writeback: add wb_writeback_work->auto_free
[linux-2.6-microblaze.git] / fs / fs-writeback.c
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002    Andrew Morton
12  *              Split out of fs/inode.c
13  *              Additions for address_space-based writeback
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include "internal.h"
31
32 /*
33  * 4MB minimal write chunk size
34  */
35 #define MIN_WRITEBACK_PAGES     (4096UL >> (PAGE_CACHE_SHIFT - 10))
36
37 /*
38  * Passed into wb_writeback(), essentially a subset of writeback_control
39  */
40 struct wb_writeback_work {
41         long nr_pages;
42         struct super_block *sb;
43         unsigned long *older_than_this;
44         enum writeback_sync_modes sync_mode;
45         unsigned int tagged_writepages:1;
46         unsigned int for_kupdate:1;
47         unsigned int range_cyclic:1;
48         unsigned int for_background:1;
49         unsigned int for_sync:1;        /* sync(2) WB_SYNC_ALL writeback */
50         unsigned int auto_free:1;       /* free on completion */
51         enum wb_reason reason;          /* why was writeback initiated? */
52
53         struct list_head list;          /* pending work list */
54         struct completion *done;        /* set if the caller waits */
55 };
56
57 /*
58  * If an inode is constantly having its pages dirtied, but then the
59  * updates stop dirtytime_expire_interval seconds in the past, it's
60  * possible for the worst case time between when an inode has its
61  * timestamps updated and when they finally get written out to be two
62  * dirtytime_expire_intervals.  We set the default to 12 hours (in
63  * seconds), which means most of the time inodes will have their
64  * timestamps written to disk after 12 hours, but in the worst case a
65  * few inodes might not their timestamps updated for 24 hours.
66  */
67 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
68
69 static inline struct inode *wb_inode(struct list_head *head)
70 {
71         return list_entry(head, struct inode, i_wb_list);
72 }
73
74 /*
75  * Include the creation of the trace points after defining the
76  * wb_writeback_work structure and inline functions so that the definition
77  * remains local to this file.
78  */
79 #define CREATE_TRACE_POINTS
80 #include <trace/events/writeback.h>
81
82 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
83
84 static bool wb_io_lists_populated(struct bdi_writeback *wb)
85 {
86         if (wb_has_dirty_io(wb)) {
87                 return false;
88         } else {
89                 set_bit(WB_has_dirty_io, &wb->state);
90                 WARN_ON_ONCE(!wb->avg_write_bandwidth);
91                 atomic_long_add(wb->avg_write_bandwidth,
92                                 &wb->bdi->tot_write_bandwidth);
93                 return true;
94         }
95 }
96
97 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
98 {
99         if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
100             list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
101                 clear_bit(WB_has_dirty_io, &wb->state);
102                 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
103                                         &wb->bdi->tot_write_bandwidth) < 0);
104         }
105 }
106
107 /**
108  * inode_wb_list_move_locked - move an inode onto a bdi_writeback IO list
109  * @inode: inode to be moved
110  * @wb: target bdi_writeback
111  * @head: one of @wb->b_{dirty|io|more_io}
112  *
113  * Move @inode->i_wb_list to @list of @wb and set %WB_has_dirty_io.
114  * Returns %true if @inode is the first occupant of the !dirty_time IO
115  * lists; otherwise, %false.
116  */
117 static bool inode_wb_list_move_locked(struct inode *inode,
118                                       struct bdi_writeback *wb,
119                                       struct list_head *head)
120 {
121         assert_spin_locked(&wb->list_lock);
122
123         list_move(&inode->i_wb_list, head);
124
125         /* dirty_time doesn't count as dirty_io until expiration */
126         if (head != &wb->b_dirty_time)
127                 return wb_io_lists_populated(wb);
128
129         wb_io_lists_depopulated(wb);
130         return false;
131 }
132
133 /**
134  * inode_wb_list_del_locked - remove an inode from its bdi_writeback IO list
135  * @inode: inode to be removed
136  * @wb: bdi_writeback @inode is being removed from
137  *
138  * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
139  * clear %WB_has_dirty_io if all are empty afterwards.
140  */
141 static void inode_wb_list_del_locked(struct inode *inode,
142                                      struct bdi_writeback *wb)
143 {
144         assert_spin_locked(&wb->list_lock);
145
146         list_del_init(&inode->i_wb_list);
147         wb_io_lists_depopulated(wb);
148 }
149
150 static void wb_wakeup(struct bdi_writeback *wb)
151 {
152         spin_lock_bh(&wb->work_lock);
153         if (test_bit(WB_registered, &wb->state))
154                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
155         spin_unlock_bh(&wb->work_lock);
156 }
157
158 static void wb_queue_work(struct bdi_writeback *wb,
159                           struct wb_writeback_work *work)
160 {
161         trace_writeback_queue(wb->bdi, work);
162
163         spin_lock_bh(&wb->work_lock);
164         if (!test_bit(WB_registered, &wb->state)) {
165                 if (work->done)
166                         complete(work->done);
167                 goto out_unlock;
168         }
169         list_add_tail(&work->list, &wb->work_list);
170         mod_delayed_work(bdi_wq, &wb->dwork, 0);
171 out_unlock:
172         spin_unlock_bh(&wb->work_lock);
173 }
174
175 #ifdef CONFIG_CGROUP_WRITEBACK
176
177 /**
178  * inode_congested - test whether an inode is congested
179  * @inode: inode to test for congestion
180  * @cong_bits: mask of WB_[a]sync_congested bits to test
181  *
182  * Tests whether @inode is congested.  @cong_bits is the mask of congestion
183  * bits to test and the return value is the mask of set bits.
184  *
185  * If cgroup writeback is enabled for @inode, the congestion state is
186  * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
187  * associated with @inode is congested; otherwise, the root wb's congestion
188  * state is used.
189  */
190 int inode_congested(struct inode *inode, int cong_bits)
191 {
192         if (inode) {
193                 struct bdi_writeback *wb = inode_to_wb(inode);
194                 if (wb)
195                         return wb_congested(wb, cong_bits);
196         }
197
198         return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
199 }
200 EXPORT_SYMBOL_GPL(inode_congested);
201
202 /**
203  * wb_split_bdi_pages - split nr_pages to write according to bandwidth
204  * @wb: target bdi_writeback to split @nr_pages to
205  * @nr_pages: number of pages to write for the whole bdi
206  *
207  * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
208  * relation to the total write bandwidth of all wb's w/ dirty inodes on
209  * @wb->bdi.
210  */
211 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
212 {
213         unsigned long this_bw = wb->avg_write_bandwidth;
214         unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
215
216         if (nr_pages == LONG_MAX)
217                 return LONG_MAX;
218
219         /*
220          * This may be called on clean wb's and proportional distribution
221          * may not make sense, just use the original @nr_pages in those
222          * cases.  In general, we wanna err on the side of writing more.
223          */
224         if (!tot_bw || this_bw >= tot_bw)
225                 return nr_pages;
226         else
227                 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
228 }
229
230 #else   /* CONFIG_CGROUP_WRITEBACK */
231
232 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
233 {
234         return nr_pages;
235 }
236
237 #endif  /* CONFIG_CGROUP_WRITEBACK */
238
239 void wb_start_writeback(struct bdi_writeback *wb, long nr_pages,
240                         bool range_cyclic, enum wb_reason reason)
241 {
242         struct wb_writeback_work *work;
243
244         if (!wb_has_dirty_io(wb))
245                 return;
246
247         /*
248          * This is WB_SYNC_NONE writeback, so if allocation fails just
249          * wakeup the thread for old dirty data writeback
250          */
251         work = kzalloc(sizeof(*work), GFP_ATOMIC);
252         if (!work) {
253                 trace_writeback_nowork(wb->bdi);
254                 wb_wakeup(wb);
255                 return;
256         }
257
258         work->sync_mode = WB_SYNC_NONE;
259         work->nr_pages  = nr_pages;
260         work->range_cyclic = range_cyclic;
261         work->reason    = reason;
262         work->auto_free = 1;
263
264         wb_queue_work(wb, work);
265 }
266
267 /**
268  * wb_start_background_writeback - start background writeback
269  * @wb: bdi_writback to write from
270  *
271  * Description:
272  *   This makes sure WB_SYNC_NONE background writeback happens. When
273  *   this function returns, it is only guaranteed that for given wb
274  *   some IO is happening if we are over background dirty threshold.
275  *   Caller need not hold sb s_umount semaphore.
276  */
277 void wb_start_background_writeback(struct bdi_writeback *wb)
278 {
279         /*
280          * We just wake up the flusher thread. It will perform background
281          * writeback as soon as there is no other work to do.
282          */
283         trace_writeback_wake_background(wb->bdi);
284         wb_wakeup(wb);
285 }
286
287 /*
288  * Remove the inode from the writeback list it is on.
289  */
290 void inode_wb_list_del(struct inode *inode)
291 {
292         struct bdi_writeback *wb = inode_to_wb(inode);
293
294         spin_lock(&wb->list_lock);
295         inode_wb_list_del_locked(inode, wb);
296         spin_unlock(&wb->list_lock);
297 }
298
299 /*
300  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
301  * furthest end of its superblock's dirty-inode list.
302  *
303  * Before stamping the inode's ->dirtied_when, we check to see whether it is
304  * already the most-recently-dirtied inode on the b_dirty list.  If that is
305  * the case then the inode must have been redirtied while it was being written
306  * out and we don't reset its dirtied_when.
307  */
308 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
309 {
310         if (!list_empty(&wb->b_dirty)) {
311                 struct inode *tail;
312
313                 tail = wb_inode(wb->b_dirty.next);
314                 if (time_before(inode->dirtied_when, tail->dirtied_when))
315                         inode->dirtied_when = jiffies;
316         }
317         inode_wb_list_move_locked(inode, wb, &wb->b_dirty);
318 }
319
320 /*
321  * requeue inode for re-scanning after bdi->b_io list is exhausted.
322  */
323 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
324 {
325         inode_wb_list_move_locked(inode, wb, &wb->b_more_io);
326 }
327
328 static void inode_sync_complete(struct inode *inode)
329 {
330         inode->i_state &= ~I_SYNC;
331         /* If inode is clean an unused, put it into LRU now... */
332         inode_add_lru(inode);
333         /* Waiters must see I_SYNC cleared before being woken up */
334         smp_mb();
335         wake_up_bit(&inode->i_state, __I_SYNC);
336 }
337
338 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
339 {
340         bool ret = time_after(inode->dirtied_when, t);
341 #ifndef CONFIG_64BIT
342         /*
343          * For inodes being constantly redirtied, dirtied_when can get stuck.
344          * It _appears_ to be in the future, but is actually in distant past.
345          * This test is necessary to prevent such wrapped-around relative times
346          * from permanently stopping the whole bdi writeback.
347          */
348         ret = ret && time_before_eq(inode->dirtied_when, jiffies);
349 #endif
350         return ret;
351 }
352
353 #define EXPIRE_DIRTY_ATIME 0x0001
354
355 /*
356  * Move expired (dirtied before work->older_than_this) dirty inodes from
357  * @delaying_queue to @dispatch_queue.
358  */
359 static int move_expired_inodes(struct list_head *delaying_queue,
360                                struct list_head *dispatch_queue,
361                                int flags,
362                                struct wb_writeback_work *work)
363 {
364         unsigned long *older_than_this = NULL;
365         unsigned long expire_time;
366         LIST_HEAD(tmp);
367         struct list_head *pos, *node;
368         struct super_block *sb = NULL;
369         struct inode *inode;
370         int do_sb_sort = 0;
371         int moved = 0;
372
373         if ((flags & EXPIRE_DIRTY_ATIME) == 0)
374                 older_than_this = work->older_than_this;
375         else if (!work->for_sync) {
376                 expire_time = jiffies - (dirtytime_expire_interval * HZ);
377                 older_than_this = &expire_time;
378         }
379         while (!list_empty(delaying_queue)) {
380                 inode = wb_inode(delaying_queue->prev);
381                 if (older_than_this &&
382                     inode_dirtied_after(inode, *older_than_this))
383                         break;
384                 list_move(&inode->i_wb_list, &tmp);
385                 moved++;
386                 if (flags & EXPIRE_DIRTY_ATIME)
387                         set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
388                 if (sb_is_blkdev_sb(inode->i_sb))
389                         continue;
390                 if (sb && sb != inode->i_sb)
391                         do_sb_sort = 1;
392                 sb = inode->i_sb;
393         }
394
395         /* just one sb in list, splice to dispatch_queue and we're done */
396         if (!do_sb_sort) {
397                 list_splice(&tmp, dispatch_queue);
398                 goto out;
399         }
400
401         /* Move inodes from one superblock together */
402         while (!list_empty(&tmp)) {
403                 sb = wb_inode(tmp.prev)->i_sb;
404                 list_for_each_prev_safe(pos, node, &tmp) {
405                         inode = wb_inode(pos);
406                         if (inode->i_sb == sb)
407                                 list_move(&inode->i_wb_list, dispatch_queue);
408                 }
409         }
410 out:
411         return moved;
412 }
413
414 /*
415  * Queue all expired dirty inodes for io, eldest first.
416  * Before
417  *         newly dirtied     b_dirty    b_io    b_more_io
418  *         =============>    gf         edc     BA
419  * After
420  *         newly dirtied     b_dirty    b_io    b_more_io
421  *         =============>    g          fBAedc
422  *                                           |
423  *                                           +--> dequeue for IO
424  */
425 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
426 {
427         int moved;
428
429         assert_spin_locked(&wb->list_lock);
430         list_splice_init(&wb->b_more_io, &wb->b_io);
431         moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
432         moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
433                                      EXPIRE_DIRTY_ATIME, work);
434         if (moved)
435                 wb_io_lists_populated(wb);
436         trace_writeback_queue_io(wb, work, moved);
437 }
438
439 static int write_inode(struct inode *inode, struct writeback_control *wbc)
440 {
441         int ret;
442
443         if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
444                 trace_writeback_write_inode_start(inode, wbc);
445                 ret = inode->i_sb->s_op->write_inode(inode, wbc);
446                 trace_writeback_write_inode(inode, wbc);
447                 return ret;
448         }
449         return 0;
450 }
451
452 /*
453  * Wait for writeback on an inode to complete. Called with i_lock held.
454  * Caller must make sure inode cannot go away when we drop i_lock.
455  */
456 static void __inode_wait_for_writeback(struct inode *inode)
457         __releases(inode->i_lock)
458         __acquires(inode->i_lock)
459 {
460         DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
461         wait_queue_head_t *wqh;
462
463         wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
464         while (inode->i_state & I_SYNC) {
465                 spin_unlock(&inode->i_lock);
466                 __wait_on_bit(wqh, &wq, bit_wait,
467                               TASK_UNINTERRUPTIBLE);
468                 spin_lock(&inode->i_lock);
469         }
470 }
471
472 /*
473  * Wait for writeback on an inode to complete. Caller must have inode pinned.
474  */
475 void inode_wait_for_writeback(struct inode *inode)
476 {
477         spin_lock(&inode->i_lock);
478         __inode_wait_for_writeback(inode);
479         spin_unlock(&inode->i_lock);
480 }
481
482 /*
483  * Sleep until I_SYNC is cleared. This function must be called with i_lock
484  * held and drops it. It is aimed for callers not holding any inode reference
485  * so once i_lock is dropped, inode can go away.
486  */
487 static void inode_sleep_on_writeback(struct inode *inode)
488         __releases(inode->i_lock)
489 {
490         DEFINE_WAIT(wait);
491         wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
492         int sleep;
493
494         prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
495         sleep = inode->i_state & I_SYNC;
496         spin_unlock(&inode->i_lock);
497         if (sleep)
498                 schedule();
499         finish_wait(wqh, &wait);
500 }
501
502 /*
503  * Find proper writeback list for the inode depending on its current state and
504  * possibly also change of its state while we were doing writeback.  Here we
505  * handle things such as livelock prevention or fairness of writeback among
506  * inodes. This function can be called only by flusher thread - noone else
507  * processes all inodes in writeback lists and requeueing inodes behind flusher
508  * thread's back can have unexpected consequences.
509  */
510 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
511                           struct writeback_control *wbc)
512 {
513         if (inode->i_state & I_FREEING)
514                 return;
515
516         /*
517          * Sync livelock prevention. Each inode is tagged and synced in one
518          * shot. If still dirty, it will be redirty_tail()'ed below.  Update
519          * the dirty time to prevent enqueue and sync it again.
520          */
521         if ((inode->i_state & I_DIRTY) &&
522             (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
523                 inode->dirtied_when = jiffies;
524
525         if (wbc->pages_skipped) {
526                 /*
527                  * writeback is not making progress due to locked
528                  * buffers. Skip this inode for now.
529                  */
530                 redirty_tail(inode, wb);
531                 return;
532         }
533
534         if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
535                 /*
536                  * We didn't write back all the pages.  nfs_writepages()
537                  * sometimes bales out without doing anything.
538                  */
539                 if (wbc->nr_to_write <= 0) {
540                         /* Slice used up. Queue for next turn. */
541                         requeue_io(inode, wb);
542                 } else {
543                         /*
544                          * Writeback blocked by something other than
545                          * congestion. Delay the inode for some time to
546                          * avoid spinning on the CPU (100% iowait)
547                          * retrying writeback of the dirty page/inode
548                          * that cannot be performed immediately.
549                          */
550                         redirty_tail(inode, wb);
551                 }
552         } else if (inode->i_state & I_DIRTY) {
553                 /*
554                  * Filesystems can dirty the inode during writeback operations,
555                  * such as delayed allocation during submission or metadata
556                  * updates after data IO completion.
557                  */
558                 redirty_tail(inode, wb);
559         } else if (inode->i_state & I_DIRTY_TIME) {
560                 inode->dirtied_when = jiffies;
561                 inode_wb_list_move_locked(inode, wb, &wb->b_dirty_time);
562         } else {
563                 /* The inode is clean. Remove from writeback lists. */
564                 inode_wb_list_del_locked(inode, wb);
565         }
566 }
567
568 /*
569  * Write out an inode and its dirty pages. Do not update the writeback list
570  * linkage. That is left to the caller. The caller is also responsible for
571  * setting I_SYNC flag and calling inode_sync_complete() to clear it.
572  */
573 static int
574 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
575 {
576         struct address_space *mapping = inode->i_mapping;
577         long nr_to_write = wbc->nr_to_write;
578         unsigned dirty;
579         int ret;
580
581         WARN_ON(!(inode->i_state & I_SYNC));
582
583         trace_writeback_single_inode_start(inode, wbc, nr_to_write);
584
585         ret = do_writepages(mapping, wbc);
586
587         /*
588          * Make sure to wait on the data before writing out the metadata.
589          * This is important for filesystems that modify metadata on data
590          * I/O completion. We don't do it for sync(2) writeback because it has a
591          * separate, external IO completion path and ->sync_fs for guaranteeing
592          * inode metadata is written back correctly.
593          */
594         if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
595                 int err = filemap_fdatawait(mapping);
596                 if (ret == 0)
597                         ret = err;
598         }
599
600         /*
601          * Some filesystems may redirty the inode during the writeback
602          * due to delalloc, clear dirty metadata flags right before
603          * write_inode()
604          */
605         spin_lock(&inode->i_lock);
606
607         dirty = inode->i_state & I_DIRTY;
608         if (inode->i_state & I_DIRTY_TIME) {
609                 if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
610                     unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
611                     unlikely(time_after(jiffies,
612                                         (inode->dirtied_time_when +
613                                          dirtytime_expire_interval * HZ)))) {
614                         dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
615                         trace_writeback_lazytime(inode);
616                 }
617         } else
618                 inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
619         inode->i_state &= ~dirty;
620
621         /*
622          * Paired with smp_mb() in __mark_inode_dirty().  This allows
623          * __mark_inode_dirty() to test i_state without grabbing i_lock -
624          * either they see the I_DIRTY bits cleared or we see the dirtied
625          * inode.
626          *
627          * I_DIRTY_PAGES is always cleared together above even if @mapping
628          * still has dirty pages.  The flag is reinstated after smp_mb() if
629          * necessary.  This guarantees that either __mark_inode_dirty()
630          * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
631          */
632         smp_mb();
633
634         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
635                 inode->i_state |= I_DIRTY_PAGES;
636
637         spin_unlock(&inode->i_lock);
638
639         if (dirty & I_DIRTY_TIME)
640                 mark_inode_dirty_sync(inode);
641         /* Don't write the inode if only I_DIRTY_PAGES was set */
642         if (dirty & ~I_DIRTY_PAGES) {
643                 int err = write_inode(inode, wbc);
644                 if (ret == 0)
645                         ret = err;
646         }
647         trace_writeback_single_inode(inode, wbc, nr_to_write);
648         return ret;
649 }
650
651 /*
652  * Write out an inode's dirty pages. Either the caller has an active reference
653  * on the inode or the inode has I_WILL_FREE set.
654  *
655  * This function is designed to be called for writing back one inode which
656  * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
657  * and does more profound writeback list handling in writeback_sb_inodes().
658  */
659 static int
660 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
661                        struct writeback_control *wbc)
662 {
663         int ret = 0;
664
665         spin_lock(&inode->i_lock);
666         if (!atomic_read(&inode->i_count))
667                 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
668         else
669                 WARN_ON(inode->i_state & I_WILL_FREE);
670
671         if (inode->i_state & I_SYNC) {
672                 if (wbc->sync_mode != WB_SYNC_ALL)
673                         goto out;
674                 /*
675                  * It's a data-integrity sync. We must wait. Since callers hold
676                  * inode reference or inode has I_WILL_FREE set, it cannot go
677                  * away under us.
678                  */
679                 __inode_wait_for_writeback(inode);
680         }
681         WARN_ON(inode->i_state & I_SYNC);
682         /*
683          * Skip inode if it is clean and we have no outstanding writeback in
684          * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
685          * function since flusher thread may be doing for example sync in
686          * parallel and if we move the inode, it could get skipped. So here we
687          * make sure inode is on some writeback list and leave it there unless
688          * we have completely cleaned the inode.
689          */
690         if (!(inode->i_state & I_DIRTY_ALL) &&
691             (wbc->sync_mode != WB_SYNC_ALL ||
692              !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
693                 goto out;
694         inode->i_state |= I_SYNC;
695         spin_unlock(&inode->i_lock);
696
697         ret = __writeback_single_inode(inode, wbc);
698
699         spin_lock(&wb->list_lock);
700         spin_lock(&inode->i_lock);
701         /*
702          * If inode is clean, remove it from writeback lists. Otherwise don't
703          * touch it. See comment above for explanation.
704          */
705         if (!(inode->i_state & I_DIRTY_ALL))
706                 inode_wb_list_del_locked(inode, wb);
707         spin_unlock(&wb->list_lock);
708         inode_sync_complete(inode);
709 out:
710         spin_unlock(&inode->i_lock);
711         return ret;
712 }
713
714 static long writeback_chunk_size(struct bdi_writeback *wb,
715                                  struct wb_writeback_work *work)
716 {
717         long pages;
718
719         /*
720          * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
721          * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
722          * here avoids calling into writeback_inodes_wb() more than once.
723          *
724          * The intended call sequence for WB_SYNC_ALL writeback is:
725          *
726          *      wb_writeback()
727          *          writeback_sb_inodes()       <== called only once
728          *              write_cache_pages()     <== called once for each inode
729          *                   (quickly) tag currently dirty pages
730          *                   (maybe slowly) sync all tagged pages
731          */
732         if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
733                 pages = LONG_MAX;
734         else {
735                 pages = min(wb->avg_write_bandwidth / 2,
736                             global_dirty_limit / DIRTY_SCOPE);
737                 pages = min(pages, work->nr_pages);
738                 pages = round_down(pages + MIN_WRITEBACK_PAGES,
739                                    MIN_WRITEBACK_PAGES);
740         }
741
742         return pages;
743 }
744
745 /*
746  * Write a portion of b_io inodes which belong to @sb.
747  *
748  * Return the number of pages and/or inodes written.
749  */
750 static long writeback_sb_inodes(struct super_block *sb,
751                                 struct bdi_writeback *wb,
752                                 struct wb_writeback_work *work)
753 {
754         struct writeback_control wbc = {
755                 .sync_mode              = work->sync_mode,
756                 .tagged_writepages      = work->tagged_writepages,
757                 .for_kupdate            = work->for_kupdate,
758                 .for_background         = work->for_background,
759                 .for_sync               = work->for_sync,
760                 .range_cyclic           = work->range_cyclic,
761                 .range_start            = 0,
762                 .range_end              = LLONG_MAX,
763         };
764         unsigned long start_time = jiffies;
765         long write_chunk;
766         long wrote = 0;  /* count both pages and inodes */
767
768         while (!list_empty(&wb->b_io)) {
769                 struct inode *inode = wb_inode(wb->b_io.prev);
770
771                 if (inode->i_sb != sb) {
772                         if (work->sb) {
773                                 /*
774                                  * We only want to write back data for this
775                                  * superblock, move all inodes not belonging
776                                  * to it back onto the dirty list.
777                                  */
778                                 redirty_tail(inode, wb);
779                                 continue;
780                         }
781
782                         /*
783                          * The inode belongs to a different superblock.
784                          * Bounce back to the caller to unpin this and
785                          * pin the next superblock.
786                          */
787                         break;
788                 }
789
790                 /*
791                  * Don't bother with new inodes or inodes being freed, first
792                  * kind does not need periodic writeout yet, and for the latter
793                  * kind writeout is handled by the freer.
794                  */
795                 spin_lock(&inode->i_lock);
796                 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
797                         spin_unlock(&inode->i_lock);
798                         redirty_tail(inode, wb);
799                         continue;
800                 }
801                 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
802                         /*
803                          * If this inode is locked for writeback and we are not
804                          * doing writeback-for-data-integrity, move it to
805                          * b_more_io so that writeback can proceed with the
806                          * other inodes on s_io.
807                          *
808                          * We'll have another go at writing back this inode
809                          * when we completed a full scan of b_io.
810                          */
811                         spin_unlock(&inode->i_lock);
812                         requeue_io(inode, wb);
813                         trace_writeback_sb_inodes_requeue(inode);
814                         continue;
815                 }
816                 spin_unlock(&wb->list_lock);
817
818                 /*
819                  * We already requeued the inode if it had I_SYNC set and we
820                  * are doing WB_SYNC_NONE writeback. So this catches only the
821                  * WB_SYNC_ALL case.
822                  */
823                 if (inode->i_state & I_SYNC) {
824                         /* Wait for I_SYNC. This function drops i_lock... */
825                         inode_sleep_on_writeback(inode);
826                         /* Inode may be gone, start again */
827                         spin_lock(&wb->list_lock);
828                         continue;
829                 }
830                 inode->i_state |= I_SYNC;
831                 spin_unlock(&inode->i_lock);
832
833                 write_chunk = writeback_chunk_size(wb, work);
834                 wbc.nr_to_write = write_chunk;
835                 wbc.pages_skipped = 0;
836
837                 /*
838                  * We use I_SYNC to pin the inode in memory. While it is set
839                  * evict_inode() will wait so the inode cannot be freed.
840                  */
841                 __writeback_single_inode(inode, &wbc);
842
843                 work->nr_pages -= write_chunk - wbc.nr_to_write;
844                 wrote += write_chunk - wbc.nr_to_write;
845                 spin_lock(&wb->list_lock);
846                 spin_lock(&inode->i_lock);
847                 if (!(inode->i_state & I_DIRTY_ALL))
848                         wrote++;
849                 requeue_inode(inode, wb, &wbc);
850                 inode_sync_complete(inode);
851                 spin_unlock(&inode->i_lock);
852                 cond_resched_lock(&wb->list_lock);
853                 /*
854                  * bail out to wb_writeback() often enough to check
855                  * background threshold and other termination conditions.
856                  */
857                 if (wrote) {
858                         if (time_is_before_jiffies(start_time + HZ / 10UL))
859                                 break;
860                         if (work->nr_pages <= 0)
861                                 break;
862                 }
863         }
864         return wrote;
865 }
866
867 static long __writeback_inodes_wb(struct bdi_writeback *wb,
868                                   struct wb_writeback_work *work)
869 {
870         unsigned long start_time = jiffies;
871         long wrote = 0;
872
873         while (!list_empty(&wb->b_io)) {
874                 struct inode *inode = wb_inode(wb->b_io.prev);
875                 struct super_block *sb = inode->i_sb;
876
877                 if (!trylock_super(sb)) {
878                         /*
879                          * trylock_super() may fail consistently due to
880                          * s_umount being grabbed by someone else. Don't use
881                          * requeue_io() to avoid busy retrying the inode/sb.
882                          */
883                         redirty_tail(inode, wb);
884                         continue;
885                 }
886                 wrote += writeback_sb_inodes(sb, wb, work);
887                 up_read(&sb->s_umount);
888
889                 /* refer to the same tests at the end of writeback_sb_inodes */
890                 if (wrote) {
891                         if (time_is_before_jiffies(start_time + HZ / 10UL))
892                                 break;
893                         if (work->nr_pages <= 0)
894                                 break;
895                 }
896         }
897         /* Leave any unwritten inodes on b_io */
898         return wrote;
899 }
900
901 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
902                                 enum wb_reason reason)
903 {
904         struct wb_writeback_work work = {
905                 .nr_pages       = nr_pages,
906                 .sync_mode      = WB_SYNC_NONE,
907                 .range_cyclic   = 1,
908                 .reason         = reason,
909         };
910
911         spin_lock(&wb->list_lock);
912         if (list_empty(&wb->b_io))
913                 queue_io(wb, &work);
914         __writeback_inodes_wb(wb, &work);
915         spin_unlock(&wb->list_lock);
916
917         return nr_pages - work.nr_pages;
918 }
919
920 static bool over_bground_thresh(struct bdi_writeback *wb)
921 {
922         unsigned long background_thresh, dirty_thresh;
923
924         global_dirty_limits(&background_thresh, &dirty_thresh);
925
926         if (global_page_state(NR_FILE_DIRTY) +
927             global_page_state(NR_UNSTABLE_NFS) > background_thresh)
928                 return true;
929
930         if (wb_stat(wb, WB_RECLAIMABLE) > wb_dirty_limit(wb, background_thresh))
931                 return true;
932
933         return false;
934 }
935
936 /*
937  * Called under wb->list_lock. If there are multiple wb per bdi,
938  * only the flusher working on the first wb should do it.
939  */
940 static void wb_update_bandwidth(struct bdi_writeback *wb,
941                                 unsigned long start_time)
942 {
943         __wb_update_bandwidth(wb, 0, 0, 0, 0, 0, start_time);
944 }
945
946 /*
947  * Explicit flushing or periodic writeback of "old" data.
948  *
949  * Define "old": the first time one of an inode's pages is dirtied, we mark the
950  * dirtying-time in the inode's address_space.  So this periodic writeback code
951  * just walks the superblock inode list, writing back any inodes which are
952  * older than a specific point in time.
953  *
954  * Try to run once per dirty_writeback_interval.  But if a writeback event
955  * takes longer than a dirty_writeback_interval interval, then leave a
956  * one-second gap.
957  *
958  * older_than_this takes precedence over nr_to_write.  So we'll only write back
959  * all dirty pages if they are all attached to "old" mappings.
960  */
961 static long wb_writeback(struct bdi_writeback *wb,
962                          struct wb_writeback_work *work)
963 {
964         unsigned long wb_start = jiffies;
965         long nr_pages = work->nr_pages;
966         unsigned long oldest_jif;
967         struct inode *inode;
968         long progress;
969
970         oldest_jif = jiffies;
971         work->older_than_this = &oldest_jif;
972
973         spin_lock(&wb->list_lock);
974         for (;;) {
975                 /*
976                  * Stop writeback when nr_pages has been consumed
977                  */
978                 if (work->nr_pages <= 0)
979                         break;
980
981                 /*
982                  * Background writeout and kupdate-style writeback may
983                  * run forever. Stop them if there is other work to do
984                  * so that e.g. sync can proceed. They'll be restarted
985                  * after the other works are all done.
986                  */
987                 if ((work->for_background || work->for_kupdate) &&
988                     !list_empty(&wb->work_list))
989                         break;
990
991                 /*
992                  * For background writeout, stop when we are below the
993                  * background dirty threshold
994                  */
995                 if (work->for_background && !over_bground_thresh(wb))
996                         break;
997
998                 /*
999                  * Kupdate and background works are special and we want to
1000                  * include all inodes that need writing. Livelock avoidance is
1001                  * handled by these works yielding to any other work so we are
1002                  * safe.
1003                  */
1004                 if (work->for_kupdate) {
1005                         oldest_jif = jiffies -
1006                                 msecs_to_jiffies(dirty_expire_interval * 10);
1007                 } else if (work->for_background)
1008                         oldest_jif = jiffies;
1009
1010                 trace_writeback_start(wb->bdi, work);
1011                 if (list_empty(&wb->b_io))
1012                         queue_io(wb, work);
1013                 if (work->sb)
1014                         progress = writeback_sb_inodes(work->sb, wb, work);
1015                 else
1016                         progress = __writeback_inodes_wb(wb, work);
1017                 trace_writeback_written(wb->bdi, work);
1018
1019                 wb_update_bandwidth(wb, wb_start);
1020
1021                 /*
1022                  * Did we write something? Try for more
1023                  *
1024                  * Dirty inodes are moved to b_io for writeback in batches.
1025                  * The completion of the current batch does not necessarily
1026                  * mean the overall work is done. So we keep looping as long
1027                  * as made some progress on cleaning pages or inodes.
1028                  */
1029                 if (progress)
1030                         continue;
1031                 /*
1032                  * No more inodes for IO, bail
1033                  */
1034                 if (list_empty(&wb->b_more_io))
1035                         break;
1036                 /*
1037                  * Nothing written. Wait for some inode to
1038                  * become available for writeback. Otherwise
1039                  * we'll just busyloop.
1040                  */
1041                 if (!list_empty(&wb->b_more_io))  {
1042                         trace_writeback_wait(wb->bdi, work);
1043                         inode = wb_inode(wb->b_more_io.prev);
1044                         spin_lock(&inode->i_lock);
1045                         spin_unlock(&wb->list_lock);
1046                         /* This function drops i_lock... */
1047                         inode_sleep_on_writeback(inode);
1048                         spin_lock(&wb->list_lock);
1049                 }
1050         }
1051         spin_unlock(&wb->list_lock);
1052
1053         return nr_pages - work->nr_pages;
1054 }
1055
1056 /*
1057  * Return the next wb_writeback_work struct that hasn't been processed yet.
1058  */
1059 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1060 {
1061         struct wb_writeback_work *work = NULL;
1062
1063         spin_lock_bh(&wb->work_lock);
1064         if (!list_empty(&wb->work_list)) {
1065                 work = list_entry(wb->work_list.next,
1066                                   struct wb_writeback_work, list);
1067                 list_del_init(&work->list);
1068         }
1069         spin_unlock_bh(&wb->work_lock);
1070         return work;
1071 }
1072
1073 /*
1074  * Add in the number of potentially dirty inodes, because each inode
1075  * write can dirty pagecache in the underlying blockdev.
1076  */
1077 static unsigned long get_nr_dirty_pages(void)
1078 {
1079         return global_page_state(NR_FILE_DIRTY) +
1080                 global_page_state(NR_UNSTABLE_NFS) +
1081                 get_nr_dirty_inodes();
1082 }
1083
1084 static long wb_check_background_flush(struct bdi_writeback *wb)
1085 {
1086         if (over_bground_thresh(wb)) {
1087
1088                 struct wb_writeback_work work = {
1089                         .nr_pages       = LONG_MAX,
1090                         .sync_mode      = WB_SYNC_NONE,
1091                         .for_background = 1,
1092                         .range_cyclic   = 1,
1093                         .reason         = WB_REASON_BACKGROUND,
1094                 };
1095
1096                 return wb_writeback(wb, &work);
1097         }
1098
1099         return 0;
1100 }
1101
1102 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1103 {
1104         unsigned long expired;
1105         long nr_pages;
1106
1107         /*
1108          * When set to zero, disable periodic writeback
1109          */
1110         if (!dirty_writeback_interval)
1111                 return 0;
1112
1113         expired = wb->last_old_flush +
1114                         msecs_to_jiffies(dirty_writeback_interval * 10);
1115         if (time_before(jiffies, expired))
1116                 return 0;
1117
1118         wb->last_old_flush = jiffies;
1119         nr_pages = get_nr_dirty_pages();
1120
1121         if (nr_pages) {
1122                 struct wb_writeback_work work = {
1123                         .nr_pages       = nr_pages,
1124                         .sync_mode      = WB_SYNC_NONE,
1125                         .for_kupdate    = 1,
1126                         .range_cyclic   = 1,
1127                         .reason         = WB_REASON_PERIODIC,
1128                 };
1129
1130                 return wb_writeback(wb, &work);
1131         }
1132
1133         return 0;
1134 }
1135
1136 /*
1137  * Retrieve work items and do the writeback they describe
1138  */
1139 static long wb_do_writeback(struct bdi_writeback *wb)
1140 {
1141         struct wb_writeback_work *work;
1142         long wrote = 0;
1143
1144         set_bit(WB_writeback_running, &wb->state);
1145         while ((work = get_next_work_item(wb)) != NULL) {
1146                 struct completion *done = work->done;
1147
1148                 trace_writeback_exec(wb->bdi, work);
1149
1150                 wrote += wb_writeback(wb, work);
1151
1152                 if (work->auto_free)
1153                         kfree(work);
1154                 if (done)
1155                         complete(done);
1156         }
1157
1158         /*
1159          * Check for periodic writeback, kupdated() style
1160          */
1161         wrote += wb_check_old_data_flush(wb);
1162         wrote += wb_check_background_flush(wb);
1163         clear_bit(WB_writeback_running, &wb->state);
1164
1165         return wrote;
1166 }
1167
1168 /*
1169  * Handle writeback of dirty data for the device backed by this bdi. Also
1170  * reschedules periodically and does kupdated style flushing.
1171  */
1172 void wb_workfn(struct work_struct *work)
1173 {
1174         struct bdi_writeback *wb = container_of(to_delayed_work(work),
1175                                                 struct bdi_writeback, dwork);
1176         long pages_written;
1177
1178         set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
1179         current->flags |= PF_SWAPWRITE;
1180
1181         if (likely(!current_is_workqueue_rescuer() ||
1182                    !test_bit(WB_registered, &wb->state))) {
1183                 /*
1184                  * The normal path.  Keep writing back @wb until its
1185                  * work_list is empty.  Note that this path is also taken
1186                  * if @wb is shutting down even when we're running off the
1187                  * rescuer as work_list needs to be drained.
1188                  */
1189                 do {
1190                         pages_written = wb_do_writeback(wb);
1191                         trace_writeback_pages_written(pages_written);
1192                 } while (!list_empty(&wb->work_list));
1193         } else {
1194                 /*
1195                  * bdi_wq can't get enough workers and we're running off
1196                  * the emergency worker.  Don't hog it.  Hopefully, 1024 is
1197                  * enough for efficient IO.
1198                  */
1199                 pages_written = writeback_inodes_wb(wb, 1024,
1200                                                     WB_REASON_FORKER_THREAD);
1201                 trace_writeback_pages_written(pages_written);
1202         }
1203
1204         if (!list_empty(&wb->work_list))
1205                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
1206         else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1207                 wb_wakeup_delayed(wb);
1208
1209         current->flags &= ~PF_SWAPWRITE;
1210 }
1211
1212 /*
1213  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
1214  * the whole world.
1215  */
1216 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1217 {
1218         struct backing_dev_info *bdi;
1219
1220         if (!nr_pages)
1221                 nr_pages = get_nr_dirty_pages();
1222
1223         rcu_read_lock();
1224         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1225                 struct bdi_writeback *wb;
1226                 struct wb_iter iter;
1227
1228                 if (!bdi_has_dirty_io(bdi))
1229                         continue;
1230
1231                 bdi_for_each_wb(wb, bdi, &iter, 0)
1232                         wb_start_writeback(wb, wb_split_bdi_pages(wb, nr_pages),
1233                                            false, reason);
1234         }
1235         rcu_read_unlock();
1236 }
1237
1238 /*
1239  * Wake up bdi's periodically to make sure dirtytime inodes gets
1240  * written back periodically.  We deliberately do *not* check the
1241  * b_dirtytime list in wb_has_dirty_io(), since this would cause the
1242  * kernel to be constantly waking up once there are any dirtytime
1243  * inodes on the system.  So instead we define a separate delayed work
1244  * function which gets called much more rarely.  (By default, only
1245  * once every 12 hours.)
1246  *
1247  * If there is any other write activity going on in the file system,
1248  * this function won't be necessary.  But if the only thing that has
1249  * happened on the file system is a dirtytime inode caused by an atime
1250  * update, we need this infrastructure below to make sure that inode
1251  * eventually gets pushed out to disk.
1252  */
1253 static void wakeup_dirtytime_writeback(struct work_struct *w);
1254 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
1255
1256 static void wakeup_dirtytime_writeback(struct work_struct *w)
1257 {
1258         struct backing_dev_info *bdi;
1259
1260         rcu_read_lock();
1261         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1262                 struct bdi_writeback *wb;
1263                 struct wb_iter iter;
1264
1265                 bdi_for_each_wb(wb, bdi, &iter, 0)
1266                         if (!list_empty(&bdi->wb.b_dirty_time))
1267                                 wb_wakeup(&bdi->wb);
1268         }
1269         rcu_read_unlock();
1270         schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1271 }
1272
1273 static int __init start_dirtytime_writeback(void)
1274 {
1275         schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1276         return 0;
1277 }
1278 __initcall(start_dirtytime_writeback);
1279
1280 int dirtytime_interval_handler(struct ctl_table *table, int write,
1281                                void __user *buffer, size_t *lenp, loff_t *ppos)
1282 {
1283         int ret;
1284
1285         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
1286         if (ret == 0 && write)
1287                 mod_delayed_work(system_wq, &dirtytime_work, 0);
1288         return ret;
1289 }
1290
1291 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1292 {
1293         if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1294                 struct dentry *dentry;
1295                 const char *name = "?";
1296
1297                 dentry = d_find_alias(inode);
1298                 if (dentry) {
1299                         spin_lock(&dentry->d_lock);
1300                         name = (const char *) dentry->d_name.name;
1301                 }
1302                 printk(KERN_DEBUG
1303                        "%s(%d): dirtied inode %lu (%s) on %s\n",
1304                        current->comm, task_pid_nr(current), inode->i_ino,
1305                        name, inode->i_sb->s_id);
1306                 if (dentry) {
1307                         spin_unlock(&dentry->d_lock);
1308                         dput(dentry);
1309                 }
1310         }
1311 }
1312
1313 /**
1314  *      __mark_inode_dirty -    internal function
1315  *      @inode: inode to mark
1316  *      @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1317  *      Mark an inode as dirty. Callers should use mark_inode_dirty or
1318  *      mark_inode_dirty_sync.
1319  *
1320  * Put the inode on the super block's dirty list.
1321  *
1322  * CAREFUL! We mark it dirty unconditionally, but move it onto the
1323  * dirty list only if it is hashed or if it refers to a blockdev.
1324  * If it was not hashed, it will never be added to the dirty list
1325  * even if it is later hashed, as it will have been marked dirty already.
1326  *
1327  * In short, make sure you hash any inodes _before_ you start marking
1328  * them dirty.
1329  *
1330  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1331  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
1332  * the kernel-internal blockdev inode represents the dirtying time of the
1333  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
1334  * page->mapping->host, so the page-dirtying time is recorded in the internal
1335  * blockdev inode.
1336  */
1337 #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
1338 void __mark_inode_dirty(struct inode *inode, int flags)
1339 {
1340         struct super_block *sb = inode->i_sb;
1341         struct backing_dev_info *bdi = NULL;
1342         int dirtytime;
1343
1344         trace_writeback_mark_inode_dirty(inode, flags);
1345
1346         /*
1347          * Don't do this for I_DIRTY_PAGES - that doesn't actually
1348          * dirty the inode itself
1349          */
1350         if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
1351                 trace_writeback_dirty_inode_start(inode, flags);
1352
1353                 if (sb->s_op->dirty_inode)
1354                         sb->s_op->dirty_inode(inode, flags);
1355
1356                 trace_writeback_dirty_inode(inode, flags);
1357         }
1358         if (flags & I_DIRTY_INODE)
1359                 flags &= ~I_DIRTY_TIME;
1360         dirtytime = flags & I_DIRTY_TIME;
1361
1362         /*
1363          * Paired with smp_mb() in __writeback_single_inode() for the
1364          * following lockless i_state test.  See there for details.
1365          */
1366         smp_mb();
1367
1368         if (((inode->i_state & flags) == flags) ||
1369             (dirtytime && (inode->i_state & I_DIRTY_INODE)))
1370                 return;
1371
1372         if (unlikely(block_dump))
1373                 block_dump___mark_inode_dirty(inode);
1374
1375         spin_lock(&inode->i_lock);
1376         if (dirtytime && (inode->i_state & I_DIRTY_INODE))
1377                 goto out_unlock_inode;
1378         if ((inode->i_state & flags) != flags) {
1379                 const int was_dirty = inode->i_state & I_DIRTY;
1380
1381                 inode_attach_wb(inode, NULL);
1382
1383                 if (flags & I_DIRTY_INODE)
1384                         inode->i_state &= ~I_DIRTY_TIME;
1385                 inode->i_state |= flags;
1386
1387                 /*
1388                  * If the inode is being synced, just update its dirty state.
1389                  * The unlocker will place the inode on the appropriate
1390                  * superblock list, based upon its state.
1391                  */
1392                 if (inode->i_state & I_SYNC)
1393                         goto out_unlock_inode;
1394
1395                 /*
1396                  * Only add valid (hashed) inodes to the superblock's
1397                  * dirty list.  Add blockdev inodes as well.
1398                  */
1399                 if (!S_ISBLK(inode->i_mode)) {
1400                         if (inode_unhashed(inode))
1401                                 goto out_unlock_inode;
1402                 }
1403                 if (inode->i_state & I_FREEING)
1404                         goto out_unlock_inode;
1405
1406                 /*
1407                  * If the inode was already on b_dirty/b_io/b_more_io, don't
1408                  * reposition it (that would break b_dirty time-ordering).
1409                  */
1410                 if (!was_dirty) {
1411                         struct list_head *dirty_list;
1412                         bool wakeup_bdi = false;
1413                         bdi = inode_to_bdi(inode);
1414
1415                         spin_unlock(&inode->i_lock);
1416                         spin_lock(&bdi->wb.list_lock);
1417
1418                         WARN(bdi_cap_writeback_dirty(bdi) &&
1419                              !test_bit(WB_registered, &bdi->wb.state),
1420                              "bdi-%s not registered\n", bdi->name);
1421
1422                         inode->dirtied_when = jiffies;
1423                         if (dirtytime)
1424                                 inode->dirtied_time_when = jiffies;
1425
1426                         if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
1427                                 dirty_list = &bdi->wb.b_dirty;
1428                         else
1429                                 dirty_list = &bdi->wb.b_dirty_time;
1430
1431                         wakeup_bdi = inode_wb_list_move_locked(inode, &bdi->wb,
1432                                                                dirty_list);
1433
1434                         spin_unlock(&bdi->wb.list_lock);
1435                         trace_writeback_dirty_inode_enqueue(inode);
1436
1437                         /*
1438                          * If this is the first dirty inode for this bdi,
1439                          * we have to wake-up the corresponding bdi thread
1440                          * to make sure background write-back happens
1441                          * later.
1442                          */
1443                         if (bdi_cap_writeback_dirty(bdi) && wakeup_bdi)
1444                                 wb_wakeup_delayed(&bdi->wb);
1445                         return;
1446                 }
1447         }
1448 out_unlock_inode:
1449         spin_unlock(&inode->i_lock);
1450
1451 }
1452 EXPORT_SYMBOL(__mark_inode_dirty);
1453
1454 static void wait_sb_inodes(struct super_block *sb)
1455 {
1456         struct inode *inode, *old_inode = NULL;
1457
1458         /*
1459          * We need to be protected against the filesystem going from
1460          * r/o to r/w or vice versa.
1461          */
1462         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1463
1464         spin_lock(&inode_sb_list_lock);
1465
1466         /*
1467          * Data integrity sync. Must wait for all pages under writeback,
1468          * because there may have been pages dirtied before our sync
1469          * call, but which had writeout started before we write it out.
1470          * In which case, the inode may not be on the dirty list, but
1471          * we still have to wait for that writeout.
1472          */
1473         list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1474                 struct address_space *mapping = inode->i_mapping;
1475
1476                 spin_lock(&inode->i_lock);
1477                 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1478                     (mapping->nrpages == 0)) {
1479                         spin_unlock(&inode->i_lock);
1480                         continue;
1481                 }
1482                 __iget(inode);
1483                 spin_unlock(&inode->i_lock);
1484                 spin_unlock(&inode_sb_list_lock);
1485
1486                 /*
1487                  * We hold a reference to 'inode' so it couldn't have been
1488                  * removed from s_inodes list while we dropped the
1489                  * inode_sb_list_lock.  We cannot iput the inode now as we can
1490                  * be holding the last reference and we cannot iput it under
1491                  * inode_sb_list_lock. So we keep the reference and iput it
1492                  * later.
1493                  */
1494                 iput(old_inode);
1495                 old_inode = inode;
1496
1497                 filemap_fdatawait(mapping);
1498
1499                 cond_resched();
1500
1501                 spin_lock(&inode_sb_list_lock);
1502         }
1503         spin_unlock(&inode_sb_list_lock);
1504         iput(old_inode);
1505 }
1506
1507 /**
1508  * writeback_inodes_sb_nr -     writeback dirty inodes from given super_block
1509  * @sb: the superblock
1510  * @nr: the number of pages to write
1511  * @reason: reason why some writeback work initiated
1512  *
1513  * Start writeback on some inodes on this super_block. No guarantees are made
1514  * on how many (if any) will be written, and this function does not wait
1515  * for IO completion of submitted IO.
1516  */
1517 void writeback_inodes_sb_nr(struct super_block *sb,
1518                             unsigned long nr,
1519                             enum wb_reason reason)
1520 {
1521         DECLARE_COMPLETION_ONSTACK(done);
1522         struct wb_writeback_work work = {
1523                 .sb                     = sb,
1524                 .sync_mode              = WB_SYNC_NONE,
1525                 .tagged_writepages      = 1,
1526                 .done                   = &done,
1527                 .nr_pages               = nr,
1528                 .reason                 = reason,
1529         };
1530         struct backing_dev_info *bdi = sb->s_bdi;
1531
1532         if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
1533                 return;
1534         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1535         wb_queue_work(&bdi->wb, &work);
1536         wait_for_completion(&done);
1537 }
1538 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1539
1540 /**
1541  * writeback_inodes_sb  -       writeback dirty inodes from given super_block
1542  * @sb: the superblock
1543  * @reason: reason why some writeback work was initiated
1544  *
1545  * Start writeback on some inodes on this super_block. No guarantees are made
1546  * on how many (if any) will be written, and this function does not wait
1547  * for IO completion of submitted IO.
1548  */
1549 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1550 {
1551         return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1552 }
1553 EXPORT_SYMBOL(writeback_inodes_sb);
1554
1555 /**
1556  * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
1557  * @sb: the superblock
1558  * @nr: the number of pages to write
1559  * @reason: the reason of writeback
1560  *
1561  * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
1562  * Returns 1 if writeback was started, 0 if not.
1563  */
1564 int try_to_writeback_inodes_sb_nr(struct super_block *sb,
1565                                   unsigned long nr,
1566                                   enum wb_reason reason)
1567 {
1568         if (writeback_in_progress(&sb->s_bdi->wb))
1569                 return 1;
1570
1571         if (!down_read_trylock(&sb->s_umount))
1572                 return 0;
1573
1574         writeback_inodes_sb_nr(sb, nr, reason);
1575         up_read(&sb->s_umount);
1576         return 1;
1577 }
1578 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
1579
1580 /**
1581  * try_to_writeback_inodes_sb - try to start writeback if none underway
1582  * @sb: the superblock
1583  * @reason: reason why some writeback work was initiated
1584  *
1585  * Implement by try_to_writeback_inodes_sb_nr()
1586  * Returns 1 if writeback was started, 0 if not.
1587  */
1588 int try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1589 {
1590         return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1591 }
1592 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
1593
1594 /**
1595  * sync_inodes_sb       -       sync sb inode pages
1596  * @sb: the superblock
1597  *
1598  * This function writes and waits on any dirty inode belonging to this
1599  * super_block.
1600  */
1601 void sync_inodes_sb(struct super_block *sb)
1602 {
1603         DECLARE_COMPLETION_ONSTACK(done);
1604         struct wb_writeback_work work = {
1605                 .sb             = sb,
1606                 .sync_mode      = WB_SYNC_ALL,
1607                 .nr_pages       = LONG_MAX,
1608                 .range_cyclic   = 0,
1609                 .done           = &done,
1610                 .reason         = WB_REASON_SYNC,
1611                 .for_sync       = 1,
1612         };
1613         struct backing_dev_info *bdi = sb->s_bdi;
1614
1615         /* Nothing to do? */
1616         if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
1617                 return;
1618         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1619
1620         wb_queue_work(&bdi->wb, &work);
1621         wait_for_completion(&done);
1622
1623         wait_sb_inodes(sb);
1624 }
1625 EXPORT_SYMBOL(sync_inodes_sb);
1626
1627 /**
1628  * write_inode_now      -       write an inode to disk
1629  * @inode: inode to write to disk
1630  * @sync: whether the write should be synchronous or not
1631  *
1632  * This function commits an inode to disk immediately if it is dirty. This is
1633  * primarily needed by knfsd.
1634  *
1635  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1636  */
1637 int write_inode_now(struct inode *inode, int sync)
1638 {
1639         struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1640         struct writeback_control wbc = {
1641                 .nr_to_write = LONG_MAX,
1642                 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1643                 .range_start = 0,
1644                 .range_end = LLONG_MAX,
1645         };
1646
1647         if (!mapping_cap_writeback_dirty(inode->i_mapping))
1648                 wbc.nr_to_write = 0;
1649
1650         might_sleep();
1651         return writeback_single_inode(inode, wb, &wbc);
1652 }
1653 EXPORT_SYMBOL(write_inode_now);
1654
1655 /**
1656  * sync_inode - write an inode and its pages to disk.
1657  * @inode: the inode to sync
1658  * @wbc: controls the writeback mode
1659  *
1660  * sync_inode() will write an inode and its pages to disk.  It will also
1661  * correctly update the inode on its superblock's dirty inode lists and will
1662  * update inode->i_state.
1663  *
1664  * The caller must have a ref on the inode.
1665  */
1666 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1667 {
1668         return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
1669 }
1670 EXPORT_SYMBOL(sync_inode);
1671
1672 /**
1673  * sync_inode_metadata - write an inode to disk
1674  * @inode: the inode to sync
1675  * @wait: wait for I/O to complete.
1676  *
1677  * Write an inode to disk and adjust its dirty state after completion.
1678  *
1679  * Note: only writes the actual inode, no associated data or other metadata.
1680  */
1681 int sync_inode_metadata(struct inode *inode, int wait)
1682 {
1683         struct writeback_control wbc = {
1684                 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1685                 .nr_to_write = 0, /* metadata-only */
1686         };
1687
1688         return sync_inode(inode, &wbc);
1689 }
1690 EXPORT_SYMBOL(sync_inode_metadata);