824                 lockdep_annotate_inode_mutex_key(inode);
825         }
826         return inode;
827 }
828
829 /*
830  * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
831  * be taken from reclaim -- unlike regular filesystems. This needs an
832  * annotation because huge_pmd_share() does an allocation under hugetlb's
833  * i_mmap_rwsem.
834  */
835 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
836
837 static struct inode *hugetlbfs_get_inode(struct super_block *sb,
838                                         struct inode *dir,
839                                         umode_t mode, dev_t dev)
840 {
841         struct inode *inode;
842         struct resv_map *resv_map = NULL;
843
844         /*
845          * Reserve maps are only needed for inodes that can have associated
846          * page allocations.
847          */
848         if (S_ISREG(mode) || S_ISLNK(mode)) {
849                 resv_map = resv_map_alloc();
850                 if (!resv_map)
851                         return NULL;
852         }
853
854         inode = new_inode(sb);
855         if (inode) {
856                 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
857
858                 inode->i_ino = get_next_ino();
859                 inode_init_owner(&init_user_ns, inode, dir, mode);
860                 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
861                                 &hugetlbfs_i_mmap_rwsem_key);
862                 inode->i_mapping->a_ops = &hugetlbfs_aops;
863                 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
864                 inode->i_mapping->private_data = resv_map;
865                 info->seals = F_SEAL_SEAL;
866                 switch (mode & S_IFMT) {
867                 default:
868                         init_special_inode(inode, mode, dev);
869                         break;
870                 case S_IFREG:
871                         inode->i_op = &hugetlbfs_inode_operations;
872                         inode->i_fop = &hugetlbfs_file_operations;
873                         break;
874                 case S_IFDIR:
875                         inode->i_op = &hugetlbfs_dir_inode_operations;
876                         inode->i_fop = &simple_dir_operations;
877
878                         /* directory inodes start off with i_nlink == 2 (for "." entry) */
879                         inc_nlink(inode);
880                         break;
881                 case S_IFLNK:
882                         inode->i_op = &page_symlink_inode_operations;
883                         inode_nohighmem(inode);
884                         break;
885                 }
886                 lockdep_annotate_inode_mutex_key(inode);
887         } else {
888                 if (resv_map)
889                         kref_put(&resv_map->refs, resv_map_release);
890         }
891
892         return inode;
893 }
894
895 /*
896  * File creation. Allocate an inode, and we're done..
897  */
898 static int do_hugetlbfs_mknod(struct inode *dir,
899                         struct dentry *dentry,
900                         umode_t mode,
901                         dev_t dev,
902                         bool tmpfile)
903 {
904         struct inode *inode;
905         int error = -ENOSPC;
906
907         inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev);
908         if (inode) {
909                 dir->i_ctime = dir->i_mtime = current_time(dir);
910                 if (tmpfile) {
911                         d_tmpfile(dentry, inode);
912                 } else {
913                         d_instantiate(dentry, inode);
914                         dget(dentry);/* Extra count - pin the dentry in core */
915                 }
916                 error = 0;
917         }
918         return error;
919 }
920
921 static int hugetlbfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
922                            struct dentry *dentry, umode_t mode, dev_t dev)
923 {
924         return do_hugetlbfs_mknod(dir, dentry, mode, dev, false);
925 }
926
927 static int hugetlbfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
928                            struct dentry *dentry, umode_t mode)
929 {
930         int retval = hugetlbfs_mknod(&init_user_ns, dir, dentry,
931                                      mode | S_IFDIR, 0);
932         if (!retval)
933                 inc_nlink(dir);
934         return retval;
935 }
936
937 static int hugetlbfs_create(struct user_namespace *mnt_userns,
938                             struct inode *dir, struct dentry *dentry,
939                             umode_t mode, bool excl)
940 {
941         return hugetlbfs_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
942 }
943
944 static int hugetlbfs_tmpfile(struct user_namespace *mnt_userns,
945                              struct inode *dir, struct dentry *dentry,
946                              umode_t mode)
947 {
948         return do_hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0, true);
949 }
950
951 static int hugetlbfs_symlink(struct user_namespace *mnt_userns,
952                              struct inode *dir, struct dentry *dentry,
953                              const char *symname)
954 {
955         struct inode *inode;
956         int error = -ENOSPC;
957
958         inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0);
959         if (inode) {
960                 int l = strlen(symname)+1;
961                 error = page_symlink(inode, symname, l);
962                 if (!error) {
963                         d_instantiate(dentry, inode);
964                         dget(dentry);
965                 } else
966                         iput(inode);
967         }
968         dir->i_ctime = dir->i_mtime = current_time(dir);
969
970         return error;
971 }
972
973 static int hugetlbfs_migrate_page(struct address_space *mapping,
974                                 struct page *newpage, struct page *page,
975                                 enum migrate_mode mode)
976 {
977         int rc;
978
979         rc = migrate_huge_page_move_mapping(mapping, newpage, page);
980         if (rc != MIGRATEPAGE_SUCCESS)
981                 return rc;
982
983         if (hugetlb_page_subpool(page)) {
984                 hugetlb_set_page_subpool(newpage, hugetlb_page_subpool(page));
985                 hugetlb_set_page_subpool(page, NULL);
986         }
987
988         if (mode != MIGRATE_SYNC_NO_COPY)
989                 migrate_page_copy(newpage, page);
990         else
991                 migrate_page_states(newpage, page);
992
993         return MIGRATEPAGE_SUCCESS;
994 }
995
996 static int hugetlbfs_error_remove_page(struct address_space *mapping,
997                                 struct page *page)
998 {
999         struct inode *inode = mapping->host;
1000         pgoff_t index = page->index;
1001
1002         remove_huge_page(page);
1003         if (unlikely(hugetlb_unreserve_pages(inode, index, index + 1, 1)))
1004                 hugetlb_fix_reserve_counts(inode);
1005
1006         return 0;
1007 }
1008
1009 /*
1010  * Display the mount options in /proc/mounts.
1011  */
1012 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
1013 {
1014         struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
1015         struct hugepage_subpool *spool = sbinfo->spool;
1016         unsigned long hpage_size = huge_page_size(sbinfo->hstate);
1017         unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
1018         char mod;
1019
1020         if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
1021                 seq_printf(m, ",uid=%u",
1022                            from_kuid_munged(&init_user_ns, sbinfo->uid));
1023         if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
1024                 seq_printf(m, ",gid=%u",
1025                            from_kgid_munged(&init_user_ns, sbinfo->gid));
1026         if (sbinfo->mode != 0755)
1027                 seq_printf(m, ",mode=%o", sbinfo->mode);
1028         if (sbinfo->max_inodes != -1)
1029                 seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
1030
1031         hpage_size /= 1024;
1032         mod = 'K';
1033         if (hpage_size >= 1024) {
1034                 hpage_size /= 1024;
1035                 mod = 'M';
1036         }
1037         seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
1038         if (spool) {
1039                 if (spool->max_hpages != -1)
1040                         seq_printf(m, ",size=%llu",
1041                                    (unsigned long long)spool->max_hpages << hpage_shift);
1042                 if (spool->min_hpages != -1)
1043                         seq_printf(m, ",min_size=%llu",
1044                                    (unsigned long long)spool->min_hpages << hpage_shift);
1045         }
1046         return 0;
1047 }
1048
1049 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1050 {
1051         struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
1052         struct hstate *h = hstate_inode(d_inode(dentry));
1053
1054         buf->f_type = HUGETLBFS_MAGIC;
1055         buf->f_bsize = huge_page_size(h);
1056         if (sbinfo) {
1057                 spin_lock(&sbinfo->stat_lock);
1058                 /* If no limits set, just report 0 for max/free/used
1059                  * blocks, like simple_statfs() */
1060                 if (sbinfo->spool) {
1061                         long free_pages;
1062
1063                         spin_lock_irq(&sbinfo->spool->lock);
1064                         buf->f_blocks = sbinfo->spool->max_hpages;
1065                         free_pages = sbinfo->spool->max_hpages
1066                                 - sbinfo->spool->used_hpages;
1067                         buf->f_bavail = buf->f_bfree = free_pages;
1068                         spin_unlock_irq(&sbinfo->spool->lock);
1069                         buf->f_files = sbinfo->max_inodes;
1070                         buf->f_ffree = sbinfo->free_inodes;
1071                 }
1072                 spin_unlock(&sbinfo->stat_lock);
1073         }
1074         buf->f_namelen = NAME_MAX;
1075         return 0;
1076 }
1077
1078 static void hugetlbfs_put_super(struct super_block *sb)
1079 {
1080         struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
1081
1082         if (sbi) {
1083                 sb->s_fs_info = NULL;
1084
1085                 if (sbi->spool)
1086                         hugepage_put_subpool(sbi->spool);
1087
1088                 kfree(sbi);
1089         }
1090 }
1091
1092 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1093 {
1094         if (sbinfo->free_inodes >= 0) {
1095                 spin_lock(&sbinfo->stat_lock);
1096                 if (unlikely(!sbinfo->free_inodes)) {
1097                         spin_unlock(&sbinfo->stat_lock);
1098                         return 0;
1099                 }
1100                 sbinfo->free_inodes--;
1101                 spin_unlock(&sbinfo->stat_lock);
1102         }
1103
1104         return 1;
1105 }
1106
1107 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1108 {
1109         if (sbinfo->free_inodes >= 0) {
1110                 spin_lock(&sbinfo->stat_lock);
1111                 sbinfo->free_inodes++;
1112                 spin_unlock(&sbinfo->stat_lock);
1113         }
1114 }
1115
1116
1117 static struct kmem_cache *hugetlbfs_inode_cachep;
1118
1119 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
1120 {
1121         struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
1122         struct hugetlbfs_inode_info *p;
1123
1124         if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
1125                 return NULL;
1126         p = alloc_inode_sb(sb, hugetlbfs_inode_cachep, GFP_KERNEL);
1127         if (unlikely(!p)) {
1128                 hugetlbfs_inc_free_inodes(sbinfo);
1129                 return NULL;
1130         }
1131
1132         /*
1133          * Any time after allocation, hugetlbfs_destroy_inode can be called
1134          * for the inode.  mpol_free_shared_policy is unconditionally called
1135          * as part of hugetlbfs_destroy_inode.  So, initialize policy here
1136          * in case of a quick call to destroy.
1137          *
1138          * Note that the policy is initialized even if we are creating a
1139          * private inode.  This simplifies hugetlbfs_destroy_inode.
1140          */
1141         mpol_shared_policy_init(&p->policy, NULL);
1142
1143         return &p->vfs_inode;
1144 }
1145
1146 static void hugetlbfs_free_inode(struct inode *inode)
1147 {
1148         kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
1149 }
1150
1151 static void hugetlbfs_destroy_inode(struct inode *inode)
1152 {
1153         hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
1154         mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
1155 }
1156
1157 static const struct address_space_operations hugetlbfs_aops = {
1158         .write_begin    = hugetlbfs_write_begin,
1159         .write_end      = hugetlbfs_write_end,
1160         .dirty_folio    = noop_dirty_folio,
1161         .migratepage    = hugetlbfs_migrate_page,
1162         .error_remove_page      = hugetlbfs_error_remove_page,
1163 };
1164
1165
1166 static void init_once(void *foo)
1167 {
1168         struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo;
1169
1170         inode_init_once(&ei->vfs_inode);
1171 }
1172
1173 const struct file_operations hugetlbfs_file_operations = {
1174         .read_iter              = hugetlbfs_read_iter,
1175         .mmap                   = hugetlbfs_file_mmap,
1176         .fsync                  = noop_fsync,
1177         .get_unmapped_area      = hugetlb_get_unmapped_area,
1178         .llseek                 = default_llseek,
1179         .fallocate              = hugetlbfs_fallocate,
1180 };
1181
1182 static const struct inode_operations hugetlbfs_dir_inode_operations = {
1183         .create         = hugetlbfs_create,
1184         .lookup         = simple_lookup,
1185         .link           = simple_link,
1186         .unlink         = simple_unlink,
1187         .symlink        = hugetlbfs_symlink,
1188         .mkdir          = hugetlbfs_mkdir,
1189         .rmdir          = simple_rmdir,
1190         .mknod          = hugetlbfs_mknod,
1191         .rename         = simple_rename,
1192         .setattr        = hugetlbfs_setattr,
1193         .tmpfile        = hugetlbfs_tmpfile,
1194 };
1195
1196 static const struct inode_operations hugetlbfs_inode_operations = {
1197         .setattr        = hugetlbfs_setattr,
1198 };
1199
1200 static const struct super_operations hugetlbfs_ops = {
1201         .alloc_inode    = hugetlbfs_alloc_inode,
1202         .free_inode     = hugetlbfs_free_inode,
1203         .destroy_inode  = hugetlbfs_destroy_inode,
1204         .evict_inode    = hugetlbfs_evict_inode,
1205         .statfs         = hugetlbfs_statfs,
1206         .put_super      = hugetlbfs_put_super,
1207         .show_options   = hugetlbfs_show_options,
1208 };
1209
1210 /*
1211  * Convert size option passed from command line to number of huge pages
1212  * in the pool specified by hstate.  Size option could be in bytes
1213  * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1214  */
1215 static long
1216 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1217                          enum hugetlbfs_size_type val_type)
1218 {
1219         if (val_type == NO_SIZE)
1220                 return -1;
1221
1222         if (val_type == SIZE_PERCENT) {
1223                 size_opt <<= huge_page_shift(h);
1224                 size_opt *= h->max_huge_pages;
1225                 do_div(size_opt, 100);
1226         }
1227
1228         size_opt >>= huge_page_shift(h);
1229         return size_opt;
1230 }
1231
1232 /*
1233  * Parse one mount parameter.
1234  */
1235 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1236 {
1237         struct hugetlbfs_fs_context *ctx = fc->fs_private;
1238         struct fs_parse_result result;
1239         char *rest;
1240         unsigned long ps;
1241         int opt;
1242
1243         opt = fs_parse(fc, hugetlb_fs_parameters, param, &result);
1244         if (opt < 0)
1245                 return opt;
1246
1247         switch (opt) {
1248         case Opt_uid:
1249                 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
1250                 if (!uid_valid(ctx->uid))
1251                         goto bad_val;
1252                 return 0;
1253
1254         case Opt_gid:
1255                 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
1256                 if (!gid_valid(ctx->gid))
1257                         goto bad_val;
1258                 return 0;
1259
1260         case Opt_mode:
1261                 ctx->mode = result.uint_32 & 01777U;
1262                 return 0;
1263
1264         case Opt_size:
1265                 /* memparse() will accept a K/M/G without a digit */
1266                 if (!isdigit(param->string[0]))
1267                         goto bad_val;
1268                 ctx->max_size_opt = memparse(param->string, &rest);
1269                 ctx->max_val_type = SIZE_STD;
1270                 if (*rest == '%')
1271                         ctx->max_val_type = SIZE_PERCENT;
1272                 return 0;
1273
1274         case Opt_nr_inodes:
1275                 /* memparse() will accept a K/M/G without a digit */
1276                 if (!isdigit(param->string[0]))
1277                         goto bad_val;
1278                 ctx->nr_inodes = memparse(param->string, &rest);
1279                 return 0;
1280
1281         case Opt_pagesize:
1282                 ps = memparse(param->string, &rest);
1283                 ctx->hstate = size_to_hstate(ps);
1284                 if (!ctx->hstate) {
1285                         pr_err("Unsupported page size %lu MB\n", ps >> 20);
1286                         return -EINVAL;
1287                 }
1288                 return 0;
1289
1290         case Opt_min_size:
1291                 /* memparse() will accept a K/M/G without a digit */
1292                 if (!isdigit(param->string[0]))
1293                         goto bad_val;
1294                 ctx->min_size_opt = memparse(param->string, &rest);
1295                 ctx->min_val_type = SIZE_STD;
1296                 if (*rest == '%')
1297                         ctx->min_val_type = SIZE_PERCENT;
1298                 return 0;
1299
1300         default:
1301                 return -EINVAL;
1302         }
1303
1304 bad_val:
1305         return invalfc(fc, "Bad value '%s' for mount option '%s'\n",
1306                       param->string, param->key);
1307 }
1308
1309 /*
1310  * Validate the parsed options.
1311  */
1312 static int hugetlbfs_validate(struct fs_context *fc)
1313 {
1314         struct hugetlbfs_fs_context *ctx = fc->fs_private;
1315
1316         /*
1317          * Use huge page pool size (in hstate) to convert the size
1318          * options to number of huge pages.  If NO_SIZE, -1 is returned.
1319          */
1320         ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1321                                                    ctx->max_size_opt,
1322                                                    ctx->max_val_type);
1323         ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1324                                                    ctx->min_size_opt,
1325                                                    ctx->min_val_type);
1326
1327         /*
1328          * If max_size was specified, then min_size must be smaller
1329          */
1330         if (ctx->max_val_type > NO_SIZE &&
1331             ctx->min_hpages > ctx->max_hpages) {
1332                 pr_err("Minimum size can not be greater than maximum size\n");
1333                 return -EINVAL;
1334         }
1335
1336         return 0;
1337 }
1338
1339 static int
1340 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc)
1341 {
1342         struct hugetlbfs_fs_context *ctx = fc->fs_private;
1343         struct hugetlbfs_sb_info *sbinfo;
1344
1345         sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1346         if (!sbinfo)
1347                 return -ENOMEM;
1348         sb->s_fs_info = sbinfo;
1349         spin_lock_init(&sbinfo->stat_lock);
1350         sbinfo->hstate          = ctx->hstate;
1351         sbinfo->max_inodes      = ctx->nr_inodes;
1352         sbinfo->free_inodes     = ctx->nr_inodes;
1353         sbinfo->spool           = NULL;
1354         sbinfo->uid             = ctx->uid;
1355         sbinfo->gid             = ctx->gid;
1356         sbinfo->mode            = ctx->mode;
1357
1358         /*
1359          * Allocate and initialize subpool if maximum or minimum size is
1360          * specified.  Any needed reservations (for minimum size) are taken
1361          * taken when the subpool is created.
1362          */
1363         if (ctx->max_hpages != -1 || ctx->min_hpages != -1) {
1364                 sbinfo->spool = hugepage_new_subpool(ctx->hstate,
1365                                                      ctx->max_hpages,
1366                                                      ctx->min_hpages);
1367                 if (!sbinfo->spool)
1368                         goto out_free;
1369         }
1370         sb->s_maxbytes = MAX_LFS_FILESIZE;
1371         sb->s_blocksize = huge_page_size(ctx->hstate);
1372         sb->s_blocksize_bits = huge_page_shift(ctx->hstate);
1373         sb->s_magic = HUGETLBFS_MAGIC;
1374         sb->s_op = &hugetlbfs_ops;
1375         sb->s_time_gran = 1;
1376
1377         /*
1378          * Due to the special and limited functionality of hugetlbfs, it does
1379          * not work well as a stacking filesystem.
1380          */
1381         sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH;
1382         sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx));
1383         if (!sb->s_root)
1384                 goto out_free;
1385         return 0;
1386 out_free:
1387         kfree(sbinfo->spool);
1388         kfree(sbinfo);
1389         return -ENOMEM;
1390 }
1391
1392 static int hugetlbfs_get_tree(struct fs_context *fc)
1393 {
1394         int err = hugetlbfs_validate(fc);
1395         if (err)
1396                 return err;
1397         return get_tree_nodev(fc, hugetlbfs_fill_super);
1398 }
1399
1400 static void hugetlbfs_fs_context_free(struct fs_context *fc)
1401 {
1402         kfree(fc->fs_private);
1403 }
1404
1405 static const struct fs_context_operations hugetlbfs_fs_context_ops = {
1406         .free           = hugetlbfs_fs_context_free,
1407         .parse_param    = hugetlbfs_parse_param,
1408         .get_tree       = hugetlbfs_get_tree,
1409 };
1410
1411 static int hugetlbfs_init_fs_context(struct fs_context *fc)
1412 {
1413         struct hugetlbfs_fs_context *ctx;
1414
1415         ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL);
1416         if (!ctx)
1417                 return -ENOMEM;
1418
1419         ctx->max_hpages = -1; /* No limit on size by default */
1420         ctx->nr_inodes  = -1; /* No limit on number of inodes by default */
1421         ctx->uid        = current_fsuid();
1422         ctx->gid        = current_fsgid();
1423         ctx->mode       = 0755;
1424         ctx->hstate     = &default_hstate;
1425         ctx->min_hpages = -1; /* No default minimum size */
1426         ctx->max_val_type = NO_SIZE;
1427         ctx->min_val_type = NO_SIZE;
1428         fc->fs_private = ctx;
1429         fc->ops = &hugetlbfs_fs_context_ops;
1430         return 0;
1431 }
1432
1433 static struct file_system_type hugetlbfs_fs_type = {
1434         .name                   = "hugetlbfs",
1435         .init_fs_context        = hugetlbfs_init_fs_context,
1436         .parameters             = hugetlb_fs_parameters,
1437         .kill_sb                = kill_litter_super,
1438 };
1439
1440 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1441
1442 static int can_do_hugetlb_shm(void)
1443 {
1444         kgid_t shm_group;
1445         shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1446         return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1447 }
1448
1449 static int get_hstate_idx(int page_size_log)
1450 {
1451         struct hstate *h = hstate_sizelog(page_size_log);
1452
1453         if (!h)
1454                 return -1;
1455         return hstate_index(h);
1456 }
1457
1458 /*
1459  * Note that size should be aligned to proper hugepage size in caller side,
1460  * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1461  */
1462 struct file *hugetlb_file_setup(const char *name, size_t size,
1463                                 vm_flags_t acctflag, int creat_flags,
1464                                 int page_size_log)
1465 {
1466         struct inode *inode;
1467         struct vfsmount *mnt;
1468         int hstate_idx;
1469         struct file *file;
1470
1471         hstate_idx = get_hstate_idx(page_size_log);
1472         if (hstate_idx < 0)
1473                 return ERR_PTR(-ENODEV);
1474
1475         mnt = hugetlbfs_vfsmount[hstate_idx];
1476         if (!mnt)
1477                 return ERR_PTR(-ENOENT);
1478
1479         if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1480                 struct ucounts *ucounts = current_ucounts();
1481
1482                 if (user_shm_lock(size, ucounts)) {
1483                         pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is obsolete\n",
1484                                 current->comm, current->pid);
1485                         user_shm_unlock(size, ucounts);
1486                 }
1487                 return ERR_PTR(-EPERM);
1488         }
1489
1490         file = ERR_PTR(-ENOSPC);
1491         inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0);
1492         if (!inode)
1493                 goto out;
1494         if (creat_flags == HUGETLB_SHMFS_INODE)
1495                 inode->i_flags |= S_PRIVATE;
1496
1497         inode->i_size = size;
1498         clear_nlink(inode);
1499
1500         if (!hugetlb_reserve_pages(inode, 0,
1501                         size >> huge_page_shift(hstate_inode(inode)), NULL,
1502                         acctflag))
1503                 file = ERR_PTR(-ENOMEM);
1504         else
1505                 file = alloc_file_pseudo(inode, mnt, name, O_RDWR,
1506                                         &hugetlbfs_file_operations);
1507         if (!IS_ERR(file))
1508                 return file;
1509
1510         iput(inode);
1511 out:
1512         return file;
1513 }
1514
1515 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h)
1516 {
1517         struct fs_context *fc;
1518         struct vfsmount *mnt;
1519
1520         fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT);
1521         if (IS_ERR(fc)) {
1522                 mnt = ERR_CAST(fc);
1523         } else {
1524                 struct hugetlbfs_fs_context *ctx = fc->fs_private;
1525                 ctx->hstate = h;
1526                 mnt = fc_mount(fc);
1527                 put_fs_context(fc);
1528         }
1529         if (IS_ERR(mnt))
1530                 pr_err("Cannot mount internal hugetlbfs for page size %luK",
1531                        huge_page_size(h) >> 10);
1532         return mnt;
1533 }
1534
1535 static int __init init_hugetlbfs_fs(void)
1536 {
1537         struct vfsmount *mnt;
1538         struct hstate *h;
1539         int error;
1540         int i;
1541
1542         if (!hugepages_supported()) {
1543                 pr_info("disabling because there are no supported hugepage sizes\n");
1544                 return -ENOTSUPP;
1545         }
1546
1547         error = -ENOMEM;
1548         hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1549                                         sizeof(struct hugetlbfs_inode_info),
1550                                         0, SLAB_ACCOUNT, init_once);
1551         if (hugetlbfs_inode_cachep == NULL)
1552                 goto out;
1553
1554         error = register_filesystem(&hugetlbfs_fs_type);
1555         if (error)
1556                 goto out_free;
1557
1558         /* default hstate mount is required */
1559         mnt = mount_one_hugetlbfs(&default_hstate);
1560         if (IS_ERR(mnt)) {
1561                 error = PTR_ERR(mnt);
1562                 goto out_unreg;
1563         }
1564         hugetlbfs_vfsmount[default_hstate_idx] = mnt;
1565
1566         /* other hstates are optional */
1567         i = 0;
1568         for_each_hstate(h) {
1569                 if (i == default_hstate_idx) {
1570                         i++;
1571                         continue;
1572                 }
1573
1574                 mnt = mount_one_hugetlbfs(h);
1575                 if (IS_ERR(mnt))
1576                         hugetlbfs_vfsmount[i] = NULL;
1577                 else
1578                         hugetlbfs_vfsmount[i] = mnt;
1579                 i++;
1580         }
1581
1582         return 0;
1583
1584  out_unreg:
1585         (void)unregister_filesystem(&hugetlbfs_fs_type);
1586  out_free:
1587         kmem_cache_destroy(hugetlbfs_inode_cachep);
1588  out:
1589         return error;
1590 }
1591 fs_initcall(init_hugetlbfs_fs)