writeback, cgroup: keep list of inodes attached to bdi_writeback
[linux-2.6-microblaze.git] / fs / fs-writeback.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/fs-writeback.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  *
7  * Contains all the functions related to writing back and waiting
8  * upon dirty inodes against superblocks, and writing back dirty
9  * pages against inodes.  ie: data writeback.  Writeout of the
10  * inode itself is not handled here.
11  *
12  * 10Apr2002    Andrew Morton
13  *              Split out of fs/inode.c
14  *              Additions for address_space-based writeback
15  */
16
17 #include <linux/kernel.h>
18 #include <linux/export.h>
19 #include <linux/spinlock.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/fs.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/kthread.h>
26 #include <linux/writeback.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/tracepoint.h>
30 #include <linux/device.h>
31 #include <linux/memcontrol.h>
32 #include "internal.h"
33
34 /*
35  * 4MB minimal write chunk size
36  */
37 #define MIN_WRITEBACK_PAGES     (4096UL >> (PAGE_SHIFT - 10))
38
39 /*
40  * Passed into wb_writeback(), essentially a subset of writeback_control
41  */
42 struct wb_writeback_work {
43         long nr_pages;
44         struct super_block *sb;
45         enum writeback_sync_modes sync_mode;
46         unsigned int tagged_writepages:1;
47         unsigned int for_kupdate:1;
48         unsigned int range_cyclic:1;
49         unsigned int for_background:1;
50         unsigned int for_sync:1;        /* sync(2) WB_SYNC_ALL writeback */
51         unsigned int auto_free:1;       /* free on completion */
52         enum wb_reason reason;          /* why was writeback initiated? */
53
54         struct list_head list;          /* pending work list */
55         struct wb_completion *done;     /* set if the caller waits */
56 };
57
58 /*
59  * If an inode is constantly having its pages dirtied, but then the
60  * updates stop dirtytime_expire_interval seconds in the past, it's
61  * possible for the worst case time between when an inode has its
62  * timestamps updated and when they finally get written out to be two
63  * dirtytime_expire_intervals.  We set the default to 12 hours (in
64  * seconds), which means most of the time inodes will have their
65  * timestamps written to disk after 12 hours, but in the worst case a
66  * few inodes might not their timestamps updated for 24 hours.
67  */
68 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
69
70 static inline struct inode *wb_inode(struct list_head *head)
71 {
72         return list_entry(head, struct inode, i_io_list);
73 }
74
75 /*
76  * Include the creation of the trace points after defining the
77  * wb_writeback_work structure and inline functions so that the definition
78  * remains local to this file.
79  */
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/writeback.h>
82
83 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
84
85 static bool wb_io_lists_populated(struct bdi_writeback *wb)
86 {
87         if (wb_has_dirty_io(wb)) {
88                 return false;
89         } else {
90                 set_bit(WB_has_dirty_io, &wb->state);
91                 WARN_ON_ONCE(!wb->avg_write_bandwidth);
92                 atomic_long_add(wb->avg_write_bandwidth,
93                                 &wb->bdi->tot_write_bandwidth);
94                 return true;
95         }
96 }
97
98 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
99 {
100         if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
101             list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
102                 clear_bit(WB_has_dirty_io, &wb->state);
103                 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
104                                         &wb->bdi->tot_write_bandwidth) < 0);
105         }
106 }
107
108 /**
109  * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
110  * @inode: inode to be moved
111  * @wb: target bdi_writeback
112  * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
113  *
114  * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
115  * Returns %true if @inode is the first occupant of the !dirty_time IO
116  * lists; otherwise, %false.
117  */
118 static bool inode_io_list_move_locked(struct inode *inode,
119                                       struct bdi_writeback *wb,
120                                       struct list_head *head)
121 {
122         assert_spin_locked(&wb->list_lock);
123
124         list_move(&inode->i_io_list, head);
125
126         /* dirty_time doesn't count as dirty_io until expiration */
127         if (head != &wb->b_dirty_time)
128                 return wb_io_lists_populated(wb);
129
130         wb_io_lists_depopulated(wb);
131         return false;
132 }
133
134 static void wb_wakeup(struct bdi_writeback *wb)
135 {
136         spin_lock_bh(&wb->work_lock);
137         if (test_bit(WB_registered, &wb->state))
138                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
139         spin_unlock_bh(&wb->work_lock);
140 }
141
142 static void finish_writeback_work(struct bdi_writeback *wb,
143                                   struct wb_writeback_work *work)
144 {
145         struct wb_completion *done = work->done;
146
147         if (work->auto_free)
148                 kfree(work);
149         if (done) {
150                 wait_queue_head_t *waitq = done->waitq;
151
152                 /* @done can't be accessed after the following dec */
153                 if (atomic_dec_and_test(&done->cnt))
154                         wake_up_all(waitq);
155         }
156 }
157
158 static void wb_queue_work(struct bdi_writeback *wb,
159                           struct wb_writeback_work *work)
160 {
161         trace_writeback_queue(wb, work);
162
163         if (work->done)
164                 atomic_inc(&work->done->cnt);
165
166         spin_lock_bh(&wb->work_lock);
167
168         if (test_bit(WB_registered, &wb->state)) {
169                 list_add_tail(&work->list, &wb->work_list);
170                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
171         } else
172                 finish_writeback_work(wb, work);
173
174         spin_unlock_bh(&wb->work_lock);
175 }
176
177 /**
178  * wb_wait_for_completion - wait for completion of bdi_writeback_works
179  * @done: target wb_completion
180  *
181  * Wait for one or more work items issued to @bdi with their ->done field
182  * set to @done, which should have been initialized with
183  * DEFINE_WB_COMPLETION().  This function returns after all such work items
184  * are completed.  Work items which are waited upon aren't freed
185  * automatically on completion.
186  */
187 void wb_wait_for_completion(struct wb_completion *done)
188 {
189         atomic_dec(&done->cnt);         /* put down the initial count */
190         wait_event(*done->waitq, !atomic_read(&done->cnt));
191 }
192
193 #ifdef CONFIG_CGROUP_WRITEBACK
194
195 /*
196  * Parameters for foreign inode detection, see wbc_detach_inode() to see
197  * how they're used.
198  *
199  * These paramters are inherently heuristical as the detection target
200  * itself is fuzzy.  All we want to do is detaching an inode from the
201  * current owner if it's being written to by some other cgroups too much.
202  *
203  * The current cgroup writeback is built on the assumption that multiple
204  * cgroups writing to the same inode concurrently is very rare and a mode
205  * of operation which isn't well supported.  As such, the goal is not
206  * taking too long when a different cgroup takes over an inode while
207  * avoiding too aggressive flip-flops from occasional foreign writes.
208  *
209  * We record, very roughly, 2s worth of IO time history and if more than
210  * half of that is foreign, trigger the switch.  The recording is quantized
211  * to 16 slots.  To avoid tiny writes from swinging the decision too much,
212  * writes smaller than 1/8 of avg size are ignored.
213  */
214 #define WB_FRN_TIME_SHIFT       13      /* 1s = 2^13, upto 8 secs w/ 16bit */
215 #define WB_FRN_TIME_AVG_SHIFT   3       /* avg = avg * 7/8 + new * 1/8 */
216 #define WB_FRN_TIME_CUT_DIV     8       /* ignore rounds < avg / 8 */
217 #define WB_FRN_TIME_PERIOD      (2 * (1 << WB_FRN_TIME_SHIFT))  /* 2s */
218
219 #define WB_FRN_HIST_SLOTS       16      /* inode->i_wb_frn_history is 16bit */
220 #define WB_FRN_HIST_UNIT        (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
221                                         /* each slot's duration is 2s / 16 */
222 #define WB_FRN_HIST_THR_SLOTS   (WB_FRN_HIST_SLOTS / 2)
223                                         /* if foreign slots >= 8, switch */
224 #define WB_FRN_HIST_MAX_SLOTS   (WB_FRN_HIST_THR_SLOTS / 2 + 1)
225                                         /* one round can affect upto 5 slots */
226 #define WB_FRN_MAX_IN_FLIGHT    1024    /* don't queue too many concurrently */
227
228 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
229 static struct workqueue_struct *isw_wq;
230
231 void __inode_attach_wb(struct inode *inode, struct page *page)
232 {
233         struct backing_dev_info *bdi = inode_to_bdi(inode);
234         struct bdi_writeback *wb = NULL;
235
236         if (inode_cgwb_enabled(inode)) {
237                 struct cgroup_subsys_state *memcg_css;
238
239                 if (page) {
240                         memcg_css = mem_cgroup_css_from_page(page);
241                         wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
242                 } else {
243                         /* must pin memcg_css, see wb_get_create() */
244                         memcg_css = task_get_css(current, memory_cgrp_id);
245                         wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
246                         css_put(memcg_css);
247                 }
248         }
249
250         if (!wb)
251                 wb = &bdi->wb;
252
253         /*
254          * There may be multiple instances of this function racing to
255          * update the same inode.  Use cmpxchg() to tell the winner.
256          */
257         if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
258                 wb_put(wb);
259 }
260 EXPORT_SYMBOL_GPL(__inode_attach_wb);
261
262 /**
263  * inode_cgwb_move_to_attached - put the inode onto wb->b_attached list
264  * @inode: inode of interest with i_lock held
265  * @wb: target bdi_writeback
266  *
267  * Remove the inode from wb's io lists and if necessarily put onto b_attached
268  * list.  Only inodes attached to cgwb's are kept on this list.
269  */
270 static void inode_cgwb_move_to_attached(struct inode *inode,
271                                         struct bdi_writeback *wb)
272 {
273         assert_spin_locked(&wb->list_lock);
274         assert_spin_locked(&inode->i_lock);
275
276         inode->i_state &= ~I_SYNC_QUEUED;
277         if (wb != &wb->bdi->wb)
278                 list_move(&inode->i_io_list, &wb->b_attached);
279         else
280                 list_del_init(&inode->i_io_list);
281         wb_io_lists_depopulated(wb);
282 }
283
284 /**
285  * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
286  * @inode: inode of interest with i_lock held
287  *
288  * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
289  * held on entry and is released on return.  The returned wb is guaranteed
290  * to stay @inode's associated wb until its list_lock is released.
291  */
292 static struct bdi_writeback *
293 locked_inode_to_wb_and_lock_list(struct inode *inode)
294         __releases(&inode->i_lock)
295         __acquires(&wb->list_lock)
296 {
297         while (true) {
298                 struct bdi_writeback *wb = inode_to_wb(inode);
299
300                 /*
301                  * inode_to_wb() association is protected by both
302                  * @inode->i_lock and @wb->list_lock but list_lock nests
303                  * outside i_lock.  Drop i_lock and verify that the
304                  * association hasn't changed after acquiring list_lock.
305                  */
306                 wb_get(wb);
307                 spin_unlock(&inode->i_lock);
308                 spin_lock(&wb->list_lock);
309
310                 /* i_wb may have changed inbetween, can't use inode_to_wb() */
311                 if (likely(wb == inode->i_wb)) {
312                         wb_put(wb);     /* @inode already has ref */
313                         return wb;
314                 }
315
316                 spin_unlock(&wb->list_lock);
317                 wb_put(wb);
318                 cpu_relax();
319                 spin_lock(&inode->i_lock);
320         }
321 }
322
323 /**
324  * inode_to_wb_and_lock_list - determine an inode's wb and lock it
325  * @inode: inode of interest
326  *
327  * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
328  * on entry.
329  */
330 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
331         __acquires(&wb->list_lock)
332 {
333         spin_lock(&inode->i_lock);
334         return locked_inode_to_wb_and_lock_list(inode);
335 }
336
337 struct inode_switch_wbs_context {
338         struct inode            *inode;
339         struct bdi_writeback    *new_wb;
340
341         struct rcu_work         work;
342 };
343
344 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
345 {
346         down_write(&bdi->wb_switch_rwsem);
347 }
348
349 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
350 {
351         up_write(&bdi->wb_switch_rwsem);
352 }
353
354 static void inode_switch_wbs_work_fn(struct work_struct *work)
355 {
356         struct inode_switch_wbs_context *isw =
357                 container_of(to_rcu_work(work), struct inode_switch_wbs_context, work);
358         struct inode *inode = isw->inode;
359         struct backing_dev_info *bdi = inode_to_bdi(inode);
360         struct address_space *mapping = inode->i_mapping;
361         struct bdi_writeback *old_wb = inode->i_wb;
362         struct bdi_writeback *new_wb = isw->new_wb;
363         XA_STATE(xas, &mapping->i_pages, 0);
364         struct page *page;
365         bool switched = false;
366
367         /*
368          * If @inode switches cgwb membership while sync_inodes_sb() is
369          * being issued, sync_inodes_sb() might miss it.  Synchronize.
370          */
371         down_read(&bdi->wb_switch_rwsem);
372
373         /*
374          * By the time control reaches here, RCU grace period has passed
375          * since I_WB_SWITCH assertion and all wb stat update transactions
376          * between unlocked_inode_to_wb_begin/end() are guaranteed to be
377          * synchronizing against the i_pages lock.
378          *
379          * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
380          * gives us exclusion against all wb related operations on @inode
381          * including IO list manipulations and stat updates.
382          */
383         if (old_wb < new_wb) {
384                 spin_lock(&old_wb->list_lock);
385                 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
386         } else {
387                 spin_lock(&new_wb->list_lock);
388                 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
389         }
390         spin_lock(&inode->i_lock);
391         xa_lock_irq(&mapping->i_pages);
392
393         /*
394          * Once I_FREEING or I_WILL_FREE are visible under i_lock, the eviction
395          * path owns the inode and we shouldn't modify ->i_io_list.
396          */
397         if (unlikely(inode->i_state & (I_FREEING | I_WILL_FREE)))
398                 goto skip_switch;
399
400         trace_inode_switch_wbs(inode, old_wb, new_wb);
401
402         /*
403          * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
404          * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
405          * pages actually under writeback.
406          */
407         xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
408                 if (PageDirty(page)) {
409                         dec_wb_stat(old_wb, WB_RECLAIMABLE);
410                         inc_wb_stat(new_wb, WB_RECLAIMABLE);
411                 }
412         }
413
414         xas_set(&xas, 0);
415         xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
416                 WARN_ON_ONCE(!PageWriteback(page));
417                 dec_wb_stat(old_wb, WB_WRITEBACK);
418                 inc_wb_stat(new_wb, WB_WRITEBACK);
419         }
420
421         wb_get(new_wb);
422
423         /*
424          * Transfer to @new_wb's IO list if necessary.  If the @inode is dirty,
425          * the specific list @inode was on is ignored and the @inode is put on
426          * ->b_dirty which is always correct including from ->b_dirty_time.
427          * The transfer preserves @inode->dirtied_when ordering.  If the @inode
428          * was clean, it means it was on the b_attached list, so move it onto
429          * the b_attached list of @new_wb.
430          */
431         if (!list_empty(&inode->i_io_list)) {
432                 inode->i_wb = new_wb;
433
434                 if (inode->i_state & I_DIRTY_ALL) {
435                         struct inode *pos;
436
437                         list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
438                                 if (time_after_eq(inode->dirtied_when,
439                                                   pos->dirtied_when))
440                                         break;
441                         inode_io_list_move_locked(inode, new_wb,
442                                                   pos->i_io_list.prev);
443                 } else {
444                         inode_cgwb_move_to_attached(inode, new_wb);
445                 }
446         } else {
447                 inode->i_wb = new_wb;
448         }
449
450         /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
451         inode->i_wb_frn_winner = 0;
452         inode->i_wb_frn_avg_time = 0;
453         inode->i_wb_frn_history = 0;
454         switched = true;
455 skip_switch:
456         /*
457          * Paired with load_acquire in unlocked_inode_to_wb_begin() and
458          * ensures that the new wb is visible if they see !I_WB_SWITCH.
459          */
460         smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
461
462         xa_unlock_irq(&mapping->i_pages);
463         spin_unlock(&inode->i_lock);
464         spin_unlock(&new_wb->list_lock);
465         spin_unlock(&old_wb->list_lock);
466
467         up_read(&bdi->wb_switch_rwsem);
468
469         if (switched) {
470                 wb_wakeup(new_wb);
471                 wb_put(old_wb);
472         }
473         wb_put(new_wb);
474
475         iput(inode);
476         kfree(isw);
477
478         atomic_dec(&isw_nr_in_flight);
479 }
480
481 /**
482  * inode_switch_wbs - change the wb association of an inode
483  * @inode: target inode
484  * @new_wb_id: ID of the new wb
485  *
486  * Switch @inode's wb association to the wb identified by @new_wb_id.  The
487  * switching is performed asynchronously and may fail silently.
488  */
489 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
490 {
491         struct backing_dev_info *bdi = inode_to_bdi(inode);
492         struct cgroup_subsys_state *memcg_css;
493         struct inode_switch_wbs_context *isw;
494
495         /* noop if seems to be already in progress */
496         if (inode->i_state & I_WB_SWITCH)
497                 return;
498
499         /* avoid queueing a new switch if too many are already in flight */
500         if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT)
501                 return;
502
503         isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
504         if (!isw)
505                 return;
506
507         atomic_inc(&isw_nr_in_flight);
508
509         /* find and pin the new wb */
510         rcu_read_lock();
511         memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
512         if (memcg_css)
513                 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
514         rcu_read_unlock();
515         if (!isw->new_wb)
516                 goto out_free;
517
518         /* while holding I_WB_SWITCH, no one else can update the association */
519         spin_lock(&inode->i_lock);
520         if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
521             inode->i_state & (I_WB_SWITCH | I_FREEING | I_WILL_FREE) ||
522             inode_to_wb(inode) == isw->new_wb) {
523                 spin_unlock(&inode->i_lock);
524                 goto out_free;
525         }
526         inode->i_state |= I_WB_SWITCH;
527         __iget(inode);
528         spin_unlock(&inode->i_lock);
529
530         isw->inode = inode;
531
532         /*
533          * In addition to synchronizing among switchers, I_WB_SWITCH tells
534          * the RCU protected stat update paths to grab the i_page
535          * lock so that stat transfer can synchronize against them.
536          * Let's continue after I_WB_SWITCH is guaranteed to be visible.
537          */
538         INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
539         queue_rcu_work(isw_wq, &isw->work);
540         return;
541
542 out_free:
543         atomic_dec(&isw_nr_in_flight);
544         if (isw->new_wb)
545                 wb_put(isw->new_wb);
546         kfree(isw);
547 }
548
549 /**
550  * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
551  * @wbc: writeback_control of interest
552  * @inode: target inode
553  *
554  * @inode is locked and about to be written back under the control of @wbc.
555  * Record @inode's writeback context into @wbc and unlock the i_lock.  On
556  * writeback completion, wbc_detach_inode() should be called.  This is used
557  * to track the cgroup writeback context.
558  */
559 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
560                                  struct inode *inode)
561 {
562         if (!inode_cgwb_enabled(inode)) {
563                 spin_unlock(&inode->i_lock);
564                 return;
565         }
566
567         wbc->wb = inode_to_wb(inode);
568         wbc->inode = inode;
569
570         wbc->wb_id = wbc->wb->memcg_css->id;
571         wbc->wb_lcand_id = inode->i_wb_frn_winner;
572         wbc->wb_tcand_id = 0;
573         wbc->wb_bytes = 0;
574         wbc->wb_lcand_bytes = 0;
575         wbc->wb_tcand_bytes = 0;
576
577         wb_get(wbc->wb);
578         spin_unlock(&inode->i_lock);
579
580         /*
581          * A dying wb indicates that either the blkcg associated with the
582          * memcg changed or the associated memcg is dying.  In the first
583          * case, a replacement wb should already be available and we should
584          * refresh the wb immediately.  In the second case, trying to
585          * refresh will keep failing.
586          */
587         if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css)))
588                 inode_switch_wbs(inode, wbc->wb_id);
589 }
590 EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode);
591
592 /**
593  * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
594  * @wbc: writeback_control of the just finished writeback
595  *
596  * To be called after a writeback attempt of an inode finishes and undoes
597  * wbc_attach_and_unlock_inode().  Can be called under any context.
598  *
599  * As concurrent write sharing of an inode is expected to be very rare and
600  * memcg only tracks page ownership on first-use basis severely confining
601  * the usefulness of such sharing, cgroup writeback tracks ownership
602  * per-inode.  While the support for concurrent write sharing of an inode
603  * is deemed unnecessary, an inode being written to by different cgroups at
604  * different points in time is a lot more common, and, more importantly,
605  * charging only by first-use can too readily lead to grossly incorrect
606  * behaviors (single foreign page can lead to gigabytes of writeback to be
607  * incorrectly attributed).
608  *
609  * To resolve this issue, cgroup writeback detects the majority dirtier of
610  * an inode and transfers the ownership to it.  To avoid unnnecessary
611  * oscillation, the detection mechanism keeps track of history and gives
612  * out the switch verdict only if the foreign usage pattern is stable over
613  * a certain amount of time and/or writeback attempts.
614  *
615  * On each writeback attempt, @wbc tries to detect the majority writer
616  * using Boyer-Moore majority vote algorithm.  In addition to the byte
617  * count from the majority voting, it also counts the bytes written for the
618  * current wb and the last round's winner wb (max of last round's current
619  * wb, the winner from two rounds ago, and the last round's majority
620  * candidate).  Keeping track of the historical winner helps the algorithm
621  * to semi-reliably detect the most active writer even when it's not the
622  * absolute majority.
623  *
624  * Once the winner of the round is determined, whether the winner is
625  * foreign or not and how much IO time the round consumed is recorded in
626  * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
627  * over a certain threshold, the switch verdict is given.
628  */
629 void wbc_detach_inode(struct writeback_control *wbc)
630 {
631         struct bdi_writeback *wb = wbc->wb;
632         struct inode *inode = wbc->inode;
633         unsigned long avg_time, max_bytes, max_time;
634         u16 history;
635         int max_id;
636
637         if (!wb)
638                 return;
639
640         history = inode->i_wb_frn_history;
641         avg_time = inode->i_wb_frn_avg_time;
642
643         /* pick the winner of this round */
644         if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
645             wbc->wb_bytes >= wbc->wb_tcand_bytes) {
646                 max_id = wbc->wb_id;
647                 max_bytes = wbc->wb_bytes;
648         } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
649                 max_id = wbc->wb_lcand_id;
650                 max_bytes = wbc->wb_lcand_bytes;
651         } else {
652                 max_id = wbc->wb_tcand_id;
653                 max_bytes = wbc->wb_tcand_bytes;
654         }
655
656         /*
657          * Calculate the amount of IO time the winner consumed and fold it
658          * into the running average kept per inode.  If the consumed IO
659          * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
660          * deciding whether to switch or not.  This is to prevent one-off
661          * small dirtiers from skewing the verdict.
662          */
663         max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
664                                 wb->avg_write_bandwidth);
665         if (avg_time)
666                 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
667                             (avg_time >> WB_FRN_TIME_AVG_SHIFT);
668         else
669                 avg_time = max_time;    /* immediate catch up on first run */
670
671         if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
672                 int slots;
673
674                 /*
675                  * The switch verdict is reached if foreign wb's consume
676                  * more than a certain proportion of IO time in a
677                  * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
678                  * history mask where each bit represents one sixteenth of
679                  * the period.  Determine the number of slots to shift into
680                  * history from @max_time.
681                  */
682                 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
683                             (unsigned long)WB_FRN_HIST_MAX_SLOTS);
684                 history <<= slots;
685                 if (wbc->wb_id != max_id)
686                         history |= (1U << slots) - 1;
687
688                 if (history)
689                         trace_inode_foreign_history(inode, wbc, history);
690
691                 /*
692                  * Switch if the current wb isn't the consistent winner.
693                  * If there are multiple closely competing dirtiers, the
694                  * inode may switch across them repeatedly over time, which
695                  * is okay.  The main goal is avoiding keeping an inode on
696                  * the wrong wb for an extended period of time.
697                  */
698                 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
699                         inode_switch_wbs(inode, max_id);
700         }
701
702         /*
703          * Multiple instances of this function may race to update the
704          * following fields but we don't mind occassional inaccuracies.
705          */
706         inode->i_wb_frn_winner = max_id;
707         inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
708         inode->i_wb_frn_history = history;
709
710         wb_put(wbc->wb);
711         wbc->wb = NULL;
712 }
713 EXPORT_SYMBOL_GPL(wbc_detach_inode);
714
715 /**
716  * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership
717  * @wbc: writeback_control of the writeback in progress
718  * @page: page being written out
719  * @bytes: number of bytes being written out
720  *
721  * @bytes from @page are about to written out during the writeback
722  * controlled by @wbc.  Keep the book for foreign inode detection.  See
723  * wbc_detach_inode().
724  */
725 void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page,
726                               size_t bytes)
727 {
728         struct cgroup_subsys_state *css;
729         int id;
730
731         /*
732          * pageout() path doesn't attach @wbc to the inode being written
733          * out.  This is intentional as we don't want the function to block
734          * behind a slow cgroup.  Ultimately, we want pageout() to kick off
735          * regular writeback instead of writing things out itself.
736          */
737         if (!wbc->wb || wbc->no_cgroup_owner)
738                 return;
739
740         css = mem_cgroup_css_from_page(page);
741         /* dead cgroups shouldn't contribute to inode ownership arbitration */
742         if (!(css->flags & CSS_ONLINE))
743                 return;
744
745         id = css->id;
746
747         if (id == wbc->wb_id) {
748                 wbc->wb_bytes += bytes;
749                 return;
750         }
751
752         if (id == wbc->wb_lcand_id)
753                 wbc->wb_lcand_bytes += bytes;
754
755         /* Boyer-Moore majority vote algorithm */
756         if (!wbc->wb_tcand_bytes)
757                 wbc->wb_tcand_id = id;
758         if (id == wbc->wb_tcand_id)
759                 wbc->wb_tcand_bytes += bytes;
760         else
761                 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
762 }
763 EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner);
764
765 /**
766  * inode_congested - test whether an inode is congested
767  * @inode: inode to test for congestion (may be NULL)
768  * @cong_bits: mask of WB_[a]sync_congested bits to test
769  *
770  * Tests whether @inode is congested.  @cong_bits is the mask of congestion
771  * bits to test and the return value is the mask of set bits.
772  *
773  * If cgroup writeback is enabled for @inode, the congestion state is
774  * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
775  * associated with @inode is congested; otherwise, the root wb's congestion
776  * state is used.
777  *
778  * @inode is allowed to be NULL as this function is often called on
779  * mapping->host which is NULL for the swapper space.
780  */
781 int inode_congested(struct inode *inode, int cong_bits)
782 {
783         /*
784          * Once set, ->i_wb never becomes NULL while the inode is alive.
785          * Start transaction iff ->i_wb is visible.
786          */
787         if (inode && inode_to_wb_is_valid(inode)) {
788                 struct bdi_writeback *wb;
789                 struct wb_lock_cookie lock_cookie = {};
790                 bool congested;
791
792                 wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
793                 congested = wb_congested(wb, cong_bits);
794                 unlocked_inode_to_wb_end(inode, &lock_cookie);
795                 return congested;
796         }
797
798         return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
799 }
800 EXPORT_SYMBOL_GPL(inode_congested);
801
802 /**
803  * wb_split_bdi_pages - split nr_pages to write according to bandwidth
804  * @wb: target bdi_writeback to split @nr_pages to
805  * @nr_pages: number of pages to write for the whole bdi
806  *
807  * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
808  * relation to the total write bandwidth of all wb's w/ dirty inodes on
809  * @wb->bdi.
810  */
811 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
812 {
813         unsigned long this_bw = wb->avg_write_bandwidth;
814         unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
815
816         if (nr_pages == LONG_MAX)
817                 return LONG_MAX;
818
819         /*
820          * This may be called on clean wb's and proportional distribution
821          * may not make sense, just use the original @nr_pages in those
822          * cases.  In general, we wanna err on the side of writing more.
823          */
824         if (!tot_bw || this_bw >= tot_bw)
825                 return nr_pages;
826         else
827                 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
828 }
829
830 /**
831  * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
832  * @bdi: target backing_dev_info
833  * @base_work: wb_writeback_work to issue
834  * @skip_if_busy: skip wb's which already have writeback in progress
835  *
836  * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
837  * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
838  * distributed to the busy wbs according to each wb's proportion in the
839  * total active write bandwidth of @bdi.
840  */
841 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
842                                   struct wb_writeback_work *base_work,
843                                   bool skip_if_busy)
844 {
845         struct bdi_writeback *last_wb = NULL;
846         struct bdi_writeback *wb = list_entry(&bdi->wb_list,
847                                               struct bdi_writeback, bdi_node);
848
849         might_sleep();
850 restart:
851         rcu_read_lock();
852         list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
853                 DEFINE_WB_COMPLETION(fallback_work_done, bdi);
854                 struct wb_writeback_work fallback_work;
855                 struct wb_writeback_work *work;
856                 long nr_pages;
857
858                 if (last_wb) {
859                         wb_put(last_wb);
860                         last_wb = NULL;
861                 }
862
863                 /* SYNC_ALL writes out I_DIRTY_TIME too */
864                 if (!wb_has_dirty_io(wb) &&
865                     (base_work->sync_mode == WB_SYNC_NONE ||
866                      list_empty(&wb->b_dirty_time)))
867                         continue;
868                 if (skip_if_busy && writeback_in_progress(wb))
869                         continue;
870
871                 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
872
873                 work = kmalloc(sizeof(*work), GFP_ATOMIC);
874                 if (work) {
875                         *work = *base_work;
876                         work->nr_pages = nr_pages;
877                         work->auto_free = 1;
878                         wb_queue_work(wb, work);
879                         continue;
880                 }
881
882                 /* alloc failed, execute synchronously using on-stack fallback */
883                 work = &fallback_work;
884                 *work = *base_work;
885                 work->nr_pages = nr_pages;
886                 work->auto_free = 0;
887                 work->done = &fallback_work_done;
888
889                 wb_queue_work(wb, work);
890
891                 /*
892                  * Pin @wb so that it stays on @bdi->wb_list.  This allows
893                  * continuing iteration from @wb after dropping and
894                  * regrabbing rcu read lock.
895                  */
896                 wb_get(wb);
897                 last_wb = wb;
898
899                 rcu_read_unlock();
900                 wb_wait_for_completion(&fallback_work_done);
901                 goto restart;
902         }
903         rcu_read_unlock();
904
905         if (last_wb)
906                 wb_put(last_wb);
907 }
908
909 /**
910  * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs
911  * @bdi_id: target bdi id
912  * @memcg_id: target memcg css id
913  * @nr: number of pages to write, 0 for best-effort dirty flushing
914  * @reason: reason why some writeback work initiated
915  * @done: target wb_completion
916  *
917  * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id
918  * with the specified parameters.
919  */
920 int cgroup_writeback_by_id(u64 bdi_id, int memcg_id, unsigned long nr,
921                            enum wb_reason reason, struct wb_completion *done)
922 {
923         struct backing_dev_info *bdi;
924         struct cgroup_subsys_state *memcg_css;
925         struct bdi_writeback *wb;
926         struct wb_writeback_work *work;
927         int ret;
928
929         /* lookup bdi and memcg */
930         bdi = bdi_get_by_id(bdi_id);
931         if (!bdi)
932                 return -ENOENT;
933
934         rcu_read_lock();
935         memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys);
936         if (memcg_css && !css_tryget(memcg_css))
937                 memcg_css = NULL;
938         rcu_read_unlock();
939         if (!memcg_css) {
940                 ret = -ENOENT;
941                 goto out_bdi_put;
942         }
943
944         /*
945          * And find the associated wb.  If the wb isn't there already
946          * there's nothing to flush, don't create one.
947          */
948         wb = wb_get_lookup(bdi, memcg_css);
949         if (!wb) {
950                 ret = -ENOENT;
951                 goto out_css_put;
952         }
953
954         /*
955          * If @nr is zero, the caller is attempting to write out most of
956          * the currently dirty pages.  Let's take the current dirty page
957          * count and inflate it by 25% which should be large enough to
958          * flush out most dirty pages while avoiding getting livelocked by
959          * concurrent dirtiers.
960          */
961         if (!nr) {
962                 unsigned long filepages, headroom, dirty, writeback;
963
964                 mem_cgroup_wb_stats(wb, &filepages, &headroom, &dirty,
965                                       &writeback);
966                 nr = dirty * 10 / 8;
967         }
968
969         /* issue the writeback work */
970         work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN);
971         if (work) {
972                 work->nr_pages = nr;
973                 work->sync_mode = WB_SYNC_NONE;
974                 work->range_cyclic = 1;
975                 work->reason = reason;
976                 work->done = done;
977                 work->auto_free = 1;
978                 wb_queue_work(wb, work);
979                 ret = 0;
980         } else {
981                 ret = -ENOMEM;
982         }
983
984         wb_put(wb);
985 out_css_put:
986         css_put(memcg_css);
987 out_bdi_put:
988         bdi_put(bdi);
989         return ret;
990 }
991
992 /**
993  * cgroup_writeback_umount - flush inode wb switches for umount
994  *
995  * This function is called when a super_block is about to be destroyed and
996  * flushes in-flight inode wb switches.  An inode wb switch goes through
997  * RCU and then workqueue, so the two need to be flushed in order to ensure
998  * that all previously scheduled switches are finished.  As wb switches are
999  * rare occurrences and synchronize_rcu() can take a while, perform
1000  * flushing iff wb switches are in flight.
1001  */
1002 void cgroup_writeback_umount(void)
1003 {
1004         /*
1005          * SB_ACTIVE should be reliably cleared before checking
1006          * isw_nr_in_flight, see generic_shutdown_super().
1007          */
1008         smp_mb();
1009
1010         if (atomic_read(&isw_nr_in_flight)) {
1011                 /*
1012                  * Use rcu_barrier() to wait for all pending callbacks to
1013                  * ensure that all in-flight wb switches are in the workqueue.
1014                  */
1015                 rcu_barrier();
1016                 flush_workqueue(isw_wq);
1017         }
1018 }
1019
1020 static int __init cgroup_writeback_init(void)
1021 {
1022         isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
1023         if (!isw_wq)
1024                 return -ENOMEM;
1025         return 0;
1026 }
1027 fs_initcall(cgroup_writeback_init);
1028
1029 #else   /* CONFIG_CGROUP_WRITEBACK */
1030
1031 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1032 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1033
1034 static void inode_cgwb_move_to_attached(struct inode *inode,
1035                                         struct bdi_writeback *wb)
1036 {
1037         assert_spin_locked(&wb->list_lock);
1038         assert_spin_locked(&inode->i_lock);
1039
1040         inode->i_state &= ~I_SYNC_QUEUED;
1041         list_del_init(&inode->i_io_list);
1042         wb_io_lists_depopulated(wb);
1043 }
1044
1045 static struct bdi_writeback *
1046 locked_inode_to_wb_and_lock_list(struct inode *inode)
1047         __releases(&inode->i_lock)
1048         __acquires(&wb->list_lock)
1049 {
1050         struct bdi_writeback *wb = inode_to_wb(inode);
1051
1052         spin_unlock(&inode->i_lock);
1053         spin_lock(&wb->list_lock);
1054         return wb;
1055 }
1056
1057 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
1058         __acquires(&wb->list_lock)
1059 {
1060         struct bdi_writeback *wb = inode_to_wb(inode);
1061
1062         spin_lock(&wb->list_lock);
1063         return wb;
1064 }
1065
1066 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
1067 {
1068         return nr_pages;
1069 }
1070
1071 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
1072                                   struct wb_writeback_work *base_work,
1073                                   bool skip_if_busy)
1074 {
1075         might_sleep();
1076
1077         if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
1078                 base_work->auto_free = 0;
1079                 wb_queue_work(&bdi->wb, base_work);
1080         }
1081 }
1082
1083 #endif  /* CONFIG_CGROUP_WRITEBACK */
1084
1085 /*
1086  * Add in the number of potentially dirty inodes, because each inode
1087  * write can dirty pagecache in the underlying blockdev.
1088  */
1089 static unsigned long get_nr_dirty_pages(void)
1090 {
1091         return global_node_page_state(NR_FILE_DIRTY) +
1092                 get_nr_dirty_inodes();
1093 }
1094
1095 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
1096 {
1097         if (!wb_has_dirty_io(wb))
1098                 return;
1099
1100         /*
1101          * All callers of this function want to start writeback of all
1102          * dirty pages. Places like vmscan can call this at a very
1103          * high frequency, causing pointless allocations of tons of
1104          * work items and keeping the flusher threads busy retrieving
1105          * that work. Ensure that we only allow one of them pending and
1106          * inflight at the time.
1107          */
1108         if (test_bit(WB_start_all, &wb->state) ||
1109             test_and_set_bit(WB_start_all, &wb->state))
1110                 return;
1111
1112         wb->start_all_reason = reason;
1113         wb_wakeup(wb);
1114 }
1115
1116 /**
1117  * wb_start_background_writeback - start background writeback
1118  * @wb: bdi_writback to write from
1119  *
1120  * Description:
1121  *   This makes sure WB_SYNC_NONE background writeback happens. When
1122  *   this function returns, it is only guaranteed that for given wb
1123  *   some IO is happening if we are over background dirty threshold.
1124  *   Caller need not hold sb s_umount semaphore.
1125  */
1126 void wb_start_background_writeback(struct bdi_writeback *wb)
1127 {
1128         /*
1129          * We just wake up the flusher thread. It will perform background
1130          * writeback as soon as there is no other work to do.
1131          */
1132         trace_writeback_wake_background(wb);
1133         wb_wakeup(wb);
1134 }
1135
1136 /*
1137  * Remove the inode from the writeback list it is on.
1138  */
1139 void inode_io_list_del(struct inode *inode)
1140 {
1141         struct bdi_writeback *wb;
1142
1143         wb = inode_to_wb_and_lock_list(inode);
1144         spin_lock(&inode->i_lock);
1145
1146         inode->i_state &= ~I_SYNC_QUEUED;
1147         list_del_init(&inode->i_io_list);
1148         wb_io_lists_depopulated(wb);
1149
1150         spin_unlock(&inode->i_lock);
1151         spin_unlock(&wb->list_lock);
1152 }
1153 EXPORT_SYMBOL(inode_io_list_del);
1154
1155 /*
1156  * mark an inode as under writeback on the sb
1157  */
1158 void sb_mark_inode_writeback(struct inode *inode)
1159 {
1160         struct super_block *sb = inode->i_sb;
1161         unsigned long flags;
1162
1163         if (list_empty(&inode->i_wb_list)) {
1164                 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1165                 if (list_empty(&inode->i_wb_list)) {
1166                         list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1167                         trace_sb_mark_inode_writeback(inode);
1168                 }
1169                 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1170         }
1171 }
1172
1173 /*
1174  * clear an inode as under writeback on the sb
1175  */
1176 void sb_clear_inode_writeback(struct inode *inode)
1177 {
1178         struct super_block *sb = inode->i_sb;
1179         unsigned long flags;
1180
1181         if (!list_empty(&inode->i_wb_list)) {
1182                 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1183                 if (!list_empty(&inode->i_wb_list)) {
1184                         list_del_init(&inode->i_wb_list);
1185                         trace_sb_clear_inode_writeback(inode);
1186                 }
1187                 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1188         }
1189 }
1190
1191 /*
1192  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1193  * furthest end of its superblock's dirty-inode list.
1194  *
1195  * Before stamping the inode's ->dirtied_when, we check to see whether it is
1196  * already the most-recently-dirtied inode on the b_dirty list.  If that is
1197  * the case then the inode must have been redirtied while it was being written
1198  * out and we don't reset its dirtied_when.
1199  */
1200 static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb)
1201 {
1202         assert_spin_locked(&inode->i_lock);
1203
1204         if (!list_empty(&wb->b_dirty)) {
1205                 struct inode *tail;
1206
1207                 tail = wb_inode(wb->b_dirty.next);
1208                 if (time_before(inode->dirtied_when, tail->dirtied_when))
1209                         inode->dirtied_when = jiffies;
1210         }
1211         inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1212         inode->i_state &= ~I_SYNC_QUEUED;
1213 }
1214
1215 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1216 {
1217         spin_lock(&inode->i_lock);
1218         redirty_tail_locked(inode, wb);
1219         spin_unlock(&inode->i_lock);
1220 }
1221
1222 /*
1223  * requeue inode for re-scanning after bdi->b_io list is exhausted.
1224  */
1225 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1226 {
1227         inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1228 }
1229
1230 static void inode_sync_complete(struct inode *inode)
1231 {
1232         inode->i_state &= ~I_SYNC;
1233         /* If inode is clean an unused, put it into LRU now... */
1234         inode_add_lru(inode);
1235         /* Waiters must see I_SYNC cleared before being woken up */
1236         smp_mb();
1237         wake_up_bit(&inode->i_state, __I_SYNC);
1238 }
1239
1240 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1241 {
1242         bool ret = time_after(inode->dirtied_when, t);
1243 #ifndef CONFIG_64BIT
1244         /*
1245          * For inodes being constantly redirtied, dirtied_when can get stuck.
1246          * It _appears_ to be in the future, but is actually in distant past.
1247          * This test is necessary to prevent such wrapped-around relative times
1248          * from permanently stopping the whole bdi writeback.
1249          */
1250         ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1251 #endif
1252         return ret;
1253 }
1254
1255 #define EXPIRE_DIRTY_ATIME 0x0001
1256
1257 /*
1258  * Move expired (dirtied before dirtied_before) dirty inodes from
1259  * @delaying_queue to @dispatch_queue.
1260  */
1261 static int move_expired_inodes(struct list_head *delaying_queue,
1262                                struct list_head *dispatch_queue,
1263                                unsigned long dirtied_before)
1264 {
1265         LIST_HEAD(tmp);
1266         struct list_head *pos, *node;
1267         struct super_block *sb = NULL;
1268         struct inode *inode;
1269         int do_sb_sort = 0;
1270         int moved = 0;
1271
1272         while (!list_empty(delaying_queue)) {
1273                 inode = wb_inode(delaying_queue->prev);
1274                 if (inode_dirtied_after(inode, dirtied_before))
1275                         break;
1276                 list_move(&inode->i_io_list, &tmp);
1277                 moved++;
1278                 spin_lock(&inode->i_lock);
1279                 inode->i_state |= I_SYNC_QUEUED;
1280                 spin_unlock(&inode->i_lock);
1281                 if (sb_is_blkdev_sb(inode->i_sb))
1282                         continue;
1283                 if (sb && sb != inode->i_sb)
1284                         do_sb_sort = 1;
1285                 sb = inode->i_sb;
1286         }
1287
1288         /* just one sb in list, splice to dispatch_queue and we're done */
1289         if (!do_sb_sort) {
1290                 list_splice(&tmp, dispatch_queue);
1291                 goto out;
1292         }
1293
1294         /* Move inodes from one superblock together */
1295         while (!list_empty(&tmp)) {
1296                 sb = wb_inode(tmp.prev)->i_sb;
1297                 list_for_each_prev_safe(pos, node, &tmp) {
1298                         inode = wb_inode(pos);
1299                         if (inode->i_sb == sb)
1300                                 list_move(&inode->i_io_list, dispatch_queue);
1301                 }
1302         }
1303 out:
1304         return moved;
1305 }
1306
1307 /*
1308  * Queue all expired dirty inodes for io, eldest first.
1309  * Before
1310  *         newly dirtied     b_dirty    b_io    b_more_io
1311  *         =============>    gf         edc     BA
1312  * After
1313  *         newly dirtied     b_dirty    b_io    b_more_io
1314  *         =============>    g          fBAedc
1315  *                                           |
1316  *                                           +--> dequeue for IO
1317  */
1318 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work,
1319                      unsigned long dirtied_before)
1320 {
1321         int moved;
1322         unsigned long time_expire_jif = dirtied_before;
1323
1324         assert_spin_locked(&wb->list_lock);
1325         list_splice_init(&wb->b_more_io, &wb->b_io);
1326         moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before);
1327         if (!work->for_sync)
1328                 time_expire_jif = jiffies - dirtytime_expire_interval * HZ;
1329         moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1330                                      time_expire_jif);
1331         if (moved)
1332                 wb_io_lists_populated(wb);
1333         trace_writeback_queue_io(wb, work, dirtied_before, moved);
1334 }
1335
1336 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1337 {
1338         int ret;
1339
1340         if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1341                 trace_writeback_write_inode_start(inode, wbc);
1342                 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1343                 trace_writeback_write_inode(inode, wbc);
1344                 return ret;
1345         }
1346         return 0;
1347 }
1348
1349 /*
1350  * Wait for writeback on an inode to complete. Called with i_lock held.
1351  * Caller must make sure inode cannot go away when we drop i_lock.
1352  */
1353 static void __inode_wait_for_writeback(struct inode *inode)
1354         __releases(inode->i_lock)
1355         __acquires(inode->i_lock)
1356 {
1357         DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1358         wait_queue_head_t *wqh;
1359
1360         wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1361         while (inode->i_state & I_SYNC) {
1362                 spin_unlock(&inode->i_lock);
1363                 __wait_on_bit(wqh, &wq, bit_wait,
1364                               TASK_UNINTERRUPTIBLE);
1365                 spin_lock(&inode->i_lock);
1366         }
1367 }
1368
1369 /*
1370  * Wait for writeback on an inode to complete. Caller must have inode pinned.
1371  */
1372 void inode_wait_for_writeback(struct inode *inode)
1373 {
1374         spin_lock(&inode->i_lock);
1375         __inode_wait_for_writeback(inode);
1376         spin_unlock(&inode->i_lock);
1377 }
1378
1379 /*
1380  * Sleep until I_SYNC is cleared. This function must be called with i_lock
1381  * held and drops it. It is aimed for callers not holding any inode reference
1382  * so once i_lock is dropped, inode can go away.
1383  */
1384 static void inode_sleep_on_writeback(struct inode *inode)
1385         __releases(inode->i_lock)
1386 {
1387         DEFINE_WAIT(wait);
1388         wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1389         int sleep;
1390
1391         prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1392         sleep = inode->i_state & I_SYNC;
1393         spin_unlock(&inode->i_lock);
1394         if (sleep)
1395                 schedule();
1396         finish_wait(wqh, &wait);
1397 }
1398
1399 /*
1400  * Find proper writeback list for the inode depending on its current state and
1401  * possibly also change of its state while we were doing writeback.  Here we
1402  * handle things such as livelock prevention or fairness of writeback among
1403  * inodes. This function can be called only by flusher thread - noone else
1404  * processes all inodes in writeback lists and requeueing inodes behind flusher
1405  * thread's back can have unexpected consequences.
1406  */
1407 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1408                           struct writeback_control *wbc)
1409 {
1410         if (inode->i_state & I_FREEING)
1411                 return;
1412
1413         /*
1414          * Sync livelock prevention. Each inode is tagged and synced in one
1415          * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1416          * the dirty time to prevent enqueue and sync it again.
1417          */
1418         if ((inode->i_state & I_DIRTY) &&
1419             (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1420                 inode->dirtied_when = jiffies;
1421
1422         if (wbc->pages_skipped) {
1423                 /*
1424                  * writeback is not making progress due to locked
1425                  * buffers. Skip this inode for now.
1426                  */
1427                 redirty_tail_locked(inode, wb);
1428                 return;
1429         }
1430
1431         if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1432                 /*
1433                  * We didn't write back all the pages.  nfs_writepages()
1434                  * sometimes bales out without doing anything.
1435                  */
1436                 if (wbc->nr_to_write <= 0) {
1437                         /* Slice used up. Queue for next turn. */
1438                         requeue_io(inode, wb);
1439                 } else {
1440                         /*
1441                          * Writeback blocked by something other than
1442                          * congestion. Delay the inode for some time to
1443                          * avoid spinning on the CPU (100% iowait)
1444                          * retrying writeback of the dirty page/inode
1445                          * that cannot be performed immediately.
1446                          */
1447                         redirty_tail_locked(inode, wb);
1448                 }
1449         } else if (inode->i_state & I_DIRTY) {
1450                 /*
1451                  * Filesystems can dirty the inode during writeback operations,
1452                  * such as delayed allocation during submission or metadata
1453                  * updates after data IO completion.
1454                  */
1455                 redirty_tail_locked(inode, wb);
1456         } else if (inode->i_state & I_DIRTY_TIME) {
1457                 inode->dirtied_when = jiffies;
1458                 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1459                 inode->i_state &= ~I_SYNC_QUEUED;
1460         } else {
1461                 /* The inode is clean. Remove from writeback lists. */
1462                 inode_cgwb_move_to_attached(inode, wb);
1463         }
1464 }
1465
1466 /*
1467  * Write out an inode and its dirty pages (or some of its dirty pages, depending
1468  * on @wbc->nr_to_write), and clear the relevant dirty flags from i_state.
1469  *
1470  * This doesn't remove the inode from the writeback list it is on, except
1471  * potentially to move it from b_dirty_time to b_dirty due to timestamp
1472  * expiration.  The caller is otherwise responsible for writeback list handling.
1473  *
1474  * The caller is also responsible for setting the I_SYNC flag beforehand and
1475  * calling inode_sync_complete() to clear it afterwards.
1476  */
1477 static int
1478 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1479 {
1480         struct address_space *mapping = inode->i_mapping;
1481         long nr_to_write = wbc->nr_to_write;
1482         unsigned dirty;
1483         int ret;
1484
1485         WARN_ON(!(inode->i_state & I_SYNC));
1486
1487         trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1488
1489         ret = do_writepages(mapping, wbc);
1490
1491         /*
1492          * Make sure to wait on the data before writing out the metadata.
1493          * This is important for filesystems that modify metadata on data
1494          * I/O completion. We don't do it for sync(2) writeback because it has a
1495          * separate, external IO completion path and ->sync_fs for guaranteeing
1496          * inode metadata is written back correctly.
1497          */
1498         if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1499                 int err = filemap_fdatawait(mapping);
1500                 if (ret == 0)
1501                         ret = err;
1502         }
1503
1504         /*
1505          * If the inode has dirty timestamps and we need to write them, call
1506          * mark_inode_dirty_sync() to notify the filesystem about it and to
1507          * change I_DIRTY_TIME into I_DIRTY_SYNC.
1508          */
1509         if ((inode->i_state & I_DIRTY_TIME) &&
1510             (wbc->sync_mode == WB_SYNC_ALL ||
1511              time_after(jiffies, inode->dirtied_time_when +
1512                         dirtytime_expire_interval * HZ))) {
1513                 trace_writeback_lazytime(inode);
1514                 mark_inode_dirty_sync(inode);
1515         }
1516
1517         /*
1518          * Get and clear the dirty flags from i_state.  This needs to be done
1519          * after calling writepages because some filesystems may redirty the
1520          * inode during writepages due to delalloc.  It also needs to be done
1521          * after handling timestamp expiration, as that may dirty the inode too.
1522          */
1523         spin_lock(&inode->i_lock);
1524         dirty = inode->i_state & I_DIRTY;
1525         inode->i_state &= ~dirty;
1526
1527         /*
1528          * Paired with smp_mb() in __mark_inode_dirty().  This allows
1529          * __mark_inode_dirty() to test i_state without grabbing i_lock -
1530          * either they see the I_DIRTY bits cleared or we see the dirtied
1531          * inode.
1532          *
1533          * I_DIRTY_PAGES is always cleared together above even if @mapping
1534          * still has dirty pages.  The flag is reinstated after smp_mb() if
1535          * necessary.  This guarantees that either __mark_inode_dirty()
1536          * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1537          */
1538         smp_mb();
1539
1540         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1541                 inode->i_state |= I_DIRTY_PAGES;
1542
1543         spin_unlock(&inode->i_lock);
1544
1545         /* Don't write the inode if only I_DIRTY_PAGES was set */
1546         if (dirty & ~I_DIRTY_PAGES) {
1547                 int err = write_inode(inode, wbc);
1548                 if (ret == 0)
1549                         ret = err;
1550         }
1551         trace_writeback_single_inode(inode, wbc, nr_to_write);
1552         return ret;
1553 }
1554
1555 /*
1556  * Write out an inode's dirty data and metadata on-demand, i.e. separately from
1557  * the regular batched writeback done by the flusher threads in
1558  * writeback_sb_inodes().  @wbc controls various aspects of the write, such as
1559  * whether it is a data-integrity sync (%WB_SYNC_ALL) or not (%WB_SYNC_NONE).
1560  *
1561  * To prevent the inode from going away, either the caller must have a reference
1562  * to the inode, or the inode must have I_WILL_FREE or I_FREEING set.
1563  */
1564 static int writeback_single_inode(struct inode *inode,
1565                                   struct writeback_control *wbc)
1566 {
1567         struct bdi_writeback *wb;
1568         int ret = 0;
1569
1570         spin_lock(&inode->i_lock);
1571         if (!atomic_read(&inode->i_count))
1572                 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1573         else
1574                 WARN_ON(inode->i_state & I_WILL_FREE);
1575
1576         if (inode->i_state & I_SYNC) {
1577                 /*
1578                  * Writeback is already running on the inode.  For WB_SYNC_NONE,
1579                  * that's enough and we can just return.  For WB_SYNC_ALL, we
1580                  * must wait for the existing writeback to complete, then do
1581                  * writeback again if there's anything left.
1582                  */
1583                 if (wbc->sync_mode != WB_SYNC_ALL)
1584                         goto out;
1585                 __inode_wait_for_writeback(inode);
1586         }
1587         WARN_ON(inode->i_state & I_SYNC);
1588         /*
1589          * If the inode is already fully clean, then there's nothing to do.
1590          *
1591          * For data-integrity syncs we also need to check whether any pages are
1592          * still under writeback, e.g. due to prior WB_SYNC_NONE writeback.  If
1593          * there are any such pages, we'll need to wait for them.
1594          */
1595         if (!(inode->i_state & I_DIRTY_ALL) &&
1596             (wbc->sync_mode != WB_SYNC_ALL ||
1597              !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1598                 goto out;
1599         inode->i_state |= I_SYNC;
1600         wbc_attach_and_unlock_inode(wbc, inode);
1601
1602         ret = __writeback_single_inode(inode, wbc);
1603
1604         wbc_detach_inode(wbc);
1605
1606         wb = inode_to_wb_and_lock_list(inode);
1607         spin_lock(&inode->i_lock);
1608         /*
1609          * If the inode is now fully clean, then it can be safely removed from
1610          * its writeback list (if any).  Otherwise the flusher threads are
1611          * responsible for the writeback lists.
1612          */
1613         if (!(inode->i_state & I_DIRTY_ALL))
1614                 inode_cgwb_move_to_attached(inode, wb);
1615         spin_unlock(&wb->list_lock);
1616         inode_sync_complete(inode);
1617 out:
1618         spin_unlock(&inode->i_lock);
1619         return ret;
1620 }
1621
1622 static long writeback_chunk_size(struct bdi_writeback *wb,
1623                                  struct wb_writeback_work *work)
1624 {
1625         long pages;
1626
1627         /*
1628          * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1629          * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1630          * here avoids calling into writeback_inodes_wb() more than once.
1631          *
1632          * The intended call sequence for WB_SYNC_ALL writeback is:
1633          *
1634          *      wb_writeback()
1635          *          writeback_sb_inodes()       <== called only once
1636          *              write_cache_pages()     <== called once for each inode
1637          *                   (quickly) tag currently dirty pages
1638          *                   (maybe slowly) sync all tagged pages
1639          */
1640         if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1641                 pages = LONG_MAX;
1642         else {
1643                 pages = min(wb->avg_write_bandwidth / 2,
1644                             global_wb_domain.dirty_limit / DIRTY_SCOPE);
1645                 pages = min(pages, work->nr_pages);
1646                 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1647                                    MIN_WRITEBACK_PAGES);
1648         }
1649
1650         return pages;
1651 }
1652
1653 /*
1654  * Write a portion of b_io inodes which belong to @sb.
1655  *
1656  * Return the number of pages and/or inodes written.
1657  *
1658  * NOTE! This is called with wb->list_lock held, and will
1659  * unlock and relock that for each inode it ends up doing
1660  * IO for.
1661  */
1662 static long writeback_sb_inodes(struct super_block *sb,
1663                                 struct bdi_writeback *wb,
1664                                 struct wb_writeback_work *work)
1665 {
1666         struct writeback_control wbc = {
1667                 .sync_mode              = work->sync_mode,
1668                 .tagged_writepages      = work->tagged_writepages,
1669                 .for_kupdate            = work->for_kupdate,
1670                 .for_background         = work->for_background,
1671                 .for_sync               = work->for_sync,
1672                 .range_cyclic           = work->range_cyclic,
1673                 .range_start            = 0,
1674                 .range_end              = LLONG_MAX,
1675         };
1676         unsigned long start_time = jiffies;
1677         long write_chunk;
1678         long wrote = 0;  /* count both pages and inodes */
1679
1680         while (!list_empty(&wb->b_io)) {
1681                 struct inode *inode = wb_inode(wb->b_io.prev);
1682                 struct bdi_writeback *tmp_wb;
1683
1684                 if (inode->i_sb != sb) {
1685                         if (work->sb) {
1686                                 /*
1687                                  * We only want to write back data for this
1688                                  * superblock, move all inodes not belonging
1689                                  * to it back onto the dirty list.
1690                                  */
1691                                 redirty_tail(inode, wb);
1692                                 continue;
1693                         }
1694
1695                         /*
1696                          * The inode belongs to a different superblock.
1697                          * Bounce back to the caller to unpin this and
1698                          * pin the next superblock.
1699                          */
1700                         break;
1701                 }
1702
1703                 /*
1704                  * Don't bother with new inodes or inodes being freed, first
1705                  * kind does not need periodic writeout yet, and for the latter
1706                  * kind writeout is handled by the freer.
1707                  */
1708                 spin_lock(&inode->i_lock);
1709                 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1710                         redirty_tail_locked(inode, wb);
1711                         spin_unlock(&inode->i_lock);
1712                         continue;
1713                 }
1714                 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1715                         /*
1716                          * If this inode is locked for writeback and we are not
1717                          * doing writeback-for-data-integrity, move it to
1718                          * b_more_io so that writeback can proceed with the
1719                          * other inodes on s_io.
1720                          *
1721                          * We'll have another go at writing back this inode
1722                          * when we completed a full scan of b_io.
1723                          */
1724                         spin_unlock(&inode->i_lock);
1725                         requeue_io(inode, wb);
1726                         trace_writeback_sb_inodes_requeue(inode);
1727                         continue;
1728                 }
1729                 spin_unlock(&wb->list_lock);
1730
1731                 /*
1732                  * We already requeued the inode if it had I_SYNC set and we
1733                  * are doing WB_SYNC_NONE writeback. So this catches only the
1734                  * WB_SYNC_ALL case.
1735                  */
1736                 if (inode->i_state & I_SYNC) {
1737                         /* Wait for I_SYNC. This function drops i_lock... */
1738                         inode_sleep_on_writeback(inode);
1739                         /* Inode may be gone, start again */
1740                         spin_lock(&wb->list_lock);
1741                         continue;
1742                 }
1743                 inode->i_state |= I_SYNC;
1744                 wbc_attach_and_unlock_inode(&wbc, inode);
1745
1746                 write_chunk = writeback_chunk_size(wb, work);
1747                 wbc.nr_to_write = write_chunk;
1748                 wbc.pages_skipped = 0;
1749
1750                 /*
1751                  * We use I_SYNC to pin the inode in memory. While it is set
1752                  * evict_inode() will wait so the inode cannot be freed.
1753                  */
1754                 __writeback_single_inode(inode, &wbc);
1755
1756                 wbc_detach_inode(&wbc);
1757                 work->nr_pages -= write_chunk - wbc.nr_to_write;
1758                 wrote += write_chunk - wbc.nr_to_write;
1759
1760                 if (need_resched()) {
1761                         /*
1762                          * We're trying to balance between building up a nice
1763                          * long list of IOs to improve our merge rate, and
1764                          * getting those IOs out quickly for anyone throttling
1765                          * in balance_dirty_pages().  cond_resched() doesn't
1766                          * unplug, so get our IOs out the door before we
1767                          * give up the CPU.
1768                          */
1769                         blk_flush_plug(current);
1770                         cond_resched();
1771                 }
1772
1773                 /*
1774                  * Requeue @inode if still dirty.  Be careful as @inode may
1775                  * have been switched to another wb in the meantime.
1776                  */
1777                 tmp_wb = inode_to_wb_and_lock_list(inode);
1778                 spin_lock(&inode->i_lock);
1779                 if (!(inode->i_state & I_DIRTY_ALL))
1780                         wrote++;
1781                 requeue_inode(inode, tmp_wb, &wbc);
1782                 inode_sync_complete(inode);
1783                 spin_unlock(&inode->i_lock);
1784
1785                 if (unlikely(tmp_wb != wb)) {
1786                         spin_unlock(&tmp_wb->list_lock);
1787                         spin_lock(&wb->list_lock);
1788                 }
1789
1790                 /*
1791                  * bail out to wb_writeback() often enough to check
1792                  * background threshold and other termination conditions.
1793                  */
1794                 if (wrote) {
1795                         if (time_is_before_jiffies(start_time + HZ / 10UL))
1796                                 break;
1797                         if (work->nr_pages <= 0)
1798                                 break;
1799                 }
1800         }
1801         return wrote;
1802 }
1803
1804 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1805                                   struct wb_writeback_work *work)
1806 {
1807         unsigned long start_time = jiffies;
1808         long wrote = 0;
1809
1810         while (!list_empty(&wb->b_io)) {
1811                 struct inode *inode = wb_inode(wb->b_io.prev);
1812                 struct super_block *sb = inode->i_sb;
1813
1814                 if (!trylock_super(sb)) {
1815                         /*
1816                          * trylock_super() may fail consistently due to
1817                          * s_umount being grabbed by someone else. Don't use
1818                          * requeue_io() to avoid busy retrying the inode/sb.
1819                          */
1820                         redirty_tail(inode, wb);
1821                         continue;
1822                 }
1823                 wrote += writeback_sb_inodes(sb, wb, work);
1824                 up_read(&sb->s_umount);
1825
1826                 /* refer to the same tests at the end of writeback_sb_inodes */
1827                 if (wrote) {
1828                         if (time_is_before_jiffies(start_time + HZ / 10UL))
1829                                 break;
1830                         if (work->nr_pages <= 0)
1831                                 break;
1832                 }
1833         }
1834         /* Leave any unwritten inodes on b_io */
1835         return wrote;
1836 }
1837
1838 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1839                                 enum wb_reason reason)
1840 {
1841         struct wb_writeback_work work = {
1842                 .nr_pages       = nr_pages,
1843                 .sync_mode      = WB_SYNC_NONE,
1844                 .range_cyclic   = 1,
1845                 .reason         = reason,
1846         };
1847         struct blk_plug plug;
1848
1849         blk_start_plug(&plug);
1850         spin_lock(&wb->list_lock);
1851         if (list_empty(&wb->b_io))
1852                 queue_io(wb, &work, jiffies);
1853         __writeback_inodes_wb(wb, &work);
1854         spin_unlock(&wb->list_lock);
1855         blk_finish_plug(&plug);
1856
1857         return nr_pages - work.nr_pages;
1858 }
1859
1860 /*
1861  * Explicit flushing or periodic writeback of "old" data.
1862  *
1863  * Define "old": the first time one of an inode's pages is dirtied, we mark the
1864  * dirtying-time in the inode's address_space.  So this periodic writeback code
1865  * just walks the superblock inode list, writing back any inodes which are
1866  * older than a specific point in time.
1867  *
1868  * Try to run once per dirty_writeback_interval.  But if a writeback event
1869  * takes longer than a dirty_writeback_interval interval, then leave a
1870  * one-second gap.
1871  *
1872  * dirtied_before takes precedence over nr_to_write.  So we'll only write back
1873  * all dirty pages if they are all attached to "old" mappings.
1874  */
1875 static long wb_writeback(struct bdi_writeback *wb,
1876                          struct wb_writeback_work *work)
1877 {
1878         unsigned long wb_start = jiffies;
1879         long nr_pages = work->nr_pages;
1880         unsigned long dirtied_before = jiffies;
1881         struct inode *inode;
1882         long progress;
1883         struct blk_plug plug;
1884
1885         blk_start_plug(&plug);
1886         spin_lock(&wb->list_lock);
1887         for (;;) {
1888                 /*
1889                  * Stop writeback when nr_pages has been consumed
1890                  */
1891                 if (work->nr_pages <= 0)
1892                         break;
1893
1894                 /*
1895                  * Background writeout and kupdate-style writeback may
1896                  * run forever. Stop them if there is other work to do
1897                  * so that e.g. sync can proceed. They'll be restarted
1898                  * after the other works are all done.
1899                  */
1900                 if ((work->for_background || work->for_kupdate) &&
1901                     !list_empty(&wb->work_list))
1902                         break;
1903
1904                 /*
1905                  * For background writeout, stop when we are below the
1906                  * background dirty threshold
1907                  */
1908                 if (work->for_background && !wb_over_bg_thresh(wb))
1909                         break;
1910
1911                 /*
1912                  * Kupdate and background works are special and we want to
1913                  * include all inodes that need writing. Livelock avoidance is
1914                  * handled by these works yielding to any other work so we are
1915                  * safe.
1916                  */
1917                 if (work->for_kupdate) {
1918                         dirtied_before = jiffies -
1919                                 msecs_to_jiffies(dirty_expire_interval * 10);
1920                 } else if (work->for_background)
1921                         dirtied_before = jiffies;
1922
1923                 trace_writeback_start(wb, work);
1924                 if (list_empty(&wb->b_io))
1925                         queue_io(wb, work, dirtied_before);
1926                 if (work->sb)
1927                         progress = writeback_sb_inodes(work->sb, wb, work);
1928                 else
1929                         progress = __writeback_inodes_wb(wb, work);
1930                 trace_writeback_written(wb, work);
1931
1932                 wb_update_bandwidth(wb, wb_start);
1933
1934                 /*
1935                  * Did we write something? Try for more
1936                  *
1937                  * Dirty inodes are moved to b_io for writeback in batches.
1938                  * The completion of the current batch does not necessarily
1939                  * mean the overall work is done. So we keep looping as long
1940                  * as made some progress on cleaning pages or inodes.
1941                  */
1942                 if (progress)
1943                         continue;
1944                 /*
1945                  * No more inodes for IO, bail
1946                  */
1947                 if (list_empty(&wb->b_more_io))
1948                         break;
1949                 /*
1950                  * Nothing written. Wait for some inode to
1951                  * become available for writeback. Otherwise
1952                  * we'll just busyloop.
1953                  */
1954                 trace_writeback_wait(wb, work);
1955                 inode = wb_inode(wb->b_more_io.prev);
1956                 spin_lock(&inode->i_lock);
1957                 spin_unlock(&wb->list_lock);
1958                 /* This function drops i_lock... */
1959                 inode_sleep_on_writeback(inode);
1960                 spin_lock(&wb->list_lock);
1961         }
1962         spin_unlock(&wb->list_lock);
1963         blk_finish_plug(&plug);
1964
1965         return nr_pages - work->nr_pages;
1966 }
1967
1968 /*
1969  * Return the next wb_writeback_work struct that hasn't been processed yet.
1970  */
1971 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1972 {
1973         struct wb_writeback_work *work = NULL;
1974
1975         spin_lock_bh(&wb->work_lock);
1976         if (!list_empty(&wb->work_list)) {
1977                 work = list_entry(wb->work_list.next,
1978                                   struct wb_writeback_work, list);
1979                 list_del_init(&work->list);
1980         }
1981         spin_unlock_bh(&wb->work_lock);
1982         return work;
1983 }
1984
1985 static long wb_check_background_flush(struct bdi_writeback *wb)
1986 {
1987         if (wb_over_bg_thresh(wb)) {
1988
1989                 struct wb_writeback_work work = {
1990                         .nr_pages       = LONG_MAX,
1991                         .sync_mode      = WB_SYNC_NONE,
1992                         .for_background = 1,
1993                         .range_cyclic   = 1,
1994                         .reason         = WB_REASON_BACKGROUND,
1995                 };
1996
1997                 return wb_writeback(wb, &work);
1998         }
1999
2000         return 0;
2001 }
2002
2003 static long wb_check_old_data_flush(struct bdi_writeback *wb)
2004 {
2005         unsigned long expired;
2006         long nr_pages;
2007
2008         /*
2009          * When set to zero, disable periodic writeback
2010          */
2011         if (!dirty_writeback_interval)
2012                 return 0;
2013
2014         expired = wb->last_old_flush +
2015                         msecs_to_jiffies(dirty_writeback_interval * 10);
2016         if (time_before(jiffies, expired))
2017                 return 0;
2018
2019         wb->last_old_flush = jiffies;
2020         nr_pages = get_nr_dirty_pages();
2021
2022         if (nr_pages) {
2023                 struct wb_writeback_work work = {
2024                         .nr_pages       = nr_pages,
2025                         .sync_mode      = WB_SYNC_NONE,
2026                         .for_kupdate    = 1,
2027                         .range_cyclic   = 1,
2028                         .reason         = WB_REASON_PERIODIC,
2029                 };
2030
2031                 return wb_writeback(wb, &work);
2032         }
2033
2034         return 0;
2035 }
2036
2037 static long wb_check_start_all(struct bdi_writeback *wb)
2038 {
2039         long nr_pages;
2040
2041         if (!test_bit(WB_start_all, &wb->state))
2042                 return 0;
2043
2044         nr_pages = get_nr_dirty_pages();
2045         if (nr_pages) {
2046                 struct wb_writeback_work work = {
2047                         .nr_pages       = wb_split_bdi_pages(wb, nr_pages),
2048                         .sync_mode      = WB_SYNC_NONE,
2049                         .range_cyclic   = 1,
2050                         .reason         = wb->start_all_reason,
2051                 };
2052
2053                 nr_pages = wb_writeback(wb, &work);
2054         }
2055
2056         clear_bit(WB_start_all, &wb->state);
2057         return nr_pages;
2058 }
2059
2060
2061 /*
2062  * Retrieve work items and do the writeback they describe
2063  */
2064 static long wb_do_writeback(struct bdi_writeback *wb)
2065 {
2066         struct wb_writeback_work *work;
2067         long wrote = 0;
2068
2069         set_bit(WB_writeback_running, &wb->state);
2070         while ((work = get_next_work_item(wb)) != NULL) {
2071                 trace_writeback_exec(wb, work);
2072                 wrote += wb_writeback(wb, work);
2073                 finish_writeback_work(wb, work);
2074         }
2075
2076         /*
2077          * Check for a flush-everything request
2078          */
2079         wrote += wb_check_start_all(wb);
2080
2081         /*
2082          * Check for periodic writeback, kupdated() style
2083          */
2084         wrote += wb_check_old_data_flush(wb);
2085         wrote += wb_check_background_flush(wb);
2086         clear_bit(WB_writeback_running, &wb->state);
2087
2088         return wrote;
2089 }
2090
2091 /*
2092  * Handle writeback of dirty data for the device backed by this bdi. Also
2093  * reschedules periodically and does kupdated style flushing.
2094  */
2095 void wb_workfn(struct work_struct *work)
2096 {
2097         struct bdi_writeback *wb = container_of(to_delayed_work(work),
2098                                                 struct bdi_writeback, dwork);
2099         long pages_written;
2100
2101         set_worker_desc("flush-%s", bdi_dev_name(wb->bdi));
2102         current->flags |= PF_SWAPWRITE;
2103
2104         if (likely(!current_is_workqueue_rescuer() ||
2105                    !test_bit(WB_registered, &wb->state))) {
2106                 /*
2107                  * The normal path.  Keep writing back @wb until its
2108                  * work_list is empty.  Note that this path is also taken
2109                  * if @wb is shutting down even when we're running off the
2110                  * rescuer as work_list needs to be drained.
2111                  */
2112                 do {
2113                         pages_written = wb_do_writeback(wb);
2114                         trace_writeback_pages_written(pages_written);
2115                 } while (!list_empty(&wb->work_list));
2116         } else {
2117                 /*
2118                  * bdi_wq can't get enough workers and we're running off
2119                  * the emergency worker.  Don't hog it.  Hopefully, 1024 is
2120                  * enough for efficient IO.
2121                  */
2122                 pages_written = writeback_inodes_wb(wb, 1024,
2123                                                     WB_REASON_FORKER_THREAD);
2124                 trace_writeback_pages_written(pages_written);
2125         }
2126
2127         if (!list_empty(&wb->work_list))
2128                 wb_wakeup(wb);
2129         else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
2130                 wb_wakeup_delayed(wb);
2131
2132         current->flags &= ~PF_SWAPWRITE;
2133 }
2134
2135 /*
2136  * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2137  * write back the whole world.
2138  */
2139 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2140                                          enum wb_reason reason)
2141 {
2142         struct bdi_writeback *wb;
2143
2144         if (!bdi_has_dirty_io(bdi))
2145                 return;
2146
2147         list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2148                 wb_start_writeback(wb, reason);
2149 }
2150
2151 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2152                                 enum wb_reason reason)
2153 {
2154         rcu_read_lock();
2155         __wakeup_flusher_threads_bdi(bdi, reason);
2156         rcu_read_unlock();
2157 }
2158
2159 /*
2160  * Wakeup the flusher threads to start writeback of all currently dirty pages
2161  */
2162 void wakeup_flusher_threads(enum wb_reason reason)
2163 {
2164         struct backing_dev_info *bdi;
2165
2166         /*
2167          * If we are expecting writeback progress we must submit plugged IO.
2168          */
2169         if (blk_needs_flush_plug(current))
2170                 blk_schedule_flush_plug(current);
2171
2172         rcu_read_lock();
2173         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2174                 __wakeup_flusher_threads_bdi(bdi, reason);
2175         rcu_read_unlock();
2176 }
2177
2178 /*
2179  * Wake up bdi's periodically to make sure dirtytime inodes gets
2180  * written back periodically.  We deliberately do *not* check the
2181  * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2182  * kernel to be constantly waking up once there are any dirtytime
2183  * inodes on the system.  So instead we define a separate delayed work
2184  * function which gets called much more rarely.  (By default, only
2185  * once every 12 hours.)
2186  *
2187  * If there is any other write activity going on in the file system,
2188  * this function won't be necessary.  But if the only thing that has
2189  * happened on the file system is a dirtytime inode caused by an atime
2190  * update, we need this infrastructure below to make sure that inode
2191  * eventually gets pushed out to disk.
2192  */
2193 static void wakeup_dirtytime_writeback(struct work_struct *w);
2194 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2195
2196 static void wakeup_dirtytime_writeback(struct work_struct *w)
2197 {
2198         struct backing_dev_info *bdi;
2199
2200         rcu_read_lock();
2201         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2202                 struct bdi_writeback *wb;
2203
2204                 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2205                         if (!list_empty(&wb->b_dirty_time))
2206                                 wb_wakeup(wb);
2207         }
2208         rcu_read_unlock();
2209         schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2210 }
2211
2212 static int __init start_dirtytime_writeback(void)
2213 {
2214         schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2215         return 0;
2216 }
2217 __initcall(start_dirtytime_writeback);
2218
2219 int dirtytime_interval_handler(struct ctl_table *table, int write,
2220                                void *buffer, size_t *lenp, loff_t *ppos)
2221 {
2222         int ret;
2223
2224         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2225         if (ret == 0 && write)
2226                 mod_delayed_work(system_wq, &dirtytime_work, 0);
2227         return ret;
2228 }
2229
2230 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
2231 {
2232         if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
2233                 struct dentry *dentry;
2234                 const char *name = "?";
2235
2236                 dentry = d_find_alias(inode);
2237                 if (dentry) {
2238                         spin_lock(&dentry->d_lock);
2239                         name = (const char *) dentry->d_name.name;
2240                 }
2241                 printk(KERN_DEBUG
2242                        "%s(%d): dirtied inode %lu (%s) on %s\n",
2243                        current->comm, task_pid_nr(current), inode->i_ino,
2244                        name, inode->i_sb->s_id);
2245                 if (dentry) {
2246                         spin_unlock(&dentry->d_lock);
2247                         dput(dentry);
2248                 }
2249         }
2250 }
2251
2252 /**
2253  * __mark_inode_dirty - internal function to mark an inode dirty
2254  *
2255  * @inode: inode to mark
2256  * @flags: what kind of dirty, e.g. I_DIRTY_SYNC.  This can be a combination of
2257  *         multiple I_DIRTY_* flags, except that I_DIRTY_TIME can't be combined
2258  *         with I_DIRTY_PAGES.
2259  *
2260  * Mark an inode as dirty.  We notify the filesystem, then update the inode's
2261  * dirty flags.  Then, if needed we add the inode to the appropriate dirty list.
2262  *
2263  * Most callers should use mark_inode_dirty() or mark_inode_dirty_sync()
2264  * instead of calling this directly.
2265  *
2266  * CAREFUL!  We only add the inode to the dirty list if it is hashed or if it
2267  * refers to a blockdev.  Unhashed inodes will never be added to the dirty list
2268  * even if they are later hashed, as they will have been marked dirty already.
2269  *
2270  * In short, ensure you hash any inodes _before_ you start marking them dirty.
2271  *
2272  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2273  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
2274  * the kernel-internal blockdev inode represents the dirtying time of the
2275  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
2276  * page->mapping->host, so the page-dirtying time is recorded in the internal
2277  * blockdev inode.
2278  */
2279 void __mark_inode_dirty(struct inode *inode, int flags)
2280 {
2281         struct super_block *sb = inode->i_sb;
2282         int dirtytime = 0;
2283
2284         trace_writeback_mark_inode_dirty(inode, flags);
2285
2286         if (flags & I_DIRTY_INODE) {
2287                 /*
2288                  * Notify the filesystem about the inode being dirtied, so that
2289                  * (if needed) it can update on-disk fields and journal the
2290                  * inode.  This is only needed when the inode itself is being
2291                  * dirtied now.  I.e. it's only needed for I_DIRTY_INODE, not
2292                  * for just I_DIRTY_PAGES or I_DIRTY_TIME.
2293                  */
2294                 trace_writeback_dirty_inode_start(inode, flags);
2295                 if (sb->s_op->dirty_inode)
2296                         sb->s_op->dirty_inode(inode, flags & I_DIRTY_INODE);
2297                 trace_writeback_dirty_inode(inode, flags);
2298
2299                 /* I_DIRTY_INODE supersedes I_DIRTY_TIME. */
2300                 flags &= ~I_DIRTY_TIME;
2301         } else {
2302                 /*
2303                  * Else it's either I_DIRTY_PAGES, I_DIRTY_TIME, or nothing.
2304                  * (We don't support setting both I_DIRTY_PAGES and I_DIRTY_TIME
2305                  * in one call to __mark_inode_dirty().)
2306                  */
2307                 dirtytime = flags & I_DIRTY_TIME;
2308                 WARN_ON_ONCE(dirtytime && flags != I_DIRTY_TIME);
2309         }
2310
2311         /*
2312          * Paired with smp_mb() in __writeback_single_inode() for the
2313          * following lockless i_state test.  See there for details.
2314          */
2315         smp_mb();
2316
2317         if (((inode->i_state & flags) == flags) ||
2318             (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2319                 return;
2320
2321         if (unlikely(block_dump))
2322                 block_dump___mark_inode_dirty(inode);
2323
2324         spin_lock(&inode->i_lock);
2325         if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2326                 goto out_unlock_inode;
2327         if ((inode->i_state & flags) != flags) {
2328                 const int was_dirty = inode->i_state & I_DIRTY;
2329
2330                 inode_attach_wb(inode, NULL);
2331
2332                 /* I_DIRTY_INODE supersedes I_DIRTY_TIME. */
2333                 if (flags & I_DIRTY_INODE)
2334                         inode->i_state &= ~I_DIRTY_TIME;
2335                 inode->i_state |= flags;
2336
2337                 /*
2338                  * If the inode is queued for writeback by flush worker, just
2339                  * update its dirty state. Once the flush worker is done with
2340                  * the inode it will place it on the appropriate superblock
2341                  * list, based upon its state.
2342                  */
2343                 if (inode->i_state & I_SYNC_QUEUED)
2344                         goto out_unlock_inode;
2345
2346                 /*
2347                  * Only add valid (hashed) inodes to the superblock's
2348                  * dirty list.  Add blockdev inodes as well.
2349                  */
2350                 if (!S_ISBLK(inode->i_mode)) {
2351                         if (inode_unhashed(inode))
2352                                 goto out_unlock_inode;
2353                 }
2354                 if (inode->i_state & I_FREEING)
2355                         goto out_unlock_inode;
2356
2357                 /*
2358                  * If the inode was already on b_dirty/b_io/b_more_io, don't
2359                  * reposition it (that would break b_dirty time-ordering).
2360                  */
2361                 if (!was_dirty) {
2362                         struct bdi_writeback *wb;
2363                         struct list_head *dirty_list;
2364                         bool wakeup_bdi = false;
2365
2366                         wb = locked_inode_to_wb_and_lock_list(inode);
2367
2368                         inode->dirtied_when = jiffies;
2369                         if (dirtytime)
2370                                 inode->dirtied_time_when = jiffies;
2371
2372                         if (inode->i_state & I_DIRTY)
2373                                 dirty_list = &wb->b_dirty;
2374                         else
2375                                 dirty_list = &wb->b_dirty_time;
2376
2377                         wakeup_bdi = inode_io_list_move_locked(inode, wb,
2378                                                                dirty_list);
2379
2380                         spin_unlock(&wb->list_lock);
2381                         trace_writeback_dirty_inode_enqueue(inode);
2382
2383                         /*
2384                          * If this is the first dirty inode for this bdi,
2385                          * we have to wake-up the corresponding bdi thread
2386                          * to make sure background write-back happens
2387                          * later.
2388                          */
2389                         if (wakeup_bdi &&
2390                             (wb->bdi->capabilities & BDI_CAP_WRITEBACK))
2391                                 wb_wakeup_delayed(wb);
2392                         return;
2393                 }
2394         }
2395 out_unlock_inode:
2396         spin_unlock(&inode->i_lock);
2397 }
2398 EXPORT_SYMBOL(__mark_inode_dirty);
2399
2400 /*
2401  * The @s_sync_lock is used to serialise concurrent sync operations
2402  * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2403  * Concurrent callers will block on the s_sync_lock rather than doing contending
2404  * walks. The queueing maintains sync(2) required behaviour as all the IO that
2405  * has been issued up to the time this function is enter is guaranteed to be
2406  * completed by the time we have gained the lock and waited for all IO that is
2407  * in progress regardless of the order callers are granted the lock.
2408  */
2409 static void wait_sb_inodes(struct super_block *sb)
2410 {
2411         LIST_HEAD(sync_list);
2412
2413         /*
2414          * We need to be protected against the filesystem going from
2415          * r/o to r/w or vice versa.
2416          */
2417         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2418
2419         mutex_lock(&sb->s_sync_lock);
2420
2421         /*
2422          * Splice the writeback list onto a temporary list to avoid waiting on
2423          * inodes that have started writeback after this point.
2424          *
2425          * Use rcu_read_lock() to keep the inodes around until we have a
2426          * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2427          * the local list because inodes can be dropped from either by writeback
2428          * completion.
2429          */
2430         rcu_read_lock();
2431         spin_lock_irq(&sb->s_inode_wblist_lock);
2432         list_splice_init(&sb->s_inodes_wb, &sync_list);
2433
2434         /*
2435          * Data integrity sync. Must wait for all pages under writeback, because
2436          * there may have been pages dirtied before our sync call, but which had
2437          * writeout started before we write it out.  In which case, the inode
2438          * may not be on the dirty list, but we still have to wait for that
2439          * writeout.
2440          */
2441         while (!list_empty(&sync_list)) {
2442                 struct inode *inode = list_first_entry(&sync_list, struct inode,
2443                                                        i_wb_list);
2444                 struct address_space *mapping = inode->i_mapping;
2445
2446                 /*
2447                  * Move each inode back to the wb list before we drop the lock
2448                  * to preserve consistency between i_wb_list and the mapping
2449                  * writeback tag. Writeback completion is responsible to remove
2450                  * the inode from either list once the writeback tag is cleared.
2451                  */
2452                 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2453
2454                 /*
2455                  * The mapping can appear untagged while still on-list since we
2456                  * do not have the mapping lock. Skip it here, wb completion
2457                  * will remove it.
2458                  */
2459                 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2460                         continue;
2461
2462                 spin_unlock_irq(&sb->s_inode_wblist_lock);
2463
2464                 spin_lock(&inode->i_lock);
2465                 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2466                         spin_unlock(&inode->i_lock);
2467
2468                         spin_lock_irq(&sb->s_inode_wblist_lock);
2469                         continue;
2470                 }
2471                 __iget(inode);
2472                 spin_unlock(&inode->i_lock);
2473                 rcu_read_unlock();
2474
2475                 /*
2476                  * We keep the error status of individual mapping so that
2477                  * applications can catch the writeback error using fsync(2).
2478                  * See filemap_fdatawait_keep_errors() for details.
2479                  */
2480                 filemap_fdatawait_keep_errors(mapping);
2481
2482                 cond_resched();
2483
2484                 iput(inode);
2485
2486                 rcu_read_lock();
2487                 spin_lock_irq(&sb->s_inode_wblist_lock);
2488         }
2489         spin_unlock_irq(&sb->s_inode_wblist_lock);
2490         rcu_read_unlock();
2491         mutex_unlock(&sb->s_sync_lock);
2492 }
2493
2494 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2495                                      enum wb_reason reason, bool skip_if_busy)
2496 {
2497         struct backing_dev_info *bdi = sb->s_bdi;
2498         DEFINE_WB_COMPLETION(done, bdi);
2499         struct wb_writeback_work work = {
2500                 .sb                     = sb,
2501                 .sync_mode              = WB_SYNC_NONE,
2502                 .tagged_writepages      = 1,
2503                 .done                   = &done,
2504                 .nr_pages               = nr,
2505                 .reason                 = reason,
2506         };
2507
2508         if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2509                 return;
2510         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2511
2512         bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2513         wb_wait_for_completion(&done);
2514 }
2515
2516 /**
2517  * writeback_inodes_sb_nr -     writeback dirty inodes from given super_block
2518  * @sb: the superblock
2519  * @nr: the number of pages to write
2520  * @reason: reason why some writeback work initiated
2521  *
2522  * Start writeback on some inodes on this super_block. No guarantees are made
2523  * on how many (if any) will be written, and this function does not wait
2524  * for IO completion of submitted IO.
2525  */
2526 void writeback_inodes_sb_nr(struct super_block *sb,
2527                             unsigned long nr,
2528                             enum wb_reason reason)
2529 {
2530         __writeback_inodes_sb_nr(sb, nr, reason, false);
2531 }
2532 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2533
2534 /**
2535  * writeback_inodes_sb  -       writeback dirty inodes from given super_block
2536  * @sb: the superblock
2537  * @reason: reason why some writeback work was initiated
2538  *
2539  * Start writeback on some inodes on this super_block. No guarantees are made
2540  * on how many (if any) will be written, and this function does not wait
2541  * for IO completion of submitted IO.
2542  */
2543 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2544 {
2545         return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2546 }
2547 EXPORT_SYMBOL(writeback_inodes_sb);
2548
2549 /**
2550  * try_to_writeback_inodes_sb - try to start writeback if none underway
2551  * @sb: the superblock
2552  * @reason: reason why some writeback work was initiated
2553  *
2554  * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2555  */
2556 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2557 {
2558         if (!down_read_trylock(&sb->s_umount))
2559                 return;
2560
2561         __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2562         up_read(&sb->s_umount);
2563 }
2564 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2565
2566 /**
2567  * sync_inodes_sb       -       sync sb inode pages
2568  * @sb: the superblock
2569  *
2570  * This function writes and waits on any dirty inode belonging to this
2571  * super_block.
2572  */
2573 void sync_inodes_sb(struct super_block *sb)
2574 {
2575         struct backing_dev_info *bdi = sb->s_bdi;
2576         DEFINE_WB_COMPLETION(done, bdi);
2577         struct wb_writeback_work work = {
2578                 .sb             = sb,
2579                 .sync_mode      = WB_SYNC_ALL,
2580                 .nr_pages       = LONG_MAX,
2581                 .range_cyclic   = 0,
2582                 .done           = &done,
2583                 .reason         = WB_REASON_SYNC,
2584                 .for_sync       = 1,
2585         };
2586
2587         /*
2588          * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2589          * inodes under writeback and I_DIRTY_TIME inodes ignored by
2590          * bdi_has_dirty() need to be written out too.
2591          */
2592         if (bdi == &noop_backing_dev_info)
2593                 return;
2594         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2595
2596         /* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2597         bdi_down_write_wb_switch_rwsem(bdi);
2598         bdi_split_work_to_wbs(bdi, &work, false);
2599         wb_wait_for_completion(&done);
2600         bdi_up_write_wb_switch_rwsem(bdi);
2601
2602         wait_sb_inodes(sb);
2603 }
2604 EXPORT_SYMBOL(sync_inodes_sb);
2605
2606 /**
2607  * write_inode_now      -       write an inode to disk
2608  * @inode: inode to write to disk
2609  * @sync: whether the write should be synchronous or not
2610  *
2611  * This function commits an inode to disk immediately if it is dirty. This is
2612  * primarily needed by knfsd.
2613  *
2614  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2615  */
2616 int write_inode_now(struct inode *inode, int sync)
2617 {
2618         struct writeback_control wbc = {
2619                 .nr_to_write = LONG_MAX,
2620                 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2621                 .range_start = 0,
2622                 .range_end = LLONG_MAX,
2623         };
2624
2625         if (!mapping_can_writeback(inode->i_mapping))
2626                 wbc.nr_to_write = 0;
2627
2628         might_sleep();
2629         return writeback_single_inode(inode, &wbc);
2630 }
2631 EXPORT_SYMBOL(write_inode_now);
2632
2633 /**
2634  * sync_inode - write an inode and its pages to disk.
2635  * @inode: the inode to sync
2636  * @wbc: controls the writeback mode
2637  *
2638  * sync_inode() will write an inode and its pages to disk.  It will also
2639  * correctly update the inode on its superblock's dirty inode lists and will
2640  * update inode->i_state.
2641  *
2642  * The caller must have a ref on the inode.
2643  */
2644 int sync_inode(struct inode *inode, struct writeback_control *wbc)
2645 {
2646         return writeback_single_inode(inode, wbc);
2647 }
2648 EXPORT_SYMBOL(sync_inode);
2649
2650 /**
2651  * sync_inode_metadata - write an inode to disk
2652  * @inode: the inode to sync
2653  * @wait: wait for I/O to complete.
2654  *
2655  * Write an inode to disk and adjust its dirty state after completion.
2656  *
2657  * Note: only writes the actual inode, no associated data or other metadata.
2658  */
2659 int sync_inode_metadata(struct inode *inode, int wait)
2660 {
2661         struct writeback_control wbc = {
2662                 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2663                 .nr_to_write = 0, /* metadata-only */
2664         };
2665
2666         return sync_inode(inode, &wbc);
2667 }
2668 EXPORT_SYMBOL(sync_inode_metadata);