394da2ab08adb325287ed380e929297647500546
[linux-2.6-microblaze.git] / fs / hugetlbfs / inode.c
1 /*
2  * hugetlbpage-backed filesystem.  Based on ramfs.
3  *
4  * Nadia Yvette Chambers, 2002
5  *
6  * Copyright (C) 2002 Linus Torvalds.
7  * License: GPL
8  */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/sched/signal.h>         /* remove ASAP */
15 #include <linux/falloc.h>
16 #include <linux/fs.h>
17 #include <linux/mount.h>
18 #include <linux/file.h>
19 #include <linux/kernel.h>
20 #include <linux/writeback.h>
21 #include <linux/pagemap.h>
22 #include <linux/highmem.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/capability.h>
26 #include <linux/ctype.h>
27 #include <linux/backing-dev.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagevec.h>
30 #include <linux/fs_parser.h>
31 #include <linux/mman.h>
32 #include <linux/slab.h>
33 #include <linux/dnotify.h>
34 #include <linux/statfs.h>
35 #include <linux/security.h>
36 #include <linux/magic.h>
37 #include <linux/migrate.h>
38 #include <linux/uio.h>
39
40 #include <linux/uaccess.h>
41 #include <linux/sched/mm.h>
42
43 static const struct super_operations hugetlbfs_ops;
44 static const struct address_space_operations hugetlbfs_aops;
45 const struct file_operations hugetlbfs_file_operations;
46 static const struct inode_operations hugetlbfs_dir_inode_operations;
47 static const struct inode_operations hugetlbfs_inode_operations;
48
49 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
50
51 struct hugetlbfs_fs_context {
52         struct hstate           *hstate;
53         unsigned long long      max_size_opt;
54         unsigned long long      min_size_opt;
55         long                    max_hpages;
56         long                    nr_inodes;
57         long                    min_hpages;
58         enum hugetlbfs_size_type max_val_type;
59         enum hugetlbfs_size_type min_val_type;
60         kuid_t                  uid;
61         kgid_t                  gid;
62         umode_t                 mode;
63 };
64
65 int sysctl_hugetlb_shm_group;
66
67 enum hugetlb_param {
68         Opt_gid,
69         Opt_min_size,
70         Opt_mode,
71         Opt_nr_inodes,
72         Opt_pagesize,
73         Opt_size,
74         Opt_uid,
75 };
76
77 static const struct fs_parameter_spec hugetlb_fs_parameters[] = {
78         fsparam_u32   ("gid",           Opt_gid),
79         fsparam_string("min_size",      Opt_min_size),
80         fsparam_u32   ("mode",          Opt_mode),
81         fsparam_string("nr_inodes",     Opt_nr_inodes),
82         fsparam_string("pagesize",      Opt_pagesize),
83         fsparam_string("size",          Opt_size),
84         fsparam_u32   ("uid",           Opt_uid),
85         {}
86 };
87
88 #ifdef CONFIG_NUMA
89 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
90                                         struct inode *inode, pgoff_t index)
91 {
92         vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy,
93                                                         index);
94 }
95
96 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
97 {
98         mpol_cond_put(vma->vm_policy);
99 }
100 #else
101 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
102                                         struct inode *inode, pgoff_t index)
103 {
104 }
105
106 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
107 {
108 }
109 #endif
110
111 static void huge_pagevec_release(struct pagevec *pvec)
112 {
113         int i;
114
115         for (i = 0; i < pagevec_count(pvec); ++i)
116                 put_page(pvec->pages[i]);
117
118         pagevec_reinit(pvec);
119 }
120
121 /*
122  * Mask used when checking the page offset value passed in via system
123  * calls.  This value will be converted to a loff_t which is signed.
124  * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
125  * value.  The extra bit (- 1 in the shift value) is to take the sign
126  * bit into account.
127  */
128 #define PGOFF_LOFFT_MAX \
129         (((1UL << (PAGE_SHIFT + 1)) - 1) <<  (BITS_PER_LONG - (PAGE_SHIFT + 1)))
130
131 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
132 {
133         struct inode *inode = file_inode(file);
134         loff_t len, vma_len;
135         int ret;
136         struct hstate *h = hstate_file(file);
137
138         /*
139          * vma address alignment (but not the pgoff alignment) has
140          * already been checked by prepare_hugepage_range.  If you add
141          * any error returns here, do so after setting VM_HUGETLB, so
142          * is_vm_hugetlb_page tests below unmap_region go the right
143          * way when do_mmap unwinds (may be important on powerpc
144          * and ia64).
145          */
146         vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND;
147         vma->vm_ops = &hugetlb_vm_ops;
148
149         /*
150          * page based offset in vm_pgoff could be sufficiently large to
151          * overflow a loff_t when converted to byte offset.  This can
152          * only happen on architectures where sizeof(loff_t) ==
153          * sizeof(unsigned long).  So, only check in those instances.
154          */
155         if (sizeof(unsigned long) == sizeof(loff_t)) {
156                 if (vma->vm_pgoff & PGOFF_LOFFT_MAX)
157                         return -EINVAL;
158         }
159
160         /* must be huge page aligned */
161         if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
162                 return -EINVAL;
163
164         vma_len = (loff_t)(vma->vm_end - vma->vm_start);
165         len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
166         /* check for overflow */
167         if (len < vma_len)
168                 return -EINVAL;
169
170         inode_lock(inode);
171         file_accessed(file);
172
173         ret = -ENOMEM;
174         if (!hugetlb_reserve_pages(inode,
175                                 vma->vm_pgoff >> huge_page_order(h),
176                                 len >> huge_page_shift(h), vma,
177                                 vma->vm_flags))
178                 goto out;
179
180         ret = 0;
181         if (vma->vm_flags & VM_WRITE && inode->i_size < len)
182                 i_size_write(inode, len);
183 out:
184         inode_unlock(inode);
185
186         return ret;
187 }
188
189 /*
190  * Called under mmap_write_lock(mm).
191  */
192
193 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
194 static unsigned long
195 hugetlb_get_unmapped_area_bottomup(struct file *file, unsigned long addr,
196                 unsigned long len, unsigned long pgoff, unsigned long flags)
197 {
198         struct hstate *h = hstate_file(file);
199         struct vm_unmapped_area_info info;
200
201         info.flags = 0;
202         info.length = len;
203         info.low_limit = current->mm->mmap_base;
204         info.high_limit = TASK_SIZE;
205         info.align_mask = PAGE_MASK & ~huge_page_mask(h);
206         info.align_offset = 0;
207         return vm_unmapped_area(&info);
208 }
209
210 static unsigned long
211 hugetlb_get_unmapped_area_topdown(struct file *file, unsigned long addr,
212                 unsigned long len, unsigned long pgoff, unsigned long flags)
213 {
214         struct hstate *h = hstate_file(file);
215         struct vm_unmapped_area_info info;
216
217         info.flags = VM_UNMAPPED_AREA_TOPDOWN;
218         info.length = len;
219         info.low_limit = max(PAGE_SIZE, mmap_min_addr);
220         info.high_limit = current->mm->mmap_base;
221         info.align_mask = PAGE_MASK & ~huge_page_mask(h);
222         info.align_offset = 0;
223         addr = vm_unmapped_area(&info);
224
225         /*
226          * A failed mmap() very likely causes application failure,
227          * so fall back to the bottom-up function here. This scenario
228          * can happen with large stack limits and large mmap()
229          * allocations.
230          */
231         if (unlikely(offset_in_page(addr))) {
232                 VM_BUG_ON(addr != -ENOMEM);
233                 info.flags = 0;
234                 info.low_limit = current->mm->mmap_base;
235                 info.high_limit = TASK_SIZE;
236                 addr = vm_unmapped_area(&info);
237         }
238
239         return addr;
240 }
241
242 static unsigned long
243 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
244                 unsigned long len, unsigned long pgoff, unsigned long flags)
245 {
246         struct mm_struct *mm = current->mm;
247         struct vm_area_struct *vma;
248         struct hstate *h = hstate_file(file);
249
250         if (len & ~huge_page_mask(h))
251                 return -EINVAL;
252         if (len > TASK_SIZE)
253                 return -ENOMEM;
254
255         if (flags & MAP_FIXED) {
256                 if (prepare_hugepage_range(file, addr, len))
257                         return -EINVAL;
258                 return addr;
259         }
260
261         if (addr) {
262                 addr = ALIGN(addr, huge_page_size(h));
263                 vma = find_vma(mm, addr);
264                 if (TASK_SIZE - len >= addr &&
265                     (!vma || addr + len <= vm_start_gap(vma)))
266                         return addr;
267         }
268
269         /*
270          * Use mm->get_unmapped_area value as a hint to use topdown routine.
271          * If architectures have special needs, they should define their own
272          * version of hugetlb_get_unmapped_area.
273          */
274         if (mm->get_unmapped_area == arch_get_unmapped_area_topdown)
275                 return hugetlb_get_unmapped_area_topdown(file, addr, len,
276                                 pgoff, flags);
277         return hugetlb_get_unmapped_area_bottomup(file, addr, len,
278                         pgoff, flags);
279 }
280 #endif
281
282 static size_t
283 hugetlbfs_read_actor(struct page *page, unsigned long offset,
284                         struct iov_iter *to, unsigned long size)
285 {
286         size_t copied = 0;
287         int i, chunksize;
288
289         /* Find which 4k chunk and offset with in that chunk */
290         i = offset >> PAGE_SHIFT;
291         offset = offset & ~PAGE_MASK;
292
293         while (size) {
294                 size_t n;
295                 chunksize = PAGE_SIZE;
296                 if (offset)
297                         chunksize -= offset;
298                 if (chunksize > size)
299                         chunksize = size;
300                 n = copy_page_to_iter(&page[i], offset, chunksize, to);
301                 copied += n;
302                 if (n != chunksize)
303                         return copied;
304                 offset = 0;
305                 size -= chunksize;
306                 i++;
307         }
308         return copied;
309 }
310
311 /*
312  * Support for read() - Find the page attached to f_mapping and copy out the
313  * data. Its *very* similar to generic_file_buffered_read(), we can't use that
314  * since it has PAGE_SIZE assumptions.
315  */
316 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
317 {
318         struct file *file = iocb->ki_filp;
319         struct hstate *h = hstate_file(file);
320         struct address_space *mapping = file->f_mapping;
321         struct inode *inode = mapping->host;
322         unsigned long index = iocb->ki_pos >> huge_page_shift(h);
323         unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
324         unsigned long end_index;
325         loff_t isize;
326         ssize_t retval = 0;
327
328         while (iov_iter_count(to)) {
329                 struct page *page;
330                 size_t nr, copied;
331
332                 /* nr is the maximum number of bytes to copy from this page */
333                 nr = huge_page_size(h);
334                 isize = i_size_read(inode);
335                 if (!isize)
336                         break;
337                 end_index = (isize - 1) >> huge_page_shift(h);
338                 if (index > end_index)
339                         break;
340                 if (index == end_index) {
341                         nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
342                         if (nr <= offset)
343                                 break;
344                 }
345                 nr = nr - offset;
346
347                 /* Find the page */
348                 page = find_lock_page(mapping, index);
349                 if (unlikely(page == NULL)) {
350                         /*
351                          * We have a HOLE, zero out the user-buffer for the
352                          * length of the hole or request.
353                          */
354                         copied = iov_iter_zero(nr, to);
355                 } else {
356                         unlock_page(page);
357
358                         /*
359                          * We have the page, copy it to user space buffer.
360                          */
361                         copied = hugetlbfs_read_actor(page, offset, to, nr);
362                         put_page(page);
363                 }
364                 offset += copied;
365                 retval += copied;
366                 if (copied != nr && iov_iter_count(to)) {
367                         if (!retval)
368                                 retval = -EFAULT;
369                         break;
370                 }
371                 index += offset >> huge_page_shift(h);
372                 offset &= ~huge_page_mask(h);
373         }
374         iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
375         return retval;
376 }
377
378 static int hugetlbfs_write_begin(struct file *file,
379                         struct address_space *mapping,
380                         loff_t pos, unsigned len, unsigned flags,
381                         struct page **pagep, void **fsdata)
382 {
383         return -EINVAL;
384 }
385
386 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
387                         loff_t pos, unsigned len, unsigned copied,
388                         struct page *page, void *fsdata)
389 {
390         BUG();
391         return -EINVAL;
392 }
393
394 static void remove_huge_page(struct page *page)
395 {
396         ClearPageDirty(page);
397         ClearPageUptodate(page);
398         delete_from_page_cache(page);
399 }
400
401 static void
402 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end)
403 {
404         struct vm_area_struct *vma;
405
406         /*
407          * end == 0 indicates that the entire range after
408          * start should be unmapped.
409          */
410         vma_interval_tree_foreach(vma, root, start, end ? end : ULONG_MAX) {
411                 unsigned long v_offset;
412                 unsigned long v_end;
413
414                 /*
415                  * Can the expression below overflow on 32-bit arches?
416                  * No, because the interval tree returns us only those vmas
417                  * which overlap the truncated area starting at pgoff,
418                  * and no vma on a 32-bit arch can span beyond the 4GB.
419                  */
420                 if (vma->vm_pgoff < start)
421                         v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
422                 else
423                         v_offset = 0;
424
425                 if (!end)
426                         v_end = vma->vm_end;
427                 else {
428                         v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT)
429                                                         + vma->vm_start;
430                         if (v_end > vma->vm_end)
431                                 v_end = vma->vm_end;
432                 }
433
434                 unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end,
435                                                                         NULL);
436         }
437 }
438
439 /*
440  * remove_inode_hugepages handles two distinct cases: truncation and hole
441  * punch.  There are subtle differences in operation for each case.
442  *
443  * truncation is indicated by end of range being LLONG_MAX
444  *      In this case, we first scan the range and release found pages.
445  *      After releasing pages, hugetlb_unreserve_pages cleans up region/reserve
446  *      maps and global counts.  Page faults can not race with truncation
447  *      in this routine.  hugetlb_no_page() holds i_mmap_rwsem and prevents
448  *      page faults in the truncated range by checking i_size.  i_size is
449  *      modified while holding i_mmap_rwsem.
450  * hole punch is indicated if end is not LLONG_MAX
451  *      In the hole punch case we scan the range and release found pages.
452  *      Only when releasing a page is the associated region/reserve map
453  *      deleted.  The region/reserve map for ranges without associated
454  *      pages are not modified.  Page faults can race with hole punch.
455  *      This is indicated if we find a mapped page.
456  * Note: If the passed end of range value is beyond the end of file, but
457  * not LLONG_MAX this routine still performs a hole punch operation.
458  */
459 static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
460                                    loff_t lend)
461 {
462         struct hstate *h = hstate_inode(inode);
463         struct address_space *mapping = &inode->i_data;
464         const pgoff_t start = lstart >> huge_page_shift(h);
465         const pgoff_t end = lend >> huge_page_shift(h);
466         struct vm_area_struct pseudo_vma;
467         struct pagevec pvec;
468         pgoff_t next, index;
469         int i, freed = 0;
470         bool truncate_op = (lend == LLONG_MAX);
471
472         vma_init(&pseudo_vma, current->mm);
473         pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
474         pagevec_init(&pvec);
475         next = start;
476         while (next < end) {
477                 /*
478                  * When no more pages are found, we are done.
479                  */
480                 if (!pagevec_lookup_range(&pvec, mapping, &next, end - 1))
481                         break;
482
483                 for (i = 0; i < pagevec_count(&pvec); ++i) {
484                         struct page *page = pvec.pages[i];
485                         u32 hash;
486
487                         index = page->index;
488                         hash = hugetlb_fault_mutex_hash(mapping, index);
489                         if (!truncate_op) {
490                                 /*
491                                  * Only need to hold the fault mutex in the
492                                  * hole punch case.  This prevents races with
493                                  * page faults.  Races are not possible in the
494                                  * case of truncation.
495                                  */
496                                 mutex_lock(&hugetlb_fault_mutex_table[hash]);
497                         }
498
499                         /*
500                          * If page is mapped, it was faulted in after being
501                          * unmapped in caller.  Unmap (again) now after taking
502                          * the fault mutex.  The mutex will prevent faults
503                          * until we finish removing the page.
504                          *
505                          * This race can only happen in the hole punch case.
506                          * Getting here in a truncate operation is a bug.
507                          */
508                         if (unlikely(page_mapped(page))) {
509                                 BUG_ON(truncate_op);
510
511                                 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
512                                 i_mmap_lock_write(mapping);
513                                 mutex_lock(&hugetlb_fault_mutex_table[hash]);
514                                 hugetlb_vmdelete_list(&mapping->i_mmap,
515                                         index * pages_per_huge_page(h),
516                                         (index + 1) * pages_per_huge_page(h));
517                                 i_mmap_unlock_write(mapping);
518                         }
519
520                         lock_page(page);
521                         /*
522                          * We must free the huge page and remove from page
523                          * cache (remove_huge_page) BEFORE removing the
524                          * region/reserve map (hugetlb_unreserve_pages).  In
525                          * rare out of memory conditions, removal of the
526                          * region/reserve map could fail. Correspondingly,
527                          * the subpool and global reserve usage count can need
528                          * to be adjusted.
529                          */
530                         VM_BUG_ON(PagePrivate(page));
531                         remove_huge_page(page);
532                         freed++;
533                         if (!truncate_op) {
534                                 if (unlikely(hugetlb_unreserve_pages(inode,
535                                                         index, index + 1, 1)))
536                                         hugetlb_fix_reserve_counts(inode);
537                         }
538
539                         unlock_page(page);
540                         if (!truncate_op)
541                                 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
542                 }
543                 huge_pagevec_release(&pvec);
544                 cond_resched();
545         }
546
547         if (truncate_op)
548                 (void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed);
549 }
550
551 static void hugetlbfs_evict_inode(struct inode *inode)
552 {
553         struct resv_map *resv_map;
554
555         remove_inode_hugepages(inode, 0, LLONG_MAX);
556
557         /*
558          * Get the resv_map from the address space embedded in the inode.
559          * This is the address space which points to any resv_map allocated
560          * at inode creation time.  If this is a device special inode,
561          * i_mapping may not point to the original address space.
562          */
563         resv_map = (struct resv_map *)(&inode->i_data)->private_data;
564         /* Only regular and link inodes have associated reserve maps */
565         if (resv_map)
566                 resv_map_release(&resv_map->refs);
567         clear_inode(inode);
568 }
569
570 static int hugetlb_vmtruncate(struct inode *inode, loff_t offset)
571 {
572         pgoff_t pgoff;
573         struct address_space *mapping = inode->i_mapping;
574         struct hstate *h = hstate_inode(inode);
575
576         BUG_ON(offset & ~huge_page_mask(h));
577         pgoff = offset >> PAGE_SHIFT;
578
579         i_mmap_lock_write(mapping);
580         i_size_write(inode, offset);
581         if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
582                 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0);
583         i_mmap_unlock_write(mapping);
584         remove_inode_hugepages(inode, offset, LLONG_MAX);
585         return 0;
586 }
587
588 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
589 {
590         struct hstate *h = hstate_inode(inode);
591         loff_t hpage_size = huge_page_size(h);
592         loff_t hole_start, hole_end;
593
594         /*
595          * For hole punch round up the beginning offset of the hole and
596          * round down the end.
597          */
598         hole_start = round_up(offset, hpage_size);
599         hole_end = round_down(offset + len, hpage_size);
600
601         if (hole_end > hole_start) {
602                 struct address_space *mapping = inode->i_mapping;
603                 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
604
605                 inode_lock(inode);
606
607                 /* protected by i_rwsem */
608                 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
609                         inode_unlock(inode);
610                         return -EPERM;
611                 }
612
613                 i_mmap_lock_write(mapping);
614                 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
615                         hugetlb_vmdelete_list(&mapping->i_mmap,
616                                                 hole_start >> PAGE_SHIFT,
617                                                 hole_end  >> PAGE_SHIFT);
618                 i_mmap_unlock_write(mapping);
619                 remove_inode_hugepages(inode, hole_start, hole_end);
620                 inode_unlock(inode);
621         }
622
623         return 0;
624 }
625
626 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
627                                 loff_t len)
628 {
629         struct inode *inode = file_inode(file);
630         struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
631         struct address_space *mapping = inode->i_mapping;
632         struct hstate *h = hstate_inode(inode);
633         struct vm_area_struct pseudo_vma;
634         struct mm_struct *mm = current->mm;
635         loff_t hpage_size = huge_page_size(h);
636         unsigned long hpage_shift = huge_page_shift(h);
637         pgoff_t start, index, end;
638         int error;
639         u32 hash;
640
641         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
642                 return -EOPNOTSUPP;
643
644         if (mode & FALLOC_FL_PUNCH_HOLE)
645                 return hugetlbfs_punch_hole(inode, offset, len);
646
647         /*
648          * Default preallocate case.
649          * For this range, start is rounded down and end is rounded up
650          * as well as being converted to page offsets.
651          */
652         start = offset >> hpage_shift;
653         end = (offset + len + hpage_size - 1) >> hpage_shift;
654
655         inode_lock(inode);
656
657         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
658         error = inode_newsize_ok(inode, offset + len);
659         if (error)
660                 goto out;
661
662         if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
663                 error = -EPERM;
664                 goto out;
665         }
666
667         /*
668          * Initialize a pseudo vma as this is required by the huge page
669          * allocation routines.  If NUMA is configured, use page index
670          * as input to create an allocation policy.
671          */
672         vma_init(&pseudo_vma, mm);
673         pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
674         pseudo_vma.vm_file = file;
675
676         for (index = start; index < end; index++) {
677                 /*
678                  * This is supposed to be the vaddr where the page is being
679                  * faulted in, but we have no vaddr here.
680                  */
681                 struct page *page;
682                 unsigned long addr;
683
684                 cond_resched();
685
686                 /*
687                  * fallocate(2) manpage permits EINTR; we may have been
688                  * interrupted because we are using up too much memory.
689                  */
690                 if (signal_pending(current)) {
691                         error = -EINTR;
692                         break;
693                 }
694
695                 /* Set numa allocation policy based on index */
696                 hugetlb_set_vma_policy(&pseudo_vma, inode, index);
697
698                 /* addr is the offset within the file (zero based) */
699                 addr = index * hpage_size;
700
701                 /*
702                  * fault mutex taken here, protects against fault path
703                  * and hole punch.  inode_lock previously taken protects
704                  * against truncation.
705                  */
706                 hash = hugetlb_fault_mutex_hash(mapping, index);
707                 mutex_lock(&hugetlb_fault_mutex_table[hash]);
708
709                 /* See if already present in mapping to avoid alloc/free */
710                 page = find_get_page(mapping, index);
711                 if (page) {
712                         put_page(page);
713                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
714                         hugetlb_drop_vma_policy(&pseudo_vma);
715                         continue;
716                 }
717
718                 /*
719                  * Allocate page without setting the avoid_reserve argument.
720                  * There certainly are no reserves associated with the
721                  * pseudo_vma.  However, there could be shared mappings with
722                  * reserves for the file at the inode level.  If we fallocate
723                  * pages in these areas, we need to consume the reserves
724                  * to keep reservation accounting consistent.
725                  */
726                 page = alloc_huge_page(&pseudo_vma, addr, 0);
727                 hugetlb_drop_vma_policy(&pseudo_vma);
728                 if (IS_ERR(page)) {
729                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
730                         error = PTR_ERR(page);
731                         goto out;
732                 }
733                 clear_huge_page(page, addr, pages_per_huge_page(h));
734                 __SetPageUptodate(page);
735                 error = huge_add_to_page_cache(page, mapping, index);
736                 if (unlikely(error)) {
737                         put_page(page);
738                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
739                         goto out;
740                 }
741
742                 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
743
744                 SetHPageMigratable(page);
745                 /*
746                  * unlock_page because locked by add_to_page_cache()
747                  * put_page() due to reference from alloc_huge_page()
748                  */
749                 unlock_page(page);
750                 put_page(page);
751         }
752
753         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
754                 i_size_write(inode, offset + len);
755         inode->i_ctime = current_time(inode);
756 out:
757         inode_unlock(inode);
758         return error;
759 }
760
761 static int hugetlbfs_setattr(struct user_namespace *mnt_userns,
762                              struct dentry *dentry, struct iattr *attr)
763 {
764         struct inode *inode = d_inode(dentry);
765         struct hstate *h = hstate_inode(inode);
766         int error;
767         unsigned int ia_valid = attr->ia_valid;
768         struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
769
770         error = setattr_prepare(&init_user_ns, dentry, attr);
771         if (error)
772                 return error;
773
774         if (ia_valid & ATTR_SIZE) {
775                 loff_t oldsize = inode->i_size;
776                 loff_t newsize = attr->ia_size;
777
778                 if (newsize & ~huge_page_mask(h))
779                         return -EINVAL;
780                 /* protected by i_rwsem */
781                 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
782                     (newsize > oldsize && (info->seals & F_SEAL_GROW)))
783                         return -EPERM;
784                 error = hugetlb_vmtruncate(inode, newsize);
785                 if (error)
786                         return error;
787         }
788
789         setattr_copy(&init_user_ns, inode, attr);
790         mark_inode_dirty(inode);
791         return 0;
792 }
793
794 static struct inode *hugetlbfs_get_root(struct super_block *sb,
795                                         struct hugetlbfs_fs_context *ctx)
796 {
797         struct inode *inode;
798
799         inode = new_inode(sb);
800         if (inode) {
801                 inode->i_ino = get_next_ino();
802                 inode->i_mode = S_IFDIR | ctx->mode;
803                 inode->i_uid = ctx->uid;
804                 inode->i_gid = ctx->gid;
805                 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
806                 inode->i_op = &hugetlbfs_dir_inode_operations;
807                 inode->i_fop = &simple_dir_operations;
808                 /* directory inodes start off with i_nlink == 2 (for "." entry) */
809                 inc_nlink(inode);
810                 lockdep_annotate_inode_mutex_key(inode);
811         }
812         return inode;
813 }
814
815 /*
816  * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
817  * be taken from reclaim -- unlike regular filesystems. This needs an
818  * annotation because huge_pmd_share() does an allocation under hugetlb's
819  * i_mmap_rwsem.
820  */
821 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
822
823 static struct inode *hugetlbfs_get_inode(struct super_block *sb,
824                                         struct inode *dir,
825                                         umode_t mode, dev_t dev)
826 {
827         struct inode *inode;
828         struct resv_map *resv_map = NULL;
829
830         /*
831          * Reserve maps are only needed for inodes that can have associated
832          * page allocations.
833          */
834         if (S_ISREG(mode) || S_ISLNK(mode)) {
835                 resv_map = resv_map_alloc();
836                 if (!resv_map)
837                         return NULL;
838         }
839
840         inode = new_inode(sb);
841         if (inode) {
842                 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
843
844                 inode->i_ino = get_next_ino();
845                 inode_init_owner(&init_user_ns, inode, dir, mode);
846                 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
847                                 &hugetlbfs_i_mmap_rwsem_key);
848                 inode->i_mapping->a_ops = &hugetlbfs_aops;
849                 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
850                 inode->i_mapping->private_data = resv_map;
851                 info->seals = F_SEAL_SEAL;
852                 switch (mode & S_IFMT) {
853                 default:
854                         init_special_inode(inode, mode, dev);
855                         break;
856                 case S_IFREG:
857                         inode->i_op = &hugetlbfs_inode_operations;
858                         inode->i_fop = &hugetlbfs_file_operations;
859                         break;
860                 case S_IFDIR:
861                         inode->i_op = &hugetlbfs_dir_inode_operations;
862                         inode->i_fop = &simple_dir_operations;
863
864                         /* directory inodes start off with i_nlink == 2 (for "." entry) */
865                         inc_nlink(inode);
866                         break;
867                 case S_IFLNK:
868                         inode->i_op = &page_symlink_inode_operations;
869                         inode_nohighmem(inode);
870                         break;
871                 }
872                 lockdep_annotate_inode_mutex_key(inode);
873         } else {
874                 if (resv_map)
875                         kref_put(&resv_map->refs, resv_map_release);
876         }
877
878         return inode;
879 }
880
881 /*
882  * File creation. Allocate an inode, and we're done..
883  */
884 static int do_hugetlbfs_mknod(struct inode *dir,
885                         struct dentry *dentry,
886                         umode_t mode,
887                         dev_t dev,
888                         bool tmpfile)
889 {
890         struct inode *inode;
891         int error = -ENOSPC;
892
893         inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev);
894         if (inode) {
895                 dir->i_ctime = dir->i_mtime = current_time(dir);
896                 if (tmpfile) {
897                         d_tmpfile(dentry, inode);
898                 } else {
899                         d_instantiate(dentry, inode);
900                         dget(dentry);/* Extra count - pin the dentry in core */
901                 }
902                 error = 0;
903         }
904         return error;
905 }
906
907 static int hugetlbfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
908                            struct dentry *dentry, umode_t mode, dev_t dev)
909 {
910         return do_hugetlbfs_mknod(dir, dentry, mode, dev, false);
911 }
912
913 static int hugetlbfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
914                            struct dentry *dentry, umode_t mode)
915 {
916         int retval = hugetlbfs_mknod(&init_user_ns, dir, dentry,
917                                      mode | S_IFDIR, 0);
918         if (!retval)
919                 inc_nlink(dir);
920         return retval;
921 }
922
923 static int hugetlbfs_create(struct user_namespace *mnt_userns,
924                             struct inode *dir, struct dentry *dentry,
925                             umode_t mode, bool excl)
926 {
927         return hugetlbfs_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
928 }
929
930 static int hugetlbfs_tmpfile(struct user_namespace *mnt_userns,
931                              struct inode *dir, struct dentry *dentry,
932                              umode_t mode)
933 {
934         return do_hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0, true);
935 }
936
937 static int hugetlbfs_symlink(struct user_namespace *mnt_userns,
938                              struct inode *dir, struct dentry *dentry,
939                              const char *symname)
940 {
941         struct inode *inode;
942         int error = -ENOSPC;
943
944         inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0);
945         if (inode) {
946                 int l = strlen(symname)+1;
947                 error = page_symlink(inode, symname, l);
948                 if (!error) {
949                         d_instantiate(dentry, inode);
950                         dget(dentry);
951                 } else
952                         iput(inode);
953         }
954         dir->i_ctime = dir->i_mtime = current_time(dir);
955
956         return error;
957 }
958
959 static int hugetlbfs_migrate_page(struct address_space *mapping,
960                                 struct page *newpage, struct page *page,
961                                 enum migrate_mode mode)
962 {
963         int rc;
964
965         rc = migrate_huge_page_move_mapping(mapping, newpage, page);
966         if (rc != MIGRATEPAGE_SUCCESS)
967                 return rc;
968
969         if (hugetlb_page_subpool(page)) {
970                 hugetlb_set_page_subpool(newpage, hugetlb_page_subpool(page));
971                 hugetlb_set_page_subpool(page, NULL);
972         }
973
974         if (mode != MIGRATE_SYNC_NO_COPY)
975                 migrate_page_copy(newpage, page);
976         else
977                 migrate_page_states(newpage, page);
978
979         return MIGRATEPAGE_SUCCESS;
980 }
981
982 static int hugetlbfs_error_remove_page(struct address_space *mapping,
983                                 struct page *page)
984 {
985         struct inode *inode = mapping->host;
986         pgoff_t index = page->index;
987
988         remove_huge_page(page);
989         if (unlikely(hugetlb_unreserve_pages(inode, index, index + 1, 1)))
990                 hugetlb_fix_reserve_counts(inode);
991
992         return 0;
993 }
994
995 /*
996  * Display the mount options in /proc/mounts.
997  */
998 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
999 {
1000         struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
1001         struct hugepage_subpool *spool = sbinfo->spool;
1002         unsigned long hpage_size = huge_page_size(sbinfo->hstate);
1003         unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
1004         char mod;
1005
1006         if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
1007                 seq_printf(m, ",uid=%u",
1008                            from_kuid_munged(&init_user_ns, sbinfo->uid));
1009         if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
1010                 seq_printf(m, ",gid=%u",
1011                            from_kgid_munged(&init_user_ns, sbinfo->gid));
1012         if (sbinfo->mode != 0755)
1013                 seq_printf(m, ",mode=%o", sbinfo->mode);
1014         if (sbinfo->max_inodes != -1)
1015                 seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
1016
1017         hpage_size /= 1024;
1018         mod = 'K';
1019         if (hpage_size >= 1024) {
1020                 hpage_size /= 1024;
1021                 mod = 'M';
1022         }
1023         seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
1024         if (spool) {
1025                 if (spool->max_hpages != -1)
1026                         seq_printf(m, ",size=%llu",
1027                                    (unsigned long long)spool->max_hpages << hpage_shift);
1028                 if (spool->min_hpages != -1)
1029                         seq_printf(m, ",min_size=%llu",
1030                                    (unsigned long long)spool->min_hpages << hpage_shift);
1031         }
1032         return 0;
1033 }
1034
1035 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1036 {
1037         struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
1038         struct hstate *h = hstate_inode(d_inode(dentry));
1039
1040         buf->f_type = HUGETLBFS_MAGIC;
1041         buf->f_bsize = huge_page_size(h);
1042         if (sbinfo) {
1043                 spin_lock(&sbinfo->stat_lock);
1044                 /* If no limits set, just report 0 for max/free/used
1045                  * blocks, like simple_statfs() */
1046                 if (sbinfo->spool) {
1047                         long free_pages;
1048
1049                         spin_lock(&sbinfo->spool->lock);
1050                         buf->f_blocks = sbinfo->spool->max_hpages;
1051                         free_pages = sbinfo->spool->max_hpages
1052                                 - sbinfo->spool->used_hpages;
1053                         buf->f_bavail = buf->f_bfree = free_pages;
1054                         spin_unlock(&sbinfo->spool->lock);
1055                         buf->f_files = sbinfo->max_inodes;
1056                         buf->f_ffree = sbinfo->free_inodes;
1057                 }
1058                 spin_unlock(&sbinfo->stat_lock);
1059         }
1060         buf->f_namelen = NAME_MAX;
1061         return 0;
1062 }
1063
1064 static void hugetlbfs_put_super(struct super_block *sb)
1065 {
1066         struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
1067
1068         if (sbi) {
1069                 sb->s_fs_info = NULL;
1070
1071                 if (sbi->spool)
1072                         hugepage_put_subpool(sbi->spool);
1073
1074                 kfree(sbi);
1075         }
1076 }
1077
1078 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1079 {
1080         if (sbinfo->free_inodes >= 0) {
1081                 spin_lock(&sbinfo->stat_lock);
1082                 if (unlikely(!sbinfo->free_inodes)) {
1083                         spin_unlock(&sbinfo->stat_lock);
1084                         return 0;
1085                 }
1086                 sbinfo->free_inodes--;
1087                 spin_unlock(&sbinfo->stat_lock);
1088         }
1089
1090         return 1;
1091 }
1092
1093 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1094 {
1095         if (sbinfo->free_inodes >= 0) {
1096                 spin_lock(&sbinfo->stat_lock);
1097                 sbinfo->free_inodes++;
1098                 spin_unlock(&sbinfo->stat_lock);
1099         }
1100 }
1101
1102
1103 static struct kmem_cache *hugetlbfs_inode_cachep;
1104
1105 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
1106 {
1107         struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
1108         struct hugetlbfs_inode_info *p;
1109
1110         if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
1111                 return NULL;
1112         p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL);
1113         if (unlikely(!p)) {
1114                 hugetlbfs_inc_free_inodes(sbinfo);
1115                 return NULL;
1116         }
1117
1118         /*
1119          * Any time after allocation, hugetlbfs_destroy_inode can be called
1120          * for the inode.  mpol_free_shared_policy is unconditionally called
1121          * as part of hugetlbfs_destroy_inode.  So, initialize policy here
1122          * in case of a quick call to destroy.
1123          *
1124          * Note that the policy is initialized even if we are creating a
1125          * private inode.  This simplifies hugetlbfs_destroy_inode.
1126          */
1127         mpol_shared_policy_init(&p->policy, NULL);
1128
1129         return &p->vfs_inode;
1130 }
1131
1132 static void hugetlbfs_free_inode(struct inode *inode)
1133 {
1134         kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
1135 }
1136
1137 static void hugetlbfs_destroy_inode(struct inode *inode)
1138 {
1139         hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
1140         mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
1141 }
1142
1143 static const struct address_space_operations hugetlbfs_aops = {
1144         .write_begin    = hugetlbfs_write_begin,
1145         .write_end      = hugetlbfs_write_end,
1146         .set_page_dirty =  __set_page_dirty_no_writeback,
1147         .migratepage    = hugetlbfs_migrate_page,
1148         .error_remove_page      = hugetlbfs_error_remove_page,
1149 };
1150
1151
1152 static void init_once(void *foo)
1153 {
1154         struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo;
1155
1156         inode_init_once(&ei->vfs_inode);
1157 }
1158
1159 const struct file_operations hugetlbfs_file_operations = {
1160         .read_iter              = hugetlbfs_read_iter,
1161         .mmap                   = hugetlbfs_file_mmap,
1162         .fsync                  = noop_fsync,
1163         .get_unmapped_area      = hugetlb_get_unmapped_area,
1164         .llseek                 = default_llseek,
1165         .fallocate              = hugetlbfs_fallocate,
1166 };
1167
1168 static const struct inode_operations hugetlbfs_dir_inode_operations = {
1169         .create         = hugetlbfs_create,
1170         .lookup         = simple_lookup,
1171         .link           = simple_link,
1172         .unlink         = simple_unlink,
1173         .symlink        = hugetlbfs_symlink,
1174         .mkdir          = hugetlbfs_mkdir,
1175         .rmdir          = simple_rmdir,
1176         .mknod          = hugetlbfs_mknod,
1177         .rename         = simple_rename,
1178         .setattr        = hugetlbfs_setattr,
1179         .tmpfile        = hugetlbfs_tmpfile,
1180 };
1181
1182 static const struct inode_operations hugetlbfs_inode_operations = {
1183         .setattr        = hugetlbfs_setattr,
1184 };
1185
1186 static const struct super_operations hugetlbfs_ops = {
1187         .alloc_inode    = hugetlbfs_alloc_inode,
1188         .free_inode     = hugetlbfs_free_inode,
1189         .destroy_inode  = hugetlbfs_destroy_inode,
1190         .evict_inode    = hugetlbfs_evict_inode,
1191         .statfs         = hugetlbfs_statfs,
1192         .put_super      = hugetlbfs_put_super,
1193         .show_options   = hugetlbfs_show_options,
1194 };
1195
1196 /*
1197  * Convert size option passed from command line to number of huge pages
1198  * in the pool specified by hstate.  Size option could be in bytes
1199  * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1200  */
1201 static long
1202 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1203                          enum hugetlbfs_size_type val_type)
1204 {
1205         if (val_type == NO_SIZE)
1206                 return -1;
1207
1208         if (val_type == SIZE_PERCENT) {
1209                 size_opt <<= huge_page_shift(h);
1210                 size_opt *= h->max_huge_pages;
1211                 do_div(size_opt, 100);
1212         }
1213
1214         size_opt >>= huge_page_shift(h);
1215         return size_opt;
1216 }
1217
1218 /*
1219  * Parse one mount parameter.
1220  */
1221 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1222 {
1223         struct hugetlbfs_fs_context *ctx = fc->fs_private;
1224         struct fs_parse_result result;
1225         char *rest;
1226         unsigned long ps;
1227         int opt;
1228
1229         opt = fs_parse(fc, hugetlb_fs_parameters, param, &result);
1230         if (opt < 0)
1231                 return opt;
1232
1233         switch (opt) {
1234         case Opt_uid:
1235                 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
1236                 if (!uid_valid(ctx->uid))
1237                         goto bad_val;
1238                 return 0;
1239
1240         case Opt_gid:
1241                 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
1242                 if (!gid_valid(ctx->gid))
1243                         goto bad_val;
1244                 return 0;
1245
1246         case Opt_mode:
1247                 ctx->mode = result.uint_32 & 01777U;
1248                 return 0;
1249
1250         case Opt_size:
1251                 /* memparse() will accept a K/M/G without a digit */
1252                 if (!isdigit(param->string[0]))
1253                         goto bad_val;
1254                 ctx->max_size_opt = memparse(param->string, &rest);
1255                 ctx->max_val_type = SIZE_STD;
1256                 if (*rest == '%')
1257                         ctx->max_val_type = SIZE_PERCENT;
1258                 return 0;
1259
1260         case Opt_nr_inodes:
1261                 /* memparse() will accept a K/M/G without a digit */
1262                 if (!isdigit(param->string[0]))
1263                         goto bad_val;
1264                 ctx->nr_inodes = memparse(param->string, &rest);
1265                 return 0;
1266
1267         case Opt_pagesize:
1268                 ps = memparse(param->string, &rest);
1269                 ctx->hstate = size_to_hstate(ps);
1270                 if (!ctx->hstate) {
1271                         pr_err("Unsupported page size %lu MB\n", ps >> 20);
1272                         return -EINVAL;
1273                 }
1274                 return 0;
1275
1276         case Opt_min_size:
1277                 /* memparse() will accept a K/M/G without a digit */
1278                 if (!isdigit(param->string[0]))
1279                         goto bad_val;
1280                 ctx->min_size_opt = memparse(param->string, &rest);
1281                 ctx->min_val_type = SIZE_STD;
1282                 if (*rest == '%')
1283                         ctx->min_val_type = SIZE_PERCENT;
1284                 return 0;
1285
1286         default:
1287                 return -EINVAL;
1288         }
1289
1290 bad_val:
1291         return invalfc(fc, "Bad value '%s' for mount option '%s'\n",
1292                       param->string, param->key);
1293 }
1294
1295 /*
1296  * Validate the parsed options.
1297  */
1298 static int hugetlbfs_validate(struct fs_context *fc)
1299 {
1300         struct hugetlbfs_fs_context *ctx = fc->fs_private;
1301
1302         /*
1303          * Use huge page pool size (in hstate) to convert the size
1304          * options to number of huge pages.  If NO_SIZE, -1 is returned.
1305          */
1306         ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1307                                                    ctx->max_size_opt,
1308                                                    ctx->max_val_type);
1309         ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1310                                                    ctx->min_size_opt,
1311                                                    ctx->min_val_type);
1312
1313         /*
1314          * If max_size was specified, then min_size must be smaller
1315          */
1316         if (ctx->max_val_type > NO_SIZE &&
1317             ctx->min_hpages > ctx->max_hpages) {
1318                 pr_err("Minimum size can not be greater than maximum size\n");
1319                 return -EINVAL;
1320         }
1321
1322         return 0;
1323 }
1324
1325 static int
1326 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc)
1327 {
1328         struct hugetlbfs_fs_context *ctx = fc->fs_private;
1329         struct hugetlbfs_sb_info *sbinfo;
1330
1331         sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1332         if (!sbinfo)
1333                 return -ENOMEM;
1334         sb->s_fs_info = sbinfo;
1335         spin_lock_init(&sbinfo->stat_lock);
1336         sbinfo->hstate          = ctx->hstate;
1337         sbinfo->max_inodes      = ctx->nr_inodes;
1338         sbinfo->free_inodes     = ctx->nr_inodes;
1339         sbinfo->spool           = NULL;
1340         sbinfo->uid             = ctx->uid;
1341         sbinfo->gid             = ctx->gid;
1342         sbinfo->mode            = ctx->mode;
1343
1344         /*
1345          * Allocate and initialize subpool if maximum or minimum size is
1346          * specified.  Any needed reservations (for minimum size) are taken
1347          * taken when the subpool is created.
1348          */
1349         if (ctx->max_hpages != -1 || ctx->min_hpages != -1) {
1350                 sbinfo->spool = hugepage_new_subpool(ctx->hstate,
1351                                                      ctx->max_hpages,
1352                                                      ctx->min_hpages);
1353                 if (!sbinfo->spool)
1354                         goto out_free;
1355         }
1356         sb->s_maxbytes = MAX_LFS_FILESIZE;
1357         sb->s_blocksize = huge_page_size(ctx->hstate);
1358         sb->s_blocksize_bits = huge_page_shift(ctx->hstate);
1359         sb->s_magic = HUGETLBFS_MAGIC;
1360         sb->s_op = &hugetlbfs_ops;
1361         sb->s_time_gran = 1;
1362
1363         /*
1364          * Due to the special and limited functionality of hugetlbfs, it does
1365          * not work well as a stacking filesystem.
1366          */
1367         sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH;
1368         sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx));
1369         if (!sb->s_root)
1370                 goto out_free;
1371         return 0;
1372 out_free:
1373         kfree(sbinfo->spool);
1374         kfree(sbinfo);
1375         return -ENOMEM;
1376 }
1377
1378 static int hugetlbfs_get_tree(struct fs_context *fc)
1379 {
1380         int err = hugetlbfs_validate(fc);
1381         if (err)
1382                 return err;
1383         return get_tree_nodev(fc, hugetlbfs_fill_super);
1384 }
1385
1386 static void hugetlbfs_fs_context_free(struct fs_context *fc)
1387 {
1388         kfree(fc->fs_private);
1389 }
1390
1391 static const struct fs_context_operations hugetlbfs_fs_context_ops = {
1392         .free           = hugetlbfs_fs_context_free,
1393         .parse_param    = hugetlbfs_parse_param,
1394         .get_tree       = hugetlbfs_get_tree,
1395 };
1396
1397 static int hugetlbfs_init_fs_context(struct fs_context *fc)
1398 {
1399         struct hugetlbfs_fs_context *ctx;
1400
1401         ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL);
1402         if (!ctx)
1403                 return -ENOMEM;
1404
1405         ctx->max_hpages = -1; /* No limit on size by default */
1406         ctx->nr_inodes  = -1; /* No limit on number of inodes by default */
1407         ctx->uid        = current_fsuid();
1408         ctx->gid        = current_fsgid();
1409         ctx->mode       = 0755;
1410         ctx->hstate     = &default_hstate;
1411         ctx->min_hpages = -1; /* No default minimum size */
1412         ctx->max_val_type = NO_SIZE;
1413         ctx->min_val_type = NO_SIZE;
1414         fc->fs_private = ctx;
1415         fc->ops = &hugetlbfs_fs_context_ops;
1416         return 0;
1417 }
1418
1419 static struct file_system_type hugetlbfs_fs_type = {
1420         .name                   = "hugetlbfs",
1421         .init_fs_context        = hugetlbfs_init_fs_context,
1422         .parameters             = hugetlb_fs_parameters,
1423         .kill_sb                = kill_litter_super,
1424 };
1425
1426 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1427
1428 static int can_do_hugetlb_shm(void)
1429 {
1430         kgid_t shm_group;
1431         shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1432         return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1433 }
1434
1435 static int get_hstate_idx(int page_size_log)
1436 {
1437         struct hstate *h = hstate_sizelog(page_size_log);
1438
1439         if (!h)
1440                 return -1;
1441         return h - hstates;
1442 }
1443
1444 /*
1445  * Note that size should be aligned to proper hugepage size in caller side,
1446  * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1447  */
1448 struct file *hugetlb_file_setup(const char *name, size_t size,
1449                                 vm_flags_t acctflag, struct user_struct **user,
1450                                 int creat_flags, int page_size_log)
1451 {
1452         struct inode *inode;
1453         struct vfsmount *mnt;
1454         int hstate_idx;
1455         struct file *file;
1456
1457         hstate_idx = get_hstate_idx(page_size_log);
1458         if (hstate_idx < 0)
1459                 return ERR_PTR(-ENODEV);
1460
1461         *user = NULL;
1462         mnt = hugetlbfs_vfsmount[hstate_idx];
1463         if (!mnt)
1464                 return ERR_PTR(-ENOENT);
1465
1466         if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1467                 *user = current_user();
1468                 if (user_shm_lock(size, *user)) {
1469                         task_lock(current);
1470                         pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is deprecated\n",
1471                                 current->comm, current->pid);
1472                         task_unlock(current);
1473                 } else {
1474                         *user = NULL;
1475                         return ERR_PTR(-EPERM);
1476                 }
1477         }
1478
1479         file = ERR_PTR(-ENOSPC);
1480         inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0);
1481         if (!inode)
1482                 goto out;
1483         if (creat_flags == HUGETLB_SHMFS_INODE)
1484                 inode->i_flags |= S_PRIVATE;
1485
1486         inode->i_size = size;
1487         clear_nlink(inode);
1488
1489         if (!hugetlb_reserve_pages(inode, 0,
1490                         size >> huge_page_shift(hstate_inode(inode)), NULL,
1491                         acctflag))
1492                 file = ERR_PTR(-ENOMEM);
1493         else
1494                 file = alloc_file_pseudo(inode, mnt, name, O_RDWR,
1495                                         &hugetlbfs_file_operations);
1496         if (!IS_ERR(file))
1497                 return file;
1498
1499         iput(inode);
1500 out:
1501         if (*user) {
1502                 user_shm_unlock(size, *user);
1503                 *user = NULL;
1504         }
1505         return file;
1506 }
1507
1508 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h)
1509 {
1510         struct fs_context *fc;
1511         struct vfsmount *mnt;
1512
1513         fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT);
1514         if (IS_ERR(fc)) {
1515                 mnt = ERR_CAST(fc);
1516         } else {
1517                 struct hugetlbfs_fs_context *ctx = fc->fs_private;
1518                 ctx->hstate = h;
1519                 mnt = fc_mount(fc);
1520                 put_fs_context(fc);
1521         }
1522         if (IS_ERR(mnt))
1523                 pr_err("Cannot mount internal hugetlbfs for page size %luK",
1524                        huge_page_size(h) >> 10);
1525         return mnt;
1526 }
1527
1528 static int __init init_hugetlbfs_fs(void)
1529 {
1530         struct vfsmount *mnt;
1531         struct hstate *h;
1532         int error;
1533         int i;
1534
1535         if (!hugepages_supported()) {
1536                 pr_info("disabling because there are no supported hugepage sizes\n");
1537                 return -ENOTSUPP;
1538         }
1539
1540         error = -ENOMEM;
1541         hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1542                                         sizeof(struct hugetlbfs_inode_info),
1543                                         0, SLAB_ACCOUNT, init_once);
1544         if (hugetlbfs_inode_cachep == NULL)
1545                 goto out;
1546
1547         error = register_filesystem(&hugetlbfs_fs_type);
1548         if (error)
1549                 goto out_free;
1550
1551         /* default hstate mount is required */
1552         mnt = mount_one_hugetlbfs(&default_hstate);
1553         if (IS_ERR(mnt)) {
1554                 error = PTR_ERR(mnt);
1555                 goto out_unreg;
1556         }
1557         hugetlbfs_vfsmount[default_hstate_idx] = mnt;
1558
1559         /* other hstates are optional */
1560         i = 0;
1561         for_each_hstate(h) {
1562                 if (i == default_hstate_idx) {
1563                         i++;
1564                         continue;
1565                 }
1566
1567                 mnt = mount_one_hugetlbfs(h);
1568                 if (IS_ERR(mnt))
1569                         hugetlbfs_vfsmount[i] = NULL;
1570                 else
1571                         hugetlbfs_vfsmount[i] = mnt;
1572                 i++;
1573         }
1574
1575         return 0;
1576
1577  out_unreg:
1578         (void)unregister_filesystem(&hugetlbfs_fs_type);
1579  out_free:
1580         kmem_cache_destroy(hugetlbfs_inode_cachep);
1581  out:
1582         return error;
1583 }
1584 fs_initcall(init_hugetlbfs_fs)