Merge tag 'kvmarm-fixes-5.8-1' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmar...
[linux-2.6-microblaze.git] / fs / fs-writeback.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/fs-writeback.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  *
7  * Contains all the functions related to writing back and waiting
8  * upon dirty inodes against superblocks, and writing back dirty
9  * pages against inodes.  ie: data writeback.  Writeout of the
10  * inode itself is not handled here.
11  *
12  * 10Apr2002    Andrew Morton
13  *              Split out of fs/inode.c
14  *              Additions for address_space-based writeback
15  */
16
17 #include <linux/kernel.h>
18 #include <linux/export.h>
19 #include <linux/spinlock.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/fs.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/kthread.h>
26 #include <linux/writeback.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/tracepoint.h>
30 #include <linux/device.h>
31 #include <linux/memcontrol.h>
32 #include "internal.h"
33
34 /*
35  * 4MB minimal write chunk size
36  */
37 #define MIN_WRITEBACK_PAGES     (4096UL >> (PAGE_SHIFT - 10))
38
39 /*
40  * Passed into wb_writeback(), essentially a subset of writeback_control
41  */
42 struct wb_writeback_work {
43         long nr_pages;
44         struct super_block *sb;
45         unsigned long *older_than_this;
46         enum writeback_sync_modes sync_mode;
47         unsigned int tagged_writepages:1;
48         unsigned int for_kupdate:1;
49         unsigned int range_cyclic:1;
50         unsigned int for_background:1;
51         unsigned int for_sync:1;        /* sync(2) WB_SYNC_ALL writeback */
52         unsigned int auto_free:1;       /* free on completion */
53         enum wb_reason reason;          /* why was writeback initiated? */
54
55         struct list_head list;          /* pending work list */
56         struct wb_completion *done;     /* set if the caller waits */
57 };
58
59 /*
60  * If an inode is constantly having its pages dirtied, but then the
61  * updates stop dirtytime_expire_interval seconds in the past, it's
62  * possible for the worst case time between when an inode has its
63  * timestamps updated and when they finally get written out to be two
64  * dirtytime_expire_intervals.  We set the default to 12 hours (in
65  * seconds), which means most of the time inodes will have their
66  * timestamps written to disk after 12 hours, but in the worst case a
67  * few inodes might not their timestamps updated for 24 hours.
68  */
69 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
70
71 static inline struct inode *wb_inode(struct list_head *head)
72 {
73         return list_entry(head, struct inode, i_io_list);
74 }
75
76 /*
77  * Include the creation of the trace points after defining the
78  * wb_writeback_work structure and inline functions so that the definition
79  * remains local to this file.
80  */
81 #define CREATE_TRACE_POINTS
82 #include <trace/events/writeback.h>
83
84 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
85
86 static bool wb_io_lists_populated(struct bdi_writeback *wb)
87 {
88         if (wb_has_dirty_io(wb)) {
89                 return false;
90         } else {
91                 set_bit(WB_has_dirty_io, &wb->state);
92                 WARN_ON_ONCE(!wb->avg_write_bandwidth);
93                 atomic_long_add(wb->avg_write_bandwidth,
94                                 &wb->bdi->tot_write_bandwidth);
95                 return true;
96         }
97 }
98
99 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
100 {
101         if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
102             list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
103                 clear_bit(WB_has_dirty_io, &wb->state);
104                 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
105                                         &wb->bdi->tot_write_bandwidth) < 0);
106         }
107 }
108
109 /**
110  * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
111  * @inode: inode to be moved
112  * @wb: target bdi_writeback
113  * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
114  *
115  * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
116  * Returns %true if @inode is the first occupant of the !dirty_time IO
117  * lists; otherwise, %false.
118  */
119 static bool inode_io_list_move_locked(struct inode *inode,
120                                       struct bdi_writeback *wb,
121                                       struct list_head *head)
122 {
123         assert_spin_locked(&wb->list_lock);
124
125         list_move(&inode->i_io_list, head);
126
127         /* dirty_time doesn't count as dirty_io until expiration */
128         if (head != &wb->b_dirty_time)
129                 return wb_io_lists_populated(wb);
130
131         wb_io_lists_depopulated(wb);
132         return false;
133 }
134
135 /**
136  * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
137  * @inode: inode to be removed
138  * @wb: bdi_writeback @inode is being removed from
139  *
140  * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
141  * clear %WB_has_dirty_io if all are empty afterwards.
142  */
143 static void inode_io_list_del_locked(struct inode *inode,
144                                      struct bdi_writeback *wb)
145 {
146         assert_spin_locked(&wb->list_lock);
147
148         list_del_init(&inode->i_io_list);
149         wb_io_lists_depopulated(wb);
150 }
151
152 static void wb_wakeup(struct bdi_writeback *wb)
153 {
154         spin_lock_bh(&wb->work_lock);
155         if (test_bit(WB_registered, &wb->state))
156                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
157         spin_unlock_bh(&wb->work_lock);
158 }
159
160 static void finish_writeback_work(struct bdi_writeback *wb,
161                                   struct wb_writeback_work *work)
162 {
163         struct wb_completion *done = work->done;
164
165         if (work->auto_free)
166                 kfree(work);
167         if (done) {
168                 wait_queue_head_t *waitq = done->waitq;
169
170                 /* @done can't be accessed after the following dec */
171                 if (atomic_dec_and_test(&done->cnt))
172                         wake_up_all(waitq);
173         }
174 }
175
176 static void wb_queue_work(struct bdi_writeback *wb,
177                           struct wb_writeback_work *work)
178 {
179         trace_writeback_queue(wb, work);
180
181         if (work->done)
182                 atomic_inc(&work->done->cnt);
183
184         spin_lock_bh(&wb->work_lock);
185
186         if (test_bit(WB_registered, &wb->state)) {
187                 list_add_tail(&work->list, &wb->work_list);
188                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
189         } else
190                 finish_writeback_work(wb, work);
191
192         spin_unlock_bh(&wb->work_lock);
193 }
194
195 /**
196  * wb_wait_for_completion - wait for completion of bdi_writeback_works
197  * @done: target wb_completion
198  *
199  * Wait for one or more work items issued to @bdi with their ->done field
200  * set to @done, which should have been initialized with
201  * DEFINE_WB_COMPLETION().  This function returns after all such work items
202  * are completed.  Work items which are waited upon aren't freed
203  * automatically on completion.
204  */
205 void wb_wait_for_completion(struct wb_completion *done)
206 {
207         atomic_dec(&done->cnt);         /* put down the initial count */
208         wait_event(*done->waitq, !atomic_read(&done->cnt));
209 }
210
211 #ifdef CONFIG_CGROUP_WRITEBACK
212
213 /*
214  * Parameters for foreign inode detection, see wbc_detach_inode() to see
215  * how they're used.
216  *
217  * These paramters are inherently heuristical as the detection target
218  * itself is fuzzy.  All we want to do is detaching an inode from the
219  * current owner if it's being written to by some other cgroups too much.
220  *
221  * The current cgroup writeback is built on the assumption that multiple
222  * cgroups writing to the same inode concurrently is very rare and a mode
223  * of operation which isn't well supported.  As such, the goal is not
224  * taking too long when a different cgroup takes over an inode while
225  * avoiding too aggressive flip-flops from occasional foreign writes.
226  *
227  * We record, very roughly, 2s worth of IO time history and if more than
228  * half of that is foreign, trigger the switch.  The recording is quantized
229  * to 16 slots.  To avoid tiny writes from swinging the decision too much,
230  * writes smaller than 1/8 of avg size are ignored.
231  */
232 #define WB_FRN_TIME_SHIFT       13      /* 1s = 2^13, upto 8 secs w/ 16bit */
233 #define WB_FRN_TIME_AVG_SHIFT   3       /* avg = avg * 7/8 + new * 1/8 */
234 #define WB_FRN_TIME_CUT_DIV     8       /* ignore rounds < avg / 8 */
235 #define WB_FRN_TIME_PERIOD      (2 * (1 << WB_FRN_TIME_SHIFT))  /* 2s */
236
237 #define WB_FRN_HIST_SLOTS       16      /* inode->i_wb_frn_history is 16bit */
238 #define WB_FRN_HIST_UNIT        (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
239                                         /* each slot's duration is 2s / 16 */
240 #define WB_FRN_HIST_THR_SLOTS   (WB_FRN_HIST_SLOTS / 2)
241                                         /* if foreign slots >= 8, switch */
242 #define WB_FRN_HIST_MAX_SLOTS   (WB_FRN_HIST_THR_SLOTS / 2 + 1)
243                                         /* one round can affect upto 5 slots */
244 #define WB_FRN_MAX_IN_FLIGHT    1024    /* don't queue too many concurrently */
245
246 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
247 static struct workqueue_struct *isw_wq;
248
249 void __inode_attach_wb(struct inode *inode, struct page *page)
250 {
251         struct backing_dev_info *bdi = inode_to_bdi(inode);
252         struct bdi_writeback *wb = NULL;
253
254         if (inode_cgwb_enabled(inode)) {
255                 struct cgroup_subsys_state *memcg_css;
256
257                 if (page) {
258                         memcg_css = mem_cgroup_css_from_page(page);
259                         wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
260                 } else {
261                         /* must pin memcg_css, see wb_get_create() */
262                         memcg_css = task_get_css(current, memory_cgrp_id);
263                         wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
264                         css_put(memcg_css);
265                 }
266         }
267
268         if (!wb)
269                 wb = &bdi->wb;
270
271         /*
272          * There may be multiple instances of this function racing to
273          * update the same inode.  Use cmpxchg() to tell the winner.
274          */
275         if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
276                 wb_put(wb);
277 }
278 EXPORT_SYMBOL_GPL(__inode_attach_wb);
279
280 /**
281  * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
282  * @inode: inode of interest with i_lock held
283  *
284  * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
285  * held on entry and is released on return.  The returned wb is guaranteed
286  * to stay @inode's associated wb until its list_lock is released.
287  */
288 static struct bdi_writeback *
289 locked_inode_to_wb_and_lock_list(struct inode *inode)
290         __releases(&inode->i_lock)
291         __acquires(&wb->list_lock)
292 {
293         while (true) {
294                 struct bdi_writeback *wb = inode_to_wb(inode);
295
296                 /*
297                  * inode_to_wb() association is protected by both
298                  * @inode->i_lock and @wb->list_lock but list_lock nests
299                  * outside i_lock.  Drop i_lock and verify that the
300                  * association hasn't changed after acquiring list_lock.
301                  */
302                 wb_get(wb);
303                 spin_unlock(&inode->i_lock);
304                 spin_lock(&wb->list_lock);
305
306                 /* i_wb may have changed inbetween, can't use inode_to_wb() */
307                 if (likely(wb == inode->i_wb)) {
308                         wb_put(wb);     /* @inode already has ref */
309                         return wb;
310                 }
311
312                 spin_unlock(&wb->list_lock);
313                 wb_put(wb);
314                 cpu_relax();
315                 spin_lock(&inode->i_lock);
316         }
317 }
318
319 /**
320  * inode_to_wb_and_lock_list - determine an inode's wb and lock it
321  * @inode: inode of interest
322  *
323  * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
324  * on entry.
325  */
326 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
327         __acquires(&wb->list_lock)
328 {
329         spin_lock(&inode->i_lock);
330         return locked_inode_to_wb_and_lock_list(inode);
331 }
332
333 struct inode_switch_wbs_context {
334         struct inode            *inode;
335         struct bdi_writeback    *new_wb;
336
337         struct rcu_head         rcu_head;
338         struct work_struct      work;
339 };
340
341 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
342 {
343         down_write(&bdi->wb_switch_rwsem);
344 }
345
346 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
347 {
348         up_write(&bdi->wb_switch_rwsem);
349 }
350
351 static void inode_switch_wbs_work_fn(struct work_struct *work)
352 {
353         struct inode_switch_wbs_context *isw =
354                 container_of(work, struct inode_switch_wbs_context, work);
355         struct inode *inode = isw->inode;
356         struct backing_dev_info *bdi = inode_to_bdi(inode);
357         struct address_space *mapping = inode->i_mapping;
358         struct bdi_writeback *old_wb = inode->i_wb;
359         struct bdi_writeback *new_wb = isw->new_wb;
360         XA_STATE(xas, &mapping->i_pages, 0);
361         struct page *page;
362         bool switched = false;
363
364         /*
365          * If @inode switches cgwb membership while sync_inodes_sb() is
366          * being issued, sync_inodes_sb() might miss it.  Synchronize.
367          */
368         down_read(&bdi->wb_switch_rwsem);
369
370         /*
371          * By the time control reaches here, RCU grace period has passed
372          * since I_WB_SWITCH assertion and all wb stat update transactions
373          * between unlocked_inode_to_wb_begin/end() are guaranteed to be
374          * synchronizing against the i_pages lock.
375          *
376          * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
377          * gives us exclusion against all wb related operations on @inode
378          * including IO list manipulations and stat updates.
379          */
380         if (old_wb < new_wb) {
381                 spin_lock(&old_wb->list_lock);
382                 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
383         } else {
384                 spin_lock(&new_wb->list_lock);
385                 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
386         }
387         spin_lock(&inode->i_lock);
388         xa_lock_irq(&mapping->i_pages);
389
390         /*
391          * Once I_FREEING is visible under i_lock, the eviction path owns
392          * the inode and we shouldn't modify ->i_io_list.
393          */
394         if (unlikely(inode->i_state & I_FREEING))
395                 goto skip_switch;
396
397         trace_inode_switch_wbs(inode, old_wb, new_wb);
398
399         /*
400          * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
401          * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
402          * pages actually under writeback.
403          */
404         xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
405                 if (PageDirty(page)) {
406                         dec_wb_stat(old_wb, WB_RECLAIMABLE);
407                         inc_wb_stat(new_wb, WB_RECLAIMABLE);
408                 }
409         }
410
411         xas_set(&xas, 0);
412         xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
413                 WARN_ON_ONCE(!PageWriteback(page));
414                 dec_wb_stat(old_wb, WB_WRITEBACK);
415                 inc_wb_stat(new_wb, WB_WRITEBACK);
416         }
417
418         wb_get(new_wb);
419
420         /*
421          * Transfer to @new_wb's IO list if necessary.  The specific list
422          * @inode was on is ignored and the inode is put on ->b_dirty which
423          * is always correct including from ->b_dirty_time.  The transfer
424          * preserves @inode->dirtied_when ordering.
425          */
426         if (!list_empty(&inode->i_io_list)) {
427                 struct inode *pos;
428
429                 inode_io_list_del_locked(inode, old_wb);
430                 inode->i_wb = new_wb;
431                 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
432                         if (time_after_eq(inode->dirtied_when,
433                                           pos->dirtied_when))
434                                 break;
435                 inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
436         } else {
437                 inode->i_wb = new_wb;
438         }
439
440         /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
441         inode->i_wb_frn_winner = 0;
442         inode->i_wb_frn_avg_time = 0;
443         inode->i_wb_frn_history = 0;
444         switched = true;
445 skip_switch:
446         /*
447          * Paired with load_acquire in unlocked_inode_to_wb_begin() and
448          * ensures that the new wb is visible if they see !I_WB_SWITCH.
449          */
450         smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
451
452         xa_unlock_irq(&mapping->i_pages);
453         spin_unlock(&inode->i_lock);
454         spin_unlock(&new_wb->list_lock);
455         spin_unlock(&old_wb->list_lock);
456
457         up_read(&bdi->wb_switch_rwsem);
458
459         if (switched) {
460                 wb_wakeup(new_wb);
461                 wb_put(old_wb);
462         }
463         wb_put(new_wb);
464
465         iput(inode);
466         kfree(isw);
467
468         atomic_dec(&isw_nr_in_flight);
469 }
470
471 static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
472 {
473         struct inode_switch_wbs_context *isw = container_of(rcu_head,
474                                 struct inode_switch_wbs_context, rcu_head);
475
476         /* needs to grab bh-unsafe locks, bounce to work item */
477         INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
478         queue_work(isw_wq, &isw->work);
479 }
480
481 /**
482  * inode_switch_wbs - change the wb association of an inode
483  * @inode: target inode
484  * @new_wb_id: ID of the new wb
485  *
486  * Switch @inode's wb association to the wb identified by @new_wb_id.  The
487  * switching is performed asynchronously and may fail silently.
488  */
489 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
490 {
491         struct backing_dev_info *bdi = inode_to_bdi(inode);
492         struct cgroup_subsys_state *memcg_css;
493         struct inode_switch_wbs_context *isw;
494
495         /* noop if seems to be already in progress */
496         if (inode->i_state & I_WB_SWITCH)
497                 return;
498
499         /* avoid queueing a new switch if too many are already in flight */
500         if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT)
501                 return;
502
503         isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
504         if (!isw)
505                 return;
506
507         /* find and pin the new wb */
508         rcu_read_lock();
509         memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
510         if (memcg_css)
511                 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
512         rcu_read_unlock();
513         if (!isw->new_wb)
514                 goto out_free;
515
516         /* while holding I_WB_SWITCH, no one else can update the association */
517         spin_lock(&inode->i_lock);
518         if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
519             inode->i_state & (I_WB_SWITCH | I_FREEING) ||
520             inode_to_wb(inode) == isw->new_wb) {
521                 spin_unlock(&inode->i_lock);
522                 goto out_free;
523         }
524         inode->i_state |= I_WB_SWITCH;
525         __iget(inode);
526         spin_unlock(&inode->i_lock);
527
528         isw->inode = inode;
529
530         /*
531          * In addition to synchronizing among switchers, I_WB_SWITCH tells
532          * the RCU protected stat update paths to grab the i_page
533          * lock so that stat transfer can synchronize against them.
534          * Let's continue after I_WB_SWITCH is guaranteed to be visible.
535          */
536         call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
537
538         atomic_inc(&isw_nr_in_flight);
539         return;
540
541 out_free:
542         if (isw->new_wb)
543                 wb_put(isw->new_wb);
544         kfree(isw);
545 }
546
547 /**
548  * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
549  * @wbc: writeback_control of interest
550  * @inode: target inode
551  *
552  * @inode is locked and about to be written back under the control of @wbc.
553  * Record @inode's writeback context into @wbc and unlock the i_lock.  On
554  * writeback completion, wbc_detach_inode() should be called.  This is used
555  * to track the cgroup writeback context.
556  */
557 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
558                                  struct inode *inode)
559 {
560         if (!inode_cgwb_enabled(inode)) {
561                 spin_unlock(&inode->i_lock);
562                 return;
563         }
564
565         wbc->wb = inode_to_wb(inode);
566         wbc->inode = inode;
567
568         wbc->wb_id = wbc->wb->memcg_css->id;
569         wbc->wb_lcand_id = inode->i_wb_frn_winner;
570         wbc->wb_tcand_id = 0;
571         wbc->wb_bytes = 0;
572         wbc->wb_lcand_bytes = 0;
573         wbc->wb_tcand_bytes = 0;
574
575         wb_get(wbc->wb);
576         spin_unlock(&inode->i_lock);
577
578         /*
579          * A dying wb indicates that either the blkcg associated with the
580          * memcg changed or the associated memcg is dying.  In the first
581          * case, a replacement wb should already be available and we should
582          * refresh the wb immediately.  In the second case, trying to
583          * refresh will keep failing.
584          */
585         if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css)))
586                 inode_switch_wbs(inode, wbc->wb_id);
587 }
588 EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode);
589
590 /**
591  * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
592  * @wbc: writeback_control of the just finished writeback
593  *
594  * To be called after a writeback attempt of an inode finishes and undoes
595  * wbc_attach_and_unlock_inode().  Can be called under any context.
596  *
597  * As concurrent write sharing of an inode is expected to be very rare and
598  * memcg only tracks page ownership on first-use basis severely confining
599  * the usefulness of such sharing, cgroup writeback tracks ownership
600  * per-inode.  While the support for concurrent write sharing of an inode
601  * is deemed unnecessary, an inode being written to by different cgroups at
602  * different points in time is a lot more common, and, more importantly,
603  * charging only by first-use can too readily lead to grossly incorrect
604  * behaviors (single foreign page can lead to gigabytes of writeback to be
605  * incorrectly attributed).
606  *
607  * To resolve this issue, cgroup writeback detects the majority dirtier of
608  * an inode and transfers the ownership to it.  To avoid unnnecessary
609  * oscillation, the detection mechanism keeps track of history and gives
610  * out the switch verdict only if the foreign usage pattern is stable over
611  * a certain amount of time and/or writeback attempts.
612  *
613  * On each writeback attempt, @wbc tries to detect the majority writer
614  * using Boyer-Moore majority vote algorithm.  In addition to the byte
615  * count from the majority voting, it also counts the bytes written for the
616  * current wb and the last round's winner wb (max of last round's current
617  * wb, the winner from two rounds ago, and the last round's majority
618  * candidate).  Keeping track of the historical winner helps the algorithm
619  * to semi-reliably detect the most active writer even when it's not the
620  * absolute majority.
621  *
622  * Once the winner of the round is determined, whether the winner is
623  * foreign or not and how much IO time the round consumed is recorded in
624  * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
625  * over a certain threshold, the switch verdict is given.
626  */
627 void wbc_detach_inode(struct writeback_control *wbc)
628 {
629         struct bdi_writeback *wb = wbc->wb;
630         struct inode *inode = wbc->inode;
631         unsigned long avg_time, max_bytes, max_time;
632         u16 history;
633         int max_id;
634
635         if (!wb)
636                 return;
637
638         history = inode->i_wb_frn_history;
639         avg_time = inode->i_wb_frn_avg_time;
640
641         /* pick the winner of this round */
642         if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
643             wbc->wb_bytes >= wbc->wb_tcand_bytes) {
644                 max_id = wbc->wb_id;
645                 max_bytes = wbc->wb_bytes;
646         } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
647                 max_id = wbc->wb_lcand_id;
648                 max_bytes = wbc->wb_lcand_bytes;
649         } else {
650                 max_id = wbc->wb_tcand_id;
651                 max_bytes = wbc->wb_tcand_bytes;
652         }
653
654         /*
655          * Calculate the amount of IO time the winner consumed and fold it
656          * into the running average kept per inode.  If the consumed IO
657          * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
658          * deciding whether to switch or not.  This is to prevent one-off
659          * small dirtiers from skewing the verdict.
660          */
661         max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
662                                 wb->avg_write_bandwidth);
663         if (avg_time)
664                 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
665                             (avg_time >> WB_FRN_TIME_AVG_SHIFT);
666         else
667                 avg_time = max_time;    /* immediate catch up on first run */
668
669         if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
670                 int slots;
671
672                 /*
673                  * The switch verdict is reached if foreign wb's consume
674                  * more than a certain proportion of IO time in a
675                  * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
676                  * history mask where each bit represents one sixteenth of
677                  * the period.  Determine the number of slots to shift into
678                  * history from @max_time.
679                  */
680                 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
681                             (unsigned long)WB_FRN_HIST_MAX_SLOTS);
682                 history <<= slots;
683                 if (wbc->wb_id != max_id)
684                         history |= (1U << slots) - 1;
685
686                 if (history)
687                         trace_inode_foreign_history(inode, wbc, history);
688
689                 /*
690                  * Switch if the current wb isn't the consistent winner.
691                  * If there are multiple closely competing dirtiers, the
692                  * inode may switch across them repeatedly over time, which
693                  * is okay.  The main goal is avoiding keeping an inode on
694                  * the wrong wb for an extended period of time.
695                  */
696                 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
697                         inode_switch_wbs(inode, max_id);
698         }
699
700         /*
701          * Multiple instances of this function may race to update the
702          * following fields but we don't mind occassional inaccuracies.
703          */
704         inode->i_wb_frn_winner = max_id;
705         inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
706         inode->i_wb_frn_history = history;
707
708         wb_put(wbc->wb);
709         wbc->wb = NULL;
710 }
711 EXPORT_SYMBOL_GPL(wbc_detach_inode);
712
713 /**
714  * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership
715  * @wbc: writeback_control of the writeback in progress
716  * @page: page being written out
717  * @bytes: number of bytes being written out
718  *
719  * @bytes from @page are about to written out during the writeback
720  * controlled by @wbc.  Keep the book for foreign inode detection.  See
721  * wbc_detach_inode().
722  */
723 void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page,
724                               size_t bytes)
725 {
726         struct cgroup_subsys_state *css;
727         int id;
728
729         /*
730          * pageout() path doesn't attach @wbc to the inode being written
731          * out.  This is intentional as we don't want the function to block
732          * behind a slow cgroup.  Ultimately, we want pageout() to kick off
733          * regular writeback instead of writing things out itself.
734          */
735         if (!wbc->wb || wbc->no_cgroup_owner)
736                 return;
737
738         css = mem_cgroup_css_from_page(page);
739         /* dead cgroups shouldn't contribute to inode ownership arbitration */
740         if (!(css->flags & CSS_ONLINE))
741                 return;
742
743         id = css->id;
744
745         if (id == wbc->wb_id) {
746                 wbc->wb_bytes += bytes;
747                 return;
748         }
749
750         if (id == wbc->wb_lcand_id)
751                 wbc->wb_lcand_bytes += bytes;
752
753         /* Boyer-Moore majority vote algorithm */
754         if (!wbc->wb_tcand_bytes)
755                 wbc->wb_tcand_id = id;
756         if (id == wbc->wb_tcand_id)
757                 wbc->wb_tcand_bytes += bytes;
758         else
759                 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
760 }
761 EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner);
762
763 /**
764  * inode_congested - test whether an inode is congested
765  * @inode: inode to test for congestion (may be NULL)
766  * @cong_bits: mask of WB_[a]sync_congested bits to test
767  *
768  * Tests whether @inode is congested.  @cong_bits is the mask of congestion
769  * bits to test and the return value is the mask of set bits.
770  *
771  * If cgroup writeback is enabled for @inode, the congestion state is
772  * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
773  * associated with @inode is congested; otherwise, the root wb's congestion
774  * state is used.
775  *
776  * @inode is allowed to be NULL as this function is often called on
777  * mapping->host which is NULL for the swapper space.
778  */
779 int inode_congested(struct inode *inode, int cong_bits)
780 {
781         /*
782          * Once set, ->i_wb never becomes NULL while the inode is alive.
783          * Start transaction iff ->i_wb is visible.
784          */
785         if (inode && inode_to_wb_is_valid(inode)) {
786                 struct bdi_writeback *wb;
787                 struct wb_lock_cookie lock_cookie = {};
788                 bool congested;
789
790                 wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
791                 congested = wb_congested(wb, cong_bits);
792                 unlocked_inode_to_wb_end(inode, &lock_cookie);
793                 return congested;
794         }
795
796         return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
797 }
798 EXPORT_SYMBOL_GPL(inode_congested);
799
800 /**
801  * wb_split_bdi_pages - split nr_pages to write according to bandwidth
802  * @wb: target bdi_writeback to split @nr_pages to
803  * @nr_pages: number of pages to write for the whole bdi
804  *
805  * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
806  * relation to the total write bandwidth of all wb's w/ dirty inodes on
807  * @wb->bdi.
808  */
809 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
810 {
811         unsigned long this_bw = wb->avg_write_bandwidth;
812         unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
813
814         if (nr_pages == LONG_MAX)
815                 return LONG_MAX;
816
817         /*
818          * This may be called on clean wb's and proportional distribution
819          * may not make sense, just use the original @nr_pages in those
820          * cases.  In general, we wanna err on the side of writing more.
821          */
822         if (!tot_bw || this_bw >= tot_bw)
823                 return nr_pages;
824         else
825                 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
826 }
827
828 /**
829  * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
830  * @bdi: target backing_dev_info
831  * @base_work: wb_writeback_work to issue
832  * @skip_if_busy: skip wb's which already have writeback in progress
833  *
834  * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
835  * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
836  * distributed to the busy wbs according to each wb's proportion in the
837  * total active write bandwidth of @bdi.
838  */
839 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
840                                   struct wb_writeback_work *base_work,
841                                   bool skip_if_busy)
842 {
843         struct bdi_writeback *last_wb = NULL;
844         struct bdi_writeback *wb = list_entry(&bdi->wb_list,
845                                               struct bdi_writeback, bdi_node);
846
847         might_sleep();
848 restart:
849         rcu_read_lock();
850         list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
851                 DEFINE_WB_COMPLETION(fallback_work_done, bdi);
852                 struct wb_writeback_work fallback_work;
853                 struct wb_writeback_work *work;
854                 long nr_pages;
855
856                 if (last_wb) {
857                         wb_put(last_wb);
858                         last_wb = NULL;
859                 }
860
861                 /* SYNC_ALL writes out I_DIRTY_TIME too */
862                 if (!wb_has_dirty_io(wb) &&
863                     (base_work->sync_mode == WB_SYNC_NONE ||
864                      list_empty(&wb->b_dirty_time)))
865                         continue;
866                 if (skip_if_busy && writeback_in_progress(wb))
867                         continue;
868
869                 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
870
871                 work = kmalloc(sizeof(*work), GFP_ATOMIC);
872                 if (work) {
873                         *work = *base_work;
874                         work->nr_pages = nr_pages;
875                         work->auto_free = 1;
876                         wb_queue_work(wb, work);
877                         continue;
878                 }
879
880                 /* alloc failed, execute synchronously using on-stack fallback */
881                 work = &fallback_work;
882                 *work = *base_work;
883                 work->nr_pages = nr_pages;
884                 work->auto_free = 0;
885                 work->done = &fallback_work_done;
886
887                 wb_queue_work(wb, work);
888
889                 /*
890                  * Pin @wb so that it stays on @bdi->wb_list.  This allows
891                  * continuing iteration from @wb after dropping and
892                  * regrabbing rcu read lock.
893                  */
894                 wb_get(wb);
895                 last_wb = wb;
896
897                 rcu_read_unlock();
898                 wb_wait_for_completion(&fallback_work_done);
899                 goto restart;
900         }
901         rcu_read_unlock();
902
903         if (last_wb)
904                 wb_put(last_wb);
905 }
906
907 /**
908  * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs
909  * @bdi_id: target bdi id
910  * @memcg_id: target memcg css id
911  * @nr: number of pages to write, 0 for best-effort dirty flushing
912  * @reason: reason why some writeback work initiated
913  * @done: target wb_completion
914  *
915  * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id
916  * with the specified parameters.
917  */
918 int cgroup_writeback_by_id(u64 bdi_id, int memcg_id, unsigned long nr,
919                            enum wb_reason reason, struct wb_completion *done)
920 {
921         struct backing_dev_info *bdi;
922         struct cgroup_subsys_state *memcg_css;
923         struct bdi_writeback *wb;
924         struct wb_writeback_work *work;
925         int ret;
926
927         /* lookup bdi and memcg */
928         bdi = bdi_get_by_id(bdi_id);
929         if (!bdi)
930                 return -ENOENT;
931
932         rcu_read_lock();
933         memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys);
934         if (memcg_css && !css_tryget(memcg_css))
935                 memcg_css = NULL;
936         rcu_read_unlock();
937         if (!memcg_css) {
938                 ret = -ENOENT;
939                 goto out_bdi_put;
940         }
941
942         /*
943          * And find the associated wb.  If the wb isn't there already
944          * there's nothing to flush, don't create one.
945          */
946         wb = wb_get_lookup(bdi, memcg_css);
947         if (!wb) {
948                 ret = -ENOENT;
949                 goto out_css_put;
950         }
951
952         /*
953          * If @nr is zero, the caller is attempting to write out most of
954          * the currently dirty pages.  Let's take the current dirty page
955          * count and inflate it by 25% which should be large enough to
956          * flush out most dirty pages while avoiding getting livelocked by
957          * concurrent dirtiers.
958          */
959         if (!nr) {
960                 unsigned long filepages, headroom, dirty, writeback;
961
962                 mem_cgroup_wb_stats(wb, &filepages, &headroom, &dirty,
963                                       &writeback);
964                 nr = dirty * 10 / 8;
965         }
966
967         /* issue the writeback work */
968         work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN);
969         if (work) {
970                 work->nr_pages = nr;
971                 work->sync_mode = WB_SYNC_NONE;
972                 work->range_cyclic = 1;
973                 work->reason = reason;
974                 work->done = done;
975                 work->auto_free = 1;
976                 wb_queue_work(wb, work);
977                 ret = 0;
978         } else {
979                 ret = -ENOMEM;
980         }
981
982         wb_put(wb);
983 out_css_put:
984         css_put(memcg_css);
985 out_bdi_put:
986         bdi_put(bdi);
987         return ret;
988 }
989
990 /**
991  * cgroup_writeback_umount - flush inode wb switches for umount
992  *
993  * This function is called when a super_block is about to be destroyed and
994  * flushes in-flight inode wb switches.  An inode wb switch goes through
995  * RCU and then workqueue, so the two need to be flushed in order to ensure
996  * that all previously scheduled switches are finished.  As wb switches are
997  * rare occurrences and synchronize_rcu() can take a while, perform
998  * flushing iff wb switches are in flight.
999  */
1000 void cgroup_writeback_umount(void)
1001 {
1002         if (atomic_read(&isw_nr_in_flight)) {
1003                 /*
1004                  * Use rcu_barrier() to wait for all pending callbacks to
1005                  * ensure that all in-flight wb switches are in the workqueue.
1006                  */
1007                 rcu_barrier();
1008                 flush_workqueue(isw_wq);
1009         }
1010 }
1011
1012 static int __init cgroup_writeback_init(void)
1013 {
1014         isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
1015         if (!isw_wq)
1016                 return -ENOMEM;
1017         return 0;
1018 }
1019 fs_initcall(cgroup_writeback_init);
1020
1021 #else   /* CONFIG_CGROUP_WRITEBACK */
1022
1023 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1024 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1025
1026 static struct bdi_writeback *
1027 locked_inode_to_wb_and_lock_list(struct inode *inode)
1028         __releases(&inode->i_lock)
1029         __acquires(&wb->list_lock)
1030 {
1031         struct bdi_writeback *wb = inode_to_wb(inode);
1032
1033         spin_unlock(&inode->i_lock);
1034         spin_lock(&wb->list_lock);
1035         return wb;
1036 }
1037
1038 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
1039         __acquires(&wb->list_lock)
1040 {
1041         struct bdi_writeback *wb = inode_to_wb(inode);
1042
1043         spin_lock(&wb->list_lock);
1044         return wb;
1045 }
1046
1047 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
1048 {
1049         return nr_pages;
1050 }
1051
1052 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
1053                                   struct wb_writeback_work *base_work,
1054                                   bool skip_if_busy)
1055 {
1056         might_sleep();
1057
1058         if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
1059                 base_work->auto_free = 0;
1060                 wb_queue_work(&bdi->wb, base_work);
1061         }
1062 }
1063
1064 #endif  /* CONFIG_CGROUP_WRITEBACK */
1065
1066 /*
1067  * Add in the number of potentially dirty inodes, because each inode
1068  * write can dirty pagecache in the underlying blockdev.
1069  */
1070 static unsigned long get_nr_dirty_pages(void)
1071 {
1072         return global_node_page_state(NR_FILE_DIRTY) +
1073                 get_nr_dirty_inodes();
1074 }
1075
1076 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
1077 {
1078         if (!wb_has_dirty_io(wb))
1079                 return;
1080
1081         /*
1082          * All callers of this function want to start writeback of all
1083          * dirty pages. Places like vmscan can call this at a very
1084          * high frequency, causing pointless allocations of tons of
1085          * work items and keeping the flusher threads busy retrieving
1086          * that work. Ensure that we only allow one of them pending and
1087          * inflight at the time.
1088          */
1089         if (test_bit(WB_start_all, &wb->state) ||
1090             test_and_set_bit(WB_start_all, &wb->state))
1091                 return;
1092
1093         wb->start_all_reason = reason;
1094         wb_wakeup(wb);
1095 }
1096
1097 /**
1098  * wb_start_background_writeback - start background writeback
1099  * @wb: bdi_writback to write from
1100  *
1101  * Description:
1102  *   This makes sure WB_SYNC_NONE background writeback happens. When
1103  *   this function returns, it is only guaranteed that for given wb
1104  *   some IO is happening if we are over background dirty threshold.
1105  *   Caller need not hold sb s_umount semaphore.
1106  */
1107 void wb_start_background_writeback(struct bdi_writeback *wb)
1108 {
1109         /*
1110          * We just wake up the flusher thread. It will perform background
1111          * writeback as soon as there is no other work to do.
1112          */
1113         trace_writeback_wake_background(wb);
1114         wb_wakeup(wb);
1115 }
1116
1117 /*
1118  * Remove the inode from the writeback list it is on.
1119  */
1120 void inode_io_list_del(struct inode *inode)
1121 {
1122         struct bdi_writeback *wb;
1123
1124         wb = inode_to_wb_and_lock_list(inode);
1125         inode_io_list_del_locked(inode, wb);
1126         spin_unlock(&wb->list_lock);
1127 }
1128
1129 /*
1130  * mark an inode as under writeback on the sb
1131  */
1132 void sb_mark_inode_writeback(struct inode *inode)
1133 {
1134         struct super_block *sb = inode->i_sb;
1135         unsigned long flags;
1136
1137         if (list_empty(&inode->i_wb_list)) {
1138                 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1139                 if (list_empty(&inode->i_wb_list)) {
1140                         list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1141                         trace_sb_mark_inode_writeback(inode);
1142                 }
1143                 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1144         }
1145 }
1146
1147 /*
1148  * clear an inode as under writeback on the sb
1149  */
1150 void sb_clear_inode_writeback(struct inode *inode)
1151 {
1152         struct super_block *sb = inode->i_sb;
1153         unsigned long flags;
1154
1155         if (!list_empty(&inode->i_wb_list)) {
1156                 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1157                 if (!list_empty(&inode->i_wb_list)) {
1158                         list_del_init(&inode->i_wb_list);
1159                         trace_sb_clear_inode_writeback(inode);
1160                 }
1161                 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1162         }
1163 }
1164
1165 /*
1166  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1167  * furthest end of its superblock's dirty-inode list.
1168  *
1169  * Before stamping the inode's ->dirtied_when, we check to see whether it is
1170  * already the most-recently-dirtied inode on the b_dirty list.  If that is
1171  * the case then the inode must have been redirtied while it was being written
1172  * out and we don't reset its dirtied_when.
1173  */
1174 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1175 {
1176         if (!list_empty(&wb->b_dirty)) {
1177                 struct inode *tail;
1178
1179                 tail = wb_inode(wb->b_dirty.next);
1180                 if (time_before(inode->dirtied_when, tail->dirtied_when))
1181                         inode->dirtied_when = jiffies;
1182         }
1183         inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1184 }
1185
1186 /*
1187  * requeue inode for re-scanning after bdi->b_io list is exhausted.
1188  */
1189 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1190 {
1191         inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1192 }
1193
1194 static void inode_sync_complete(struct inode *inode)
1195 {
1196         inode->i_state &= ~I_SYNC;
1197         /* If inode is clean an unused, put it into LRU now... */
1198         inode_add_lru(inode);
1199         /* Waiters must see I_SYNC cleared before being woken up */
1200         smp_mb();
1201         wake_up_bit(&inode->i_state, __I_SYNC);
1202 }
1203
1204 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1205 {
1206         bool ret = time_after(inode->dirtied_when, t);
1207 #ifndef CONFIG_64BIT
1208         /*
1209          * For inodes being constantly redirtied, dirtied_when can get stuck.
1210          * It _appears_ to be in the future, but is actually in distant past.
1211          * This test is necessary to prevent such wrapped-around relative times
1212          * from permanently stopping the whole bdi writeback.
1213          */
1214         ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1215 #endif
1216         return ret;
1217 }
1218
1219 #define EXPIRE_DIRTY_ATIME 0x0001
1220
1221 /*
1222  * Move expired (dirtied before work->older_than_this) dirty inodes from
1223  * @delaying_queue to @dispatch_queue.
1224  */
1225 static int move_expired_inodes(struct list_head *delaying_queue,
1226                                struct list_head *dispatch_queue,
1227                                int flags,
1228                                struct wb_writeback_work *work)
1229 {
1230         unsigned long *older_than_this = NULL;
1231         unsigned long expire_time;
1232         LIST_HEAD(tmp);
1233         struct list_head *pos, *node;
1234         struct super_block *sb = NULL;
1235         struct inode *inode;
1236         int do_sb_sort = 0;
1237         int moved = 0;
1238
1239         if ((flags & EXPIRE_DIRTY_ATIME) == 0)
1240                 older_than_this = work->older_than_this;
1241         else if (!work->for_sync) {
1242                 expire_time = jiffies - (dirtytime_expire_interval * HZ);
1243                 older_than_this = &expire_time;
1244         }
1245         while (!list_empty(delaying_queue)) {
1246                 inode = wb_inode(delaying_queue->prev);
1247                 if (older_than_this &&
1248                     inode_dirtied_after(inode, *older_than_this))
1249                         break;
1250                 list_move(&inode->i_io_list, &tmp);
1251                 moved++;
1252                 if (flags & EXPIRE_DIRTY_ATIME)
1253                         set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
1254                 if (sb_is_blkdev_sb(inode->i_sb))
1255                         continue;
1256                 if (sb && sb != inode->i_sb)
1257                         do_sb_sort = 1;
1258                 sb = inode->i_sb;
1259         }
1260
1261         /* just one sb in list, splice to dispatch_queue and we're done */
1262         if (!do_sb_sort) {
1263                 list_splice(&tmp, dispatch_queue);
1264                 goto out;
1265         }
1266
1267         /* Move inodes from one superblock together */
1268         while (!list_empty(&tmp)) {
1269                 sb = wb_inode(tmp.prev)->i_sb;
1270                 list_for_each_prev_safe(pos, node, &tmp) {
1271                         inode = wb_inode(pos);
1272                         if (inode->i_sb == sb)
1273                                 list_move(&inode->i_io_list, dispatch_queue);
1274                 }
1275         }
1276 out:
1277         return moved;
1278 }
1279
1280 /*
1281  * Queue all expired dirty inodes for io, eldest first.
1282  * Before
1283  *         newly dirtied     b_dirty    b_io    b_more_io
1284  *         =============>    gf         edc     BA
1285  * After
1286  *         newly dirtied     b_dirty    b_io    b_more_io
1287  *         =============>    g          fBAedc
1288  *                                           |
1289  *                                           +--> dequeue for IO
1290  */
1291 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
1292 {
1293         int moved;
1294
1295         assert_spin_locked(&wb->list_lock);
1296         list_splice_init(&wb->b_more_io, &wb->b_io);
1297         moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
1298         moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1299                                      EXPIRE_DIRTY_ATIME, work);
1300         if (moved)
1301                 wb_io_lists_populated(wb);
1302         trace_writeback_queue_io(wb, work, moved);
1303 }
1304
1305 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1306 {
1307         int ret;
1308
1309         if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1310                 trace_writeback_write_inode_start(inode, wbc);
1311                 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1312                 trace_writeback_write_inode(inode, wbc);
1313                 return ret;
1314         }
1315         return 0;
1316 }
1317
1318 /*
1319  * Wait for writeback on an inode to complete. Called with i_lock held.
1320  * Caller must make sure inode cannot go away when we drop i_lock.
1321  */
1322 static void __inode_wait_for_writeback(struct inode *inode)
1323         __releases(inode->i_lock)
1324         __acquires(inode->i_lock)
1325 {
1326         DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1327         wait_queue_head_t *wqh;
1328
1329         wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1330         while (inode->i_state & I_SYNC) {
1331                 spin_unlock(&inode->i_lock);
1332                 __wait_on_bit(wqh, &wq, bit_wait,
1333                               TASK_UNINTERRUPTIBLE);
1334                 spin_lock(&inode->i_lock);
1335         }
1336 }
1337
1338 /*
1339  * Wait for writeback on an inode to complete. Caller must have inode pinned.
1340  */
1341 void inode_wait_for_writeback(struct inode *inode)
1342 {
1343         spin_lock(&inode->i_lock);
1344         __inode_wait_for_writeback(inode);
1345         spin_unlock(&inode->i_lock);
1346 }
1347
1348 /*
1349  * Sleep until I_SYNC is cleared. This function must be called with i_lock
1350  * held and drops it. It is aimed for callers not holding any inode reference
1351  * so once i_lock is dropped, inode can go away.
1352  */
1353 static void inode_sleep_on_writeback(struct inode *inode)
1354         __releases(inode->i_lock)
1355 {
1356         DEFINE_WAIT(wait);
1357         wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1358         int sleep;
1359
1360         prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1361         sleep = inode->i_state & I_SYNC;
1362         spin_unlock(&inode->i_lock);
1363         if (sleep)
1364                 schedule();
1365         finish_wait(wqh, &wait);
1366 }
1367
1368 /*
1369  * Find proper writeback list for the inode depending on its current state and
1370  * possibly also change of its state while we were doing writeback.  Here we
1371  * handle things such as livelock prevention or fairness of writeback among
1372  * inodes. This function can be called only by flusher thread - noone else
1373  * processes all inodes in writeback lists and requeueing inodes behind flusher
1374  * thread's back can have unexpected consequences.
1375  */
1376 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1377                           struct writeback_control *wbc)
1378 {
1379         if (inode->i_state & I_FREEING)
1380                 return;
1381
1382         /*
1383          * Sync livelock prevention. Each inode is tagged and synced in one
1384          * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1385          * the dirty time to prevent enqueue and sync it again.
1386          */
1387         if ((inode->i_state & I_DIRTY) &&
1388             (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1389                 inode->dirtied_when = jiffies;
1390
1391         if (wbc->pages_skipped) {
1392                 /*
1393                  * writeback is not making progress due to locked
1394                  * buffers. Skip this inode for now.
1395                  */
1396                 redirty_tail(inode, wb);
1397                 return;
1398         }
1399
1400         if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1401                 /*
1402                  * We didn't write back all the pages.  nfs_writepages()
1403                  * sometimes bales out without doing anything.
1404                  */
1405                 if (wbc->nr_to_write <= 0) {
1406                         /* Slice used up. Queue for next turn. */
1407                         requeue_io(inode, wb);
1408                 } else {
1409                         /*
1410                          * Writeback blocked by something other than
1411                          * congestion. Delay the inode for some time to
1412                          * avoid spinning on the CPU (100% iowait)
1413                          * retrying writeback of the dirty page/inode
1414                          * that cannot be performed immediately.
1415                          */
1416                         redirty_tail(inode, wb);
1417                 }
1418         } else if (inode->i_state & I_DIRTY) {
1419                 /*
1420                  * Filesystems can dirty the inode during writeback operations,
1421                  * such as delayed allocation during submission or metadata
1422                  * updates after data IO completion.
1423                  */
1424                 redirty_tail(inode, wb);
1425         } else if (inode->i_state & I_DIRTY_TIME) {
1426                 inode->dirtied_when = jiffies;
1427                 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1428         } else {
1429                 /* The inode is clean. Remove from writeback lists. */
1430                 inode_io_list_del_locked(inode, wb);
1431         }
1432 }
1433
1434 /*
1435  * Write out an inode and its dirty pages. Do not update the writeback list
1436  * linkage. That is left to the caller. The caller is also responsible for
1437  * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1438  */
1439 static int
1440 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1441 {
1442         struct address_space *mapping = inode->i_mapping;
1443         long nr_to_write = wbc->nr_to_write;
1444         unsigned dirty;
1445         int ret;
1446
1447         WARN_ON(!(inode->i_state & I_SYNC));
1448
1449         trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1450
1451         ret = do_writepages(mapping, wbc);
1452
1453         /*
1454          * Make sure to wait on the data before writing out the metadata.
1455          * This is important for filesystems that modify metadata on data
1456          * I/O completion. We don't do it for sync(2) writeback because it has a
1457          * separate, external IO completion path and ->sync_fs for guaranteeing
1458          * inode metadata is written back correctly.
1459          */
1460         if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1461                 int err = filemap_fdatawait(mapping);
1462                 if (ret == 0)
1463                         ret = err;
1464         }
1465
1466         /*
1467          * Some filesystems may redirty the inode during the writeback
1468          * due to delalloc, clear dirty metadata flags right before
1469          * write_inode()
1470          */
1471         spin_lock(&inode->i_lock);
1472
1473         dirty = inode->i_state & I_DIRTY;
1474         if (inode->i_state & I_DIRTY_TIME) {
1475                 if ((dirty & I_DIRTY_INODE) ||
1476                     wbc->sync_mode == WB_SYNC_ALL ||
1477                     unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1478                     unlikely(time_after(jiffies,
1479                                         (inode->dirtied_time_when +
1480                                          dirtytime_expire_interval * HZ)))) {
1481                         dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1482                         trace_writeback_lazytime(inode);
1483                 }
1484         } else
1485                 inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1486         inode->i_state &= ~dirty;
1487
1488         /*
1489          * Paired with smp_mb() in __mark_inode_dirty().  This allows
1490          * __mark_inode_dirty() to test i_state without grabbing i_lock -
1491          * either they see the I_DIRTY bits cleared or we see the dirtied
1492          * inode.
1493          *
1494          * I_DIRTY_PAGES is always cleared together above even if @mapping
1495          * still has dirty pages.  The flag is reinstated after smp_mb() if
1496          * necessary.  This guarantees that either __mark_inode_dirty()
1497          * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1498          */
1499         smp_mb();
1500
1501         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1502                 inode->i_state |= I_DIRTY_PAGES;
1503
1504         spin_unlock(&inode->i_lock);
1505
1506         if (dirty & I_DIRTY_TIME)
1507                 mark_inode_dirty_sync(inode);
1508         /* Don't write the inode if only I_DIRTY_PAGES was set */
1509         if (dirty & ~I_DIRTY_PAGES) {
1510                 int err = write_inode(inode, wbc);
1511                 if (ret == 0)
1512                         ret = err;
1513         }
1514         trace_writeback_single_inode(inode, wbc, nr_to_write);
1515         return ret;
1516 }
1517
1518 /*
1519  * Write out an inode's dirty pages. Either the caller has an active reference
1520  * on the inode or the inode has I_WILL_FREE set.
1521  *
1522  * This function is designed to be called for writing back one inode which
1523  * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1524  * and does more profound writeback list handling in writeback_sb_inodes().
1525  */
1526 static int writeback_single_inode(struct inode *inode,
1527                                   struct writeback_control *wbc)
1528 {
1529         struct bdi_writeback *wb;
1530         int ret = 0;
1531
1532         spin_lock(&inode->i_lock);
1533         if (!atomic_read(&inode->i_count))
1534                 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1535         else
1536                 WARN_ON(inode->i_state & I_WILL_FREE);
1537
1538         if (inode->i_state & I_SYNC) {
1539                 if (wbc->sync_mode != WB_SYNC_ALL)
1540                         goto out;
1541                 /*
1542                  * It's a data-integrity sync. We must wait. Since callers hold
1543                  * inode reference or inode has I_WILL_FREE set, it cannot go
1544                  * away under us.
1545                  */
1546                 __inode_wait_for_writeback(inode);
1547         }
1548         WARN_ON(inode->i_state & I_SYNC);
1549         /*
1550          * Skip inode if it is clean and we have no outstanding writeback in
1551          * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1552          * function since flusher thread may be doing for example sync in
1553          * parallel and if we move the inode, it could get skipped. So here we
1554          * make sure inode is on some writeback list and leave it there unless
1555          * we have completely cleaned the inode.
1556          */
1557         if (!(inode->i_state & I_DIRTY_ALL) &&
1558             (wbc->sync_mode != WB_SYNC_ALL ||
1559              !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1560                 goto out;
1561         inode->i_state |= I_SYNC;
1562         wbc_attach_and_unlock_inode(wbc, inode);
1563
1564         ret = __writeback_single_inode(inode, wbc);
1565
1566         wbc_detach_inode(wbc);
1567
1568         wb = inode_to_wb_and_lock_list(inode);
1569         spin_lock(&inode->i_lock);
1570         /*
1571          * If inode is clean, remove it from writeback lists. Otherwise don't
1572          * touch it. See comment above for explanation.
1573          */
1574         if (!(inode->i_state & I_DIRTY_ALL))
1575                 inode_io_list_del_locked(inode, wb);
1576         spin_unlock(&wb->list_lock);
1577         inode_sync_complete(inode);
1578 out:
1579         spin_unlock(&inode->i_lock);
1580         return ret;
1581 }
1582
1583 static long writeback_chunk_size(struct bdi_writeback *wb,
1584                                  struct wb_writeback_work *work)
1585 {
1586         long pages;
1587
1588         /*
1589          * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1590          * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1591          * here avoids calling into writeback_inodes_wb() more than once.
1592          *
1593          * The intended call sequence for WB_SYNC_ALL writeback is:
1594          *
1595          *      wb_writeback()
1596          *          writeback_sb_inodes()       <== called only once
1597          *              write_cache_pages()     <== called once for each inode
1598          *                   (quickly) tag currently dirty pages
1599          *                   (maybe slowly) sync all tagged pages
1600          */
1601         if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1602                 pages = LONG_MAX;
1603         else {
1604                 pages = min(wb->avg_write_bandwidth / 2,
1605                             global_wb_domain.dirty_limit / DIRTY_SCOPE);
1606                 pages = min(pages, work->nr_pages);
1607                 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1608                                    MIN_WRITEBACK_PAGES);
1609         }
1610
1611         return pages;
1612 }
1613
1614 /*
1615  * Write a portion of b_io inodes which belong to @sb.
1616  *
1617  * Return the number of pages and/or inodes written.
1618  *
1619  * NOTE! This is called with wb->list_lock held, and will
1620  * unlock and relock that for each inode it ends up doing
1621  * IO for.
1622  */
1623 static long writeback_sb_inodes(struct super_block *sb,
1624                                 struct bdi_writeback *wb,
1625                                 struct wb_writeback_work *work)
1626 {
1627         struct writeback_control wbc = {
1628                 .sync_mode              = work->sync_mode,
1629                 .tagged_writepages      = work->tagged_writepages,
1630                 .for_kupdate            = work->for_kupdate,
1631                 .for_background         = work->for_background,
1632                 .for_sync               = work->for_sync,
1633                 .range_cyclic           = work->range_cyclic,
1634                 .range_start            = 0,
1635                 .range_end              = LLONG_MAX,
1636         };
1637         unsigned long start_time = jiffies;
1638         long write_chunk;
1639         long wrote = 0;  /* count both pages and inodes */
1640
1641         while (!list_empty(&wb->b_io)) {
1642                 struct inode *inode = wb_inode(wb->b_io.prev);
1643                 struct bdi_writeback *tmp_wb;
1644
1645                 if (inode->i_sb != sb) {
1646                         if (work->sb) {
1647                                 /*
1648                                  * We only want to write back data for this
1649                                  * superblock, move all inodes not belonging
1650                                  * to it back onto the dirty list.
1651                                  */
1652                                 redirty_tail(inode, wb);
1653                                 continue;
1654                         }
1655
1656                         /*
1657                          * The inode belongs to a different superblock.
1658                          * Bounce back to the caller to unpin this and
1659                          * pin the next superblock.
1660                          */
1661                         break;
1662                 }
1663
1664                 /*
1665                  * Don't bother with new inodes or inodes being freed, first
1666                  * kind does not need periodic writeout yet, and for the latter
1667                  * kind writeout is handled by the freer.
1668                  */
1669                 spin_lock(&inode->i_lock);
1670                 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1671                         spin_unlock(&inode->i_lock);
1672                         redirty_tail(inode, wb);
1673                         continue;
1674                 }
1675                 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1676                         /*
1677                          * If this inode is locked for writeback and we are not
1678                          * doing writeback-for-data-integrity, move it to
1679                          * b_more_io so that writeback can proceed with the
1680                          * other inodes on s_io.
1681                          *
1682                          * We'll have another go at writing back this inode
1683                          * when we completed a full scan of b_io.
1684                          */
1685                         spin_unlock(&inode->i_lock);
1686                         requeue_io(inode, wb);
1687                         trace_writeback_sb_inodes_requeue(inode);
1688                         continue;
1689                 }
1690                 spin_unlock(&wb->list_lock);
1691
1692                 /*
1693                  * We already requeued the inode if it had I_SYNC set and we
1694                  * are doing WB_SYNC_NONE writeback. So this catches only the
1695                  * WB_SYNC_ALL case.
1696                  */
1697                 if (inode->i_state & I_SYNC) {
1698                         /* Wait for I_SYNC. This function drops i_lock... */
1699                         inode_sleep_on_writeback(inode);
1700                         /* Inode may be gone, start again */
1701                         spin_lock(&wb->list_lock);
1702                         continue;
1703                 }
1704                 inode->i_state |= I_SYNC;
1705                 wbc_attach_and_unlock_inode(&wbc, inode);
1706
1707                 write_chunk = writeback_chunk_size(wb, work);
1708                 wbc.nr_to_write = write_chunk;
1709                 wbc.pages_skipped = 0;
1710
1711                 /*
1712                  * We use I_SYNC to pin the inode in memory. While it is set
1713                  * evict_inode() will wait so the inode cannot be freed.
1714                  */
1715                 __writeback_single_inode(inode, &wbc);
1716
1717                 wbc_detach_inode(&wbc);
1718                 work->nr_pages -= write_chunk - wbc.nr_to_write;
1719                 wrote += write_chunk - wbc.nr_to_write;
1720
1721                 if (need_resched()) {
1722                         /*
1723                          * We're trying to balance between building up a nice
1724                          * long list of IOs to improve our merge rate, and
1725                          * getting those IOs out quickly for anyone throttling
1726                          * in balance_dirty_pages().  cond_resched() doesn't
1727                          * unplug, so get our IOs out the door before we
1728                          * give up the CPU.
1729                          */
1730                         blk_flush_plug(current);
1731                         cond_resched();
1732                 }
1733
1734                 /*
1735                  * Requeue @inode if still dirty.  Be careful as @inode may
1736                  * have been switched to another wb in the meantime.
1737                  */
1738                 tmp_wb = inode_to_wb_and_lock_list(inode);
1739                 spin_lock(&inode->i_lock);
1740                 if (!(inode->i_state & I_DIRTY_ALL))
1741                         wrote++;
1742                 requeue_inode(inode, tmp_wb, &wbc);
1743                 inode_sync_complete(inode);
1744                 spin_unlock(&inode->i_lock);
1745
1746                 if (unlikely(tmp_wb != wb)) {
1747                         spin_unlock(&tmp_wb->list_lock);
1748                         spin_lock(&wb->list_lock);
1749                 }
1750
1751                 /*
1752                  * bail out to wb_writeback() often enough to check
1753                  * background threshold and other termination conditions.
1754                  */
1755                 if (wrote) {
1756                         if (time_is_before_jiffies(start_time + HZ / 10UL))
1757                                 break;
1758                         if (work->nr_pages <= 0)
1759                                 break;
1760                 }
1761         }
1762         return wrote;
1763 }
1764
1765 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1766                                   struct wb_writeback_work *work)
1767 {
1768         unsigned long start_time = jiffies;
1769         long wrote = 0;
1770
1771         while (!list_empty(&wb->b_io)) {
1772                 struct inode *inode = wb_inode(wb->b_io.prev);
1773                 struct super_block *sb = inode->i_sb;
1774
1775                 if (!trylock_super(sb)) {
1776                         /*
1777                          * trylock_super() may fail consistently due to
1778                          * s_umount being grabbed by someone else. Don't use
1779                          * requeue_io() to avoid busy retrying the inode/sb.
1780                          */
1781                         redirty_tail(inode, wb);
1782                         continue;
1783                 }
1784                 wrote += writeback_sb_inodes(sb, wb, work);
1785                 up_read(&sb->s_umount);
1786
1787                 /* refer to the same tests at the end of writeback_sb_inodes */
1788                 if (wrote) {
1789                         if (time_is_before_jiffies(start_time + HZ / 10UL))
1790                                 break;
1791                         if (work->nr_pages <= 0)
1792                                 break;
1793                 }
1794         }
1795         /* Leave any unwritten inodes on b_io */
1796         return wrote;
1797 }
1798
1799 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1800                                 enum wb_reason reason)
1801 {
1802         struct wb_writeback_work work = {
1803                 .nr_pages       = nr_pages,
1804                 .sync_mode      = WB_SYNC_NONE,
1805                 .range_cyclic   = 1,
1806                 .reason         = reason,
1807         };
1808         struct blk_plug plug;
1809
1810         blk_start_plug(&plug);
1811         spin_lock(&wb->list_lock);
1812         if (list_empty(&wb->b_io))
1813                 queue_io(wb, &work);
1814         __writeback_inodes_wb(wb, &work);
1815         spin_unlock(&wb->list_lock);
1816         blk_finish_plug(&plug);
1817
1818         return nr_pages - work.nr_pages;
1819 }
1820
1821 /*
1822  * Explicit flushing or periodic writeback of "old" data.
1823  *
1824  * Define "old": the first time one of an inode's pages is dirtied, we mark the
1825  * dirtying-time in the inode's address_space.  So this periodic writeback code
1826  * just walks the superblock inode list, writing back any inodes which are
1827  * older than a specific point in time.
1828  *
1829  * Try to run once per dirty_writeback_interval.  But if a writeback event
1830  * takes longer than a dirty_writeback_interval interval, then leave a
1831  * one-second gap.
1832  *
1833  * older_than_this takes precedence over nr_to_write.  So we'll only write back
1834  * all dirty pages if they are all attached to "old" mappings.
1835  */
1836 static long wb_writeback(struct bdi_writeback *wb,
1837                          struct wb_writeback_work *work)
1838 {
1839         unsigned long wb_start = jiffies;
1840         long nr_pages = work->nr_pages;
1841         unsigned long oldest_jif;
1842         struct inode *inode;
1843         long progress;
1844         struct blk_plug plug;
1845
1846         oldest_jif = jiffies;
1847         work->older_than_this = &oldest_jif;
1848
1849         blk_start_plug(&plug);
1850         spin_lock(&wb->list_lock);
1851         for (;;) {
1852                 /*
1853                  * Stop writeback when nr_pages has been consumed
1854                  */
1855                 if (work->nr_pages <= 0)
1856                         break;
1857
1858                 /*
1859                  * Background writeout and kupdate-style writeback may
1860                  * run forever. Stop them if there is other work to do
1861                  * so that e.g. sync can proceed. They'll be restarted
1862                  * after the other works are all done.
1863                  */
1864                 if ((work->for_background || work->for_kupdate) &&
1865                     !list_empty(&wb->work_list))
1866                         break;
1867
1868                 /*
1869                  * For background writeout, stop when we are below the
1870                  * background dirty threshold
1871                  */
1872                 if (work->for_background && !wb_over_bg_thresh(wb))
1873                         break;
1874
1875                 /*
1876                  * Kupdate and background works are special and we want to
1877                  * include all inodes that need writing. Livelock avoidance is
1878                  * handled by these works yielding to any other work so we are
1879                  * safe.
1880                  */
1881                 if (work->for_kupdate) {
1882                         oldest_jif = jiffies -
1883                                 msecs_to_jiffies(dirty_expire_interval * 10);
1884                 } else if (work->for_background)
1885                         oldest_jif = jiffies;
1886
1887                 trace_writeback_start(wb, work);
1888                 if (list_empty(&wb->b_io))
1889                         queue_io(wb, work);
1890                 if (work->sb)
1891                         progress = writeback_sb_inodes(work->sb, wb, work);
1892                 else
1893                         progress = __writeback_inodes_wb(wb, work);
1894                 trace_writeback_written(wb, work);
1895
1896                 wb_update_bandwidth(wb, wb_start);
1897
1898                 /*
1899                  * Did we write something? Try for more
1900                  *
1901                  * Dirty inodes are moved to b_io for writeback in batches.
1902                  * The completion of the current batch does not necessarily
1903                  * mean the overall work is done. So we keep looping as long
1904                  * as made some progress on cleaning pages or inodes.
1905                  */
1906                 if (progress)
1907                         continue;
1908                 /*
1909                  * No more inodes for IO, bail
1910                  */
1911                 if (list_empty(&wb->b_more_io))
1912                         break;
1913                 /*
1914                  * Nothing written. Wait for some inode to
1915                  * become available for writeback. Otherwise
1916                  * we'll just busyloop.
1917                  */
1918                 trace_writeback_wait(wb, work);
1919                 inode = wb_inode(wb->b_more_io.prev);
1920                 spin_lock(&inode->i_lock);
1921                 spin_unlock(&wb->list_lock);
1922                 /* This function drops i_lock... */
1923                 inode_sleep_on_writeback(inode);
1924                 spin_lock(&wb->list_lock);
1925         }
1926         spin_unlock(&wb->list_lock);
1927         blk_finish_plug(&plug);
1928
1929         return nr_pages - work->nr_pages;
1930 }
1931
1932 /*
1933  * Return the next wb_writeback_work struct that hasn't been processed yet.
1934  */
1935 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1936 {
1937         struct wb_writeback_work *work = NULL;
1938
1939         spin_lock_bh(&wb->work_lock);
1940         if (!list_empty(&wb->work_list)) {
1941                 work = list_entry(wb->work_list.next,
1942                                   struct wb_writeback_work, list);
1943                 list_del_init(&work->list);
1944         }
1945         spin_unlock_bh(&wb->work_lock);
1946         return work;
1947 }
1948
1949 static long wb_check_background_flush(struct bdi_writeback *wb)
1950 {
1951         if (wb_over_bg_thresh(wb)) {
1952
1953                 struct wb_writeback_work work = {
1954                         .nr_pages       = LONG_MAX,
1955                         .sync_mode      = WB_SYNC_NONE,
1956                         .for_background = 1,
1957                         .range_cyclic   = 1,
1958                         .reason         = WB_REASON_BACKGROUND,
1959                 };
1960
1961                 return wb_writeback(wb, &work);
1962         }
1963
1964         return 0;
1965 }
1966
1967 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1968 {
1969         unsigned long expired;
1970         long nr_pages;
1971
1972         /*
1973          * When set to zero, disable periodic writeback
1974          */
1975         if (!dirty_writeback_interval)
1976                 return 0;
1977
1978         expired = wb->last_old_flush +
1979                         msecs_to_jiffies(dirty_writeback_interval * 10);
1980         if (time_before(jiffies, expired))
1981                 return 0;
1982
1983         wb->last_old_flush = jiffies;
1984         nr_pages = get_nr_dirty_pages();
1985
1986         if (nr_pages) {
1987                 struct wb_writeback_work work = {
1988                         .nr_pages       = nr_pages,
1989                         .sync_mode      = WB_SYNC_NONE,
1990                         .for_kupdate    = 1,
1991                         .range_cyclic   = 1,
1992                         .reason         = WB_REASON_PERIODIC,
1993                 };
1994
1995                 return wb_writeback(wb, &work);
1996         }
1997
1998         return 0;
1999 }
2000
2001 static long wb_check_start_all(struct bdi_writeback *wb)
2002 {
2003         long nr_pages;
2004
2005         if (!test_bit(WB_start_all, &wb->state))
2006                 return 0;
2007
2008         nr_pages = get_nr_dirty_pages();
2009         if (nr_pages) {
2010                 struct wb_writeback_work work = {
2011                         .nr_pages       = wb_split_bdi_pages(wb, nr_pages),
2012                         .sync_mode      = WB_SYNC_NONE,
2013                         .range_cyclic   = 1,
2014                         .reason         = wb->start_all_reason,
2015                 };
2016
2017                 nr_pages = wb_writeback(wb, &work);
2018         }
2019
2020         clear_bit(WB_start_all, &wb->state);
2021         return nr_pages;
2022 }
2023
2024
2025 /*
2026  * Retrieve work items and do the writeback they describe
2027  */
2028 static long wb_do_writeback(struct bdi_writeback *wb)
2029 {
2030         struct wb_writeback_work *work;
2031         long wrote = 0;
2032
2033         set_bit(WB_writeback_running, &wb->state);
2034         while ((work = get_next_work_item(wb)) != NULL) {
2035                 trace_writeback_exec(wb, work);
2036                 wrote += wb_writeback(wb, work);
2037                 finish_writeback_work(wb, work);
2038         }
2039
2040         /*
2041          * Check for a flush-everything request
2042          */
2043         wrote += wb_check_start_all(wb);
2044
2045         /*
2046          * Check for periodic writeback, kupdated() style
2047          */
2048         wrote += wb_check_old_data_flush(wb);
2049         wrote += wb_check_background_flush(wb);
2050         clear_bit(WB_writeback_running, &wb->state);
2051
2052         return wrote;
2053 }
2054
2055 /*
2056  * Handle writeback of dirty data for the device backed by this bdi. Also
2057  * reschedules periodically and does kupdated style flushing.
2058  */
2059 void wb_workfn(struct work_struct *work)
2060 {
2061         struct bdi_writeback *wb = container_of(to_delayed_work(work),
2062                                                 struct bdi_writeback, dwork);
2063         long pages_written;
2064
2065         set_worker_desc("flush-%s", bdi_dev_name(wb->bdi));
2066         current->flags |= PF_SWAPWRITE;
2067
2068         if (likely(!current_is_workqueue_rescuer() ||
2069                    !test_bit(WB_registered, &wb->state))) {
2070                 /*
2071                  * The normal path.  Keep writing back @wb until its
2072                  * work_list is empty.  Note that this path is also taken
2073                  * if @wb is shutting down even when we're running off the
2074                  * rescuer as work_list needs to be drained.
2075                  */
2076                 do {
2077                         pages_written = wb_do_writeback(wb);
2078                         trace_writeback_pages_written(pages_written);
2079                 } while (!list_empty(&wb->work_list));
2080         } else {
2081                 /*
2082                  * bdi_wq can't get enough workers and we're running off
2083                  * the emergency worker.  Don't hog it.  Hopefully, 1024 is
2084                  * enough for efficient IO.
2085                  */
2086                 pages_written = writeback_inodes_wb(wb, 1024,
2087                                                     WB_REASON_FORKER_THREAD);
2088                 trace_writeback_pages_written(pages_written);
2089         }
2090
2091         if (!list_empty(&wb->work_list))
2092                 wb_wakeup(wb);
2093         else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
2094                 wb_wakeup_delayed(wb);
2095
2096         current->flags &= ~PF_SWAPWRITE;
2097 }
2098
2099 /*
2100  * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2101  * write back the whole world.
2102  */
2103 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2104                                          enum wb_reason reason)
2105 {
2106         struct bdi_writeback *wb;
2107
2108         if (!bdi_has_dirty_io(bdi))
2109                 return;
2110
2111         list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2112                 wb_start_writeback(wb, reason);
2113 }
2114
2115 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2116                                 enum wb_reason reason)
2117 {
2118         rcu_read_lock();
2119         __wakeup_flusher_threads_bdi(bdi, reason);
2120         rcu_read_unlock();
2121 }
2122
2123 /*
2124  * Wakeup the flusher threads to start writeback of all currently dirty pages
2125  */
2126 void wakeup_flusher_threads(enum wb_reason reason)
2127 {
2128         struct backing_dev_info *bdi;
2129
2130         /*
2131          * If we are expecting writeback progress we must submit plugged IO.
2132          */
2133         if (blk_needs_flush_plug(current))
2134                 blk_schedule_flush_plug(current);
2135
2136         rcu_read_lock();
2137         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2138                 __wakeup_flusher_threads_bdi(bdi, reason);
2139         rcu_read_unlock();
2140 }
2141
2142 /*
2143  * Wake up bdi's periodically to make sure dirtytime inodes gets
2144  * written back periodically.  We deliberately do *not* check the
2145  * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2146  * kernel to be constantly waking up once there are any dirtytime
2147  * inodes on the system.  So instead we define a separate delayed work
2148  * function which gets called much more rarely.  (By default, only
2149  * once every 12 hours.)
2150  *
2151  * If there is any other write activity going on in the file system,
2152  * this function won't be necessary.  But if the only thing that has
2153  * happened on the file system is a dirtytime inode caused by an atime
2154  * update, we need this infrastructure below to make sure that inode
2155  * eventually gets pushed out to disk.
2156  */
2157 static void wakeup_dirtytime_writeback(struct work_struct *w);
2158 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2159
2160 static void wakeup_dirtytime_writeback(struct work_struct *w)
2161 {
2162         struct backing_dev_info *bdi;
2163
2164         rcu_read_lock();
2165         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2166                 struct bdi_writeback *wb;
2167
2168                 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2169                         if (!list_empty(&wb->b_dirty_time))
2170                                 wb_wakeup(wb);
2171         }
2172         rcu_read_unlock();
2173         schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2174 }
2175
2176 static int __init start_dirtytime_writeback(void)
2177 {
2178         schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2179         return 0;
2180 }
2181 __initcall(start_dirtytime_writeback);
2182
2183 int dirtytime_interval_handler(struct ctl_table *table, int write,
2184                                void __user *buffer, size_t *lenp, loff_t *ppos)
2185 {
2186         int ret;
2187
2188         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2189         if (ret == 0 && write)
2190                 mod_delayed_work(system_wq, &dirtytime_work, 0);
2191         return ret;
2192 }
2193
2194 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
2195 {
2196         if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
2197                 struct dentry *dentry;
2198                 const char *name = "?";
2199
2200                 dentry = d_find_alias(inode);
2201                 if (dentry) {
2202                         spin_lock(&dentry->d_lock);
2203                         name = (const char *) dentry->d_name.name;
2204                 }
2205                 printk(KERN_DEBUG
2206                        "%s(%d): dirtied inode %lu (%s) on %s\n",
2207                        current->comm, task_pid_nr(current), inode->i_ino,
2208                        name, inode->i_sb->s_id);
2209                 if (dentry) {
2210                         spin_unlock(&dentry->d_lock);
2211                         dput(dentry);
2212                 }
2213         }
2214 }
2215
2216 /**
2217  * __mark_inode_dirty - internal function
2218  *
2219  * @inode: inode to mark
2220  * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
2221  *
2222  * Mark an inode as dirty. Callers should use mark_inode_dirty or
2223  * mark_inode_dirty_sync.
2224  *
2225  * Put the inode on the super block's dirty list.
2226  *
2227  * CAREFUL! We mark it dirty unconditionally, but move it onto the
2228  * dirty list only if it is hashed or if it refers to a blockdev.
2229  * If it was not hashed, it will never be added to the dirty list
2230  * even if it is later hashed, as it will have been marked dirty already.
2231  *
2232  * In short, make sure you hash any inodes _before_ you start marking
2233  * them dirty.
2234  *
2235  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2236  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
2237  * the kernel-internal blockdev inode represents the dirtying time of the
2238  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
2239  * page->mapping->host, so the page-dirtying time is recorded in the internal
2240  * blockdev inode.
2241  */
2242 void __mark_inode_dirty(struct inode *inode, int flags)
2243 {
2244         struct super_block *sb = inode->i_sb;
2245         int dirtytime;
2246
2247         trace_writeback_mark_inode_dirty(inode, flags);
2248
2249         /*
2250          * Don't do this for I_DIRTY_PAGES - that doesn't actually
2251          * dirty the inode itself
2252          */
2253         if (flags & (I_DIRTY_INODE | I_DIRTY_TIME)) {
2254                 trace_writeback_dirty_inode_start(inode, flags);
2255
2256                 if (sb->s_op->dirty_inode)
2257                         sb->s_op->dirty_inode(inode, flags);
2258
2259                 trace_writeback_dirty_inode(inode, flags);
2260         }
2261         if (flags & I_DIRTY_INODE)
2262                 flags &= ~I_DIRTY_TIME;
2263         dirtytime = flags & I_DIRTY_TIME;
2264
2265         /*
2266          * Paired with smp_mb() in __writeback_single_inode() for the
2267          * following lockless i_state test.  See there for details.
2268          */
2269         smp_mb();
2270
2271         if (((inode->i_state & flags) == flags) ||
2272             (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2273                 return;
2274
2275         if (unlikely(block_dump))
2276                 block_dump___mark_inode_dirty(inode);
2277
2278         spin_lock(&inode->i_lock);
2279         if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2280                 goto out_unlock_inode;
2281         if ((inode->i_state & flags) != flags) {
2282                 const int was_dirty = inode->i_state & I_DIRTY;
2283
2284                 inode_attach_wb(inode, NULL);
2285
2286                 if (flags & I_DIRTY_INODE)
2287                         inode->i_state &= ~I_DIRTY_TIME;
2288                 inode->i_state |= flags;
2289
2290                 /*
2291                  * If the inode is being synced, just update its dirty state.
2292                  * The unlocker will place the inode on the appropriate
2293                  * superblock list, based upon its state.
2294                  */
2295                 if (inode->i_state & I_SYNC)
2296                         goto out_unlock_inode;
2297
2298                 /*
2299                  * Only add valid (hashed) inodes to the superblock's
2300                  * dirty list.  Add blockdev inodes as well.
2301                  */
2302                 if (!S_ISBLK(inode->i_mode)) {
2303                         if (inode_unhashed(inode))
2304                                 goto out_unlock_inode;
2305                 }
2306                 if (inode->i_state & I_FREEING)
2307                         goto out_unlock_inode;
2308
2309                 /*
2310                  * If the inode was already on b_dirty/b_io/b_more_io, don't
2311                  * reposition it (that would break b_dirty time-ordering).
2312                  */
2313                 if (!was_dirty) {
2314                         struct bdi_writeback *wb;
2315                         struct list_head *dirty_list;
2316                         bool wakeup_bdi = false;
2317
2318                         wb = locked_inode_to_wb_and_lock_list(inode);
2319
2320                         WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2321                              !test_bit(WB_registered, &wb->state),
2322                              "bdi-%s not registered\n", bdi_dev_name(wb->bdi));
2323
2324                         inode->dirtied_when = jiffies;
2325                         if (dirtytime)
2326                                 inode->dirtied_time_when = jiffies;
2327
2328                         if (inode->i_state & I_DIRTY)
2329                                 dirty_list = &wb->b_dirty;
2330                         else
2331                                 dirty_list = &wb->b_dirty_time;
2332
2333                         wakeup_bdi = inode_io_list_move_locked(inode, wb,
2334                                                                dirty_list);
2335
2336                         spin_unlock(&wb->list_lock);
2337                         trace_writeback_dirty_inode_enqueue(inode);
2338
2339                         /*
2340                          * If this is the first dirty inode for this bdi,
2341                          * we have to wake-up the corresponding bdi thread
2342                          * to make sure background write-back happens
2343                          * later.
2344                          */
2345                         if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2346                                 wb_wakeup_delayed(wb);
2347                         return;
2348                 }
2349         }
2350 out_unlock_inode:
2351         spin_unlock(&inode->i_lock);
2352 }
2353 EXPORT_SYMBOL(__mark_inode_dirty);
2354
2355 /*
2356  * The @s_sync_lock is used to serialise concurrent sync operations
2357  * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2358  * Concurrent callers will block on the s_sync_lock rather than doing contending
2359  * walks. The queueing maintains sync(2) required behaviour as all the IO that
2360  * has been issued up to the time this function is enter is guaranteed to be
2361  * completed by the time we have gained the lock and waited for all IO that is
2362  * in progress regardless of the order callers are granted the lock.
2363  */
2364 static void wait_sb_inodes(struct super_block *sb)
2365 {
2366         LIST_HEAD(sync_list);
2367
2368         /*
2369          * We need to be protected against the filesystem going from
2370          * r/o to r/w or vice versa.
2371          */
2372         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2373
2374         mutex_lock(&sb->s_sync_lock);
2375
2376         /*
2377          * Splice the writeback list onto a temporary list to avoid waiting on
2378          * inodes that have started writeback after this point.
2379          *
2380          * Use rcu_read_lock() to keep the inodes around until we have a
2381          * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2382          * the local list because inodes can be dropped from either by writeback
2383          * completion.
2384          */
2385         rcu_read_lock();
2386         spin_lock_irq(&sb->s_inode_wblist_lock);
2387         list_splice_init(&sb->s_inodes_wb, &sync_list);
2388
2389         /*
2390          * Data integrity sync. Must wait for all pages under writeback, because
2391          * there may have been pages dirtied before our sync call, but which had
2392          * writeout started before we write it out.  In which case, the inode
2393          * may not be on the dirty list, but we still have to wait for that
2394          * writeout.
2395          */
2396         while (!list_empty(&sync_list)) {
2397                 struct inode *inode = list_first_entry(&sync_list, struct inode,
2398                                                        i_wb_list);
2399                 struct address_space *mapping = inode->i_mapping;
2400
2401                 /*
2402                  * Move each inode back to the wb list before we drop the lock
2403                  * to preserve consistency between i_wb_list and the mapping
2404                  * writeback tag. Writeback completion is responsible to remove
2405                  * the inode from either list once the writeback tag is cleared.
2406                  */
2407                 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2408
2409                 /*
2410                  * The mapping can appear untagged while still on-list since we
2411                  * do not have the mapping lock. Skip it here, wb completion
2412                  * will remove it.
2413                  */
2414                 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2415                         continue;
2416
2417                 spin_unlock_irq(&sb->s_inode_wblist_lock);
2418
2419                 spin_lock(&inode->i_lock);
2420                 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2421                         spin_unlock(&inode->i_lock);
2422
2423                         spin_lock_irq(&sb->s_inode_wblist_lock);
2424                         continue;
2425                 }
2426                 __iget(inode);
2427                 spin_unlock(&inode->i_lock);
2428                 rcu_read_unlock();
2429
2430                 /*
2431                  * We keep the error status of individual mapping so that
2432                  * applications can catch the writeback error using fsync(2).
2433                  * See filemap_fdatawait_keep_errors() for details.
2434                  */
2435                 filemap_fdatawait_keep_errors(mapping);
2436
2437                 cond_resched();
2438
2439                 iput(inode);
2440
2441                 rcu_read_lock();
2442                 spin_lock_irq(&sb->s_inode_wblist_lock);
2443         }
2444         spin_unlock_irq(&sb->s_inode_wblist_lock);
2445         rcu_read_unlock();
2446         mutex_unlock(&sb->s_sync_lock);
2447 }
2448
2449 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2450                                      enum wb_reason reason, bool skip_if_busy)
2451 {
2452         struct backing_dev_info *bdi = sb->s_bdi;
2453         DEFINE_WB_COMPLETION(done, bdi);
2454         struct wb_writeback_work work = {
2455                 .sb                     = sb,
2456                 .sync_mode              = WB_SYNC_NONE,
2457                 .tagged_writepages      = 1,
2458                 .done                   = &done,
2459                 .nr_pages               = nr,
2460                 .reason                 = reason,
2461         };
2462
2463         if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2464                 return;
2465         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2466
2467         bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2468         wb_wait_for_completion(&done);
2469 }
2470
2471 /**
2472  * writeback_inodes_sb_nr -     writeback dirty inodes from given super_block
2473  * @sb: the superblock
2474  * @nr: the number of pages to write
2475  * @reason: reason why some writeback work initiated
2476  *
2477  * Start writeback on some inodes on this super_block. No guarantees are made
2478  * on how many (if any) will be written, and this function does not wait
2479  * for IO completion of submitted IO.
2480  */
2481 void writeback_inodes_sb_nr(struct super_block *sb,
2482                             unsigned long nr,
2483                             enum wb_reason reason)
2484 {
2485         __writeback_inodes_sb_nr(sb, nr, reason, false);
2486 }
2487 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2488
2489 /**
2490  * writeback_inodes_sb  -       writeback dirty inodes from given super_block
2491  * @sb: the superblock
2492  * @reason: reason why some writeback work was initiated
2493  *
2494  * Start writeback on some inodes on this super_block. No guarantees are made
2495  * on how many (if any) will be written, and this function does not wait
2496  * for IO completion of submitted IO.
2497  */
2498 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2499 {
2500         return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2501 }
2502 EXPORT_SYMBOL(writeback_inodes_sb);
2503
2504 /**
2505  * try_to_writeback_inodes_sb - try to start writeback if none underway
2506  * @sb: the superblock
2507  * @reason: reason why some writeback work was initiated
2508  *
2509  * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2510  */
2511 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2512 {
2513         if (!down_read_trylock(&sb->s_umount))
2514                 return;
2515
2516         __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2517         up_read(&sb->s_umount);
2518 }
2519 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2520
2521 /**
2522  * sync_inodes_sb       -       sync sb inode pages
2523  * @sb: the superblock
2524  *
2525  * This function writes and waits on any dirty inode belonging to this
2526  * super_block.
2527  */
2528 void sync_inodes_sb(struct super_block *sb)
2529 {
2530         struct backing_dev_info *bdi = sb->s_bdi;
2531         DEFINE_WB_COMPLETION(done, bdi);
2532         struct wb_writeback_work work = {
2533                 .sb             = sb,
2534                 .sync_mode      = WB_SYNC_ALL,
2535                 .nr_pages       = LONG_MAX,
2536                 .range_cyclic   = 0,
2537                 .done           = &done,
2538                 .reason         = WB_REASON_SYNC,
2539                 .for_sync       = 1,
2540         };
2541
2542         /*
2543          * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2544          * inodes under writeback and I_DIRTY_TIME inodes ignored by
2545          * bdi_has_dirty() need to be written out too.
2546          */
2547         if (bdi == &noop_backing_dev_info)
2548                 return;
2549         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2550
2551         /* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2552         bdi_down_write_wb_switch_rwsem(bdi);
2553         bdi_split_work_to_wbs(bdi, &work, false);
2554         wb_wait_for_completion(&done);
2555         bdi_up_write_wb_switch_rwsem(bdi);
2556
2557         wait_sb_inodes(sb);
2558 }
2559 EXPORT_SYMBOL(sync_inodes_sb);
2560
2561 /**
2562  * write_inode_now      -       write an inode to disk
2563  * @inode: inode to write to disk
2564  * @sync: whether the write should be synchronous or not
2565  *
2566  * This function commits an inode to disk immediately if it is dirty. This is
2567  * primarily needed by knfsd.
2568  *
2569  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2570  */
2571 int write_inode_now(struct inode *inode, int sync)
2572 {
2573         struct writeback_control wbc = {
2574                 .nr_to_write = LONG_MAX,
2575                 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2576                 .range_start = 0,
2577                 .range_end = LLONG_MAX,
2578         };
2579
2580         if (!mapping_cap_writeback_dirty(inode->i_mapping))
2581                 wbc.nr_to_write = 0;
2582
2583         might_sleep();
2584         return writeback_single_inode(inode, &wbc);
2585 }
2586 EXPORT_SYMBOL(write_inode_now);
2587
2588 /**
2589  * sync_inode - write an inode and its pages to disk.
2590  * @inode: the inode to sync
2591  * @wbc: controls the writeback mode
2592  *
2593  * sync_inode() will write an inode and its pages to disk.  It will also
2594  * correctly update the inode on its superblock's dirty inode lists and will
2595  * update inode->i_state.
2596  *
2597  * The caller must have a ref on the inode.
2598  */
2599 int sync_inode(struct inode *inode, struct writeback_control *wbc)
2600 {
2601         return writeback_single_inode(inode, wbc);
2602 }
2603 EXPORT_SYMBOL(sync_inode);
2604
2605 /**
2606  * sync_inode_metadata - write an inode to disk
2607  * @inode: the inode to sync
2608  * @wait: wait for I/O to complete.
2609  *
2610  * Write an inode to disk and adjust its dirty state after completion.
2611  *
2612  * Note: only writes the actual inode, no associated data or other metadata.
2613  */
2614 int sync_inode_metadata(struct inode *inode, int wait)
2615 {
2616         struct writeback_control wbc = {
2617                 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2618                 .nr_to_write = 0, /* metadata-only */
2619         };
2620
2621         return sync_inode(inode, &wbc);
2622 }
2623 EXPORT_SYMBOL(sync_inode_metadata);