writeback: restructure try_writeback_inodes_sb[_nr]()
[linux-2.6-microblaze.git] / fs / fs-writeback.c
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002    Andrew Morton
12  *              Split out of fs/inode.c
13  *              Additions for address_space-based writeback
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include "internal.h"
31
32 /*
33  * 4MB minimal write chunk size
34  */
35 #define MIN_WRITEBACK_PAGES     (4096UL >> (PAGE_CACHE_SHIFT - 10))
36
37 struct wb_completion {
38         atomic_t                cnt;
39 };
40
41 /*
42  * Passed into wb_writeback(), essentially a subset of writeback_control
43  */
44 struct wb_writeback_work {
45         long nr_pages;
46         struct super_block *sb;
47         unsigned long *older_than_this;
48         enum writeback_sync_modes sync_mode;
49         unsigned int tagged_writepages:1;
50         unsigned int for_kupdate:1;
51         unsigned int range_cyclic:1;
52         unsigned int for_background:1;
53         unsigned int for_sync:1;        /* sync(2) WB_SYNC_ALL writeback */
54         unsigned int auto_free:1;       /* free on completion */
55         unsigned int single_wait:1;
56         unsigned int single_done:1;
57         enum wb_reason reason;          /* why was writeback initiated? */
58
59         struct list_head list;          /* pending work list */
60         struct wb_completion *done;     /* set if the caller waits */
61 };
62
63 /*
64  * If one wants to wait for one or more wb_writeback_works, each work's
65  * ->done should be set to a wb_completion defined using the following
66  * macro.  Once all work items are issued with wb_queue_work(), the caller
67  * can wait for the completion of all using wb_wait_for_completion().  Work
68  * items which are waited upon aren't freed automatically on completion.
69  */
70 #define DEFINE_WB_COMPLETION_ONSTACK(cmpl)                              \
71         struct wb_completion cmpl = {                                   \
72                 .cnt            = ATOMIC_INIT(1),                       \
73         }
74
75
76 /*
77  * If an inode is constantly having its pages dirtied, but then the
78  * updates stop dirtytime_expire_interval seconds in the past, it's
79  * possible for the worst case time between when an inode has its
80  * timestamps updated and when they finally get written out to be two
81  * dirtytime_expire_intervals.  We set the default to 12 hours (in
82  * seconds), which means most of the time inodes will have their
83  * timestamps written to disk after 12 hours, but in the worst case a
84  * few inodes might not their timestamps updated for 24 hours.
85  */
86 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
87
88 static inline struct inode *wb_inode(struct list_head *head)
89 {
90         return list_entry(head, struct inode, i_wb_list);
91 }
92
93 /*
94  * Include the creation of the trace points after defining the
95  * wb_writeback_work structure and inline functions so that the definition
96  * remains local to this file.
97  */
98 #define CREATE_TRACE_POINTS
99 #include <trace/events/writeback.h>
100
101 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
102
103 static bool wb_io_lists_populated(struct bdi_writeback *wb)
104 {
105         if (wb_has_dirty_io(wb)) {
106                 return false;
107         } else {
108                 set_bit(WB_has_dirty_io, &wb->state);
109                 WARN_ON_ONCE(!wb->avg_write_bandwidth);
110                 atomic_long_add(wb->avg_write_bandwidth,
111                                 &wb->bdi->tot_write_bandwidth);
112                 return true;
113         }
114 }
115
116 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
117 {
118         if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
119             list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
120                 clear_bit(WB_has_dirty_io, &wb->state);
121                 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
122                                         &wb->bdi->tot_write_bandwidth) < 0);
123         }
124 }
125
126 /**
127  * inode_wb_list_move_locked - move an inode onto a bdi_writeback IO list
128  * @inode: inode to be moved
129  * @wb: target bdi_writeback
130  * @head: one of @wb->b_{dirty|io|more_io}
131  *
132  * Move @inode->i_wb_list to @list of @wb and set %WB_has_dirty_io.
133  * Returns %true if @inode is the first occupant of the !dirty_time IO
134  * lists; otherwise, %false.
135  */
136 static bool inode_wb_list_move_locked(struct inode *inode,
137                                       struct bdi_writeback *wb,
138                                       struct list_head *head)
139 {
140         assert_spin_locked(&wb->list_lock);
141
142         list_move(&inode->i_wb_list, head);
143
144         /* dirty_time doesn't count as dirty_io until expiration */
145         if (head != &wb->b_dirty_time)
146                 return wb_io_lists_populated(wb);
147
148         wb_io_lists_depopulated(wb);
149         return false;
150 }
151
152 /**
153  * inode_wb_list_del_locked - remove an inode from its bdi_writeback IO list
154  * @inode: inode to be removed
155  * @wb: bdi_writeback @inode is being removed from
156  *
157  * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
158  * clear %WB_has_dirty_io if all are empty afterwards.
159  */
160 static void inode_wb_list_del_locked(struct inode *inode,
161                                      struct bdi_writeback *wb)
162 {
163         assert_spin_locked(&wb->list_lock);
164
165         list_del_init(&inode->i_wb_list);
166         wb_io_lists_depopulated(wb);
167 }
168
169 static void wb_wakeup(struct bdi_writeback *wb)
170 {
171         spin_lock_bh(&wb->work_lock);
172         if (test_bit(WB_registered, &wb->state))
173                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
174         spin_unlock_bh(&wb->work_lock);
175 }
176
177 static void wb_queue_work(struct bdi_writeback *wb,
178                           struct wb_writeback_work *work)
179 {
180         trace_writeback_queue(wb->bdi, work);
181
182         spin_lock_bh(&wb->work_lock);
183         if (!test_bit(WB_registered, &wb->state)) {
184                 if (work->single_wait)
185                         work->single_done = 1;
186                 goto out_unlock;
187         }
188         if (work->done)
189                 atomic_inc(&work->done->cnt);
190         list_add_tail(&work->list, &wb->work_list);
191         mod_delayed_work(bdi_wq, &wb->dwork, 0);
192 out_unlock:
193         spin_unlock_bh(&wb->work_lock);
194 }
195
196 /**
197  * wb_wait_for_completion - wait for completion of bdi_writeback_works
198  * @bdi: bdi work items were issued to
199  * @done: target wb_completion
200  *
201  * Wait for one or more work items issued to @bdi with their ->done field
202  * set to @done, which should have been defined with
203  * DEFINE_WB_COMPLETION_ONSTACK().  This function returns after all such
204  * work items are completed.  Work items which are waited upon aren't freed
205  * automatically on completion.
206  */
207 static void wb_wait_for_completion(struct backing_dev_info *bdi,
208                                    struct wb_completion *done)
209 {
210         atomic_dec(&done->cnt);         /* put down the initial count */
211         wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
212 }
213
214 #ifdef CONFIG_CGROUP_WRITEBACK
215
216 /**
217  * inode_congested - test whether an inode is congested
218  * @inode: inode to test for congestion
219  * @cong_bits: mask of WB_[a]sync_congested bits to test
220  *
221  * Tests whether @inode is congested.  @cong_bits is the mask of congestion
222  * bits to test and the return value is the mask of set bits.
223  *
224  * If cgroup writeback is enabled for @inode, the congestion state is
225  * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
226  * associated with @inode is congested; otherwise, the root wb's congestion
227  * state is used.
228  */
229 int inode_congested(struct inode *inode, int cong_bits)
230 {
231         if (inode) {
232                 struct bdi_writeback *wb = inode_to_wb(inode);
233                 if (wb)
234                         return wb_congested(wb, cong_bits);
235         }
236
237         return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
238 }
239 EXPORT_SYMBOL_GPL(inode_congested);
240
241 /**
242  * wb_wait_for_single_work - wait for completion of a single bdi_writeback_work
243  * @bdi: bdi the work item was issued to
244  * @work: work item to wait for
245  *
246  * Wait for the completion of @work which was issued to one of @bdi's
247  * bdi_writeback's.  The caller must have set @work->single_wait before
248  * issuing it.  This wait operates independently fo
249  * wb_wait_for_completion() and also disables automatic freeing of @work.
250  */
251 static void wb_wait_for_single_work(struct backing_dev_info *bdi,
252                                     struct wb_writeback_work *work)
253 {
254         if (WARN_ON_ONCE(!work->single_wait))
255                 return;
256
257         wait_event(bdi->wb_waitq, work->single_done);
258
259         /*
260          * Paired with smp_wmb() in wb_do_writeback() and ensures that all
261          * modifications to @work prior to assertion of ->single_done is
262          * visible to the caller once this function returns.
263          */
264         smp_rmb();
265 }
266
267 /**
268  * wb_split_bdi_pages - split nr_pages to write according to bandwidth
269  * @wb: target bdi_writeback to split @nr_pages to
270  * @nr_pages: number of pages to write for the whole bdi
271  *
272  * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
273  * relation to the total write bandwidth of all wb's w/ dirty inodes on
274  * @wb->bdi.
275  */
276 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
277 {
278         unsigned long this_bw = wb->avg_write_bandwidth;
279         unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
280
281         if (nr_pages == LONG_MAX)
282                 return LONG_MAX;
283
284         /*
285          * This may be called on clean wb's and proportional distribution
286          * may not make sense, just use the original @nr_pages in those
287          * cases.  In general, we wanna err on the side of writing more.
288          */
289         if (!tot_bw || this_bw >= tot_bw)
290                 return nr_pages;
291         else
292                 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
293 }
294
295 #else   /* CONFIG_CGROUP_WRITEBACK */
296
297 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
298 {
299         return nr_pages;
300 }
301
302 #endif  /* CONFIG_CGROUP_WRITEBACK */
303
304 void wb_start_writeback(struct bdi_writeback *wb, long nr_pages,
305                         bool range_cyclic, enum wb_reason reason)
306 {
307         struct wb_writeback_work *work;
308
309         if (!wb_has_dirty_io(wb))
310                 return;
311
312         /*
313          * This is WB_SYNC_NONE writeback, so if allocation fails just
314          * wakeup the thread for old dirty data writeback
315          */
316         work = kzalloc(sizeof(*work), GFP_ATOMIC);
317         if (!work) {
318                 trace_writeback_nowork(wb->bdi);
319                 wb_wakeup(wb);
320                 return;
321         }
322
323         work->sync_mode = WB_SYNC_NONE;
324         work->nr_pages  = nr_pages;
325         work->range_cyclic = range_cyclic;
326         work->reason    = reason;
327         work->auto_free = 1;
328
329         wb_queue_work(wb, work);
330 }
331
332 /**
333  * wb_start_background_writeback - start background writeback
334  * @wb: bdi_writback to write from
335  *
336  * Description:
337  *   This makes sure WB_SYNC_NONE background writeback happens. When
338  *   this function returns, it is only guaranteed that for given wb
339  *   some IO is happening if we are over background dirty threshold.
340  *   Caller need not hold sb s_umount semaphore.
341  */
342 void wb_start_background_writeback(struct bdi_writeback *wb)
343 {
344         /*
345          * We just wake up the flusher thread. It will perform background
346          * writeback as soon as there is no other work to do.
347          */
348         trace_writeback_wake_background(wb->bdi);
349         wb_wakeup(wb);
350 }
351
352 /*
353  * Remove the inode from the writeback list it is on.
354  */
355 void inode_wb_list_del(struct inode *inode)
356 {
357         struct bdi_writeback *wb = inode_to_wb(inode);
358
359         spin_lock(&wb->list_lock);
360         inode_wb_list_del_locked(inode, wb);
361         spin_unlock(&wb->list_lock);
362 }
363
364 /*
365  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
366  * furthest end of its superblock's dirty-inode list.
367  *
368  * Before stamping the inode's ->dirtied_when, we check to see whether it is
369  * already the most-recently-dirtied inode on the b_dirty list.  If that is
370  * the case then the inode must have been redirtied while it was being written
371  * out and we don't reset its dirtied_when.
372  */
373 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
374 {
375         if (!list_empty(&wb->b_dirty)) {
376                 struct inode *tail;
377
378                 tail = wb_inode(wb->b_dirty.next);
379                 if (time_before(inode->dirtied_when, tail->dirtied_when))
380                         inode->dirtied_when = jiffies;
381         }
382         inode_wb_list_move_locked(inode, wb, &wb->b_dirty);
383 }
384
385 /*
386  * requeue inode for re-scanning after bdi->b_io list is exhausted.
387  */
388 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
389 {
390         inode_wb_list_move_locked(inode, wb, &wb->b_more_io);
391 }
392
393 static void inode_sync_complete(struct inode *inode)
394 {
395         inode->i_state &= ~I_SYNC;
396         /* If inode is clean an unused, put it into LRU now... */
397         inode_add_lru(inode);
398         /* Waiters must see I_SYNC cleared before being woken up */
399         smp_mb();
400         wake_up_bit(&inode->i_state, __I_SYNC);
401 }
402
403 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
404 {
405         bool ret = time_after(inode->dirtied_when, t);
406 #ifndef CONFIG_64BIT
407         /*
408          * For inodes being constantly redirtied, dirtied_when can get stuck.
409          * It _appears_ to be in the future, but is actually in distant past.
410          * This test is necessary to prevent such wrapped-around relative times
411          * from permanently stopping the whole bdi writeback.
412          */
413         ret = ret && time_before_eq(inode->dirtied_when, jiffies);
414 #endif
415         return ret;
416 }
417
418 #define EXPIRE_DIRTY_ATIME 0x0001
419
420 /*
421  * Move expired (dirtied before work->older_than_this) dirty inodes from
422  * @delaying_queue to @dispatch_queue.
423  */
424 static int move_expired_inodes(struct list_head *delaying_queue,
425                                struct list_head *dispatch_queue,
426                                int flags,
427                                struct wb_writeback_work *work)
428 {
429         unsigned long *older_than_this = NULL;
430         unsigned long expire_time;
431         LIST_HEAD(tmp);
432         struct list_head *pos, *node;
433         struct super_block *sb = NULL;
434         struct inode *inode;
435         int do_sb_sort = 0;
436         int moved = 0;
437
438         if ((flags & EXPIRE_DIRTY_ATIME) == 0)
439                 older_than_this = work->older_than_this;
440         else if (!work->for_sync) {
441                 expire_time = jiffies - (dirtytime_expire_interval * HZ);
442                 older_than_this = &expire_time;
443         }
444         while (!list_empty(delaying_queue)) {
445                 inode = wb_inode(delaying_queue->prev);
446                 if (older_than_this &&
447                     inode_dirtied_after(inode, *older_than_this))
448                         break;
449                 list_move(&inode->i_wb_list, &tmp);
450                 moved++;
451                 if (flags & EXPIRE_DIRTY_ATIME)
452                         set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
453                 if (sb_is_blkdev_sb(inode->i_sb))
454                         continue;
455                 if (sb && sb != inode->i_sb)
456                         do_sb_sort = 1;
457                 sb = inode->i_sb;
458         }
459
460         /* just one sb in list, splice to dispatch_queue and we're done */
461         if (!do_sb_sort) {
462                 list_splice(&tmp, dispatch_queue);
463                 goto out;
464         }
465
466         /* Move inodes from one superblock together */
467         while (!list_empty(&tmp)) {
468                 sb = wb_inode(tmp.prev)->i_sb;
469                 list_for_each_prev_safe(pos, node, &tmp) {
470                         inode = wb_inode(pos);
471                         if (inode->i_sb == sb)
472                                 list_move(&inode->i_wb_list, dispatch_queue);
473                 }
474         }
475 out:
476         return moved;
477 }
478
479 /*
480  * Queue all expired dirty inodes for io, eldest first.
481  * Before
482  *         newly dirtied     b_dirty    b_io    b_more_io
483  *         =============>    gf         edc     BA
484  * After
485  *         newly dirtied     b_dirty    b_io    b_more_io
486  *         =============>    g          fBAedc
487  *                                           |
488  *                                           +--> dequeue for IO
489  */
490 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
491 {
492         int moved;
493
494         assert_spin_locked(&wb->list_lock);
495         list_splice_init(&wb->b_more_io, &wb->b_io);
496         moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
497         moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
498                                      EXPIRE_DIRTY_ATIME, work);
499         if (moved)
500                 wb_io_lists_populated(wb);
501         trace_writeback_queue_io(wb, work, moved);
502 }
503
504 static int write_inode(struct inode *inode, struct writeback_control *wbc)
505 {
506         int ret;
507
508         if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
509                 trace_writeback_write_inode_start(inode, wbc);
510                 ret = inode->i_sb->s_op->write_inode(inode, wbc);
511                 trace_writeback_write_inode(inode, wbc);
512                 return ret;
513         }
514         return 0;
515 }
516
517 /*
518  * Wait for writeback on an inode to complete. Called with i_lock held.
519  * Caller must make sure inode cannot go away when we drop i_lock.
520  */
521 static void __inode_wait_for_writeback(struct inode *inode)
522         __releases(inode->i_lock)
523         __acquires(inode->i_lock)
524 {
525         DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
526         wait_queue_head_t *wqh;
527
528         wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
529         while (inode->i_state & I_SYNC) {
530                 spin_unlock(&inode->i_lock);
531                 __wait_on_bit(wqh, &wq, bit_wait,
532                               TASK_UNINTERRUPTIBLE);
533                 spin_lock(&inode->i_lock);
534         }
535 }
536
537 /*
538  * Wait for writeback on an inode to complete. Caller must have inode pinned.
539  */
540 void inode_wait_for_writeback(struct inode *inode)
541 {
542         spin_lock(&inode->i_lock);
543         __inode_wait_for_writeback(inode);
544         spin_unlock(&inode->i_lock);
545 }
546
547 /*
548  * Sleep until I_SYNC is cleared. This function must be called with i_lock
549  * held and drops it. It is aimed for callers not holding any inode reference
550  * so once i_lock is dropped, inode can go away.
551  */
552 static void inode_sleep_on_writeback(struct inode *inode)
553         __releases(inode->i_lock)
554 {
555         DEFINE_WAIT(wait);
556         wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
557         int sleep;
558
559         prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
560         sleep = inode->i_state & I_SYNC;
561         spin_unlock(&inode->i_lock);
562         if (sleep)
563                 schedule();
564         finish_wait(wqh, &wait);
565 }
566
567 /*
568  * Find proper writeback list for the inode depending on its current state and
569  * possibly also change of its state while we were doing writeback.  Here we
570  * handle things such as livelock prevention or fairness of writeback among
571  * inodes. This function can be called only by flusher thread - noone else
572  * processes all inodes in writeback lists and requeueing inodes behind flusher
573  * thread's back can have unexpected consequences.
574  */
575 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
576                           struct writeback_control *wbc)
577 {
578         if (inode->i_state & I_FREEING)
579                 return;
580
581         /*
582          * Sync livelock prevention. Each inode is tagged and synced in one
583          * shot. If still dirty, it will be redirty_tail()'ed below.  Update
584          * the dirty time to prevent enqueue and sync it again.
585          */
586         if ((inode->i_state & I_DIRTY) &&
587             (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
588                 inode->dirtied_when = jiffies;
589
590         if (wbc->pages_skipped) {
591                 /*
592                  * writeback is not making progress due to locked
593                  * buffers. Skip this inode for now.
594                  */
595                 redirty_tail(inode, wb);
596                 return;
597         }
598
599         if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
600                 /*
601                  * We didn't write back all the pages.  nfs_writepages()
602                  * sometimes bales out without doing anything.
603                  */
604                 if (wbc->nr_to_write <= 0) {
605                         /* Slice used up. Queue for next turn. */
606                         requeue_io(inode, wb);
607                 } else {
608                         /*
609                          * Writeback blocked by something other than
610                          * congestion. Delay the inode for some time to
611                          * avoid spinning on the CPU (100% iowait)
612                          * retrying writeback of the dirty page/inode
613                          * that cannot be performed immediately.
614                          */
615                         redirty_tail(inode, wb);
616                 }
617         } else if (inode->i_state & I_DIRTY) {
618                 /*
619                  * Filesystems can dirty the inode during writeback operations,
620                  * such as delayed allocation during submission or metadata
621                  * updates after data IO completion.
622                  */
623                 redirty_tail(inode, wb);
624         } else if (inode->i_state & I_DIRTY_TIME) {
625                 inode->dirtied_when = jiffies;
626                 inode_wb_list_move_locked(inode, wb, &wb->b_dirty_time);
627         } else {
628                 /* The inode is clean. Remove from writeback lists. */
629                 inode_wb_list_del_locked(inode, wb);
630         }
631 }
632
633 /*
634  * Write out an inode and its dirty pages. Do not update the writeback list
635  * linkage. That is left to the caller. The caller is also responsible for
636  * setting I_SYNC flag and calling inode_sync_complete() to clear it.
637  */
638 static int
639 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
640 {
641         struct address_space *mapping = inode->i_mapping;
642         long nr_to_write = wbc->nr_to_write;
643         unsigned dirty;
644         int ret;
645
646         WARN_ON(!(inode->i_state & I_SYNC));
647
648         trace_writeback_single_inode_start(inode, wbc, nr_to_write);
649
650         ret = do_writepages(mapping, wbc);
651
652         /*
653          * Make sure to wait on the data before writing out the metadata.
654          * This is important for filesystems that modify metadata on data
655          * I/O completion. We don't do it for sync(2) writeback because it has a
656          * separate, external IO completion path and ->sync_fs for guaranteeing
657          * inode metadata is written back correctly.
658          */
659         if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
660                 int err = filemap_fdatawait(mapping);
661                 if (ret == 0)
662                         ret = err;
663         }
664
665         /*
666          * Some filesystems may redirty the inode during the writeback
667          * due to delalloc, clear dirty metadata flags right before
668          * write_inode()
669          */
670         spin_lock(&inode->i_lock);
671
672         dirty = inode->i_state & I_DIRTY;
673         if (inode->i_state & I_DIRTY_TIME) {
674                 if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
675                     unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
676                     unlikely(time_after(jiffies,
677                                         (inode->dirtied_time_when +
678                                          dirtytime_expire_interval * HZ)))) {
679                         dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
680                         trace_writeback_lazytime(inode);
681                 }
682         } else
683                 inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
684         inode->i_state &= ~dirty;
685
686         /*
687          * Paired with smp_mb() in __mark_inode_dirty().  This allows
688          * __mark_inode_dirty() to test i_state without grabbing i_lock -
689          * either they see the I_DIRTY bits cleared or we see the dirtied
690          * inode.
691          *
692          * I_DIRTY_PAGES is always cleared together above even if @mapping
693          * still has dirty pages.  The flag is reinstated after smp_mb() if
694          * necessary.  This guarantees that either __mark_inode_dirty()
695          * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
696          */
697         smp_mb();
698
699         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
700                 inode->i_state |= I_DIRTY_PAGES;
701
702         spin_unlock(&inode->i_lock);
703
704         if (dirty & I_DIRTY_TIME)
705                 mark_inode_dirty_sync(inode);
706         /* Don't write the inode if only I_DIRTY_PAGES was set */
707         if (dirty & ~I_DIRTY_PAGES) {
708                 int err = write_inode(inode, wbc);
709                 if (ret == 0)
710                         ret = err;
711         }
712         trace_writeback_single_inode(inode, wbc, nr_to_write);
713         return ret;
714 }
715
716 /*
717  * Write out an inode's dirty pages. Either the caller has an active reference
718  * on the inode or the inode has I_WILL_FREE set.
719  *
720  * This function is designed to be called for writing back one inode which
721  * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
722  * and does more profound writeback list handling in writeback_sb_inodes().
723  */
724 static int
725 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
726                        struct writeback_control *wbc)
727 {
728         int ret = 0;
729
730         spin_lock(&inode->i_lock);
731         if (!atomic_read(&inode->i_count))
732                 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
733         else
734                 WARN_ON(inode->i_state & I_WILL_FREE);
735
736         if (inode->i_state & I_SYNC) {
737                 if (wbc->sync_mode != WB_SYNC_ALL)
738                         goto out;
739                 /*
740                  * It's a data-integrity sync. We must wait. Since callers hold
741                  * inode reference or inode has I_WILL_FREE set, it cannot go
742                  * away under us.
743                  */
744                 __inode_wait_for_writeback(inode);
745         }
746         WARN_ON(inode->i_state & I_SYNC);
747         /*
748          * Skip inode if it is clean and we have no outstanding writeback in
749          * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
750          * function since flusher thread may be doing for example sync in
751          * parallel and if we move the inode, it could get skipped. So here we
752          * make sure inode is on some writeback list and leave it there unless
753          * we have completely cleaned the inode.
754          */
755         if (!(inode->i_state & I_DIRTY_ALL) &&
756             (wbc->sync_mode != WB_SYNC_ALL ||
757              !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
758                 goto out;
759         inode->i_state |= I_SYNC;
760         spin_unlock(&inode->i_lock);
761
762         ret = __writeback_single_inode(inode, wbc);
763
764         spin_lock(&wb->list_lock);
765         spin_lock(&inode->i_lock);
766         /*
767          * If inode is clean, remove it from writeback lists. Otherwise don't
768          * touch it. See comment above for explanation.
769          */
770         if (!(inode->i_state & I_DIRTY_ALL))
771                 inode_wb_list_del_locked(inode, wb);
772         spin_unlock(&wb->list_lock);
773         inode_sync_complete(inode);
774 out:
775         spin_unlock(&inode->i_lock);
776         return ret;
777 }
778
779 static long writeback_chunk_size(struct bdi_writeback *wb,
780                                  struct wb_writeback_work *work)
781 {
782         long pages;
783
784         /*
785          * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
786          * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
787          * here avoids calling into writeback_inodes_wb() more than once.
788          *
789          * The intended call sequence for WB_SYNC_ALL writeback is:
790          *
791          *      wb_writeback()
792          *          writeback_sb_inodes()       <== called only once
793          *              write_cache_pages()     <== called once for each inode
794          *                   (quickly) tag currently dirty pages
795          *                   (maybe slowly) sync all tagged pages
796          */
797         if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
798                 pages = LONG_MAX;
799         else {
800                 pages = min(wb->avg_write_bandwidth / 2,
801                             global_dirty_limit / DIRTY_SCOPE);
802                 pages = min(pages, work->nr_pages);
803                 pages = round_down(pages + MIN_WRITEBACK_PAGES,
804                                    MIN_WRITEBACK_PAGES);
805         }
806
807         return pages;
808 }
809
810 /*
811  * Write a portion of b_io inodes which belong to @sb.
812  *
813  * Return the number of pages and/or inodes written.
814  */
815 static long writeback_sb_inodes(struct super_block *sb,
816                                 struct bdi_writeback *wb,
817                                 struct wb_writeback_work *work)
818 {
819         struct writeback_control wbc = {
820                 .sync_mode              = work->sync_mode,
821                 .tagged_writepages      = work->tagged_writepages,
822                 .for_kupdate            = work->for_kupdate,
823                 .for_background         = work->for_background,
824                 .for_sync               = work->for_sync,
825                 .range_cyclic           = work->range_cyclic,
826                 .range_start            = 0,
827                 .range_end              = LLONG_MAX,
828         };
829         unsigned long start_time = jiffies;
830         long write_chunk;
831         long wrote = 0;  /* count both pages and inodes */
832
833         while (!list_empty(&wb->b_io)) {
834                 struct inode *inode = wb_inode(wb->b_io.prev);
835
836                 if (inode->i_sb != sb) {
837                         if (work->sb) {
838                                 /*
839                                  * We only want to write back data for this
840                                  * superblock, move all inodes not belonging
841                                  * to it back onto the dirty list.
842                                  */
843                                 redirty_tail(inode, wb);
844                                 continue;
845                         }
846
847                         /*
848                          * The inode belongs to a different superblock.
849                          * Bounce back to the caller to unpin this and
850                          * pin the next superblock.
851                          */
852                         break;
853                 }
854
855                 /*
856                  * Don't bother with new inodes or inodes being freed, first
857                  * kind does not need periodic writeout yet, and for the latter
858                  * kind writeout is handled by the freer.
859                  */
860                 spin_lock(&inode->i_lock);
861                 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
862                         spin_unlock(&inode->i_lock);
863                         redirty_tail(inode, wb);
864                         continue;
865                 }
866                 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
867                         /*
868                          * If this inode is locked for writeback and we are not
869                          * doing writeback-for-data-integrity, move it to
870                          * b_more_io so that writeback can proceed with the
871                          * other inodes on s_io.
872                          *
873                          * We'll have another go at writing back this inode
874                          * when we completed a full scan of b_io.
875                          */
876                         spin_unlock(&inode->i_lock);
877                         requeue_io(inode, wb);
878                         trace_writeback_sb_inodes_requeue(inode);
879                         continue;
880                 }
881                 spin_unlock(&wb->list_lock);
882
883                 /*
884                  * We already requeued the inode if it had I_SYNC set and we
885                  * are doing WB_SYNC_NONE writeback. So this catches only the
886                  * WB_SYNC_ALL case.
887                  */
888                 if (inode->i_state & I_SYNC) {
889                         /* Wait for I_SYNC. This function drops i_lock... */
890                         inode_sleep_on_writeback(inode);
891                         /* Inode may be gone, start again */
892                         spin_lock(&wb->list_lock);
893                         continue;
894                 }
895                 inode->i_state |= I_SYNC;
896                 spin_unlock(&inode->i_lock);
897
898                 write_chunk = writeback_chunk_size(wb, work);
899                 wbc.nr_to_write = write_chunk;
900                 wbc.pages_skipped = 0;
901
902                 /*
903                  * We use I_SYNC to pin the inode in memory. While it is set
904                  * evict_inode() will wait so the inode cannot be freed.
905                  */
906                 __writeback_single_inode(inode, &wbc);
907
908                 work->nr_pages -= write_chunk - wbc.nr_to_write;
909                 wrote += write_chunk - wbc.nr_to_write;
910                 spin_lock(&wb->list_lock);
911                 spin_lock(&inode->i_lock);
912                 if (!(inode->i_state & I_DIRTY_ALL))
913                         wrote++;
914                 requeue_inode(inode, wb, &wbc);
915                 inode_sync_complete(inode);
916                 spin_unlock(&inode->i_lock);
917                 cond_resched_lock(&wb->list_lock);
918                 /*
919                  * bail out to wb_writeback() often enough to check
920                  * background threshold and other termination conditions.
921                  */
922                 if (wrote) {
923                         if (time_is_before_jiffies(start_time + HZ / 10UL))
924                                 break;
925                         if (work->nr_pages <= 0)
926                                 break;
927                 }
928         }
929         return wrote;
930 }
931
932 static long __writeback_inodes_wb(struct bdi_writeback *wb,
933                                   struct wb_writeback_work *work)
934 {
935         unsigned long start_time = jiffies;
936         long wrote = 0;
937
938         while (!list_empty(&wb->b_io)) {
939                 struct inode *inode = wb_inode(wb->b_io.prev);
940                 struct super_block *sb = inode->i_sb;
941
942                 if (!trylock_super(sb)) {
943                         /*
944                          * trylock_super() may fail consistently due to
945                          * s_umount being grabbed by someone else. Don't use
946                          * requeue_io() to avoid busy retrying the inode/sb.
947                          */
948                         redirty_tail(inode, wb);
949                         continue;
950                 }
951                 wrote += writeback_sb_inodes(sb, wb, work);
952                 up_read(&sb->s_umount);
953
954                 /* refer to the same tests at the end of writeback_sb_inodes */
955                 if (wrote) {
956                         if (time_is_before_jiffies(start_time + HZ / 10UL))
957                                 break;
958                         if (work->nr_pages <= 0)
959                                 break;
960                 }
961         }
962         /* Leave any unwritten inodes on b_io */
963         return wrote;
964 }
965
966 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
967                                 enum wb_reason reason)
968 {
969         struct wb_writeback_work work = {
970                 .nr_pages       = nr_pages,
971                 .sync_mode      = WB_SYNC_NONE,
972                 .range_cyclic   = 1,
973                 .reason         = reason,
974         };
975
976         spin_lock(&wb->list_lock);
977         if (list_empty(&wb->b_io))
978                 queue_io(wb, &work);
979         __writeback_inodes_wb(wb, &work);
980         spin_unlock(&wb->list_lock);
981
982         return nr_pages - work.nr_pages;
983 }
984
985 static bool over_bground_thresh(struct bdi_writeback *wb)
986 {
987         unsigned long background_thresh, dirty_thresh;
988
989         global_dirty_limits(&background_thresh, &dirty_thresh);
990
991         if (global_page_state(NR_FILE_DIRTY) +
992             global_page_state(NR_UNSTABLE_NFS) > background_thresh)
993                 return true;
994
995         if (wb_stat(wb, WB_RECLAIMABLE) > wb_dirty_limit(wb, background_thresh))
996                 return true;
997
998         return false;
999 }
1000
1001 /*
1002  * Called under wb->list_lock. If there are multiple wb per bdi,
1003  * only the flusher working on the first wb should do it.
1004  */
1005 static void wb_update_bandwidth(struct bdi_writeback *wb,
1006                                 unsigned long start_time)
1007 {
1008         __wb_update_bandwidth(wb, 0, 0, 0, 0, 0, start_time);
1009 }
1010
1011 /*
1012  * Explicit flushing or periodic writeback of "old" data.
1013  *
1014  * Define "old": the first time one of an inode's pages is dirtied, we mark the
1015  * dirtying-time in the inode's address_space.  So this periodic writeback code
1016  * just walks the superblock inode list, writing back any inodes which are
1017  * older than a specific point in time.
1018  *
1019  * Try to run once per dirty_writeback_interval.  But if a writeback event
1020  * takes longer than a dirty_writeback_interval interval, then leave a
1021  * one-second gap.
1022  *
1023  * older_than_this takes precedence over nr_to_write.  So we'll only write back
1024  * all dirty pages if they are all attached to "old" mappings.
1025  */
1026 static long wb_writeback(struct bdi_writeback *wb,
1027                          struct wb_writeback_work *work)
1028 {
1029         unsigned long wb_start = jiffies;
1030         long nr_pages = work->nr_pages;
1031         unsigned long oldest_jif;
1032         struct inode *inode;
1033         long progress;
1034
1035         oldest_jif = jiffies;
1036         work->older_than_this = &oldest_jif;
1037
1038         spin_lock(&wb->list_lock);
1039         for (;;) {
1040                 /*
1041                  * Stop writeback when nr_pages has been consumed
1042                  */
1043                 if (work->nr_pages <= 0)
1044                         break;
1045
1046                 /*
1047                  * Background writeout and kupdate-style writeback may
1048                  * run forever. Stop them if there is other work to do
1049                  * so that e.g. sync can proceed. They'll be restarted
1050                  * after the other works are all done.
1051                  */
1052                 if ((work->for_background || work->for_kupdate) &&
1053                     !list_empty(&wb->work_list))
1054                         break;
1055
1056                 /*
1057                  * For background writeout, stop when we are below the
1058                  * background dirty threshold
1059                  */
1060                 if (work->for_background && !over_bground_thresh(wb))
1061                         break;
1062
1063                 /*
1064                  * Kupdate and background works are special and we want to
1065                  * include all inodes that need writing. Livelock avoidance is
1066                  * handled by these works yielding to any other work so we are
1067                  * safe.
1068                  */
1069                 if (work->for_kupdate) {
1070                         oldest_jif = jiffies -
1071                                 msecs_to_jiffies(dirty_expire_interval * 10);
1072                 } else if (work->for_background)
1073                         oldest_jif = jiffies;
1074
1075                 trace_writeback_start(wb->bdi, work);
1076                 if (list_empty(&wb->b_io))
1077                         queue_io(wb, work);
1078                 if (work->sb)
1079                         progress = writeback_sb_inodes(work->sb, wb, work);
1080                 else
1081                         progress = __writeback_inodes_wb(wb, work);
1082                 trace_writeback_written(wb->bdi, work);
1083
1084                 wb_update_bandwidth(wb, wb_start);
1085
1086                 /*
1087                  * Did we write something? Try for more
1088                  *
1089                  * Dirty inodes are moved to b_io for writeback in batches.
1090                  * The completion of the current batch does not necessarily
1091                  * mean the overall work is done. So we keep looping as long
1092                  * as made some progress on cleaning pages or inodes.
1093                  */
1094                 if (progress)
1095                         continue;
1096                 /*
1097                  * No more inodes for IO, bail
1098                  */
1099                 if (list_empty(&wb->b_more_io))
1100                         break;
1101                 /*
1102                  * Nothing written. Wait for some inode to
1103                  * become available for writeback. Otherwise
1104                  * we'll just busyloop.
1105                  */
1106                 if (!list_empty(&wb->b_more_io))  {
1107                         trace_writeback_wait(wb->bdi, work);
1108                         inode = wb_inode(wb->b_more_io.prev);
1109                         spin_lock(&inode->i_lock);
1110                         spin_unlock(&wb->list_lock);
1111                         /* This function drops i_lock... */
1112                         inode_sleep_on_writeback(inode);
1113                         spin_lock(&wb->list_lock);
1114                 }
1115         }
1116         spin_unlock(&wb->list_lock);
1117
1118         return nr_pages - work->nr_pages;
1119 }
1120
1121 /*
1122  * Return the next wb_writeback_work struct that hasn't been processed yet.
1123  */
1124 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1125 {
1126         struct wb_writeback_work *work = NULL;
1127
1128         spin_lock_bh(&wb->work_lock);
1129         if (!list_empty(&wb->work_list)) {
1130                 work = list_entry(wb->work_list.next,
1131                                   struct wb_writeback_work, list);
1132                 list_del_init(&work->list);
1133         }
1134         spin_unlock_bh(&wb->work_lock);
1135         return work;
1136 }
1137
1138 /*
1139  * Add in the number of potentially dirty inodes, because each inode
1140  * write can dirty pagecache in the underlying blockdev.
1141  */
1142 static unsigned long get_nr_dirty_pages(void)
1143 {
1144         return global_page_state(NR_FILE_DIRTY) +
1145                 global_page_state(NR_UNSTABLE_NFS) +
1146                 get_nr_dirty_inodes();
1147 }
1148
1149 static long wb_check_background_flush(struct bdi_writeback *wb)
1150 {
1151         if (over_bground_thresh(wb)) {
1152
1153                 struct wb_writeback_work work = {
1154                         .nr_pages       = LONG_MAX,
1155                         .sync_mode      = WB_SYNC_NONE,
1156                         .for_background = 1,
1157                         .range_cyclic   = 1,
1158                         .reason         = WB_REASON_BACKGROUND,
1159                 };
1160
1161                 return wb_writeback(wb, &work);
1162         }
1163
1164         return 0;
1165 }
1166
1167 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1168 {
1169         unsigned long expired;
1170         long nr_pages;
1171
1172         /*
1173          * When set to zero, disable periodic writeback
1174          */
1175         if (!dirty_writeback_interval)
1176                 return 0;
1177
1178         expired = wb->last_old_flush +
1179                         msecs_to_jiffies(dirty_writeback_interval * 10);
1180         if (time_before(jiffies, expired))
1181                 return 0;
1182
1183         wb->last_old_flush = jiffies;
1184         nr_pages = get_nr_dirty_pages();
1185
1186         if (nr_pages) {
1187                 struct wb_writeback_work work = {
1188                         .nr_pages       = nr_pages,
1189                         .sync_mode      = WB_SYNC_NONE,
1190                         .for_kupdate    = 1,
1191                         .range_cyclic   = 1,
1192                         .reason         = WB_REASON_PERIODIC,
1193                 };
1194
1195                 return wb_writeback(wb, &work);
1196         }
1197
1198         return 0;
1199 }
1200
1201 /*
1202  * Retrieve work items and do the writeback they describe
1203  */
1204 static long wb_do_writeback(struct bdi_writeback *wb)
1205 {
1206         struct wb_writeback_work *work;
1207         long wrote = 0;
1208
1209         set_bit(WB_writeback_running, &wb->state);
1210         while ((work = get_next_work_item(wb)) != NULL) {
1211                 struct wb_completion *done = work->done;
1212                 bool need_wake_up = false;
1213
1214                 trace_writeback_exec(wb->bdi, work);
1215
1216                 wrote += wb_writeback(wb, work);
1217
1218                 if (work->single_wait) {
1219                         WARN_ON_ONCE(work->auto_free);
1220                         /* paired w/ rmb in wb_wait_for_single_work() */
1221                         smp_wmb();
1222                         work->single_done = 1;
1223                         need_wake_up = true;
1224                 } else if (work->auto_free) {
1225                         kfree(work);
1226                 }
1227
1228                 if (done && atomic_dec_and_test(&done->cnt))
1229                         need_wake_up = true;
1230
1231                 if (need_wake_up)
1232                         wake_up_all(&wb->bdi->wb_waitq);
1233         }
1234
1235         /*
1236          * Check for periodic writeback, kupdated() style
1237          */
1238         wrote += wb_check_old_data_flush(wb);
1239         wrote += wb_check_background_flush(wb);
1240         clear_bit(WB_writeback_running, &wb->state);
1241
1242         return wrote;
1243 }
1244
1245 /*
1246  * Handle writeback of dirty data for the device backed by this bdi. Also
1247  * reschedules periodically and does kupdated style flushing.
1248  */
1249 void wb_workfn(struct work_struct *work)
1250 {
1251         struct bdi_writeback *wb = container_of(to_delayed_work(work),
1252                                                 struct bdi_writeback, dwork);
1253         long pages_written;
1254
1255         set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
1256         current->flags |= PF_SWAPWRITE;
1257
1258         if (likely(!current_is_workqueue_rescuer() ||
1259                    !test_bit(WB_registered, &wb->state))) {
1260                 /*
1261                  * The normal path.  Keep writing back @wb until its
1262                  * work_list is empty.  Note that this path is also taken
1263                  * if @wb is shutting down even when we're running off the
1264                  * rescuer as work_list needs to be drained.
1265                  */
1266                 do {
1267                         pages_written = wb_do_writeback(wb);
1268                         trace_writeback_pages_written(pages_written);
1269                 } while (!list_empty(&wb->work_list));
1270         } else {
1271                 /*
1272                  * bdi_wq can't get enough workers and we're running off
1273                  * the emergency worker.  Don't hog it.  Hopefully, 1024 is
1274                  * enough for efficient IO.
1275                  */
1276                 pages_written = writeback_inodes_wb(wb, 1024,
1277                                                     WB_REASON_FORKER_THREAD);
1278                 trace_writeback_pages_written(pages_written);
1279         }
1280
1281         if (!list_empty(&wb->work_list))
1282                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
1283         else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1284                 wb_wakeup_delayed(wb);
1285
1286         current->flags &= ~PF_SWAPWRITE;
1287 }
1288
1289 /*
1290  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
1291  * the whole world.
1292  */
1293 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1294 {
1295         struct backing_dev_info *bdi;
1296
1297         if (!nr_pages)
1298                 nr_pages = get_nr_dirty_pages();
1299
1300         rcu_read_lock();
1301         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1302                 struct bdi_writeback *wb;
1303                 struct wb_iter iter;
1304
1305                 if (!bdi_has_dirty_io(bdi))
1306                         continue;
1307
1308                 bdi_for_each_wb(wb, bdi, &iter, 0)
1309                         wb_start_writeback(wb, wb_split_bdi_pages(wb, nr_pages),
1310                                            false, reason);
1311         }
1312         rcu_read_unlock();
1313 }
1314
1315 /*
1316  * Wake up bdi's periodically to make sure dirtytime inodes gets
1317  * written back periodically.  We deliberately do *not* check the
1318  * b_dirtytime list in wb_has_dirty_io(), since this would cause the
1319  * kernel to be constantly waking up once there are any dirtytime
1320  * inodes on the system.  So instead we define a separate delayed work
1321  * function which gets called much more rarely.  (By default, only
1322  * once every 12 hours.)
1323  *
1324  * If there is any other write activity going on in the file system,
1325  * this function won't be necessary.  But if the only thing that has
1326  * happened on the file system is a dirtytime inode caused by an atime
1327  * update, we need this infrastructure below to make sure that inode
1328  * eventually gets pushed out to disk.
1329  */
1330 static void wakeup_dirtytime_writeback(struct work_struct *w);
1331 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
1332
1333 static void wakeup_dirtytime_writeback(struct work_struct *w)
1334 {
1335         struct backing_dev_info *bdi;
1336
1337         rcu_read_lock();
1338         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1339                 struct bdi_writeback *wb;
1340                 struct wb_iter iter;
1341
1342                 bdi_for_each_wb(wb, bdi, &iter, 0)
1343                         if (!list_empty(&bdi->wb.b_dirty_time))
1344                                 wb_wakeup(&bdi->wb);
1345         }
1346         rcu_read_unlock();
1347         schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1348 }
1349
1350 static int __init start_dirtytime_writeback(void)
1351 {
1352         schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1353         return 0;
1354 }
1355 __initcall(start_dirtytime_writeback);
1356
1357 int dirtytime_interval_handler(struct ctl_table *table, int write,
1358                                void __user *buffer, size_t *lenp, loff_t *ppos)
1359 {
1360         int ret;
1361
1362         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
1363         if (ret == 0 && write)
1364                 mod_delayed_work(system_wq, &dirtytime_work, 0);
1365         return ret;
1366 }
1367
1368 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1369 {
1370         if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1371                 struct dentry *dentry;
1372                 const char *name = "?";
1373
1374                 dentry = d_find_alias(inode);
1375                 if (dentry) {
1376                         spin_lock(&dentry->d_lock);
1377                         name = (const char *) dentry->d_name.name;
1378                 }
1379                 printk(KERN_DEBUG
1380                        "%s(%d): dirtied inode %lu (%s) on %s\n",
1381                        current->comm, task_pid_nr(current), inode->i_ino,
1382                        name, inode->i_sb->s_id);
1383                 if (dentry) {
1384                         spin_unlock(&dentry->d_lock);
1385                         dput(dentry);
1386                 }
1387         }
1388 }
1389
1390 /**
1391  *      __mark_inode_dirty -    internal function
1392  *      @inode: inode to mark
1393  *      @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1394  *      Mark an inode as dirty. Callers should use mark_inode_dirty or
1395  *      mark_inode_dirty_sync.
1396  *
1397  * Put the inode on the super block's dirty list.
1398  *
1399  * CAREFUL! We mark it dirty unconditionally, but move it onto the
1400  * dirty list only if it is hashed or if it refers to a blockdev.
1401  * If it was not hashed, it will never be added to the dirty list
1402  * even if it is later hashed, as it will have been marked dirty already.
1403  *
1404  * In short, make sure you hash any inodes _before_ you start marking
1405  * them dirty.
1406  *
1407  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1408  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
1409  * the kernel-internal blockdev inode represents the dirtying time of the
1410  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
1411  * page->mapping->host, so the page-dirtying time is recorded in the internal
1412  * blockdev inode.
1413  */
1414 #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
1415 void __mark_inode_dirty(struct inode *inode, int flags)
1416 {
1417         struct super_block *sb = inode->i_sb;
1418         struct backing_dev_info *bdi = NULL;
1419         int dirtytime;
1420
1421         trace_writeback_mark_inode_dirty(inode, flags);
1422
1423         /*
1424          * Don't do this for I_DIRTY_PAGES - that doesn't actually
1425          * dirty the inode itself
1426          */
1427         if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
1428                 trace_writeback_dirty_inode_start(inode, flags);
1429
1430                 if (sb->s_op->dirty_inode)
1431                         sb->s_op->dirty_inode(inode, flags);
1432
1433                 trace_writeback_dirty_inode(inode, flags);
1434         }
1435         if (flags & I_DIRTY_INODE)
1436                 flags &= ~I_DIRTY_TIME;
1437         dirtytime = flags & I_DIRTY_TIME;
1438
1439         /*
1440          * Paired with smp_mb() in __writeback_single_inode() for the
1441          * following lockless i_state test.  See there for details.
1442          */
1443         smp_mb();
1444
1445         if (((inode->i_state & flags) == flags) ||
1446             (dirtytime && (inode->i_state & I_DIRTY_INODE)))
1447                 return;
1448
1449         if (unlikely(block_dump))
1450                 block_dump___mark_inode_dirty(inode);
1451
1452         spin_lock(&inode->i_lock);
1453         if (dirtytime && (inode->i_state & I_DIRTY_INODE))
1454                 goto out_unlock_inode;
1455         if ((inode->i_state & flags) != flags) {
1456                 const int was_dirty = inode->i_state & I_DIRTY;
1457
1458                 inode_attach_wb(inode, NULL);
1459
1460                 if (flags & I_DIRTY_INODE)
1461                         inode->i_state &= ~I_DIRTY_TIME;
1462                 inode->i_state |= flags;
1463
1464                 /*
1465                  * If the inode is being synced, just update its dirty state.
1466                  * The unlocker will place the inode on the appropriate
1467                  * superblock list, based upon its state.
1468                  */
1469                 if (inode->i_state & I_SYNC)
1470                         goto out_unlock_inode;
1471
1472                 /*
1473                  * Only add valid (hashed) inodes to the superblock's
1474                  * dirty list.  Add blockdev inodes as well.
1475                  */
1476                 if (!S_ISBLK(inode->i_mode)) {
1477                         if (inode_unhashed(inode))
1478                                 goto out_unlock_inode;
1479                 }
1480                 if (inode->i_state & I_FREEING)
1481                         goto out_unlock_inode;
1482
1483                 /*
1484                  * If the inode was already on b_dirty/b_io/b_more_io, don't
1485                  * reposition it (that would break b_dirty time-ordering).
1486                  */
1487                 if (!was_dirty) {
1488                         struct list_head *dirty_list;
1489                         bool wakeup_bdi = false;
1490                         bdi = inode_to_bdi(inode);
1491
1492                         spin_unlock(&inode->i_lock);
1493                         spin_lock(&bdi->wb.list_lock);
1494
1495                         WARN(bdi_cap_writeback_dirty(bdi) &&
1496                              !test_bit(WB_registered, &bdi->wb.state),
1497                              "bdi-%s not registered\n", bdi->name);
1498
1499                         inode->dirtied_when = jiffies;
1500                         if (dirtytime)
1501                                 inode->dirtied_time_when = jiffies;
1502
1503                         if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
1504                                 dirty_list = &bdi->wb.b_dirty;
1505                         else
1506                                 dirty_list = &bdi->wb.b_dirty_time;
1507
1508                         wakeup_bdi = inode_wb_list_move_locked(inode, &bdi->wb,
1509                                                                dirty_list);
1510
1511                         spin_unlock(&bdi->wb.list_lock);
1512                         trace_writeback_dirty_inode_enqueue(inode);
1513
1514                         /*
1515                          * If this is the first dirty inode for this bdi,
1516                          * we have to wake-up the corresponding bdi thread
1517                          * to make sure background write-back happens
1518                          * later.
1519                          */
1520                         if (bdi_cap_writeback_dirty(bdi) && wakeup_bdi)
1521                                 wb_wakeup_delayed(&bdi->wb);
1522                         return;
1523                 }
1524         }
1525 out_unlock_inode:
1526         spin_unlock(&inode->i_lock);
1527
1528 }
1529 EXPORT_SYMBOL(__mark_inode_dirty);
1530
1531 static void wait_sb_inodes(struct super_block *sb)
1532 {
1533         struct inode *inode, *old_inode = NULL;
1534
1535         /*
1536          * We need to be protected against the filesystem going from
1537          * r/o to r/w or vice versa.
1538          */
1539         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1540
1541         spin_lock(&inode_sb_list_lock);
1542
1543         /*
1544          * Data integrity sync. Must wait for all pages under writeback,
1545          * because there may have been pages dirtied before our sync
1546          * call, but which had writeout started before we write it out.
1547          * In which case, the inode may not be on the dirty list, but
1548          * we still have to wait for that writeout.
1549          */
1550         list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1551                 struct address_space *mapping = inode->i_mapping;
1552
1553                 spin_lock(&inode->i_lock);
1554                 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1555                     (mapping->nrpages == 0)) {
1556                         spin_unlock(&inode->i_lock);
1557                         continue;
1558                 }
1559                 __iget(inode);
1560                 spin_unlock(&inode->i_lock);
1561                 spin_unlock(&inode_sb_list_lock);
1562
1563                 /*
1564                  * We hold a reference to 'inode' so it couldn't have been
1565                  * removed from s_inodes list while we dropped the
1566                  * inode_sb_list_lock.  We cannot iput the inode now as we can
1567                  * be holding the last reference and we cannot iput it under
1568                  * inode_sb_list_lock. So we keep the reference and iput it
1569                  * later.
1570                  */
1571                 iput(old_inode);
1572                 old_inode = inode;
1573
1574                 filemap_fdatawait(mapping);
1575
1576                 cond_resched();
1577
1578                 spin_lock(&inode_sb_list_lock);
1579         }
1580         spin_unlock(&inode_sb_list_lock);
1581         iput(old_inode);
1582 }
1583
1584 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
1585                                      enum wb_reason reason, bool skip_if_busy)
1586 {
1587         DEFINE_WB_COMPLETION_ONSTACK(done);
1588         struct wb_writeback_work work = {
1589                 .sb                     = sb,
1590                 .sync_mode              = WB_SYNC_NONE,
1591                 .tagged_writepages      = 1,
1592                 .done                   = &done,
1593                 .nr_pages               = nr,
1594                 .reason                 = reason,
1595         };
1596         struct backing_dev_info *bdi = sb->s_bdi;
1597
1598         if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
1599                 return;
1600         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1601
1602         if (skip_if_busy && writeback_in_progress(&bdi->wb))
1603                 return;
1604
1605         wb_queue_work(&bdi->wb, &work);
1606         wb_wait_for_completion(bdi, &done);
1607 }
1608
1609 /**
1610  * writeback_inodes_sb_nr -     writeback dirty inodes from given super_block
1611  * @sb: the superblock
1612  * @nr: the number of pages to write
1613  * @reason: reason why some writeback work initiated
1614  *
1615  * Start writeback on some inodes on this super_block. No guarantees are made
1616  * on how many (if any) will be written, and this function does not wait
1617  * for IO completion of submitted IO.
1618  */
1619 void writeback_inodes_sb_nr(struct super_block *sb,
1620                             unsigned long nr,
1621                             enum wb_reason reason)
1622 {
1623         __writeback_inodes_sb_nr(sb, nr, reason, false);
1624 }
1625 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1626
1627 /**
1628  * writeback_inodes_sb  -       writeback dirty inodes from given super_block
1629  * @sb: the superblock
1630  * @reason: reason why some writeback work was initiated
1631  *
1632  * Start writeback on some inodes on this super_block. No guarantees are made
1633  * on how many (if any) will be written, and this function does not wait
1634  * for IO completion of submitted IO.
1635  */
1636 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1637 {
1638         return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1639 }
1640 EXPORT_SYMBOL(writeback_inodes_sb);
1641
1642 /**
1643  * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
1644  * @sb: the superblock
1645  * @nr: the number of pages to write
1646  * @reason: the reason of writeback
1647  *
1648  * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
1649  * Returns 1 if writeback was started, 0 if not.
1650  */
1651 bool try_to_writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
1652                                    enum wb_reason reason)
1653 {
1654         if (!down_read_trylock(&sb->s_umount))
1655                 return false;
1656
1657         __writeback_inodes_sb_nr(sb, nr, reason, true);
1658         up_read(&sb->s_umount);
1659         return true;
1660 }
1661 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
1662
1663 /**
1664  * try_to_writeback_inodes_sb - try to start writeback if none underway
1665  * @sb: the superblock
1666  * @reason: reason why some writeback work was initiated
1667  *
1668  * Implement by try_to_writeback_inodes_sb_nr()
1669  * Returns 1 if writeback was started, 0 if not.
1670  */
1671 bool try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1672 {
1673         return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1674 }
1675 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
1676
1677 /**
1678  * sync_inodes_sb       -       sync sb inode pages
1679  * @sb: the superblock
1680  *
1681  * This function writes and waits on any dirty inode belonging to this
1682  * super_block.
1683  */
1684 void sync_inodes_sb(struct super_block *sb)
1685 {
1686         DEFINE_WB_COMPLETION_ONSTACK(done);
1687         struct wb_writeback_work work = {
1688                 .sb             = sb,
1689                 .sync_mode      = WB_SYNC_ALL,
1690                 .nr_pages       = LONG_MAX,
1691                 .range_cyclic   = 0,
1692                 .done           = &done,
1693                 .reason         = WB_REASON_SYNC,
1694                 .for_sync       = 1,
1695         };
1696         struct backing_dev_info *bdi = sb->s_bdi;
1697
1698         /* Nothing to do? */
1699         if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
1700                 return;
1701         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1702
1703         wb_queue_work(&bdi->wb, &work);
1704         wb_wait_for_completion(bdi, &done);
1705
1706         wait_sb_inodes(sb);
1707 }
1708 EXPORT_SYMBOL(sync_inodes_sb);
1709
1710 /**
1711  * write_inode_now      -       write an inode to disk
1712  * @inode: inode to write to disk
1713  * @sync: whether the write should be synchronous or not
1714  *
1715  * This function commits an inode to disk immediately if it is dirty. This is
1716  * primarily needed by knfsd.
1717  *
1718  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1719  */
1720 int write_inode_now(struct inode *inode, int sync)
1721 {
1722         struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1723         struct writeback_control wbc = {
1724                 .nr_to_write = LONG_MAX,
1725                 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1726                 .range_start = 0,
1727                 .range_end = LLONG_MAX,
1728         };
1729
1730         if (!mapping_cap_writeback_dirty(inode->i_mapping))
1731                 wbc.nr_to_write = 0;
1732
1733         might_sleep();
1734         return writeback_single_inode(inode, wb, &wbc);
1735 }
1736 EXPORT_SYMBOL(write_inode_now);
1737
1738 /**
1739  * sync_inode - write an inode and its pages to disk.
1740  * @inode: the inode to sync
1741  * @wbc: controls the writeback mode
1742  *
1743  * sync_inode() will write an inode and its pages to disk.  It will also
1744  * correctly update the inode on its superblock's dirty inode lists and will
1745  * update inode->i_state.
1746  *
1747  * The caller must have a ref on the inode.
1748  */
1749 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1750 {
1751         return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
1752 }
1753 EXPORT_SYMBOL(sync_inode);
1754
1755 /**
1756  * sync_inode_metadata - write an inode to disk
1757  * @inode: the inode to sync
1758  * @wait: wait for I/O to complete.
1759  *
1760  * Write an inode to disk and adjust its dirty state after completion.
1761  *
1762  * Note: only writes the actual inode, no associated data or other metadata.
1763  */
1764 int sync_inode_metadata(struct inode *inode, int wait)
1765 {
1766         struct writeback_control wbc = {
1767                 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1768                 .nr_to_write = 0, /* metadata-only */
1769         };
1770
1771         return sync_inode(inode, &wbc);
1772 }
1773 EXPORT_SYMBOL(sync_inode_metadata);