Merge tag 'pinctrl-v5.3-1' of git://git.kernel.org/pub/scm/linux/kernel/git/linusw...
[linux-2.6-microblaze.git] / fs / fs-writeback.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/fs-writeback.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  *
7  * Contains all the functions related to writing back and waiting
8  * upon dirty inodes against superblocks, and writing back dirty
9  * pages against inodes.  ie: data writeback.  Writeout of the
10  * inode itself is not handled here.
11  *
12  * 10Apr2002    Andrew Morton
13  *              Split out of fs/inode.c
14  *              Additions for address_space-based writeback
15  */
16
17 #include <linux/kernel.h>
18 #include <linux/export.h>
19 #include <linux/spinlock.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/fs.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/kthread.h>
26 #include <linux/writeback.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/tracepoint.h>
30 #include <linux/device.h>
31 #include <linux/memcontrol.h>
32 #include "internal.h"
33
34 /*
35  * 4MB minimal write chunk size
36  */
37 #define MIN_WRITEBACK_PAGES     (4096UL >> (PAGE_SHIFT - 10))
38
39 struct wb_completion {
40         atomic_t                cnt;
41 };
42
43 /*
44  * Passed into wb_writeback(), essentially a subset of writeback_control
45  */
46 struct wb_writeback_work {
47         long nr_pages;
48         struct super_block *sb;
49         unsigned long *older_than_this;
50         enum writeback_sync_modes sync_mode;
51         unsigned int tagged_writepages:1;
52         unsigned int for_kupdate:1;
53         unsigned int range_cyclic:1;
54         unsigned int for_background:1;
55         unsigned int for_sync:1;        /* sync(2) WB_SYNC_ALL writeback */
56         unsigned int auto_free:1;       /* free on completion */
57         enum wb_reason reason;          /* why was writeback initiated? */
58
59         struct list_head list;          /* pending work list */
60         struct wb_completion *done;     /* set if the caller waits */
61 };
62
63 /*
64  * If one wants to wait for one or more wb_writeback_works, each work's
65  * ->done should be set to a wb_completion defined using the following
66  * macro.  Once all work items are issued with wb_queue_work(), the caller
67  * can wait for the completion of all using wb_wait_for_completion().  Work
68  * items which are waited upon aren't freed automatically on completion.
69  */
70 #define DEFINE_WB_COMPLETION_ONSTACK(cmpl)                              \
71         struct wb_completion cmpl = {                                   \
72                 .cnt            = ATOMIC_INIT(1),                       \
73         }
74
75
76 /*
77  * If an inode is constantly having its pages dirtied, but then the
78  * updates stop dirtytime_expire_interval seconds in the past, it's
79  * possible for the worst case time between when an inode has its
80  * timestamps updated and when they finally get written out to be two
81  * dirtytime_expire_intervals.  We set the default to 12 hours (in
82  * seconds), which means most of the time inodes will have their
83  * timestamps written to disk after 12 hours, but in the worst case a
84  * few inodes might not their timestamps updated for 24 hours.
85  */
86 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
87
88 static inline struct inode *wb_inode(struct list_head *head)
89 {
90         return list_entry(head, struct inode, i_io_list);
91 }
92
93 /*
94  * Include the creation of the trace points after defining the
95  * wb_writeback_work structure and inline functions so that the definition
96  * remains local to this file.
97  */
98 #define CREATE_TRACE_POINTS
99 #include <trace/events/writeback.h>
100
101 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
102
103 static bool wb_io_lists_populated(struct bdi_writeback *wb)
104 {
105         if (wb_has_dirty_io(wb)) {
106                 return false;
107         } else {
108                 set_bit(WB_has_dirty_io, &wb->state);
109                 WARN_ON_ONCE(!wb->avg_write_bandwidth);
110                 atomic_long_add(wb->avg_write_bandwidth,
111                                 &wb->bdi->tot_write_bandwidth);
112                 return true;
113         }
114 }
115
116 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
117 {
118         if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
119             list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
120                 clear_bit(WB_has_dirty_io, &wb->state);
121                 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
122                                         &wb->bdi->tot_write_bandwidth) < 0);
123         }
124 }
125
126 /**
127  * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
128  * @inode: inode to be moved
129  * @wb: target bdi_writeback
130  * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
131  *
132  * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
133  * Returns %true if @inode is the first occupant of the !dirty_time IO
134  * lists; otherwise, %false.
135  */
136 static bool inode_io_list_move_locked(struct inode *inode,
137                                       struct bdi_writeback *wb,
138                                       struct list_head *head)
139 {
140         assert_spin_locked(&wb->list_lock);
141
142         list_move(&inode->i_io_list, head);
143
144         /* dirty_time doesn't count as dirty_io until expiration */
145         if (head != &wb->b_dirty_time)
146                 return wb_io_lists_populated(wb);
147
148         wb_io_lists_depopulated(wb);
149         return false;
150 }
151
152 /**
153  * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
154  * @inode: inode to be removed
155  * @wb: bdi_writeback @inode is being removed from
156  *
157  * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
158  * clear %WB_has_dirty_io if all are empty afterwards.
159  */
160 static void inode_io_list_del_locked(struct inode *inode,
161                                      struct bdi_writeback *wb)
162 {
163         assert_spin_locked(&wb->list_lock);
164
165         list_del_init(&inode->i_io_list);
166         wb_io_lists_depopulated(wb);
167 }
168
169 static void wb_wakeup(struct bdi_writeback *wb)
170 {
171         spin_lock_bh(&wb->work_lock);
172         if (test_bit(WB_registered, &wb->state))
173                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
174         spin_unlock_bh(&wb->work_lock);
175 }
176
177 static void finish_writeback_work(struct bdi_writeback *wb,
178                                   struct wb_writeback_work *work)
179 {
180         struct wb_completion *done = work->done;
181
182         if (work->auto_free)
183                 kfree(work);
184         if (done && atomic_dec_and_test(&done->cnt))
185                 wake_up_all(&wb->bdi->wb_waitq);
186 }
187
188 static void wb_queue_work(struct bdi_writeback *wb,
189                           struct wb_writeback_work *work)
190 {
191         trace_writeback_queue(wb, work);
192
193         if (work->done)
194                 atomic_inc(&work->done->cnt);
195
196         spin_lock_bh(&wb->work_lock);
197
198         if (test_bit(WB_registered, &wb->state)) {
199                 list_add_tail(&work->list, &wb->work_list);
200                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
201         } else
202                 finish_writeback_work(wb, work);
203
204         spin_unlock_bh(&wb->work_lock);
205 }
206
207 /**
208  * wb_wait_for_completion - wait for completion of bdi_writeback_works
209  * @bdi: bdi work items were issued to
210  * @done: target wb_completion
211  *
212  * Wait for one or more work items issued to @bdi with their ->done field
213  * set to @done, which should have been defined with
214  * DEFINE_WB_COMPLETION_ONSTACK().  This function returns after all such
215  * work items are completed.  Work items which are waited upon aren't freed
216  * automatically on completion.
217  */
218 static void wb_wait_for_completion(struct backing_dev_info *bdi,
219                                    struct wb_completion *done)
220 {
221         atomic_dec(&done->cnt);         /* put down the initial count */
222         wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
223 }
224
225 #ifdef CONFIG_CGROUP_WRITEBACK
226
227 /* parameters for foreign inode detection, see wb_detach_inode() */
228 #define WB_FRN_TIME_SHIFT       13      /* 1s = 2^13, upto 8 secs w/ 16bit */
229 #define WB_FRN_TIME_AVG_SHIFT   3       /* avg = avg * 7/8 + new * 1/8 */
230 #define WB_FRN_TIME_CUT_DIV     2       /* ignore rounds < avg / 2 */
231 #define WB_FRN_TIME_PERIOD      (2 * (1 << WB_FRN_TIME_SHIFT))  /* 2s */
232
233 #define WB_FRN_HIST_SLOTS       16      /* inode->i_wb_frn_history is 16bit */
234 #define WB_FRN_HIST_UNIT        (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
235                                         /* each slot's duration is 2s / 16 */
236 #define WB_FRN_HIST_THR_SLOTS   (WB_FRN_HIST_SLOTS / 2)
237                                         /* if foreign slots >= 8, switch */
238 #define WB_FRN_HIST_MAX_SLOTS   (WB_FRN_HIST_THR_SLOTS / 2 + 1)
239                                         /* one round can affect upto 5 slots */
240
241 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
242 static struct workqueue_struct *isw_wq;
243
244 void __inode_attach_wb(struct inode *inode, struct page *page)
245 {
246         struct backing_dev_info *bdi = inode_to_bdi(inode);
247         struct bdi_writeback *wb = NULL;
248
249         if (inode_cgwb_enabled(inode)) {
250                 struct cgroup_subsys_state *memcg_css;
251
252                 if (page) {
253                         memcg_css = mem_cgroup_css_from_page(page);
254                         wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
255                 } else {
256                         /* must pin memcg_css, see wb_get_create() */
257                         memcg_css = task_get_css(current, memory_cgrp_id);
258                         wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
259                         css_put(memcg_css);
260                 }
261         }
262
263         if (!wb)
264                 wb = &bdi->wb;
265
266         /*
267          * There may be multiple instances of this function racing to
268          * update the same inode.  Use cmpxchg() to tell the winner.
269          */
270         if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
271                 wb_put(wb);
272 }
273
274 /**
275  * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
276  * @inode: inode of interest with i_lock held
277  *
278  * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
279  * held on entry and is released on return.  The returned wb is guaranteed
280  * to stay @inode's associated wb until its list_lock is released.
281  */
282 static struct bdi_writeback *
283 locked_inode_to_wb_and_lock_list(struct inode *inode)
284         __releases(&inode->i_lock)
285         __acquires(&wb->list_lock)
286 {
287         while (true) {
288                 struct bdi_writeback *wb = inode_to_wb(inode);
289
290                 /*
291                  * inode_to_wb() association is protected by both
292                  * @inode->i_lock and @wb->list_lock but list_lock nests
293                  * outside i_lock.  Drop i_lock and verify that the
294                  * association hasn't changed after acquiring list_lock.
295                  */
296                 wb_get(wb);
297                 spin_unlock(&inode->i_lock);
298                 spin_lock(&wb->list_lock);
299
300                 /* i_wb may have changed inbetween, can't use inode_to_wb() */
301                 if (likely(wb == inode->i_wb)) {
302                         wb_put(wb);     /* @inode already has ref */
303                         return wb;
304                 }
305
306                 spin_unlock(&wb->list_lock);
307                 wb_put(wb);
308                 cpu_relax();
309                 spin_lock(&inode->i_lock);
310         }
311 }
312
313 /**
314  * inode_to_wb_and_lock_list - determine an inode's wb and lock it
315  * @inode: inode of interest
316  *
317  * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
318  * on entry.
319  */
320 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
321         __acquires(&wb->list_lock)
322 {
323         spin_lock(&inode->i_lock);
324         return locked_inode_to_wb_and_lock_list(inode);
325 }
326
327 struct inode_switch_wbs_context {
328         struct inode            *inode;
329         struct bdi_writeback    *new_wb;
330
331         struct rcu_head         rcu_head;
332         struct work_struct      work;
333 };
334
335 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
336 {
337         down_write(&bdi->wb_switch_rwsem);
338 }
339
340 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
341 {
342         up_write(&bdi->wb_switch_rwsem);
343 }
344
345 static void inode_switch_wbs_work_fn(struct work_struct *work)
346 {
347         struct inode_switch_wbs_context *isw =
348                 container_of(work, struct inode_switch_wbs_context, work);
349         struct inode *inode = isw->inode;
350         struct backing_dev_info *bdi = inode_to_bdi(inode);
351         struct address_space *mapping = inode->i_mapping;
352         struct bdi_writeback *old_wb = inode->i_wb;
353         struct bdi_writeback *new_wb = isw->new_wb;
354         XA_STATE(xas, &mapping->i_pages, 0);
355         struct page *page;
356         bool switched = false;
357
358         /*
359          * If @inode switches cgwb membership while sync_inodes_sb() is
360          * being issued, sync_inodes_sb() might miss it.  Synchronize.
361          */
362         down_read(&bdi->wb_switch_rwsem);
363
364         /*
365          * By the time control reaches here, RCU grace period has passed
366          * since I_WB_SWITCH assertion and all wb stat update transactions
367          * between unlocked_inode_to_wb_begin/end() are guaranteed to be
368          * synchronizing against the i_pages lock.
369          *
370          * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
371          * gives us exclusion against all wb related operations on @inode
372          * including IO list manipulations and stat updates.
373          */
374         if (old_wb < new_wb) {
375                 spin_lock(&old_wb->list_lock);
376                 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
377         } else {
378                 spin_lock(&new_wb->list_lock);
379                 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
380         }
381         spin_lock(&inode->i_lock);
382         xa_lock_irq(&mapping->i_pages);
383
384         /*
385          * Once I_FREEING is visible under i_lock, the eviction path owns
386          * the inode and we shouldn't modify ->i_io_list.
387          */
388         if (unlikely(inode->i_state & I_FREEING))
389                 goto skip_switch;
390
391         /*
392          * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
393          * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
394          * pages actually under writeback.
395          */
396         xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
397                 if (PageDirty(page)) {
398                         dec_wb_stat(old_wb, WB_RECLAIMABLE);
399                         inc_wb_stat(new_wb, WB_RECLAIMABLE);
400                 }
401         }
402
403         xas_set(&xas, 0);
404         xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
405                 WARN_ON_ONCE(!PageWriteback(page));
406                 dec_wb_stat(old_wb, WB_WRITEBACK);
407                 inc_wb_stat(new_wb, WB_WRITEBACK);
408         }
409
410         wb_get(new_wb);
411
412         /*
413          * Transfer to @new_wb's IO list if necessary.  The specific list
414          * @inode was on is ignored and the inode is put on ->b_dirty which
415          * is always correct including from ->b_dirty_time.  The transfer
416          * preserves @inode->dirtied_when ordering.
417          */
418         if (!list_empty(&inode->i_io_list)) {
419                 struct inode *pos;
420
421                 inode_io_list_del_locked(inode, old_wb);
422                 inode->i_wb = new_wb;
423                 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
424                         if (time_after_eq(inode->dirtied_when,
425                                           pos->dirtied_when))
426                                 break;
427                 inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
428         } else {
429                 inode->i_wb = new_wb;
430         }
431
432         /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
433         inode->i_wb_frn_winner = 0;
434         inode->i_wb_frn_avg_time = 0;
435         inode->i_wb_frn_history = 0;
436         switched = true;
437 skip_switch:
438         /*
439          * Paired with load_acquire in unlocked_inode_to_wb_begin() and
440          * ensures that the new wb is visible if they see !I_WB_SWITCH.
441          */
442         smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
443
444         xa_unlock_irq(&mapping->i_pages);
445         spin_unlock(&inode->i_lock);
446         spin_unlock(&new_wb->list_lock);
447         spin_unlock(&old_wb->list_lock);
448
449         up_read(&bdi->wb_switch_rwsem);
450
451         if (switched) {
452                 wb_wakeup(new_wb);
453                 wb_put(old_wb);
454         }
455         wb_put(new_wb);
456
457         iput(inode);
458         kfree(isw);
459
460         atomic_dec(&isw_nr_in_flight);
461 }
462
463 static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
464 {
465         struct inode_switch_wbs_context *isw = container_of(rcu_head,
466                                 struct inode_switch_wbs_context, rcu_head);
467
468         /* needs to grab bh-unsafe locks, bounce to work item */
469         INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
470         queue_work(isw_wq, &isw->work);
471 }
472
473 /**
474  * inode_switch_wbs - change the wb association of an inode
475  * @inode: target inode
476  * @new_wb_id: ID of the new wb
477  *
478  * Switch @inode's wb association to the wb identified by @new_wb_id.  The
479  * switching is performed asynchronously and may fail silently.
480  */
481 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
482 {
483         struct backing_dev_info *bdi = inode_to_bdi(inode);
484         struct cgroup_subsys_state *memcg_css;
485         struct inode_switch_wbs_context *isw;
486
487         /* noop if seems to be already in progress */
488         if (inode->i_state & I_WB_SWITCH)
489                 return;
490
491         /*
492          * Avoid starting new switches while sync_inodes_sb() is in
493          * progress.  Otherwise, if the down_write protected issue path
494          * blocks heavily, we might end up starting a large number of
495          * switches which will block on the rwsem.
496          */
497         if (!down_read_trylock(&bdi->wb_switch_rwsem))
498                 return;
499
500         isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
501         if (!isw)
502                 goto out_unlock;
503
504         /* find and pin the new wb */
505         rcu_read_lock();
506         memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
507         if (memcg_css)
508                 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
509         rcu_read_unlock();
510         if (!isw->new_wb)
511                 goto out_free;
512
513         /* while holding I_WB_SWITCH, no one else can update the association */
514         spin_lock(&inode->i_lock);
515         if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
516             inode->i_state & (I_WB_SWITCH | I_FREEING) ||
517             inode_to_wb(inode) == isw->new_wb) {
518                 spin_unlock(&inode->i_lock);
519                 goto out_free;
520         }
521         inode->i_state |= I_WB_SWITCH;
522         __iget(inode);
523         spin_unlock(&inode->i_lock);
524
525         isw->inode = inode;
526
527         /*
528          * In addition to synchronizing among switchers, I_WB_SWITCH tells
529          * the RCU protected stat update paths to grab the i_page
530          * lock so that stat transfer can synchronize against them.
531          * Let's continue after I_WB_SWITCH is guaranteed to be visible.
532          */
533         call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
534
535         atomic_inc(&isw_nr_in_flight);
536
537         goto out_unlock;
538
539 out_free:
540         if (isw->new_wb)
541                 wb_put(isw->new_wb);
542         kfree(isw);
543 out_unlock:
544         up_read(&bdi->wb_switch_rwsem);
545 }
546
547 /**
548  * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
549  * @wbc: writeback_control of interest
550  * @inode: target inode
551  *
552  * @inode is locked and about to be written back under the control of @wbc.
553  * Record @inode's writeback context into @wbc and unlock the i_lock.  On
554  * writeback completion, wbc_detach_inode() should be called.  This is used
555  * to track the cgroup writeback context.
556  */
557 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
558                                  struct inode *inode)
559 {
560         if (!inode_cgwb_enabled(inode)) {
561                 spin_unlock(&inode->i_lock);
562                 return;
563         }
564
565         wbc->wb = inode_to_wb(inode);
566         wbc->inode = inode;
567
568         wbc->wb_id = wbc->wb->memcg_css->id;
569         wbc->wb_lcand_id = inode->i_wb_frn_winner;
570         wbc->wb_tcand_id = 0;
571         wbc->wb_bytes = 0;
572         wbc->wb_lcand_bytes = 0;
573         wbc->wb_tcand_bytes = 0;
574
575         wb_get(wbc->wb);
576         spin_unlock(&inode->i_lock);
577
578         /*
579          * A dying wb indicates that the memcg-blkcg mapping has changed
580          * and a new wb is already serving the memcg.  Switch immediately.
581          */
582         if (unlikely(wb_dying(wbc->wb)))
583                 inode_switch_wbs(inode, wbc->wb_id);
584 }
585
586 /**
587  * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
588  * @wbc: writeback_control of the just finished writeback
589  *
590  * To be called after a writeback attempt of an inode finishes and undoes
591  * wbc_attach_and_unlock_inode().  Can be called under any context.
592  *
593  * As concurrent write sharing of an inode is expected to be very rare and
594  * memcg only tracks page ownership on first-use basis severely confining
595  * the usefulness of such sharing, cgroup writeback tracks ownership
596  * per-inode.  While the support for concurrent write sharing of an inode
597  * is deemed unnecessary, an inode being written to by different cgroups at
598  * different points in time is a lot more common, and, more importantly,
599  * charging only by first-use can too readily lead to grossly incorrect
600  * behaviors (single foreign page can lead to gigabytes of writeback to be
601  * incorrectly attributed).
602  *
603  * To resolve this issue, cgroup writeback detects the majority dirtier of
604  * an inode and transfers the ownership to it.  To avoid unnnecessary
605  * oscillation, the detection mechanism keeps track of history and gives
606  * out the switch verdict only if the foreign usage pattern is stable over
607  * a certain amount of time and/or writeback attempts.
608  *
609  * On each writeback attempt, @wbc tries to detect the majority writer
610  * using Boyer-Moore majority vote algorithm.  In addition to the byte
611  * count from the majority voting, it also counts the bytes written for the
612  * current wb and the last round's winner wb (max of last round's current
613  * wb, the winner from two rounds ago, and the last round's majority
614  * candidate).  Keeping track of the historical winner helps the algorithm
615  * to semi-reliably detect the most active writer even when it's not the
616  * absolute majority.
617  *
618  * Once the winner of the round is determined, whether the winner is
619  * foreign or not and how much IO time the round consumed is recorded in
620  * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
621  * over a certain threshold, the switch verdict is given.
622  */
623 void wbc_detach_inode(struct writeback_control *wbc)
624 {
625         struct bdi_writeback *wb = wbc->wb;
626         struct inode *inode = wbc->inode;
627         unsigned long avg_time, max_bytes, max_time;
628         u16 history;
629         int max_id;
630
631         if (!wb)
632                 return;
633
634         history = inode->i_wb_frn_history;
635         avg_time = inode->i_wb_frn_avg_time;
636
637         /* pick the winner of this round */
638         if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
639             wbc->wb_bytes >= wbc->wb_tcand_bytes) {
640                 max_id = wbc->wb_id;
641                 max_bytes = wbc->wb_bytes;
642         } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
643                 max_id = wbc->wb_lcand_id;
644                 max_bytes = wbc->wb_lcand_bytes;
645         } else {
646                 max_id = wbc->wb_tcand_id;
647                 max_bytes = wbc->wb_tcand_bytes;
648         }
649
650         /*
651          * Calculate the amount of IO time the winner consumed and fold it
652          * into the running average kept per inode.  If the consumed IO
653          * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
654          * deciding whether to switch or not.  This is to prevent one-off
655          * small dirtiers from skewing the verdict.
656          */
657         max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
658                                 wb->avg_write_bandwidth);
659         if (avg_time)
660                 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
661                             (avg_time >> WB_FRN_TIME_AVG_SHIFT);
662         else
663                 avg_time = max_time;    /* immediate catch up on first run */
664
665         if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
666                 int slots;
667
668                 /*
669                  * The switch verdict is reached if foreign wb's consume
670                  * more than a certain proportion of IO time in a
671                  * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
672                  * history mask where each bit represents one sixteenth of
673                  * the period.  Determine the number of slots to shift into
674                  * history from @max_time.
675                  */
676                 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
677                             (unsigned long)WB_FRN_HIST_MAX_SLOTS);
678                 history <<= slots;
679                 if (wbc->wb_id != max_id)
680                         history |= (1U << slots) - 1;
681
682                 /*
683                  * Switch if the current wb isn't the consistent winner.
684                  * If there are multiple closely competing dirtiers, the
685                  * inode may switch across them repeatedly over time, which
686                  * is okay.  The main goal is avoiding keeping an inode on
687                  * the wrong wb for an extended period of time.
688                  */
689                 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
690                         inode_switch_wbs(inode, max_id);
691         }
692
693         /*
694          * Multiple instances of this function may race to update the
695          * following fields but we don't mind occassional inaccuracies.
696          */
697         inode->i_wb_frn_winner = max_id;
698         inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
699         inode->i_wb_frn_history = history;
700
701         wb_put(wbc->wb);
702         wbc->wb = NULL;
703 }
704
705 /**
706  * wbc_account_io - account IO issued during writeback
707  * @wbc: writeback_control of the writeback in progress
708  * @page: page being written out
709  * @bytes: number of bytes being written out
710  *
711  * @bytes from @page are about to written out during the writeback
712  * controlled by @wbc.  Keep the book for foreign inode detection.  See
713  * wbc_detach_inode().
714  */
715 void wbc_account_io(struct writeback_control *wbc, struct page *page,
716                     size_t bytes)
717 {
718         struct cgroup_subsys_state *css;
719         int id;
720
721         /*
722          * pageout() path doesn't attach @wbc to the inode being written
723          * out.  This is intentional as we don't want the function to block
724          * behind a slow cgroup.  Ultimately, we want pageout() to kick off
725          * regular writeback instead of writing things out itself.
726          */
727         if (!wbc->wb)
728                 return;
729
730         css = mem_cgroup_css_from_page(page);
731         /* dead cgroups shouldn't contribute to inode ownership arbitration */
732         if (!(css->flags & CSS_ONLINE))
733                 return;
734
735         id = css->id;
736
737         if (id == wbc->wb_id) {
738                 wbc->wb_bytes += bytes;
739                 return;
740         }
741
742         if (id == wbc->wb_lcand_id)
743                 wbc->wb_lcand_bytes += bytes;
744
745         /* Boyer-Moore majority vote algorithm */
746         if (!wbc->wb_tcand_bytes)
747                 wbc->wb_tcand_id = id;
748         if (id == wbc->wb_tcand_id)
749                 wbc->wb_tcand_bytes += bytes;
750         else
751                 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
752 }
753 EXPORT_SYMBOL_GPL(wbc_account_io);
754
755 /**
756  * inode_congested - test whether an inode is congested
757  * @inode: inode to test for congestion (may be NULL)
758  * @cong_bits: mask of WB_[a]sync_congested bits to test
759  *
760  * Tests whether @inode is congested.  @cong_bits is the mask of congestion
761  * bits to test and the return value is the mask of set bits.
762  *
763  * If cgroup writeback is enabled for @inode, the congestion state is
764  * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
765  * associated with @inode is congested; otherwise, the root wb's congestion
766  * state is used.
767  *
768  * @inode is allowed to be NULL as this function is often called on
769  * mapping->host which is NULL for the swapper space.
770  */
771 int inode_congested(struct inode *inode, int cong_bits)
772 {
773         /*
774          * Once set, ->i_wb never becomes NULL while the inode is alive.
775          * Start transaction iff ->i_wb is visible.
776          */
777         if (inode && inode_to_wb_is_valid(inode)) {
778                 struct bdi_writeback *wb;
779                 struct wb_lock_cookie lock_cookie = {};
780                 bool congested;
781
782                 wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
783                 congested = wb_congested(wb, cong_bits);
784                 unlocked_inode_to_wb_end(inode, &lock_cookie);
785                 return congested;
786         }
787
788         return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
789 }
790 EXPORT_SYMBOL_GPL(inode_congested);
791
792 /**
793  * wb_split_bdi_pages - split nr_pages to write according to bandwidth
794  * @wb: target bdi_writeback to split @nr_pages to
795  * @nr_pages: number of pages to write for the whole bdi
796  *
797  * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
798  * relation to the total write bandwidth of all wb's w/ dirty inodes on
799  * @wb->bdi.
800  */
801 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
802 {
803         unsigned long this_bw = wb->avg_write_bandwidth;
804         unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
805
806         if (nr_pages == LONG_MAX)
807                 return LONG_MAX;
808
809         /*
810          * This may be called on clean wb's and proportional distribution
811          * may not make sense, just use the original @nr_pages in those
812          * cases.  In general, we wanna err on the side of writing more.
813          */
814         if (!tot_bw || this_bw >= tot_bw)
815                 return nr_pages;
816         else
817                 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
818 }
819
820 /**
821  * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
822  * @bdi: target backing_dev_info
823  * @base_work: wb_writeback_work to issue
824  * @skip_if_busy: skip wb's which already have writeback in progress
825  *
826  * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
827  * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
828  * distributed to the busy wbs according to each wb's proportion in the
829  * total active write bandwidth of @bdi.
830  */
831 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
832                                   struct wb_writeback_work *base_work,
833                                   bool skip_if_busy)
834 {
835         struct bdi_writeback *last_wb = NULL;
836         struct bdi_writeback *wb = list_entry(&bdi->wb_list,
837                                               struct bdi_writeback, bdi_node);
838
839         might_sleep();
840 restart:
841         rcu_read_lock();
842         list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
843                 DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done);
844                 struct wb_writeback_work fallback_work;
845                 struct wb_writeback_work *work;
846                 long nr_pages;
847
848                 if (last_wb) {
849                         wb_put(last_wb);
850                         last_wb = NULL;
851                 }
852
853                 /* SYNC_ALL writes out I_DIRTY_TIME too */
854                 if (!wb_has_dirty_io(wb) &&
855                     (base_work->sync_mode == WB_SYNC_NONE ||
856                      list_empty(&wb->b_dirty_time)))
857                         continue;
858                 if (skip_if_busy && writeback_in_progress(wb))
859                         continue;
860
861                 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
862
863                 work = kmalloc(sizeof(*work), GFP_ATOMIC);
864                 if (work) {
865                         *work = *base_work;
866                         work->nr_pages = nr_pages;
867                         work->auto_free = 1;
868                         wb_queue_work(wb, work);
869                         continue;
870                 }
871
872                 /* alloc failed, execute synchronously using on-stack fallback */
873                 work = &fallback_work;
874                 *work = *base_work;
875                 work->nr_pages = nr_pages;
876                 work->auto_free = 0;
877                 work->done = &fallback_work_done;
878
879                 wb_queue_work(wb, work);
880
881                 /*
882                  * Pin @wb so that it stays on @bdi->wb_list.  This allows
883                  * continuing iteration from @wb after dropping and
884                  * regrabbing rcu read lock.
885                  */
886                 wb_get(wb);
887                 last_wb = wb;
888
889                 rcu_read_unlock();
890                 wb_wait_for_completion(bdi, &fallback_work_done);
891                 goto restart;
892         }
893         rcu_read_unlock();
894
895         if (last_wb)
896                 wb_put(last_wb);
897 }
898
899 /**
900  * cgroup_writeback_umount - flush inode wb switches for umount
901  *
902  * This function is called when a super_block is about to be destroyed and
903  * flushes in-flight inode wb switches.  An inode wb switch goes through
904  * RCU and then workqueue, so the two need to be flushed in order to ensure
905  * that all previously scheduled switches are finished.  As wb switches are
906  * rare occurrences and synchronize_rcu() can take a while, perform
907  * flushing iff wb switches are in flight.
908  */
909 void cgroup_writeback_umount(void)
910 {
911         if (atomic_read(&isw_nr_in_flight)) {
912                 /*
913                  * Use rcu_barrier() to wait for all pending callbacks to
914                  * ensure that all in-flight wb switches are in the workqueue.
915                  */
916                 rcu_barrier();
917                 flush_workqueue(isw_wq);
918         }
919 }
920
921 static int __init cgroup_writeback_init(void)
922 {
923         isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
924         if (!isw_wq)
925                 return -ENOMEM;
926         return 0;
927 }
928 fs_initcall(cgroup_writeback_init);
929
930 #else   /* CONFIG_CGROUP_WRITEBACK */
931
932 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
933 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
934
935 static struct bdi_writeback *
936 locked_inode_to_wb_and_lock_list(struct inode *inode)
937         __releases(&inode->i_lock)
938         __acquires(&wb->list_lock)
939 {
940         struct bdi_writeback *wb = inode_to_wb(inode);
941
942         spin_unlock(&inode->i_lock);
943         spin_lock(&wb->list_lock);
944         return wb;
945 }
946
947 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
948         __acquires(&wb->list_lock)
949 {
950         struct bdi_writeback *wb = inode_to_wb(inode);
951
952         spin_lock(&wb->list_lock);
953         return wb;
954 }
955
956 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
957 {
958         return nr_pages;
959 }
960
961 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
962                                   struct wb_writeback_work *base_work,
963                                   bool skip_if_busy)
964 {
965         might_sleep();
966
967         if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
968                 base_work->auto_free = 0;
969                 wb_queue_work(&bdi->wb, base_work);
970         }
971 }
972
973 #endif  /* CONFIG_CGROUP_WRITEBACK */
974
975 /*
976  * Add in the number of potentially dirty inodes, because each inode
977  * write can dirty pagecache in the underlying blockdev.
978  */
979 static unsigned long get_nr_dirty_pages(void)
980 {
981         return global_node_page_state(NR_FILE_DIRTY) +
982                 global_node_page_state(NR_UNSTABLE_NFS) +
983                 get_nr_dirty_inodes();
984 }
985
986 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
987 {
988         if (!wb_has_dirty_io(wb))
989                 return;
990
991         /*
992          * All callers of this function want to start writeback of all
993          * dirty pages. Places like vmscan can call this at a very
994          * high frequency, causing pointless allocations of tons of
995          * work items and keeping the flusher threads busy retrieving
996          * that work. Ensure that we only allow one of them pending and
997          * inflight at the time.
998          */
999         if (test_bit(WB_start_all, &wb->state) ||
1000             test_and_set_bit(WB_start_all, &wb->state))
1001                 return;
1002
1003         wb->start_all_reason = reason;
1004         wb_wakeup(wb);
1005 }
1006
1007 /**
1008  * wb_start_background_writeback - start background writeback
1009  * @wb: bdi_writback to write from
1010  *
1011  * Description:
1012  *   This makes sure WB_SYNC_NONE background writeback happens. When
1013  *   this function returns, it is only guaranteed that for given wb
1014  *   some IO is happening if we are over background dirty threshold.
1015  *   Caller need not hold sb s_umount semaphore.
1016  */
1017 void wb_start_background_writeback(struct bdi_writeback *wb)
1018 {
1019         /*
1020          * We just wake up the flusher thread. It will perform background
1021          * writeback as soon as there is no other work to do.
1022          */
1023         trace_writeback_wake_background(wb);
1024         wb_wakeup(wb);
1025 }
1026
1027 /*
1028  * Remove the inode from the writeback list it is on.
1029  */
1030 void inode_io_list_del(struct inode *inode)
1031 {
1032         struct bdi_writeback *wb;
1033
1034         wb = inode_to_wb_and_lock_list(inode);
1035         inode_io_list_del_locked(inode, wb);
1036         spin_unlock(&wb->list_lock);
1037 }
1038
1039 /*
1040  * mark an inode as under writeback on the sb
1041  */
1042 void sb_mark_inode_writeback(struct inode *inode)
1043 {
1044         struct super_block *sb = inode->i_sb;
1045         unsigned long flags;
1046
1047         if (list_empty(&inode->i_wb_list)) {
1048                 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1049                 if (list_empty(&inode->i_wb_list)) {
1050                         list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1051                         trace_sb_mark_inode_writeback(inode);
1052                 }
1053                 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1054         }
1055 }
1056
1057 /*
1058  * clear an inode as under writeback on the sb
1059  */
1060 void sb_clear_inode_writeback(struct inode *inode)
1061 {
1062         struct super_block *sb = inode->i_sb;
1063         unsigned long flags;
1064
1065         if (!list_empty(&inode->i_wb_list)) {
1066                 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1067                 if (!list_empty(&inode->i_wb_list)) {
1068                         list_del_init(&inode->i_wb_list);
1069                         trace_sb_clear_inode_writeback(inode);
1070                 }
1071                 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1072         }
1073 }
1074
1075 /*
1076  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1077  * furthest end of its superblock's dirty-inode list.
1078  *
1079  * Before stamping the inode's ->dirtied_when, we check to see whether it is
1080  * already the most-recently-dirtied inode on the b_dirty list.  If that is
1081  * the case then the inode must have been redirtied while it was being written
1082  * out and we don't reset its dirtied_when.
1083  */
1084 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1085 {
1086         if (!list_empty(&wb->b_dirty)) {
1087                 struct inode *tail;
1088
1089                 tail = wb_inode(wb->b_dirty.next);
1090                 if (time_before(inode->dirtied_when, tail->dirtied_when))
1091                         inode->dirtied_when = jiffies;
1092         }
1093         inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1094 }
1095
1096 /*
1097  * requeue inode for re-scanning after bdi->b_io list is exhausted.
1098  */
1099 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1100 {
1101         inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1102 }
1103
1104 static void inode_sync_complete(struct inode *inode)
1105 {
1106         inode->i_state &= ~I_SYNC;
1107         /* If inode is clean an unused, put it into LRU now... */
1108         inode_add_lru(inode);
1109         /* Waiters must see I_SYNC cleared before being woken up */
1110         smp_mb();
1111         wake_up_bit(&inode->i_state, __I_SYNC);
1112 }
1113
1114 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1115 {
1116         bool ret = time_after(inode->dirtied_when, t);
1117 #ifndef CONFIG_64BIT
1118         /*
1119          * For inodes being constantly redirtied, dirtied_when can get stuck.
1120          * It _appears_ to be in the future, but is actually in distant past.
1121          * This test is necessary to prevent such wrapped-around relative times
1122          * from permanently stopping the whole bdi writeback.
1123          */
1124         ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1125 #endif
1126         return ret;
1127 }
1128
1129 #define EXPIRE_DIRTY_ATIME 0x0001
1130
1131 /*
1132  * Move expired (dirtied before work->older_than_this) dirty inodes from
1133  * @delaying_queue to @dispatch_queue.
1134  */
1135 static int move_expired_inodes(struct list_head *delaying_queue,
1136                                struct list_head *dispatch_queue,
1137                                int flags,
1138                                struct wb_writeback_work *work)
1139 {
1140         unsigned long *older_than_this = NULL;
1141         unsigned long expire_time;
1142         LIST_HEAD(tmp);
1143         struct list_head *pos, *node;
1144         struct super_block *sb = NULL;
1145         struct inode *inode;
1146         int do_sb_sort = 0;
1147         int moved = 0;
1148
1149         if ((flags & EXPIRE_DIRTY_ATIME) == 0)
1150                 older_than_this = work->older_than_this;
1151         else if (!work->for_sync) {
1152                 expire_time = jiffies - (dirtytime_expire_interval * HZ);
1153                 older_than_this = &expire_time;
1154         }
1155         while (!list_empty(delaying_queue)) {
1156                 inode = wb_inode(delaying_queue->prev);
1157                 if (older_than_this &&
1158                     inode_dirtied_after(inode, *older_than_this))
1159                         break;
1160                 list_move(&inode->i_io_list, &tmp);
1161                 moved++;
1162                 if (flags & EXPIRE_DIRTY_ATIME)
1163                         set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
1164                 if (sb_is_blkdev_sb(inode->i_sb))
1165                         continue;
1166                 if (sb && sb != inode->i_sb)
1167                         do_sb_sort = 1;
1168                 sb = inode->i_sb;
1169         }
1170
1171         /* just one sb in list, splice to dispatch_queue and we're done */
1172         if (!do_sb_sort) {
1173                 list_splice(&tmp, dispatch_queue);
1174                 goto out;
1175         }
1176
1177         /* Move inodes from one superblock together */
1178         while (!list_empty(&tmp)) {
1179                 sb = wb_inode(tmp.prev)->i_sb;
1180                 list_for_each_prev_safe(pos, node, &tmp) {
1181                         inode = wb_inode(pos);
1182                         if (inode->i_sb == sb)
1183                                 list_move(&inode->i_io_list, dispatch_queue);
1184                 }
1185         }
1186 out:
1187         return moved;
1188 }
1189
1190 /*
1191  * Queue all expired dirty inodes for io, eldest first.
1192  * Before
1193  *         newly dirtied     b_dirty    b_io    b_more_io
1194  *         =============>    gf         edc     BA
1195  * After
1196  *         newly dirtied     b_dirty    b_io    b_more_io
1197  *         =============>    g          fBAedc
1198  *                                           |
1199  *                                           +--> dequeue for IO
1200  */
1201 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
1202 {
1203         int moved;
1204
1205         assert_spin_locked(&wb->list_lock);
1206         list_splice_init(&wb->b_more_io, &wb->b_io);
1207         moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
1208         moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1209                                      EXPIRE_DIRTY_ATIME, work);
1210         if (moved)
1211                 wb_io_lists_populated(wb);
1212         trace_writeback_queue_io(wb, work, moved);
1213 }
1214
1215 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1216 {
1217         int ret;
1218
1219         if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1220                 trace_writeback_write_inode_start(inode, wbc);
1221                 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1222                 trace_writeback_write_inode(inode, wbc);
1223                 return ret;
1224         }
1225         return 0;
1226 }
1227
1228 /*
1229  * Wait for writeback on an inode to complete. Called with i_lock held.
1230  * Caller must make sure inode cannot go away when we drop i_lock.
1231  */
1232 static void __inode_wait_for_writeback(struct inode *inode)
1233         __releases(inode->i_lock)
1234         __acquires(inode->i_lock)
1235 {
1236         DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1237         wait_queue_head_t *wqh;
1238
1239         wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1240         while (inode->i_state & I_SYNC) {
1241                 spin_unlock(&inode->i_lock);
1242                 __wait_on_bit(wqh, &wq, bit_wait,
1243                               TASK_UNINTERRUPTIBLE);
1244                 spin_lock(&inode->i_lock);
1245         }
1246 }
1247
1248 /*
1249  * Wait for writeback on an inode to complete. Caller must have inode pinned.
1250  */
1251 void inode_wait_for_writeback(struct inode *inode)
1252 {
1253         spin_lock(&inode->i_lock);
1254         __inode_wait_for_writeback(inode);
1255         spin_unlock(&inode->i_lock);
1256 }
1257
1258 /*
1259  * Sleep until I_SYNC is cleared. This function must be called with i_lock
1260  * held and drops it. It is aimed for callers not holding any inode reference
1261  * so once i_lock is dropped, inode can go away.
1262  */
1263 static void inode_sleep_on_writeback(struct inode *inode)
1264         __releases(inode->i_lock)
1265 {
1266         DEFINE_WAIT(wait);
1267         wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1268         int sleep;
1269
1270         prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1271         sleep = inode->i_state & I_SYNC;
1272         spin_unlock(&inode->i_lock);
1273         if (sleep)
1274                 schedule();
1275         finish_wait(wqh, &wait);
1276 }
1277
1278 /*
1279  * Find proper writeback list for the inode depending on its current state and
1280  * possibly also change of its state while we were doing writeback.  Here we
1281  * handle things such as livelock prevention or fairness of writeback among
1282  * inodes. This function can be called only by flusher thread - noone else
1283  * processes all inodes in writeback lists and requeueing inodes behind flusher
1284  * thread's back can have unexpected consequences.
1285  */
1286 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1287                           struct writeback_control *wbc)
1288 {
1289         if (inode->i_state & I_FREEING)
1290                 return;
1291
1292         /*
1293          * Sync livelock prevention. Each inode is tagged and synced in one
1294          * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1295          * the dirty time to prevent enqueue and sync it again.
1296          */
1297         if ((inode->i_state & I_DIRTY) &&
1298             (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1299                 inode->dirtied_when = jiffies;
1300
1301         if (wbc->pages_skipped) {
1302                 /*
1303                  * writeback is not making progress due to locked
1304                  * buffers. Skip this inode for now.
1305                  */
1306                 redirty_tail(inode, wb);
1307                 return;
1308         }
1309
1310         if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1311                 /*
1312                  * We didn't write back all the pages.  nfs_writepages()
1313                  * sometimes bales out without doing anything.
1314                  */
1315                 if (wbc->nr_to_write <= 0) {
1316                         /* Slice used up. Queue for next turn. */
1317                         requeue_io(inode, wb);
1318                 } else {
1319                         /*
1320                          * Writeback blocked by something other than
1321                          * congestion. Delay the inode for some time to
1322                          * avoid spinning on the CPU (100% iowait)
1323                          * retrying writeback of the dirty page/inode
1324                          * that cannot be performed immediately.
1325                          */
1326                         redirty_tail(inode, wb);
1327                 }
1328         } else if (inode->i_state & I_DIRTY) {
1329                 /*
1330                  * Filesystems can dirty the inode during writeback operations,
1331                  * such as delayed allocation during submission or metadata
1332                  * updates after data IO completion.
1333                  */
1334                 redirty_tail(inode, wb);
1335         } else if (inode->i_state & I_DIRTY_TIME) {
1336                 inode->dirtied_when = jiffies;
1337                 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1338         } else {
1339                 /* The inode is clean. Remove from writeback lists. */
1340                 inode_io_list_del_locked(inode, wb);
1341         }
1342 }
1343
1344 /*
1345  * Write out an inode and its dirty pages. Do not update the writeback list
1346  * linkage. That is left to the caller. The caller is also responsible for
1347  * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1348  */
1349 static int
1350 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1351 {
1352         struct address_space *mapping = inode->i_mapping;
1353         long nr_to_write = wbc->nr_to_write;
1354         unsigned dirty;
1355         int ret;
1356
1357         WARN_ON(!(inode->i_state & I_SYNC));
1358
1359         trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1360
1361         ret = do_writepages(mapping, wbc);
1362
1363         /*
1364          * Make sure to wait on the data before writing out the metadata.
1365          * This is important for filesystems that modify metadata on data
1366          * I/O completion. We don't do it for sync(2) writeback because it has a
1367          * separate, external IO completion path and ->sync_fs for guaranteeing
1368          * inode metadata is written back correctly.
1369          */
1370         if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1371                 int err = filemap_fdatawait(mapping);
1372                 if (ret == 0)
1373                         ret = err;
1374         }
1375
1376         /*
1377          * Some filesystems may redirty the inode during the writeback
1378          * due to delalloc, clear dirty metadata flags right before
1379          * write_inode()
1380          */
1381         spin_lock(&inode->i_lock);
1382
1383         dirty = inode->i_state & I_DIRTY;
1384         if (inode->i_state & I_DIRTY_TIME) {
1385                 if ((dirty & I_DIRTY_INODE) ||
1386                     wbc->sync_mode == WB_SYNC_ALL ||
1387                     unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1388                     unlikely(time_after(jiffies,
1389                                         (inode->dirtied_time_when +
1390                                          dirtytime_expire_interval * HZ)))) {
1391                         dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1392                         trace_writeback_lazytime(inode);
1393                 }
1394         } else
1395                 inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1396         inode->i_state &= ~dirty;
1397
1398         /*
1399          * Paired with smp_mb() in __mark_inode_dirty().  This allows
1400          * __mark_inode_dirty() to test i_state without grabbing i_lock -
1401          * either they see the I_DIRTY bits cleared or we see the dirtied
1402          * inode.
1403          *
1404          * I_DIRTY_PAGES is always cleared together above even if @mapping
1405          * still has dirty pages.  The flag is reinstated after smp_mb() if
1406          * necessary.  This guarantees that either __mark_inode_dirty()
1407          * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1408          */
1409         smp_mb();
1410
1411         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1412                 inode->i_state |= I_DIRTY_PAGES;
1413
1414         spin_unlock(&inode->i_lock);
1415
1416         if (dirty & I_DIRTY_TIME)
1417                 mark_inode_dirty_sync(inode);
1418         /* Don't write the inode if only I_DIRTY_PAGES was set */
1419         if (dirty & ~I_DIRTY_PAGES) {
1420                 int err = write_inode(inode, wbc);
1421                 if (ret == 0)
1422                         ret = err;
1423         }
1424         trace_writeback_single_inode(inode, wbc, nr_to_write);
1425         return ret;
1426 }
1427
1428 /*
1429  * Write out an inode's dirty pages. Either the caller has an active reference
1430  * on the inode or the inode has I_WILL_FREE set.
1431  *
1432  * This function is designed to be called for writing back one inode which
1433  * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1434  * and does more profound writeback list handling in writeback_sb_inodes().
1435  */
1436 static int writeback_single_inode(struct inode *inode,
1437                                   struct writeback_control *wbc)
1438 {
1439         struct bdi_writeback *wb;
1440         int ret = 0;
1441
1442         spin_lock(&inode->i_lock);
1443         if (!atomic_read(&inode->i_count))
1444                 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1445         else
1446                 WARN_ON(inode->i_state & I_WILL_FREE);
1447
1448         if (inode->i_state & I_SYNC) {
1449                 if (wbc->sync_mode != WB_SYNC_ALL)
1450                         goto out;
1451                 /*
1452                  * It's a data-integrity sync. We must wait. Since callers hold
1453                  * inode reference or inode has I_WILL_FREE set, it cannot go
1454                  * away under us.
1455                  */
1456                 __inode_wait_for_writeback(inode);
1457         }
1458         WARN_ON(inode->i_state & I_SYNC);
1459         /*
1460          * Skip inode if it is clean and we have no outstanding writeback in
1461          * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1462          * function since flusher thread may be doing for example sync in
1463          * parallel and if we move the inode, it could get skipped. So here we
1464          * make sure inode is on some writeback list and leave it there unless
1465          * we have completely cleaned the inode.
1466          */
1467         if (!(inode->i_state & I_DIRTY_ALL) &&
1468             (wbc->sync_mode != WB_SYNC_ALL ||
1469              !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1470                 goto out;
1471         inode->i_state |= I_SYNC;
1472         wbc_attach_and_unlock_inode(wbc, inode);
1473
1474         ret = __writeback_single_inode(inode, wbc);
1475
1476         wbc_detach_inode(wbc);
1477
1478         wb = inode_to_wb_and_lock_list(inode);
1479         spin_lock(&inode->i_lock);
1480         /*
1481          * If inode is clean, remove it from writeback lists. Otherwise don't
1482          * touch it. See comment above for explanation.
1483          */
1484         if (!(inode->i_state & I_DIRTY_ALL))
1485                 inode_io_list_del_locked(inode, wb);
1486         spin_unlock(&wb->list_lock);
1487         inode_sync_complete(inode);
1488 out:
1489         spin_unlock(&inode->i_lock);
1490         return ret;
1491 }
1492
1493 static long writeback_chunk_size(struct bdi_writeback *wb,
1494                                  struct wb_writeback_work *work)
1495 {
1496         long pages;
1497
1498         /*
1499          * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1500          * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1501          * here avoids calling into writeback_inodes_wb() more than once.
1502          *
1503          * The intended call sequence for WB_SYNC_ALL writeback is:
1504          *
1505          *      wb_writeback()
1506          *          writeback_sb_inodes()       <== called only once
1507          *              write_cache_pages()     <== called once for each inode
1508          *                   (quickly) tag currently dirty pages
1509          *                   (maybe slowly) sync all tagged pages
1510          */
1511         if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1512                 pages = LONG_MAX;
1513         else {
1514                 pages = min(wb->avg_write_bandwidth / 2,
1515                             global_wb_domain.dirty_limit / DIRTY_SCOPE);
1516                 pages = min(pages, work->nr_pages);
1517                 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1518                                    MIN_WRITEBACK_PAGES);
1519         }
1520
1521         return pages;
1522 }
1523
1524 /*
1525  * Write a portion of b_io inodes which belong to @sb.
1526  *
1527  * Return the number of pages and/or inodes written.
1528  *
1529  * NOTE! This is called with wb->list_lock held, and will
1530  * unlock and relock that for each inode it ends up doing
1531  * IO for.
1532  */
1533 static long writeback_sb_inodes(struct super_block *sb,
1534                                 struct bdi_writeback *wb,
1535                                 struct wb_writeback_work *work)
1536 {
1537         struct writeback_control wbc = {
1538                 .sync_mode              = work->sync_mode,
1539                 .tagged_writepages      = work->tagged_writepages,
1540                 .for_kupdate            = work->for_kupdate,
1541                 .for_background         = work->for_background,
1542                 .for_sync               = work->for_sync,
1543                 .range_cyclic           = work->range_cyclic,
1544                 .range_start            = 0,
1545                 .range_end              = LLONG_MAX,
1546         };
1547         unsigned long start_time = jiffies;
1548         long write_chunk;
1549         long wrote = 0;  /* count both pages and inodes */
1550
1551         while (!list_empty(&wb->b_io)) {
1552                 struct inode *inode = wb_inode(wb->b_io.prev);
1553                 struct bdi_writeback *tmp_wb;
1554
1555                 if (inode->i_sb != sb) {
1556                         if (work->sb) {
1557                                 /*
1558                                  * We only want to write back data for this
1559                                  * superblock, move all inodes not belonging
1560                                  * to it back onto the dirty list.
1561                                  */
1562                                 redirty_tail(inode, wb);
1563                                 continue;
1564                         }
1565
1566                         /*
1567                          * The inode belongs to a different superblock.
1568                          * Bounce back to the caller to unpin this and
1569                          * pin the next superblock.
1570                          */
1571                         break;
1572                 }
1573
1574                 /*
1575                  * Don't bother with new inodes or inodes being freed, first
1576                  * kind does not need periodic writeout yet, and for the latter
1577                  * kind writeout is handled by the freer.
1578                  */
1579                 spin_lock(&inode->i_lock);
1580                 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1581                         spin_unlock(&inode->i_lock);
1582                         redirty_tail(inode, wb);
1583                         continue;
1584                 }
1585                 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1586                         /*
1587                          * If this inode is locked for writeback and we are not
1588                          * doing writeback-for-data-integrity, move it to
1589                          * b_more_io so that writeback can proceed with the
1590                          * other inodes on s_io.
1591                          *
1592                          * We'll have another go at writing back this inode
1593                          * when we completed a full scan of b_io.
1594                          */
1595                         spin_unlock(&inode->i_lock);
1596                         requeue_io(inode, wb);
1597                         trace_writeback_sb_inodes_requeue(inode);
1598                         continue;
1599                 }
1600                 spin_unlock(&wb->list_lock);
1601
1602                 /*
1603                  * We already requeued the inode if it had I_SYNC set and we
1604                  * are doing WB_SYNC_NONE writeback. So this catches only the
1605                  * WB_SYNC_ALL case.
1606                  */
1607                 if (inode->i_state & I_SYNC) {
1608                         /* Wait for I_SYNC. This function drops i_lock... */
1609                         inode_sleep_on_writeback(inode);
1610                         /* Inode may be gone, start again */
1611                         spin_lock(&wb->list_lock);
1612                         continue;
1613                 }
1614                 inode->i_state |= I_SYNC;
1615                 wbc_attach_and_unlock_inode(&wbc, inode);
1616
1617                 write_chunk = writeback_chunk_size(wb, work);
1618                 wbc.nr_to_write = write_chunk;
1619                 wbc.pages_skipped = 0;
1620
1621                 /*
1622                  * We use I_SYNC to pin the inode in memory. While it is set
1623                  * evict_inode() will wait so the inode cannot be freed.
1624                  */
1625                 __writeback_single_inode(inode, &wbc);
1626
1627                 wbc_detach_inode(&wbc);
1628                 work->nr_pages -= write_chunk - wbc.nr_to_write;
1629                 wrote += write_chunk - wbc.nr_to_write;
1630
1631                 if (need_resched()) {
1632                         /*
1633                          * We're trying to balance between building up a nice
1634                          * long list of IOs to improve our merge rate, and
1635                          * getting those IOs out quickly for anyone throttling
1636                          * in balance_dirty_pages().  cond_resched() doesn't
1637                          * unplug, so get our IOs out the door before we
1638                          * give up the CPU.
1639                          */
1640                         blk_flush_plug(current);
1641                         cond_resched();
1642                 }
1643
1644                 /*
1645                  * Requeue @inode if still dirty.  Be careful as @inode may
1646                  * have been switched to another wb in the meantime.
1647                  */
1648                 tmp_wb = inode_to_wb_and_lock_list(inode);
1649                 spin_lock(&inode->i_lock);
1650                 if (!(inode->i_state & I_DIRTY_ALL))
1651                         wrote++;
1652                 requeue_inode(inode, tmp_wb, &wbc);
1653                 inode_sync_complete(inode);
1654                 spin_unlock(&inode->i_lock);
1655
1656                 if (unlikely(tmp_wb != wb)) {
1657                         spin_unlock(&tmp_wb->list_lock);
1658                         spin_lock(&wb->list_lock);
1659                 }
1660
1661                 /*
1662                  * bail out to wb_writeback() often enough to check
1663                  * background threshold and other termination conditions.
1664                  */
1665                 if (wrote) {
1666                         if (time_is_before_jiffies(start_time + HZ / 10UL))
1667                                 break;
1668                         if (work->nr_pages <= 0)
1669                                 break;
1670                 }
1671         }
1672         return wrote;
1673 }
1674
1675 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1676                                   struct wb_writeback_work *work)
1677 {
1678         unsigned long start_time = jiffies;
1679         long wrote = 0;
1680
1681         while (!list_empty(&wb->b_io)) {
1682                 struct inode *inode = wb_inode(wb->b_io.prev);
1683                 struct super_block *sb = inode->i_sb;
1684
1685                 if (!trylock_super(sb)) {
1686                         /*
1687                          * trylock_super() may fail consistently due to
1688                          * s_umount being grabbed by someone else. Don't use
1689                          * requeue_io() to avoid busy retrying the inode/sb.
1690                          */
1691                         redirty_tail(inode, wb);
1692                         continue;
1693                 }
1694                 wrote += writeback_sb_inodes(sb, wb, work);
1695                 up_read(&sb->s_umount);
1696
1697                 /* refer to the same tests at the end of writeback_sb_inodes */
1698                 if (wrote) {
1699                         if (time_is_before_jiffies(start_time + HZ / 10UL))
1700                                 break;
1701                         if (work->nr_pages <= 0)
1702                                 break;
1703                 }
1704         }
1705         /* Leave any unwritten inodes on b_io */
1706         return wrote;
1707 }
1708
1709 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1710                                 enum wb_reason reason)
1711 {
1712         struct wb_writeback_work work = {
1713                 .nr_pages       = nr_pages,
1714                 .sync_mode      = WB_SYNC_NONE,
1715                 .range_cyclic   = 1,
1716                 .reason         = reason,
1717         };
1718         struct blk_plug plug;
1719
1720         blk_start_plug(&plug);
1721         spin_lock(&wb->list_lock);
1722         if (list_empty(&wb->b_io))
1723                 queue_io(wb, &work);
1724         __writeback_inodes_wb(wb, &work);
1725         spin_unlock(&wb->list_lock);
1726         blk_finish_plug(&plug);
1727
1728         return nr_pages - work.nr_pages;
1729 }
1730
1731 /*
1732  * Explicit flushing or periodic writeback of "old" data.
1733  *
1734  * Define "old": the first time one of an inode's pages is dirtied, we mark the
1735  * dirtying-time in the inode's address_space.  So this periodic writeback code
1736  * just walks the superblock inode list, writing back any inodes which are
1737  * older than a specific point in time.
1738  *
1739  * Try to run once per dirty_writeback_interval.  But if a writeback event
1740  * takes longer than a dirty_writeback_interval interval, then leave a
1741  * one-second gap.
1742  *
1743  * older_than_this takes precedence over nr_to_write.  So we'll only write back
1744  * all dirty pages if they are all attached to "old" mappings.
1745  */
1746 static long wb_writeback(struct bdi_writeback *wb,
1747                          struct wb_writeback_work *work)
1748 {
1749         unsigned long wb_start = jiffies;
1750         long nr_pages = work->nr_pages;
1751         unsigned long oldest_jif;
1752         struct inode *inode;
1753         long progress;
1754         struct blk_plug plug;
1755
1756         oldest_jif = jiffies;
1757         work->older_than_this = &oldest_jif;
1758
1759         blk_start_plug(&plug);
1760         spin_lock(&wb->list_lock);
1761         for (;;) {
1762                 /*
1763                  * Stop writeback when nr_pages has been consumed
1764                  */
1765                 if (work->nr_pages <= 0)
1766                         break;
1767
1768                 /*
1769                  * Background writeout and kupdate-style writeback may
1770                  * run forever. Stop them if there is other work to do
1771                  * so that e.g. sync can proceed. They'll be restarted
1772                  * after the other works are all done.
1773                  */
1774                 if ((work->for_background || work->for_kupdate) &&
1775                     !list_empty(&wb->work_list))
1776                         break;
1777
1778                 /*
1779                  * For background writeout, stop when we are below the
1780                  * background dirty threshold
1781                  */
1782                 if (work->for_background && !wb_over_bg_thresh(wb))
1783                         break;
1784
1785                 /*
1786                  * Kupdate and background works are special and we want to
1787                  * include all inodes that need writing. Livelock avoidance is
1788                  * handled by these works yielding to any other work so we are
1789                  * safe.
1790                  */
1791                 if (work->for_kupdate) {
1792                         oldest_jif = jiffies -
1793                                 msecs_to_jiffies(dirty_expire_interval * 10);
1794                 } else if (work->for_background)
1795                         oldest_jif = jiffies;
1796
1797                 trace_writeback_start(wb, work);
1798                 if (list_empty(&wb->b_io))
1799                         queue_io(wb, work);
1800                 if (work->sb)
1801                         progress = writeback_sb_inodes(work->sb, wb, work);
1802                 else
1803                         progress = __writeback_inodes_wb(wb, work);
1804                 trace_writeback_written(wb, work);
1805
1806                 wb_update_bandwidth(wb, wb_start);
1807
1808                 /*
1809                  * Did we write something? Try for more
1810                  *
1811                  * Dirty inodes are moved to b_io for writeback in batches.
1812                  * The completion of the current batch does not necessarily
1813                  * mean the overall work is done. So we keep looping as long
1814                  * as made some progress on cleaning pages or inodes.
1815                  */
1816                 if (progress)
1817                         continue;
1818                 /*
1819                  * No more inodes for IO, bail
1820                  */
1821                 if (list_empty(&wb->b_more_io))
1822                         break;
1823                 /*
1824                  * Nothing written. Wait for some inode to
1825                  * become available for writeback. Otherwise
1826                  * we'll just busyloop.
1827                  */
1828                 trace_writeback_wait(wb, work);
1829                 inode = wb_inode(wb->b_more_io.prev);
1830                 spin_lock(&inode->i_lock);
1831                 spin_unlock(&wb->list_lock);
1832                 /* This function drops i_lock... */
1833                 inode_sleep_on_writeback(inode);
1834                 spin_lock(&wb->list_lock);
1835         }
1836         spin_unlock(&wb->list_lock);
1837         blk_finish_plug(&plug);
1838
1839         return nr_pages - work->nr_pages;
1840 }
1841
1842 /*
1843  * Return the next wb_writeback_work struct that hasn't been processed yet.
1844  */
1845 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1846 {
1847         struct wb_writeback_work *work = NULL;
1848
1849         spin_lock_bh(&wb->work_lock);
1850         if (!list_empty(&wb->work_list)) {
1851                 work = list_entry(wb->work_list.next,
1852                                   struct wb_writeback_work, list);
1853                 list_del_init(&work->list);
1854         }
1855         spin_unlock_bh(&wb->work_lock);
1856         return work;
1857 }
1858
1859 static long wb_check_background_flush(struct bdi_writeback *wb)
1860 {
1861         if (wb_over_bg_thresh(wb)) {
1862
1863                 struct wb_writeback_work work = {
1864                         .nr_pages       = LONG_MAX,
1865                         .sync_mode      = WB_SYNC_NONE,
1866                         .for_background = 1,
1867                         .range_cyclic   = 1,
1868                         .reason         = WB_REASON_BACKGROUND,
1869                 };
1870
1871                 return wb_writeback(wb, &work);
1872         }
1873
1874         return 0;
1875 }
1876
1877 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1878 {
1879         unsigned long expired;
1880         long nr_pages;
1881
1882         /*
1883          * When set to zero, disable periodic writeback
1884          */
1885         if (!dirty_writeback_interval)
1886                 return 0;
1887
1888         expired = wb->last_old_flush +
1889                         msecs_to_jiffies(dirty_writeback_interval * 10);
1890         if (time_before(jiffies, expired))
1891                 return 0;
1892
1893         wb->last_old_flush = jiffies;
1894         nr_pages = get_nr_dirty_pages();
1895
1896         if (nr_pages) {
1897                 struct wb_writeback_work work = {
1898                         .nr_pages       = nr_pages,
1899                         .sync_mode      = WB_SYNC_NONE,
1900                         .for_kupdate    = 1,
1901                         .range_cyclic   = 1,
1902                         .reason         = WB_REASON_PERIODIC,
1903                 };
1904
1905                 return wb_writeback(wb, &work);
1906         }
1907
1908         return 0;
1909 }
1910
1911 static long wb_check_start_all(struct bdi_writeback *wb)
1912 {
1913         long nr_pages;
1914
1915         if (!test_bit(WB_start_all, &wb->state))
1916                 return 0;
1917
1918         nr_pages = get_nr_dirty_pages();
1919         if (nr_pages) {
1920                 struct wb_writeback_work work = {
1921                         .nr_pages       = wb_split_bdi_pages(wb, nr_pages),
1922                         .sync_mode      = WB_SYNC_NONE,
1923                         .range_cyclic   = 1,
1924                         .reason         = wb->start_all_reason,
1925                 };
1926
1927                 nr_pages = wb_writeback(wb, &work);
1928         }
1929
1930         clear_bit(WB_start_all, &wb->state);
1931         return nr_pages;
1932 }
1933
1934
1935 /*
1936  * Retrieve work items and do the writeback they describe
1937  */
1938 static long wb_do_writeback(struct bdi_writeback *wb)
1939 {
1940         struct wb_writeback_work *work;
1941         long wrote = 0;
1942
1943         set_bit(WB_writeback_running, &wb->state);
1944         while ((work = get_next_work_item(wb)) != NULL) {
1945                 trace_writeback_exec(wb, work);
1946                 wrote += wb_writeback(wb, work);
1947                 finish_writeback_work(wb, work);
1948         }
1949
1950         /*
1951          * Check for a flush-everything request
1952          */
1953         wrote += wb_check_start_all(wb);
1954
1955         /*
1956          * Check for periodic writeback, kupdated() style
1957          */
1958         wrote += wb_check_old_data_flush(wb);
1959         wrote += wb_check_background_flush(wb);
1960         clear_bit(WB_writeback_running, &wb->state);
1961
1962         return wrote;
1963 }
1964
1965 /*
1966  * Handle writeback of dirty data for the device backed by this bdi. Also
1967  * reschedules periodically and does kupdated style flushing.
1968  */
1969 void wb_workfn(struct work_struct *work)
1970 {
1971         struct bdi_writeback *wb = container_of(to_delayed_work(work),
1972                                                 struct bdi_writeback, dwork);
1973         long pages_written;
1974
1975         set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
1976         current->flags |= PF_SWAPWRITE;
1977
1978         if (likely(!current_is_workqueue_rescuer() ||
1979                    !test_bit(WB_registered, &wb->state))) {
1980                 /*
1981                  * The normal path.  Keep writing back @wb until its
1982                  * work_list is empty.  Note that this path is also taken
1983                  * if @wb is shutting down even when we're running off the
1984                  * rescuer as work_list needs to be drained.
1985                  */
1986                 do {
1987                         pages_written = wb_do_writeback(wb);
1988                         trace_writeback_pages_written(pages_written);
1989                 } while (!list_empty(&wb->work_list));
1990         } else {
1991                 /*
1992                  * bdi_wq can't get enough workers and we're running off
1993                  * the emergency worker.  Don't hog it.  Hopefully, 1024 is
1994                  * enough for efficient IO.
1995                  */
1996                 pages_written = writeback_inodes_wb(wb, 1024,
1997                                                     WB_REASON_FORKER_THREAD);
1998                 trace_writeback_pages_written(pages_written);
1999         }
2000
2001         if (!list_empty(&wb->work_list))
2002                 wb_wakeup(wb);
2003         else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
2004                 wb_wakeup_delayed(wb);
2005
2006         current->flags &= ~PF_SWAPWRITE;
2007 }
2008
2009 /*
2010  * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2011  * write back the whole world.
2012  */
2013 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2014                                          enum wb_reason reason)
2015 {
2016         struct bdi_writeback *wb;
2017
2018         if (!bdi_has_dirty_io(bdi))
2019                 return;
2020
2021         list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2022                 wb_start_writeback(wb, reason);
2023 }
2024
2025 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2026                                 enum wb_reason reason)
2027 {
2028         rcu_read_lock();
2029         __wakeup_flusher_threads_bdi(bdi, reason);
2030         rcu_read_unlock();
2031 }
2032
2033 /*
2034  * Wakeup the flusher threads to start writeback of all currently dirty pages
2035  */
2036 void wakeup_flusher_threads(enum wb_reason reason)
2037 {
2038         struct backing_dev_info *bdi;
2039
2040         /*
2041          * If we are expecting writeback progress we must submit plugged IO.
2042          */
2043         if (blk_needs_flush_plug(current))
2044                 blk_schedule_flush_plug(current);
2045
2046         rcu_read_lock();
2047         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2048                 __wakeup_flusher_threads_bdi(bdi, reason);
2049         rcu_read_unlock();
2050 }
2051
2052 /*
2053  * Wake up bdi's periodically to make sure dirtytime inodes gets
2054  * written back periodically.  We deliberately do *not* check the
2055  * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2056  * kernel to be constantly waking up once there are any dirtytime
2057  * inodes on the system.  So instead we define a separate delayed work
2058  * function which gets called much more rarely.  (By default, only
2059  * once every 12 hours.)
2060  *
2061  * If there is any other write activity going on in the file system,
2062  * this function won't be necessary.  But if the only thing that has
2063  * happened on the file system is a dirtytime inode caused by an atime
2064  * update, we need this infrastructure below to make sure that inode
2065  * eventually gets pushed out to disk.
2066  */
2067 static void wakeup_dirtytime_writeback(struct work_struct *w);
2068 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2069
2070 static void wakeup_dirtytime_writeback(struct work_struct *w)
2071 {
2072         struct backing_dev_info *bdi;
2073
2074         rcu_read_lock();
2075         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2076                 struct bdi_writeback *wb;
2077
2078                 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2079                         if (!list_empty(&wb->b_dirty_time))
2080                                 wb_wakeup(wb);
2081         }
2082         rcu_read_unlock();
2083         schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2084 }
2085
2086 static int __init start_dirtytime_writeback(void)
2087 {
2088         schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2089         return 0;
2090 }
2091 __initcall(start_dirtytime_writeback);
2092
2093 int dirtytime_interval_handler(struct ctl_table *table, int write,
2094                                void __user *buffer, size_t *lenp, loff_t *ppos)
2095 {
2096         int ret;
2097
2098         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2099         if (ret == 0 && write)
2100                 mod_delayed_work(system_wq, &dirtytime_work, 0);
2101         return ret;
2102 }
2103
2104 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
2105 {
2106         if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
2107                 struct dentry *dentry;
2108                 const char *name = "?";
2109
2110                 dentry = d_find_alias(inode);
2111                 if (dentry) {
2112                         spin_lock(&dentry->d_lock);
2113                         name = (const char *) dentry->d_name.name;
2114                 }
2115                 printk(KERN_DEBUG
2116                        "%s(%d): dirtied inode %lu (%s) on %s\n",
2117                        current->comm, task_pid_nr(current), inode->i_ino,
2118                        name, inode->i_sb->s_id);
2119                 if (dentry) {
2120                         spin_unlock(&dentry->d_lock);
2121                         dput(dentry);
2122                 }
2123         }
2124 }
2125
2126 /**
2127  * __mark_inode_dirty - internal function
2128  *
2129  * @inode: inode to mark
2130  * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
2131  *
2132  * Mark an inode as dirty. Callers should use mark_inode_dirty or
2133  * mark_inode_dirty_sync.
2134  *
2135  * Put the inode on the super block's dirty list.
2136  *
2137  * CAREFUL! We mark it dirty unconditionally, but move it onto the
2138  * dirty list only if it is hashed or if it refers to a blockdev.
2139  * If it was not hashed, it will never be added to the dirty list
2140  * even if it is later hashed, as it will have been marked dirty already.
2141  *
2142  * In short, make sure you hash any inodes _before_ you start marking
2143  * them dirty.
2144  *
2145  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2146  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
2147  * the kernel-internal blockdev inode represents the dirtying time of the
2148  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
2149  * page->mapping->host, so the page-dirtying time is recorded in the internal
2150  * blockdev inode.
2151  */
2152 void __mark_inode_dirty(struct inode *inode, int flags)
2153 {
2154         struct super_block *sb = inode->i_sb;
2155         int dirtytime;
2156
2157         trace_writeback_mark_inode_dirty(inode, flags);
2158
2159         /*
2160          * Don't do this for I_DIRTY_PAGES - that doesn't actually
2161          * dirty the inode itself
2162          */
2163         if (flags & (I_DIRTY_INODE | I_DIRTY_TIME)) {
2164                 trace_writeback_dirty_inode_start(inode, flags);
2165
2166                 if (sb->s_op->dirty_inode)
2167                         sb->s_op->dirty_inode(inode, flags);
2168
2169                 trace_writeback_dirty_inode(inode, flags);
2170         }
2171         if (flags & I_DIRTY_INODE)
2172                 flags &= ~I_DIRTY_TIME;
2173         dirtytime = flags & I_DIRTY_TIME;
2174
2175         /*
2176          * Paired with smp_mb() in __writeback_single_inode() for the
2177          * following lockless i_state test.  See there for details.
2178          */
2179         smp_mb();
2180
2181         if (((inode->i_state & flags) == flags) ||
2182             (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2183                 return;
2184
2185         if (unlikely(block_dump))
2186                 block_dump___mark_inode_dirty(inode);
2187
2188         spin_lock(&inode->i_lock);
2189         if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2190                 goto out_unlock_inode;
2191         if ((inode->i_state & flags) != flags) {
2192                 const int was_dirty = inode->i_state & I_DIRTY;
2193
2194                 inode_attach_wb(inode, NULL);
2195
2196                 if (flags & I_DIRTY_INODE)
2197                         inode->i_state &= ~I_DIRTY_TIME;
2198                 inode->i_state |= flags;
2199
2200                 /*
2201                  * If the inode is being synced, just update its dirty state.
2202                  * The unlocker will place the inode on the appropriate
2203                  * superblock list, based upon its state.
2204                  */
2205                 if (inode->i_state & I_SYNC)
2206                         goto out_unlock_inode;
2207
2208                 /*
2209                  * Only add valid (hashed) inodes to the superblock's
2210                  * dirty list.  Add blockdev inodes as well.
2211                  */
2212                 if (!S_ISBLK(inode->i_mode)) {
2213                         if (inode_unhashed(inode))
2214                                 goto out_unlock_inode;
2215                 }
2216                 if (inode->i_state & I_FREEING)
2217                         goto out_unlock_inode;
2218
2219                 /*
2220                  * If the inode was already on b_dirty/b_io/b_more_io, don't
2221                  * reposition it (that would break b_dirty time-ordering).
2222                  */
2223                 if (!was_dirty) {
2224                         struct bdi_writeback *wb;
2225                         struct list_head *dirty_list;
2226                         bool wakeup_bdi = false;
2227
2228                         wb = locked_inode_to_wb_and_lock_list(inode);
2229
2230                         WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2231                              !test_bit(WB_registered, &wb->state),
2232                              "bdi-%s not registered\n", wb->bdi->name);
2233
2234                         inode->dirtied_when = jiffies;
2235                         if (dirtytime)
2236                                 inode->dirtied_time_when = jiffies;
2237
2238                         if (inode->i_state & I_DIRTY)
2239                                 dirty_list = &wb->b_dirty;
2240                         else
2241                                 dirty_list = &wb->b_dirty_time;
2242
2243                         wakeup_bdi = inode_io_list_move_locked(inode, wb,
2244                                                                dirty_list);
2245
2246                         spin_unlock(&wb->list_lock);
2247                         trace_writeback_dirty_inode_enqueue(inode);
2248
2249                         /*
2250                          * If this is the first dirty inode for this bdi,
2251                          * we have to wake-up the corresponding bdi thread
2252                          * to make sure background write-back happens
2253                          * later.
2254                          */
2255                         if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2256                                 wb_wakeup_delayed(wb);
2257                         return;
2258                 }
2259         }
2260 out_unlock_inode:
2261         spin_unlock(&inode->i_lock);
2262 }
2263 EXPORT_SYMBOL(__mark_inode_dirty);
2264
2265 /*
2266  * The @s_sync_lock is used to serialise concurrent sync operations
2267  * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2268  * Concurrent callers will block on the s_sync_lock rather than doing contending
2269  * walks. The queueing maintains sync(2) required behaviour as all the IO that
2270  * has been issued up to the time this function is enter is guaranteed to be
2271  * completed by the time we have gained the lock and waited for all IO that is
2272  * in progress regardless of the order callers are granted the lock.
2273  */
2274 static void wait_sb_inodes(struct super_block *sb)
2275 {
2276         LIST_HEAD(sync_list);
2277
2278         /*
2279          * We need to be protected against the filesystem going from
2280          * r/o to r/w or vice versa.
2281          */
2282         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2283
2284         mutex_lock(&sb->s_sync_lock);
2285
2286         /*
2287          * Splice the writeback list onto a temporary list to avoid waiting on
2288          * inodes that have started writeback after this point.
2289          *
2290          * Use rcu_read_lock() to keep the inodes around until we have a
2291          * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2292          * the local list because inodes can be dropped from either by writeback
2293          * completion.
2294          */
2295         rcu_read_lock();
2296         spin_lock_irq(&sb->s_inode_wblist_lock);
2297         list_splice_init(&sb->s_inodes_wb, &sync_list);
2298
2299         /*
2300          * Data integrity sync. Must wait for all pages under writeback, because
2301          * there may have been pages dirtied before our sync call, but which had
2302          * writeout started before we write it out.  In which case, the inode
2303          * may not be on the dirty list, but we still have to wait for that
2304          * writeout.
2305          */
2306         while (!list_empty(&sync_list)) {
2307                 struct inode *inode = list_first_entry(&sync_list, struct inode,
2308                                                        i_wb_list);
2309                 struct address_space *mapping = inode->i_mapping;
2310
2311                 /*
2312                  * Move each inode back to the wb list before we drop the lock
2313                  * to preserve consistency between i_wb_list and the mapping
2314                  * writeback tag. Writeback completion is responsible to remove
2315                  * the inode from either list once the writeback tag is cleared.
2316                  */
2317                 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2318
2319                 /*
2320                  * The mapping can appear untagged while still on-list since we
2321                  * do not have the mapping lock. Skip it here, wb completion
2322                  * will remove it.
2323                  */
2324                 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2325                         continue;
2326
2327                 spin_unlock_irq(&sb->s_inode_wblist_lock);
2328
2329                 spin_lock(&inode->i_lock);
2330                 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2331                         spin_unlock(&inode->i_lock);
2332
2333                         spin_lock_irq(&sb->s_inode_wblist_lock);
2334                         continue;
2335                 }
2336                 __iget(inode);
2337                 spin_unlock(&inode->i_lock);
2338                 rcu_read_unlock();
2339
2340                 /*
2341                  * We keep the error status of individual mapping so that
2342                  * applications can catch the writeback error using fsync(2).
2343                  * See filemap_fdatawait_keep_errors() for details.
2344                  */
2345                 filemap_fdatawait_keep_errors(mapping);
2346
2347                 cond_resched();
2348
2349                 iput(inode);
2350
2351                 rcu_read_lock();
2352                 spin_lock_irq(&sb->s_inode_wblist_lock);
2353         }
2354         spin_unlock_irq(&sb->s_inode_wblist_lock);
2355         rcu_read_unlock();
2356         mutex_unlock(&sb->s_sync_lock);
2357 }
2358
2359 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2360                                      enum wb_reason reason, bool skip_if_busy)
2361 {
2362         DEFINE_WB_COMPLETION_ONSTACK(done);
2363         struct wb_writeback_work work = {
2364                 .sb                     = sb,
2365                 .sync_mode              = WB_SYNC_NONE,
2366                 .tagged_writepages      = 1,
2367                 .done                   = &done,
2368                 .nr_pages               = nr,
2369                 .reason                 = reason,
2370         };
2371         struct backing_dev_info *bdi = sb->s_bdi;
2372
2373         if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2374                 return;
2375         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2376
2377         bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2378         wb_wait_for_completion(bdi, &done);
2379 }
2380
2381 /**
2382  * writeback_inodes_sb_nr -     writeback dirty inodes from given super_block
2383  * @sb: the superblock
2384  * @nr: the number of pages to write
2385  * @reason: reason why some writeback work initiated
2386  *
2387  * Start writeback on some inodes on this super_block. No guarantees are made
2388  * on how many (if any) will be written, and this function does not wait
2389  * for IO completion of submitted IO.
2390  */
2391 void writeback_inodes_sb_nr(struct super_block *sb,
2392                             unsigned long nr,
2393                             enum wb_reason reason)
2394 {
2395         __writeback_inodes_sb_nr(sb, nr, reason, false);
2396 }
2397 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2398
2399 /**
2400  * writeback_inodes_sb  -       writeback dirty inodes from given super_block
2401  * @sb: the superblock
2402  * @reason: reason why some writeback work was initiated
2403  *
2404  * Start writeback on some inodes on this super_block. No guarantees are made
2405  * on how many (if any) will be written, and this function does not wait
2406  * for IO completion of submitted IO.
2407  */
2408 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2409 {
2410         return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2411 }
2412 EXPORT_SYMBOL(writeback_inodes_sb);
2413
2414 /**
2415  * try_to_writeback_inodes_sb - try to start writeback if none underway
2416  * @sb: the superblock
2417  * @reason: reason why some writeback work was initiated
2418  *
2419  * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2420  */
2421 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2422 {
2423         if (!down_read_trylock(&sb->s_umount))
2424                 return;
2425
2426         __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2427         up_read(&sb->s_umount);
2428 }
2429 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2430
2431 /**
2432  * sync_inodes_sb       -       sync sb inode pages
2433  * @sb: the superblock
2434  *
2435  * This function writes and waits on any dirty inode belonging to this
2436  * super_block.
2437  */
2438 void sync_inodes_sb(struct super_block *sb)
2439 {
2440         DEFINE_WB_COMPLETION_ONSTACK(done);
2441         struct wb_writeback_work work = {
2442                 .sb             = sb,
2443                 .sync_mode      = WB_SYNC_ALL,
2444                 .nr_pages       = LONG_MAX,
2445                 .range_cyclic   = 0,
2446                 .done           = &done,
2447                 .reason         = WB_REASON_SYNC,
2448                 .for_sync       = 1,
2449         };
2450         struct backing_dev_info *bdi = sb->s_bdi;
2451
2452         /*
2453          * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2454          * inodes under writeback and I_DIRTY_TIME inodes ignored by
2455          * bdi_has_dirty() need to be written out too.
2456          */
2457         if (bdi == &noop_backing_dev_info)
2458                 return;
2459         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2460
2461         /* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2462         bdi_down_write_wb_switch_rwsem(bdi);
2463         bdi_split_work_to_wbs(bdi, &work, false);
2464         wb_wait_for_completion(bdi, &done);
2465         bdi_up_write_wb_switch_rwsem(bdi);
2466
2467         wait_sb_inodes(sb);
2468 }
2469 EXPORT_SYMBOL(sync_inodes_sb);
2470
2471 /**
2472  * write_inode_now      -       write an inode to disk
2473  * @inode: inode to write to disk
2474  * @sync: whether the write should be synchronous or not
2475  *
2476  * This function commits an inode to disk immediately if it is dirty. This is
2477  * primarily needed by knfsd.
2478  *
2479  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2480  */
2481 int write_inode_now(struct inode *inode, int sync)
2482 {
2483         struct writeback_control wbc = {
2484                 .nr_to_write = LONG_MAX,
2485                 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2486                 .range_start = 0,
2487                 .range_end = LLONG_MAX,
2488         };
2489
2490         if (!mapping_cap_writeback_dirty(inode->i_mapping))
2491                 wbc.nr_to_write = 0;
2492
2493         might_sleep();
2494         return writeback_single_inode(inode, &wbc);
2495 }
2496 EXPORT_SYMBOL(write_inode_now);
2497
2498 /**
2499  * sync_inode - write an inode and its pages to disk.
2500  * @inode: the inode to sync
2501  * @wbc: controls the writeback mode
2502  *
2503  * sync_inode() will write an inode and its pages to disk.  It will also
2504  * correctly update the inode on its superblock's dirty inode lists and will
2505  * update inode->i_state.
2506  *
2507  * The caller must have a ref on the inode.
2508  */
2509 int sync_inode(struct inode *inode, struct writeback_control *wbc)
2510 {
2511         return writeback_single_inode(inode, wbc);
2512 }
2513 EXPORT_SYMBOL(sync_inode);
2514
2515 /**
2516  * sync_inode_metadata - write an inode to disk
2517  * @inode: the inode to sync
2518  * @wait: wait for I/O to complete.
2519  *
2520  * Write an inode to disk and adjust its dirty state after completion.
2521  *
2522  * Note: only writes the actual inode, no associated data or other metadata.
2523  */
2524 int sync_inode_metadata(struct inode *inode, int wait)
2525 {
2526         struct writeback_control wbc = {
2527                 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2528                 .nr_to_write = 0, /* metadata-only */
2529         };
2530
2531         return sync_inode(inode, &wbc);
2532 }
2533 EXPORT_SYMBOL(sync_inode_metadata);