writeback: make writeback_control track the inode being written back
[linux-2.6-microblaze.git] / fs / fs-writeback.c
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002    Andrew Morton
12  *              Split out of fs/inode.c
13  *              Additions for address_space-based writeback
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include <linux/memcontrol.h>
31 #include "internal.h"
32
33 /*
34  * 4MB minimal write chunk size
35  */
36 #define MIN_WRITEBACK_PAGES     (4096UL >> (PAGE_CACHE_SHIFT - 10))
37
38 struct wb_completion {
39         atomic_t                cnt;
40 };
41
42 /*
43  * Passed into wb_writeback(), essentially a subset of writeback_control
44  */
45 struct wb_writeback_work {
46         long nr_pages;
47         struct super_block *sb;
48         unsigned long *older_than_this;
49         enum writeback_sync_modes sync_mode;
50         unsigned int tagged_writepages:1;
51         unsigned int for_kupdate:1;
52         unsigned int range_cyclic:1;
53         unsigned int for_background:1;
54         unsigned int for_sync:1;        /* sync(2) WB_SYNC_ALL writeback */
55         unsigned int auto_free:1;       /* free on completion */
56         unsigned int single_wait:1;
57         unsigned int single_done:1;
58         enum wb_reason reason;          /* why was writeback initiated? */
59
60         struct list_head list;          /* pending work list */
61         struct wb_completion *done;     /* set if the caller waits */
62 };
63
64 /*
65  * If one wants to wait for one or more wb_writeback_works, each work's
66  * ->done should be set to a wb_completion defined using the following
67  * macro.  Once all work items are issued with wb_queue_work(), the caller
68  * can wait for the completion of all using wb_wait_for_completion().  Work
69  * items which are waited upon aren't freed automatically on completion.
70  */
71 #define DEFINE_WB_COMPLETION_ONSTACK(cmpl)                              \
72         struct wb_completion cmpl = {                                   \
73                 .cnt            = ATOMIC_INIT(1),                       \
74         }
75
76
77 /*
78  * If an inode is constantly having its pages dirtied, but then the
79  * updates stop dirtytime_expire_interval seconds in the past, it's
80  * possible for the worst case time between when an inode has its
81  * timestamps updated and when they finally get written out to be two
82  * dirtytime_expire_intervals.  We set the default to 12 hours (in
83  * seconds), which means most of the time inodes will have their
84  * timestamps written to disk after 12 hours, but in the worst case a
85  * few inodes might not their timestamps updated for 24 hours.
86  */
87 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
88
89 static inline struct inode *wb_inode(struct list_head *head)
90 {
91         return list_entry(head, struct inode, i_wb_list);
92 }
93
94 /*
95  * Include the creation of the trace points after defining the
96  * wb_writeback_work structure and inline functions so that the definition
97  * remains local to this file.
98  */
99 #define CREATE_TRACE_POINTS
100 #include <trace/events/writeback.h>
101
102 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
103
104 static bool wb_io_lists_populated(struct bdi_writeback *wb)
105 {
106         if (wb_has_dirty_io(wb)) {
107                 return false;
108         } else {
109                 set_bit(WB_has_dirty_io, &wb->state);
110                 WARN_ON_ONCE(!wb->avg_write_bandwidth);
111                 atomic_long_add(wb->avg_write_bandwidth,
112                                 &wb->bdi->tot_write_bandwidth);
113                 return true;
114         }
115 }
116
117 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
118 {
119         if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
120             list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
121                 clear_bit(WB_has_dirty_io, &wb->state);
122                 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
123                                         &wb->bdi->tot_write_bandwidth) < 0);
124         }
125 }
126
127 /**
128  * inode_wb_list_move_locked - move an inode onto a bdi_writeback IO list
129  * @inode: inode to be moved
130  * @wb: target bdi_writeback
131  * @head: one of @wb->b_{dirty|io|more_io}
132  *
133  * Move @inode->i_wb_list to @list of @wb and set %WB_has_dirty_io.
134  * Returns %true if @inode is the first occupant of the !dirty_time IO
135  * lists; otherwise, %false.
136  */
137 static bool inode_wb_list_move_locked(struct inode *inode,
138                                       struct bdi_writeback *wb,
139                                       struct list_head *head)
140 {
141         assert_spin_locked(&wb->list_lock);
142
143         list_move(&inode->i_wb_list, head);
144
145         /* dirty_time doesn't count as dirty_io until expiration */
146         if (head != &wb->b_dirty_time)
147                 return wb_io_lists_populated(wb);
148
149         wb_io_lists_depopulated(wb);
150         return false;
151 }
152
153 /**
154  * inode_wb_list_del_locked - remove an inode from its bdi_writeback IO list
155  * @inode: inode to be removed
156  * @wb: bdi_writeback @inode is being removed from
157  *
158  * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
159  * clear %WB_has_dirty_io if all are empty afterwards.
160  */
161 static void inode_wb_list_del_locked(struct inode *inode,
162                                      struct bdi_writeback *wb)
163 {
164         assert_spin_locked(&wb->list_lock);
165
166         list_del_init(&inode->i_wb_list);
167         wb_io_lists_depopulated(wb);
168 }
169
170 static void wb_wakeup(struct bdi_writeback *wb)
171 {
172         spin_lock_bh(&wb->work_lock);
173         if (test_bit(WB_registered, &wb->state))
174                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
175         spin_unlock_bh(&wb->work_lock);
176 }
177
178 static void wb_queue_work(struct bdi_writeback *wb,
179                           struct wb_writeback_work *work)
180 {
181         trace_writeback_queue(wb->bdi, work);
182
183         spin_lock_bh(&wb->work_lock);
184         if (!test_bit(WB_registered, &wb->state)) {
185                 if (work->single_wait)
186                         work->single_done = 1;
187                 goto out_unlock;
188         }
189         if (work->done)
190                 atomic_inc(&work->done->cnt);
191         list_add_tail(&work->list, &wb->work_list);
192         mod_delayed_work(bdi_wq, &wb->dwork, 0);
193 out_unlock:
194         spin_unlock_bh(&wb->work_lock);
195 }
196
197 /**
198  * wb_wait_for_completion - wait for completion of bdi_writeback_works
199  * @bdi: bdi work items were issued to
200  * @done: target wb_completion
201  *
202  * Wait for one or more work items issued to @bdi with their ->done field
203  * set to @done, which should have been defined with
204  * DEFINE_WB_COMPLETION_ONSTACK().  This function returns after all such
205  * work items are completed.  Work items which are waited upon aren't freed
206  * automatically on completion.
207  */
208 static void wb_wait_for_completion(struct backing_dev_info *bdi,
209                                    struct wb_completion *done)
210 {
211         atomic_dec(&done->cnt);         /* put down the initial count */
212         wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
213 }
214
215 #ifdef CONFIG_CGROUP_WRITEBACK
216
217 void __inode_attach_wb(struct inode *inode, struct page *page)
218 {
219         struct backing_dev_info *bdi = inode_to_bdi(inode);
220         struct bdi_writeback *wb = NULL;
221
222         if (inode_cgwb_enabled(inode)) {
223                 struct cgroup_subsys_state *memcg_css;
224
225                 if (page) {
226                         memcg_css = mem_cgroup_css_from_page(page);
227                         wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
228                 } else {
229                         /* must pin memcg_css, see wb_get_create() */
230                         memcg_css = task_get_css(current, memory_cgrp_id);
231                         wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
232                         css_put(memcg_css);
233                 }
234         }
235
236         if (!wb)
237                 wb = &bdi->wb;
238
239         /*
240          * There may be multiple instances of this function racing to
241          * update the same inode.  Use cmpxchg() to tell the winner.
242          */
243         if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
244                 wb_put(wb);
245 }
246
247 /**
248  * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
249  * @wbc: writeback_control of interest
250  * @inode: target inode
251  *
252  * @inode is locked and about to be written back under the control of @wbc.
253  * Record @inode's writeback context into @wbc and unlock the i_lock.  On
254  * writeback completion, wbc_detach_inode() should be called.  This is used
255  * to track the cgroup writeback context.
256  */
257 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
258                                  struct inode *inode)
259 {
260         wbc->wb = inode_to_wb(inode);
261         wb_get(wbc->wb);
262         spin_unlock(&inode->i_lock);
263 }
264
265 /**
266  * wbc_detach_inode - disassociate wbc from its target inode
267  * @wbc: writeback_control of interest
268  *
269  * To be called after a writeback attempt of an inode finishes and undoes
270  * wbc_attach_and_unlock_inode().  Can be called under any context.
271  */
272 void wbc_detach_inode(struct writeback_control *wbc)
273 {
274         wb_put(wbc->wb);
275         wbc->wb = NULL;
276 }
277
278 /**
279  * inode_congested - test whether an inode is congested
280  * @inode: inode to test for congestion
281  * @cong_bits: mask of WB_[a]sync_congested bits to test
282  *
283  * Tests whether @inode is congested.  @cong_bits is the mask of congestion
284  * bits to test and the return value is the mask of set bits.
285  *
286  * If cgroup writeback is enabled for @inode, the congestion state is
287  * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
288  * associated with @inode is congested; otherwise, the root wb's congestion
289  * state is used.
290  */
291 int inode_congested(struct inode *inode, int cong_bits)
292 {
293         if (inode) {
294                 struct bdi_writeback *wb = inode_to_wb(inode);
295                 if (wb)
296                         return wb_congested(wb, cong_bits);
297         }
298
299         return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
300 }
301 EXPORT_SYMBOL_GPL(inode_congested);
302
303 /**
304  * wb_wait_for_single_work - wait for completion of a single bdi_writeback_work
305  * @bdi: bdi the work item was issued to
306  * @work: work item to wait for
307  *
308  * Wait for the completion of @work which was issued to one of @bdi's
309  * bdi_writeback's.  The caller must have set @work->single_wait before
310  * issuing it.  This wait operates independently fo
311  * wb_wait_for_completion() and also disables automatic freeing of @work.
312  */
313 static void wb_wait_for_single_work(struct backing_dev_info *bdi,
314                                     struct wb_writeback_work *work)
315 {
316         if (WARN_ON_ONCE(!work->single_wait))
317                 return;
318
319         wait_event(bdi->wb_waitq, work->single_done);
320
321         /*
322          * Paired with smp_wmb() in wb_do_writeback() and ensures that all
323          * modifications to @work prior to assertion of ->single_done is
324          * visible to the caller once this function returns.
325          */
326         smp_rmb();
327 }
328
329 /**
330  * wb_split_bdi_pages - split nr_pages to write according to bandwidth
331  * @wb: target bdi_writeback to split @nr_pages to
332  * @nr_pages: number of pages to write for the whole bdi
333  *
334  * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
335  * relation to the total write bandwidth of all wb's w/ dirty inodes on
336  * @wb->bdi.
337  */
338 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
339 {
340         unsigned long this_bw = wb->avg_write_bandwidth;
341         unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
342
343         if (nr_pages == LONG_MAX)
344                 return LONG_MAX;
345
346         /*
347          * This may be called on clean wb's and proportional distribution
348          * may not make sense, just use the original @nr_pages in those
349          * cases.  In general, we wanna err on the side of writing more.
350          */
351         if (!tot_bw || this_bw >= tot_bw)
352                 return nr_pages;
353         else
354                 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
355 }
356
357 /**
358  * wb_clone_and_queue_work - clone a wb_writeback_work and issue it to a wb
359  * @wb: target bdi_writeback
360  * @base_work: source wb_writeback_work
361  *
362  * Try to make a clone of @base_work and issue it to @wb.  If cloning
363  * succeeds, %true is returned; otherwise, @base_work is issued directly
364  * and %false is returned.  In the latter case, the caller is required to
365  * wait for @base_work's completion using wb_wait_for_single_work().
366  *
367  * A clone is auto-freed on completion.  @base_work never is.
368  */
369 static bool wb_clone_and_queue_work(struct bdi_writeback *wb,
370                                     struct wb_writeback_work *base_work)
371 {
372         struct wb_writeback_work *work;
373
374         work = kmalloc(sizeof(*work), GFP_ATOMIC);
375         if (work) {
376                 *work = *base_work;
377                 work->auto_free = 1;
378                 work->single_wait = 0;
379         } else {
380                 work = base_work;
381                 work->auto_free = 0;
382                 work->single_wait = 1;
383         }
384         work->single_done = 0;
385         wb_queue_work(wb, work);
386         return work != base_work;
387 }
388
389 /**
390  * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
391  * @bdi: target backing_dev_info
392  * @base_work: wb_writeback_work to issue
393  * @skip_if_busy: skip wb's which already have writeback in progress
394  *
395  * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
396  * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
397  * distributed to the busy wbs according to each wb's proportion in the
398  * total active write bandwidth of @bdi.
399  */
400 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
401                                   struct wb_writeback_work *base_work,
402                                   bool skip_if_busy)
403 {
404         long nr_pages = base_work->nr_pages;
405         int next_blkcg_id = 0;
406         struct bdi_writeback *wb;
407         struct wb_iter iter;
408
409         might_sleep();
410
411         if (!bdi_has_dirty_io(bdi))
412                 return;
413 restart:
414         rcu_read_lock();
415         bdi_for_each_wb(wb, bdi, &iter, next_blkcg_id) {
416                 if (!wb_has_dirty_io(wb) ||
417                     (skip_if_busy && writeback_in_progress(wb)))
418                         continue;
419
420                 base_work->nr_pages = wb_split_bdi_pages(wb, nr_pages);
421                 if (!wb_clone_and_queue_work(wb, base_work)) {
422                         next_blkcg_id = wb->blkcg_css->id + 1;
423                         rcu_read_unlock();
424                         wb_wait_for_single_work(bdi, base_work);
425                         goto restart;
426                 }
427         }
428         rcu_read_unlock();
429 }
430
431 #else   /* CONFIG_CGROUP_WRITEBACK */
432
433 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
434 {
435         return nr_pages;
436 }
437
438 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
439                                   struct wb_writeback_work *base_work,
440                                   bool skip_if_busy)
441 {
442         might_sleep();
443
444         if (bdi_has_dirty_io(bdi) &&
445             (!skip_if_busy || !writeback_in_progress(&bdi->wb))) {
446                 base_work->auto_free = 0;
447                 base_work->single_wait = 0;
448                 base_work->single_done = 0;
449                 wb_queue_work(&bdi->wb, base_work);
450         }
451 }
452
453 #endif  /* CONFIG_CGROUP_WRITEBACK */
454
455 void wb_start_writeback(struct bdi_writeback *wb, long nr_pages,
456                         bool range_cyclic, enum wb_reason reason)
457 {
458         struct wb_writeback_work *work;
459
460         if (!wb_has_dirty_io(wb))
461                 return;
462
463         /*
464          * This is WB_SYNC_NONE writeback, so if allocation fails just
465          * wakeup the thread for old dirty data writeback
466          */
467         work = kzalloc(sizeof(*work), GFP_ATOMIC);
468         if (!work) {
469                 trace_writeback_nowork(wb->bdi);
470                 wb_wakeup(wb);
471                 return;
472         }
473
474         work->sync_mode = WB_SYNC_NONE;
475         work->nr_pages  = nr_pages;
476         work->range_cyclic = range_cyclic;
477         work->reason    = reason;
478         work->auto_free = 1;
479
480         wb_queue_work(wb, work);
481 }
482
483 /**
484  * wb_start_background_writeback - start background writeback
485  * @wb: bdi_writback to write from
486  *
487  * Description:
488  *   This makes sure WB_SYNC_NONE background writeback happens. When
489  *   this function returns, it is only guaranteed that for given wb
490  *   some IO is happening if we are over background dirty threshold.
491  *   Caller need not hold sb s_umount semaphore.
492  */
493 void wb_start_background_writeback(struct bdi_writeback *wb)
494 {
495         /*
496          * We just wake up the flusher thread. It will perform background
497          * writeback as soon as there is no other work to do.
498          */
499         trace_writeback_wake_background(wb->bdi);
500         wb_wakeup(wb);
501 }
502
503 /*
504  * Remove the inode from the writeback list it is on.
505  */
506 void inode_wb_list_del(struct inode *inode)
507 {
508         struct bdi_writeback *wb = inode_to_wb(inode);
509
510         spin_lock(&wb->list_lock);
511         inode_wb_list_del_locked(inode, wb);
512         spin_unlock(&wb->list_lock);
513 }
514
515 /*
516  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
517  * furthest end of its superblock's dirty-inode list.
518  *
519  * Before stamping the inode's ->dirtied_when, we check to see whether it is
520  * already the most-recently-dirtied inode on the b_dirty list.  If that is
521  * the case then the inode must have been redirtied while it was being written
522  * out and we don't reset its dirtied_when.
523  */
524 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
525 {
526         if (!list_empty(&wb->b_dirty)) {
527                 struct inode *tail;
528
529                 tail = wb_inode(wb->b_dirty.next);
530                 if (time_before(inode->dirtied_when, tail->dirtied_when))
531                         inode->dirtied_when = jiffies;
532         }
533         inode_wb_list_move_locked(inode, wb, &wb->b_dirty);
534 }
535
536 /*
537  * requeue inode for re-scanning after bdi->b_io list is exhausted.
538  */
539 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
540 {
541         inode_wb_list_move_locked(inode, wb, &wb->b_more_io);
542 }
543
544 static void inode_sync_complete(struct inode *inode)
545 {
546         inode->i_state &= ~I_SYNC;
547         /* If inode is clean an unused, put it into LRU now... */
548         inode_add_lru(inode);
549         /* Waiters must see I_SYNC cleared before being woken up */
550         smp_mb();
551         wake_up_bit(&inode->i_state, __I_SYNC);
552 }
553
554 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
555 {
556         bool ret = time_after(inode->dirtied_when, t);
557 #ifndef CONFIG_64BIT
558         /*
559          * For inodes being constantly redirtied, dirtied_when can get stuck.
560          * It _appears_ to be in the future, but is actually in distant past.
561          * This test is necessary to prevent such wrapped-around relative times
562          * from permanently stopping the whole bdi writeback.
563          */
564         ret = ret && time_before_eq(inode->dirtied_when, jiffies);
565 #endif
566         return ret;
567 }
568
569 #define EXPIRE_DIRTY_ATIME 0x0001
570
571 /*
572  * Move expired (dirtied before work->older_than_this) dirty inodes from
573  * @delaying_queue to @dispatch_queue.
574  */
575 static int move_expired_inodes(struct list_head *delaying_queue,
576                                struct list_head *dispatch_queue,
577                                int flags,
578                                struct wb_writeback_work *work)
579 {
580         unsigned long *older_than_this = NULL;
581         unsigned long expire_time;
582         LIST_HEAD(tmp);
583         struct list_head *pos, *node;
584         struct super_block *sb = NULL;
585         struct inode *inode;
586         int do_sb_sort = 0;
587         int moved = 0;
588
589         if ((flags & EXPIRE_DIRTY_ATIME) == 0)
590                 older_than_this = work->older_than_this;
591         else if (!work->for_sync) {
592                 expire_time = jiffies - (dirtytime_expire_interval * HZ);
593                 older_than_this = &expire_time;
594         }
595         while (!list_empty(delaying_queue)) {
596                 inode = wb_inode(delaying_queue->prev);
597                 if (older_than_this &&
598                     inode_dirtied_after(inode, *older_than_this))
599                         break;
600                 list_move(&inode->i_wb_list, &tmp);
601                 moved++;
602                 if (flags & EXPIRE_DIRTY_ATIME)
603                         set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
604                 if (sb_is_blkdev_sb(inode->i_sb))
605                         continue;
606                 if (sb && sb != inode->i_sb)
607                         do_sb_sort = 1;
608                 sb = inode->i_sb;
609         }
610
611         /* just one sb in list, splice to dispatch_queue and we're done */
612         if (!do_sb_sort) {
613                 list_splice(&tmp, dispatch_queue);
614                 goto out;
615         }
616
617         /* Move inodes from one superblock together */
618         while (!list_empty(&tmp)) {
619                 sb = wb_inode(tmp.prev)->i_sb;
620                 list_for_each_prev_safe(pos, node, &tmp) {
621                         inode = wb_inode(pos);
622                         if (inode->i_sb == sb)
623                                 list_move(&inode->i_wb_list, dispatch_queue);
624                 }
625         }
626 out:
627         return moved;
628 }
629
630 /*
631  * Queue all expired dirty inodes for io, eldest first.
632  * Before
633  *         newly dirtied     b_dirty    b_io    b_more_io
634  *         =============>    gf         edc     BA
635  * After
636  *         newly dirtied     b_dirty    b_io    b_more_io
637  *         =============>    g          fBAedc
638  *                                           |
639  *                                           +--> dequeue for IO
640  */
641 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
642 {
643         int moved;
644
645         assert_spin_locked(&wb->list_lock);
646         list_splice_init(&wb->b_more_io, &wb->b_io);
647         moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
648         moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
649                                      EXPIRE_DIRTY_ATIME, work);
650         if (moved)
651                 wb_io_lists_populated(wb);
652         trace_writeback_queue_io(wb, work, moved);
653 }
654
655 static int write_inode(struct inode *inode, struct writeback_control *wbc)
656 {
657         int ret;
658
659         if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
660                 trace_writeback_write_inode_start(inode, wbc);
661                 ret = inode->i_sb->s_op->write_inode(inode, wbc);
662                 trace_writeback_write_inode(inode, wbc);
663                 return ret;
664         }
665         return 0;
666 }
667
668 /*
669  * Wait for writeback on an inode to complete. Called with i_lock held.
670  * Caller must make sure inode cannot go away when we drop i_lock.
671  */
672 static void __inode_wait_for_writeback(struct inode *inode)
673         __releases(inode->i_lock)
674         __acquires(inode->i_lock)
675 {
676         DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
677         wait_queue_head_t *wqh;
678
679         wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
680         while (inode->i_state & I_SYNC) {
681                 spin_unlock(&inode->i_lock);
682                 __wait_on_bit(wqh, &wq, bit_wait,
683                               TASK_UNINTERRUPTIBLE);
684                 spin_lock(&inode->i_lock);
685         }
686 }
687
688 /*
689  * Wait for writeback on an inode to complete. Caller must have inode pinned.
690  */
691 void inode_wait_for_writeback(struct inode *inode)
692 {
693         spin_lock(&inode->i_lock);
694         __inode_wait_for_writeback(inode);
695         spin_unlock(&inode->i_lock);
696 }
697
698 /*
699  * Sleep until I_SYNC is cleared. This function must be called with i_lock
700  * held and drops it. It is aimed for callers not holding any inode reference
701  * so once i_lock is dropped, inode can go away.
702  */
703 static void inode_sleep_on_writeback(struct inode *inode)
704         __releases(inode->i_lock)
705 {
706         DEFINE_WAIT(wait);
707         wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
708         int sleep;
709
710         prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
711         sleep = inode->i_state & I_SYNC;
712         spin_unlock(&inode->i_lock);
713         if (sleep)
714                 schedule();
715         finish_wait(wqh, &wait);
716 }
717
718 /*
719  * Find proper writeback list for the inode depending on its current state and
720  * possibly also change of its state while we were doing writeback.  Here we
721  * handle things such as livelock prevention or fairness of writeback among
722  * inodes. This function can be called only by flusher thread - noone else
723  * processes all inodes in writeback lists and requeueing inodes behind flusher
724  * thread's back can have unexpected consequences.
725  */
726 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
727                           struct writeback_control *wbc)
728 {
729         if (inode->i_state & I_FREEING)
730                 return;
731
732         /*
733          * Sync livelock prevention. Each inode is tagged and synced in one
734          * shot. If still dirty, it will be redirty_tail()'ed below.  Update
735          * the dirty time to prevent enqueue and sync it again.
736          */
737         if ((inode->i_state & I_DIRTY) &&
738             (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
739                 inode->dirtied_when = jiffies;
740
741         if (wbc->pages_skipped) {
742                 /*
743                  * writeback is not making progress due to locked
744                  * buffers. Skip this inode for now.
745                  */
746                 redirty_tail(inode, wb);
747                 return;
748         }
749
750         if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
751                 /*
752                  * We didn't write back all the pages.  nfs_writepages()
753                  * sometimes bales out without doing anything.
754                  */
755                 if (wbc->nr_to_write <= 0) {
756                         /* Slice used up. Queue for next turn. */
757                         requeue_io(inode, wb);
758                 } else {
759                         /*
760                          * Writeback blocked by something other than
761                          * congestion. Delay the inode for some time to
762                          * avoid spinning on the CPU (100% iowait)
763                          * retrying writeback of the dirty page/inode
764                          * that cannot be performed immediately.
765                          */
766                         redirty_tail(inode, wb);
767                 }
768         } else if (inode->i_state & I_DIRTY) {
769                 /*
770                  * Filesystems can dirty the inode during writeback operations,
771                  * such as delayed allocation during submission or metadata
772                  * updates after data IO completion.
773                  */
774                 redirty_tail(inode, wb);
775         } else if (inode->i_state & I_DIRTY_TIME) {
776                 inode->dirtied_when = jiffies;
777                 inode_wb_list_move_locked(inode, wb, &wb->b_dirty_time);
778         } else {
779                 /* The inode is clean. Remove from writeback lists. */
780                 inode_wb_list_del_locked(inode, wb);
781         }
782 }
783
784 /*
785  * Write out an inode and its dirty pages. Do not update the writeback list
786  * linkage. That is left to the caller. The caller is also responsible for
787  * setting I_SYNC flag and calling inode_sync_complete() to clear it.
788  */
789 static int
790 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
791 {
792         struct address_space *mapping = inode->i_mapping;
793         long nr_to_write = wbc->nr_to_write;
794         unsigned dirty;
795         int ret;
796
797         WARN_ON(!(inode->i_state & I_SYNC));
798
799         trace_writeback_single_inode_start(inode, wbc, nr_to_write);
800
801         ret = do_writepages(mapping, wbc);
802
803         /*
804          * Make sure to wait on the data before writing out the metadata.
805          * This is important for filesystems that modify metadata on data
806          * I/O completion. We don't do it for sync(2) writeback because it has a
807          * separate, external IO completion path and ->sync_fs for guaranteeing
808          * inode metadata is written back correctly.
809          */
810         if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
811                 int err = filemap_fdatawait(mapping);
812                 if (ret == 0)
813                         ret = err;
814         }
815
816         /*
817          * Some filesystems may redirty the inode during the writeback
818          * due to delalloc, clear dirty metadata flags right before
819          * write_inode()
820          */
821         spin_lock(&inode->i_lock);
822
823         dirty = inode->i_state & I_DIRTY;
824         if (inode->i_state & I_DIRTY_TIME) {
825                 if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
826                     unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
827                     unlikely(time_after(jiffies,
828                                         (inode->dirtied_time_when +
829                                          dirtytime_expire_interval * HZ)))) {
830                         dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
831                         trace_writeback_lazytime(inode);
832                 }
833         } else
834                 inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
835         inode->i_state &= ~dirty;
836
837         /*
838          * Paired with smp_mb() in __mark_inode_dirty().  This allows
839          * __mark_inode_dirty() to test i_state without grabbing i_lock -
840          * either they see the I_DIRTY bits cleared or we see the dirtied
841          * inode.
842          *
843          * I_DIRTY_PAGES is always cleared together above even if @mapping
844          * still has dirty pages.  The flag is reinstated after smp_mb() if
845          * necessary.  This guarantees that either __mark_inode_dirty()
846          * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
847          */
848         smp_mb();
849
850         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
851                 inode->i_state |= I_DIRTY_PAGES;
852
853         spin_unlock(&inode->i_lock);
854
855         if (dirty & I_DIRTY_TIME)
856                 mark_inode_dirty_sync(inode);
857         /* Don't write the inode if only I_DIRTY_PAGES was set */
858         if (dirty & ~I_DIRTY_PAGES) {
859                 int err = write_inode(inode, wbc);
860                 if (ret == 0)
861                         ret = err;
862         }
863         trace_writeback_single_inode(inode, wbc, nr_to_write);
864         return ret;
865 }
866
867 /*
868  * Write out an inode's dirty pages. Either the caller has an active reference
869  * on the inode or the inode has I_WILL_FREE set.
870  *
871  * This function is designed to be called for writing back one inode which
872  * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
873  * and does more profound writeback list handling in writeback_sb_inodes().
874  */
875 static int
876 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
877                        struct writeback_control *wbc)
878 {
879         int ret = 0;
880
881         spin_lock(&inode->i_lock);
882         if (!atomic_read(&inode->i_count))
883                 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
884         else
885                 WARN_ON(inode->i_state & I_WILL_FREE);
886
887         if (inode->i_state & I_SYNC) {
888                 if (wbc->sync_mode != WB_SYNC_ALL)
889                         goto out;
890                 /*
891                  * It's a data-integrity sync. We must wait. Since callers hold
892                  * inode reference or inode has I_WILL_FREE set, it cannot go
893                  * away under us.
894                  */
895                 __inode_wait_for_writeback(inode);
896         }
897         WARN_ON(inode->i_state & I_SYNC);
898         /*
899          * Skip inode if it is clean and we have no outstanding writeback in
900          * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
901          * function since flusher thread may be doing for example sync in
902          * parallel and if we move the inode, it could get skipped. So here we
903          * make sure inode is on some writeback list and leave it there unless
904          * we have completely cleaned the inode.
905          */
906         if (!(inode->i_state & I_DIRTY_ALL) &&
907             (wbc->sync_mode != WB_SYNC_ALL ||
908              !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
909                 goto out;
910         inode->i_state |= I_SYNC;
911         wbc_attach_and_unlock_inode(wbc, inode);
912
913         ret = __writeback_single_inode(inode, wbc);
914
915         wbc_detach_inode(wbc);
916         spin_lock(&wb->list_lock);
917         spin_lock(&inode->i_lock);
918         /*
919          * If inode is clean, remove it from writeback lists. Otherwise don't
920          * touch it. See comment above for explanation.
921          */
922         if (!(inode->i_state & I_DIRTY_ALL))
923                 inode_wb_list_del_locked(inode, wb);
924         spin_unlock(&wb->list_lock);
925         inode_sync_complete(inode);
926 out:
927         spin_unlock(&inode->i_lock);
928         return ret;
929 }
930
931 static long writeback_chunk_size(struct bdi_writeback *wb,
932                                  struct wb_writeback_work *work)
933 {
934         long pages;
935
936         /*
937          * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
938          * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
939          * here avoids calling into writeback_inodes_wb() more than once.
940          *
941          * The intended call sequence for WB_SYNC_ALL writeback is:
942          *
943          *      wb_writeback()
944          *          writeback_sb_inodes()       <== called only once
945          *              write_cache_pages()     <== called once for each inode
946          *                   (quickly) tag currently dirty pages
947          *                   (maybe slowly) sync all tagged pages
948          */
949         if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
950                 pages = LONG_MAX;
951         else {
952                 pages = min(wb->avg_write_bandwidth / 2,
953                             global_wb_domain.dirty_limit / DIRTY_SCOPE);
954                 pages = min(pages, work->nr_pages);
955                 pages = round_down(pages + MIN_WRITEBACK_PAGES,
956                                    MIN_WRITEBACK_PAGES);
957         }
958
959         return pages;
960 }
961
962 /*
963  * Write a portion of b_io inodes which belong to @sb.
964  *
965  * Return the number of pages and/or inodes written.
966  */
967 static long writeback_sb_inodes(struct super_block *sb,
968                                 struct bdi_writeback *wb,
969                                 struct wb_writeback_work *work)
970 {
971         struct writeback_control wbc = {
972                 .sync_mode              = work->sync_mode,
973                 .tagged_writepages      = work->tagged_writepages,
974                 .for_kupdate            = work->for_kupdate,
975                 .for_background         = work->for_background,
976                 .for_sync               = work->for_sync,
977                 .range_cyclic           = work->range_cyclic,
978                 .range_start            = 0,
979                 .range_end              = LLONG_MAX,
980         };
981         unsigned long start_time = jiffies;
982         long write_chunk;
983         long wrote = 0;  /* count both pages and inodes */
984
985         while (!list_empty(&wb->b_io)) {
986                 struct inode *inode = wb_inode(wb->b_io.prev);
987
988                 if (inode->i_sb != sb) {
989                         if (work->sb) {
990                                 /*
991                                  * We only want to write back data for this
992                                  * superblock, move all inodes not belonging
993                                  * to it back onto the dirty list.
994                                  */
995                                 redirty_tail(inode, wb);
996                                 continue;
997                         }
998
999                         /*
1000                          * The inode belongs to a different superblock.
1001                          * Bounce back to the caller to unpin this and
1002                          * pin the next superblock.
1003                          */
1004                         break;
1005                 }
1006
1007                 /*
1008                  * Don't bother with new inodes or inodes being freed, first
1009                  * kind does not need periodic writeout yet, and for the latter
1010                  * kind writeout is handled by the freer.
1011                  */
1012                 spin_lock(&inode->i_lock);
1013                 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1014                         spin_unlock(&inode->i_lock);
1015                         redirty_tail(inode, wb);
1016                         continue;
1017                 }
1018                 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1019                         /*
1020                          * If this inode is locked for writeback and we are not
1021                          * doing writeback-for-data-integrity, move it to
1022                          * b_more_io so that writeback can proceed with the
1023                          * other inodes on s_io.
1024                          *
1025                          * We'll have another go at writing back this inode
1026                          * when we completed a full scan of b_io.
1027                          */
1028                         spin_unlock(&inode->i_lock);
1029                         requeue_io(inode, wb);
1030                         trace_writeback_sb_inodes_requeue(inode);
1031                         continue;
1032                 }
1033                 spin_unlock(&wb->list_lock);
1034
1035                 /*
1036                  * We already requeued the inode if it had I_SYNC set and we
1037                  * are doing WB_SYNC_NONE writeback. So this catches only the
1038                  * WB_SYNC_ALL case.
1039                  */
1040                 if (inode->i_state & I_SYNC) {
1041                         /* Wait for I_SYNC. This function drops i_lock... */
1042                         inode_sleep_on_writeback(inode);
1043                         /* Inode may be gone, start again */
1044                         spin_lock(&wb->list_lock);
1045                         continue;
1046                 }
1047                 inode->i_state |= I_SYNC;
1048                 wbc_attach_and_unlock_inode(&wbc, inode);
1049
1050                 write_chunk = writeback_chunk_size(wb, work);
1051                 wbc.nr_to_write = write_chunk;
1052                 wbc.pages_skipped = 0;
1053
1054                 /*
1055                  * We use I_SYNC to pin the inode in memory. While it is set
1056                  * evict_inode() will wait so the inode cannot be freed.
1057                  */
1058                 __writeback_single_inode(inode, &wbc);
1059
1060                 wbc_detach_inode(&wbc);
1061                 work->nr_pages -= write_chunk - wbc.nr_to_write;
1062                 wrote += write_chunk - wbc.nr_to_write;
1063                 spin_lock(&wb->list_lock);
1064                 spin_lock(&inode->i_lock);
1065                 if (!(inode->i_state & I_DIRTY_ALL))
1066                         wrote++;
1067                 requeue_inode(inode, wb, &wbc);
1068                 inode_sync_complete(inode);
1069                 spin_unlock(&inode->i_lock);
1070                 cond_resched_lock(&wb->list_lock);
1071                 /*
1072                  * bail out to wb_writeback() often enough to check
1073                  * background threshold and other termination conditions.
1074                  */
1075                 if (wrote) {
1076                         if (time_is_before_jiffies(start_time + HZ / 10UL))
1077                                 break;
1078                         if (work->nr_pages <= 0)
1079                                 break;
1080                 }
1081         }
1082         return wrote;
1083 }
1084
1085 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1086                                   struct wb_writeback_work *work)
1087 {
1088         unsigned long start_time = jiffies;
1089         long wrote = 0;
1090
1091         while (!list_empty(&wb->b_io)) {
1092                 struct inode *inode = wb_inode(wb->b_io.prev);
1093                 struct super_block *sb = inode->i_sb;
1094
1095                 if (!trylock_super(sb)) {
1096                         /*
1097                          * trylock_super() may fail consistently due to
1098                          * s_umount being grabbed by someone else. Don't use
1099                          * requeue_io() to avoid busy retrying the inode/sb.
1100                          */
1101                         redirty_tail(inode, wb);
1102                         continue;
1103                 }
1104                 wrote += writeback_sb_inodes(sb, wb, work);
1105                 up_read(&sb->s_umount);
1106
1107                 /* refer to the same tests at the end of writeback_sb_inodes */
1108                 if (wrote) {
1109                         if (time_is_before_jiffies(start_time + HZ / 10UL))
1110                                 break;
1111                         if (work->nr_pages <= 0)
1112                                 break;
1113                 }
1114         }
1115         /* Leave any unwritten inodes on b_io */
1116         return wrote;
1117 }
1118
1119 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1120                                 enum wb_reason reason)
1121 {
1122         struct wb_writeback_work work = {
1123                 .nr_pages       = nr_pages,
1124                 .sync_mode      = WB_SYNC_NONE,
1125                 .range_cyclic   = 1,
1126                 .reason         = reason,
1127         };
1128
1129         spin_lock(&wb->list_lock);
1130         if (list_empty(&wb->b_io))
1131                 queue_io(wb, &work);
1132         __writeback_inodes_wb(wb, &work);
1133         spin_unlock(&wb->list_lock);
1134
1135         return nr_pages - work.nr_pages;
1136 }
1137
1138 /*
1139  * Explicit flushing or periodic writeback of "old" data.
1140  *
1141  * Define "old": the first time one of an inode's pages is dirtied, we mark the
1142  * dirtying-time in the inode's address_space.  So this periodic writeback code
1143  * just walks the superblock inode list, writing back any inodes which are
1144  * older than a specific point in time.
1145  *
1146  * Try to run once per dirty_writeback_interval.  But if a writeback event
1147  * takes longer than a dirty_writeback_interval interval, then leave a
1148  * one-second gap.
1149  *
1150  * older_than_this takes precedence over nr_to_write.  So we'll only write back
1151  * all dirty pages if they are all attached to "old" mappings.
1152  */
1153 static long wb_writeback(struct bdi_writeback *wb,
1154                          struct wb_writeback_work *work)
1155 {
1156         unsigned long wb_start = jiffies;
1157         long nr_pages = work->nr_pages;
1158         unsigned long oldest_jif;
1159         struct inode *inode;
1160         long progress;
1161
1162         oldest_jif = jiffies;
1163         work->older_than_this = &oldest_jif;
1164
1165         spin_lock(&wb->list_lock);
1166         for (;;) {
1167                 /*
1168                  * Stop writeback when nr_pages has been consumed
1169                  */
1170                 if (work->nr_pages <= 0)
1171                         break;
1172
1173                 /*
1174                  * Background writeout and kupdate-style writeback may
1175                  * run forever. Stop them if there is other work to do
1176                  * so that e.g. sync can proceed. They'll be restarted
1177                  * after the other works are all done.
1178                  */
1179                 if ((work->for_background || work->for_kupdate) &&
1180                     !list_empty(&wb->work_list))
1181                         break;
1182
1183                 /*
1184                  * For background writeout, stop when we are below the
1185                  * background dirty threshold
1186                  */
1187                 if (work->for_background && !wb_over_bg_thresh(wb))
1188                         break;
1189
1190                 /*
1191                  * Kupdate and background works are special and we want to
1192                  * include all inodes that need writing. Livelock avoidance is
1193                  * handled by these works yielding to any other work so we are
1194                  * safe.
1195                  */
1196                 if (work->for_kupdate) {
1197                         oldest_jif = jiffies -
1198                                 msecs_to_jiffies(dirty_expire_interval * 10);
1199                 } else if (work->for_background)
1200                         oldest_jif = jiffies;
1201
1202                 trace_writeback_start(wb->bdi, work);
1203                 if (list_empty(&wb->b_io))
1204                         queue_io(wb, work);
1205                 if (work->sb)
1206                         progress = writeback_sb_inodes(work->sb, wb, work);
1207                 else
1208                         progress = __writeback_inodes_wb(wb, work);
1209                 trace_writeback_written(wb->bdi, work);
1210
1211                 wb_update_bandwidth(wb, wb_start);
1212
1213                 /*
1214                  * Did we write something? Try for more
1215                  *
1216                  * Dirty inodes are moved to b_io for writeback in batches.
1217                  * The completion of the current batch does not necessarily
1218                  * mean the overall work is done. So we keep looping as long
1219                  * as made some progress on cleaning pages or inodes.
1220                  */
1221                 if (progress)
1222                         continue;
1223                 /*
1224                  * No more inodes for IO, bail
1225                  */
1226                 if (list_empty(&wb->b_more_io))
1227                         break;
1228                 /*
1229                  * Nothing written. Wait for some inode to
1230                  * become available for writeback. Otherwise
1231                  * we'll just busyloop.
1232                  */
1233                 if (!list_empty(&wb->b_more_io))  {
1234                         trace_writeback_wait(wb->bdi, work);
1235                         inode = wb_inode(wb->b_more_io.prev);
1236                         spin_lock(&inode->i_lock);
1237                         spin_unlock(&wb->list_lock);
1238                         /* This function drops i_lock... */
1239                         inode_sleep_on_writeback(inode);
1240                         spin_lock(&wb->list_lock);
1241                 }
1242         }
1243         spin_unlock(&wb->list_lock);
1244
1245         return nr_pages - work->nr_pages;
1246 }
1247
1248 /*
1249  * Return the next wb_writeback_work struct that hasn't been processed yet.
1250  */
1251 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1252 {
1253         struct wb_writeback_work *work = NULL;
1254
1255         spin_lock_bh(&wb->work_lock);
1256         if (!list_empty(&wb->work_list)) {
1257                 work = list_entry(wb->work_list.next,
1258                                   struct wb_writeback_work, list);
1259                 list_del_init(&work->list);
1260         }
1261         spin_unlock_bh(&wb->work_lock);
1262         return work;
1263 }
1264
1265 /*
1266  * Add in the number of potentially dirty inodes, because each inode
1267  * write can dirty pagecache in the underlying blockdev.
1268  */
1269 static unsigned long get_nr_dirty_pages(void)
1270 {
1271         return global_page_state(NR_FILE_DIRTY) +
1272                 global_page_state(NR_UNSTABLE_NFS) +
1273                 get_nr_dirty_inodes();
1274 }
1275
1276 static long wb_check_background_flush(struct bdi_writeback *wb)
1277 {
1278         if (wb_over_bg_thresh(wb)) {
1279
1280                 struct wb_writeback_work work = {
1281                         .nr_pages       = LONG_MAX,
1282                         .sync_mode      = WB_SYNC_NONE,
1283                         .for_background = 1,
1284                         .range_cyclic   = 1,
1285                         .reason         = WB_REASON_BACKGROUND,
1286                 };
1287
1288                 return wb_writeback(wb, &work);
1289         }
1290
1291         return 0;
1292 }
1293
1294 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1295 {
1296         unsigned long expired;
1297         long nr_pages;
1298
1299         /*
1300          * When set to zero, disable periodic writeback
1301          */
1302         if (!dirty_writeback_interval)
1303                 return 0;
1304
1305         expired = wb->last_old_flush +
1306                         msecs_to_jiffies(dirty_writeback_interval * 10);
1307         if (time_before(jiffies, expired))
1308                 return 0;
1309
1310         wb->last_old_flush = jiffies;
1311         nr_pages = get_nr_dirty_pages();
1312
1313         if (nr_pages) {
1314                 struct wb_writeback_work work = {
1315                         .nr_pages       = nr_pages,
1316                         .sync_mode      = WB_SYNC_NONE,
1317                         .for_kupdate    = 1,
1318                         .range_cyclic   = 1,
1319                         .reason         = WB_REASON_PERIODIC,
1320                 };
1321
1322                 return wb_writeback(wb, &work);
1323         }
1324
1325         return 0;
1326 }
1327
1328 /*
1329  * Retrieve work items and do the writeback they describe
1330  */
1331 static long wb_do_writeback(struct bdi_writeback *wb)
1332 {
1333         struct wb_writeback_work *work;
1334         long wrote = 0;
1335
1336         set_bit(WB_writeback_running, &wb->state);
1337         while ((work = get_next_work_item(wb)) != NULL) {
1338                 struct wb_completion *done = work->done;
1339                 bool need_wake_up = false;
1340
1341                 trace_writeback_exec(wb->bdi, work);
1342
1343                 wrote += wb_writeback(wb, work);
1344
1345                 if (work->single_wait) {
1346                         WARN_ON_ONCE(work->auto_free);
1347                         /* paired w/ rmb in wb_wait_for_single_work() */
1348                         smp_wmb();
1349                         work->single_done = 1;
1350                         need_wake_up = true;
1351                 } else if (work->auto_free) {
1352                         kfree(work);
1353                 }
1354
1355                 if (done && atomic_dec_and_test(&done->cnt))
1356                         need_wake_up = true;
1357
1358                 if (need_wake_up)
1359                         wake_up_all(&wb->bdi->wb_waitq);
1360         }
1361
1362         /*
1363          * Check for periodic writeback, kupdated() style
1364          */
1365         wrote += wb_check_old_data_flush(wb);
1366         wrote += wb_check_background_flush(wb);
1367         clear_bit(WB_writeback_running, &wb->state);
1368
1369         return wrote;
1370 }
1371
1372 /*
1373  * Handle writeback of dirty data for the device backed by this bdi. Also
1374  * reschedules periodically and does kupdated style flushing.
1375  */
1376 void wb_workfn(struct work_struct *work)
1377 {
1378         struct bdi_writeback *wb = container_of(to_delayed_work(work),
1379                                                 struct bdi_writeback, dwork);
1380         long pages_written;
1381
1382         set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
1383         current->flags |= PF_SWAPWRITE;
1384
1385         if (likely(!current_is_workqueue_rescuer() ||
1386                    !test_bit(WB_registered, &wb->state))) {
1387                 /*
1388                  * The normal path.  Keep writing back @wb until its
1389                  * work_list is empty.  Note that this path is also taken
1390                  * if @wb is shutting down even when we're running off the
1391                  * rescuer as work_list needs to be drained.
1392                  */
1393                 do {
1394                         pages_written = wb_do_writeback(wb);
1395                         trace_writeback_pages_written(pages_written);
1396                 } while (!list_empty(&wb->work_list));
1397         } else {
1398                 /*
1399                  * bdi_wq can't get enough workers and we're running off
1400                  * the emergency worker.  Don't hog it.  Hopefully, 1024 is
1401                  * enough for efficient IO.
1402                  */
1403                 pages_written = writeback_inodes_wb(wb, 1024,
1404                                                     WB_REASON_FORKER_THREAD);
1405                 trace_writeback_pages_written(pages_written);
1406         }
1407
1408         if (!list_empty(&wb->work_list))
1409                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
1410         else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1411                 wb_wakeup_delayed(wb);
1412
1413         current->flags &= ~PF_SWAPWRITE;
1414 }
1415
1416 /*
1417  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
1418  * the whole world.
1419  */
1420 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1421 {
1422         struct backing_dev_info *bdi;
1423
1424         if (!nr_pages)
1425                 nr_pages = get_nr_dirty_pages();
1426
1427         rcu_read_lock();
1428         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1429                 struct bdi_writeback *wb;
1430                 struct wb_iter iter;
1431
1432                 if (!bdi_has_dirty_io(bdi))
1433                         continue;
1434
1435                 bdi_for_each_wb(wb, bdi, &iter, 0)
1436                         wb_start_writeback(wb, wb_split_bdi_pages(wb, nr_pages),
1437                                            false, reason);
1438         }
1439         rcu_read_unlock();
1440 }
1441
1442 /*
1443  * Wake up bdi's periodically to make sure dirtytime inodes gets
1444  * written back periodically.  We deliberately do *not* check the
1445  * b_dirtytime list in wb_has_dirty_io(), since this would cause the
1446  * kernel to be constantly waking up once there are any dirtytime
1447  * inodes on the system.  So instead we define a separate delayed work
1448  * function which gets called much more rarely.  (By default, only
1449  * once every 12 hours.)
1450  *
1451  * If there is any other write activity going on in the file system,
1452  * this function won't be necessary.  But if the only thing that has
1453  * happened on the file system is a dirtytime inode caused by an atime
1454  * update, we need this infrastructure below to make sure that inode
1455  * eventually gets pushed out to disk.
1456  */
1457 static void wakeup_dirtytime_writeback(struct work_struct *w);
1458 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
1459
1460 static void wakeup_dirtytime_writeback(struct work_struct *w)
1461 {
1462         struct backing_dev_info *bdi;
1463
1464         rcu_read_lock();
1465         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1466                 struct bdi_writeback *wb;
1467                 struct wb_iter iter;
1468
1469                 bdi_for_each_wb(wb, bdi, &iter, 0)
1470                         if (!list_empty(&bdi->wb.b_dirty_time))
1471                                 wb_wakeup(&bdi->wb);
1472         }
1473         rcu_read_unlock();
1474         schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1475 }
1476
1477 static int __init start_dirtytime_writeback(void)
1478 {
1479         schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1480         return 0;
1481 }
1482 __initcall(start_dirtytime_writeback);
1483
1484 int dirtytime_interval_handler(struct ctl_table *table, int write,
1485                                void __user *buffer, size_t *lenp, loff_t *ppos)
1486 {
1487         int ret;
1488
1489         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
1490         if (ret == 0 && write)
1491                 mod_delayed_work(system_wq, &dirtytime_work, 0);
1492         return ret;
1493 }
1494
1495 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1496 {
1497         if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1498                 struct dentry *dentry;
1499                 const char *name = "?";
1500
1501                 dentry = d_find_alias(inode);
1502                 if (dentry) {
1503                         spin_lock(&dentry->d_lock);
1504                         name = (const char *) dentry->d_name.name;
1505                 }
1506                 printk(KERN_DEBUG
1507                        "%s(%d): dirtied inode %lu (%s) on %s\n",
1508                        current->comm, task_pid_nr(current), inode->i_ino,
1509                        name, inode->i_sb->s_id);
1510                 if (dentry) {
1511                         spin_unlock(&dentry->d_lock);
1512                         dput(dentry);
1513                 }
1514         }
1515 }
1516
1517 /**
1518  *      __mark_inode_dirty -    internal function
1519  *      @inode: inode to mark
1520  *      @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1521  *      Mark an inode as dirty. Callers should use mark_inode_dirty or
1522  *      mark_inode_dirty_sync.
1523  *
1524  * Put the inode on the super block's dirty list.
1525  *
1526  * CAREFUL! We mark it dirty unconditionally, but move it onto the
1527  * dirty list only if it is hashed or if it refers to a blockdev.
1528  * If it was not hashed, it will never be added to the dirty list
1529  * even if it is later hashed, as it will have been marked dirty already.
1530  *
1531  * In short, make sure you hash any inodes _before_ you start marking
1532  * them dirty.
1533  *
1534  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1535  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
1536  * the kernel-internal blockdev inode represents the dirtying time of the
1537  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
1538  * page->mapping->host, so the page-dirtying time is recorded in the internal
1539  * blockdev inode.
1540  */
1541 #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
1542 void __mark_inode_dirty(struct inode *inode, int flags)
1543 {
1544         struct super_block *sb = inode->i_sb;
1545         int dirtytime;
1546
1547         trace_writeback_mark_inode_dirty(inode, flags);
1548
1549         /*
1550          * Don't do this for I_DIRTY_PAGES - that doesn't actually
1551          * dirty the inode itself
1552          */
1553         if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
1554                 trace_writeback_dirty_inode_start(inode, flags);
1555
1556                 if (sb->s_op->dirty_inode)
1557                         sb->s_op->dirty_inode(inode, flags);
1558
1559                 trace_writeback_dirty_inode(inode, flags);
1560         }
1561         if (flags & I_DIRTY_INODE)
1562                 flags &= ~I_DIRTY_TIME;
1563         dirtytime = flags & I_DIRTY_TIME;
1564
1565         /*
1566          * Paired with smp_mb() in __writeback_single_inode() for the
1567          * following lockless i_state test.  See there for details.
1568          */
1569         smp_mb();
1570
1571         if (((inode->i_state & flags) == flags) ||
1572             (dirtytime && (inode->i_state & I_DIRTY_INODE)))
1573                 return;
1574
1575         if (unlikely(block_dump))
1576                 block_dump___mark_inode_dirty(inode);
1577
1578         spin_lock(&inode->i_lock);
1579         if (dirtytime && (inode->i_state & I_DIRTY_INODE))
1580                 goto out_unlock_inode;
1581         if ((inode->i_state & flags) != flags) {
1582                 const int was_dirty = inode->i_state & I_DIRTY;
1583
1584                 inode_attach_wb(inode, NULL);
1585
1586                 if (flags & I_DIRTY_INODE)
1587                         inode->i_state &= ~I_DIRTY_TIME;
1588                 inode->i_state |= flags;
1589
1590                 /*
1591                  * If the inode is being synced, just update its dirty state.
1592                  * The unlocker will place the inode on the appropriate
1593                  * superblock list, based upon its state.
1594                  */
1595                 if (inode->i_state & I_SYNC)
1596                         goto out_unlock_inode;
1597
1598                 /*
1599                  * Only add valid (hashed) inodes to the superblock's
1600                  * dirty list.  Add blockdev inodes as well.
1601                  */
1602                 if (!S_ISBLK(inode->i_mode)) {
1603                         if (inode_unhashed(inode))
1604                                 goto out_unlock_inode;
1605                 }
1606                 if (inode->i_state & I_FREEING)
1607                         goto out_unlock_inode;
1608
1609                 /*
1610                  * If the inode was already on b_dirty/b_io/b_more_io, don't
1611                  * reposition it (that would break b_dirty time-ordering).
1612                  */
1613                 if (!was_dirty) {
1614                         struct bdi_writeback *wb = inode_to_wb(inode);
1615                         struct list_head *dirty_list;
1616                         bool wakeup_bdi = false;
1617
1618                         spin_unlock(&inode->i_lock);
1619                         spin_lock(&wb->list_lock);
1620
1621                         WARN(bdi_cap_writeback_dirty(wb->bdi) &&
1622                              !test_bit(WB_registered, &wb->state),
1623                              "bdi-%s not registered\n", wb->bdi->name);
1624
1625                         inode->dirtied_when = jiffies;
1626                         if (dirtytime)
1627                                 inode->dirtied_time_when = jiffies;
1628
1629                         if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
1630                                 dirty_list = &wb->b_dirty;
1631                         else
1632                                 dirty_list = &wb->b_dirty_time;
1633
1634                         wakeup_bdi = inode_wb_list_move_locked(inode, wb,
1635                                                                dirty_list);
1636
1637                         spin_unlock(&wb->list_lock);
1638                         trace_writeback_dirty_inode_enqueue(inode);
1639
1640                         /*
1641                          * If this is the first dirty inode for this bdi,
1642                          * we have to wake-up the corresponding bdi thread
1643                          * to make sure background write-back happens
1644                          * later.
1645                          */
1646                         if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
1647                                 wb_wakeup_delayed(wb);
1648                         return;
1649                 }
1650         }
1651 out_unlock_inode:
1652         spin_unlock(&inode->i_lock);
1653
1654 }
1655 EXPORT_SYMBOL(__mark_inode_dirty);
1656
1657 static void wait_sb_inodes(struct super_block *sb)
1658 {
1659         struct inode *inode, *old_inode = NULL;
1660
1661         /*
1662          * We need to be protected against the filesystem going from
1663          * r/o to r/w or vice versa.
1664          */
1665         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1666
1667         spin_lock(&inode_sb_list_lock);
1668
1669         /*
1670          * Data integrity sync. Must wait for all pages under writeback,
1671          * because there may have been pages dirtied before our sync
1672          * call, but which had writeout started before we write it out.
1673          * In which case, the inode may not be on the dirty list, but
1674          * we still have to wait for that writeout.
1675          */
1676         list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1677                 struct address_space *mapping = inode->i_mapping;
1678
1679                 spin_lock(&inode->i_lock);
1680                 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1681                     (mapping->nrpages == 0)) {
1682                         spin_unlock(&inode->i_lock);
1683                         continue;
1684                 }
1685                 __iget(inode);
1686                 spin_unlock(&inode->i_lock);
1687                 spin_unlock(&inode_sb_list_lock);
1688
1689                 /*
1690                  * We hold a reference to 'inode' so it couldn't have been
1691                  * removed from s_inodes list while we dropped the
1692                  * inode_sb_list_lock.  We cannot iput the inode now as we can
1693                  * be holding the last reference and we cannot iput it under
1694                  * inode_sb_list_lock. So we keep the reference and iput it
1695                  * later.
1696                  */
1697                 iput(old_inode);
1698                 old_inode = inode;
1699
1700                 filemap_fdatawait(mapping);
1701
1702                 cond_resched();
1703
1704                 spin_lock(&inode_sb_list_lock);
1705         }
1706         spin_unlock(&inode_sb_list_lock);
1707         iput(old_inode);
1708 }
1709
1710 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
1711                                      enum wb_reason reason, bool skip_if_busy)
1712 {
1713         DEFINE_WB_COMPLETION_ONSTACK(done);
1714         struct wb_writeback_work work = {
1715                 .sb                     = sb,
1716                 .sync_mode              = WB_SYNC_NONE,
1717                 .tagged_writepages      = 1,
1718                 .done                   = &done,
1719                 .nr_pages               = nr,
1720                 .reason                 = reason,
1721         };
1722         struct backing_dev_info *bdi = sb->s_bdi;
1723
1724         if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
1725                 return;
1726         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1727
1728         bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
1729         wb_wait_for_completion(bdi, &done);
1730 }
1731
1732 /**
1733  * writeback_inodes_sb_nr -     writeback dirty inodes from given super_block
1734  * @sb: the superblock
1735  * @nr: the number of pages to write
1736  * @reason: reason why some writeback work initiated
1737  *
1738  * Start writeback on some inodes on this super_block. No guarantees are made
1739  * on how many (if any) will be written, and this function does not wait
1740  * for IO completion of submitted IO.
1741  */
1742 void writeback_inodes_sb_nr(struct super_block *sb,
1743                             unsigned long nr,
1744                             enum wb_reason reason)
1745 {
1746         __writeback_inodes_sb_nr(sb, nr, reason, false);
1747 }
1748 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1749
1750 /**
1751  * writeback_inodes_sb  -       writeback dirty inodes from given super_block
1752  * @sb: the superblock
1753  * @reason: reason why some writeback work was initiated
1754  *
1755  * Start writeback on some inodes on this super_block. No guarantees are made
1756  * on how many (if any) will be written, and this function does not wait
1757  * for IO completion of submitted IO.
1758  */
1759 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1760 {
1761         return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1762 }
1763 EXPORT_SYMBOL(writeback_inodes_sb);
1764
1765 /**
1766  * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
1767  * @sb: the superblock
1768  * @nr: the number of pages to write
1769  * @reason: the reason of writeback
1770  *
1771  * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
1772  * Returns 1 if writeback was started, 0 if not.
1773  */
1774 bool try_to_writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
1775                                    enum wb_reason reason)
1776 {
1777         if (!down_read_trylock(&sb->s_umount))
1778                 return false;
1779
1780         __writeback_inodes_sb_nr(sb, nr, reason, true);
1781         up_read(&sb->s_umount);
1782         return true;
1783 }
1784 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
1785
1786 /**
1787  * try_to_writeback_inodes_sb - try to start writeback if none underway
1788  * @sb: the superblock
1789  * @reason: reason why some writeback work was initiated
1790  *
1791  * Implement by try_to_writeback_inodes_sb_nr()
1792  * Returns 1 if writeback was started, 0 if not.
1793  */
1794 bool try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1795 {
1796         return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1797 }
1798 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
1799
1800 /**
1801  * sync_inodes_sb       -       sync sb inode pages
1802  * @sb: the superblock
1803  *
1804  * This function writes and waits on any dirty inode belonging to this
1805  * super_block.
1806  */
1807 void sync_inodes_sb(struct super_block *sb)
1808 {
1809         DEFINE_WB_COMPLETION_ONSTACK(done);
1810         struct wb_writeback_work work = {
1811                 .sb             = sb,
1812                 .sync_mode      = WB_SYNC_ALL,
1813                 .nr_pages       = LONG_MAX,
1814                 .range_cyclic   = 0,
1815                 .done           = &done,
1816                 .reason         = WB_REASON_SYNC,
1817                 .for_sync       = 1,
1818         };
1819         struct backing_dev_info *bdi = sb->s_bdi;
1820
1821         /* Nothing to do? */
1822         if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
1823                 return;
1824         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1825
1826         bdi_split_work_to_wbs(bdi, &work, false);
1827         wb_wait_for_completion(bdi, &done);
1828
1829         wait_sb_inodes(sb);
1830 }
1831 EXPORT_SYMBOL(sync_inodes_sb);
1832
1833 /**
1834  * write_inode_now      -       write an inode to disk
1835  * @inode: inode to write to disk
1836  * @sync: whether the write should be synchronous or not
1837  *
1838  * This function commits an inode to disk immediately if it is dirty. This is
1839  * primarily needed by knfsd.
1840  *
1841  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1842  */
1843 int write_inode_now(struct inode *inode, int sync)
1844 {
1845         struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1846         struct writeback_control wbc = {
1847                 .nr_to_write = LONG_MAX,
1848                 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1849                 .range_start = 0,
1850                 .range_end = LLONG_MAX,
1851         };
1852
1853         if (!mapping_cap_writeback_dirty(inode->i_mapping))
1854                 wbc.nr_to_write = 0;
1855
1856         might_sleep();
1857         return writeback_single_inode(inode, wb, &wbc);
1858 }
1859 EXPORT_SYMBOL(write_inode_now);
1860
1861 /**
1862  * sync_inode - write an inode and its pages to disk.
1863  * @inode: the inode to sync
1864  * @wbc: controls the writeback mode
1865  *
1866  * sync_inode() will write an inode and its pages to disk.  It will also
1867  * correctly update the inode on its superblock's dirty inode lists and will
1868  * update inode->i_state.
1869  *
1870  * The caller must have a ref on the inode.
1871  */
1872 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1873 {
1874         return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
1875 }
1876 EXPORT_SYMBOL(sync_inode);
1877
1878 /**
1879  * sync_inode_metadata - write an inode to disk
1880  * @inode: the inode to sync
1881  * @wait: wait for I/O to complete.
1882  *
1883  * Write an inode to disk and adjust its dirty state after completion.
1884  *
1885  * Note: only writes the actual inode, no associated data or other metadata.
1886  */
1887 int sync_inode_metadata(struct inode *inode, int wait)
1888 {
1889         struct writeback_control wbc = {
1890                 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1891                 .nr_to_write = 0, /* metadata-only */
1892         };
1893
1894         return sync_inode(inode, &wbc);
1895 }
1896 EXPORT_SYMBOL(sync_inode_metadata);