Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/hid/hid
[linux-2.6-microblaze.git] / fs / fs-writeback.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/fs-writeback.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  *
7  * Contains all the functions related to writing back and waiting
8  * upon dirty inodes against superblocks, and writing back dirty
9  * pages against inodes.  ie: data writeback.  Writeout of the
10  * inode itself is not handled here.
11  *
12  * 10Apr2002    Andrew Morton
13  *              Split out of fs/inode.c
14  *              Additions for address_space-based writeback
15  */
16
17 #include <linux/kernel.h>
18 #include <linux/export.h>
19 #include <linux/spinlock.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/fs.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/kthread.h>
26 #include <linux/writeback.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/tracepoint.h>
30 #include <linux/device.h>
31 #include <linux/memcontrol.h>
32 #include "internal.h"
33
34 /*
35  * 4MB minimal write chunk size
36  */
37 #define MIN_WRITEBACK_PAGES     (4096UL >> (PAGE_SHIFT - 10))
38
39 /*
40  * Passed into wb_writeback(), essentially a subset of writeback_control
41  */
42 struct wb_writeback_work {
43         long nr_pages;
44         struct super_block *sb;
45         enum writeback_sync_modes sync_mode;
46         unsigned int tagged_writepages:1;
47         unsigned int for_kupdate:1;
48         unsigned int range_cyclic:1;
49         unsigned int for_background:1;
50         unsigned int for_sync:1;        /* sync(2) WB_SYNC_ALL writeback */
51         unsigned int auto_free:1;       /* free on completion */
52         enum wb_reason reason;          /* why was writeback initiated? */
53
54         struct list_head list;          /* pending work list */
55         struct wb_completion *done;     /* set if the caller waits */
56 };
57
58 /*
59  * If an inode is constantly having its pages dirtied, but then the
60  * updates stop dirtytime_expire_interval seconds in the past, it's
61  * possible for the worst case time between when an inode has its
62  * timestamps updated and when they finally get written out to be two
63  * dirtytime_expire_intervals.  We set the default to 12 hours (in
64  * seconds), which means most of the time inodes will have their
65  * timestamps written to disk after 12 hours, but in the worst case a
66  * few inodes might not their timestamps updated for 24 hours.
67  */
68 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
69
70 static inline struct inode *wb_inode(struct list_head *head)
71 {
72         return list_entry(head, struct inode, i_io_list);
73 }
74
75 /*
76  * Include the creation of the trace points after defining the
77  * wb_writeback_work structure and inline functions so that the definition
78  * remains local to this file.
79  */
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/writeback.h>
82
83 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
84
85 static bool wb_io_lists_populated(struct bdi_writeback *wb)
86 {
87         if (wb_has_dirty_io(wb)) {
88                 return false;
89         } else {
90                 set_bit(WB_has_dirty_io, &wb->state);
91                 WARN_ON_ONCE(!wb->avg_write_bandwidth);
92                 atomic_long_add(wb->avg_write_bandwidth,
93                                 &wb->bdi->tot_write_bandwidth);
94                 return true;
95         }
96 }
97
98 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
99 {
100         if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
101             list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
102                 clear_bit(WB_has_dirty_io, &wb->state);
103                 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
104                                         &wb->bdi->tot_write_bandwidth) < 0);
105         }
106 }
107
108 /**
109  * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
110  * @inode: inode to be moved
111  * @wb: target bdi_writeback
112  * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
113  *
114  * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
115  * Returns %true if @inode is the first occupant of the !dirty_time IO
116  * lists; otherwise, %false.
117  */
118 static bool inode_io_list_move_locked(struct inode *inode,
119                                       struct bdi_writeback *wb,
120                                       struct list_head *head)
121 {
122         assert_spin_locked(&wb->list_lock);
123
124         list_move(&inode->i_io_list, head);
125
126         /* dirty_time doesn't count as dirty_io until expiration */
127         if (head != &wb->b_dirty_time)
128                 return wb_io_lists_populated(wb);
129
130         wb_io_lists_depopulated(wb);
131         return false;
132 }
133
134 static void wb_wakeup(struct bdi_writeback *wb)
135 {
136         spin_lock_bh(&wb->work_lock);
137         if (test_bit(WB_registered, &wb->state))
138                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
139         spin_unlock_bh(&wb->work_lock);
140 }
141
142 static void finish_writeback_work(struct bdi_writeback *wb,
143                                   struct wb_writeback_work *work)
144 {
145         struct wb_completion *done = work->done;
146
147         if (work->auto_free)
148                 kfree(work);
149         if (done) {
150                 wait_queue_head_t *waitq = done->waitq;
151
152                 /* @done can't be accessed after the following dec */
153                 if (atomic_dec_and_test(&done->cnt))
154                         wake_up_all(waitq);
155         }
156 }
157
158 static void wb_queue_work(struct bdi_writeback *wb,
159                           struct wb_writeback_work *work)
160 {
161         trace_writeback_queue(wb, work);
162
163         if (work->done)
164                 atomic_inc(&work->done->cnt);
165
166         spin_lock_bh(&wb->work_lock);
167
168         if (test_bit(WB_registered, &wb->state)) {
169                 list_add_tail(&work->list, &wb->work_list);
170                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
171         } else
172                 finish_writeback_work(wb, work);
173
174         spin_unlock_bh(&wb->work_lock);
175 }
176
177 /**
178  * wb_wait_for_completion - wait for completion of bdi_writeback_works
179  * @done: target wb_completion
180  *
181  * Wait for one or more work items issued to @bdi with their ->done field
182  * set to @done, which should have been initialized with
183  * DEFINE_WB_COMPLETION().  This function returns after all such work items
184  * are completed.  Work items which are waited upon aren't freed
185  * automatically on completion.
186  */
187 void wb_wait_for_completion(struct wb_completion *done)
188 {
189         atomic_dec(&done->cnt);         /* put down the initial count */
190         wait_event(*done->waitq, !atomic_read(&done->cnt));
191 }
192
193 #ifdef CONFIG_CGROUP_WRITEBACK
194
195 /*
196  * Parameters for foreign inode detection, see wbc_detach_inode() to see
197  * how they're used.
198  *
199  * These paramters are inherently heuristical as the detection target
200  * itself is fuzzy.  All we want to do is detaching an inode from the
201  * current owner if it's being written to by some other cgroups too much.
202  *
203  * The current cgroup writeback is built on the assumption that multiple
204  * cgroups writing to the same inode concurrently is very rare and a mode
205  * of operation which isn't well supported.  As such, the goal is not
206  * taking too long when a different cgroup takes over an inode while
207  * avoiding too aggressive flip-flops from occasional foreign writes.
208  *
209  * We record, very roughly, 2s worth of IO time history and if more than
210  * half of that is foreign, trigger the switch.  The recording is quantized
211  * to 16 slots.  To avoid tiny writes from swinging the decision too much,
212  * writes smaller than 1/8 of avg size are ignored.
213  */
214 #define WB_FRN_TIME_SHIFT       13      /* 1s = 2^13, upto 8 secs w/ 16bit */
215 #define WB_FRN_TIME_AVG_SHIFT   3       /* avg = avg * 7/8 + new * 1/8 */
216 #define WB_FRN_TIME_CUT_DIV     8       /* ignore rounds < avg / 8 */
217 #define WB_FRN_TIME_PERIOD      (2 * (1 << WB_FRN_TIME_SHIFT))  /* 2s */
218
219 #define WB_FRN_HIST_SLOTS       16      /* inode->i_wb_frn_history is 16bit */
220 #define WB_FRN_HIST_UNIT        (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
221                                         /* each slot's duration is 2s / 16 */
222 #define WB_FRN_HIST_THR_SLOTS   (WB_FRN_HIST_SLOTS / 2)
223                                         /* if foreign slots >= 8, switch */
224 #define WB_FRN_HIST_MAX_SLOTS   (WB_FRN_HIST_THR_SLOTS / 2 + 1)
225                                         /* one round can affect upto 5 slots */
226 #define WB_FRN_MAX_IN_FLIGHT    1024    /* don't queue too many concurrently */
227
228 /*
229  * Maximum inodes per isw.  A specific value has been chosen to make
230  * struct inode_switch_wbs_context fit into 1024 bytes kmalloc.
231  */
232 #define WB_MAX_INODES_PER_ISW  ((1024UL - sizeof(struct inode_switch_wbs_context)) \
233                                 / sizeof(struct inode *))
234
235 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
236 static struct workqueue_struct *isw_wq;
237
238 void __inode_attach_wb(struct inode *inode, struct page *page)
239 {
240         struct backing_dev_info *bdi = inode_to_bdi(inode);
241         struct bdi_writeback *wb = NULL;
242
243         if (inode_cgwb_enabled(inode)) {
244                 struct cgroup_subsys_state *memcg_css;
245
246                 if (page) {
247                         memcg_css = mem_cgroup_css_from_page(page);
248                         wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
249                 } else {
250                         /* must pin memcg_css, see wb_get_create() */
251                         memcg_css = task_get_css(current, memory_cgrp_id);
252                         wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
253                         css_put(memcg_css);
254                 }
255         }
256
257         if (!wb)
258                 wb = &bdi->wb;
259
260         /*
261          * There may be multiple instances of this function racing to
262          * update the same inode.  Use cmpxchg() to tell the winner.
263          */
264         if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
265                 wb_put(wb);
266 }
267 EXPORT_SYMBOL_GPL(__inode_attach_wb);
268
269 /**
270  * inode_cgwb_move_to_attached - put the inode onto wb->b_attached list
271  * @inode: inode of interest with i_lock held
272  * @wb: target bdi_writeback
273  *
274  * Remove the inode from wb's io lists and if necessarily put onto b_attached
275  * list.  Only inodes attached to cgwb's are kept on this list.
276  */
277 static void inode_cgwb_move_to_attached(struct inode *inode,
278                                         struct bdi_writeback *wb)
279 {
280         assert_spin_locked(&wb->list_lock);
281         assert_spin_locked(&inode->i_lock);
282
283         inode->i_state &= ~I_SYNC_QUEUED;
284         if (wb != &wb->bdi->wb)
285                 list_move(&inode->i_io_list, &wb->b_attached);
286         else
287                 list_del_init(&inode->i_io_list);
288         wb_io_lists_depopulated(wb);
289 }
290
291 /**
292  * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
293  * @inode: inode of interest with i_lock held
294  *
295  * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
296  * held on entry and is released on return.  The returned wb is guaranteed
297  * to stay @inode's associated wb until its list_lock is released.
298  */
299 static struct bdi_writeback *
300 locked_inode_to_wb_and_lock_list(struct inode *inode)
301         __releases(&inode->i_lock)
302         __acquires(&wb->list_lock)
303 {
304         while (true) {
305                 struct bdi_writeback *wb = inode_to_wb(inode);
306
307                 /*
308                  * inode_to_wb() association is protected by both
309                  * @inode->i_lock and @wb->list_lock but list_lock nests
310                  * outside i_lock.  Drop i_lock and verify that the
311                  * association hasn't changed after acquiring list_lock.
312                  */
313                 wb_get(wb);
314                 spin_unlock(&inode->i_lock);
315                 spin_lock(&wb->list_lock);
316
317                 /* i_wb may have changed inbetween, can't use inode_to_wb() */
318                 if (likely(wb == inode->i_wb)) {
319                         wb_put(wb);     /* @inode already has ref */
320                         return wb;
321                 }
322
323                 spin_unlock(&wb->list_lock);
324                 wb_put(wb);
325                 cpu_relax();
326                 spin_lock(&inode->i_lock);
327         }
328 }
329
330 /**
331  * inode_to_wb_and_lock_list - determine an inode's wb and lock it
332  * @inode: inode of interest
333  *
334  * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
335  * on entry.
336  */
337 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
338         __acquires(&wb->list_lock)
339 {
340         spin_lock(&inode->i_lock);
341         return locked_inode_to_wb_and_lock_list(inode);
342 }
343
344 struct inode_switch_wbs_context {
345         struct rcu_work         work;
346
347         /*
348          * Multiple inodes can be switched at once.  The switching procedure
349          * consists of two parts, separated by a RCU grace period.  To make
350          * sure that the second part is executed for each inode gone through
351          * the first part, all inode pointers are placed into a NULL-terminated
352          * array embedded into struct inode_switch_wbs_context.  Otherwise
353          * an inode could be left in a non-consistent state.
354          */
355         struct bdi_writeback    *new_wb;
356         struct inode            *inodes[];
357 };
358
359 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
360 {
361         down_write(&bdi->wb_switch_rwsem);
362 }
363
364 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
365 {
366         up_write(&bdi->wb_switch_rwsem);
367 }
368
369 static bool inode_do_switch_wbs(struct inode *inode,
370                                 struct bdi_writeback *old_wb,
371                                 struct bdi_writeback *new_wb)
372 {
373         struct address_space *mapping = inode->i_mapping;
374         XA_STATE(xas, &mapping->i_pages, 0);
375         struct page *page;
376         bool switched = false;
377
378         spin_lock(&inode->i_lock);
379         xa_lock_irq(&mapping->i_pages);
380
381         /*
382          * Once I_FREEING or I_WILL_FREE are visible under i_lock, the eviction
383          * path owns the inode and we shouldn't modify ->i_io_list.
384          */
385         if (unlikely(inode->i_state & (I_FREEING | I_WILL_FREE)))
386                 goto skip_switch;
387
388         trace_inode_switch_wbs(inode, old_wb, new_wb);
389
390         /*
391          * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
392          * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
393          * pages actually under writeback.
394          */
395         xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
396                 if (PageDirty(page)) {
397                         dec_wb_stat(old_wb, WB_RECLAIMABLE);
398                         inc_wb_stat(new_wb, WB_RECLAIMABLE);
399                 }
400         }
401
402         xas_set(&xas, 0);
403         xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
404                 WARN_ON_ONCE(!PageWriteback(page));
405                 dec_wb_stat(old_wb, WB_WRITEBACK);
406                 inc_wb_stat(new_wb, WB_WRITEBACK);
407         }
408
409         wb_get(new_wb);
410
411         /*
412          * Transfer to @new_wb's IO list if necessary.  If the @inode is dirty,
413          * the specific list @inode was on is ignored and the @inode is put on
414          * ->b_dirty which is always correct including from ->b_dirty_time.
415          * The transfer preserves @inode->dirtied_when ordering.  If the @inode
416          * was clean, it means it was on the b_attached list, so move it onto
417          * the b_attached list of @new_wb.
418          */
419         if (!list_empty(&inode->i_io_list)) {
420                 inode->i_wb = new_wb;
421
422                 if (inode->i_state & I_DIRTY_ALL) {
423                         struct inode *pos;
424
425                         list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
426                                 if (time_after_eq(inode->dirtied_when,
427                                                   pos->dirtied_when))
428                                         break;
429                         inode_io_list_move_locked(inode, new_wb,
430                                                   pos->i_io_list.prev);
431                 } else {
432                         inode_cgwb_move_to_attached(inode, new_wb);
433                 }
434         } else {
435                 inode->i_wb = new_wb;
436         }
437
438         /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
439         inode->i_wb_frn_winner = 0;
440         inode->i_wb_frn_avg_time = 0;
441         inode->i_wb_frn_history = 0;
442         switched = true;
443 skip_switch:
444         /*
445          * Paired with load_acquire in unlocked_inode_to_wb_begin() and
446          * ensures that the new wb is visible if they see !I_WB_SWITCH.
447          */
448         smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
449
450         xa_unlock_irq(&mapping->i_pages);
451         spin_unlock(&inode->i_lock);
452
453         return switched;
454 }
455
456 static void inode_switch_wbs_work_fn(struct work_struct *work)
457 {
458         struct inode_switch_wbs_context *isw =
459                 container_of(to_rcu_work(work), struct inode_switch_wbs_context, work);
460         struct backing_dev_info *bdi = inode_to_bdi(isw->inodes[0]);
461         struct bdi_writeback *old_wb = isw->inodes[0]->i_wb;
462         struct bdi_writeback *new_wb = isw->new_wb;
463         unsigned long nr_switched = 0;
464         struct inode **inodep;
465
466         /*
467          * If @inode switches cgwb membership while sync_inodes_sb() is
468          * being issued, sync_inodes_sb() might miss it.  Synchronize.
469          */
470         down_read(&bdi->wb_switch_rwsem);
471
472         /*
473          * By the time control reaches here, RCU grace period has passed
474          * since I_WB_SWITCH assertion and all wb stat update transactions
475          * between unlocked_inode_to_wb_begin/end() are guaranteed to be
476          * synchronizing against the i_pages lock.
477          *
478          * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
479          * gives us exclusion against all wb related operations on @inode
480          * including IO list manipulations and stat updates.
481          */
482         if (old_wb < new_wb) {
483                 spin_lock(&old_wb->list_lock);
484                 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
485         } else {
486                 spin_lock(&new_wb->list_lock);
487                 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
488         }
489
490         for (inodep = isw->inodes; *inodep; inodep++) {
491                 WARN_ON_ONCE((*inodep)->i_wb != old_wb);
492                 if (inode_do_switch_wbs(*inodep, old_wb, new_wb))
493                         nr_switched++;
494         }
495
496         spin_unlock(&new_wb->list_lock);
497         spin_unlock(&old_wb->list_lock);
498
499         up_read(&bdi->wb_switch_rwsem);
500
501         if (nr_switched) {
502                 wb_wakeup(new_wb);
503                 wb_put_many(old_wb, nr_switched);
504         }
505
506         for (inodep = isw->inodes; *inodep; inodep++)
507                 iput(*inodep);
508         wb_put(new_wb);
509         kfree(isw);
510         atomic_dec(&isw_nr_in_flight);
511 }
512
513 static bool inode_prepare_wbs_switch(struct inode *inode,
514                                      struct bdi_writeback *new_wb)
515 {
516         /*
517          * Paired with smp_mb() in cgroup_writeback_umount().
518          * isw_nr_in_flight must be increased before checking SB_ACTIVE and
519          * grabbing an inode, otherwise isw_nr_in_flight can be observed as 0
520          * in cgroup_writeback_umount() and the isw_wq will be not flushed.
521          */
522         smp_mb();
523
524         /* while holding I_WB_SWITCH, no one else can update the association */
525         spin_lock(&inode->i_lock);
526         if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
527             inode->i_state & (I_WB_SWITCH | I_FREEING | I_WILL_FREE) ||
528             inode_to_wb(inode) == new_wb) {
529                 spin_unlock(&inode->i_lock);
530                 return false;
531         }
532         inode->i_state |= I_WB_SWITCH;
533         __iget(inode);
534         spin_unlock(&inode->i_lock);
535
536         return true;
537 }
538
539 /**
540  * inode_switch_wbs - change the wb association of an inode
541  * @inode: target inode
542  * @new_wb_id: ID of the new wb
543  *
544  * Switch @inode's wb association to the wb identified by @new_wb_id.  The
545  * switching is performed asynchronously and may fail silently.
546  */
547 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
548 {
549         struct backing_dev_info *bdi = inode_to_bdi(inode);
550         struct cgroup_subsys_state *memcg_css;
551         struct inode_switch_wbs_context *isw;
552
553         /* noop if seems to be already in progress */
554         if (inode->i_state & I_WB_SWITCH)
555                 return;
556
557         /* avoid queueing a new switch if too many are already in flight */
558         if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT)
559                 return;
560
561         isw = kzalloc(sizeof(*isw) + 2 * sizeof(struct inode *), GFP_ATOMIC);
562         if (!isw)
563                 return;
564
565         atomic_inc(&isw_nr_in_flight);
566
567         /* find and pin the new wb */
568         rcu_read_lock();
569         memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
570         if (memcg_css)
571                 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
572         rcu_read_unlock();
573         if (!isw->new_wb)
574                 goto out_free;
575
576         if (!inode_prepare_wbs_switch(inode, isw->new_wb))
577                 goto out_free;
578
579         isw->inodes[0] = inode;
580
581         /*
582          * In addition to synchronizing among switchers, I_WB_SWITCH tells
583          * the RCU protected stat update paths to grab the i_page
584          * lock so that stat transfer can synchronize against them.
585          * Let's continue after I_WB_SWITCH is guaranteed to be visible.
586          */
587         INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
588         queue_rcu_work(isw_wq, &isw->work);
589         return;
590
591 out_free:
592         atomic_dec(&isw_nr_in_flight);
593         if (isw->new_wb)
594                 wb_put(isw->new_wb);
595         kfree(isw);
596 }
597
598 /**
599  * cleanup_offline_cgwb - detach associated inodes
600  * @wb: target wb
601  *
602  * Switch all inodes attached to @wb to a nearest living ancestor's wb in order
603  * to eventually release the dying @wb.  Returns %true if not all inodes were
604  * switched and the function has to be restarted.
605  */
606 bool cleanup_offline_cgwb(struct bdi_writeback *wb)
607 {
608         struct cgroup_subsys_state *memcg_css;
609         struct inode_switch_wbs_context *isw;
610         struct inode *inode;
611         int nr;
612         bool restart = false;
613
614         isw = kzalloc(sizeof(*isw) + WB_MAX_INODES_PER_ISW *
615                       sizeof(struct inode *), GFP_KERNEL);
616         if (!isw)
617                 return restart;
618
619         atomic_inc(&isw_nr_in_flight);
620
621         for (memcg_css = wb->memcg_css->parent; memcg_css;
622              memcg_css = memcg_css->parent) {
623                 isw->new_wb = wb_get_create(wb->bdi, memcg_css, GFP_KERNEL);
624                 if (isw->new_wb)
625                         break;
626         }
627         if (unlikely(!isw->new_wb))
628                 isw->new_wb = &wb->bdi->wb; /* wb_get() is noop for bdi's wb */
629
630         nr = 0;
631         spin_lock(&wb->list_lock);
632         list_for_each_entry(inode, &wb->b_attached, i_io_list) {
633                 if (!inode_prepare_wbs_switch(inode, isw->new_wb))
634                         continue;
635
636                 isw->inodes[nr++] = inode;
637
638                 if (nr >= WB_MAX_INODES_PER_ISW - 1) {
639                         restart = true;
640                         break;
641                 }
642         }
643         spin_unlock(&wb->list_lock);
644
645         /* no attached inodes? bail out */
646         if (nr == 0) {
647                 atomic_dec(&isw_nr_in_flight);
648                 wb_put(isw->new_wb);
649                 kfree(isw);
650                 return restart;
651         }
652
653         /*
654          * In addition to synchronizing among switchers, I_WB_SWITCH tells
655          * the RCU protected stat update paths to grab the i_page
656          * lock so that stat transfer can synchronize against them.
657          * Let's continue after I_WB_SWITCH is guaranteed to be visible.
658          */
659         INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
660         queue_rcu_work(isw_wq, &isw->work);
661
662         return restart;
663 }
664
665 /**
666  * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
667  * @wbc: writeback_control of interest
668  * @inode: target inode
669  *
670  * @inode is locked and about to be written back under the control of @wbc.
671  * Record @inode's writeback context into @wbc and unlock the i_lock.  On
672  * writeback completion, wbc_detach_inode() should be called.  This is used
673  * to track the cgroup writeback context.
674  */
675 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
676                                  struct inode *inode)
677 {
678         if (!inode_cgwb_enabled(inode)) {
679                 spin_unlock(&inode->i_lock);
680                 return;
681         }
682
683         wbc->wb = inode_to_wb(inode);
684         wbc->inode = inode;
685
686         wbc->wb_id = wbc->wb->memcg_css->id;
687         wbc->wb_lcand_id = inode->i_wb_frn_winner;
688         wbc->wb_tcand_id = 0;
689         wbc->wb_bytes = 0;
690         wbc->wb_lcand_bytes = 0;
691         wbc->wb_tcand_bytes = 0;
692
693         wb_get(wbc->wb);
694         spin_unlock(&inode->i_lock);
695
696         /*
697          * A dying wb indicates that either the blkcg associated with the
698          * memcg changed or the associated memcg is dying.  In the first
699          * case, a replacement wb should already be available and we should
700          * refresh the wb immediately.  In the second case, trying to
701          * refresh will keep failing.
702          */
703         if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css)))
704                 inode_switch_wbs(inode, wbc->wb_id);
705 }
706 EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode);
707
708 /**
709  * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
710  * @wbc: writeback_control of the just finished writeback
711  *
712  * To be called after a writeback attempt of an inode finishes and undoes
713  * wbc_attach_and_unlock_inode().  Can be called under any context.
714  *
715  * As concurrent write sharing of an inode is expected to be very rare and
716  * memcg only tracks page ownership on first-use basis severely confining
717  * the usefulness of such sharing, cgroup writeback tracks ownership
718  * per-inode.  While the support for concurrent write sharing of an inode
719  * is deemed unnecessary, an inode being written to by different cgroups at
720  * different points in time is a lot more common, and, more importantly,
721  * charging only by first-use can too readily lead to grossly incorrect
722  * behaviors (single foreign page can lead to gigabytes of writeback to be
723  * incorrectly attributed).
724  *
725  * To resolve this issue, cgroup writeback detects the majority dirtier of
726  * an inode and transfers the ownership to it.  To avoid unnnecessary
727  * oscillation, the detection mechanism keeps track of history and gives
728  * out the switch verdict only if the foreign usage pattern is stable over
729  * a certain amount of time and/or writeback attempts.
730  *
731  * On each writeback attempt, @wbc tries to detect the majority writer
732  * using Boyer-Moore majority vote algorithm.  In addition to the byte
733  * count from the majority voting, it also counts the bytes written for the
734  * current wb and the last round's winner wb (max of last round's current
735  * wb, the winner from two rounds ago, and the last round's majority
736  * candidate).  Keeping track of the historical winner helps the algorithm
737  * to semi-reliably detect the most active writer even when it's not the
738  * absolute majority.
739  *
740  * Once the winner of the round is determined, whether the winner is
741  * foreign or not and how much IO time the round consumed is recorded in
742  * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
743  * over a certain threshold, the switch verdict is given.
744  */
745 void wbc_detach_inode(struct writeback_control *wbc)
746 {
747         struct bdi_writeback *wb = wbc->wb;
748         struct inode *inode = wbc->inode;
749         unsigned long avg_time, max_bytes, max_time;
750         u16 history;
751         int max_id;
752
753         if (!wb)
754                 return;
755
756         history = inode->i_wb_frn_history;
757         avg_time = inode->i_wb_frn_avg_time;
758
759         /* pick the winner of this round */
760         if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
761             wbc->wb_bytes >= wbc->wb_tcand_bytes) {
762                 max_id = wbc->wb_id;
763                 max_bytes = wbc->wb_bytes;
764         } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
765                 max_id = wbc->wb_lcand_id;
766                 max_bytes = wbc->wb_lcand_bytes;
767         } else {
768                 max_id = wbc->wb_tcand_id;
769                 max_bytes = wbc->wb_tcand_bytes;
770         }
771
772         /*
773          * Calculate the amount of IO time the winner consumed and fold it
774          * into the running average kept per inode.  If the consumed IO
775          * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
776          * deciding whether to switch or not.  This is to prevent one-off
777          * small dirtiers from skewing the verdict.
778          */
779         max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
780                                 wb->avg_write_bandwidth);
781         if (avg_time)
782                 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
783                             (avg_time >> WB_FRN_TIME_AVG_SHIFT);
784         else
785                 avg_time = max_time;    /* immediate catch up on first run */
786
787         if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
788                 int slots;
789
790                 /*
791                  * The switch verdict is reached if foreign wb's consume
792                  * more than a certain proportion of IO time in a
793                  * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
794                  * history mask where each bit represents one sixteenth of
795                  * the period.  Determine the number of slots to shift into
796                  * history from @max_time.
797                  */
798                 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
799                             (unsigned long)WB_FRN_HIST_MAX_SLOTS);
800                 history <<= slots;
801                 if (wbc->wb_id != max_id)
802                         history |= (1U << slots) - 1;
803
804                 if (history)
805                         trace_inode_foreign_history(inode, wbc, history);
806
807                 /*
808                  * Switch if the current wb isn't the consistent winner.
809                  * If there are multiple closely competing dirtiers, the
810                  * inode may switch across them repeatedly over time, which
811                  * is okay.  The main goal is avoiding keeping an inode on
812                  * the wrong wb for an extended period of time.
813                  */
814                 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
815                         inode_switch_wbs(inode, max_id);
816         }
817
818         /*
819          * Multiple instances of this function may race to update the
820          * following fields but we don't mind occassional inaccuracies.
821          */
822         inode->i_wb_frn_winner = max_id;
823         inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
824         inode->i_wb_frn_history = history;
825
826         wb_put(wbc->wb);
827         wbc->wb = NULL;
828 }
829 EXPORT_SYMBOL_GPL(wbc_detach_inode);
830
831 /**
832  * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership
833  * @wbc: writeback_control of the writeback in progress
834  * @page: page being written out
835  * @bytes: number of bytes being written out
836  *
837  * @bytes from @page are about to written out during the writeback
838  * controlled by @wbc.  Keep the book for foreign inode detection.  See
839  * wbc_detach_inode().
840  */
841 void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page,
842                               size_t bytes)
843 {
844         struct cgroup_subsys_state *css;
845         int id;
846
847         /*
848          * pageout() path doesn't attach @wbc to the inode being written
849          * out.  This is intentional as we don't want the function to block
850          * behind a slow cgroup.  Ultimately, we want pageout() to kick off
851          * regular writeback instead of writing things out itself.
852          */
853         if (!wbc->wb || wbc->no_cgroup_owner)
854                 return;
855
856         css = mem_cgroup_css_from_page(page);
857         /* dead cgroups shouldn't contribute to inode ownership arbitration */
858         if (!(css->flags & CSS_ONLINE))
859                 return;
860
861         id = css->id;
862
863         if (id == wbc->wb_id) {
864                 wbc->wb_bytes += bytes;
865                 return;
866         }
867
868         if (id == wbc->wb_lcand_id)
869                 wbc->wb_lcand_bytes += bytes;
870
871         /* Boyer-Moore majority vote algorithm */
872         if (!wbc->wb_tcand_bytes)
873                 wbc->wb_tcand_id = id;
874         if (id == wbc->wb_tcand_id)
875                 wbc->wb_tcand_bytes += bytes;
876         else
877                 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
878 }
879 EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner);
880
881 /**
882  * inode_congested - test whether an inode is congested
883  * @inode: inode to test for congestion (may be NULL)
884  * @cong_bits: mask of WB_[a]sync_congested bits to test
885  *
886  * Tests whether @inode is congested.  @cong_bits is the mask of congestion
887  * bits to test and the return value is the mask of set bits.
888  *
889  * If cgroup writeback is enabled for @inode, the congestion state is
890  * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
891  * associated with @inode is congested; otherwise, the root wb's congestion
892  * state is used.
893  *
894  * @inode is allowed to be NULL as this function is often called on
895  * mapping->host which is NULL for the swapper space.
896  */
897 int inode_congested(struct inode *inode, int cong_bits)
898 {
899         /*
900          * Once set, ->i_wb never becomes NULL while the inode is alive.
901          * Start transaction iff ->i_wb is visible.
902          */
903         if (inode && inode_to_wb_is_valid(inode)) {
904                 struct bdi_writeback *wb;
905                 struct wb_lock_cookie lock_cookie = {};
906                 bool congested;
907
908                 wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
909                 congested = wb_congested(wb, cong_bits);
910                 unlocked_inode_to_wb_end(inode, &lock_cookie);
911                 return congested;
912         }
913
914         return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
915 }
916 EXPORT_SYMBOL_GPL(inode_congested);
917
918 /**
919  * wb_split_bdi_pages - split nr_pages to write according to bandwidth
920  * @wb: target bdi_writeback to split @nr_pages to
921  * @nr_pages: number of pages to write for the whole bdi
922  *
923  * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
924  * relation to the total write bandwidth of all wb's w/ dirty inodes on
925  * @wb->bdi.
926  */
927 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
928 {
929         unsigned long this_bw = wb->avg_write_bandwidth;
930         unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
931
932         if (nr_pages == LONG_MAX)
933                 return LONG_MAX;
934
935         /*
936          * This may be called on clean wb's and proportional distribution
937          * may not make sense, just use the original @nr_pages in those
938          * cases.  In general, we wanna err on the side of writing more.
939          */
940         if (!tot_bw || this_bw >= tot_bw)
941                 return nr_pages;
942         else
943                 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
944 }
945
946 /**
947  * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
948  * @bdi: target backing_dev_info
949  * @base_work: wb_writeback_work to issue
950  * @skip_if_busy: skip wb's which already have writeback in progress
951  *
952  * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
953  * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
954  * distributed to the busy wbs according to each wb's proportion in the
955  * total active write bandwidth of @bdi.
956  */
957 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
958                                   struct wb_writeback_work *base_work,
959                                   bool skip_if_busy)
960 {
961         struct bdi_writeback *last_wb = NULL;
962         struct bdi_writeback *wb = list_entry(&bdi->wb_list,
963                                               struct bdi_writeback, bdi_node);
964
965         might_sleep();
966 restart:
967         rcu_read_lock();
968         list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
969                 DEFINE_WB_COMPLETION(fallback_work_done, bdi);
970                 struct wb_writeback_work fallback_work;
971                 struct wb_writeback_work *work;
972                 long nr_pages;
973
974                 if (last_wb) {
975                         wb_put(last_wb);
976                         last_wb = NULL;
977                 }
978
979                 /* SYNC_ALL writes out I_DIRTY_TIME too */
980                 if (!wb_has_dirty_io(wb) &&
981                     (base_work->sync_mode == WB_SYNC_NONE ||
982                      list_empty(&wb->b_dirty_time)))
983                         continue;
984                 if (skip_if_busy && writeback_in_progress(wb))
985                         continue;
986
987                 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
988
989                 work = kmalloc(sizeof(*work), GFP_ATOMIC);
990                 if (work) {
991                         *work = *base_work;
992                         work->nr_pages = nr_pages;
993                         work->auto_free = 1;
994                         wb_queue_work(wb, work);
995                         continue;
996                 }
997
998                 /* alloc failed, execute synchronously using on-stack fallback */
999                 work = &fallback_work;
1000                 *work = *base_work;
1001                 work->nr_pages = nr_pages;
1002                 work->auto_free = 0;
1003                 work->done = &fallback_work_done;
1004
1005                 wb_queue_work(wb, work);
1006
1007                 /*
1008                  * Pin @wb so that it stays on @bdi->wb_list.  This allows
1009                  * continuing iteration from @wb after dropping and
1010                  * regrabbing rcu read lock.
1011                  */
1012                 wb_get(wb);
1013                 last_wb = wb;
1014
1015                 rcu_read_unlock();
1016                 wb_wait_for_completion(&fallback_work_done);
1017                 goto restart;
1018         }
1019         rcu_read_unlock();
1020
1021         if (last_wb)
1022                 wb_put(last_wb);
1023 }
1024
1025 /**
1026  * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs
1027  * @bdi_id: target bdi id
1028  * @memcg_id: target memcg css id
1029  * @nr: number of pages to write, 0 for best-effort dirty flushing
1030  * @reason: reason why some writeback work initiated
1031  * @done: target wb_completion
1032  *
1033  * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id
1034  * with the specified parameters.
1035  */
1036 int cgroup_writeback_by_id(u64 bdi_id, int memcg_id, unsigned long nr,
1037                            enum wb_reason reason, struct wb_completion *done)
1038 {
1039         struct backing_dev_info *bdi;
1040         struct cgroup_subsys_state *memcg_css;
1041         struct bdi_writeback *wb;
1042         struct wb_writeback_work *work;
1043         int ret;
1044
1045         /* lookup bdi and memcg */
1046         bdi = bdi_get_by_id(bdi_id);
1047         if (!bdi)
1048                 return -ENOENT;
1049
1050         rcu_read_lock();
1051         memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys);
1052         if (memcg_css && !css_tryget(memcg_css))
1053                 memcg_css = NULL;
1054         rcu_read_unlock();
1055         if (!memcg_css) {
1056                 ret = -ENOENT;
1057                 goto out_bdi_put;
1058         }
1059
1060         /*
1061          * And find the associated wb.  If the wb isn't there already
1062          * there's nothing to flush, don't create one.
1063          */
1064         wb = wb_get_lookup(bdi, memcg_css);
1065         if (!wb) {
1066                 ret = -ENOENT;
1067                 goto out_css_put;
1068         }
1069
1070         /*
1071          * If @nr is zero, the caller is attempting to write out most of
1072          * the currently dirty pages.  Let's take the current dirty page
1073          * count and inflate it by 25% which should be large enough to
1074          * flush out most dirty pages while avoiding getting livelocked by
1075          * concurrent dirtiers.
1076          */
1077         if (!nr) {
1078                 unsigned long filepages, headroom, dirty, writeback;
1079
1080                 mem_cgroup_wb_stats(wb, &filepages, &headroom, &dirty,
1081                                       &writeback);
1082                 nr = dirty * 10 / 8;
1083         }
1084
1085         /* issue the writeback work */
1086         work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN);
1087         if (work) {
1088                 work->nr_pages = nr;
1089                 work->sync_mode = WB_SYNC_NONE;
1090                 work->range_cyclic = 1;
1091                 work->reason = reason;
1092                 work->done = done;
1093                 work->auto_free = 1;
1094                 wb_queue_work(wb, work);
1095                 ret = 0;
1096         } else {
1097                 ret = -ENOMEM;
1098         }
1099
1100         wb_put(wb);
1101 out_css_put:
1102         css_put(memcg_css);
1103 out_bdi_put:
1104         bdi_put(bdi);
1105         return ret;
1106 }
1107
1108 /**
1109  * cgroup_writeback_umount - flush inode wb switches for umount
1110  *
1111  * This function is called when a super_block is about to be destroyed and
1112  * flushes in-flight inode wb switches.  An inode wb switch goes through
1113  * RCU and then workqueue, so the two need to be flushed in order to ensure
1114  * that all previously scheduled switches are finished.  As wb switches are
1115  * rare occurrences and synchronize_rcu() can take a while, perform
1116  * flushing iff wb switches are in flight.
1117  */
1118 void cgroup_writeback_umount(void)
1119 {
1120         /*
1121          * SB_ACTIVE should be reliably cleared before checking
1122          * isw_nr_in_flight, see generic_shutdown_super().
1123          */
1124         smp_mb();
1125
1126         if (atomic_read(&isw_nr_in_flight)) {
1127                 /*
1128                  * Use rcu_barrier() to wait for all pending callbacks to
1129                  * ensure that all in-flight wb switches are in the workqueue.
1130                  */
1131                 rcu_barrier();
1132                 flush_workqueue(isw_wq);
1133         }
1134 }
1135
1136 static int __init cgroup_writeback_init(void)
1137 {
1138         isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
1139         if (!isw_wq)
1140                 return -ENOMEM;
1141         return 0;
1142 }
1143 fs_initcall(cgroup_writeback_init);
1144
1145 #else   /* CONFIG_CGROUP_WRITEBACK */
1146
1147 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1148 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1149
1150 static void inode_cgwb_move_to_attached(struct inode *inode,
1151                                         struct bdi_writeback *wb)
1152 {
1153         assert_spin_locked(&wb->list_lock);
1154         assert_spin_locked(&inode->i_lock);
1155
1156         inode->i_state &= ~I_SYNC_QUEUED;
1157         list_del_init(&inode->i_io_list);
1158         wb_io_lists_depopulated(wb);
1159 }
1160
1161 static struct bdi_writeback *
1162 locked_inode_to_wb_and_lock_list(struct inode *inode)
1163         __releases(&inode->i_lock)
1164         __acquires(&wb->list_lock)
1165 {
1166         struct bdi_writeback *wb = inode_to_wb(inode);
1167
1168         spin_unlock(&inode->i_lock);
1169         spin_lock(&wb->list_lock);
1170         return wb;
1171 }
1172
1173 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
1174         __acquires(&wb->list_lock)
1175 {
1176         struct bdi_writeback *wb = inode_to_wb(inode);
1177
1178         spin_lock(&wb->list_lock);
1179         return wb;
1180 }
1181
1182 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
1183 {
1184         return nr_pages;
1185 }
1186
1187 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
1188                                   struct wb_writeback_work *base_work,
1189                                   bool skip_if_busy)
1190 {
1191         might_sleep();
1192
1193         if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
1194                 base_work->auto_free = 0;
1195                 wb_queue_work(&bdi->wb, base_work);
1196         }
1197 }
1198
1199 #endif  /* CONFIG_CGROUP_WRITEBACK */
1200
1201 /*
1202  * Add in the number of potentially dirty inodes, because each inode
1203  * write can dirty pagecache in the underlying blockdev.
1204  */
1205 static unsigned long get_nr_dirty_pages(void)
1206 {
1207         return global_node_page_state(NR_FILE_DIRTY) +
1208                 get_nr_dirty_inodes();
1209 }
1210
1211 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
1212 {
1213         if (!wb_has_dirty_io(wb))
1214                 return;
1215
1216         /*
1217          * All callers of this function want to start writeback of all
1218          * dirty pages. Places like vmscan can call this at a very
1219          * high frequency, causing pointless allocations of tons of
1220          * work items and keeping the flusher threads busy retrieving
1221          * that work. Ensure that we only allow one of them pending and
1222          * inflight at the time.
1223          */
1224         if (test_bit(WB_start_all, &wb->state) ||
1225             test_and_set_bit(WB_start_all, &wb->state))
1226                 return;
1227
1228         wb->start_all_reason = reason;
1229         wb_wakeup(wb);
1230 }
1231
1232 /**
1233  * wb_start_background_writeback - start background writeback
1234  * @wb: bdi_writback to write from
1235  *
1236  * Description:
1237  *   This makes sure WB_SYNC_NONE background writeback happens. When
1238  *   this function returns, it is only guaranteed that for given wb
1239  *   some IO is happening if we are over background dirty threshold.
1240  *   Caller need not hold sb s_umount semaphore.
1241  */
1242 void wb_start_background_writeback(struct bdi_writeback *wb)
1243 {
1244         /*
1245          * We just wake up the flusher thread. It will perform background
1246          * writeback as soon as there is no other work to do.
1247          */
1248         trace_writeback_wake_background(wb);
1249         wb_wakeup(wb);
1250 }
1251
1252 /*
1253  * Remove the inode from the writeback list it is on.
1254  */
1255 void inode_io_list_del(struct inode *inode)
1256 {
1257         struct bdi_writeback *wb;
1258
1259         wb = inode_to_wb_and_lock_list(inode);
1260         spin_lock(&inode->i_lock);
1261
1262         inode->i_state &= ~I_SYNC_QUEUED;
1263         list_del_init(&inode->i_io_list);
1264         wb_io_lists_depopulated(wb);
1265
1266         spin_unlock(&inode->i_lock);
1267         spin_unlock(&wb->list_lock);
1268 }
1269 EXPORT_SYMBOL(inode_io_list_del);
1270
1271 /*
1272  * mark an inode as under writeback on the sb
1273  */
1274 void sb_mark_inode_writeback(struct inode *inode)
1275 {
1276         struct super_block *sb = inode->i_sb;
1277         unsigned long flags;
1278
1279         if (list_empty(&inode->i_wb_list)) {
1280                 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1281                 if (list_empty(&inode->i_wb_list)) {
1282                         list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1283                         trace_sb_mark_inode_writeback(inode);
1284                 }
1285                 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1286         }
1287 }
1288
1289 /*
1290  * clear an inode as under writeback on the sb
1291  */
1292 void sb_clear_inode_writeback(struct inode *inode)
1293 {
1294         struct super_block *sb = inode->i_sb;
1295         unsigned long flags;
1296
1297         if (!list_empty(&inode->i_wb_list)) {
1298                 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1299                 if (!list_empty(&inode->i_wb_list)) {
1300                         list_del_init(&inode->i_wb_list);
1301                         trace_sb_clear_inode_writeback(inode);
1302                 }
1303                 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1304         }
1305 }
1306
1307 /*
1308  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1309  * furthest end of its superblock's dirty-inode list.
1310  *
1311  * Before stamping the inode's ->dirtied_when, we check to see whether it is
1312  * already the most-recently-dirtied inode on the b_dirty list.  If that is
1313  * the case then the inode must have been redirtied while it was being written
1314  * out and we don't reset its dirtied_when.
1315  */
1316 static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb)
1317 {
1318         assert_spin_locked(&inode->i_lock);
1319
1320         if (!list_empty(&wb->b_dirty)) {
1321                 struct inode *tail;
1322
1323                 tail = wb_inode(wb->b_dirty.next);
1324                 if (time_before(inode->dirtied_when, tail->dirtied_when))
1325                         inode->dirtied_when = jiffies;
1326         }
1327         inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1328         inode->i_state &= ~I_SYNC_QUEUED;
1329 }
1330
1331 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1332 {
1333         spin_lock(&inode->i_lock);
1334         redirty_tail_locked(inode, wb);
1335         spin_unlock(&inode->i_lock);
1336 }
1337
1338 /*
1339  * requeue inode for re-scanning after bdi->b_io list is exhausted.
1340  */
1341 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1342 {
1343         inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1344 }
1345
1346 static void inode_sync_complete(struct inode *inode)
1347 {
1348         inode->i_state &= ~I_SYNC;
1349         /* If inode is clean an unused, put it into LRU now... */
1350         inode_add_lru(inode);
1351         /* Waiters must see I_SYNC cleared before being woken up */
1352         smp_mb();
1353         wake_up_bit(&inode->i_state, __I_SYNC);
1354 }
1355
1356 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1357 {
1358         bool ret = time_after(inode->dirtied_when, t);
1359 #ifndef CONFIG_64BIT
1360         /*
1361          * For inodes being constantly redirtied, dirtied_when can get stuck.
1362          * It _appears_ to be in the future, but is actually in distant past.
1363          * This test is necessary to prevent such wrapped-around relative times
1364          * from permanently stopping the whole bdi writeback.
1365          */
1366         ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1367 #endif
1368         return ret;
1369 }
1370
1371 #define EXPIRE_DIRTY_ATIME 0x0001
1372
1373 /*
1374  * Move expired (dirtied before dirtied_before) dirty inodes from
1375  * @delaying_queue to @dispatch_queue.
1376  */
1377 static int move_expired_inodes(struct list_head *delaying_queue,
1378                                struct list_head *dispatch_queue,
1379                                unsigned long dirtied_before)
1380 {
1381         LIST_HEAD(tmp);
1382         struct list_head *pos, *node;
1383         struct super_block *sb = NULL;
1384         struct inode *inode;
1385         int do_sb_sort = 0;
1386         int moved = 0;
1387
1388         while (!list_empty(delaying_queue)) {
1389                 inode = wb_inode(delaying_queue->prev);
1390                 if (inode_dirtied_after(inode, dirtied_before))
1391                         break;
1392                 list_move(&inode->i_io_list, &tmp);
1393                 moved++;
1394                 spin_lock(&inode->i_lock);
1395                 inode->i_state |= I_SYNC_QUEUED;
1396                 spin_unlock(&inode->i_lock);
1397                 if (sb_is_blkdev_sb(inode->i_sb))
1398                         continue;
1399                 if (sb && sb != inode->i_sb)
1400                         do_sb_sort = 1;
1401                 sb = inode->i_sb;
1402         }
1403
1404         /* just one sb in list, splice to dispatch_queue and we're done */
1405         if (!do_sb_sort) {
1406                 list_splice(&tmp, dispatch_queue);
1407                 goto out;
1408         }
1409
1410         /* Move inodes from one superblock together */
1411         while (!list_empty(&tmp)) {
1412                 sb = wb_inode(tmp.prev)->i_sb;
1413                 list_for_each_prev_safe(pos, node, &tmp) {
1414                         inode = wb_inode(pos);
1415                         if (inode->i_sb == sb)
1416                                 list_move(&inode->i_io_list, dispatch_queue);
1417                 }
1418         }
1419 out:
1420         return moved;
1421 }
1422
1423 /*
1424  * Queue all expired dirty inodes for io, eldest first.
1425  * Before
1426  *         newly dirtied     b_dirty    b_io    b_more_io
1427  *         =============>    gf         edc     BA
1428  * After
1429  *         newly dirtied     b_dirty    b_io    b_more_io
1430  *         =============>    g          fBAedc
1431  *                                           |
1432  *                                           +--> dequeue for IO
1433  */
1434 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work,
1435                      unsigned long dirtied_before)
1436 {
1437         int moved;
1438         unsigned long time_expire_jif = dirtied_before;
1439
1440         assert_spin_locked(&wb->list_lock);
1441         list_splice_init(&wb->b_more_io, &wb->b_io);
1442         moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before);
1443         if (!work->for_sync)
1444                 time_expire_jif = jiffies - dirtytime_expire_interval * HZ;
1445         moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1446                                      time_expire_jif);
1447         if (moved)
1448                 wb_io_lists_populated(wb);
1449         trace_writeback_queue_io(wb, work, dirtied_before, moved);
1450 }
1451
1452 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1453 {
1454         int ret;
1455
1456         if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1457                 trace_writeback_write_inode_start(inode, wbc);
1458                 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1459                 trace_writeback_write_inode(inode, wbc);
1460                 return ret;
1461         }
1462         return 0;
1463 }
1464
1465 /*
1466  * Wait for writeback on an inode to complete. Called with i_lock held.
1467  * Caller must make sure inode cannot go away when we drop i_lock.
1468  */
1469 static void __inode_wait_for_writeback(struct inode *inode)
1470         __releases(inode->i_lock)
1471         __acquires(inode->i_lock)
1472 {
1473         DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1474         wait_queue_head_t *wqh;
1475
1476         wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1477         while (inode->i_state & I_SYNC) {
1478                 spin_unlock(&inode->i_lock);
1479                 __wait_on_bit(wqh, &wq, bit_wait,
1480                               TASK_UNINTERRUPTIBLE);
1481                 spin_lock(&inode->i_lock);
1482         }
1483 }
1484
1485 /*
1486  * Wait for writeback on an inode to complete. Caller must have inode pinned.
1487  */
1488 void inode_wait_for_writeback(struct inode *inode)
1489 {
1490         spin_lock(&inode->i_lock);
1491         __inode_wait_for_writeback(inode);
1492         spin_unlock(&inode->i_lock);
1493 }
1494
1495 /*
1496  * Sleep until I_SYNC is cleared. This function must be called with i_lock
1497  * held and drops it. It is aimed for callers not holding any inode reference
1498  * so once i_lock is dropped, inode can go away.
1499  */
1500 static void inode_sleep_on_writeback(struct inode *inode)
1501         __releases(inode->i_lock)
1502 {
1503         DEFINE_WAIT(wait);
1504         wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1505         int sleep;
1506
1507         prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1508         sleep = inode->i_state & I_SYNC;
1509         spin_unlock(&inode->i_lock);
1510         if (sleep)
1511                 schedule();
1512         finish_wait(wqh, &wait);
1513 }
1514
1515 /*
1516  * Find proper writeback list for the inode depending on its current state and
1517  * possibly also change of its state while we were doing writeback.  Here we
1518  * handle things such as livelock prevention or fairness of writeback among
1519  * inodes. This function can be called only by flusher thread - noone else
1520  * processes all inodes in writeback lists and requeueing inodes behind flusher
1521  * thread's back can have unexpected consequences.
1522  */
1523 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1524                           struct writeback_control *wbc)
1525 {
1526         if (inode->i_state & I_FREEING)
1527                 return;
1528
1529         /*
1530          * Sync livelock prevention. Each inode is tagged and synced in one
1531          * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1532          * the dirty time to prevent enqueue and sync it again.
1533          */
1534         if ((inode->i_state & I_DIRTY) &&
1535             (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1536                 inode->dirtied_when = jiffies;
1537
1538         if (wbc->pages_skipped) {
1539                 /*
1540                  * writeback is not making progress due to locked
1541                  * buffers. Skip this inode for now.
1542                  */
1543                 redirty_tail_locked(inode, wb);
1544                 return;
1545         }
1546
1547         if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1548                 /*
1549                  * We didn't write back all the pages.  nfs_writepages()
1550                  * sometimes bales out without doing anything.
1551                  */
1552                 if (wbc->nr_to_write <= 0) {
1553                         /* Slice used up. Queue for next turn. */
1554                         requeue_io(inode, wb);
1555                 } else {
1556                         /*
1557                          * Writeback blocked by something other than
1558                          * congestion. Delay the inode for some time to
1559                          * avoid spinning on the CPU (100% iowait)
1560                          * retrying writeback of the dirty page/inode
1561                          * that cannot be performed immediately.
1562                          */
1563                         redirty_tail_locked(inode, wb);
1564                 }
1565         } else if (inode->i_state & I_DIRTY) {
1566                 /*
1567                  * Filesystems can dirty the inode during writeback operations,
1568                  * such as delayed allocation during submission or metadata
1569                  * updates after data IO completion.
1570                  */
1571                 redirty_tail_locked(inode, wb);
1572         } else if (inode->i_state & I_DIRTY_TIME) {
1573                 inode->dirtied_when = jiffies;
1574                 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1575                 inode->i_state &= ~I_SYNC_QUEUED;
1576         } else {
1577                 /* The inode is clean. Remove from writeback lists. */
1578                 inode_cgwb_move_to_attached(inode, wb);
1579         }
1580 }
1581
1582 /*
1583  * Write out an inode and its dirty pages (or some of its dirty pages, depending
1584  * on @wbc->nr_to_write), and clear the relevant dirty flags from i_state.
1585  *
1586  * This doesn't remove the inode from the writeback list it is on, except
1587  * potentially to move it from b_dirty_time to b_dirty due to timestamp
1588  * expiration.  The caller is otherwise responsible for writeback list handling.
1589  *
1590  * The caller is also responsible for setting the I_SYNC flag beforehand and
1591  * calling inode_sync_complete() to clear it afterwards.
1592  */
1593 static int
1594 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1595 {
1596         struct address_space *mapping = inode->i_mapping;
1597         long nr_to_write = wbc->nr_to_write;
1598         unsigned dirty;
1599         int ret;
1600
1601         WARN_ON(!(inode->i_state & I_SYNC));
1602
1603         trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1604
1605         ret = do_writepages(mapping, wbc);
1606
1607         /*
1608          * Make sure to wait on the data before writing out the metadata.
1609          * This is important for filesystems that modify metadata on data
1610          * I/O completion. We don't do it for sync(2) writeback because it has a
1611          * separate, external IO completion path and ->sync_fs for guaranteeing
1612          * inode metadata is written back correctly.
1613          */
1614         if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1615                 int err = filemap_fdatawait(mapping);
1616                 if (ret == 0)
1617                         ret = err;
1618         }
1619
1620         /*
1621          * If the inode has dirty timestamps and we need to write them, call
1622          * mark_inode_dirty_sync() to notify the filesystem about it and to
1623          * change I_DIRTY_TIME into I_DIRTY_SYNC.
1624          */
1625         if ((inode->i_state & I_DIRTY_TIME) &&
1626             (wbc->sync_mode == WB_SYNC_ALL ||
1627              time_after(jiffies, inode->dirtied_time_when +
1628                         dirtytime_expire_interval * HZ))) {
1629                 trace_writeback_lazytime(inode);
1630                 mark_inode_dirty_sync(inode);
1631         }
1632
1633         /*
1634          * Get and clear the dirty flags from i_state.  This needs to be done
1635          * after calling writepages because some filesystems may redirty the
1636          * inode during writepages due to delalloc.  It also needs to be done
1637          * after handling timestamp expiration, as that may dirty the inode too.
1638          */
1639         spin_lock(&inode->i_lock);
1640         dirty = inode->i_state & I_DIRTY;
1641         inode->i_state &= ~dirty;
1642
1643         /*
1644          * Paired with smp_mb() in __mark_inode_dirty().  This allows
1645          * __mark_inode_dirty() to test i_state without grabbing i_lock -
1646          * either they see the I_DIRTY bits cleared or we see the dirtied
1647          * inode.
1648          *
1649          * I_DIRTY_PAGES is always cleared together above even if @mapping
1650          * still has dirty pages.  The flag is reinstated after smp_mb() if
1651          * necessary.  This guarantees that either __mark_inode_dirty()
1652          * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1653          */
1654         smp_mb();
1655
1656         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1657                 inode->i_state |= I_DIRTY_PAGES;
1658
1659         spin_unlock(&inode->i_lock);
1660
1661         /* Don't write the inode if only I_DIRTY_PAGES was set */
1662         if (dirty & ~I_DIRTY_PAGES) {
1663                 int err = write_inode(inode, wbc);
1664                 if (ret == 0)
1665                         ret = err;
1666         }
1667         trace_writeback_single_inode(inode, wbc, nr_to_write);
1668         return ret;
1669 }
1670
1671 /*
1672  * Write out an inode's dirty data and metadata on-demand, i.e. separately from
1673  * the regular batched writeback done by the flusher threads in
1674  * writeback_sb_inodes().  @wbc controls various aspects of the write, such as
1675  * whether it is a data-integrity sync (%WB_SYNC_ALL) or not (%WB_SYNC_NONE).
1676  *
1677  * To prevent the inode from going away, either the caller must have a reference
1678  * to the inode, or the inode must have I_WILL_FREE or I_FREEING set.
1679  */
1680 static int writeback_single_inode(struct inode *inode,
1681                                   struct writeback_control *wbc)
1682 {
1683         struct bdi_writeback *wb;
1684         int ret = 0;
1685
1686         spin_lock(&inode->i_lock);
1687         if (!atomic_read(&inode->i_count))
1688                 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1689         else
1690                 WARN_ON(inode->i_state & I_WILL_FREE);
1691
1692         if (inode->i_state & I_SYNC) {
1693                 /*
1694                  * Writeback is already running on the inode.  For WB_SYNC_NONE,
1695                  * that's enough and we can just return.  For WB_SYNC_ALL, we
1696                  * must wait for the existing writeback to complete, then do
1697                  * writeback again if there's anything left.
1698                  */
1699                 if (wbc->sync_mode != WB_SYNC_ALL)
1700                         goto out;
1701                 __inode_wait_for_writeback(inode);
1702         }
1703         WARN_ON(inode->i_state & I_SYNC);
1704         /*
1705          * If the inode is already fully clean, then there's nothing to do.
1706          *
1707          * For data-integrity syncs we also need to check whether any pages are
1708          * still under writeback, e.g. due to prior WB_SYNC_NONE writeback.  If
1709          * there are any such pages, we'll need to wait for them.
1710          */
1711         if (!(inode->i_state & I_DIRTY_ALL) &&
1712             (wbc->sync_mode != WB_SYNC_ALL ||
1713              !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1714                 goto out;
1715         inode->i_state |= I_SYNC;
1716         wbc_attach_and_unlock_inode(wbc, inode);
1717
1718         ret = __writeback_single_inode(inode, wbc);
1719
1720         wbc_detach_inode(wbc);
1721
1722         wb = inode_to_wb_and_lock_list(inode);
1723         spin_lock(&inode->i_lock);
1724         /*
1725          * If the inode is now fully clean, then it can be safely removed from
1726          * its writeback list (if any).  Otherwise the flusher threads are
1727          * responsible for the writeback lists.
1728          */
1729         if (!(inode->i_state & I_DIRTY_ALL))
1730                 inode_cgwb_move_to_attached(inode, wb);
1731         spin_unlock(&wb->list_lock);
1732         inode_sync_complete(inode);
1733 out:
1734         spin_unlock(&inode->i_lock);
1735         return ret;
1736 }
1737
1738 static long writeback_chunk_size(struct bdi_writeback *wb,
1739                                  struct wb_writeback_work *work)
1740 {
1741         long pages;
1742
1743         /*
1744          * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1745          * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1746          * here avoids calling into writeback_inodes_wb() more than once.
1747          *
1748          * The intended call sequence for WB_SYNC_ALL writeback is:
1749          *
1750          *      wb_writeback()
1751          *          writeback_sb_inodes()       <== called only once
1752          *              write_cache_pages()     <== called once for each inode
1753          *                   (quickly) tag currently dirty pages
1754          *                   (maybe slowly) sync all tagged pages
1755          */
1756         if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1757                 pages = LONG_MAX;
1758         else {
1759                 pages = min(wb->avg_write_bandwidth / 2,
1760                             global_wb_domain.dirty_limit / DIRTY_SCOPE);
1761                 pages = min(pages, work->nr_pages);
1762                 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1763                                    MIN_WRITEBACK_PAGES);
1764         }
1765
1766         return pages;
1767 }
1768
1769 /*
1770  * Write a portion of b_io inodes which belong to @sb.
1771  *
1772  * Return the number of pages and/or inodes written.
1773  *
1774  * NOTE! This is called with wb->list_lock held, and will
1775  * unlock and relock that for each inode it ends up doing
1776  * IO for.
1777  */
1778 static long writeback_sb_inodes(struct super_block *sb,
1779                                 struct bdi_writeback *wb,
1780                                 struct wb_writeback_work *work)
1781 {
1782         struct writeback_control wbc = {
1783                 .sync_mode              = work->sync_mode,
1784                 .tagged_writepages      = work->tagged_writepages,
1785                 .for_kupdate            = work->for_kupdate,
1786                 .for_background         = work->for_background,
1787                 .for_sync               = work->for_sync,
1788                 .range_cyclic           = work->range_cyclic,
1789                 .range_start            = 0,
1790                 .range_end              = LLONG_MAX,
1791         };
1792         unsigned long start_time = jiffies;
1793         long write_chunk;
1794         long wrote = 0;  /* count both pages and inodes */
1795
1796         while (!list_empty(&wb->b_io)) {
1797                 struct inode *inode = wb_inode(wb->b_io.prev);
1798                 struct bdi_writeback *tmp_wb;
1799
1800                 if (inode->i_sb != sb) {
1801                         if (work->sb) {
1802                                 /*
1803                                  * We only want to write back data for this
1804                                  * superblock, move all inodes not belonging
1805                                  * to it back onto the dirty list.
1806                                  */
1807                                 redirty_tail(inode, wb);
1808                                 continue;
1809                         }
1810
1811                         /*
1812                          * The inode belongs to a different superblock.
1813                          * Bounce back to the caller to unpin this and
1814                          * pin the next superblock.
1815                          */
1816                         break;
1817                 }
1818
1819                 /*
1820                  * Don't bother with new inodes or inodes being freed, first
1821                  * kind does not need periodic writeout yet, and for the latter
1822                  * kind writeout is handled by the freer.
1823                  */
1824                 spin_lock(&inode->i_lock);
1825                 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1826                         redirty_tail_locked(inode, wb);
1827                         spin_unlock(&inode->i_lock);
1828                         continue;
1829                 }
1830                 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1831                         /*
1832                          * If this inode is locked for writeback and we are not
1833                          * doing writeback-for-data-integrity, move it to
1834                          * b_more_io so that writeback can proceed with the
1835                          * other inodes on s_io.
1836                          *
1837                          * We'll have another go at writing back this inode
1838                          * when we completed a full scan of b_io.
1839                          */
1840                         spin_unlock(&inode->i_lock);
1841                         requeue_io(inode, wb);
1842                         trace_writeback_sb_inodes_requeue(inode);
1843                         continue;
1844                 }
1845                 spin_unlock(&wb->list_lock);
1846
1847                 /*
1848                  * We already requeued the inode if it had I_SYNC set and we
1849                  * are doing WB_SYNC_NONE writeback. So this catches only the
1850                  * WB_SYNC_ALL case.
1851                  */
1852                 if (inode->i_state & I_SYNC) {
1853                         /* Wait for I_SYNC. This function drops i_lock... */
1854                         inode_sleep_on_writeback(inode);
1855                         /* Inode may be gone, start again */
1856                         spin_lock(&wb->list_lock);
1857                         continue;
1858                 }
1859                 inode->i_state |= I_SYNC;
1860                 wbc_attach_and_unlock_inode(&wbc, inode);
1861
1862                 write_chunk = writeback_chunk_size(wb, work);
1863                 wbc.nr_to_write = write_chunk;
1864                 wbc.pages_skipped = 0;
1865
1866                 /*
1867                  * We use I_SYNC to pin the inode in memory. While it is set
1868                  * evict_inode() will wait so the inode cannot be freed.
1869                  */
1870                 __writeback_single_inode(inode, &wbc);
1871
1872                 wbc_detach_inode(&wbc);
1873                 work->nr_pages -= write_chunk - wbc.nr_to_write;
1874                 wrote += write_chunk - wbc.nr_to_write;
1875
1876                 if (need_resched()) {
1877                         /*
1878                          * We're trying to balance between building up a nice
1879                          * long list of IOs to improve our merge rate, and
1880                          * getting those IOs out quickly for anyone throttling
1881                          * in balance_dirty_pages().  cond_resched() doesn't
1882                          * unplug, so get our IOs out the door before we
1883                          * give up the CPU.
1884                          */
1885                         blk_flush_plug(current);
1886                         cond_resched();
1887                 }
1888
1889                 /*
1890                  * Requeue @inode if still dirty.  Be careful as @inode may
1891                  * have been switched to another wb in the meantime.
1892                  */
1893                 tmp_wb = inode_to_wb_and_lock_list(inode);
1894                 spin_lock(&inode->i_lock);
1895                 if (!(inode->i_state & I_DIRTY_ALL))
1896                         wrote++;
1897                 requeue_inode(inode, tmp_wb, &wbc);
1898                 inode_sync_complete(inode);
1899                 spin_unlock(&inode->i_lock);
1900
1901                 if (unlikely(tmp_wb != wb)) {
1902                         spin_unlock(&tmp_wb->list_lock);
1903                         spin_lock(&wb->list_lock);
1904                 }
1905
1906                 /*
1907                  * bail out to wb_writeback() often enough to check
1908                  * background threshold and other termination conditions.
1909                  */
1910                 if (wrote) {
1911                         if (time_is_before_jiffies(start_time + HZ / 10UL))
1912                                 break;
1913                         if (work->nr_pages <= 0)
1914                                 break;
1915                 }
1916         }
1917         return wrote;
1918 }
1919
1920 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1921                                   struct wb_writeback_work *work)
1922 {
1923         unsigned long start_time = jiffies;
1924         long wrote = 0;
1925
1926         while (!list_empty(&wb->b_io)) {
1927                 struct inode *inode = wb_inode(wb->b_io.prev);
1928                 struct super_block *sb = inode->i_sb;
1929
1930                 if (!trylock_super(sb)) {
1931                         /*
1932                          * trylock_super() may fail consistently due to
1933                          * s_umount being grabbed by someone else. Don't use
1934                          * requeue_io() to avoid busy retrying the inode/sb.
1935                          */
1936                         redirty_tail(inode, wb);
1937                         continue;
1938                 }
1939                 wrote += writeback_sb_inodes(sb, wb, work);
1940                 up_read(&sb->s_umount);
1941
1942                 /* refer to the same tests at the end of writeback_sb_inodes */
1943                 if (wrote) {
1944                         if (time_is_before_jiffies(start_time + HZ / 10UL))
1945                                 break;
1946                         if (work->nr_pages <= 0)
1947                                 break;
1948                 }
1949         }
1950         /* Leave any unwritten inodes on b_io */
1951         return wrote;
1952 }
1953
1954 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1955                                 enum wb_reason reason)
1956 {
1957         struct wb_writeback_work work = {
1958                 .nr_pages       = nr_pages,
1959                 .sync_mode      = WB_SYNC_NONE,
1960                 .range_cyclic   = 1,
1961                 .reason         = reason,
1962         };
1963         struct blk_plug plug;
1964
1965         blk_start_plug(&plug);
1966         spin_lock(&wb->list_lock);
1967         if (list_empty(&wb->b_io))
1968                 queue_io(wb, &work, jiffies);
1969         __writeback_inodes_wb(wb, &work);
1970         spin_unlock(&wb->list_lock);
1971         blk_finish_plug(&plug);
1972
1973         return nr_pages - work.nr_pages;
1974 }
1975
1976 /*
1977  * Explicit flushing or periodic writeback of "old" data.
1978  *
1979  * Define "old": the first time one of an inode's pages is dirtied, we mark the
1980  * dirtying-time in the inode's address_space.  So this periodic writeback code
1981  * just walks the superblock inode list, writing back any inodes which are
1982  * older than a specific point in time.
1983  *
1984  * Try to run once per dirty_writeback_interval.  But if a writeback event
1985  * takes longer than a dirty_writeback_interval interval, then leave a
1986  * one-second gap.
1987  *
1988  * dirtied_before takes precedence over nr_to_write.  So we'll only write back
1989  * all dirty pages if they are all attached to "old" mappings.
1990  */
1991 static long wb_writeback(struct bdi_writeback *wb,
1992                          struct wb_writeback_work *work)
1993 {
1994         unsigned long wb_start = jiffies;
1995         long nr_pages = work->nr_pages;
1996         unsigned long dirtied_before = jiffies;
1997         struct inode *inode;
1998         long progress;
1999         struct blk_plug plug;
2000
2001         blk_start_plug(&plug);
2002         spin_lock(&wb->list_lock);
2003         for (;;) {
2004                 /*
2005                  * Stop writeback when nr_pages has been consumed
2006                  */
2007                 if (work->nr_pages <= 0)
2008                         break;
2009
2010                 /*
2011                  * Background writeout and kupdate-style writeback may
2012                  * run forever. Stop them if there is other work to do
2013                  * so that e.g. sync can proceed. They'll be restarted
2014                  * after the other works are all done.
2015                  */
2016                 if ((work->for_background || work->for_kupdate) &&
2017                     !list_empty(&wb->work_list))
2018                         break;
2019
2020                 /*
2021                  * For background writeout, stop when we are below the
2022                  * background dirty threshold
2023                  */
2024                 if (work->for_background && !wb_over_bg_thresh(wb))
2025                         break;
2026
2027                 /*
2028                  * Kupdate and background works are special and we want to
2029                  * include all inodes that need writing. Livelock avoidance is
2030                  * handled by these works yielding to any other work so we are
2031                  * safe.
2032                  */
2033                 if (work->for_kupdate) {
2034                         dirtied_before = jiffies -
2035                                 msecs_to_jiffies(dirty_expire_interval * 10);
2036                 } else if (work->for_background)
2037                         dirtied_before = jiffies;
2038
2039                 trace_writeback_start(wb, work);
2040                 if (list_empty(&wb->b_io))
2041                         queue_io(wb, work, dirtied_before);
2042                 if (work->sb)
2043                         progress = writeback_sb_inodes(work->sb, wb, work);
2044                 else
2045                         progress = __writeback_inodes_wb(wb, work);
2046                 trace_writeback_written(wb, work);
2047
2048                 wb_update_bandwidth(wb, wb_start);
2049
2050                 /*
2051                  * Did we write something? Try for more
2052                  *
2053                  * Dirty inodes are moved to b_io for writeback in batches.
2054                  * The completion of the current batch does not necessarily
2055                  * mean the overall work is done. So we keep looping as long
2056                  * as made some progress on cleaning pages or inodes.
2057                  */
2058                 if (progress)
2059                         continue;
2060                 /*
2061                  * No more inodes for IO, bail
2062                  */
2063                 if (list_empty(&wb->b_more_io))
2064                         break;
2065                 /*
2066                  * Nothing written. Wait for some inode to
2067                  * become available for writeback. Otherwise
2068                  * we'll just busyloop.
2069                  */
2070                 trace_writeback_wait(wb, work);
2071                 inode = wb_inode(wb->b_more_io.prev);
2072                 spin_lock(&inode->i_lock);
2073                 spin_unlock(&wb->list_lock);
2074                 /* This function drops i_lock... */
2075                 inode_sleep_on_writeback(inode);
2076                 spin_lock(&wb->list_lock);
2077         }
2078         spin_unlock(&wb->list_lock);
2079         blk_finish_plug(&plug);
2080
2081         return nr_pages - work->nr_pages;
2082 }
2083
2084 /*
2085  * Return the next wb_writeback_work struct that hasn't been processed yet.
2086  */
2087 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
2088 {
2089         struct wb_writeback_work *work = NULL;
2090
2091         spin_lock_bh(&wb->work_lock);
2092         if (!list_empty(&wb->work_list)) {
2093                 work = list_entry(wb->work_list.next,
2094                                   struct wb_writeback_work, list);
2095                 list_del_init(&work->list);
2096         }
2097         spin_unlock_bh(&wb->work_lock);
2098         return work;
2099 }
2100
2101 static long wb_check_background_flush(struct bdi_writeback *wb)
2102 {
2103         if (wb_over_bg_thresh(wb)) {
2104
2105                 struct wb_writeback_work work = {
2106                         .nr_pages       = LONG_MAX,
2107                         .sync_mode      = WB_SYNC_NONE,
2108                         .for_background = 1,
2109                         .range_cyclic   = 1,
2110                         .reason         = WB_REASON_BACKGROUND,
2111                 };
2112
2113                 return wb_writeback(wb, &work);
2114         }
2115
2116         return 0;
2117 }
2118
2119 static long wb_check_old_data_flush(struct bdi_writeback *wb)
2120 {
2121         unsigned long expired;
2122         long nr_pages;
2123
2124         /*
2125          * When set to zero, disable periodic writeback
2126          */
2127         if (!dirty_writeback_interval)
2128                 return 0;
2129
2130         expired = wb->last_old_flush +
2131                         msecs_to_jiffies(dirty_writeback_interval * 10);
2132         if (time_before(jiffies, expired))
2133                 return 0;
2134
2135         wb->last_old_flush = jiffies;
2136         nr_pages = get_nr_dirty_pages();
2137
2138         if (nr_pages) {
2139                 struct wb_writeback_work work = {
2140                         .nr_pages       = nr_pages,
2141                         .sync_mode      = WB_SYNC_NONE,
2142                         .for_kupdate    = 1,
2143                         .range_cyclic   = 1,
2144                         .reason         = WB_REASON_PERIODIC,
2145                 };
2146
2147                 return wb_writeback(wb, &work);
2148         }
2149
2150         return 0;
2151 }
2152
2153 static long wb_check_start_all(struct bdi_writeback *wb)
2154 {
2155         long nr_pages;
2156
2157         if (!test_bit(WB_start_all, &wb->state))
2158                 return 0;
2159
2160         nr_pages = get_nr_dirty_pages();
2161         if (nr_pages) {
2162                 struct wb_writeback_work work = {
2163                         .nr_pages       = wb_split_bdi_pages(wb, nr_pages),
2164                         .sync_mode      = WB_SYNC_NONE,
2165                         .range_cyclic   = 1,
2166                         .reason         = wb->start_all_reason,
2167                 };
2168
2169                 nr_pages = wb_writeback(wb, &work);
2170         }
2171
2172         clear_bit(WB_start_all, &wb->state);
2173         return nr_pages;
2174 }
2175
2176
2177 /*
2178  * Retrieve work items and do the writeback they describe
2179  */
2180 static long wb_do_writeback(struct bdi_writeback *wb)
2181 {
2182         struct wb_writeback_work *work;
2183         long wrote = 0;
2184
2185         set_bit(WB_writeback_running, &wb->state);
2186         while ((work = get_next_work_item(wb)) != NULL) {
2187                 trace_writeback_exec(wb, work);
2188                 wrote += wb_writeback(wb, work);
2189                 finish_writeback_work(wb, work);
2190         }
2191
2192         /*
2193          * Check for a flush-everything request
2194          */
2195         wrote += wb_check_start_all(wb);
2196
2197         /*
2198          * Check for periodic writeback, kupdated() style
2199          */
2200         wrote += wb_check_old_data_flush(wb);
2201         wrote += wb_check_background_flush(wb);
2202         clear_bit(WB_writeback_running, &wb->state);
2203
2204         return wrote;
2205 }
2206
2207 /*
2208  * Handle writeback of dirty data for the device backed by this bdi. Also
2209  * reschedules periodically and does kupdated style flushing.
2210  */
2211 void wb_workfn(struct work_struct *work)
2212 {
2213         struct bdi_writeback *wb = container_of(to_delayed_work(work),
2214                                                 struct bdi_writeback, dwork);
2215         long pages_written;
2216
2217         set_worker_desc("flush-%s", bdi_dev_name(wb->bdi));
2218         current->flags |= PF_SWAPWRITE;
2219
2220         if (likely(!current_is_workqueue_rescuer() ||
2221                    !test_bit(WB_registered, &wb->state))) {
2222                 /*
2223                  * The normal path.  Keep writing back @wb until its
2224                  * work_list is empty.  Note that this path is also taken
2225                  * if @wb is shutting down even when we're running off the
2226                  * rescuer as work_list needs to be drained.
2227                  */
2228                 do {
2229                         pages_written = wb_do_writeback(wb);
2230                         trace_writeback_pages_written(pages_written);
2231                 } while (!list_empty(&wb->work_list));
2232         } else {
2233                 /*
2234                  * bdi_wq can't get enough workers and we're running off
2235                  * the emergency worker.  Don't hog it.  Hopefully, 1024 is
2236                  * enough for efficient IO.
2237                  */
2238                 pages_written = writeback_inodes_wb(wb, 1024,
2239                                                     WB_REASON_FORKER_THREAD);
2240                 trace_writeback_pages_written(pages_written);
2241         }
2242
2243         if (!list_empty(&wb->work_list))
2244                 wb_wakeup(wb);
2245         else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
2246                 wb_wakeup_delayed(wb);
2247
2248         current->flags &= ~PF_SWAPWRITE;
2249 }
2250
2251 /*
2252  * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2253  * write back the whole world.
2254  */
2255 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2256                                          enum wb_reason reason)
2257 {
2258         struct bdi_writeback *wb;
2259
2260         if (!bdi_has_dirty_io(bdi))
2261                 return;
2262
2263         list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2264                 wb_start_writeback(wb, reason);
2265 }
2266
2267 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2268                                 enum wb_reason reason)
2269 {
2270         rcu_read_lock();
2271         __wakeup_flusher_threads_bdi(bdi, reason);
2272         rcu_read_unlock();
2273 }
2274
2275 /*
2276  * Wakeup the flusher threads to start writeback of all currently dirty pages
2277  */
2278 void wakeup_flusher_threads(enum wb_reason reason)
2279 {
2280         struct backing_dev_info *bdi;
2281
2282         /*
2283          * If we are expecting writeback progress we must submit plugged IO.
2284          */
2285         if (blk_needs_flush_plug(current))
2286                 blk_schedule_flush_plug(current);
2287
2288         rcu_read_lock();
2289         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2290                 __wakeup_flusher_threads_bdi(bdi, reason);
2291         rcu_read_unlock();
2292 }
2293
2294 /*
2295  * Wake up bdi's periodically to make sure dirtytime inodes gets
2296  * written back periodically.  We deliberately do *not* check the
2297  * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2298  * kernel to be constantly waking up once there are any dirtytime
2299  * inodes on the system.  So instead we define a separate delayed work
2300  * function which gets called much more rarely.  (By default, only
2301  * once every 12 hours.)
2302  *
2303  * If there is any other write activity going on in the file system,
2304  * this function won't be necessary.  But if the only thing that has
2305  * happened on the file system is a dirtytime inode caused by an atime
2306  * update, we need this infrastructure below to make sure that inode
2307  * eventually gets pushed out to disk.
2308  */
2309 static void wakeup_dirtytime_writeback(struct work_struct *w);
2310 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2311
2312 static void wakeup_dirtytime_writeback(struct work_struct *w)
2313 {
2314         struct backing_dev_info *bdi;
2315
2316         rcu_read_lock();
2317         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2318                 struct bdi_writeback *wb;
2319
2320                 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2321                         if (!list_empty(&wb->b_dirty_time))
2322                                 wb_wakeup(wb);
2323         }
2324         rcu_read_unlock();
2325         schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2326 }
2327
2328 static int __init start_dirtytime_writeback(void)
2329 {
2330         schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2331         return 0;
2332 }
2333 __initcall(start_dirtytime_writeback);
2334
2335 int dirtytime_interval_handler(struct ctl_table *table, int write,
2336                                void *buffer, size_t *lenp, loff_t *ppos)
2337 {
2338         int ret;
2339
2340         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2341         if (ret == 0 && write)
2342                 mod_delayed_work(system_wq, &dirtytime_work, 0);
2343         return ret;
2344 }
2345
2346 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
2347 {
2348         if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
2349                 struct dentry *dentry;
2350                 const char *name = "?";
2351
2352                 dentry = d_find_alias(inode);
2353                 if (dentry) {
2354                         spin_lock(&dentry->d_lock);
2355                         name = (const char *) dentry->d_name.name;
2356                 }
2357                 printk(KERN_DEBUG
2358                        "%s(%d): dirtied inode %lu (%s) on %s\n",
2359                        current->comm, task_pid_nr(current), inode->i_ino,
2360                        name, inode->i_sb->s_id);
2361                 if (dentry) {
2362                         spin_unlock(&dentry->d_lock);
2363                         dput(dentry);
2364                 }
2365         }
2366 }
2367
2368 /**
2369  * __mark_inode_dirty - internal function to mark an inode dirty
2370  *
2371  * @inode: inode to mark
2372  * @flags: what kind of dirty, e.g. I_DIRTY_SYNC.  This can be a combination of
2373  *         multiple I_DIRTY_* flags, except that I_DIRTY_TIME can't be combined
2374  *         with I_DIRTY_PAGES.
2375  *
2376  * Mark an inode as dirty.  We notify the filesystem, then update the inode's
2377  * dirty flags.  Then, if needed we add the inode to the appropriate dirty list.
2378  *
2379  * Most callers should use mark_inode_dirty() or mark_inode_dirty_sync()
2380  * instead of calling this directly.
2381  *
2382  * CAREFUL!  We only add the inode to the dirty list if it is hashed or if it
2383  * refers to a blockdev.  Unhashed inodes will never be added to the dirty list
2384  * even if they are later hashed, as they will have been marked dirty already.
2385  *
2386  * In short, ensure you hash any inodes _before_ you start marking them dirty.
2387  *
2388  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2389  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
2390  * the kernel-internal blockdev inode represents the dirtying time of the
2391  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
2392  * page->mapping->host, so the page-dirtying time is recorded in the internal
2393  * blockdev inode.
2394  */
2395 void __mark_inode_dirty(struct inode *inode, int flags)
2396 {
2397         struct super_block *sb = inode->i_sb;
2398         int dirtytime = 0;
2399
2400         trace_writeback_mark_inode_dirty(inode, flags);
2401
2402         if (flags & I_DIRTY_INODE) {
2403                 /*
2404                  * Notify the filesystem about the inode being dirtied, so that
2405                  * (if needed) it can update on-disk fields and journal the
2406                  * inode.  This is only needed when the inode itself is being
2407                  * dirtied now.  I.e. it's only needed for I_DIRTY_INODE, not
2408                  * for just I_DIRTY_PAGES or I_DIRTY_TIME.
2409                  */
2410                 trace_writeback_dirty_inode_start(inode, flags);
2411                 if (sb->s_op->dirty_inode)
2412                         sb->s_op->dirty_inode(inode, flags & I_DIRTY_INODE);
2413                 trace_writeback_dirty_inode(inode, flags);
2414
2415                 /* I_DIRTY_INODE supersedes I_DIRTY_TIME. */
2416                 flags &= ~I_DIRTY_TIME;
2417         } else {
2418                 /*
2419                  * Else it's either I_DIRTY_PAGES, I_DIRTY_TIME, or nothing.
2420                  * (We don't support setting both I_DIRTY_PAGES and I_DIRTY_TIME
2421                  * in one call to __mark_inode_dirty().)
2422                  */
2423                 dirtytime = flags & I_DIRTY_TIME;
2424                 WARN_ON_ONCE(dirtytime && flags != I_DIRTY_TIME);
2425         }
2426
2427         /*
2428          * Paired with smp_mb() in __writeback_single_inode() for the
2429          * following lockless i_state test.  See there for details.
2430          */
2431         smp_mb();
2432
2433         if (((inode->i_state & flags) == flags) ||
2434             (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2435                 return;
2436
2437         if (unlikely(block_dump))
2438                 block_dump___mark_inode_dirty(inode);
2439
2440         spin_lock(&inode->i_lock);
2441         if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2442                 goto out_unlock_inode;
2443         if ((inode->i_state & flags) != flags) {
2444                 const int was_dirty = inode->i_state & I_DIRTY;
2445
2446                 inode_attach_wb(inode, NULL);
2447
2448                 /* I_DIRTY_INODE supersedes I_DIRTY_TIME. */
2449                 if (flags & I_DIRTY_INODE)
2450                         inode->i_state &= ~I_DIRTY_TIME;
2451                 inode->i_state |= flags;
2452
2453                 /*
2454                  * If the inode is queued for writeback by flush worker, just
2455                  * update its dirty state. Once the flush worker is done with
2456                  * the inode it will place it on the appropriate superblock
2457                  * list, based upon its state.
2458                  */
2459                 if (inode->i_state & I_SYNC_QUEUED)
2460                         goto out_unlock_inode;
2461
2462                 /*
2463                  * Only add valid (hashed) inodes to the superblock's
2464                  * dirty list.  Add blockdev inodes as well.
2465                  */
2466                 if (!S_ISBLK(inode->i_mode)) {
2467                         if (inode_unhashed(inode))
2468                                 goto out_unlock_inode;
2469                 }
2470                 if (inode->i_state & I_FREEING)
2471                         goto out_unlock_inode;
2472
2473                 /*
2474                  * If the inode was already on b_dirty/b_io/b_more_io, don't
2475                  * reposition it (that would break b_dirty time-ordering).
2476                  */
2477                 if (!was_dirty) {
2478                         struct bdi_writeback *wb;
2479                         struct list_head *dirty_list;
2480                         bool wakeup_bdi = false;
2481
2482                         wb = locked_inode_to_wb_and_lock_list(inode);
2483
2484                         inode->dirtied_when = jiffies;
2485                         if (dirtytime)
2486                                 inode->dirtied_time_when = jiffies;
2487
2488                         if (inode->i_state & I_DIRTY)
2489                                 dirty_list = &wb->b_dirty;
2490                         else
2491                                 dirty_list = &wb->b_dirty_time;
2492
2493                         wakeup_bdi = inode_io_list_move_locked(inode, wb,
2494                                                                dirty_list);
2495
2496                         spin_unlock(&wb->list_lock);
2497                         trace_writeback_dirty_inode_enqueue(inode);
2498
2499                         /*
2500                          * If this is the first dirty inode for this bdi,
2501                          * we have to wake-up the corresponding bdi thread
2502                          * to make sure background write-back happens
2503                          * later.
2504                          */
2505                         if (wakeup_bdi &&
2506                             (wb->bdi->capabilities & BDI_CAP_WRITEBACK))
2507                                 wb_wakeup_delayed(wb);
2508                         return;
2509                 }
2510         }
2511 out_unlock_inode:
2512         spin_unlock(&inode->i_lock);
2513 }
2514 EXPORT_SYMBOL(__mark_inode_dirty);
2515
2516 /*
2517  * The @s_sync_lock is used to serialise concurrent sync operations
2518  * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2519  * Concurrent callers will block on the s_sync_lock rather than doing contending
2520  * walks. The queueing maintains sync(2) required behaviour as all the IO that
2521  * has been issued up to the time this function is enter is guaranteed to be
2522  * completed by the time we have gained the lock and waited for all IO that is
2523  * in progress regardless of the order callers are granted the lock.
2524  */
2525 static void wait_sb_inodes(struct super_block *sb)
2526 {
2527         LIST_HEAD(sync_list);
2528
2529         /*
2530          * We need to be protected against the filesystem going from
2531          * r/o to r/w or vice versa.
2532          */
2533         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2534
2535         mutex_lock(&sb->s_sync_lock);
2536
2537         /*
2538          * Splice the writeback list onto a temporary list to avoid waiting on
2539          * inodes that have started writeback after this point.
2540          *
2541          * Use rcu_read_lock() to keep the inodes around until we have a
2542          * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2543          * the local list because inodes can be dropped from either by writeback
2544          * completion.
2545          */
2546         rcu_read_lock();
2547         spin_lock_irq(&sb->s_inode_wblist_lock);
2548         list_splice_init(&sb->s_inodes_wb, &sync_list);
2549
2550         /*
2551          * Data integrity sync. Must wait for all pages under writeback, because
2552          * there may have been pages dirtied before our sync call, but which had
2553          * writeout started before we write it out.  In which case, the inode
2554          * may not be on the dirty list, but we still have to wait for that
2555          * writeout.
2556          */
2557         while (!list_empty(&sync_list)) {
2558                 struct inode *inode = list_first_entry(&sync_list, struct inode,
2559                                                        i_wb_list);
2560                 struct address_space *mapping = inode->i_mapping;
2561
2562                 /*
2563                  * Move each inode back to the wb list before we drop the lock
2564                  * to preserve consistency between i_wb_list and the mapping
2565                  * writeback tag. Writeback completion is responsible to remove
2566                  * the inode from either list once the writeback tag is cleared.
2567                  */
2568                 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2569
2570                 /*
2571                  * The mapping can appear untagged while still on-list since we
2572                  * do not have the mapping lock. Skip it here, wb completion
2573                  * will remove it.
2574                  */
2575                 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2576                         continue;
2577
2578                 spin_unlock_irq(&sb->s_inode_wblist_lock);
2579
2580                 spin_lock(&inode->i_lock);
2581                 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2582                         spin_unlock(&inode->i_lock);
2583
2584                         spin_lock_irq(&sb->s_inode_wblist_lock);
2585                         continue;
2586                 }
2587                 __iget(inode);
2588                 spin_unlock(&inode->i_lock);
2589                 rcu_read_unlock();
2590
2591                 /*
2592                  * We keep the error status of individual mapping so that
2593                  * applications can catch the writeback error using fsync(2).
2594                  * See filemap_fdatawait_keep_errors() for details.
2595                  */
2596                 filemap_fdatawait_keep_errors(mapping);
2597
2598                 cond_resched();
2599
2600                 iput(inode);
2601
2602                 rcu_read_lock();
2603                 spin_lock_irq(&sb->s_inode_wblist_lock);
2604         }
2605         spin_unlock_irq(&sb->s_inode_wblist_lock);
2606         rcu_read_unlock();
2607         mutex_unlock(&sb->s_sync_lock);
2608 }
2609
2610 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2611                                      enum wb_reason reason, bool skip_if_busy)
2612 {
2613         struct backing_dev_info *bdi = sb->s_bdi;
2614         DEFINE_WB_COMPLETION(done, bdi);
2615         struct wb_writeback_work work = {
2616                 .sb                     = sb,
2617                 .sync_mode              = WB_SYNC_NONE,
2618                 .tagged_writepages      = 1,
2619                 .done                   = &done,
2620                 .nr_pages               = nr,
2621                 .reason                 = reason,
2622         };
2623
2624         if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2625                 return;
2626         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2627
2628         bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2629         wb_wait_for_completion(&done);
2630 }
2631
2632 /**
2633  * writeback_inodes_sb_nr -     writeback dirty inodes from given super_block
2634  * @sb: the superblock
2635  * @nr: the number of pages to write
2636  * @reason: reason why some writeback work initiated
2637  *
2638  * Start writeback on some inodes on this super_block. No guarantees are made
2639  * on how many (if any) will be written, and this function does not wait
2640  * for IO completion of submitted IO.
2641  */
2642 void writeback_inodes_sb_nr(struct super_block *sb,
2643                             unsigned long nr,
2644                             enum wb_reason reason)
2645 {
2646         __writeback_inodes_sb_nr(sb, nr, reason, false);
2647 }
2648 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2649
2650 /**
2651  * writeback_inodes_sb  -       writeback dirty inodes from given super_block
2652  * @sb: the superblock
2653  * @reason: reason why some writeback work was initiated
2654  *
2655  * Start writeback on some inodes on this super_block. No guarantees are made
2656  * on how many (if any) will be written, and this function does not wait
2657  * for IO completion of submitted IO.
2658  */
2659 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2660 {
2661         return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2662 }
2663 EXPORT_SYMBOL(writeback_inodes_sb);
2664
2665 /**
2666  * try_to_writeback_inodes_sb - try to start writeback if none underway
2667  * @sb: the superblock
2668  * @reason: reason why some writeback work was initiated
2669  *
2670  * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2671  */
2672 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2673 {
2674         if (!down_read_trylock(&sb->s_umount))
2675                 return;
2676
2677         __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2678         up_read(&sb->s_umount);
2679 }
2680 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2681
2682 /**
2683  * sync_inodes_sb       -       sync sb inode pages
2684  * @sb: the superblock
2685  *
2686  * This function writes and waits on any dirty inode belonging to this
2687  * super_block.
2688  */
2689 void sync_inodes_sb(struct super_block *sb)
2690 {
2691         struct backing_dev_info *bdi = sb->s_bdi;
2692         DEFINE_WB_COMPLETION(done, bdi);
2693         struct wb_writeback_work work = {
2694                 .sb             = sb,
2695                 .sync_mode      = WB_SYNC_ALL,
2696                 .nr_pages       = LONG_MAX,
2697                 .range_cyclic   = 0,
2698                 .done           = &done,
2699                 .reason         = WB_REASON_SYNC,
2700                 .for_sync       = 1,
2701         };
2702
2703         /*
2704          * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2705          * inodes under writeback and I_DIRTY_TIME inodes ignored by
2706          * bdi_has_dirty() need to be written out too.
2707          */
2708         if (bdi == &noop_backing_dev_info)
2709                 return;
2710         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2711
2712         /* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2713         bdi_down_write_wb_switch_rwsem(bdi);
2714         bdi_split_work_to_wbs(bdi, &work, false);
2715         wb_wait_for_completion(&done);
2716         bdi_up_write_wb_switch_rwsem(bdi);
2717
2718         wait_sb_inodes(sb);
2719 }
2720 EXPORT_SYMBOL(sync_inodes_sb);
2721
2722 /**
2723  * write_inode_now      -       write an inode to disk
2724  * @inode: inode to write to disk
2725  * @sync: whether the write should be synchronous or not
2726  *
2727  * This function commits an inode to disk immediately if it is dirty. This is
2728  * primarily needed by knfsd.
2729  *
2730  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2731  */
2732 int write_inode_now(struct inode *inode, int sync)
2733 {
2734         struct writeback_control wbc = {
2735                 .nr_to_write = LONG_MAX,
2736                 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2737                 .range_start = 0,
2738                 .range_end = LLONG_MAX,
2739         };
2740
2741         if (!mapping_can_writeback(inode->i_mapping))
2742                 wbc.nr_to_write = 0;
2743
2744         might_sleep();
2745         return writeback_single_inode(inode, &wbc);
2746 }
2747 EXPORT_SYMBOL(write_inode_now);
2748
2749 /**
2750  * sync_inode - write an inode and its pages to disk.
2751  * @inode: the inode to sync
2752  * @wbc: controls the writeback mode
2753  *
2754  * sync_inode() will write an inode and its pages to disk.  It will also
2755  * correctly update the inode on its superblock's dirty inode lists and will
2756  * update inode->i_state.
2757  *
2758  * The caller must have a ref on the inode.
2759  */
2760 int sync_inode(struct inode *inode, struct writeback_control *wbc)
2761 {
2762         return writeback_single_inode(inode, wbc);
2763 }
2764 EXPORT_SYMBOL(sync_inode);
2765
2766 /**
2767  * sync_inode_metadata - write an inode to disk
2768  * @inode: the inode to sync
2769  * @wait: wait for I/O to complete.
2770  *
2771  * Write an inode to disk and adjust its dirty state after completion.
2772  *
2773  * Note: only writes the actual inode, no associated data or other metadata.
2774  */
2775 int sync_inode_metadata(struct inode *inode, int wait)
2776 {
2777         struct writeback_control wbc = {
2778                 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2779                 .nr_to_write = 0, /* metadata-only */
2780         };
2781
2782         return sync_inode(inode, &wbc);
2783 }
2784 EXPORT_SYMBOL(sync_inode_metadata);