08f5496fcf1b5a6dede24a03385bee5c24b7e1be
[linux-2.6-microblaze.git] / fs / fs-writeback.c
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002    Andrew Morton
12  *              Split out of fs/inode.c
13  *              Additions for address_space-based writeback
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include <linux/memcontrol.h>
31 #include "internal.h"
32
33 /*
34  * 4MB minimal write chunk size
35  */
36 #define MIN_WRITEBACK_PAGES     (4096UL >> (PAGE_CACHE_SHIFT - 10))
37
38 struct wb_completion {
39         atomic_t                cnt;
40 };
41
42 /*
43  * Passed into wb_writeback(), essentially a subset of writeback_control
44  */
45 struct wb_writeback_work {
46         long nr_pages;
47         struct super_block *sb;
48         unsigned long *older_than_this;
49         enum writeback_sync_modes sync_mode;
50         unsigned int tagged_writepages:1;
51         unsigned int for_kupdate:1;
52         unsigned int range_cyclic:1;
53         unsigned int for_background:1;
54         unsigned int for_sync:1;        /* sync(2) WB_SYNC_ALL writeback */
55         unsigned int auto_free:1;       /* free on completion */
56         unsigned int single_wait:1;
57         unsigned int single_done:1;
58         enum wb_reason reason;          /* why was writeback initiated? */
59
60         struct list_head list;          /* pending work list */
61         struct wb_completion *done;     /* set if the caller waits */
62 };
63
64 /*
65  * If one wants to wait for one or more wb_writeback_works, each work's
66  * ->done should be set to a wb_completion defined using the following
67  * macro.  Once all work items are issued with wb_queue_work(), the caller
68  * can wait for the completion of all using wb_wait_for_completion().  Work
69  * items which are waited upon aren't freed automatically on completion.
70  */
71 #define DEFINE_WB_COMPLETION_ONSTACK(cmpl)                              \
72         struct wb_completion cmpl = {                                   \
73                 .cnt            = ATOMIC_INIT(1),                       \
74         }
75
76
77 /*
78  * If an inode is constantly having its pages dirtied, but then the
79  * updates stop dirtytime_expire_interval seconds in the past, it's
80  * possible for the worst case time between when an inode has its
81  * timestamps updated and when they finally get written out to be two
82  * dirtytime_expire_intervals.  We set the default to 12 hours (in
83  * seconds), which means most of the time inodes will have their
84  * timestamps written to disk after 12 hours, but in the worst case a
85  * few inodes might not their timestamps updated for 24 hours.
86  */
87 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
88
89 static inline struct inode *wb_inode(struct list_head *head)
90 {
91         return list_entry(head, struct inode, i_wb_list);
92 }
93
94 /*
95  * Include the creation of the trace points after defining the
96  * wb_writeback_work structure and inline functions so that the definition
97  * remains local to this file.
98  */
99 #define CREATE_TRACE_POINTS
100 #include <trace/events/writeback.h>
101
102 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
103
104 static bool wb_io_lists_populated(struct bdi_writeback *wb)
105 {
106         if (wb_has_dirty_io(wb)) {
107                 return false;
108         } else {
109                 set_bit(WB_has_dirty_io, &wb->state);
110                 WARN_ON_ONCE(!wb->avg_write_bandwidth);
111                 atomic_long_add(wb->avg_write_bandwidth,
112                                 &wb->bdi->tot_write_bandwidth);
113                 return true;
114         }
115 }
116
117 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
118 {
119         if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
120             list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
121                 clear_bit(WB_has_dirty_io, &wb->state);
122                 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
123                                         &wb->bdi->tot_write_bandwidth) < 0);
124         }
125 }
126
127 /**
128  * inode_wb_list_move_locked - move an inode onto a bdi_writeback IO list
129  * @inode: inode to be moved
130  * @wb: target bdi_writeback
131  * @head: one of @wb->b_{dirty|io|more_io}
132  *
133  * Move @inode->i_wb_list to @list of @wb and set %WB_has_dirty_io.
134  * Returns %true if @inode is the first occupant of the !dirty_time IO
135  * lists; otherwise, %false.
136  */
137 static bool inode_wb_list_move_locked(struct inode *inode,
138                                       struct bdi_writeback *wb,
139                                       struct list_head *head)
140 {
141         assert_spin_locked(&wb->list_lock);
142
143         list_move(&inode->i_wb_list, head);
144
145         /* dirty_time doesn't count as dirty_io until expiration */
146         if (head != &wb->b_dirty_time)
147                 return wb_io_lists_populated(wb);
148
149         wb_io_lists_depopulated(wb);
150         return false;
151 }
152
153 /**
154  * inode_wb_list_del_locked - remove an inode from its bdi_writeback IO list
155  * @inode: inode to be removed
156  * @wb: bdi_writeback @inode is being removed from
157  *
158  * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
159  * clear %WB_has_dirty_io if all are empty afterwards.
160  */
161 static void inode_wb_list_del_locked(struct inode *inode,
162                                      struct bdi_writeback *wb)
163 {
164         assert_spin_locked(&wb->list_lock);
165
166         list_del_init(&inode->i_wb_list);
167         wb_io_lists_depopulated(wb);
168 }
169
170 static void wb_wakeup(struct bdi_writeback *wb)
171 {
172         spin_lock_bh(&wb->work_lock);
173         if (test_bit(WB_registered, &wb->state))
174                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
175         spin_unlock_bh(&wb->work_lock);
176 }
177
178 static void wb_queue_work(struct bdi_writeback *wb,
179                           struct wb_writeback_work *work)
180 {
181         trace_writeback_queue(wb->bdi, work);
182
183         spin_lock_bh(&wb->work_lock);
184         if (!test_bit(WB_registered, &wb->state)) {
185                 if (work->single_wait)
186                         work->single_done = 1;
187                 goto out_unlock;
188         }
189         if (work->done)
190                 atomic_inc(&work->done->cnt);
191         list_add_tail(&work->list, &wb->work_list);
192         mod_delayed_work(bdi_wq, &wb->dwork, 0);
193 out_unlock:
194         spin_unlock_bh(&wb->work_lock);
195 }
196
197 /**
198  * wb_wait_for_completion - wait for completion of bdi_writeback_works
199  * @bdi: bdi work items were issued to
200  * @done: target wb_completion
201  *
202  * Wait for one or more work items issued to @bdi with their ->done field
203  * set to @done, which should have been defined with
204  * DEFINE_WB_COMPLETION_ONSTACK().  This function returns after all such
205  * work items are completed.  Work items which are waited upon aren't freed
206  * automatically on completion.
207  */
208 static void wb_wait_for_completion(struct backing_dev_info *bdi,
209                                    struct wb_completion *done)
210 {
211         atomic_dec(&done->cnt);         /* put down the initial count */
212         wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
213 }
214
215 #ifdef CONFIG_CGROUP_WRITEBACK
216
217 /* parameters for foreign inode detection, see wb_detach_inode() */
218 #define WB_FRN_TIME_SHIFT       13      /* 1s = 2^13, upto 8 secs w/ 16bit */
219 #define WB_FRN_TIME_AVG_SHIFT   3       /* avg = avg * 7/8 + new * 1/8 */
220 #define WB_FRN_TIME_CUT_DIV     2       /* ignore rounds < avg / 2 */
221 #define WB_FRN_TIME_PERIOD      (2 * (1 << WB_FRN_TIME_SHIFT))  /* 2s */
222
223 #define WB_FRN_HIST_SLOTS       16      /* inode->i_wb_frn_history is 16bit */
224 #define WB_FRN_HIST_UNIT        (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
225                                         /* each slot's duration is 2s / 16 */
226 #define WB_FRN_HIST_THR_SLOTS   (WB_FRN_HIST_SLOTS / 2)
227                                         /* if foreign slots >= 8, switch */
228 #define WB_FRN_HIST_MAX_SLOTS   (WB_FRN_HIST_THR_SLOTS / 2 + 1)
229                                         /* one round can affect upto 5 slots */
230
231 void __inode_attach_wb(struct inode *inode, struct page *page)
232 {
233         struct backing_dev_info *bdi = inode_to_bdi(inode);
234         struct bdi_writeback *wb = NULL;
235
236         if (inode_cgwb_enabled(inode)) {
237                 struct cgroup_subsys_state *memcg_css;
238
239                 if (page) {
240                         memcg_css = mem_cgroup_css_from_page(page);
241                         wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
242                 } else {
243                         /* must pin memcg_css, see wb_get_create() */
244                         memcg_css = task_get_css(current, memory_cgrp_id);
245                         wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
246                         css_put(memcg_css);
247                 }
248         }
249
250         if (!wb)
251                 wb = &bdi->wb;
252
253         /*
254          * There may be multiple instances of this function racing to
255          * update the same inode.  Use cmpxchg() to tell the winner.
256          */
257         if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
258                 wb_put(wb);
259 }
260
261 /**
262  * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
263  * @inode: inode of interest with i_lock held
264  *
265  * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
266  * held on entry and is released on return.  The returned wb is guaranteed
267  * to stay @inode's associated wb until its list_lock is released.
268  */
269 static struct bdi_writeback *
270 locked_inode_to_wb_and_lock_list(struct inode *inode)
271         __releases(&inode->i_lock)
272         __acquires(&wb->list_lock)
273 {
274         while (true) {
275                 struct bdi_writeback *wb = inode_to_wb(inode);
276
277                 /*
278                  * inode_to_wb() association is protected by both
279                  * @inode->i_lock and @wb->list_lock but list_lock nests
280                  * outside i_lock.  Drop i_lock and verify that the
281                  * association hasn't changed after acquiring list_lock.
282                  */
283                 wb_get(wb);
284                 spin_unlock(&inode->i_lock);
285                 spin_lock(&wb->list_lock);
286                 wb_put(wb);             /* not gonna deref it anymore */
287
288                 if (likely(wb == inode_to_wb(inode)))
289                         return wb;      /* @inode already has ref */
290
291                 spin_unlock(&wb->list_lock);
292                 cpu_relax();
293                 spin_lock(&inode->i_lock);
294         }
295 }
296
297 /**
298  * inode_to_wb_and_lock_list - determine an inode's wb and lock it
299  * @inode: inode of interest
300  *
301  * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
302  * on entry.
303  */
304 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
305         __acquires(&wb->list_lock)
306 {
307         spin_lock(&inode->i_lock);
308         return locked_inode_to_wb_and_lock_list(inode);
309 }
310
311 struct inode_switch_wbs_context {
312         struct inode            *inode;
313         struct bdi_writeback    *new_wb;
314
315         struct rcu_head         rcu_head;
316         struct work_struct      work;
317 };
318
319 static void inode_switch_wbs_work_fn(struct work_struct *work)
320 {
321         struct inode_switch_wbs_context *isw =
322                 container_of(work, struct inode_switch_wbs_context, work);
323         struct inode *inode = isw->inode;
324         struct bdi_writeback *new_wb = isw->new_wb;
325
326         /*
327          * By the time control reaches here, RCU grace period has passed
328          * since I_WB_SWITCH assertion and all wb stat update transactions
329          * between unlocked_inode_to_wb_begin/end() are guaranteed to be
330          * synchronizing against mapping->tree_lock.
331          */
332         spin_lock(&inode->i_lock);
333
334         inode->i_wb_frn_winner = 0;
335         inode->i_wb_frn_avg_time = 0;
336         inode->i_wb_frn_history = 0;
337
338         /*
339          * Paired with load_acquire in unlocked_inode_to_wb_begin() and
340          * ensures that the new wb is visible if they see !I_WB_SWITCH.
341          */
342         smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
343
344         spin_unlock(&inode->i_lock);
345
346         iput(inode);
347         wb_put(new_wb);
348         kfree(isw);
349 }
350
351 static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
352 {
353         struct inode_switch_wbs_context *isw = container_of(rcu_head,
354                                 struct inode_switch_wbs_context, rcu_head);
355
356         /* needs to grab bh-unsafe locks, bounce to work item */
357         INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
358         schedule_work(&isw->work);
359 }
360
361 /**
362  * inode_switch_wbs - change the wb association of an inode
363  * @inode: target inode
364  * @new_wb_id: ID of the new wb
365  *
366  * Switch @inode's wb association to the wb identified by @new_wb_id.  The
367  * switching is performed asynchronously and may fail silently.
368  */
369 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
370 {
371         struct backing_dev_info *bdi = inode_to_bdi(inode);
372         struct cgroup_subsys_state *memcg_css;
373         struct inode_switch_wbs_context *isw;
374
375         /* noop if seems to be already in progress */
376         if (inode->i_state & I_WB_SWITCH)
377                 return;
378
379         isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
380         if (!isw)
381                 return;
382
383         /* find and pin the new wb */
384         rcu_read_lock();
385         memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
386         if (memcg_css)
387                 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
388         rcu_read_unlock();
389         if (!isw->new_wb)
390                 goto out_free;
391
392         /* while holding I_WB_SWITCH, no one else can update the association */
393         spin_lock(&inode->i_lock);
394         if (inode->i_state & (I_WB_SWITCH | I_FREEING) ||
395             inode_to_wb(inode) == isw->new_wb) {
396                 spin_unlock(&inode->i_lock);
397                 goto out_free;
398         }
399         inode->i_state |= I_WB_SWITCH;
400         spin_unlock(&inode->i_lock);
401
402         ihold(inode);
403         isw->inode = inode;
404
405         /*
406          * In addition to synchronizing among switchers, I_WB_SWITCH tells
407          * the RCU protected stat update paths to grab the mapping's
408          * tree_lock so that stat transfer can synchronize against them.
409          * Let's continue after I_WB_SWITCH is guaranteed to be visible.
410          */
411         call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
412         return;
413
414 out_free:
415         if (isw->new_wb)
416                 wb_put(isw->new_wb);
417         kfree(isw);
418 }
419
420 /**
421  * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
422  * @wbc: writeback_control of interest
423  * @inode: target inode
424  *
425  * @inode is locked and about to be written back under the control of @wbc.
426  * Record @inode's writeback context into @wbc and unlock the i_lock.  On
427  * writeback completion, wbc_detach_inode() should be called.  This is used
428  * to track the cgroup writeback context.
429  */
430 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
431                                  struct inode *inode)
432 {
433         wbc->wb = inode_to_wb(inode);
434         wbc->inode = inode;
435
436         wbc->wb_id = wbc->wb->memcg_css->id;
437         wbc->wb_lcand_id = inode->i_wb_frn_winner;
438         wbc->wb_tcand_id = 0;
439         wbc->wb_bytes = 0;
440         wbc->wb_lcand_bytes = 0;
441         wbc->wb_tcand_bytes = 0;
442
443         wb_get(wbc->wb);
444         spin_unlock(&inode->i_lock);
445 }
446
447 /**
448  * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
449  * @wbc: writeback_control of the just finished writeback
450  *
451  * To be called after a writeback attempt of an inode finishes and undoes
452  * wbc_attach_and_unlock_inode().  Can be called under any context.
453  *
454  * As concurrent write sharing of an inode is expected to be very rare and
455  * memcg only tracks page ownership on first-use basis severely confining
456  * the usefulness of such sharing, cgroup writeback tracks ownership
457  * per-inode.  While the support for concurrent write sharing of an inode
458  * is deemed unnecessary, an inode being written to by different cgroups at
459  * different points in time is a lot more common, and, more importantly,
460  * charging only by first-use can too readily lead to grossly incorrect
461  * behaviors (single foreign page can lead to gigabytes of writeback to be
462  * incorrectly attributed).
463  *
464  * To resolve this issue, cgroup writeback detects the majority dirtier of
465  * an inode and transfers the ownership to it.  To avoid unnnecessary
466  * oscillation, the detection mechanism keeps track of history and gives
467  * out the switch verdict only if the foreign usage pattern is stable over
468  * a certain amount of time and/or writeback attempts.
469  *
470  * On each writeback attempt, @wbc tries to detect the majority writer
471  * using Boyer-Moore majority vote algorithm.  In addition to the byte
472  * count from the majority voting, it also counts the bytes written for the
473  * current wb and the last round's winner wb (max of last round's current
474  * wb, the winner from two rounds ago, and the last round's majority
475  * candidate).  Keeping track of the historical winner helps the algorithm
476  * to semi-reliably detect the most active writer even when it's not the
477  * absolute majority.
478  *
479  * Once the winner of the round is determined, whether the winner is
480  * foreign or not and how much IO time the round consumed is recorded in
481  * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
482  * over a certain threshold, the switch verdict is given.
483  */
484 void wbc_detach_inode(struct writeback_control *wbc)
485 {
486         struct bdi_writeback *wb = wbc->wb;
487         struct inode *inode = wbc->inode;
488         u16 history = inode->i_wb_frn_history;
489         unsigned long avg_time = inode->i_wb_frn_avg_time;
490         unsigned long max_bytes, max_time;
491         int max_id;
492
493         /* pick the winner of this round */
494         if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
495             wbc->wb_bytes >= wbc->wb_tcand_bytes) {
496                 max_id = wbc->wb_id;
497                 max_bytes = wbc->wb_bytes;
498         } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
499                 max_id = wbc->wb_lcand_id;
500                 max_bytes = wbc->wb_lcand_bytes;
501         } else {
502                 max_id = wbc->wb_tcand_id;
503                 max_bytes = wbc->wb_tcand_bytes;
504         }
505
506         /*
507          * Calculate the amount of IO time the winner consumed and fold it
508          * into the running average kept per inode.  If the consumed IO
509          * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
510          * deciding whether to switch or not.  This is to prevent one-off
511          * small dirtiers from skewing the verdict.
512          */
513         max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
514                                 wb->avg_write_bandwidth);
515         if (avg_time)
516                 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
517                             (avg_time >> WB_FRN_TIME_AVG_SHIFT);
518         else
519                 avg_time = max_time;    /* immediate catch up on first run */
520
521         if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
522                 int slots;
523
524                 /*
525                  * The switch verdict is reached if foreign wb's consume
526                  * more than a certain proportion of IO time in a
527                  * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
528                  * history mask where each bit represents one sixteenth of
529                  * the period.  Determine the number of slots to shift into
530                  * history from @max_time.
531                  */
532                 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
533                             (unsigned long)WB_FRN_HIST_MAX_SLOTS);
534                 history <<= slots;
535                 if (wbc->wb_id != max_id)
536                         history |= (1U << slots) - 1;
537
538                 /*
539                  * Switch if the current wb isn't the consistent winner.
540                  * If there are multiple closely competing dirtiers, the
541                  * inode may switch across them repeatedly over time, which
542                  * is okay.  The main goal is avoiding keeping an inode on
543                  * the wrong wb for an extended period of time.
544                  */
545                 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
546                         inode_switch_wbs(inode, max_id);
547         }
548
549         /*
550          * Multiple instances of this function may race to update the
551          * following fields but we don't mind occassional inaccuracies.
552          */
553         inode->i_wb_frn_winner = max_id;
554         inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
555         inode->i_wb_frn_history = history;
556
557         wb_put(wbc->wb);
558         wbc->wb = NULL;
559 }
560
561 /**
562  * wbc_account_io - account IO issued during writeback
563  * @wbc: writeback_control of the writeback in progress
564  * @page: page being written out
565  * @bytes: number of bytes being written out
566  *
567  * @bytes from @page are about to written out during the writeback
568  * controlled by @wbc.  Keep the book for foreign inode detection.  See
569  * wbc_detach_inode().
570  */
571 void wbc_account_io(struct writeback_control *wbc, struct page *page,
572                     size_t bytes)
573 {
574         int id;
575
576         /*
577          * pageout() path doesn't attach @wbc to the inode being written
578          * out.  This is intentional as we don't want the function to block
579          * behind a slow cgroup.  Ultimately, we want pageout() to kick off
580          * regular writeback instead of writing things out itself.
581          */
582         if (!wbc->wb)
583                 return;
584
585         rcu_read_lock();
586         id = mem_cgroup_css_from_page(page)->id;
587         rcu_read_unlock();
588
589         if (id == wbc->wb_id) {
590                 wbc->wb_bytes += bytes;
591                 return;
592         }
593
594         if (id == wbc->wb_lcand_id)
595                 wbc->wb_lcand_bytes += bytes;
596
597         /* Boyer-Moore majority vote algorithm */
598         if (!wbc->wb_tcand_bytes)
599                 wbc->wb_tcand_id = id;
600         if (id == wbc->wb_tcand_id)
601                 wbc->wb_tcand_bytes += bytes;
602         else
603                 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
604 }
605
606 /**
607  * inode_congested - test whether an inode is congested
608  * @inode: inode to test for congestion
609  * @cong_bits: mask of WB_[a]sync_congested bits to test
610  *
611  * Tests whether @inode is congested.  @cong_bits is the mask of congestion
612  * bits to test and the return value is the mask of set bits.
613  *
614  * If cgroup writeback is enabled for @inode, the congestion state is
615  * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
616  * associated with @inode is congested; otherwise, the root wb's congestion
617  * state is used.
618  */
619 int inode_congested(struct inode *inode, int cong_bits)
620 {
621         if (inode) {
622                 struct bdi_writeback *wb = inode_to_wb(inode);
623                 if (wb)
624                         return wb_congested(wb, cong_bits);
625         }
626
627         return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
628 }
629 EXPORT_SYMBOL_GPL(inode_congested);
630
631 /**
632  * wb_wait_for_single_work - wait for completion of a single bdi_writeback_work
633  * @bdi: bdi the work item was issued to
634  * @work: work item to wait for
635  *
636  * Wait for the completion of @work which was issued to one of @bdi's
637  * bdi_writeback's.  The caller must have set @work->single_wait before
638  * issuing it.  This wait operates independently fo
639  * wb_wait_for_completion() and also disables automatic freeing of @work.
640  */
641 static void wb_wait_for_single_work(struct backing_dev_info *bdi,
642                                     struct wb_writeback_work *work)
643 {
644         if (WARN_ON_ONCE(!work->single_wait))
645                 return;
646
647         wait_event(bdi->wb_waitq, work->single_done);
648
649         /*
650          * Paired with smp_wmb() in wb_do_writeback() and ensures that all
651          * modifications to @work prior to assertion of ->single_done is
652          * visible to the caller once this function returns.
653          */
654         smp_rmb();
655 }
656
657 /**
658  * wb_split_bdi_pages - split nr_pages to write according to bandwidth
659  * @wb: target bdi_writeback to split @nr_pages to
660  * @nr_pages: number of pages to write for the whole bdi
661  *
662  * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
663  * relation to the total write bandwidth of all wb's w/ dirty inodes on
664  * @wb->bdi.
665  */
666 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
667 {
668         unsigned long this_bw = wb->avg_write_bandwidth;
669         unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
670
671         if (nr_pages == LONG_MAX)
672                 return LONG_MAX;
673
674         /*
675          * This may be called on clean wb's and proportional distribution
676          * may not make sense, just use the original @nr_pages in those
677          * cases.  In general, we wanna err on the side of writing more.
678          */
679         if (!tot_bw || this_bw >= tot_bw)
680                 return nr_pages;
681         else
682                 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
683 }
684
685 /**
686  * wb_clone_and_queue_work - clone a wb_writeback_work and issue it to a wb
687  * @wb: target bdi_writeback
688  * @base_work: source wb_writeback_work
689  *
690  * Try to make a clone of @base_work and issue it to @wb.  If cloning
691  * succeeds, %true is returned; otherwise, @base_work is issued directly
692  * and %false is returned.  In the latter case, the caller is required to
693  * wait for @base_work's completion using wb_wait_for_single_work().
694  *
695  * A clone is auto-freed on completion.  @base_work never is.
696  */
697 static bool wb_clone_and_queue_work(struct bdi_writeback *wb,
698                                     struct wb_writeback_work *base_work)
699 {
700         struct wb_writeback_work *work;
701
702         work = kmalloc(sizeof(*work), GFP_ATOMIC);
703         if (work) {
704                 *work = *base_work;
705                 work->auto_free = 1;
706                 work->single_wait = 0;
707         } else {
708                 work = base_work;
709                 work->auto_free = 0;
710                 work->single_wait = 1;
711         }
712         work->single_done = 0;
713         wb_queue_work(wb, work);
714         return work != base_work;
715 }
716
717 /**
718  * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
719  * @bdi: target backing_dev_info
720  * @base_work: wb_writeback_work to issue
721  * @skip_if_busy: skip wb's which already have writeback in progress
722  *
723  * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
724  * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
725  * distributed to the busy wbs according to each wb's proportion in the
726  * total active write bandwidth of @bdi.
727  */
728 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
729                                   struct wb_writeback_work *base_work,
730                                   bool skip_if_busy)
731 {
732         long nr_pages = base_work->nr_pages;
733         int next_blkcg_id = 0;
734         struct bdi_writeback *wb;
735         struct wb_iter iter;
736
737         might_sleep();
738
739         if (!bdi_has_dirty_io(bdi))
740                 return;
741 restart:
742         rcu_read_lock();
743         bdi_for_each_wb(wb, bdi, &iter, next_blkcg_id) {
744                 if (!wb_has_dirty_io(wb) ||
745                     (skip_if_busy && writeback_in_progress(wb)))
746                         continue;
747
748                 base_work->nr_pages = wb_split_bdi_pages(wb, nr_pages);
749                 if (!wb_clone_and_queue_work(wb, base_work)) {
750                         next_blkcg_id = wb->blkcg_css->id + 1;
751                         rcu_read_unlock();
752                         wb_wait_for_single_work(bdi, base_work);
753                         goto restart;
754                 }
755         }
756         rcu_read_unlock();
757 }
758
759 #else   /* CONFIG_CGROUP_WRITEBACK */
760
761 static struct bdi_writeback *
762 locked_inode_to_wb_and_lock_list(struct inode *inode)
763         __releases(&inode->i_lock)
764         __acquires(&wb->list_lock)
765 {
766         struct bdi_writeback *wb = inode_to_wb(inode);
767
768         spin_unlock(&inode->i_lock);
769         spin_lock(&wb->list_lock);
770         return wb;
771 }
772
773 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
774         __acquires(&wb->list_lock)
775 {
776         struct bdi_writeback *wb = inode_to_wb(inode);
777
778         spin_lock(&wb->list_lock);
779         return wb;
780 }
781
782 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
783 {
784         return nr_pages;
785 }
786
787 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
788                                   struct wb_writeback_work *base_work,
789                                   bool skip_if_busy)
790 {
791         might_sleep();
792
793         if (bdi_has_dirty_io(bdi) &&
794             (!skip_if_busy || !writeback_in_progress(&bdi->wb))) {
795                 base_work->auto_free = 0;
796                 base_work->single_wait = 0;
797                 base_work->single_done = 0;
798                 wb_queue_work(&bdi->wb, base_work);
799         }
800 }
801
802 #endif  /* CONFIG_CGROUP_WRITEBACK */
803
804 void wb_start_writeback(struct bdi_writeback *wb, long nr_pages,
805                         bool range_cyclic, enum wb_reason reason)
806 {
807         struct wb_writeback_work *work;
808
809         if (!wb_has_dirty_io(wb))
810                 return;
811
812         /*
813          * This is WB_SYNC_NONE writeback, so if allocation fails just
814          * wakeup the thread for old dirty data writeback
815          */
816         work = kzalloc(sizeof(*work), GFP_ATOMIC);
817         if (!work) {
818                 trace_writeback_nowork(wb->bdi);
819                 wb_wakeup(wb);
820                 return;
821         }
822
823         work->sync_mode = WB_SYNC_NONE;
824         work->nr_pages  = nr_pages;
825         work->range_cyclic = range_cyclic;
826         work->reason    = reason;
827         work->auto_free = 1;
828
829         wb_queue_work(wb, work);
830 }
831
832 /**
833  * wb_start_background_writeback - start background writeback
834  * @wb: bdi_writback to write from
835  *
836  * Description:
837  *   This makes sure WB_SYNC_NONE background writeback happens. When
838  *   this function returns, it is only guaranteed that for given wb
839  *   some IO is happening if we are over background dirty threshold.
840  *   Caller need not hold sb s_umount semaphore.
841  */
842 void wb_start_background_writeback(struct bdi_writeback *wb)
843 {
844         /*
845          * We just wake up the flusher thread. It will perform background
846          * writeback as soon as there is no other work to do.
847          */
848         trace_writeback_wake_background(wb->bdi);
849         wb_wakeup(wb);
850 }
851
852 /*
853  * Remove the inode from the writeback list it is on.
854  */
855 void inode_wb_list_del(struct inode *inode)
856 {
857         struct bdi_writeback *wb;
858
859         wb = inode_to_wb_and_lock_list(inode);
860         inode_wb_list_del_locked(inode, wb);
861         spin_unlock(&wb->list_lock);
862 }
863
864 /*
865  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
866  * furthest end of its superblock's dirty-inode list.
867  *
868  * Before stamping the inode's ->dirtied_when, we check to see whether it is
869  * already the most-recently-dirtied inode on the b_dirty list.  If that is
870  * the case then the inode must have been redirtied while it was being written
871  * out and we don't reset its dirtied_when.
872  */
873 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
874 {
875         if (!list_empty(&wb->b_dirty)) {
876                 struct inode *tail;
877
878                 tail = wb_inode(wb->b_dirty.next);
879                 if (time_before(inode->dirtied_when, tail->dirtied_when))
880                         inode->dirtied_when = jiffies;
881         }
882         inode_wb_list_move_locked(inode, wb, &wb->b_dirty);
883 }
884
885 /*
886  * requeue inode for re-scanning after bdi->b_io list is exhausted.
887  */
888 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
889 {
890         inode_wb_list_move_locked(inode, wb, &wb->b_more_io);
891 }
892
893 static void inode_sync_complete(struct inode *inode)
894 {
895         inode->i_state &= ~I_SYNC;
896         /* If inode is clean an unused, put it into LRU now... */
897         inode_add_lru(inode);
898         /* Waiters must see I_SYNC cleared before being woken up */
899         smp_mb();
900         wake_up_bit(&inode->i_state, __I_SYNC);
901 }
902
903 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
904 {
905         bool ret = time_after(inode->dirtied_when, t);
906 #ifndef CONFIG_64BIT
907         /*
908          * For inodes being constantly redirtied, dirtied_when can get stuck.
909          * It _appears_ to be in the future, but is actually in distant past.
910          * This test is necessary to prevent such wrapped-around relative times
911          * from permanently stopping the whole bdi writeback.
912          */
913         ret = ret && time_before_eq(inode->dirtied_when, jiffies);
914 #endif
915         return ret;
916 }
917
918 #define EXPIRE_DIRTY_ATIME 0x0001
919
920 /*
921  * Move expired (dirtied before work->older_than_this) dirty inodes from
922  * @delaying_queue to @dispatch_queue.
923  */
924 static int move_expired_inodes(struct list_head *delaying_queue,
925                                struct list_head *dispatch_queue,
926                                int flags,
927                                struct wb_writeback_work *work)
928 {
929         unsigned long *older_than_this = NULL;
930         unsigned long expire_time;
931         LIST_HEAD(tmp);
932         struct list_head *pos, *node;
933         struct super_block *sb = NULL;
934         struct inode *inode;
935         int do_sb_sort = 0;
936         int moved = 0;
937
938         if ((flags & EXPIRE_DIRTY_ATIME) == 0)
939                 older_than_this = work->older_than_this;
940         else if (!work->for_sync) {
941                 expire_time = jiffies - (dirtytime_expire_interval * HZ);
942                 older_than_this = &expire_time;
943         }
944         while (!list_empty(delaying_queue)) {
945                 inode = wb_inode(delaying_queue->prev);
946                 if (older_than_this &&
947                     inode_dirtied_after(inode, *older_than_this))
948                         break;
949                 list_move(&inode->i_wb_list, &tmp);
950                 moved++;
951                 if (flags & EXPIRE_DIRTY_ATIME)
952                         set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
953                 if (sb_is_blkdev_sb(inode->i_sb))
954                         continue;
955                 if (sb && sb != inode->i_sb)
956                         do_sb_sort = 1;
957                 sb = inode->i_sb;
958         }
959
960         /* just one sb in list, splice to dispatch_queue and we're done */
961         if (!do_sb_sort) {
962                 list_splice(&tmp, dispatch_queue);
963                 goto out;
964         }
965
966         /* Move inodes from one superblock together */
967         while (!list_empty(&tmp)) {
968                 sb = wb_inode(tmp.prev)->i_sb;
969                 list_for_each_prev_safe(pos, node, &tmp) {
970                         inode = wb_inode(pos);
971                         if (inode->i_sb == sb)
972                                 list_move(&inode->i_wb_list, dispatch_queue);
973                 }
974         }
975 out:
976         return moved;
977 }
978
979 /*
980  * Queue all expired dirty inodes for io, eldest first.
981  * Before
982  *         newly dirtied     b_dirty    b_io    b_more_io
983  *         =============>    gf         edc     BA
984  * After
985  *         newly dirtied     b_dirty    b_io    b_more_io
986  *         =============>    g          fBAedc
987  *                                           |
988  *                                           +--> dequeue for IO
989  */
990 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
991 {
992         int moved;
993
994         assert_spin_locked(&wb->list_lock);
995         list_splice_init(&wb->b_more_io, &wb->b_io);
996         moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
997         moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
998                                      EXPIRE_DIRTY_ATIME, work);
999         if (moved)
1000                 wb_io_lists_populated(wb);
1001         trace_writeback_queue_io(wb, work, moved);
1002 }
1003
1004 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1005 {
1006         int ret;
1007
1008         if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1009                 trace_writeback_write_inode_start(inode, wbc);
1010                 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1011                 trace_writeback_write_inode(inode, wbc);
1012                 return ret;
1013         }
1014         return 0;
1015 }
1016
1017 /*
1018  * Wait for writeback on an inode to complete. Called with i_lock held.
1019  * Caller must make sure inode cannot go away when we drop i_lock.
1020  */
1021 static void __inode_wait_for_writeback(struct inode *inode)
1022         __releases(inode->i_lock)
1023         __acquires(inode->i_lock)
1024 {
1025         DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1026         wait_queue_head_t *wqh;
1027
1028         wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1029         while (inode->i_state & I_SYNC) {
1030                 spin_unlock(&inode->i_lock);
1031                 __wait_on_bit(wqh, &wq, bit_wait,
1032                               TASK_UNINTERRUPTIBLE);
1033                 spin_lock(&inode->i_lock);
1034         }
1035 }
1036
1037 /*
1038  * Wait for writeback on an inode to complete. Caller must have inode pinned.
1039  */
1040 void inode_wait_for_writeback(struct inode *inode)
1041 {
1042         spin_lock(&inode->i_lock);
1043         __inode_wait_for_writeback(inode);
1044         spin_unlock(&inode->i_lock);
1045 }
1046
1047 /*
1048  * Sleep until I_SYNC is cleared. This function must be called with i_lock
1049  * held and drops it. It is aimed for callers not holding any inode reference
1050  * so once i_lock is dropped, inode can go away.
1051  */
1052 static void inode_sleep_on_writeback(struct inode *inode)
1053         __releases(inode->i_lock)
1054 {
1055         DEFINE_WAIT(wait);
1056         wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1057         int sleep;
1058
1059         prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1060         sleep = inode->i_state & I_SYNC;
1061         spin_unlock(&inode->i_lock);
1062         if (sleep)
1063                 schedule();
1064         finish_wait(wqh, &wait);
1065 }
1066
1067 /*
1068  * Find proper writeback list for the inode depending on its current state and
1069  * possibly also change of its state while we were doing writeback.  Here we
1070  * handle things such as livelock prevention or fairness of writeback among
1071  * inodes. This function can be called only by flusher thread - noone else
1072  * processes all inodes in writeback lists and requeueing inodes behind flusher
1073  * thread's back can have unexpected consequences.
1074  */
1075 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1076                           struct writeback_control *wbc)
1077 {
1078         if (inode->i_state & I_FREEING)
1079                 return;
1080
1081         /*
1082          * Sync livelock prevention. Each inode is tagged and synced in one
1083          * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1084          * the dirty time to prevent enqueue and sync it again.
1085          */
1086         if ((inode->i_state & I_DIRTY) &&
1087             (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1088                 inode->dirtied_when = jiffies;
1089
1090         if (wbc->pages_skipped) {
1091                 /*
1092                  * writeback is not making progress due to locked
1093                  * buffers. Skip this inode for now.
1094                  */
1095                 redirty_tail(inode, wb);
1096                 return;
1097         }
1098
1099         if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1100                 /*
1101                  * We didn't write back all the pages.  nfs_writepages()
1102                  * sometimes bales out without doing anything.
1103                  */
1104                 if (wbc->nr_to_write <= 0) {
1105                         /* Slice used up. Queue for next turn. */
1106                         requeue_io(inode, wb);
1107                 } else {
1108                         /*
1109                          * Writeback blocked by something other than
1110                          * congestion. Delay the inode for some time to
1111                          * avoid spinning on the CPU (100% iowait)
1112                          * retrying writeback of the dirty page/inode
1113                          * that cannot be performed immediately.
1114                          */
1115                         redirty_tail(inode, wb);
1116                 }
1117         } else if (inode->i_state & I_DIRTY) {
1118                 /*
1119                  * Filesystems can dirty the inode during writeback operations,
1120                  * such as delayed allocation during submission or metadata
1121                  * updates after data IO completion.
1122                  */
1123                 redirty_tail(inode, wb);
1124         } else if (inode->i_state & I_DIRTY_TIME) {
1125                 inode->dirtied_when = jiffies;
1126                 inode_wb_list_move_locked(inode, wb, &wb->b_dirty_time);
1127         } else {
1128                 /* The inode is clean. Remove from writeback lists. */
1129                 inode_wb_list_del_locked(inode, wb);
1130         }
1131 }
1132
1133 /*
1134  * Write out an inode and its dirty pages. Do not update the writeback list
1135  * linkage. That is left to the caller. The caller is also responsible for
1136  * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1137  */
1138 static int
1139 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1140 {
1141         struct address_space *mapping = inode->i_mapping;
1142         long nr_to_write = wbc->nr_to_write;
1143         unsigned dirty;
1144         int ret;
1145
1146         WARN_ON(!(inode->i_state & I_SYNC));
1147
1148         trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1149
1150         ret = do_writepages(mapping, wbc);
1151
1152         /*
1153          * Make sure to wait on the data before writing out the metadata.
1154          * This is important for filesystems that modify metadata on data
1155          * I/O completion. We don't do it for sync(2) writeback because it has a
1156          * separate, external IO completion path and ->sync_fs for guaranteeing
1157          * inode metadata is written back correctly.
1158          */
1159         if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1160                 int err = filemap_fdatawait(mapping);
1161                 if (ret == 0)
1162                         ret = err;
1163         }
1164
1165         /*
1166          * Some filesystems may redirty the inode during the writeback
1167          * due to delalloc, clear dirty metadata flags right before
1168          * write_inode()
1169          */
1170         spin_lock(&inode->i_lock);
1171
1172         dirty = inode->i_state & I_DIRTY;
1173         if (inode->i_state & I_DIRTY_TIME) {
1174                 if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
1175                     unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1176                     unlikely(time_after(jiffies,
1177                                         (inode->dirtied_time_when +
1178                                          dirtytime_expire_interval * HZ)))) {
1179                         dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1180                         trace_writeback_lazytime(inode);
1181                 }
1182         } else
1183                 inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1184         inode->i_state &= ~dirty;
1185
1186         /*
1187          * Paired with smp_mb() in __mark_inode_dirty().  This allows
1188          * __mark_inode_dirty() to test i_state without grabbing i_lock -
1189          * either they see the I_DIRTY bits cleared or we see the dirtied
1190          * inode.
1191          *
1192          * I_DIRTY_PAGES is always cleared together above even if @mapping
1193          * still has dirty pages.  The flag is reinstated after smp_mb() if
1194          * necessary.  This guarantees that either __mark_inode_dirty()
1195          * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1196          */
1197         smp_mb();
1198
1199         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1200                 inode->i_state |= I_DIRTY_PAGES;
1201
1202         spin_unlock(&inode->i_lock);
1203
1204         if (dirty & I_DIRTY_TIME)
1205                 mark_inode_dirty_sync(inode);
1206         /* Don't write the inode if only I_DIRTY_PAGES was set */
1207         if (dirty & ~I_DIRTY_PAGES) {
1208                 int err = write_inode(inode, wbc);
1209                 if (ret == 0)
1210                         ret = err;
1211         }
1212         trace_writeback_single_inode(inode, wbc, nr_to_write);
1213         return ret;
1214 }
1215
1216 /*
1217  * Write out an inode's dirty pages. Either the caller has an active reference
1218  * on the inode or the inode has I_WILL_FREE set.
1219  *
1220  * This function is designed to be called for writing back one inode which
1221  * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1222  * and does more profound writeback list handling in writeback_sb_inodes().
1223  */
1224 static int
1225 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
1226                        struct writeback_control *wbc)
1227 {
1228         int ret = 0;
1229
1230         spin_lock(&inode->i_lock);
1231         if (!atomic_read(&inode->i_count))
1232                 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1233         else
1234                 WARN_ON(inode->i_state & I_WILL_FREE);
1235
1236         if (inode->i_state & I_SYNC) {
1237                 if (wbc->sync_mode != WB_SYNC_ALL)
1238                         goto out;
1239                 /*
1240                  * It's a data-integrity sync. We must wait. Since callers hold
1241                  * inode reference or inode has I_WILL_FREE set, it cannot go
1242                  * away under us.
1243                  */
1244                 __inode_wait_for_writeback(inode);
1245         }
1246         WARN_ON(inode->i_state & I_SYNC);
1247         /*
1248          * Skip inode if it is clean and we have no outstanding writeback in
1249          * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1250          * function since flusher thread may be doing for example sync in
1251          * parallel and if we move the inode, it could get skipped. So here we
1252          * make sure inode is on some writeback list and leave it there unless
1253          * we have completely cleaned the inode.
1254          */
1255         if (!(inode->i_state & I_DIRTY_ALL) &&
1256             (wbc->sync_mode != WB_SYNC_ALL ||
1257              !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1258                 goto out;
1259         inode->i_state |= I_SYNC;
1260         wbc_attach_and_unlock_inode(wbc, inode);
1261
1262         ret = __writeback_single_inode(inode, wbc);
1263
1264         wbc_detach_inode(wbc);
1265         spin_lock(&wb->list_lock);
1266         spin_lock(&inode->i_lock);
1267         /*
1268          * If inode is clean, remove it from writeback lists. Otherwise don't
1269          * touch it. See comment above for explanation.
1270          */
1271         if (!(inode->i_state & I_DIRTY_ALL))
1272                 inode_wb_list_del_locked(inode, wb);
1273         spin_unlock(&wb->list_lock);
1274         inode_sync_complete(inode);
1275 out:
1276         spin_unlock(&inode->i_lock);
1277         return ret;
1278 }
1279
1280 static long writeback_chunk_size(struct bdi_writeback *wb,
1281                                  struct wb_writeback_work *work)
1282 {
1283         long pages;
1284
1285         /*
1286          * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1287          * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1288          * here avoids calling into writeback_inodes_wb() more than once.
1289          *
1290          * The intended call sequence for WB_SYNC_ALL writeback is:
1291          *
1292          *      wb_writeback()
1293          *          writeback_sb_inodes()       <== called only once
1294          *              write_cache_pages()     <== called once for each inode
1295          *                   (quickly) tag currently dirty pages
1296          *                   (maybe slowly) sync all tagged pages
1297          */
1298         if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1299                 pages = LONG_MAX;
1300         else {
1301                 pages = min(wb->avg_write_bandwidth / 2,
1302                             global_wb_domain.dirty_limit / DIRTY_SCOPE);
1303                 pages = min(pages, work->nr_pages);
1304                 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1305                                    MIN_WRITEBACK_PAGES);
1306         }
1307
1308         return pages;
1309 }
1310
1311 /*
1312  * Write a portion of b_io inodes which belong to @sb.
1313  *
1314  * Return the number of pages and/or inodes written.
1315  */
1316 static long writeback_sb_inodes(struct super_block *sb,
1317                                 struct bdi_writeback *wb,
1318                                 struct wb_writeback_work *work)
1319 {
1320         struct writeback_control wbc = {
1321                 .sync_mode              = work->sync_mode,
1322                 .tagged_writepages      = work->tagged_writepages,
1323                 .for_kupdate            = work->for_kupdate,
1324                 .for_background         = work->for_background,
1325                 .for_sync               = work->for_sync,
1326                 .range_cyclic           = work->range_cyclic,
1327                 .range_start            = 0,
1328                 .range_end              = LLONG_MAX,
1329         };
1330         unsigned long start_time = jiffies;
1331         long write_chunk;
1332         long wrote = 0;  /* count both pages and inodes */
1333
1334         while (!list_empty(&wb->b_io)) {
1335                 struct inode *inode = wb_inode(wb->b_io.prev);
1336
1337                 if (inode->i_sb != sb) {
1338                         if (work->sb) {
1339                                 /*
1340                                  * We only want to write back data for this
1341                                  * superblock, move all inodes not belonging
1342                                  * to it back onto the dirty list.
1343                                  */
1344                                 redirty_tail(inode, wb);
1345                                 continue;
1346                         }
1347
1348                         /*
1349                          * The inode belongs to a different superblock.
1350                          * Bounce back to the caller to unpin this and
1351                          * pin the next superblock.
1352                          */
1353                         break;
1354                 }
1355
1356                 /*
1357                  * Don't bother with new inodes or inodes being freed, first
1358                  * kind does not need periodic writeout yet, and for the latter
1359                  * kind writeout is handled by the freer.
1360                  */
1361                 spin_lock(&inode->i_lock);
1362                 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1363                         spin_unlock(&inode->i_lock);
1364                         redirty_tail(inode, wb);
1365                         continue;
1366                 }
1367                 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1368                         /*
1369                          * If this inode is locked for writeback and we are not
1370                          * doing writeback-for-data-integrity, move it to
1371                          * b_more_io so that writeback can proceed with the
1372                          * other inodes on s_io.
1373                          *
1374                          * We'll have another go at writing back this inode
1375                          * when we completed a full scan of b_io.
1376                          */
1377                         spin_unlock(&inode->i_lock);
1378                         requeue_io(inode, wb);
1379                         trace_writeback_sb_inodes_requeue(inode);
1380                         continue;
1381                 }
1382                 spin_unlock(&wb->list_lock);
1383
1384                 /*
1385                  * We already requeued the inode if it had I_SYNC set and we
1386                  * are doing WB_SYNC_NONE writeback. So this catches only the
1387                  * WB_SYNC_ALL case.
1388                  */
1389                 if (inode->i_state & I_SYNC) {
1390                         /* Wait for I_SYNC. This function drops i_lock... */
1391                         inode_sleep_on_writeback(inode);
1392                         /* Inode may be gone, start again */
1393                         spin_lock(&wb->list_lock);
1394                         continue;
1395                 }
1396                 inode->i_state |= I_SYNC;
1397                 wbc_attach_and_unlock_inode(&wbc, inode);
1398
1399                 write_chunk = writeback_chunk_size(wb, work);
1400                 wbc.nr_to_write = write_chunk;
1401                 wbc.pages_skipped = 0;
1402
1403                 /*
1404                  * We use I_SYNC to pin the inode in memory. While it is set
1405                  * evict_inode() will wait so the inode cannot be freed.
1406                  */
1407                 __writeback_single_inode(inode, &wbc);
1408
1409                 wbc_detach_inode(&wbc);
1410                 work->nr_pages -= write_chunk - wbc.nr_to_write;
1411                 wrote += write_chunk - wbc.nr_to_write;
1412                 spin_lock(&wb->list_lock);
1413                 spin_lock(&inode->i_lock);
1414                 if (!(inode->i_state & I_DIRTY_ALL))
1415                         wrote++;
1416                 requeue_inode(inode, wb, &wbc);
1417                 inode_sync_complete(inode);
1418                 spin_unlock(&inode->i_lock);
1419                 cond_resched_lock(&wb->list_lock);
1420                 /*
1421                  * bail out to wb_writeback() often enough to check
1422                  * background threshold and other termination conditions.
1423                  */
1424                 if (wrote) {
1425                         if (time_is_before_jiffies(start_time + HZ / 10UL))
1426                                 break;
1427                         if (work->nr_pages <= 0)
1428                                 break;
1429                 }
1430         }
1431         return wrote;
1432 }
1433
1434 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1435                                   struct wb_writeback_work *work)
1436 {
1437         unsigned long start_time = jiffies;
1438         long wrote = 0;
1439
1440         while (!list_empty(&wb->b_io)) {
1441                 struct inode *inode = wb_inode(wb->b_io.prev);
1442                 struct super_block *sb = inode->i_sb;
1443
1444                 if (!trylock_super(sb)) {
1445                         /*
1446                          * trylock_super() may fail consistently due to
1447                          * s_umount being grabbed by someone else. Don't use
1448                          * requeue_io() to avoid busy retrying the inode/sb.
1449                          */
1450                         redirty_tail(inode, wb);
1451                         continue;
1452                 }
1453                 wrote += writeback_sb_inodes(sb, wb, work);
1454                 up_read(&sb->s_umount);
1455
1456                 /* refer to the same tests at the end of writeback_sb_inodes */
1457                 if (wrote) {
1458                         if (time_is_before_jiffies(start_time + HZ / 10UL))
1459                                 break;
1460                         if (work->nr_pages <= 0)
1461                                 break;
1462                 }
1463         }
1464         /* Leave any unwritten inodes on b_io */
1465         return wrote;
1466 }
1467
1468 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1469                                 enum wb_reason reason)
1470 {
1471         struct wb_writeback_work work = {
1472                 .nr_pages       = nr_pages,
1473                 .sync_mode      = WB_SYNC_NONE,
1474                 .range_cyclic   = 1,
1475                 .reason         = reason,
1476         };
1477
1478         spin_lock(&wb->list_lock);
1479         if (list_empty(&wb->b_io))
1480                 queue_io(wb, &work);
1481         __writeback_inodes_wb(wb, &work);
1482         spin_unlock(&wb->list_lock);
1483
1484         return nr_pages - work.nr_pages;
1485 }
1486
1487 /*
1488  * Explicit flushing or periodic writeback of "old" data.
1489  *
1490  * Define "old": the first time one of an inode's pages is dirtied, we mark the
1491  * dirtying-time in the inode's address_space.  So this periodic writeback code
1492  * just walks the superblock inode list, writing back any inodes which are
1493  * older than a specific point in time.
1494  *
1495  * Try to run once per dirty_writeback_interval.  But if a writeback event
1496  * takes longer than a dirty_writeback_interval interval, then leave a
1497  * one-second gap.
1498  *
1499  * older_than_this takes precedence over nr_to_write.  So we'll only write back
1500  * all dirty pages if they are all attached to "old" mappings.
1501  */
1502 static long wb_writeback(struct bdi_writeback *wb,
1503                          struct wb_writeback_work *work)
1504 {
1505         unsigned long wb_start = jiffies;
1506         long nr_pages = work->nr_pages;
1507         unsigned long oldest_jif;
1508         struct inode *inode;
1509         long progress;
1510
1511         oldest_jif = jiffies;
1512         work->older_than_this = &oldest_jif;
1513
1514         spin_lock(&wb->list_lock);
1515         for (;;) {
1516                 /*
1517                  * Stop writeback when nr_pages has been consumed
1518                  */
1519                 if (work->nr_pages <= 0)
1520                         break;
1521
1522                 /*
1523                  * Background writeout and kupdate-style writeback may
1524                  * run forever. Stop them if there is other work to do
1525                  * so that e.g. sync can proceed. They'll be restarted
1526                  * after the other works are all done.
1527                  */
1528                 if ((work->for_background || work->for_kupdate) &&
1529                     !list_empty(&wb->work_list))
1530                         break;
1531
1532                 /*
1533                  * For background writeout, stop when we are below the
1534                  * background dirty threshold
1535                  */
1536                 if (work->for_background && !wb_over_bg_thresh(wb))
1537                         break;
1538
1539                 /*
1540                  * Kupdate and background works are special and we want to
1541                  * include all inodes that need writing. Livelock avoidance is
1542                  * handled by these works yielding to any other work so we are
1543                  * safe.
1544                  */
1545                 if (work->for_kupdate) {
1546                         oldest_jif = jiffies -
1547                                 msecs_to_jiffies(dirty_expire_interval * 10);
1548                 } else if (work->for_background)
1549                         oldest_jif = jiffies;
1550
1551                 trace_writeback_start(wb->bdi, work);
1552                 if (list_empty(&wb->b_io))
1553                         queue_io(wb, work);
1554                 if (work->sb)
1555                         progress = writeback_sb_inodes(work->sb, wb, work);
1556                 else
1557                         progress = __writeback_inodes_wb(wb, work);
1558                 trace_writeback_written(wb->bdi, work);
1559
1560                 wb_update_bandwidth(wb, wb_start);
1561
1562                 /*
1563                  * Did we write something? Try for more
1564                  *
1565                  * Dirty inodes are moved to b_io for writeback in batches.
1566                  * The completion of the current batch does not necessarily
1567                  * mean the overall work is done. So we keep looping as long
1568                  * as made some progress on cleaning pages or inodes.
1569                  */
1570                 if (progress)
1571                         continue;
1572                 /*
1573                  * No more inodes for IO, bail
1574                  */
1575                 if (list_empty(&wb->b_more_io))
1576                         break;
1577                 /*
1578                  * Nothing written. Wait for some inode to
1579                  * become available for writeback. Otherwise
1580                  * we'll just busyloop.
1581                  */
1582                 if (!list_empty(&wb->b_more_io))  {
1583                         trace_writeback_wait(wb->bdi, work);
1584                         inode = wb_inode(wb->b_more_io.prev);
1585                         spin_lock(&inode->i_lock);
1586                         spin_unlock(&wb->list_lock);
1587                         /* This function drops i_lock... */
1588                         inode_sleep_on_writeback(inode);
1589                         spin_lock(&wb->list_lock);
1590                 }
1591         }
1592         spin_unlock(&wb->list_lock);
1593
1594         return nr_pages - work->nr_pages;
1595 }
1596
1597 /*
1598  * Return the next wb_writeback_work struct that hasn't been processed yet.
1599  */
1600 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1601 {
1602         struct wb_writeback_work *work = NULL;
1603
1604         spin_lock_bh(&wb->work_lock);
1605         if (!list_empty(&wb->work_list)) {
1606                 work = list_entry(wb->work_list.next,
1607                                   struct wb_writeback_work, list);
1608                 list_del_init(&work->list);
1609         }
1610         spin_unlock_bh(&wb->work_lock);
1611         return work;
1612 }
1613
1614 /*
1615  * Add in the number of potentially dirty inodes, because each inode
1616  * write can dirty pagecache in the underlying blockdev.
1617  */
1618 static unsigned long get_nr_dirty_pages(void)
1619 {
1620         return global_page_state(NR_FILE_DIRTY) +
1621                 global_page_state(NR_UNSTABLE_NFS) +
1622                 get_nr_dirty_inodes();
1623 }
1624
1625 static long wb_check_background_flush(struct bdi_writeback *wb)
1626 {
1627         if (wb_over_bg_thresh(wb)) {
1628
1629                 struct wb_writeback_work work = {
1630                         .nr_pages       = LONG_MAX,
1631                         .sync_mode      = WB_SYNC_NONE,
1632                         .for_background = 1,
1633                         .range_cyclic   = 1,
1634                         .reason         = WB_REASON_BACKGROUND,
1635                 };
1636
1637                 return wb_writeback(wb, &work);
1638         }
1639
1640         return 0;
1641 }
1642
1643 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1644 {
1645         unsigned long expired;
1646         long nr_pages;
1647
1648         /*
1649          * When set to zero, disable periodic writeback
1650          */
1651         if (!dirty_writeback_interval)
1652                 return 0;
1653
1654         expired = wb->last_old_flush +
1655                         msecs_to_jiffies(dirty_writeback_interval * 10);
1656         if (time_before(jiffies, expired))
1657                 return 0;
1658
1659         wb->last_old_flush = jiffies;
1660         nr_pages = get_nr_dirty_pages();
1661
1662         if (nr_pages) {
1663                 struct wb_writeback_work work = {
1664                         .nr_pages       = nr_pages,
1665                         .sync_mode      = WB_SYNC_NONE,
1666                         .for_kupdate    = 1,
1667                         .range_cyclic   = 1,
1668                         .reason         = WB_REASON_PERIODIC,
1669                 };
1670
1671                 return wb_writeback(wb, &work);
1672         }
1673
1674         return 0;
1675 }
1676
1677 /*
1678  * Retrieve work items and do the writeback they describe
1679  */
1680 static long wb_do_writeback(struct bdi_writeback *wb)
1681 {
1682         struct wb_writeback_work *work;
1683         long wrote = 0;
1684
1685         set_bit(WB_writeback_running, &wb->state);
1686         while ((work = get_next_work_item(wb)) != NULL) {
1687                 struct wb_completion *done = work->done;
1688                 bool need_wake_up = false;
1689
1690                 trace_writeback_exec(wb->bdi, work);
1691
1692                 wrote += wb_writeback(wb, work);
1693
1694                 if (work->single_wait) {
1695                         WARN_ON_ONCE(work->auto_free);
1696                         /* paired w/ rmb in wb_wait_for_single_work() */
1697                         smp_wmb();
1698                         work->single_done = 1;
1699                         need_wake_up = true;
1700                 } else if (work->auto_free) {
1701                         kfree(work);
1702                 }
1703
1704                 if (done && atomic_dec_and_test(&done->cnt))
1705                         need_wake_up = true;
1706
1707                 if (need_wake_up)
1708                         wake_up_all(&wb->bdi->wb_waitq);
1709         }
1710
1711         /*
1712          * Check for periodic writeback, kupdated() style
1713          */
1714         wrote += wb_check_old_data_flush(wb);
1715         wrote += wb_check_background_flush(wb);
1716         clear_bit(WB_writeback_running, &wb->state);
1717
1718         return wrote;
1719 }
1720
1721 /*
1722  * Handle writeback of dirty data for the device backed by this bdi. Also
1723  * reschedules periodically and does kupdated style flushing.
1724  */
1725 void wb_workfn(struct work_struct *work)
1726 {
1727         struct bdi_writeback *wb = container_of(to_delayed_work(work),
1728                                                 struct bdi_writeback, dwork);
1729         long pages_written;
1730
1731         set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
1732         current->flags |= PF_SWAPWRITE;
1733
1734         if (likely(!current_is_workqueue_rescuer() ||
1735                    !test_bit(WB_registered, &wb->state))) {
1736                 /*
1737                  * The normal path.  Keep writing back @wb until its
1738                  * work_list is empty.  Note that this path is also taken
1739                  * if @wb is shutting down even when we're running off the
1740                  * rescuer as work_list needs to be drained.
1741                  */
1742                 do {
1743                         pages_written = wb_do_writeback(wb);
1744                         trace_writeback_pages_written(pages_written);
1745                 } while (!list_empty(&wb->work_list));
1746         } else {
1747                 /*
1748                  * bdi_wq can't get enough workers and we're running off
1749                  * the emergency worker.  Don't hog it.  Hopefully, 1024 is
1750                  * enough for efficient IO.
1751                  */
1752                 pages_written = writeback_inodes_wb(wb, 1024,
1753                                                     WB_REASON_FORKER_THREAD);
1754                 trace_writeback_pages_written(pages_written);
1755         }
1756
1757         if (!list_empty(&wb->work_list))
1758                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
1759         else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1760                 wb_wakeup_delayed(wb);
1761
1762         current->flags &= ~PF_SWAPWRITE;
1763 }
1764
1765 /*
1766  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
1767  * the whole world.
1768  */
1769 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1770 {
1771         struct backing_dev_info *bdi;
1772
1773         if (!nr_pages)
1774                 nr_pages = get_nr_dirty_pages();
1775
1776         rcu_read_lock();
1777         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1778                 struct bdi_writeback *wb;
1779                 struct wb_iter iter;
1780
1781                 if (!bdi_has_dirty_io(bdi))
1782                         continue;
1783
1784                 bdi_for_each_wb(wb, bdi, &iter, 0)
1785                         wb_start_writeback(wb, wb_split_bdi_pages(wb, nr_pages),
1786                                            false, reason);
1787         }
1788         rcu_read_unlock();
1789 }
1790
1791 /*
1792  * Wake up bdi's periodically to make sure dirtytime inodes gets
1793  * written back periodically.  We deliberately do *not* check the
1794  * b_dirtytime list in wb_has_dirty_io(), since this would cause the
1795  * kernel to be constantly waking up once there are any dirtytime
1796  * inodes on the system.  So instead we define a separate delayed work
1797  * function which gets called much more rarely.  (By default, only
1798  * once every 12 hours.)
1799  *
1800  * If there is any other write activity going on in the file system,
1801  * this function won't be necessary.  But if the only thing that has
1802  * happened on the file system is a dirtytime inode caused by an atime
1803  * update, we need this infrastructure below to make sure that inode
1804  * eventually gets pushed out to disk.
1805  */
1806 static void wakeup_dirtytime_writeback(struct work_struct *w);
1807 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
1808
1809 static void wakeup_dirtytime_writeback(struct work_struct *w)
1810 {
1811         struct backing_dev_info *bdi;
1812
1813         rcu_read_lock();
1814         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1815                 struct bdi_writeback *wb;
1816                 struct wb_iter iter;
1817
1818                 bdi_for_each_wb(wb, bdi, &iter, 0)
1819                         if (!list_empty(&bdi->wb.b_dirty_time))
1820                                 wb_wakeup(&bdi->wb);
1821         }
1822         rcu_read_unlock();
1823         schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1824 }
1825
1826 static int __init start_dirtytime_writeback(void)
1827 {
1828         schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1829         return 0;
1830 }
1831 __initcall(start_dirtytime_writeback);
1832
1833 int dirtytime_interval_handler(struct ctl_table *table, int write,
1834                                void __user *buffer, size_t *lenp, loff_t *ppos)
1835 {
1836         int ret;
1837
1838         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
1839         if (ret == 0 && write)
1840                 mod_delayed_work(system_wq, &dirtytime_work, 0);
1841         return ret;
1842 }
1843
1844 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1845 {
1846         if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1847                 struct dentry *dentry;
1848                 const char *name = "?";
1849
1850                 dentry = d_find_alias(inode);
1851                 if (dentry) {
1852                         spin_lock(&dentry->d_lock);
1853                         name = (const char *) dentry->d_name.name;
1854                 }
1855                 printk(KERN_DEBUG
1856                        "%s(%d): dirtied inode %lu (%s) on %s\n",
1857                        current->comm, task_pid_nr(current), inode->i_ino,
1858                        name, inode->i_sb->s_id);
1859                 if (dentry) {
1860                         spin_unlock(&dentry->d_lock);
1861                         dput(dentry);
1862                 }
1863         }
1864 }
1865
1866 /**
1867  *      __mark_inode_dirty -    internal function
1868  *      @inode: inode to mark
1869  *      @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1870  *      Mark an inode as dirty. Callers should use mark_inode_dirty or
1871  *      mark_inode_dirty_sync.
1872  *
1873  * Put the inode on the super block's dirty list.
1874  *
1875  * CAREFUL! We mark it dirty unconditionally, but move it onto the
1876  * dirty list only if it is hashed or if it refers to a blockdev.
1877  * If it was not hashed, it will never be added to the dirty list
1878  * even if it is later hashed, as it will have been marked dirty already.
1879  *
1880  * In short, make sure you hash any inodes _before_ you start marking
1881  * them dirty.
1882  *
1883  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1884  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
1885  * the kernel-internal blockdev inode represents the dirtying time of the
1886  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
1887  * page->mapping->host, so the page-dirtying time is recorded in the internal
1888  * blockdev inode.
1889  */
1890 #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
1891 void __mark_inode_dirty(struct inode *inode, int flags)
1892 {
1893         struct super_block *sb = inode->i_sb;
1894         int dirtytime;
1895
1896         trace_writeback_mark_inode_dirty(inode, flags);
1897
1898         /*
1899          * Don't do this for I_DIRTY_PAGES - that doesn't actually
1900          * dirty the inode itself
1901          */
1902         if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
1903                 trace_writeback_dirty_inode_start(inode, flags);
1904
1905                 if (sb->s_op->dirty_inode)
1906                         sb->s_op->dirty_inode(inode, flags);
1907
1908                 trace_writeback_dirty_inode(inode, flags);
1909         }
1910         if (flags & I_DIRTY_INODE)
1911                 flags &= ~I_DIRTY_TIME;
1912         dirtytime = flags & I_DIRTY_TIME;
1913
1914         /*
1915          * Paired with smp_mb() in __writeback_single_inode() for the
1916          * following lockless i_state test.  See there for details.
1917          */
1918         smp_mb();
1919
1920         if (((inode->i_state & flags) == flags) ||
1921             (dirtytime && (inode->i_state & I_DIRTY_INODE)))
1922                 return;
1923
1924         if (unlikely(block_dump))
1925                 block_dump___mark_inode_dirty(inode);
1926
1927         spin_lock(&inode->i_lock);
1928         if (dirtytime && (inode->i_state & I_DIRTY_INODE))
1929                 goto out_unlock_inode;
1930         if ((inode->i_state & flags) != flags) {
1931                 const int was_dirty = inode->i_state & I_DIRTY;
1932
1933                 inode_attach_wb(inode, NULL);
1934
1935                 if (flags & I_DIRTY_INODE)
1936                         inode->i_state &= ~I_DIRTY_TIME;
1937                 inode->i_state |= flags;
1938
1939                 /*
1940                  * If the inode is being synced, just update its dirty state.
1941                  * The unlocker will place the inode on the appropriate
1942                  * superblock list, based upon its state.
1943                  */
1944                 if (inode->i_state & I_SYNC)
1945                         goto out_unlock_inode;
1946
1947                 /*
1948                  * Only add valid (hashed) inodes to the superblock's
1949                  * dirty list.  Add blockdev inodes as well.
1950                  */
1951                 if (!S_ISBLK(inode->i_mode)) {
1952                         if (inode_unhashed(inode))
1953                                 goto out_unlock_inode;
1954                 }
1955                 if (inode->i_state & I_FREEING)
1956                         goto out_unlock_inode;
1957
1958                 /*
1959                  * If the inode was already on b_dirty/b_io/b_more_io, don't
1960                  * reposition it (that would break b_dirty time-ordering).
1961                  */
1962                 if (!was_dirty) {
1963                         struct bdi_writeback *wb;
1964                         struct list_head *dirty_list;
1965                         bool wakeup_bdi = false;
1966
1967                         wb = locked_inode_to_wb_and_lock_list(inode);
1968
1969                         WARN(bdi_cap_writeback_dirty(wb->bdi) &&
1970                              !test_bit(WB_registered, &wb->state),
1971                              "bdi-%s not registered\n", wb->bdi->name);
1972
1973                         inode->dirtied_when = jiffies;
1974                         if (dirtytime)
1975                                 inode->dirtied_time_when = jiffies;
1976
1977                         if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
1978                                 dirty_list = &wb->b_dirty;
1979                         else
1980                                 dirty_list = &wb->b_dirty_time;
1981
1982                         wakeup_bdi = inode_wb_list_move_locked(inode, wb,
1983                                                                dirty_list);
1984
1985                         spin_unlock(&wb->list_lock);
1986                         trace_writeback_dirty_inode_enqueue(inode);
1987
1988                         /*
1989                          * If this is the first dirty inode for this bdi,
1990                          * we have to wake-up the corresponding bdi thread
1991                          * to make sure background write-back happens
1992                          * later.
1993                          */
1994                         if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
1995                                 wb_wakeup_delayed(wb);
1996                         return;
1997                 }
1998         }
1999 out_unlock_inode:
2000         spin_unlock(&inode->i_lock);
2001
2002 }
2003 EXPORT_SYMBOL(__mark_inode_dirty);
2004
2005 static void wait_sb_inodes(struct super_block *sb)
2006 {
2007         struct inode *inode, *old_inode = NULL;
2008
2009         /*
2010          * We need to be protected against the filesystem going from
2011          * r/o to r/w or vice versa.
2012          */
2013         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2014
2015         spin_lock(&inode_sb_list_lock);
2016
2017         /*
2018          * Data integrity sync. Must wait for all pages under writeback,
2019          * because there may have been pages dirtied before our sync
2020          * call, but which had writeout started before we write it out.
2021          * In which case, the inode may not be on the dirty list, but
2022          * we still have to wait for that writeout.
2023          */
2024         list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
2025                 struct address_space *mapping = inode->i_mapping;
2026
2027                 spin_lock(&inode->i_lock);
2028                 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
2029                     (mapping->nrpages == 0)) {
2030                         spin_unlock(&inode->i_lock);
2031                         continue;
2032                 }
2033                 __iget(inode);
2034                 spin_unlock(&inode->i_lock);
2035                 spin_unlock(&inode_sb_list_lock);
2036
2037                 /*
2038                  * We hold a reference to 'inode' so it couldn't have been
2039                  * removed from s_inodes list while we dropped the
2040                  * inode_sb_list_lock.  We cannot iput the inode now as we can
2041                  * be holding the last reference and we cannot iput it under
2042                  * inode_sb_list_lock. So we keep the reference and iput it
2043                  * later.
2044                  */
2045                 iput(old_inode);
2046                 old_inode = inode;
2047
2048                 filemap_fdatawait(mapping);
2049
2050                 cond_resched();
2051
2052                 spin_lock(&inode_sb_list_lock);
2053         }
2054         spin_unlock(&inode_sb_list_lock);
2055         iput(old_inode);
2056 }
2057
2058 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2059                                      enum wb_reason reason, bool skip_if_busy)
2060 {
2061         DEFINE_WB_COMPLETION_ONSTACK(done);
2062         struct wb_writeback_work work = {
2063                 .sb                     = sb,
2064                 .sync_mode              = WB_SYNC_NONE,
2065                 .tagged_writepages      = 1,
2066                 .done                   = &done,
2067                 .nr_pages               = nr,
2068                 .reason                 = reason,
2069         };
2070         struct backing_dev_info *bdi = sb->s_bdi;
2071
2072         if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2073                 return;
2074         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2075
2076         bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2077         wb_wait_for_completion(bdi, &done);
2078 }
2079
2080 /**
2081  * writeback_inodes_sb_nr -     writeback dirty inodes from given super_block
2082  * @sb: the superblock
2083  * @nr: the number of pages to write
2084  * @reason: reason why some writeback work initiated
2085  *
2086  * Start writeback on some inodes on this super_block. No guarantees are made
2087  * on how many (if any) will be written, and this function does not wait
2088  * for IO completion of submitted IO.
2089  */
2090 void writeback_inodes_sb_nr(struct super_block *sb,
2091                             unsigned long nr,
2092                             enum wb_reason reason)
2093 {
2094         __writeback_inodes_sb_nr(sb, nr, reason, false);
2095 }
2096 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2097
2098 /**
2099  * writeback_inodes_sb  -       writeback dirty inodes from given super_block
2100  * @sb: the superblock
2101  * @reason: reason why some writeback work was initiated
2102  *
2103  * Start writeback on some inodes on this super_block. No guarantees are made
2104  * on how many (if any) will be written, and this function does not wait
2105  * for IO completion of submitted IO.
2106  */
2107 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2108 {
2109         return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2110 }
2111 EXPORT_SYMBOL(writeback_inodes_sb);
2112
2113 /**
2114  * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
2115  * @sb: the superblock
2116  * @nr: the number of pages to write
2117  * @reason: the reason of writeback
2118  *
2119  * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
2120  * Returns 1 if writeback was started, 0 if not.
2121  */
2122 bool try_to_writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2123                                    enum wb_reason reason)
2124 {
2125         if (!down_read_trylock(&sb->s_umount))
2126                 return false;
2127
2128         __writeback_inodes_sb_nr(sb, nr, reason, true);
2129         up_read(&sb->s_umount);
2130         return true;
2131 }
2132 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
2133
2134 /**
2135  * try_to_writeback_inodes_sb - try to start writeback if none underway
2136  * @sb: the superblock
2137  * @reason: reason why some writeback work was initiated
2138  *
2139  * Implement by try_to_writeback_inodes_sb_nr()
2140  * Returns 1 if writeback was started, 0 if not.
2141  */
2142 bool try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2143 {
2144         return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2145 }
2146 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2147
2148 /**
2149  * sync_inodes_sb       -       sync sb inode pages
2150  * @sb: the superblock
2151  *
2152  * This function writes and waits on any dirty inode belonging to this
2153  * super_block.
2154  */
2155 void sync_inodes_sb(struct super_block *sb)
2156 {
2157         DEFINE_WB_COMPLETION_ONSTACK(done);
2158         struct wb_writeback_work work = {
2159                 .sb             = sb,
2160                 .sync_mode      = WB_SYNC_ALL,
2161                 .nr_pages       = LONG_MAX,
2162                 .range_cyclic   = 0,
2163                 .done           = &done,
2164                 .reason         = WB_REASON_SYNC,
2165                 .for_sync       = 1,
2166         };
2167         struct backing_dev_info *bdi = sb->s_bdi;
2168
2169         /* Nothing to do? */
2170         if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2171                 return;
2172         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2173
2174         bdi_split_work_to_wbs(bdi, &work, false);
2175         wb_wait_for_completion(bdi, &done);
2176
2177         wait_sb_inodes(sb);
2178 }
2179 EXPORT_SYMBOL(sync_inodes_sb);
2180
2181 /**
2182  * write_inode_now      -       write an inode to disk
2183  * @inode: inode to write to disk
2184  * @sync: whether the write should be synchronous or not
2185  *
2186  * This function commits an inode to disk immediately if it is dirty. This is
2187  * primarily needed by knfsd.
2188  *
2189  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2190  */
2191 int write_inode_now(struct inode *inode, int sync)
2192 {
2193         struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
2194         struct writeback_control wbc = {
2195                 .nr_to_write = LONG_MAX,
2196                 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2197                 .range_start = 0,
2198                 .range_end = LLONG_MAX,
2199         };
2200
2201         if (!mapping_cap_writeback_dirty(inode->i_mapping))
2202                 wbc.nr_to_write = 0;
2203
2204         might_sleep();
2205         return writeback_single_inode(inode, wb, &wbc);
2206 }
2207 EXPORT_SYMBOL(write_inode_now);
2208
2209 /**
2210  * sync_inode - write an inode and its pages to disk.
2211  * @inode: the inode to sync
2212  * @wbc: controls the writeback mode
2213  *
2214  * sync_inode() will write an inode and its pages to disk.  It will also
2215  * correctly update the inode on its superblock's dirty inode lists and will
2216  * update inode->i_state.
2217  *
2218  * The caller must have a ref on the inode.
2219  */
2220 int sync_inode(struct inode *inode, struct writeback_control *wbc)
2221 {
2222         return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
2223 }
2224 EXPORT_SYMBOL(sync_inode);
2225
2226 /**
2227  * sync_inode_metadata - write an inode to disk
2228  * @inode: the inode to sync
2229  * @wait: wait for I/O to complete.
2230  *
2231  * Write an inode to disk and adjust its dirty state after completion.
2232  *
2233  * Note: only writes the actual inode, no associated data or other metadata.
2234  */
2235 int sync_inode_metadata(struct inode *inode, int wait)
2236 {
2237         struct writeback_control wbc = {
2238                 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2239                 .nr_to_write = 0, /* metadata-only */
2240         };
2241
2242         return sync_inode(inode, &wbc);
2243 }
2244 EXPORT_SYMBOL(sync_inode_metadata);