Merge tag 'scsi-misc' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[linux-2.6-microblaze.git] / fs / hugetlbfs / inode.c
1 /*
2  * hugetlbpage-backed filesystem.  Based on ramfs.
3  *
4  * Nadia Yvette Chambers, 2002
5  *
6  * Copyright (C) 2002 Linus Torvalds.
7  * License: GPL
8  */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/sched/signal.h>         /* remove ASAP */
15 #include <linux/falloc.h>
16 #include <linux/fs.h>
17 #include <linux/mount.h>
18 #include <linux/file.h>
19 #include <linux/kernel.h>
20 #include <linux/writeback.h>
21 #include <linux/pagemap.h>
22 #include <linux/highmem.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/capability.h>
26 #include <linux/ctype.h>
27 #include <linux/backing-dev.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagevec.h>
30 #include <linux/fs_parser.h>
31 #include <linux/mman.h>
32 #include <linux/slab.h>
33 #include <linux/dnotify.h>
34 #include <linux/statfs.h>
35 #include <linux/security.h>
36 #include <linux/magic.h>
37 #include <linux/migrate.h>
38 #include <linux/uio.h>
39
40 #include <linux/uaccess.h>
41 #include <linux/sched/mm.h>
42
43 static const struct super_operations hugetlbfs_ops;
44 static const struct address_space_operations hugetlbfs_aops;
45 const struct file_operations hugetlbfs_file_operations;
46 static const struct inode_operations hugetlbfs_dir_inode_operations;
47 static const struct inode_operations hugetlbfs_inode_operations;
48
49 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
50
51 struct hugetlbfs_fs_context {
52         struct hstate           *hstate;
53         unsigned long long      max_size_opt;
54         unsigned long long      min_size_opt;
55         long                    max_hpages;
56         long                    nr_inodes;
57         long                    min_hpages;
58         enum hugetlbfs_size_type max_val_type;
59         enum hugetlbfs_size_type min_val_type;
60         kuid_t                  uid;
61         kgid_t                  gid;
62         umode_t                 mode;
63 };
64
65 int sysctl_hugetlb_shm_group;
66
67 enum hugetlb_param {
68         Opt_gid,
69         Opt_min_size,
70         Opt_mode,
71         Opt_nr_inodes,
72         Opt_pagesize,
73         Opt_size,
74         Opt_uid,
75 };
76
77 static const struct fs_parameter_spec hugetlb_fs_parameters[] = {
78         fsparam_u32   ("gid",           Opt_gid),
79         fsparam_string("min_size",      Opt_min_size),
80         fsparam_u32   ("mode",          Opt_mode),
81         fsparam_string("nr_inodes",     Opt_nr_inodes),
82         fsparam_string("pagesize",      Opt_pagesize),
83         fsparam_string("size",          Opt_size),
84         fsparam_u32   ("uid",           Opt_uid),
85         {}
86 };
87
88 #ifdef CONFIG_NUMA
89 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
90                                         struct inode *inode, pgoff_t index)
91 {
92         vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy,
93                                                         index);
94 }
95
96 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
97 {
98         mpol_cond_put(vma->vm_policy);
99 }
100 #else
101 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
102                                         struct inode *inode, pgoff_t index)
103 {
104 }
105
106 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
107 {
108 }
109 #endif
110
111 static void huge_pagevec_release(struct pagevec *pvec)
112 {
113         int i;
114
115         for (i = 0; i < pagevec_count(pvec); ++i)
116                 put_page(pvec->pages[i]);
117
118         pagevec_reinit(pvec);
119 }
120
121 /*
122  * Mask used when checking the page offset value passed in via system
123  * calls.  This value will be converted to a loff_t which is signed.
124  * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
125  * value.  The extra bit (- 1 in the shift value) is to take the sign
126  * bit into account.
127  */
128 #define PGOFF_LOFFT_MAX \
129         (((1UL << (PAGE_SHIFT + 1)) - 1) <<  (BITS_PER_LONG - (PAGE_SHIFT + 1)))
130
131 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
132 {
133         struct inode *inode = file_inode(file);
134         loff_t len, vma_len;
135         int ret;
136         struct hstate *h = hstate_file(file);
137
138         /*
139          * vma address alignment (but not the pgoff alignment) has
140          * already been checked by prepare_hugepage_range.  If you add
141          * any error returns here, do so after setting VM_HUGETLB, so
142          * is_vm_hugetlb_page tests below unmap_region go the right
143          * way when do_mmap unwinds (may be important on powerpc
144          * and ia64).
145          */
146         vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND;
147         vma->vm_ops = &hugetlb_vm_ops;
148
149         /*
150          * page based offset in vm_pgoff could be sufficiently large to
151          * overflow a loff_t when converted to byte offset.  This can
152          * only happen on architectures where sizeof(loff_t) ==
153          * sizeof(unsigned long).  So, only check in those instances.
154          */
155         if (sizeof(unsigned long) == sizeof(loff_t)) {
156                 if (vma->vm_pgoff & PGOFF_LOFFT_MAX)
157                         return -EINVAL;
158         }
159
160         /* must be huge page aligned */
161         if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
162                 return -EINVAL;
163
164         vma_len = (loff_t)(vma->vm_end - vma->vm_start);
165         len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
166         /* check for overflow */
167         if (len < vma_len)
168                 return -EINVAL;
169
170         inode_lock(inode);
171         file_accessed(file);
172
173         ret = -ENOMEM;
174         if (!hugetlb_reserve_pages(inode,
175                                 vma->vm_pgoff >> huge_page_order(h),
176                                 len >> huge_page_shift(h), vma,
177                                 vma->vm_flags))
178                 goto out;
179
180         ret = 0;
181         if (vma->vm_flags & VM_WRITE && inode->i_size < len)
182                 i_size_write(inode, len);
183 out:
184         inode_unlock(inode);
185
186         return ret;
187 }
188
189 /*
190  * Called under mmap_write_lock(mm).
191  */
192
193 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
194 static unsigned long
195 hugetlb_get_unmapped_area_bottomup(struct file *file, unsigned long addr,
196                 unsigned long len, unsigned long pgoff, unsigned long flags)
197 {
198         struct hstate *h = hstate_file(file);
199         struct vm_unmapped_area_info info;
200
201         info.flags = 0;
202         info.length = len;
203         info.low_limit = current->mm->mmap_base;
204         info.high_limit = TASK_SIZE;
205         info.align_mask = PAGE_MASK & ~huge_page_mask(h);
206         info.align_offset = 0;
207         return vm_unmapped_area(&info);
208 }
209
210 static unsigned long
211 hugetlb_get_unmapped_area_topdown(struct file *file, unsigned long addr,
212                 unsigned long len, unsigned long pgoff, unsigned long flags)
213 {
214         struct hstate *h = hstate_file(file);
215         struct vm_unmapped_area_info info;
216
217         info.flags = VM_UNMAPPED_AREA_TOPDOWN;
218         info.length = len;
219         info.low_limit = max(PAGE_SIZE, mmap_min_addr);
220         info.high_limit = current->mm->mmap_base;
221         info.align_mask = PAGE_MASK & ~huge_page_mask(h);
222         info.align_offset = 0;
223         addr = vm_unmapped_area(&info);
224
225         /*
226          * A failed mmap() very likely causes application failure,
227          * so fall back to the bottom-up function here. This scenario
228          * can happen with large stack limits and large mmap()
229          * allocations.
230          */
231         if (unlikely(offset_in_page(addr))) {
232                 VM_BUG_ON(addr != -ENOMEM);
233                 info.flags = 0;
234                 info.low_limit = current->mm->mmap_base;
235                 info.high_limit = TASK_SIZE;
236                 addr = vm_unmapped_area(&info);
237         }
238
239         return addr;
240 }
241
242 static unsigned long
243 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
244                 unsigned long len, unsigned long pgoff, unsigned long flags)
245 {
246         struct mm_struct *mm = current->mm;
247         struct vm_area_struct *vma;
248         struct hstate *h = hstate_file(file);
249
250         if (len & ~huge_page_mask(h))
251                 return -EINVAL;
252         if (len > TASK_SIZE)
253                 return -ENOMEM;
254
255         if (flags & MAP_FIXED) {
256                 if (prepare_hugepage_range(file, addr, len))
257                         return -EINVAL;
258                 return addr;
259         }
260
261         if (addr) {
262                 addr = ALIGN(addr, huge_page_size(h));
263                 vma = find_vma(mm, addr);
264                 if (TASK_SIZE - len >= addr &&
265                     (!vma || addr + len <= vm_start_gap(vma)))
266                         return addr;
267         }
268
269         /*
270          * Use mm->get_unmapped_area value as a hint to use topdown routine.
271          * If architectures have special needs, they should define their own
272          * version of hugetlb_get_unmapped_area.
273          */
274         if (mm->get_unmapped_area == arch_get_unmapped_area_topdown)
275                 return hugetlb_get_unmapped_area_topdown(file, addr, len,
276                                 pgoff, flags);
277         return hugetlb_get_unmapped_area_bottomup(file, addr, len,
278                         pgoff, flags);
279 }
280 #endif
281
282 static size_t
283 hugetlbfs_read_actor(struct page *page, unsigned long offset,
284                         struct iov_iter *to, unsigned long size)
285 {
286         size_t copied = 0;
287         int i, chunksize;
288
289         /* Find which 4k chunk and offset with in that chunk */
290         i = offset >> PAGE_SHIFT;
291         offset = offset & ~PAGE_MASK;
292
293         while (size) {
294                 size_t n;
295                 chunksize = PAGE_SIZE;
296                 if (offset)
297                         chunksize -= offset;
298                 if (chunksize > size)
299                         chunksize = size;
300                 n = copy_page_to_iter(&page[i], offset, chunksize, to);
301                 copied += n;
302                 if (n != chunksize)
303                         return copied;
304                 offset = 0;
305                 size -= chunksize;
306                 i++;
307         }
308         return copied;
309 }
310
311 /*
312  * Support for read() - Find the page attached to f_mapping and copy out the
313  * data. Its *very* similar to generic_file_buffered_read(), we can't use that
314  * since it has PAGE_SIZE assumptions.
315  */
316 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
317 {
318         struct file *file = iocb->ki_filp;
319         struct hstate *h = hstate_file(file);
320         struct address_space *mapping = file->f_mapping;
321         struct inode *inode = mapping->host;
322         unsigned long index = iocb->ki_pos >> huge_page_shift(h);
323         unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
324         unsigned long end_index;
325         loff_t isize;
326         ssize_t retval = 0;
327
328         while (iov_iter_count(to)) {
329                 struct page *page;
330                 size_t nr, copied;
331
332                 /* nr is the maximum number of bytes to copy from this page */
333                 nr = huge_page_size(h);
334                 isize = i_size_read(inode);
335                 if (!isize)
336                         break;
337                 end_index = (isize - 1) >> huge_page_shift(h);
338                 if (index > end_index)
339                         break;
340                 if (index == end_index) {
341                         nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
342                         if (nr <= offset)
343                                 break;
344                 }
345                 nr = nr - offset;
346
347                 /* Find the page */
348                 page = find_lock_page(mapping, index);
349                 if (unlikely(page == NULL)) {
350                         /*
351                          * We have a HOLE, zero out the user-buffer for the
352                          * length of the hole or request.
353                          */
354                         copied = iov_iter_zero(nr, to);
355                 } else {
356                         unlock_page(page);
357
358                         /*
359                          * We have the page, copy it to user space buffer.
360                          */
361                         copied = hugetlbfs_read_actor(page, offset, to, nr);
362                         put_page(page);
363                 }
364                 offset += copied;
365                 retval += copied;
366                 if (copied != nr && iov_iter_count(to)) {
367                         if (!retval)
368                                 retval = -EFAULT;
369                         break;
370                 }
371                 index += offset >> huge_page_shift(h);
372                 offset &= ~huge_page_mask(h);
373         }
374         iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
375         return retval;
376 }
377
378 static int hugetlbfs_write_begin(struct file *file,
379                         struct address_space *mapping,
380                         loff_t pos, unsigned len, unsigned flags,
381                         struct page **pagep, void **fsdata)
382 {
383         return -EINVAL;
384 }
385
386 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
387                         loff_t pos, unsigned len, unsigned copied,
388                         struct page *page, void *fsdata)
389 {
390         BUG();
391         return -EINVAL;
392 }
393
394 static void remove_huge_page(struct page *page)
395 {
396         ClearPageDirty(page);
397         ClearPageUptodate(page);
398         delete_from_page_cache(page);
399 }
400
401 static void
402 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end)
403 {
404         struct vm_area_struct *vma;
405
406         /*
407          * end == 0 indicates that the entire range after
408          * start should be unmapped.
409          */
410         vma_interval_tree_foreach(vma, root, start, end ? end : ULONG_MAX) {
411                 unsigned long v_offset;
412                 unsigned long v_end;
413
414                 /*
415                  * Can the expression below overflow on 32-bit arches?
416                  * No, because the interval tree returns us only those vmas
417                  * which overlap the truncated area starting at pgoff,
418                  * and no vma on a 32-bit arch can span beyond the 4GB.
419                  */
420                 if (vma->vm_pgoff < start)
421                         v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
422                 else
423                         v_offset = 0;
424
425                 if (!end)
426                         v_end = vma->vm_end;
427                 else {
428                         v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT)
429                                                         + vma->vm_start;
430                         if (v_end > vma->vm_end)
431                                 v_end = vma->vm_end;
432                 }
433
434                 unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end,
435                                                                         NULL);
436         }
437 }
438
439 /*
440  * remove_inode_hugepages handles two distinct cases: truncation and hole
441  * punch.  There are subtle differences in operation for each case.
442  *
443  * truncation is indicated by end of range being LLONG_MAX
444  *      In this case, we first scan the range and release found pages.
445  *      After releasing pages, hugetlb_unreserve_pages cleans up region/reserve
446  *      maps and global counts.  Page faults can not race with truncation
447  *      in this routine.  hugetlb_no_page() holds i_mmap_rwsem and prevents
448  *      page faults in the truncated range by checking i_size.  i_size is
449  *      modified while holding i_mmap_rwsem.
450  * hole punch is indicated if end is not LLONG_MAX
451  *      In the hole punch case we scan the range and release found pages.
452  *      Only when releasing a page is the associated region/reserve map
453  *      deleted.  The region/reserve map for ranges without associated
454  *      pages are not modified.  Page faults can race with hole punch.
455  *      This is indicated if we find a mapped page.
456  * Note: If the passed end of range value is beyond the end of file, but
457  * not LLONG_MAX this routine still performs a hole punch operation.
458  */
459 static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
460                                    loff_t lend)
461 {
462         struct hstate *h = hstate_inode(inode);
463         struct address_space *mapping = &inode->i_data;
464         const pgoff_t start = lstart >> huge_page_shift(h);
465         const pgoff_t end = lend >> huge_page_shift(h);
466         struct pagevec pvec;
467         pgoff_t next, index;
468         int i, freed = 0;
469         bool truncate_op = (lend == LLONG_MAX);
470
471         pagevec_init(&pvec);
472         next = start;
473         while (next < end) {
474                 /*
475                  * When no more pages are found, we are done.
476                  */
477                 if (!pagevec_lookup_range(&pvec, mapping, &next, end - 1))
478                         break;
479
480                 for (i = 0; i < pagevec_count(&pvec); ++i) {
481                         struct page *page = pvec.pages[i];
482                         u32 hash = 0;
483
484                         index = page->index;
485                         if (!truncate_op) {
486                                 /*
487                                  * Only need to hold the fault mutex in the
488                                  * hole punch case.  This prevents races with
489                                  * page faults.  Races are not possible in the
490                                  * case of truncation.
491                                  */
492                                 hash = hugetlb_fault_mutex_hash(mapping, index);
493                                 mutex_lock(&hugetlb_fault_mutex_table[hash]);
494                         }
495
496                         /*
497                          * If page is mapped, it was faulted in after being
498                          * unmapped in caller.  Unmap (again) now after taking
499                          * the fault mutex.  The mutex will prevent faults
500                          * until we finish removing the page.
501                          *
502                          * This race can only happen in the hole punch case.
503                          * Getting here in a truncate operation is a bug.
504                          */
505                         if (unlikely(page_mapped(page))) {
506                                 BUG_ON(truncate_op);
507
508                                 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
509                                 i_mmap_lock_write(mapping);
510                                 mutex_lock(&hugetlb_fault_mutex_table[hash]);
511                                 hugetlb_vmdelete_list(&mapping->i_mmap,
512                                         index * pages_per_huge_page(h),
513                                         (index + 1) * pages_per_huge_page(h));
514                                 i_mmap_unlock_write(mapping);
515                         }
516
517                         lock_page(page);
518                         /*
519                          * We must free the huge page and remove from page
520                          * cache (remove_huge_page) BEFORE removing the
521                          * region/reserve map (hugetlb_unreserve_pages).  In
522                          * rare out of memory conditions, removal of the
523                          * region/reserve map could fail. Correspondingly,
524                          * the subpool and global reserve usage count can need
525                          * to be adjusted.
526                          */
527                         VM_BUG_ON(PagePrivate(page));
528                         remove_huge_page(page);
529                         freed++;
530                         if (!truncate_op) {
531                                 if (unlikely(hugetlb_unreserve_pages(inode,
532                                                         index, index + 1, 1)))
533                                         hugetlb_fix_reserve_counts(inode);
534                         }
535
536                         unlock_page(page);
537                         if (!truncate_op)
538                                 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
539                 }
540                 huge_pagevec_release(&pvec);
541                 cond_resched();
542         }
543
544         if (truncate_op)
545                 (void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed);
546 }
547
548 static void hugetlbfs_evict_inode(struct inode *inode)
549 {
550         struct resv_map *resv_map;
551
552         remove_inode_hugepages(inode, 0, LLONG_MAX);
553
554         /*
555          * Get the resv_map from the address space embedded in the inode.
556          * This is the address space which points to any resv_map allocated
557          * at inode creation time.  If this is a device special inode,
558          * i_mapping may not point to the original address space.
559          */
560         resv_map = (struct resv_map *)(&inode->i_data)->private_data;
561         /* Only regular and link inodes have associated reserve maps */
562         if (resv_map)
563                 resv_map_release(&resv_map->refs);
564         clear_inode(inode);
565 }
566
567 static void hugetlb_vmtruncate(struct inode *inode, loff_t offset)
568 {
569         pgoff_t pgoff;
570         struct address_space *mapping = inode->i_mapping;
571         struct hstate *h = hstate_inode(inode);
572
573         BUG_ON(offset & ~huge_page_mask(h));
574         pgoff = offset >> PAGE_SHIFT;
575
576         i_mmap_lock_write(mapping);
577         i_size_write(inode, offset);
578         if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
579                 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0);
580         i_mmap_unlock_write(mapping);
581         remove_inode_hugepages(inode, offset, LLONG_MAX);
582 }
583
584 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
585 {
586         struct hstate *h = hstate_inode(inode);
587         loff_t hpage_size = huge_page_size(h);
588         loff_t hole_start, hole_end;
589
590         /*
591          * For hole punch round up the beginning offset of the hole and
592          * round down the end.
593          */
594         hole_start = round_up(offset, hpage_size);
595         hole_end = round_down(offset + len, hpage_size);
596
597         if (hole_end > hole_start) {
598                 struct address_space *mapping = inode->i_mapping;
599                 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
600
601                 inode_lock(inode);
602
603                 /* protected by i_rwsem */
604                 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
605                         inode_unlock(inode);
606                         return -EPERM;
607                 }
608
609                 i_mmap_lock_write(mapping);
610                 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
611                         hugetlb_vmdelete_list(&mapping->i_mmap,
612                                                 hole_start >> PAGE_SHIFT,
613                                                 hole_end  >> PAGE_SHIFT);
614                 i_mmap_unlock_write(mapping);
615                 remove_inode_hugepages(inode, hole_start, hole_end);
616                 inode_unlock(inode);
617         }
618
619         return 0;
620 }
621
622 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
623                                 loff_t len)
624 {
625         struct inode *inode = file_inode(file);
626         struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
627         struct address_space *mapping = inode->i_mapping;
628         struct hstate *h = hstate_inode(inode);
629         struct vm_area_struct pseudo_vma;
630         struct mm_struct *mm = current->mm;
631         loff_t hpage_size = huge_page_size(h);
632         unsigned long hpage_shift = huge_page_shift(h);
633         pgoff_t start, index, end;
634         int error;
635         u32 hash;
636
637         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
638                 return -EOPNOTSUPP;
639
640         if (mode & FALLOC_FL_PUNCH_HOLE)
641                 return hugetlbfs_punch_hole(inode, offset, len);
642
643         /*
644          * Default preallocate case.
645          * For this range, start is rounded down and end is rounded up
646          * as well as being converted to page offsets.
647          */
648         start = offset >> hpage_shift;
649         end = (offset + len + hpage_size - 1) >> hpage_shift;
650
651         inode_lock(inode);
652
653         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
654         error = inode_newsize_ok(inode, offset + len);
655         if (error)
656                 goto out;
657
658         if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
659                 error = -EPERM;
660                 goto out;
661         }
662
663         /*
664          * Initialize a pseudo vma as this is required by the huge page
665          * allocation routines.  If NUMA is configured, use page index
666          * as input to create an allocation policy.
667          */
668         vma_init(&pseudo_vma, mm);
669         pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
670         pseudo_vma.vm_file = file;
671
672         for (index = start; index < end; index++) {
673                 /*
674                  * This is supposed to be the vaddr where the page is being
675                  * faulted in, but we have no vaddr here.
676                  */
677                 struct page *page;
678                 unsigned long addr;
679
680                 cond_resched();
681
682                 /*
683                  * fallocate(2) manpage permits EINTR; we may have been
684                  * interrupted because we are using up too much memory.
685                  */
686                 if (signal_pending(current)) {
687                         error = -EINTR;
688                         break;
689                 }
690
691                 /* Set numa allocation policy based on index */
692                 hugetlb_set_vma_policy(&pseudo_vma, inode, index);
693
694                 /* addr is the offset within the file (zero based) */
695                 addr = index * hpage_size;
696
697                 /*
698                  * fault mutex taken here, protects against fault path
699                  * and hole punch.  inode_lock previously taken protects
700                  * against truncation.
701                  */
702                 hash = hugetlb_fault_mutex_hash(mapping, index);
703                 mutex_lock(&hugetlb_fault_mutex_table[hash]);
704
705                 /* See if already present in mapping to avoid alloc/free */
706                 page = find_get_page(mapping, index);
707                 if (page) {
708                         put_page(page);
709                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
710                         hugetlb_drop_vma_policy(&pseudo_vma);
711                         continue;
712                 }
713
714                 /*
715                  * Allocate page without setting the avoid_reserve argument.
716                  * There certainly are no reserves associated with the
717                  * pseudo_vma.  However, there could be shared mappings with
718                  * reserves for the file at the inode level.  If we fallocate
719                  * pages in these areas, we need to consume the reserves
720                  * to keep reservation accounting consistent.
721                  */
722                 page = alloc_huge_page(&pseudo_vma, addr, 0);
723                 hugetlb_drop_vma_policy(&pseudo_vma);
724                 if (IS_ERR(page)) {
725                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
726                         error = PTR_ERR(page);
727                         goto out;
728                 }
729                 clear_huge_page(page, addr, pages_per_huge_page(h));
730                 __SetPageUptodate(page);
731                 error = huge_add_to_page_cache(page, mapping, index);
732                 if (unlikely(error)) {
733                         put_page(page);
734                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
735                         goto out;
736                 }
737
738                 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
739
740                 SetHPageMigratable(page);
741                 /*
742                  * unlock_page because locked by add_to_page_cache()
743                  * put_page() due to reference from alloc_huge_page()
744                  */
745                 unlock_page(page);
746                 put_page(page);
747         }
748
749         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
750                 i_size_write(inode, offset + len);
751         inode->i_ctime = current_time(inode);
752 out:
753         inode_unlock(inode);
754         return error;
755 }
756
757 static int hugetlbfs_setattr(struct user_namespace *mnt_userns,
758                              struct dentry *dentry, struct iattr *attr)
759 {
760         struct inode *inode = d_inode(dentry);
761         struct hstate *h = hstate_inode(inode);
762         int error;
763         unsigned int ia_valid = attr->ia_valid;
764         struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
765
766         error = setattr_prepare(&init_user_ns, dentry, attr);
767         if (error)
768                 return error;
769
770         if (ia_valid & ATTR_SIZE) {
771                 loff_t oldsize = inode->i_size;
772                 loff_t newsize = attr->ia_size;
773
774                 if (newsize & ~huge_page_mask(h))
775                         return -EINVAL;
776                 /* protected by i_rwsem */
777                 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
778                     (newsize > oldsize && (info->seals & F_SEAL_GROW)))
779                         return -EPERM;
780                 hugetlb_vmtruncate(inode, newsize);
781         }
782
783         setattr_copy(&init_user_ns, inode, attr);
784         mark_inode_dirty(inode);
785         return 0;
786 }
787
788 static struct inode *hugetlbfs_get_root(struct super_block *sb,
789                                         struct hugetlbfs_fs_context *ctx)
790 {
791         struct inode *inode;
792
793         inode = new_inode(sb);
794         if (inode) {
795                 inode->i_ino = get_next_ino();
796                 inode->i_mode = S_IFDIR | ctx->mode;
797                 inode->i_uid = ctx->uid;
798                 inode->i_gid = ctx->gid;
799                 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
800                 inode->i_op = &hugetlbfs_dir_inode_operations;
801                 inode->i_fop = &simple_dir_operations;
802                 /* directory inodes start off with i_nlink == 2 (for "." entry) */
803                 inc_nlink(inode);
804                 lockdep_annotate_inode_mutex_key(inode);
805         }
806         return inode;
807 }
808
809 /*
810  * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
811  * be taken from reclaim -- unlike regular filesystems. This needs an
812  * annotation because huge_pmd_share() does an allocation under hugetlb's
813  * i_mmap_rwsem.
814  */
815 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
816
817 static struct inode *hugetlbfs_get_inode(struct super_block *sb,
818                                         struct inode *dir,
819                                         umode_t mode, dev_t dev)
820 {
821         struct inode *inode;
822         struct resv_map *resv_map = NULL;
823
824         /*
825          * Reserve maps are only needed for inodes that can have associated
826          * page allocations.
827          */
828         if (S_ISREG(mode) || S_ISLNK(mode)) {
829                 resv_map = resv_map_alloc();
830                 if (!resv_map)
831                         return NULL;
832         }
833
834         inode = new_inode(sb);
835         if (inode) {
836                 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
837
838                 inode->i_ino = get_next_ino();
839                 inode_init_owner(&init_user_ns, inode, dir, mode);
840                 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
841                                 &hugetlbfs_i_mmap_rwsem_key);
842                 inode->i_mapping->a_ops = &hugetlbfs_aops;
843                 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
844                 inode->i_mapping->private_data = resv_map;
845                 info->seals = F_SEAL_SEAL;
846                 switch (mode & S_IFMT) {
847                 default:
848                         init_special_inode(inode, mode, dev);
849                         break;
850                 case S_IFREG:
851                         inode->i_op = &hugetlbfs_inode_operations;
852                         inode->i_fop = &hugetlbfs_file_operations;
853                         break;
854                 case S_IFDIR:
855                         inode->i_op = &hugetlbfs_dir_inode_operations;
856                         inode->i_fop = &simple_dir_operations;
857
858                         /* directory inodes start off with i_nlink == 2 (for "." entry) */
859                         inc_nlink(inode);
860                         break;
861                 case S_IFLNK:
862                         inode->i_op = &page_symlink_inode_operations;
863                         inode_nohighmem(inode);
864                         break;
865                 }
866                 lockdep_annotate_inode_mutex_key(inode);
867         } else {
868                 if (resv_map)
869                         kref_put(&resv_map->refs, resv_map_release);
870         }
871
872         return inode;
873 }
874
875 /*
876  * File creation. Allocate an inode, and we're done..
877  */
878 static int do_hugetlbfs_mknod(struct inode *dir,
879                         struct dentry *dentry,
880                         umode_t mode,
881                         dev_t dev,
882                         bool tmpfile)
883 {
884         struct inode *inode;
885         int error = -ENOSPC;
886
887         inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev);
888         if (inode) {
889                 dir->i_ctime = dir->i_mtime = current_time(dir);
890                 if (tmpfile) {
891                         d_tmpfile(dentry, inode);
892                 } else {
893                         d_instantiate(dentry, inode);
894                         dget(dentry);/* Extra count - pin the dentry in core */
895                 }
896                 error = 0;
897         }
898         return error;
899 }
900
901 static int hugetlbfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
902                            struct dentry *dentry, umode_t mode, dev_t dev)
903 {
904         return do_hugetlbfs_mknod(dir, dentry, mode, dev, false);
905 }
906
907 static int hugetlbfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
908                            struct dentry *dentry, umode_t mode)
909 {
910         int retval = hugetlbfs_mknod(&init_user_ns, dir, dentry,
911                                      mode | S_IFDIR, 0);
912         if (!retval)
913                 inc_nlink(dir);
914         return retval;
915 }
916
917 static int hugetlbfs_create(struct user_namespace *mnt_userns,
918                             struct inode *dir, struct dentry *dentry,
919                             umode_t mode, bool excl)
920 {
921         return hugetlbfs_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
922 }
923
924 static int hugetlbfs_tmpfile(struct user_namespace *mnt_userns,
925                              struct inode *dir, struct dentry *dentry,
926                              umode_t mode)
927 {
928         return do_hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0, true);
929 }
930
931 static int hugetlbfs_symlink(struct user_namespace *mnt_userns,
932                              struct inode *dir, struct dentry *dentry,
933                              const char *symname)
934 {
935         struct inode *inode;
936         int error = -ENOSPC;
937
938         inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0);
939         if (inode) {
940                 int l = strlen(symname)+1;
941                 error = page_symlink(inode, symname, l);
942                 if (!error) {
943                         d_instantiate(dentry, inode);
944                         dget(dentry);
945                 } else
946                         iput(inode);
947         }
948         dir->i_ctime = dir->i_mtime = current_time(dir);
949
950         return error;
951 }
952
953 static int hugetlbfs_migrate_page(struct address_space *mapping,
954                                 struct page *newpage, struct page *page,
955                                 enum migrate_mode mode)
956 {
957         int rc;
958
959         rc = migrate_huge_page_move_mapping(mapping, newpage, page);
960         if (rc != MIGRATEPAGE_SUCCESS)
961                 return rc;
962
963         if (hugetlb_page_subpool(page)) {
964                 hugetlb_set_page_subpool(newpage, hugetlb_page_subpool(page));
965                 hugetlb_set_page_subpool(page, NULL);
966         }
967
968         if (mode != MIGRATE_SYNC_NO_COPY)
969                 migrate_page_copy(newpage, page);
970         else
971                 migrate_page_states(newpage, page);
972
973         return MIGRATEPAGE_SUCCESS;
974 }
975
976 static int hugetlbfs_error_remove_page(struct address_space *mapping,
977                                 struct page *page)
978 {
979         struct inode *inode = mapping->host;
980         pgoff_t index = page->index;
981
982         remove_huge_page(page);
983         if (unlikely(hugetlb_unreserve_pages(inode, index, index + 1, 1)))
984                 hugetlb_fix_reserve_counts(inode);
985
986         return 0;
987 }
988
989 /*
990  * Display the mount options in /proc/mounts.
991  */
992 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
993 {
994         struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
995         struct hugepage_subpool *spool = sbinfo->spool;
996         unsigned long hpage_size = huge_page_size(sbinfo->hstate);
997         unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
998         char mod;
999
1000         if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
1001                 seq_printf(m, ",uid=%u",
1002                            from_kuid_munged(&init_user_ns, sbinfo->uid));
1003         if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
1004                 seq_printf(m, ",gid=%u",
1005                            from_kgid_munged(&init_user_ns, sbinfo->gid));
1006         if (sbinfo->mode != 0755)
1007                 seq_printf(m, ",mode=%o", sbinfo->mode);
1008         if (sbinfo->max_inodes != -1)
1009                 seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
1010
1011         hpage_size /= 1024;
1012         mod = 'K';
1013         if (hpage_size >= 1024) {
1014                 hpage_size /= 1024;
1015                 mod = 'M';
1016         }
1017         seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
1018         if (spool) {
1019                 if (spool->max_hpages != -1)
1020                         seq_printf(m, ",size=%llu",
1021                                    (unsigned long long)spool->max_hpages << hpage_shift);
1022                 if (spool->min_hpages != -1)
1023                         seq_printf(m, ",min_size=%llu",
1024                                    (unsigned long long)spool->min_hpages << hpage_shift);
1025         }
1026         return 0;
1027 }
1028
1029 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1030 {
1031         struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
1032         struct hstate *h = hstate_inode(d_inode(dentry));
1033
1034         buf->f_type = HUGETLBFS_MAGIC;
1035         buf->f_bsize = huge_page_size(h);
1036         if (sbinfo) {
1037                 spin_lock(&sbinfo->stat_lock);
1038                 /* If no limits set, just report 0 for max/free/used
1039                  * blocks, like simple_statfs() */
1040                 if (sbinfo->spool) {
1041                         long free_pages;
1042
1043                         spin_lock(&sbinfo->spool->lock);
1044                         buf->f_blocks = sbinfo->spool->max_hpages;
1045                         free_pages = sbinfo->spool->max_hpages
1046                                 - sbinfo->spool->used_hpages;
1047                         buf->f_bavail = buf->f_bfree = free_pages;
1048                         spin_unlock(&sbinfo->spool->lock);
1049                         buf->f_files = sbinfo->max_inodes;
1050                         buf->f_ffree = sbinfo->free_inodes;
1051                 }
1052                 spin_unlock(&sbinfo->stat_lock);
1053         }
1054         buf->f_namelen = NAME_MAX;
1055         return 0;
1056 }
1057
1058 static void hugetlbfs_put_super(struct super_block *sb)
1059 {
1060         struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
1061
1062         if (sbi) {
1063                 sb->s_fs_info = NULL;
1064
1065                 if (sbi->spool)
1066                         hugepage_put_subpool(sbi->spool);
1067
1068                 kfree(sbi);
1069         }
1070 }
1071
1072 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1073 {
1074         if (sbinfo->free_inodes >= 0) {
1075                 spin_lock(&sbinfo->stat_lock);
1076                 if (unlikely(!sbinfo->free_inodes)) {
1077                         spin_unlock(&sbinfo->stat_lock);
1078                         return 0;
1079                 }
1080                 sbinfo->free_inodes--;
1081                 spin_unlock(&sbinfo->stat_lock);
1082         }
1083
1084         return 1;
1085 }
1086
1087 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1088 {
1089         if (sbinfo->free_inodes >= 0) {
1090                 spin_lock(&sbinfo->stat_lock);
1091                 sbinfo->free_inodes++;
1092                 spin_unlock(&sbinfo->stat_lock);
1093         }
1094 }
1095
1096
1097 static struct kmem_cache *hugetlbfs_inode_cachep;
1098
1099 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
1100 {
1101         struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
1102         struct hugetlbfs_inode_info *p;
1103
1104         if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
1105                 return NULL;
1106         p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL);
1107         if (unlikely(!p)) {
1108                 hugetlbfs_inc_free_inodes(sbinfo);
1109                 return NULL;
1110         }
1111
1112         /*
1113          * Any time after allocation, hugetlbfs_destroy_inode can be called
1114          * for the inode.  mpol_free_shared_policy is unconditionally called
1115          * as part of hugetlbfs_destroy_inode.  So, initialize policy here
1116          * in case of a quick call to destroy.
1117          *
1118          * Note that the policy is initialized even if we are creating a
1119          * private inode.  This simplifies hugetlbfs_destroy_inode.
1120          */
1121         mpol_shared_policy_init(&p->policy, NULL);
1122
1123         return &p->vfs_inode;
1124 }
1125
1126 static void hugetlbfs_free_inode(struct inode *inode)
1127 {
1128         kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
1129 }
1130
1131 static void hugetlbfs_destroy_inode(struct inode *inode)
1132 {
1133         hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
1134         mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
1135 }
1136
1137 static const struct address_space_operations hugetlbfs_aops = {
1138         .write_begin    = hugetlbfs_write_begin,
1139         .write_end      = hugetlbfs_write_end,
1140         .set_page_dirty =  __set_page_dirty_no_writeback,
1141         .migratepage    = hugetlbfs_migrate_page,
1142         .error_remove_page      = hugetlbfs_error_remove_page,
1143 };
1144
1145
1146 static void init_once(void *foo)
1147 {
1148         struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo;
1149
1150         inode_init_once(&ei->vfs_inode);
1151 }
1152
1153 const struct file_operations hugetlbfs_file_operations = {
1154         .read_iter              = hugetlbfs_read_iter,
1155         .mmap                   = hugetlbfs_file_mmap,
1156         .fsync                  = noop_fsync,
1157         .get_unmapped_area      = hugetlb_get_unmapped_area,
1158         .llseek                 = default_llseek,
1159         .fallocate              = hugetlbfs_fallocate,
1160 };
1161
1162 static const struct inode_operations hugetlbfs_dir_inode_operations = {
1163         .create         = hugetlbfs_create,
1164         .lookup         = simple_lookup,
1165         .link           = simple_link,
1166         .unlink         = simple_unlink,
1167         .symlink        = hugetlbfs_symlink,
1168         .mkdir          = hugetlbfs_mkdir,
1169         .rmdir          = simple_rmdir,
1170         .mknod          = hugetlbfs_mknod,
1171         .rename         = simple_rename,
1172         .setattr        = hugetlbfs_setattr,
1173         .tmpfile        = hugetlbfs_tmpfile,
1174 };
1175
1176 static const struct inode_operations hugetlbfs_inode_operations = {
1177         .setattr        = hugetlbfs_setattr,
1178 };
1179
1180 static const struct super_operations hugetlbfs_ops = {
1181         .alloc_inode    = hugetlbfs_alloc_inode,
1182         .free_inode     = hugetlbfs_free_inode,
1183         .destroy_inode  = hugetlbfs_destroy_inode,
1184         .evict_inode    = hugetlbfs_evict_inode,
1185         .statfs         = hugetlbfs_statfs,
1186         .put_super      = hugetlbfs_put_super,
1187         .show_options   = hugetlbfs_show_options,
1188 };
1189
1190 /*
1191  * Convert size option passed from command line to number of huge pages
1192  * in the pool specified by hstate.  Size option could be in bytes
1193  * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1194  */
1195 static long
1196 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1197                          enum hugetlbfs_size_type val_type)
1198 {
1199         if (val_type == NO_SIZE)
1200                 return -1;
1201
1202         if (val_type == SIZE_PERCENT) {
1203                 size_opt <<= huge_page_shift(h);
1204                 size_opt *= h->max_huge_pages;
1205                 do_div(size_opt, 100);
1206         }
1207
1208         size_opt >>= huge_page_shift(h);
1209         return size_opt;
1210 }
1211
1212 /*
1213  * Parse one mount parameter.
1214  */
1215 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1216 {
1217         struct hugetlbfs_fs_context *ctx = fc->fs_private;
1218         struct fs_parse_result result;
1219         char *rest;
1220         unsigned long ps;
1221         int opt;
1222
1223         opt = fs_parse(fc, hugetlb_fs_parameters, param, &result);
1224         if (opt < 0)
1225                 return opt;
1226
1227         switch (opt) {
1228         case Opt_uid:
1229                 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
1230                 if (!uid_valid(ctx->uid))
1231                         goto bad_val;
1232                 return 0;
1233
1234         case Opt_gid:
1235                 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
1236                 if (!gid_valid(ctx->gid))
1237                         goto bad_val;
1238                 return 0;
1239
1240         case Opt_mode:
1241                 ctx->mode = result.uint_32 & 01777U;
1242                 return 0;
1243
1244         case Opt_size:
1245                 /* memparse() will accept a K/M/G without a digit */
1246                 if (!isdigit(param->string[0]))
1247                         goto bad_val;
1248                 ctx->max_size_opt = memparse(param->string, &rest);
1249                 ctx->max_val_type = SIZE_STD;
1250                 if (*rest == '%')
1251                         ctx->max_val_type = SIZE_PERCENT;
1252                 return 0;
1253
1254         case Opt_nr_inodes:
1255                 /* memparse() will accept a K/M/G without a digit */
1256                 if (!isdigit(param->string[0]))
1257                         goto bad_val;
1258                 ctx->nr_inodes = memparse(param->string, &rest);
1259                 return 0;
1260
1261         case Opt_pagesize:
1262                 ps = memparse(param->string, &rest);
1263                 ctx->hstate = size_to_hstate(ps);
1264                 if (!ctx->hstate) {
1265                         pr_err("Unsupported page size %lu MB\n", ps >> 20);
1266                         return -EINVAL;
1267                 }
1268                 return 0;
1269
1270         case Opt_min_size:
1271                 /* memparse() will accept a K/M/G without a digit */
1272                 if (!isdigit(param->string[0]))
1273                         goto bad_val;
1274                 ctx->min_size_opt = memparse(param->string, &rest);
1275                 ctx->min_val_type = SIZE_STD;
1276                 if (*rest == '%')
1277                         ctx->min_val_type = SIZE_PERCENT;
1278                 return 0;
1279
1280         default:
1281                 return -EINVAL;
1282         }
1283
1284 bad_val:
1285         return invalfc(fc, "Bad value '%s' for mount option '%s'\n",
1286                       param->string, param->key);
1287 }
1288
1289 /*
1290  * Validate the parsed options.
1291  */
1292 static int hugetlbfs_validate(struct fs_context *fc)
1293 {
1294         struct hugetlbfs_fs_context *ctx = fc->fs_private;
1295
1296         /*
1297          * Use huge page pool size (in hstate) to convert the size
1298          * options to number of huge pages.  If NO_SIZE, -1 is returned.
1299          */
1300         ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1301                                                    ctx->max_size_opt,
1302                                                    ctx->max_val_type);
1303         ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1304                                                    ctx->min_size_opt,
1305                                                    ctx->min_val_type);
1306
1307         /*
1308          * If max_size was specified, then min_size must be smaller
1309          */
1310         if (ctx->max_val_type > NO_SIZE &&
1311             ctx->min_hpages > ctx->max_hpages) {
1312                 pr_err("Minimum size can not be greater than maximum size\n");
1313                 return -EINVAL;
1314         }
1315
1316         return 0;
1317 }
1318
1319 static int
1320 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc)
1321 {
1322         struct hugetlbfs_fs_context *ctx = fc->fs_private;
1323         struct hugetlbfs_sb_info *sbinfo;
1324
1325         sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1326         if (!sbinfo)
1327                 return -ENOMEM;
1328         sb->s_fs_info = sbinfo;
1329         spin_lock_init(&sbinfo->stat_lock);
1330         sbinfo->hstate          = ctx->hstate;
1331         sbinfo->max_inodes      = ctx->nr_inodes;
1332         sbinfo->free_inodes     = ctx->nr_inodes;
1333         sbinfo->spool           = NULL;
1334         sbinfo->uid             = ctx->uid;
1335         sbinfo->gid             = ctx->gid;
1336         sbinfo->mode            = ctx->mode;
1337
1338         /*
1339          * Allocate and initialize subpool if maximum or minimum size is
1340          * specified.  Any needed reservations (for minimum size) are taken
1341          * taken when the subpool is created.
1342          */
1343         if (ctx->max_hpages != -1 || ctx->min_hpages != -1) {
1344                 sbinfo->spool = hugepage_new_subpool(ctx->hstate,
1345                                                      ctx->max_hpages,
1346                                                      ctx->min_hpages);
1347                 if (!sbinfo->spool)
1348                         goto out_free;
1349         }
1350         sb->s_maxbytes = MAX_LFS_FILESIZE;
1351         sb->s_blocksize = huge_page_size(ctx->hstate);
1352         sb->s_blocksize_bits = huge_page_shift(ctx->hstate);
1353         sb->s_magic = HUGETLBFS_MAGIC;
1354         sb->s_op = &hugetlbfs_ops;
1355         sb->s_time_gran = 1;
1356
1357         /*
1358          * Due to the special and limited functionality of hugetlbfs, it does
1359          * not work well as a stacking filesystem.
1360          */
1361         sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH;
1362         sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx));
1363         if (!sb->s_root)
1364                 goto out_free;
1365         return 0;
1366 out_free:
1367         kfree(sbinfo->spool);
1368         kfree(sbinfo);
1369         return -ENOMEM;
1370 }
1371
1372 static int hugetlbfs_get_tree(struct fs_context *fc)
1373 {
1374         int err = hugetlbfs_validate(fc);
1375         if (err)
1376                 return err;
1377         return get_tree_nodev(fc, hugetlbfs_fill_super);
1378 }
1379
1380 static void hugetlbfs_fs_context_free(struct fs_context *fc)
1381 {
1382         kfree(fc->fs_private);
1383 }
1384
1385 static const struct fs_context_operations hugetlbfs_fs_context_ops = {
1386         .free           = hugetlbfs_fs_context_free,
1387         .parse_param    = hugetlbfs_parse_param,
1388         .get_tree       = hugetlbfs_get_tree,
1389 };
1390
1391 static int hugetlbfs_init_fs_context(struct fs_context *fc)
1392 {
1393         struct hugetlbfs_fs_context *ctx;
1394
1395         ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL);
1396         if (!ctx)
1397                 return -ENOMEM;
1398
1399         ctx->max_hpages = -1; /* No limit on size by default */
1400         ctx->nr_inodes  = -1; /* No limit on number of inodes by default */
1401         ctx->uid        = current_fsuid();
1402         ctx->gid        = current_fsgid();
1403         ctx->mode       = 0755;
1404         ctx->hstate     = &default_hstate;
1405         ctx->min_hpages = -1; /* No default minimum size */
1406         ctx->max_val_type = NO_SIZE;
1407         ctx->min_val_type = NO_SIZE;
1408         fc->fs_private = ctx;
1409         fc->ops = &hugetlbfs_fs_context_ops;
1410         return 0;
1411 }
1412
1413 static struct file_system_type hugetlbfs_fs_type = {
1414         .name                   = "hugetlbfs",
1415         .init_fs_context        = hugetlbfs_init_fs_context,
1416         .parameters             = hugetlb_fs_parameters,
1417         .kill_sb                = kill_litter_super,
1418 };
1419
1420 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1421
1422 static int can_do_hugetlb_shm(void)
1423 {
1424         kgid_t shm_group;
1425         shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1426         return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1427 }
1428
1429 static int get_hstate_idx(int page_size_log)
1430 {
1431         struct hstate *h = hstate_sizelog(page_size_log);
1432
1433         if (!h)
1434                 return -1;
1435         return hstate_index(h);
1436 }
1437
1438 /*
1439  * Note that size should be aligned to proper hugepage size in caller side,
1440  * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1441  */
1442 struct file *hugetlb_file_setup(const char *name, size_t size,
1443                                 vm_flags_t acctflag, struct user_struct **user,
1444                                 int creat_flags, int page_size_log)
1445 {
1446         struct inode *inode;
1447         struct vfsmount *mnt;
1448         int hstate_idx;
1449         struct file *file;
1450
1451         hstate_idx = get_hstate_idx(page_size_log);
1452         if (hstate_idx < 0)
1453                 return ERR_PTR(-ENODEV);
1454
1455         *user = NULL;
1456         mnt = hugetlbfs_vfsmount[hstate_idx];
1457         if (!mnt)
1458                 return ERR_PTR(-ENOENT);
1459
1460         if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1461                 *user = current_user();
1462                 if (user_shm_lock(size, *user)) {
1463                         task_lock(current);
1464                         pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is deprecated\n",
1465                                 current->comm, current->pid);
1466                         task_unlock(current);
1467                 } else {
1468                         *user = NULL;
1469                         return ERR_PTR(-EPERM);
1470                 }
1471         }
1472
1473         file = ERR_PTR(-ENOSPC);
1474         inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0);
1475         if (!inode)
1476                 goto out;
1477         if (creat_flags == HUGETLB_SHMFS_INODE)
1478                 inode->i_flags |= S_PRIVATE;
1479
1480         inode->i_size = size;
1481         clear_nlink(inode);
1482
1483         if (!hugetlb_reserve_pages(inode, 0,
1484                         size >> huge_page_shift(hstate_inode(inode)), NULL,
1485                         acctflag))
1486                 file = ERR_PTR(-ENOMEM);
1487         else
1488                 file = alloc_file_pseudo(inode, mnt, name, O_RDWR,
1489                                         &hugetlbfs_file_operations);
1490         if (!IS_ERR(file))
1491                 return file;
1492
1493         iput(inode);
1494 out:
1495         if (*user) {
1496                 user_shm_unlock(size, *user);
1497                 *user = NULL;
1498         }
1499         return file;
1500 }
1501
1502 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h)
1503 {
1504         struct fs_context *fc;
1505         struct vfsmount *mnt;
1506
1507         fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT);
1508         if (IS_ERR(fc)) {
1509                 mnt = ERR_CAST(fc);
1510         } else {
1511                 struct hugetlbfs_fs_context *ctx = fc->fs_private;
1512                 ctx->hstate = h;
1513                 mnt = fc_mount(fc);
1514                 put_fs_context(fc);
1515         }
1516         if (IS_ERR(mnt))
1517                 pr_err("Cannot mount internal hugetlbfs for page size %luK",
1518                        huge_page_size(h) >> 10);
1519         return mnt;
1520 }
1521
1522 static int __init init_hugetlbfs_fs(void)
1523 {
1524         struct vfsmount *mnt;
1525         struct hstate *h;
1526         int error;
1527         int i;
1528
1529         if (!hugepages_supported()) {
1530                 pr_info("disabling because there are no supported hugepage sizes\n");
1531                 return -ENOTSUPP;
1532         }
1533
1534         error = -ENOMEM;
1535         hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1536                                         sizeof(struct hugetlbfs_inode_info),
1537                                         0, SLAB_ACCOUNT, init_once);
1538         if (hugetlbfs_inode_cachep == NULL)
1539                 goto out;
1540
1541         error = register_filesystem(&hugetlbfs_fs_type);
1542         if (error)
1543                 goto out_free;
1544
1545         /* default hstate mount is required */
1546         mnt = mount_one_hugetlbfs(&default_hstate);
1547         if (IS_ERR(mnt)) {
1548                 error = PTR_ERR(mnt);
1549                 goto out_unreg;
1550         }
1551         hugetlbfs_vfsmount[default_hstate_idx] = mnt;
1552
1553         /* other hstates are optional */
1554         i = 0;
1555         for_each_hstate(h) {
1556                 if (i == default_hstate_idx) {
1557                         i++;
1558                         continue;
1559                 }
1560
1561                 mnt = mount_one_hugetlbfs(h);
1562                 if (IS_ERR(mnt))
1563                         hugetlbfs_vfsmount[i] = NULL;
1564                 else
1565                         hugetlbfs_vfsmount[i] = mnt;
1566                 i++;
1567         }
1568
1569         return 0;
1570
1571  out_unreg:
1572         (void)unregister_filesystem(&hugetlbfs_fs_type);
1573  out_free:
1574         kmem_cache_destroy(hugetlbfs_inode_cachep);
1575  out:
1576         return error;
1577 }
1578 fs_initcall(init_hugetlbfs_fs)