io_uring: use cond_resched() in io_ring_ctx_wait_and_kill()
[linux-2.6-microblaze.git] / fs / hugetlbfs / inode.c
1 /*
2  * hugetlbpage-backed filesystem.  Based on ramfs.
3  *
4  * Nadia Yvette Chambers, 2002
5  *
6  * Copyright (C) 2002 Linus Torvalds.
7  * License: GPL
8  */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/sched/signal.h>         /* remove ASAP */
15 #include <linux/falloc.h>
16 #include <linux/fs.h>
17 #include <linux/mount.h>
18 #include <linux/file.h>
19 #include <linux/kernel.h>
20 #include <linux/writeback.h>
21 #include <linux/pagemap.h>
22 #include <linux/highmem.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/capability.h>
26 #include <linux/ctype.h>
27 #include <linux/backing-dev.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagevec.h>
30 #include <linux/fs_parser.h>
31 #include <linux/mman.h>
32 #include <linux/slab.h>
33 #include <linux/dnotify.h>
34 #include <linux/statfs.h>
35 #include <linux/security.h>
36 #include <linux/magic.h>
37 #include <linux/migrate.h>
38 #include <linux/uio.h>
39
40 #include <linux/uaccess.h>
41
42 static const struct super_operations hugetlbfs_ops;
43 static const struct address_space_operations hugetlbfs_aops;
44 const struct file_operations hugetlbfs_file_operations;
45 static const struct inode_operations hugetlbfs_dir_inode_operations;
46 static const struct inode_operations hugetlbfs_inode_operations;
47
48 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
49
50 struct hugetlbfs_fs_context {
51         struct hstate           *hstate;
52         unsigned long long      max_size_opt;
53         unsigned long long      min_size_opt;
54         long                    max_hpages;
55         long                    nr_inodes;
56         long                    min_hpages;
57         enum hugetlbfs_size_type max_val_type;
58         enum hugetlbfs_size_type min_val_type;
59         kuid_t                  uid;
60         kgid_t                  gid;
61         umode_t                 mode;
62 };
63
64 int sysctl_hugetlb_shm_group;
65
66 enum hugetlb_param {
67         Opt_gid,
68         Opt_min_size,
69         Opt_mode,
70         Opt_nr_inodes,
71         Opt_pagesize,
72         Opt_size,
73         Opt_uid,
74 };
75
76 static const struct fs_parameter_spec hugetlb_fs_parameters[] = {
77         fsparam_u32   ("gid",           Opt_gid),
78         fsparam_string("min_size",      Opt_min_size),
79         fsparam_u32   ("mode",          Opt_mode),
80         fsparam_string("nr_inodes",     Opt_nr_inodes),
81         fsparam_string("pagesize",      Opt_pagesize),
82         fsparam_string("size",          Opt_size),
83         fsparam_u32   ("uid",           Opt_uid),
84         {}
85 };
86
87 #ifdef CONFIG_NUMA
88 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
89                                         struct inode *inode, pgoff_t index)
90 {
91         vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy,
92                                                         index);
93 }
94
95 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
96 {
97         mpol_cond_put(vma->vm_policy);
98 }
99 #else
100 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
101                                         struct inode *inode, pgoff_t index)
102 {
103 }
104
105 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
106 {
107 }
108 #endif
109
110 static void huge_pagevec_release(struct pagevec *pvec)
111 {
112         int i;
113
114         for (i = 0; i < pagevec_count(pvec); ++i)
115                 put_page(pvec->pages[i]);
116
117         pagevec_reinit(pvec);
118 }
119
120 /*
121  * Mask used when checking the page offset value passed in via system
122  * calls.  This value will be converted to a loff_t which is signed.
123  * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
124  * value.  The extra bit (- 1 in the shift value) is to take the sign
125  * bit into account.
126  */
127 #define PGOFF_LOFFT_MAX \
128         (((1UL << (PAGE_SHIFT + 1)) - 1) <<  (BITS_PER_LONG - (PAGE_SHIFT + 1)))
129
130 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
131 {
132         struct inode *inode = file_inode(file);
133         loff_t len, vma_len;
134         int ret;
135         struct hstate *h = hstate_file(file);
136
137         /*
138          * vma address alignment (but not the pgoff alignment) has
139          * already been checked by prepare_hugepage_range.  If you add
140          * any error returns here, do so after setting VM_HUGETLB, so
141          * is_vm_hugetlb_page tests below unmap_region go the right
142          * way when do_mmap_pgoff unwinds (may be important on powerpc
143          * and ia64).
144          */
145         vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND;
146         vma->vm_ops = &hugetlb_vm_ops;
147
148         /*
149          * page based offset in vm_pgoff could be sufficiently large to
150          * overflow a loff_t when converted to byte offset.  This can
151          * only happen on architectures where sizeof(loff_t) ==
152          * sizeof(unsigned long).  So, only check in those instances.
153          */
154         if (sizeof(unsigned long) == sizeof(loff_t)) {
155                 if (vma->vm_pgoff & PGOFF_LOFFT_MAX)
156                         return -EINVAL;
157         }
158
159         /* must be huge page aligned */
160         if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
161                 return -EINVAL;
162
163         vma_len = (loff_t)(vma->vm_end - vma->vm_start);
164         len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
165         /* check for overflow */
166         if (len < vma_len)
167                 return -EINVAL;
168
169         inode_lock(inode);
170         file_accessed(file);
171
172         ret = -ENOMEM;
173         if (hugetlb_reserve_pages(inode,
174                                 vma->vm_pgoff >> huge_page_order(h),
175                                 len >> huge_page_shift(h), vma,
176                                 vma->vm_flags))
177                 goto out;
178
179         ret = 0;
180         if (vma->vm_flags & VM_WRITE && inode->i_size < len)
181                 i_size_write(inode, len);
182 out:
183         inode_unlock(inode);
184
185         return ret;
186 }
187
188 /*
189  * Called under down_write(mmap_sem).
190  */
191
192 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
193 static unsigned long
194 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
195                 unsigned long len, unsigned long pgoff, unsigned long flags)
196 {
197         struct mm_struct *mm = current->mm;
198         struct vm_area_struct *vma;
199         struct hstate *h = hstate_file(file);
200         struct vm_unmapped_area_info info;
201
202         if (len & ~huge_page_mask(h))
203                 return -EINVAL;
204         if (len > TASK_SIZE)
205                 return -ENOMEM;
206
207         if (flags & MAP_FIXED) {
208                 if (prepare_hugepage_range(file, addr, len))
209                         return -EINVAL;
210                 return addr;
211         }
212
213         if (addr) {
214                 addr = ALIGN(addr, huge_page_size(h));
215                 vma = find_vma(mm, addr);
216                 if (TASK_SIZE - len >= addr &&
217                     (!vma || addr + len <= vm_start_gap(vma)))
218                         return addr;
219         }
220
221         info.flags = 0;
222         info.length = len;
223         info.low_limit = TASK_UNMAPPED_BASE;
224         info.high_limit = TASK_SIZE;
225         info.align_mask = PAGE_MASK & ~huge_page_mask(h);
226         info.align_offset = 0;
227         return vm_unmapped_area(&info);
228 }
229 #endif
230
231 static size_t
232 hugetlbfs_read_actor(struct page *page, unsigned long offset,
233                         struct iov_iter *to, unsigned long size)
234 {
235         size_t copied = 0;
236         int i, chunksize;
237
238         /* Find which 4k chunk and offset with in that chunk */
239         i = offset >> PAGE_SHIFT;
240         offset = offset & ~PAGE_MASK;
241
242         while (size) {
243                 size_t n;
244                 chunksize = PAGE_SIZE;
245                 if (offset)
246                         chunksize -= offset;
247                 if (chunksize > size)
248                         chunksize = size;
249                 n = copy_page_to_iter(&page[i], offset, chunksize, to);
250                 copied += n;
251                 if (n != chunksize)
252                         return copied;
253                 offset = 0;
254                 size -= chunksize;
255                 i++;
256         }
257         return copied;
258 }
259
260 /*
261  * Support for read() - Find the page attached to f_mapping and copy out the
262  * data. Its *very* similar to do_generic_mapping_read(), we can't use that
263  * since it has PAGE_SIZE assumptions.
264  */
265 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
266 {
267         struct file *file = iocb->ki_filp;
268         struct hstate *h = hstate_file(file);
269         struct address_space *mapping = file->f_mapping;
270         struct inode *inode = mapping->host;
271         unsigned long index = iocb->ki_pos >> huge_page_shift(h);
272         unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
273         unsigned long end_index;
274         loff_t isize;
275         ssize_t retval = 0;
276
277         while (iov_iter_count(to)) {
278                 struct page *page;
279                 size_t nr, copied;
280
281                 /* nr is the maximum number of bytes to copy from this page */
282                 nr = huge_page_size(h);
283                 isize = i_size_read(inode);
284                 if (!isize)
285                         break;
286                 end_index = (isize - 1) >> huge_page_shift(h);
287                 if (index > end_index)
288                         break;
289                 if (index == end_index) {
290                         nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
291                         if (nr <= offset)
292                                 break;
293                 }
294                 nr = nr - offset;
295
296                 /* Find the page */
297                 page = find_lock_page(mapping, index);
298                 if (unlikely(page == NULL)) {
299                         /*
300                          * We have a HOLE, zero out the user-buffer for the
301                          * length of the hole or request.
302                          */
303                         copied = iov_iter_zero(nr, to);
304                 } else {
305                         unlock_page(page);
306
307                         /*
308                          * We have the page, copy it to user space buffer.
309                          */
310                         copied = hugetlbfs_read_actor(page, offset, to, nr);
311                         put_page(page);
312                 }
313                 offset += copied;
314                 retval += copied;
315                 if (copied != nr && iov_iter_count(to)) {
316                         if (!retval)
317                                 retval = -EFAULT;
318                         break;
319                 }
320                 index += offset >> huge_page_shift(h);
321                 offset &= ~huge_page_mask(h);
322         }
323         iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
324         return retval;
325 }
326
327 static int hugetlbfs_write_begin(struct file *file,
328                         struct address_space *mapping,
329                         loff_t pos, unsigned len, unsigned flags,
330                         struct page **pagep, void **fsdata)
331 {
332         return -EINVAL;
333 }
334
335 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
336                         loff_t pos, unsigned len, unsigned copied,
337                         struct page *page, void *fsdata)
338 {
339         BUG();
340         return -EINVAL;
341 }
342
343 static void remove_huge_page(struct page *page)
344 {
345         ClearPageDirty(page);
346         ClearPageUptodate(page);
347         delete_from_page_cache(page);
348 }
349
350 static void
351 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end)
352 {
353         struct vm_area_struct *vma;
354
355         /*
356          * end == 0 indicates that the entire range after
357          * start should be unmapped.
358          */
359         vma_interval_tree_foreach(vma, root, start, end ? end : ULONG_MAX) {
360                 unsigned long v_offset;
361                 unsigned long v_end;
362
363                 /*
364                  * Can the expression below overflow on 32-bit arches?
365                  * No, because the interval tree returns us only those vmas
366                  * which overlap the truncated area starting at pgoff,
367                  * and no vma on a 32-bit arch can span beyond the 4GB.
368                  */
369                 if (vma->vm_pgoff < start)
370                         v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
371                 else
372                         v_offset = 0;
373
374                 if (!end)
375                         v_end = vma->vm_end;
376                 else {
377                         v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT)
378                                                         + vma->vm_start;
379                         if (v_end > vma->vm_end)
380                                 v_end = vma->vm_end;
381                 }
382
383                 unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end,
384                                                                         NULL);
385         }
386 }
387
388 /*
389  * remove_inode_hugepages handles two distinct cases: truncation and hole
390  * punch.  There are subtle differences in operation for each case.
391  *
392  * truncation is indicated by end of range being LLONG_MAX
393  *      In this case, we first scan the range and release found pages.
394  *      After releasing pages, hugetlb_unreserve_pages cleans up region/reserv
395  *      maps and global counts.  Page faults can not race with truncation
396  *      in this routine.  hugetlb_no_page() holds i_mmap_rwsem and prevents
397  *      page faults in the truncated range by checking i_size.  i_size is
398  *      modified while holding i_mmap_rwsem.
399  * hole punch is indicated if end is not LLONG_MAX
400  *      In the hole punch case we scan the range and release found pages.
401  *      Only when releasing a page is the associated region/reserv map
402  *      deleted.  The region/reserv map for ranges without associated
403  *      pages are not modified.  Page faults can race with hole punch.
404  *      This is indicated if we find a mapped page.
405  * Note: If the passed end of range value is beyond the end of file, but
406  * not LLONG_MAX this routine still performs a hole punch operation.
407  */
408 static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
409                                    loff_t lend)
410 {
411         struct hstate *h = hstate_inode(inode);
412         struct address_space *mapping = &inode->i_data;
413         const pgoff_t start = lstart >> huge_page_shift(h);
414         const pgoff_t end = lend >> huge_page_shift(h);
415         struct vm_area_struct pseudo_vma;
416         struct pagevec pvec;
417         pgoff_t next, index;
418         int i, freed = 0;
419         bool truncate_op = (lend == LLONG_MAX);
420
421         vma_init(&pseudo_vma, current->mm);
422         pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
423         pagevec_init(&pvec);
424         next = start;
425         while (next < end) {
426                 /*
427                  * When no more pages are found, we are done.
428                  */
429                 if (!pagevec_lookup_range(&pvec, mapping, &next, end - 1))
430                         break;
431
432                 for (i = 0; i < pagevec_count(&pvec); ++i) {
433                         struct page *page = pvec.pages[i];
434                         u32 hash;
435
436                         index = page->index;
437                         hash = hugetlb_fault_mutex_hash(mapping, index);
438                         if (!truncate_op) {
439                                 /*
440                                  * Only need to hold the fault mutex in the
441                                  * hole punch case.  This prevents races with
442                                  * page faults.  Races are not possible in the
443                                  * case of truncation.
444                                  */
445                                 mutex_lock(&hugetlb_fault_mutex_table[hash]);
446                         }
447
448                         /*
449                          * If page is mapped, it was faulted in after being
450                          * unmapped in caller.  Unmap (again) now after taking
451                          * the fault mutex.  The mutex will prevent faults
452                          * until we finish removing the page.
453                          *
454                          * This race can only happen in the hole punch case.
455                          * Getting here in a truncate operation is a bug.
456                          */
457                         if (unlikely(page_mapped(page))) {
458                                 BUG_ON(truncate_op);
459
460                                 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
461                                 i_mmap_lock_write(mapping);
462                                 mutex_lock(&hugetlb_fault_mutex_table[hash]);
463                                 hugetlb_vmdelete_list(&mapping->i_mmap,
464                                         index * pages_per_huge_page(h),
465                                         (index + 1) * pages_per_huge_page(h));
466                                 i_mmap_unlock_write(mapping);
467                         }
468
469                         lock_page(page);
470                         /*
471                          * We must free the huge page and remove from page
472                          * cache (remove_huge_page) BEFORE removing the
473                          * region/reserve map (hugetlb_unreserve_pages).  In
474                          * rare out of memory conditions, removal of the
475                          * region/reserve map could fail. Correspondingly,
476                          * the subpool and global reserve usage count can need
477                          * to be adjusted.
478                          */
479                         VM_BUG_ON(PagePrivate(page));
480                         remove_huge_page(page);
481                         freed++;
482                         if (!truncate_op) {
483                                 if (unlikely(hugetlb_unreserve_pages(inode,
484                                                         index, index + 1, 1)))
485                                         hugetlb_fix_reserve_counts(inode);
486                         }
487
488                         unlock_page(page);
489                         if (!truncate_op)
490                                 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
491                 }
492                 huge_pagevec_release(&pvec);
493                 cond_resched();
494         }
495
496         if (truncate_op)
497                 (void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed);
498 }
499
500 static void hugetlbfs_evict_inode(struct inode *inode)
501 {
502         struct resv_map *resv_map;
503
504         remove_inode_hugepages(inode, 0, LLONG_MAX);
505
506         /*
507          * Get the resv_map from the address space embedded in the inode.
508          * This is the address space which points to any resv_map allocated
509          * at inode creation time.  If this is a device special inode,
510          * i_mapping may not point to the original address space.
511          */
512         resv_map = (struct resv_map *)(&inode->i_data)->private_data;
513         /* Only regular and link inodes have associated reserve maps */
514         if (resv_map)
515                 resv_map_release(&resv_map->refs);
516         clear_inode(inode);
517 }
518
519 static int hugetlb_vmtruncate(struct inode *inode, loff_t offset)
520 {
521         pgoff_t pgoff;
522         struct address_space *mapping = inode->i_mapping;
523         struct hstate *h = hstate_inode(inode);
524
525         BUG_ON(offset & ~huge_page_mask(h));
526         pgoff = offset >> PAGE_SHIFT;
527
528         i_mmap_lock_write(mapping);
529         i_size_write(inode, offset);
530         if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
531                 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0);
532         i_mmap_unlock_write(mapping);
533         remove_inode_hugepages(inode, offset, LLONG_MAX);
534         return 0;
535 }
536
537 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
538 {
539         struct hstate *h = hstate_inode(inode);
540         loff_t hpage_size = huge_page_size(h);
541         loff_t hole_start, hole_end;
542
543         /*
544          * For hole punch round up the beginning offset of the hole and
545          * round down the end.
546          */
547         hole_start = round_up(offset, hpage_size);
548         hole_end = round_down(offset + len, hpage_size);
549
550         if (hole_end > hole_start) {
551                 struct address_space *mapping = inode->i_mapping;
552                 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
553
554                 inode_lock(inode);
555
556                 /* protected by i_mutex */
557                 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
558                         inode_unlock(inode);
559                         return -EPERM;
560                 }
561
562                 i_mmap_lock_write(mapping);
563                 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
564                         hugetlb_vmdelete_list(&mapping->i_mmap,
565                                                 hole_start >> PAGE_SHIFT,
566                                                 hole_end  >> PAGE_SHIFT);
567                 i_mmap_unlock_write(mapping);
568                 remove_inode_hugepages(inode, hole_start, hole_end);
569                 inode_unlock(inode);
570         }
571
572         return 0;
573 }
574
575 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
576                                 loff_t len)
577 {
578         struct inode *inode = file_inode(file);
579         struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
580         struct address_space *mapping = inode->i_mapping;
581         struct hstate *h = hstate_inode(inode);
582         struct vm_area_struct pseudo_vma;
583         struct mm_struct *mm = current->mm;
584         loff_t hpage_size = huge_page_size(h);
585         unsigned long hpage_shift = huge_page_shift(h);
586         pgoff_t start, index, end;
587         int error;
588         u32 hash;
589
590         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
591                 return -EOPNOTSUPP;
592
593         if (mode & FALLOC_FL_PUNCH_HOLE)
594                 return hugetlbfs_punch_hole(inode, offset, len);
595
596         /*
597          * Default preallocate case.
598          * For this range, start is rounded down and end is rounded up
599          * as well as being converted to page offsets.
600          */
601         start = offset >> hpage_shift;
602         end = (offset + len + hpage_size - 1) >> hpage_shift;
603
604         inode_lock(inode);
605
606         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
607         error = inode_newsize_ok(inode, offset + len);
608         if (error)
609                 goto out;
610
611         if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
612                 error = -EPERM;
613                 goto out;
614         }
615
616         /*
617          * Initialize a pseudo vma as this is required by the huge page
618          * allocation routines.  If NUMA is configured, use page index
619          * as input to create an allocation policy.
620          */
621         vma_init(&pseudo_vma, mm);
622         pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
623         pseudo_vma.vm_file = file;
624
625         for (index = start; index < end; index++) {
626                 /*
627                  * This is supposed to be the vaddr where the page is being
628                  * faulted in, but we have no vaddr here.
629                  */
630                 struct page *page;
631                 unsigned long addr;
632                 int avoid_reserve = 0;
633
634                 cond_resched();
635
636                 /*
637                  * fallocate(2) manpage permits EINTR; we may have been
638                  * interrupted because we are using up too much memory.
639                  */
640                 if (signal_pending(current)) {
641                         error = -EINTR;
642                         break;
643                 }
644
645                 /* Set numa allocation policy based on index */
646                 hugetlb_set_vma_policy(&pseudo_vma, inode, index);
647
648                 /* addr is the offset within the file (zero based) */
649                 addr = index * hpage_size;
650
651                 /*
652                  * fault mutex taken here, protects against fault path
653                  * and hole punch.  inode_lock previously taken protects
654                  * against truncation.
655                  */
656                 hash = hugetlb_fault_mutex_hash(mapping, index);
657                 mutex_lock(&hugetlb_fault_mutex_table[hash]);
658
659                 /* See if already present in mapping to avoid alloc/free */
660                 page = find_get_page(mapping, index);
661                 if (page) {
662                         put_page(page);
663                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
664                         hugetlb_drop_vma_policy(&pseudo_vma);
665                         continue;
666                 }
667
668                 /* Allocate page and add to page cache */
669                 page = alloc_huge_page(&pseudo_vma, addr, avoid_reserve);
670                 hugetlb_drop_vma_policy(&pseudo_vma);
671                 if (IS_ERR(page)) {
672                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
673                         error = PTR_ERR(page);
674                         goto out;
675                 }
676                 clear_huge_page(page, addr, pages_per_huge_page(h));
677                 __SetPageUptodate(page);
678                 error = huge_add_to_page_cache(page, mapping, index);
679                 if (unlikely(error)) {
680                         put_page(page);
681                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
682                         goto out;
683                 }
684
685                 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
686
687                 /*
688                  * unlock_page because locked by add_to_page_cache()
689                  * page_put due to reference from alloc_huge_page()
690                  */
691                 unlock_page(page);
692                 put_page(page);
693         }
694
695         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
696                 i_size_write(inode, offset + len);
697         inode->i_ctime = current_time(inode);
698 out:
699         inode_unlock(inode);
700         return error;
701 }
702
703 static int hugetlbfs_setattr(struct dentry *dentry, struct iattr *attr)
704 {
705         struct inode *inode = d_inode(dentry);
706         struct hstate *h = hstate_inode(inode);
707         int error;
708         unsigned int ia_valid = attr->ia_valid;
709         struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
710
711         BUG_ON(!inode);
712
713         error = setattr_prepare(dentry, attr);
714         if (error)
715                 return error;
716
717         if (ia_valid & ATTR_SIZE) {
718                 loff_t oldsize = inode->i_size;
719                 loff_t newsize = attr->ia_size;
720
721                 if (newsize & ~huge_page_mask(h))
722                         return -EINVAL;
723                 /* protected by i_mutex */
724                 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
725                     (newsize > oldsize && (info->seals & F_SEAL_GROW)))
726                         return -EPERM;
727                 error = hugetlb_vmtruncate(inode, newsize);
728                 if (error)
729                         return error;
730         }
731
732         setattr_copy(inode, attr);
733         mark_inode_dirty(inode);
734         return 0;
735 }
736
737 static struct inode *hugetlbfs_get_root(struct super_block *sb,
738                                         struct hugetlbfs_fs_context *ctx)
739 {
740         struct inode *inode;
741
742         inode = new_inode(sb);
743         if (inode) {
744                 inode->i_ino = get_next_ino();
745                 inode->i_mode = S_IFDIR | ctx->mode;
746                 inode->i_uid = ctx->uid;
747                 inode->i_gid = ctx->gid;
748                 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
749                 inode->i_op = &hugetlbfs_dir_inode_operations;
750                 inode->i_fop = &simple_dir_operations;
751                 /* directory inodes start off with i_nlink == 2 (for "." entry) */
752                 inc_nlink(inode);
753                 lockdep_annotate_inode_mutex_key(inode);
754         }
755         return inode;
756 }
757
758 /*
759  * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
760  * be taken from reclaim -- unlike regular filesystems. This needs an
761  * annotation because huge_pmd_share() does an allocation under hugetlb's
762  * i_mmap_rwsem.
763  */
764 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
765
766 static struct inode *hugetlbfs_get_inode(struct super_block *sb,
767                                         struct inode *dir,
768                                         umode_t mode, dev_t dev)
769 {
770         struct inode *inode;
771         struct resv_map *resv_map = NULL;
772
773         /*
774          * Reserve maps are only needed for inodes that can have associated
775          * page allocations.
776          */
777         if (S_ISREG(mode) || S_ISLNK(mode)) {
778                 resv_map = resv_map_alloc();
779                 if (!resv_map)
780                         return NULL;
781         }
782
783         inode = new_inode(sb);
784         if (inode) {
785                 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
786
787                 inode->i_ino = get_next_ino();
788                 inode_init_owner(inode, dir, mode);
789                 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
790                                 &hugetlbfs_i_mmap_rwsem_key);
791                 inode->i_mapping->a_ops = &hugetlbfs_aops;
792                 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
793                 inode->i_mapping->private_data = resv_map;
794                 info->seals = F_SEAL_SEAL;
795                 switch (mode & S_IFMT) {
796                 default:
797                         init_special_inode(inode, mode, dev);
798                         break;
799                 case S_IFREG:
800                         inode->i_op = &hugetlbfs_inode_operations;
801                         inode->i_fop = &hugetlbfs_file_operations;
802                         break;
803                 case S_IFDIR:
804                         inode->i_op = &hugetlbfs_dir_inode_operations;
805                         inode->i_fop = &simple_dir_operations;
806
807                         /* directory inodes start off with i_nlink == 2 (for "." entry) */
808                         inc_nlink(inode);
809                         break;
810                 case S_IFLNK:
811                         inode->i_op = &page_symlink_inode_operations;
812                         inode_nohighmem(inode);
813                         break;
814                 }
815                 lockdep_annotate_inode_mutex_key(inode);
816         } else {
817                 if (resv_map)
818                         kref_put(&resv_map->refs, resv_map_release);
819         }
820
821         return inode;
822 }
823
824 /*
825  * File creation. Allocate an inode, and we're done..
826  */
827 static int do_hugetlbfs_mknod(struct inode *dir,
828                         struct dentry *dentry,
829                         umode_t mode,
830                         dev_t dev,
831                         bool tmpfile)
832 {
833         struct inode *inode;
834         int error = -ENOSPC;
835
836         inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev);
837         if (inode) {
838                 dir->i_ctime = dir->i_mtime = current_time(dir);
839                 if (tmpfile) {
840                         d_tmpfile(dentry, inode);
841                 } else {
842                         d_instantiate(dentry, inode);
843                         dget(dentry);/* Extra count - pin the dentry in core */
844                 }
845                 error = 0;
846         }
847         return error;
848 }
849
850 static int hugetlbfs_mknod(struct inode *dir,
851                         struct dentry *dentry, umode_t mode, dev_t dev)
852 {
853         return do_hugetlbfs_mknod(dir, dentry, mode, dev, false);
854 }
855
856 static int hugetlbfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
857 {
858         int retval = hugetlbfs_mknod(dir, dentry, mode | S_IFDIR, 0);
859         if (!retval)
860                 inc_nlink(dir);
861         return retval;
862 }
863
864 static int hugetlbfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, bool excl)
865 {
866         return hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0);
867 }
868
869 static int hugetlbfs_tmpfile(struct inode *dir,
870                         struct dentry *dentry, umode_t mode)
871 {
872         return do_hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0, true);
873 }
874
875 static int hugetlbfs_symlink(struct inode *dir,
876                         struct dentry *dentry, const char *symname)
877 {
878         struct inode *inode;
879         int error = -ENOSPC;
880
881         inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0);
882         if (inode) {
883                 int l = strlen(symname)+1;
884                 error = page_symlink(inode, symname, l);
885                 if (!error) {
886                         d_instantiate(dentry, inode);
887                         dget(dentry);
888                 } else
889                         iput(inode);
890         }
891         dir->i_ctime = dir->i_mtime = current_time(dir);
892
893         return error;
894 }
895
896 /*
897  * mark the head page dirty
898  */
899 static int hugetlbfs_set_page_dirty(struct page *page)
900 {
901         struct page *head = compound_head(page);
902
903         SetPageDirty(head);
904         return 0;
905 }
906
907 static int hugetlbfs_migrate_page(struct address_space *mapping,
908                                 struct page *newpage, struct page *page,
909                                 enum migrate_mode mode)
910 {
911         int rc;
912
913         rc = migrate_huge_page_move_mapping(mapping, newpage, page);
914         if (rc != MIGRATEPAGE_SUCCESS)
915                 return rc;
916
917         /*
918          * page_private is subpool pointer in hugetlb pages.  Transfer to
919          * new page.  PagePrivate is not associated with page_private for
920          * hugetlb pages and can not be set here as only page_huge_active
921          * pages can be migrated.
922          */
923         if (page_private(page)) {
924                 set_page_private(newpage, page_private(page));
925                 set_page_private(page, 0);
926         }
927
928         if (mode != MIGRATE_SYNC_NO_COPY)
929                 migrate_page_copy(newpage, page);
930         else
931                 migrate_page_states(newpage, page);
932
933         return MIGRATEPAGE_SUCCESS;
934 }
935
936 static int hugetlbfs_error_remove_page(struct address_space *mapping,
937                                 struct page *page)
938 {
939         struct inode *inode = mapping->host;
940         pgoff_t index = page->index;
941
942         remove_huge_page(page);
943         if (unlikely(hugetlb_unreserve_pages(inode, index, index + 1, 1)))
944                 hugetlb_fix_reserve_counts(inode);
945
946         return 0;
947 }
948
949 /*
950  * Display the mount options in /proc/mounts.
951  */
952 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
953 {
954         struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
955         struct hugepage_subpool *spool = sbinfo->spool;
956         unsigned long hpage_size = huge_page_size(sbinfo->hstate);
957         unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
958         char mod;
959
960         if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
961                 seq_printf(m, ",uid=%u",
962                            from_kuid_munged(&init_user_ns, sbinfo->uid));
963         if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
964                 seq_printf(m, ",gid=%u",
965                            from_kgid_munged(&init_user_ns, sbinfo->gid));
966         if (sbinfo->mode != 0755)
967                 seq_printf(m, ",mode=%o", sbinfo->mode);
968         if (sbinfo->max_inodes != -1)
969                 seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
970
971         hpage_size /= 1024;
972         mod = 'K';
973         if (hpage_size >= 1024) {
974                 hpage_size /= 1024;
975                 mod = 'M';
976         }
977         seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
978         if (spool) {
979                 if (spool->max_hpages != -1)
980                         seq_printf(m, ",size=%llu",
981                                    (unsigned long long)spool->max_hpages << hpage_shift);
982                 if (spool->min_hpages != -1)
983                         seq_printf(m, ",min_size=%llu",
984                                    (unsigned long long)spool->min_hpages << hpage_shift);
985         }
986         return 0;
987 }
988
989 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
990 {
991         struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
992         struct hstate *h = hstate_inode(d_inode(dentry));
993
994         buf->f_type = HUGETLBFS_MAGIC;
995         buf->f_bsize = huge_page_size(h);
996         if (sbinfo) {
997                 spin_lock(&sbinfo->stat_lock);
998                 /* If no limits set, just report 0 for max/free/used
999                  * blocks, like simple_statfs() */
1000                 if (sbinfo->spool) {
1001                         long free_pages;
1002
1003                         spin_lock(&sbinfo->spool->lock);
1004                         buf->f_blocks = sbinfo->spool->max_hpages;
1005                         free_pages = sbinfo->spool->max_hpages
1006                                 - sbinfo->spool->used_hpages;
1007                         buf->f_bavail = buf->f_bfree = free_pages;
1008                         spin_unlock(&sbinfo->spool->lock);
1009                         buf->f_files = sbinfo->max_inodes;
1010                         buf->f_ffree = sbinfo->free_inodes;
1011                 }
1012                 spin_unlock(&sbinfo->stat_lock);
1013         }
1014         buf->f_namelen = NAME_MAX;
1015         return 0;
1016 }
1017
1018 static void hugetlbfs_put_super(struct super_block *sb)
1019 {
1020         struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
1021
1022         if (sbi) {
1023                 sb->s_fs_info = NULL;
1024
1025                 if (sbi->spool)
1026                         hugepage_put_subpool(sbi->spool);
1027
1028                 kfree(sbi);
1029         }
1030 }
1031
1032 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1033 {
1034         if (sbinfo->free_inodes >= 0) {
1035                 spin_lock(&sbinfo->stat_lock);
1036                 if (unlikely(!sbinfo->free_inodes)) {
1037                         spin_unlock(&sbinfo->stat_lock);
1038                         return 0;
1039                 }
1040                 sbinfo->free_inodes--;
1041                 spin_unlock(&sbinfo->stat_lock);
1042         }
1043
1044         return 1;
1045 }
1046
1047 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1048 {
1049         if (sbinfo->free_inodes >= 0) {
1050                 spin_lock(&sbinfo->stat_lock);
1051                 sbinfo->free_inodes++;
1052                 spin_unlock(&sbinfo->stat_lock);
1053         }
1054 }
1055
1056
1057 static struct kmem_cache *hugetlbfs_inode_cachep;
1058
1059 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
1060 {
1061         struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
1062         struct hugetlbfs_inode_info *p;
1063
1064         if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
1065                 return NULL;
1066         p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL);
1067         if (unlikely(!p)) {
1068                 hugetlbfs_inc_free_inodes(sbinfo);
1069                 return NULL;
1070         }
1071
1072         /*
1073          * Any time after allocation, hugetlbfs_destroy_inode can be called
1074          * for the inode.  mpol_free_shared_policy is unconditionally called
1075          * as part of hugetlbfs_destroy_inode.  So, initialize policy here
1076          * in case of a quick call to destroy.
1077          *
1078          * Note that the policy is initialized even if we are creating a
1079          * private inode.  This simplifies hugetlbfs_destroy_inode.
1080          */
1081         mpol_shared_policy_init(&p->policy, NULL);
1082
1083         return &p->vfs_inode;
1084 }
1085
1086 static void hugetlbfs_free_inode(struct inode *inode)
1087 {
1088         kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
1089 }
1090
1091 static void hugetlbfs_destroy_inode(struct inode *inode)
1092 {
1093         hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
1094         mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
1095 }
1096
1097 static const struct address_space_operations hugetlbfs_aops = {
1098         .write_begin    = hugetlbfs_write_begin,
1099         .write_end      = hugetlbfs_write_end,
1100         .set_page_dirty = hugetlbfs_set_page_dirty,
1101         .migratepage    = hugetlbfs_migrate_page,
1102         .error_remove_page      = hugetlbfs_error_remove_page,
1103 };
1104
1105
1106 static void init_once(void *foo)
1107 {
1108         struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo;
1109
1110         inode_init_once(&ei->vfs_inode);
1111 }
1112
1113 const struct file_operations hugetlbfs_file_operations = {
1114         .read_iter              = hugetlbfs_read_iter,
1115         .mmap                   = hugetlbfs_file_mmap,
1116         .fsync                  = noop_fsync,
1117         .get_unmapped_area      = hugetlb_get_unmapped_area,
1118         .llseek                 = default_llseek,
1119         .fallocate              = hugetlbfs_fallocate,
1120 };
1121
1122 static const struct inode_operations hugetlbfs_dir_inode_operations = {
1123         .create         = hugetlbfs_create,
1124         .lookup         = simple_lookup,
1125         .link           = simple_link,
1126         .unlink         = simple_unlink,
1127         .symlink        = hugetlbfs_symlink,
1128         .mkdir          = hugetlbfs_mkdir,
1129         .rmdir          = simple_rmdir,
1130         .mknod          = hugetlbfs_mknod,
1131         .rename         = simple_rename,
1132         .setattr        = hugetlbfs_setattr,
1133         .tmpfile        = hugetlbfs_tmpfile,
1134 };
1135
1136 static const struct inode_operations hugetlbfs_inode_operations = {
1137         .setattr        = hugetlbfs_setattr,
1138 };
1139
1140 static const struct super_operations hugetlbfs_ops = {
1141         .alloc_inode    = hugetlbfs_alloc_inode,
1142         .free_inode     = hugetlbfs_free_inode,
1143         .destroy_inode  = hugetlbfs_destroy_inode,
1144         .evict_inode    = hugetlbfs_evict_inode,
1145         .statfs         = hugetlbfs_statfs,
1146         .put_super      = hugetlbfs_put_super,
1147         .show_options   = hugetlbfs_show_options,
1148 };
1149
1150 /*
1151  * Convert size option passed from command line to number of huge pages
1152  * in the pool specified by hstate.  Size option could be in bytes
1153  * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1154  */
1155 static long
1156 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1157                          enum hugetlbfs_size_type val_type)
1158 {
1159         if (val_type == NO_SIZE)
1160                 return -1;
1161
1162         if (val_type == SIZE_PERCENT) {
1163                 size_opt <<= huge_page_shift(h);
1164                 size_opt *= h->max_huge_pages;
1165                 do_div(size_opt, 100);
1166         }
1167
1168         size_opt >>= huge_page_shift(h);
1169         return size_opt;
1170 }
1171
1172 /*
1173  * Parse one mount parameter.
1174  */
1175 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1176 {
1177         struct hugetlbfs_fs_context *ctx = fc->fs_private;
1178         struct fs_parse_result result;
1179         char *rest;
1180         unsigned long ps;
1181         int opt;
1182
1183         opt = fs_parse(fc, hugetlb_fs_parameters, param, &result);
1184         if (opt < 0)
1185                 return opt;
1186
1187         switch (opt) {
1188         case Opt_uid:
1189                 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
1190                 if (!uid_valid(ctx->uid))
1191                         goto bad_val;
1192                 return 0;
1193
1194         case Opt_gid:
1195                 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
1196                 if (!gid_valid(ctx->gid))
1197                         goto bad_val;
1198                 return 0;
1199
1200         case Opt_mode:
1201                 ctx->mode = result.uint_32 & 01777U;
1202                 return 0;
1203
1204         case Opt_size:
1205                 /* memparse() will accept a K/M/G without a digit */
1206                 if (!isdigit(param->string[0]))
1207                         goto bad_val;
1208                 ctx->max_size_opt = memparse(param->string, &rest);
1209                 ctx->max_val_type = SIZE_STD;
1210                 if (*rest == '%')
1211                         ctx->max_val_type = SIZE_PERCENT;
1212                 return 0;
1213
1214         case Opt_nr_inodes:
1215                 /* memparse() will accept a K/M/G without a digit */
1216                 if (!isdigit(param->string[0]))
1217                         goto bad_val;
1218                 ctx->nr_inodes = memparse(param->string, &rest);
1219                 return 0;
1220
1221         case Opt_pagesize:
1222                 ps = memparse(param->string, &rest);
1223                 ctx->hstate = size_to_hstate(ps);
1224                 if (!ctx->hstate) {
1225                         pr_err("Unsupported page size %lu MB\n", ps >> 20);
1226                         return -EINVAL;
1227                 }
1228                 return 0;
1229
1230         case Opt_min_size:
1231                 /* memparse() will accept a K/M/G without a digit */
1232                 if (!isdigit(param->string[0]))
1233                         goto bad_val;
1234                 ctx->min_size_opt = memparse(param->string, &rest);
1235                 ctx->min_val_type = SIZE_STD;
1236                 if (*rest == '%')
1237                         ctx->min_val_type = SIZE_PERCENT;
1238                 return 0;
1239
1240         default:
1241                 return -EINVAL;
1242         }
1243
1244 bad_val:
1245         return invalfc(fc, "Bad value '%s' for mount option '%s'\n",
1246                       param->string, param->key);
1247 }
1248
1249 /*
1250  * Validate the parsed options.
1251  */
1252 static int hugetlbfs_validate(struct fs_context *fc)
1253 {
1254         struct hugetlbfs_fs_context *ctx = fc->fs_private;
1255
1256         /*
1257          * Use huge page pool size (in hstate) to convert the size
1258          * options to number of huge pages.  If NO_SIZE, -1 is returned.
1259          */
1260         ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1261                                                    ctx->max_size_opt,
1262                                                    ctx->max_val_type);
1263         ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1264                                                    ctx->min_size_opt,
1265                                                    ctx->min_val_type);
1266
1267         /*
1268          * If max_size was specified, then min_size must be smaller
1269          */
1270         if (ctx->max_val_type > NO_SIZE &&
1271             ctx->min_hpages > ctx->max_hpages) {
1272                 pr_err("Minimum size can not be greater than maximum size\n");
1273                 return -EINVAL;
1274         }
1275
1276         return 0;
1277 }
1278
1279 static int
1280 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc)
1281 {
1282         struct hugetlbfs_fs_context *ctx = fc->fs_private;
1283         struct hugetlbfs_sb_info *sbinfo;
1284
1285         sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1286         if (!sbinfo)
1287                 return -ENOMEM;
1288         sb->s_fs_info = sbinfo;
1289         spin_lock_init(&sbinfo->stat_lock);
1290         sbinfo->hstate          = ctx->hstate;
1291         sbinfo->max_inodes      = ctx->nr_inodes;
1292         sbinfo->free_inodes     = ctx->nr_inodes;
1293         sbinfo->spool           = NULL;
1294         sbinfo->uid             = ctx->uid;
1295         sbinfo->gid             = ctx->gid;
1296         sbinfo->mode            = ctx->mode;
1297
1298         /*
1299          * Allocate and initialize subpool if maximum or minimum size is
1300          * specified.  Any needed reservations (for minimim size) are taken
1301          * taken when the subpool is created.
1302          */
1303         if (ctx->max_hpages != -1 || ctx->min_hpages != -1) {
1304                 sbinfo->spool = hugepage_new_subpool(ctx->hstate,
1305                                                      ctx->max_hpages,
1306                                                      ctx->min_hpages);
1307                 if (!sbinfo->spool)
1308                         goto out_free;
1309         }
1310         sb->s_maxbytes = MAX_LFS_FILESIZE;
1311         sb->s_blocksize = huge_page_size(ctx->hstate);
1312         sb->s_blocksize_bits = huge_page_shift(ctx->hstate);
1313         sb->s_magic = HUGETLBFS_MAGIC;
1314         sb->s_op = &hugetlbfs_ops;
1315         sb->s_time_gran = 1;
1316         sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx));
1317         if (!sb->s_root)
1318                 goto out_free;
1319         return 0;
1320 out_free:
1321         kfree(sbinfo->spool);
1322         kfree(sbinfo);
1323         return -ENOMEM;
1324 }
1325
1326 static int hugetlbfs_get_tree(struct fs_context *fc)
1327 {
1328         int err = hugetlbfs_validate(fc);
1329         if (err)
1330                 return err;
1331         return get_tree_nodev(fc, hugetlbfs_fill_super);
1332 }
1333
1334 static void hugetlbfs_fs_context_free(struct fs_context *fc)
1335 {
1336         kfree(fc->fs_private);
1337 }
1338
1339 static const struct fs_context_operations hugetlbfs_fs_context_ops = {
1340         .free           = hugetlbfs_fs_context_free,
1341         .parse_param    = hugetlbfs_parse_param,
1342         .get_tree       = hugetlbfs_get_tree,
1343 };
1344
1345 static int hugetlbfs_init_fs_context(struct fs_context *fc)
1346 {
1347         struct hugetlbfs_fs_context *ctx;
1348
1349         ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL);
1350         if (!ctx)
1351                 return -ENOMEM;
1352
1353         ctx->max_hpages = -1; /* No limit on size by default */
1354         ctx->nr_inodes  = -1; /* No limit on number of inodes by default */
1355         ctx->uid        = current_fsuid();
1356         ctx->gid        = current_fsgid();
1357         ctx->mode       = 0755;
1358         ctx->hstate     = &default_hstate;
1359         ctx->min_hpages = -1; /* No default minimum size */
1360         ctx->max_val_type = NO_SIZE;
1361         ctx->min_val_type = NO_SIZE;
1362         fc->fs_private = ctx;
1363         fc->ops = &hugetlbfs_fs_context_ops;
1364         return 0;
1365 }
1366
1367 static struct file_system_type hugetlbfs_fs_type = {
1368         .name                   = "hugetlbfs",
1369         .init_fs_context        = hugetlbfs_init_fs_context,
1370         .parameters             = hugetlb_fs_parameters,
1371         .kill_sb                = kill_litter_super,
1372 };
1373
1374 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1375
1376 static int can_do_hugetlb_shm(void)
1377 {
1378         kgid_t shm_group;
1379         shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1380         return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1381 }
1382
1383 static int get_hstate_idx(int page_size_log)
1384 {
1385         struct hstate *h = hstate_sizelog(page_size_log);
1386
1387         if (!h)
1388                 return -1;
1389         return h - hstates;
1390 }
1391
1392 /*
1393  * Note that size should be aligned to proper hugepage size in caller side,
1394  * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1395  */
1396 struct file *hugetlb_file_setup(const char *name, size_t size,
1397                                 vm_flags_t acctflag, struct user_struct **user,
1398                                 int creat_flags, int page_size_log)
1399 {
1400         struct inode *inode;
1401         struct vfsmount *mnt;
1402         int hstate_idx;
1403         struct file *file;
1404
1405         hstate_idx = get_hstate_idx(page_size_log);
1406         if (hstate_idx < 0)
1407                 return ERR_PTR(-ENODEV);
1408
1409         *user = NULL;
1410         mnt = hugetlbfs_vfsmount[hstate_idx];
1411         if (!mnt)
1412                 return ERR_PTR(-ENOENT);
1413
1414         if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1415                 *user = current_user();
1416                 if (user_shm_lock(size, *user)) {
1417                         task_lock(current);
1418                         pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is deprecated\n",
1419                                 current->comm, current->pid);
1420                         task_unlock(current);
1421                 } else {
1422                         *user = NULL;
1423                         return ERR_PTR(-EPERM);
1424                 }
1425         }
1426
1427         file = ERR_PTR(-ENOSPC);
1428         inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0);
1429         if (!inode)
1430                 goto out;
1431         if (creat_flags == HUGETLB_SHMFS_INODE)
1432                 inode->i_flags |= S_PRIVATE;
1433
1434         inode->i_size = size;
1435         clear_nlink(inode);
1436
1437         if (hugetlb_reserve_pages(inode, 0,
1438                         size >> huge_page_shift(hstate_inode(inode)), NULL,
1439                         acctflag))
1440                 file = ERR_PTR(-ENOMEM);
1441         else
1442                 file = alloc_file_pseudo(inode, mnt, name, O_RDWR,
1443                                         &hugetlbfs_file_operations);
1444         if (!IS_ERR(file))
1445                 return file;
1446
1447         iput(inode);
1448 out:
1449         if (*user) {
1450                 user_shm_unlock(size, *user);
1451                 *user = NULL;
1452         }
1453         return file;
1454 }
1455
1456 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h)
1457 {
1458         struct fs_context *fc;
1459         struct vfsmount *mnt;
1460
1461         fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT);
1462         if (IS_ERR(fc)) {
1463                 mnt = ERR_CAST(fc);
1464         } else {
1465                 struct hugetlbfs_fs_context *ctx = fc->fs_private;
1466                 ctx->hstate = h;
1467                 mnt = fc_mount(fc);
1468                 put_fs_context(fc);
1469         }
1470         if (IS_ERR(mnt))
1471                 pr_err("Cannot mount internal hugetlbfs for page size %uK",
1472                        1U << (h->order + PAGE_SHIFT - 10));
1473         return mnt;
1474 }
1475
1476 static int __init init_hugetlbfs_fs(void)
1477 {
1478         struct vfsmount *mnt;
1479         struct hstate *h;
1480         int error;
1481         int i;
1482
1483         if (!hugepages_supported()) {
1484                 pr_info("disabling because there are no supported hugepage sizes\n");
1485                 return -ENOTSUPP;
1486         }
1487
1488         error = -ENOMEM;
1489         hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1490                                         sizeof(struct hugetlbfs_inode_info),
1491                                         0, SLAB_ACCOUNT, init_once);
1492         if (hugetlbfs_inode_cachep == NULL)
1493                 goto out;
1494
1495         error = register_filesystem(&hugetlbfs_fs_type);
1496         if (error)
1497                 goto out_free;
1498
1499         /* default hstate mount is required */
1500         mnt = mount_one_hugetlbfs(&hstates[default_hstate_idx]);
1501         if (IS_ERR(mnt)) {
1502                 error = PTR_ERR(mnt);
1503                 goto out_unreg;
1504         }
1505         hugetlbfs_vfsmount[default_hstate_idx] = mnt;
1506
1507         /* other hstates are optional */
1508         i = 0;
1509         for_each_hstate(h) {
1510                 if (i == default_hstate_idx) {
1511                         i++;
1512                         continue;
1513                 }
1514
1515                 mnt = mount_one_hugetlbfs(h);
1516                 if (IS_ERR(mnt))
1517                         hugetlbfs_vfsmount[i] = NULL;
1518                 else
1519                         hugetlbfs_vfsmount[i] = mnt;
1520                 i++;
1521         }
1522
1523         return 0;
1524
1525  out_unreg:
1526         (void)unregister_filesystem(&hugetlbfs_fs_type);
1527  out_free:
1528         kmem_cache_destroy(hugetlbfs_inode_cachep);
1529  out:
1530         return error;
1531 }
1532 fs_initcall(init_hugetlbfs_fs)