f2fs: avoid reverse IO order for NODE and DATA
[linux-2.6-microblaze.git] / fs / f2fs / super.c
1 /*
2  * fs/f2fs/super.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/fs.h>
14 #include <linux/statfs.h>
15 #include <linux/buffer_head.h>
16 #include <linux/backing-dev.h>
17 #include <linux/kthread.h>
18 #include <linux/parser.h>
19 #include <linux/mount.h>
20 #include <linux/seq_file.h>
21 #include <linux/proc_fs.h>
22 #include <linux/random.h>
23 #include <linux/exportfs.h>
24 #include <linux/blkdev.h>
25 #include <linux/f2fs_fs.h>
26 #include <linux/sysfs.h>
27
28 #include "f2fs.h"
29 #include "node.h"
30 #include "segment.h"
31 #include "xattr.h"
32 #include "gc.h"
33 #include "trace.h"
34
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/f2fs.h>
37
38 static struct proc_dir_entry *f2fs_proc_root;
39 static struct kmem_cache *f2fs_inode_cachep;
40 static struct kset *f2fs_kset;
41
42 #ifdef CONFIG_F2FS_FAULT_INJECTION
43 struct f2fs_fault_info f2fs_fault;
44
45 char *fault_name[FAULT_MAX] = {
46         [FAULT_KMALLOC]         = "kmalloc",
47         [FAULT_PAGE_ALLOC]      = "page alloc",
48         [FAULT_ALLOC_NID]       = "alloc nid",
49         [FAULT_ORPHAN]          = "orphan",
50         [FAULT_BLOCK]           = "no more block",
51         [FAULT_DIR_DEPTH]       = "too big dir depth",
52         [FAULT_EVICT_INODE]     = "evict_inode fail",
53 };
54
55 static void f2fs_build_fault_attr(unsigned int rate)
56 {
57         if (rate) {
58                 atomic_set(&f2fs_fault.inject_ops, 0);
59                 f2fs_fault.inject_rate = rate;
60                 f2fs_fault.inject_type = (1 << FAULT_MAX) - 1;
61         } else {
62                 memset(&f2fs_fault, 0, sizeof(struct f2fs_fault_info));
63         }
64 }
65 #endif
66
67 /* f2fs-wide shrinker description */
68 static struct shrinker f2fs_shrinker_info = {
69         .scan_objects = f2fs_shrink_scan,
70         .count_objects = f2fs_shrink_count,
71         .seeks = DEFAULT_SEEKS,
72 };
73
74 enum {
75         Opt_gc_background,
76         Opt_disable_roll_forward,
77         Opt_norecovery,
78         Opt_discard,
79         Opt_noheap,
80         Opt_user_xattr,
81         Opt_nouser_xattr,
82         Opt_acl,
83         Opt_noacl,
84         Opt_active_logs,
85         Opt_disable_ext_identify,
86         Opt_inline_xattr,
87         Opt_inline_data,
88         Opt_inline_dentry,
89         Opt_flush_merge,
90         Opt_noflush_merge,
91         Opt_nobarrier,
92         Opt_fastboot,
93         Opt_extent_cache,
94         Opt_noextent_cache,
95         Opt_noinline_data,
96         Opt_data_flush,
97         Opt_fault_injection,
98         Opt_lazytime,
99         Opt_nolazytime,
100         Opt_err,
101 };
102
103 static match_table_t f2fs_tokens = {
104         {Opt_gc_background, "background_gc=%s"},
105         {Opt_disable_roll_forward, "disable_roll_forward"},
106         {Opt_norecovery, "norecovery"},
107         {Opt_discard, "discard"},
108         {Opt_noheap, "no_heap"},
109         {Opt_user_xattr, "user_xattr"},
110         {Opt_nouser_xattr, "nouser_xattr"},
111         {Opt_acl, "acl"},
112         {Opt_noacl, "noacl"},
113         {Opt_active_logs, "active_logs=%u"},
114         {Opt_disable_ext_identify, "disable_ext_identify"},
115         {Opt_inline_xattr, "inline_xattr"},
116         {Opt_inline_data, "inline_data"},
117         {Opt_inline_dentry, "inline_dentry"},
118         {Opt_flush_merge, "flush_merge"},
119         {Opt_noflush_merge, "noflush_merge"},
120         {Opt_nobarrier, "nobarrier"},
121         {Opt_fastboot, "fastboot"},
122         {Opt_extent_cache, "extent_cache"},
123         {Opt_noextent_cache, "noextent_cache"},
124         {Opt_noinline_data, "noinline_data"},
125         {Opt_data_flush, "data_flush"},
126         {Opt_fault_injection, "fault_injection=%u"},
127         {Opt_lazytime, "lazytime"},
128         {Opt_nolazytime, "nolazytime"},
129         {Opt_err, NULL},
130 };
131
132 /* Sysfs support for f2fs */
133 enum {
134         GC_THREAD,      /* struct f2fs_gc_thread */
135         SM_INFO,        /* struct f2fs_sm_info */
136         NM_INFO,        /* struct f2fs_nm_info */
137         F2FS_SBI,       /* struct f2fs_sb_info */
138 #ifdef CONFIG_F2FS_FAULT_INJECTION
139         FAULT_INFO_RATE,        /* struct f2fs_fault_info */
140         FAULT_INFO_TYPE,        /* struct f2fs_fault_info */
141 #endif
142 };
143
144 struct f2fs_attr {
145         struct attribute attr;
146         ssize_t (*show)(struct f2fs_attr *, struct f2fs_sb_info *, char *);
147         ssize_t (*store)(struct f2fs_attr *, struct f2fs_sb_info *,
148                          const char *, size_t);
149         int struct_type;
150         int offset;
151 };
152
153 static unsigned char *__struct_ptr(struct f2fs_sb_info *sbi, int struct_type)
154 {
155         if (struct_type == GC_THREAD)
156                 return (unsigned char *)sbi->gc_thread;
157         else if (struct_type == SM_INFO)
158                 return (unsigned char *)SM_I(sbi);
159         else if (struct_type == NM_INFO)
160                 return (unsigned char *)NM_I(sbi);
161         else if (struct_type == F2FS_SBI)
162                 return (unsigned char *)sbi;
163 #ifdef CONFIG_F2FS_FAULT_INJECTION
164         else if (struct_type == FAULT_INFO_RATE ||
165                                         struct_type == FAULT_INFO_TYPE)
166                 return (unsigned char *)&f2fs_fault;
167 #endif
168         return NULL;
169 }
170
171 static ssize_t lifetime_write_kbytes_show(struct f2fs_attr *a,
172                 struct f2fs_sb_info *sbi, char *buf)
173 {
174         struct super_block *sb = sbi->sb;
175
176         if (!sb->s_bdev->bd_part)
177                 return snprintf(buf, PAGE_SIZE, "0\n");
178
179         return snprintf(buf, PAGE_SIZE, "%llu\n",
180                 (unsigned long long)(sbi->kbytes_written +
181                         BD_PART_WRITTEN(sbi)));
182 }
183
184 static ssize_t f2fs_sbi_show(struct f2fs_attr *a,
185                         struct f2fs_sb_info *sbi, char *buf)
186 {
187         unsigned char *ptr = NULL;
188         unsigned int *ui;
189
190         ptr = __struct_ptr(sbi, a->struct_type);
191         if (!ptr)
192                 return -EINVAL;
193
194         ui = (unsigned int *)(ptr + a->offset);
195
196         return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
197 }
198
199 static ssize_t f2fs_sbi_store(struct f2fs_attr *a,
200                         struct f2fs_sb_info *sbi,
201                         const char *buf, size_t count)
202 {
203         unsigned char *ptr;
204         unsigned long t;
205         unsigned int *ui;
206         ssize_t ret;
207
208         ptr = __struct_ptr(sbi, a->struct_type);
209         if (!ptr)
210                 return -EINVAL;
211
212         ui = (unsigned int *)(ptr + a->offset);
213
214         ret = kstrtoul(skip_spaces(buf), 0, &t);
215         if (ret < 0)
216                 return ret;
217 #ifdef CONFIG_F2FS_FAULT_INJECTION
218         if (a->struct_type == FAULT_INFO_TYPE && t >= (1 << FAULT_MAX))
219                 return -EINVAL;
220 #endif
221         *ui = t;
222         return count;
223 }
224
225 static ssize_t f2fs_attr_show(struct kobject *kobj,
226                                 struct attribute *attr, char *buf)
227 {
228         struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
229                                                                 s_kobj);
230         struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
231
232         return a->show ? a->show(a, sbi, buf) : 0;
233 }
234
235 static ssize_t f2fs_attr_store(struct kobject *kobj, struct attribute *attr,
236                                                 const char *buf, size_t len)
237 {
238         struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
239                                                                         s_kobj);
240         struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
241
242         return a->store ? a->store(a, sbi, buf, len) : 0;
243 }
244
245 static void f2fs_sb_release(struct kobject *kobj)
246 {
247         struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
248                                                                 s_kobj);
249         complete(&sbi->s_kobj_unregister);
250 }
251
252 #define F2FS_ATTR_OFFSET(_struct_type, _name, _mode, _show, _store, _offset) \
253 static struct f2fs_attr f2fs_attr_##_name = {                   \
254         .attr = {.name = __stringify(_name), .mode = _mode },   \
255         .show   = _show,                                        \
256         .store  = _store,                                       \
257         .struct_type = _struct_type,                            \
258         .offset = _offset                                       \
259 }
260
261 #define F2FS_RW_ATTR(struct_type, struct_name, name, elname)    \
262         F2FS_ATTR_OFFSET(struct_type, name, 0644,               \
263                 f2fs_sbi_show, f2fs_sbi_store,                  \
264                 offsetof(struct struct_name, elname))
265
266 #define F2FS_GENERAL_RO_ATTR(name) \
267 static struct f2fs_attr f2fs_attr_##name = __ATTR(name, 0444, name##_show, NULL)
268
269 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_min_sleep_time, min_sleep_time);
270 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_max_sleep_time, max_sleep_time);
271 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_no_gc_sleep_time, no_gc_sleep_time);
272 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_idle, gc_idle);
273 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, reclaim_segments, rec_prefree_segments);
274 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, max_small_discards, max_discards);
275 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, batched_trim_sections, trim_sections);
276 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, ipu_policy, ipu_policy);
277 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_ipu_util, min_ipu_util);
278 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_fsync_blocks, min_fsync_blocks);
279 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ram_thresh, ram_thresh);
280 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ra_nid_pages, ra_nid_pages);
281 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, dirty_nats_ratio, dirty_nats_ratio);
282 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, max_victim_search, max_victim_search);
283 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, dir_level, dir_level);
284 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, cp_interval, interval_time[CP_TIME]);
285 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, idle_interval, interval_time[REQ_TIME]);
286 #ifdef CONFIG_F2FS_FAULT_INJECTION
287 F2FS_RW_ATTR(FAULT_INFO_RATE, f2fs_fault_info, inject_rate, inject_rate);
288 F2FS_RW_ATTR(FAULT_INFO_TYPE, f2fs_fault_info, inject_type, inject_type);
289 #endif
290 F2FS_GENERAL_RO_ATTR(lifetime_write_kbytes);
291
292 #define ATTR_LIST(name) (&f2fs_attr_##name.attr)
293 static struct attribute *f2fs_attrs[] = {
294         ATTR_LIST(gc_min_sleep_time),
295         ATTR_LIST(gc_max_sleep_time),
296         ATTR_LIST(gc_no_gc_sleep_time),
297         ATTR_LIST(gc_idle),
298         ATTR_LIST(reclaim_segments),
299         ATTR_LIST(max_small_discards),
300         ATTR_LIST(batched_trim_sections),
301         ATTR_LIST(ipu_policy),
302         ATTR_LIST(min_ipu_util),
303         ATTR_LIST(min_fsync_blocks),
304         ATTR_LIST(max_victim_search),
305         ATTR_LIST(dir_level),
306         ATTR_LIST(ram_thresh),
307         ATTR_LIST(ra_nid_pages),
308         ATTR_LIST(dirty_nats_ratio),
309         ATTR_LIST(cp_interval),
310         ATTR_LIST(idle_interval),
311         ATTR_LIST(lifetime_write_kbytes),
312         NULL,
313 };
314
315 static const struct sysfs_ops f2fs_attr_ops = {
316         .show   = f2fs_attr_show,
317         .store  = f2fs_attr_store,
318 };
319
320 static struct kobj_type f2fs_ktype = {
321         .default_attrs  = f2fs_attrs,
322         .sysfs_ops      = &f2fs_attr_ops,
323         .release        = f2fs_sb_release,
324 };
325
326 #ifdef CONFIG_F2FS_FAULT_INJECTION
327 /* sysfs for f2fs fault injection */
328 static struct kobject f2fs_fault_inject;
329
330 static struct attribute *f2fs_fault_attrs[] = {
331         ATTR_LIST(inject_rate),
332         ATTR_LIST(inject_type),
333         NULL
334 };
335
336 static struct kobj_type f2fs_fault_ktype = {
337         .default_attrs  = f2fs_fault_attrs,
338         .sysfs_ops      = &f2fs_attr_ops,
339 };
340 #endif
341
342 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
343 {
344         struct va_format vaf;
345         va_list args;
346
347         va_start(args, fmt);
348         vaf.fmt = fmt;
349         vaf.va = &args;
350         printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
351         va_end(args);
352 }
353
354 static void init_once(void *foo)
355 {
356         struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
357
358         inode_init_once(&fi->vfs_inode);
359 }
360
361 static int parse_options(struct super_block *sb, char *options)
362 {
363         struct f2fs_sb_info *sbi = F2FS_SB(sb);
364         struct request_queue *q;
365         substring_t args[MAX_OPT_ARGS];
366         char *p, *name;
367         int arg = 0;
368
369 #ifdef CONFIG_F2FS_FAULT_INJECTION
370         f2fs_build_fault_attr(0);
371 #endif
372
373         if (!options)
374                 return 0;
375
376         while ((p = strsep(&options, ",")) != NULL) {
377                 int token;
378                 if (!*p)
379                         continue;
380                 /*
381                  * Initialize args struct so we know whether arg was
382                  * found; some options take optional arguments.
383                  */
384                 args[0].to = args[0].from = NULL;
385                 token = match_token(p, f2fs_tokens, args);
386
387                 switch (token) {
388                 case Opt_gc_background:
389                         name = match_strdup(&args[0]);
390
391                         if (!name)
392                                 return -ENOMEM;
393                         if (strlen(name) == 2 && !strncmp(name, "on", 2)) {
394                                 set_opt(sbi, BG_GC);
395                                 clear_opt(sbi, FORCE_FG_GC);
396                         } else if (strlen(name) == 3 && !strncmp(name, "off", 3)) {
397                                 clear_opt(sbi, BG_GC);
398                                 clear_opt(sbi, FORCE_FG_GC);
399                         } else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) {
400                                 set_opt(sbi, BG_GC);
401                                 set_opt(sbi, FORCE_FG_GC);
402                         } else {
403                                 kfree(name);
404                                 return -EINVAL;
405                         }
406                         kfree(name);
407                         break;
408                 case Opt_disable_roll_forward:
409                         set_opt(sbi, DISABLE_ROLL_FORWARD);
410                         break;
411                 case Opt_norecovery:
412                         /* this option mounts f2fs with ro */
413                         set_opt(sbi, DISABLE_ROLL_FORWARD);
414                         if (!f2fs_readonly(sb))
415                                 return -EINVAL;
416                         break;
417                 case Opt_discard:
418                         q = bdev_get_queue(sb->s_bdev);
419                         if (blk_queue_discard(q)) {
420                                 set_opt(sbi, DISCARD);
421                         } else {
422                                 f2fs_msg(sb, KERN_WARNING,
423                                         "mounting with \"discard\" option, but "
424                                         "the device does not support discard");
425                         }
426                         break;
427                 case Opt_noheap:
428                         set_opt(sbi, NOHEAP);
429                         break;
430 #ifdef CONFIG_F2FS_FS_XATTR
431                 case Opt_user_xattr:
432                         set_opt(sbi, XATTR_USER);
433                         break;
434                 case Opt_nouser_xattr:
435                         clear_opt(sbi, XATTR_USER);
436                         break;
437                 case Opt_inline_xattr:
438                         set_opt(sbi, INLINE_XATTR);
439                         break;
440 #else
441                 case Opt_user_xattr:
442                         f2fs_msg(sb, KERN_INFO,
443                                 "user_xattr options not supported");
444                         break;
445                 case Opt_nouser_xattr:
446                         f2fs_msg(sb, KERN_INFO,
447                                 "nouser_xattr options not supported");
448                         break;
449                 case Opt_inline_xattr:
450                         f2fs_msg(sb, KERN_INFO,
451                                 "inline_xattr options not supported");
452                         break;
453 #endif
454 #ifdef CONFIG_F2FS_FS_POSIX_ACL
455                 case Opt_acl:
456                         set_opt(sbi, POSIX_ACL);
457                         break;
458                 case Opt_noacl:
459                         clear_opt(sbi, POSIX_ACL);
460                         break;
461 #else
462                 case Opt_acl:
463                         f2fs_msg(sb, KERN_INFO, "acl options not supported");
464                         break;
465                 case Opt_noacl:
466                         f2fs_msg(sb, KERN_INFO, "noacl options not supported");
467                         break;
468 #endif
469                 case Opt_active_logs:
470                         if (args->from && match_int(args, &arg))
471                                 return -EINVAL;
472                         if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
473                                 return -EINVAL;
474                         sbi->active_logs = arg;
475                         break;
476                 case Opt_disable_ext_identify:
477                         set_opt(sbi, DISABLE_EXT_IDENTIFY);
478                         break;
479                 case Opt_inline_data:
480                         set_opt(sbi, INLINE_DATA);
481                         break;
482                 case Opt_inline_dentry:
483                         set_opt(sbi, INLINE_DENTRY);
484                         break;
485                 case Opt_flush_merge:
486                         set_opt(sbi, FLUSH_MERGE);
487                         break;
488                 case Opt_noflush_merge:
489                         clear_opt(sbi, FLUSH_MERGE);
490                         break;
491                 case Opt_nobarrier:
492                         set_opt(sbi, NOBARRIER);
493                         break;
494                 case Opt_fastboot:
495                         set_opt(sbi, FASTBOOT);
496                         break;
497                 case Opt_extent_cache:
498                         set_opt(sbi, EXTENT_CACHE);
499                         break;
500                 case Opt_noextent_cache:
501                         clear_opt(sbi, EXTENT_CACHE);
502                         break;
503                 case Opt_noinline_data:
504                         clear_opt(sbi, INLINE_DATA);
505                         break;
506                 case Opt_data_flush:
507                         set_opt(sbi, DATA_FLUSH);
508                         break;
509                 case Opt_fault_injection:
510                         if (args->from && match_int(args, &arg))
511                                 return -EINVAL;
512 #ifdef CONFIG_F2FS_FAULT_INJECTION
513                         f2fs_build_fault_attr(arg);
514 #else
515                         f2fs_msg(sb, KERN_INFO,
516                                 "FAULT_INJECTION was not selected");
517 #endif
518                         break;
519                 case Opt_lazytime:
520                         sb->s_flags |= MS_LAZYTIME;
521                         break;
522                 case Opt_nolazytime:
523                         sb->s_flags &= ~MS_LAZYTIME;
524                         break;
525                 default:
526                         f2fs_msg(sb, KERN_ERR,
527                                 "Unrecognized mount option \"%s\" or missing value",
528                                 p);
529                         return -EINVAL;
530                 }
531         }
532         return 0;
533 }
534
535 static struct inode *f2fs_alloc_inode(struct super_block *sb)
536 {
537         struct f2fs_inode_info *fi;
538
539         fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
540         if (!fi)
541                 return NULL;
542
543         init_once((void *) fi);
544
545         if (percpu_counter_init(&fi->dirty_pages, 0, GFP_NOFS)) {
546                 kmem_cache_free(f2fs_inode_cachep, fi);
547                 return NULL;
548         }
549
550         /* Initialize f2fs-specific inode info */
551         fi->vfs_inode.i_version = 1;
552         fi->i_current_depth = 1;
553         fi->i_advise = 0;
554         init_rwsem(&fi->i_sem);
555         INIT_LIST_HEAD(&fi->dirty_list);
556         INIT_LIST_HEAD(&fi->gdirty_list);
557         INIT_LIST_HEAD(&fi->inmem_pages);
558         mutex_init(&fi->inmem_lock);
559
560         /* Will be used by directory only */
561         fi->i_dir_level = F2FS_SB(sb)->dir_level;
562         return &fi->vfs_inode;
563 }
564
565 static int f2fs_drop_inode(struct inode *inode)
566 {
567         int ret;
568
569         /*
570          * This is to avoid a deadlock condition like below.
571          * writeback_single_inode(inode)
572          *  - f2fs_write_data_page
573          *    - f2fs_gc -> iput -> evict
574          *       - inode_wait_for_writeback(inode)
575          */
576         if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) {
577                 if (!inode->i_nlink && !is_bad_inode(inode)) {
578                         /* to avoid evict_inode call simultaneously */
579                         atomic_inc(&inode->i_count);
580                         spin_unlock(&inode->i_lock);
581
582                         /* some remained atomic pages should discarded */
583                         if (f2fs_is_atomic_file(inode))
584                                 drop_inmem_pages(inode);
585
586                         /* should remain fi->extent_tree for writepage */
587                         f2fs_destroy_extent_node(inode);
588
589                         sb_start_intwrite(inode->i_sb);
590                         f2fs_i_size_write(inode, 0);
591
592                         if (F2FS_HAS_BLOCKS(inode))
593                                 f2fs_truncate(inode);
594
595                         sb_end_intwrite(inode->i_sb);
596
597                         fscrypt_put_encryption_info(inode, NULL);
598                         spin_lock(&inode->i_lock);
599                         atomic_dec(&inode->i_count);
600                 }
601                 return 0;
602         }
603
604         ret = generic_drop_inode(inode);
605         if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
606                 if (ret)
607                         inode->i_state |= I_WILL_FREE;
608                 spin_unlock(&inode->i_lock);
609
610                 update_inode_page(inode);
611
612                 spin_lock(&inode->i_lock);
613                 if (ret)
614                         inode->i_state &= ~I_WILL_FREE;
615         }
616         return ret;
617 }
618
619 /*
620  * f2fs_dirty_inode() is called from __mark_inode_dirty()
621  *
622  * We should call set_dirty_inode to write the dirty inode through write_inode.
623  */
624 static void f2fs_dirty_inode(struct inode *inode, int flags)
625 {
626         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
627
628         if (inode->i_ino == F2FS_NODE_INO(sbi) ||
629                         inode->i_ino == F2FS_META_INO(sbi))
630                 return;
631
632         if (flags == I_DIRTY_TIME)
633                 return;
634
635         if (is_inode_flag_set(inode, FI_AUTO_RECOVER))
636                 clear_inode_flag(inode, FI_AUTO_RECOVER);
637
638         spin_lock(&sbi->inode_lock[DIRTY_META]);
639         if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
640                 spin_unlock(&sbi->inode_lock[DIRTY_META]);
641                 return;
642         }
643
644         set_inode_flag(inode, FI_DIRTY_INODE);
645         list_add_tail(&F2FS_I(inode)->gdirty_list,
646                                 &sbi->inode_list[DIRTY_META]);
647         inc_page_count(sbi, F2FS_DIRTY_IMETA);
648         stat_inc_dirty_inode(sbi, DIRTY_META);
649         spin_unlock(&sbi->inode_lock[DIRTY_META]);
650 }
651
652 void f2fs_inode_synced(struct inode *inode)
653 {
654         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
655
656         spin_lock(&sbi->inode_lock[DIRTY_META]);
657         if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) {
658                 spin_unlock(&sbi->inode_lock[DIRTY_META]);
659                 return;
660         }
661         list_del_init(&F2FS_I(inode)->gdirty_list);
662         clear_inode_flag(inode, FI_DIRTY_INODE);
663         clear_inode_flag(inode, FI_AUTO_RECOVER);
664         dec_page_count(sbi, F2FS_DIRTY_IMETA);
665         stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META);
666         spin_unlock(&sbi->inode_lock[DIRTY_META]);
667 }
668
669 static void f2fs_i_callback(struct rcu_head *head)
670 {
671         struct inode *inode = container_of(head, struct inode, i_rcu);
672         kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
673 }
674
675 static void f2fs_destroy_inode(struct inode *inode)
676 {
677         percpu_counter_destroy(&F2FS_I(inode)->dirty_pages);
678         call_rcu(&inode->i_rcu, f2fs_i_callback);
679 }
680
681 static void destroy_percpu_info(struct f2fs_sb_info *sbi)
682 {
683         int i;
684
685         for (i = 0; i < NR_COUNT_TYPE; i++)
686                 percpu_counter_destroy(&sbi->nr_pages[i]);
687         percpu_counter_destroy(&sbi->alloc_valid_block_count);
688         percpu_counter_destroy(&sbi->total_valid_inode_count);
689 }
690
691 static void f2fs_put_super(struct super_block *sb)
692 {
693         struct f2fs_sb_info *sbi = F2FS_SB(sb);
694
695         if (sbi->s_proc) {
696                 remove_proc_entry("segment_info", sbi->s_proc);
697                 remove_proc_entry("segment_bits", sbi->s_proc);
698                 remove_proc_entry(sb->s_id, f2fs_proc_root);
699         }
700         kobject_del(&sbi->s_kobj);
701
702         stop_gc_thread(sbi);
703
704         /* prevent remaining shrinker jobs */
705         mutex_lock(&sbi->umount_mutex);
706
707         /*
708          * We don't need to do checkpoint when superblock is clean.
709          * But, the previous checkpoint was not done by umount, it needs to do
710          * clean checkpoint again.
711          */
712         if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
713                         !is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG)) {
714                 struct cp_control cpc = {
715                         .reason = CP_UMOUNT,
716                 };
717                 write_checkpoint(sbi, &cpc);
718         }
719
720         /* write_checkpoint can update stat informaion */
721         f2fs_destroy_stats(sbi);
722
723         /*
724          * normally superblock is clean, so we need to release this.
725          * In addition, EIO will skip do checkpoint, we need this as well.
726          */
727         release_ino_entry(sbi, true);
728         release_discard_addrs(sbi);
729
730         f2fs_leave_shrinker(sbi);
731         mutex_unlock(&sbi->umount_mutex);
732
733         /* our cp_error case, we can wait for any writeback page */
734         f2fs_flush_merged_bios(sbi);
735
736         iput(sbi->node_inode);
737         iput(sbi->meta_inode);
738
739         /* destroy f2fs internal modules */
740         destroy_node_manager(sbi);
741         destroy_segment_manager(sbi);
742
743         kfree(sbi->ckpt);
744         kobject_put(&sbi->s_kobj);
745         wait_for_completion(&sbi->s_kobj_unregister);
746
747         sb->s_fs_info = NULL;
748         if (sbi->s_chksum_driver)
749                 crypto_free_shash(sbi->s_chksum_driver);
750         kfree(sbi->raw_super);
751
752         destroy_percpu_info(sbi);
753         kfree(sbi);
754 }
755
756 int f2fs_sync_fs(struct super_block *sb, int sync)
757 {
758         struct f2fs_sb_info *sbi = F2FS_SB(sb);
759         int err = 0;
760
761         trace_f2fs_sync_fs(sb, sync);
762
763         if (sync) {
764                 struct cp_control cpc;
765
766                 cpc.reason = __get_cp_reason(sbi);
767
768                 mutex_lock(&sbi->gc_mutex);
769                 err = write_checkpoint(sbi, &cpc);
770                 mutex_unlock(&sbi->gc_mutex);
771         }
772         f2fs_trace_ios(NULL, 1);
773
774         return err;
775 }
776
777 static int f2fs_freeze(struct super_block *sb)
778 {
779         int err;
780
781         if (f2fs_readonly(sb))
782                 return 0;
783
784         err = f2fs_sync_fs(sb, 1);
785         return err;
786 }
787
788 static int f2fs_unfreeze(struct super_block *sb)
789 {
790         return 0;
791 }
792
793 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
794 {
795         struct super_block *sb = dentry->d_sb;
796         struct f2fs_sb_info *sbi = F2FS_SB(sb);
797         u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
798         block_t total_count, user_block_count, start_count, ovp_count;
799
800         total_count = le64_to_cpu(sbi->raw_super->block_count);
801         user_block_count = sbi->user_block_count;
802         start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
803         ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg;
804         buf->f_type = F2FS_SUPER_MAGIC;
805         buf->f_bsize = sbi->blocksize;
806
807         buf->f_blocks = total_count - start_count;
808         buf->f_bfree = buf->f_blocks - valid_user_blocks(sbi) - ovp_count;
809         buf->f_bavail = user_block_count - valid_user_blocks(sbi);
810
811         buf->f_files = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
812         buf->f_ffree = buf->f_files - valid_inode_count(sbi);
813
814         buf->f_namelen = F2FS_NAME_LEN;
815         buf->f_fsid.val[0] = (u32)id;
816         buf->f_fsid.val[1] = (u32)(id >> 32);
817
818         return 0;
819 }
820
821 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
822 {
823         struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
824
825         if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) {
826                 if (test_opt(sbi, FORCE_FG_GC))
827                         seq_printf(seq, ",background_gc=%s", "sync");
828                 else
829                         seq_printf(seq, ",background_gc=%s", "on");
830         } else {
831                 seq_printf(seq, ",background_gc=%s", "off");
832         }
833         if (test_opt(sbi, DISABLE_ROLL_FORWARD))
834                 seq_puts(seq, ",disable_roll_forward");
835         if (test_opt(sbi, DISCARD))
836                 seq_puts(seq, ",discard");
837         if (test_opt(sbi, NOHEAP))
838                 seq_puts(seq, ",no_heap_alloc");
839 #ifdef CONFIG_F2FS_FS_XATTR
840         if (test_opt(sbi, XATTR_USER))
841                 seq_puts(seq, ",user_xattr");
842         else
843                 seq_puts(seq, ",nouser_xattr");
844         if (test_opt(sbi, INLINE_XATTR))
845                 seq_puts(seq, ",inline_xattr");
846 #endif
847 #ifdef CONFIG_F2FS_FS_POSIX_ACL
848         if (test_opt(sbi, POSIX_ACL))
849                 seq_puts(seq, ",acl");
850         else
851                 seq_puts(seq, ",noacl");
852 #endif
853         if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
854                 seq_puts(seq, ",disable_ext_identify");
855         if (test_opt(sbi, INLINE_DATA))
856                 seq_puts(seq, ",inline_data");
857         else
858                 seq_puts(seq, ",noinline_data");
859         if (test_opt(sbi, INLINE_DENTRY))
860                 seq_puts(seq, ",inline_dentry");
861         if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
862                 seq_puts(seq, ",flush_merge");
863         if (test_opt(sbi, NOBARRIER))
864                 seq_puts(seq, ",nobarrier");
865         if (test_opt(sbi, FASTBOOT))
866                 seq_puts(seq, ",fastboot");
867         if (test_opt(sbi, EXTENT_CACHE))
868                 seq_puts(seq, ",extent_cache");
869         else
870                 seq_puts(seq, ",noextent_cache");
871         if (test_opt(sbi, DATA_FLUSH))
872                 seq_puts(seq, ",data_flush");
873         seq_printf(seq, ",active_logs=%u", sbi->active_logs);
874
875         return 0;
876 }
877
878 static int segment_info_seq_show(struct seq_file *seq, void *offset)
879 {
880         struct super_block *sb = seq->private;
881         struct f2fs_sb_info *sbi = F2FS_SB(sb);
882         unsigned int total_segs =
883                         le32_to_cpu(sbi->raw_super->segment_count_main);
884         int i;
885
886         seq_puts(seq, "format: segment_type|valid_blocks\n"
887                 "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
888
889         for (i = 0; i < total_segs; i++) {
890                 struct seg_entry *se = get_seg_entry(sbi, i);
891
892                 if ((i % 10) == 0)
893                         seq_printf(seq, "%-10d", i);
894                 seq_printf(seq, "%d|%-3u", se->type,
895                                         get_valid_blocks(sbi, i, 1));
896                 if ((i % 10) == 9 || i == (total_segs - 1))
897                         seq_putc(seq, '\n');
898                 else
899                         seq_putc(seq, ' ');
900         }
901
902         return 0;
903 }
904
905 static int segment_bits_seq_show(struct seq_file *seq, void *offset)
906 {
907         struct super_block *sb = seq->private;
908         struct f2fs_sb_info *sbi = F2FS_SB(sb);
909         unsigned int total_segs =
910                         le32_to_cpu(sbi->raw_super->segment_count_main);
911         int i, j;
912
913         seq_puts(seq, "format: segment_type|valid_blocks|bitmaps\n"
914                 "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
915
916         for (i = 0; i < total_segs; i++) {
917                 struct seg_entry *se = get_seg_entry(sbi, i);
918
919                 seq_printf(seq, "%-10d", i);
920                 seq_printf(seq, "%d|%-3u|", se->type,
921                                         get_valid_blocks(sbi, i, 1));
922                 for (j = 0; j < SIT_VBLOCK_MAP_SIZE; j++)
923                         seq_printf(seq, "%x ", se->cur_valid_map[j]);
924                 seq_putc(seq, '\n');
925         }
926         return 0;
927 }
928
929 #define F2FS_PROC_FILE_DEF(_name)                                       \
930 static int _name##_open_fs(struct inode *inode, struct file *file)      \
931 {                                                                       \
932         return single_open(file, _name##_seq_show, PDE_DATA(inode));    \
933 }                                                                       \
934                                                                         \
935 static const struct file_operations f2fs_seq_##_name##_fops = {         \
936         .owner = THIS_MODULE,                                           \
937         .open = _name##_open_fs,                                        \
938         .read = seq_read,                                               \
939         .llseek = seq_lseek,                                            \
940         .release = single_release,                                      \
941 };
942
943 F2FS_PROC_FILE_DEF(segment_info);
944 F2FS_PROC_FILE_DEF(segment_bits);
945
946 static void default_options(struct f2fs_sb_info *sbi)
947 {
948         /* init some FS parameters */
949         sbi->active_logs = NR_CURSEG_TYPE;
950
951         set_opt(sbi, BG_GC);
952         set_opt(sbi, INLINE_DATA);
953         set_opt(sbi, EXTENT_CACHE);
954         sbi->sb->s_flags |= MS_LAZYTIME;
955         set_opt(sbi, FLUSH_MERGE);
956
957 #ifdef CONFIG_F2FS_FS_XATTR
958         set_opt(sbi, XATTR_USER);
959 #endif
960 #ifdef CONFIG_F2FS_FS_POSIX_ACL
961         set_opt(sbi, POSIX_ACL);
962 #endif
963 }
964
965 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
966 {
967         struct f2fs_sb_info *sbi = F2FS_SB(sb);
968         struct f2fs_mount_info org_mount_opt;
969         int err, active_logs;
970         bool need_restart_gc = false;
971         bool need_stop_gc = false;
972         bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
973
974         /*
975          * Save the old mount options in case we
976          * need to restore them.
977          */
978         org_mount_opt = sbi->mount_opt;
979         active_logs = sbi->active_logs;
980
981         /* recover superblocks we couldn't write due to previous RO mount */
982         if (!(*flags & MS_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
983                 err = f2fs_commit_super(sbi, false);
984                 f2fs_msg(sb, KERN_INFO,
985                         "Try to recover all the superblocks, ret: %d", err);
986                 if (!err)
987                         clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
988         }
989
990         sbi->mount_opt.opt = 0;
991         default_options(sbi);
992
993         /* parse mount options */
994         err = parse_options(sb, data);
995         if (err)
996                 goto restore_opts;
997
998         /*
999          * Previous and new state of filesystem is RO,
1000          * so skip checking GC and FLUSH_MERGE conditions.
1001          */
1002         if (f2fs_readonly(sb) && (*flags & MS_RDONLY))
1003                 goto skip;
1004
1005         /* disallow enable/disable extent_cache dynamically */
1006         if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
1007                 err = -EINVAL;
1008                 f2fs_msg(sbi->sb, KERN_WARNING,
1009                                 "switch extent_cache option is not allowed");
1010                 goto restore_opts;
1011         }
1012
1013         /*
1014          * We stop the GC thread if FS is mounted as RO
1015          * or if background_gc = off is passed in mount
1016          * option. Also sync the filesystem.
1017          */
1018         if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) {
1019                 if (sbi->gc_thread) {
1020                         stop_gc_thread(sbi);
1021                         need_restart_gc = true;
1022                 }
1023         } else if (!sbi->gc_thread) {
1024                 err = start_gc_thread(sbi);
1025                 if (err)
1026                         goto restore_opts;
1027                 need_stop_gc = true;
1028         }
1029
1030         if (*flags & MS_RDONLY) {
1031                 writeback_inodes_sb(sb, WB_REASON_SYNC);
1032                 sync_inodes_sb(sb);
1033
1034                 set_sbi_flag(sbi, SBI_IS_DIRTY);
1035                 set_sbi_flag(sbi, SBI_IS_CLOSE);
1036                 f2fs_sync_fs(sb, 1);
1037                 clear_sbi_flag(sbi, SBI_IS_CLOSE);
1038         }
1039
1040         /*
1041          * We stop issue flush thread if FS is mounted as RO
1042          * or if flush_merge is not passed in mount option.
1043          */
1044         if ((*flags & MS_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
1045                 destroy_flush_cmd_control(sbi);
1046         } else if (!SM_I(sbi)->cmd_control_info) {
1047                 err = create_flush_cmd_control(sbi);
1048                 if (err)
1049                         goto restore_gc;
1050         }
1051 skip:
1052         /* Update the POSIXACL Flag */
1053         sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
1054                 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
1055
1056         return 0;
1057 restore_gc:
1058         if (need_restart_gc) {
1059                 if (start_gc_thread(sbi))
1060                         f2fs_msg(sbi->sb, KERN_WARNING,
1061                                 "background gc thread has stopped");
1062         } else if (need_stop_gc) {
1063                 stop_gc_thread(sbi);
1064         }
1065 restore_opts:
1066         sbi->mount_opt = org_mount_opt;
1067         sbi->active_logs = active_logs;
1068         return err;
1069 }
1070
1071 static struct super_operations f2fs_sops = {
1072         .alloc_inode    = f2fs_alloc_inode,
1073         .drop_inode     = f2fs_drop_inode,
1074         .destroy_inode  = f2fs_destroy_inode,
1075         .write_inode    = f2fs_write_inode,
1076         .dirty_inode    = f2fs_dirty_inode,
1077         .show_options   = f2fs_show_options,
1078         .evict_inode    = f2fs_evict_inode,
1079         .put_super      = f2fs_put_super,
1080         .sync_fs        = f2fs_sync_fs,
1081         .freeze_fs      = f2fs_freeze,
1082         .unfreeze_fs    = f2fs_unfreeze,
1083         .statfs         = f2fs_statfs,
1084         .remount_fs     = f2fs_remount,
1085 };
1086
1087 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1088 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
1089 {
1090         return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1091                                 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1092                                 ctx, len, NULL);
1093 }
1094
1095 static int f2fs_key_prefix(struct inode *inode, u8 **key)
1096 {
1097         *key = F2FS_I_SB(inode)->key_prefix;
1098         return F2FS_I_SB(inode)->key_prefix_size;
1099 }
1100
1101 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
1102                                                         void *fs_data)
1103 {
1104         return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1105                                 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1106                                 ctx, len, fs_data, XATTR_CREATE);
1107 }
1108
1109 static unsigned f2fs_max_namelen(struct inode *inode)
1110 {
1111         return S_ISLNK(inode->i_mode) ?
1112                         inode->i_sb->s_blocksize : F2FS_NAME_LEN;
1113 }
1114
1115 static struct fscrypt_operations f2fs_cryptops = {
1116         .get_context    = f2fs_get_context,
1117         .key_prefix     = f2fs_key_prefix,
1118         .set_context    = f2fs_set_context,
1119         .is_encrypted   = f2fs_encrypted_inode,
1120         .empty_dir      = f2fs_empty_dir,
1121         .max_namelen    = f2fs_max_namelen,
1122 };
1123 #else
1124 static struct fscrypt_operations f2fs_cryptops = {
1125         .is_encrypted   = f2fs_encrypted_inode,
1126 };
1127 #endif
1128
1129 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
1130                 u64 ino, u32 generation)
1131 {
1132         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1133         struct inode *inode;
1134
1135         if (check_nid_range(sbi, ino))
1136                 return ERR_PTR(-ESTALE);
1137
1138         /*
1139          * f2fs_iget isn't quite right if the inode is currently unallocated!
1140          * However f2fs_iget currently does appropriate checks to handle stale
1141          * inodes so everything is OK.
1142          */
1143         inode = f2fs_iget(sb, ino);
1144         if (IS_ERR(inode))
1145                 return ERR_CAST(inode);
1146         if (unlikely(generation && inode->i_generation != generation)) {
1147                 /* we didn't find the right inode.. */
1148                 iput(inode);
1149                 return ERR_PTR(-ESTALE);
1150         }
1151         return inode;
1152 }
1153
1154 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1155                 int fh_len, int fh_type)
1156 {
1157         return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1158                                     f2fs_nfs_get_inode);
1159 }
1160
1161 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
1162                 int fh_len, int fh_type)
1163 {
1164         return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1165                                     f2fs_nfs_get_inode);
1166 }
1167
1168 static const struct export_operations f2fs_export_ops = {
1169         .fh_to_dentry = f2fs_fh_to_dentry,
1170         .fh_to_parent = f2fs_fh_to_parent,
1171         .get_parent = f2fs_get_parent,
1172 };
1173
1174 static loff_t max_file_blocks(void)
1175 {
1176         loff_t result = (DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS);
1177         loff_t leaf_count = ADDRS_PER_BLOCK;
1178
1179         /* two direct node blocks */
1180         result += (leaf_count * 2);
1181
1182         /* two indirect node blocks */
1183         leaf_count *= NIDS_PER_BLOCK;
1184         result += (leaf_count * 2);
1185
1186         /* one double indirect node block */
1187         leaf_count *= NIDS_PER_BLOCK;
1188         result += leaf_count;
1189
1190         return result;
1191 }
1192
1193 static int __f2fs_commit_super(struct buffer_head *bh,
1194                         struct f2fs_super_block *super)
1195 {
1196         lock_buffer(bh);
1197         if (super)
1198                 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
1199         set_buffer_uptodate(bh);
1200         set_buffer_dirty(bh);
1201         unlock_buffer(bh);
1202
1203         /* it's rare case, we can do fua all the time */
1204         return __sync_dirty_buffer(bh, WRITE_FLUSH_FUA);
1205 }
1206
1207 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
1208                                         struct buffer_head *bh)
1209 {
1210         struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
1211                                         (bh->b_data + F2FS_SUPER_OFFSET);
1212         struct super_block *sb = sbi->sb;
1213         u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
1214         u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
1215         u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
1216         u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
1217         u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
1218         u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
1219         u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
1220         u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
1221         u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
1222         u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
1223         u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
1224         u32 segment_count = le32_to_cpu(raw_super->segment_count);
1225         u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
1226         u64 main_end_blkaddr = main_blkaddr +
1227                                 (segment_count_main << log_blocks_per_seg);
1228         u64 seg_end_blkaddr = segment0_blkaddr +
1229                                 (segment_count << log_blocks_per_seg);
1230
1231         if (segment0_blkaddr != cp_blkaddr) {
1232                 f2fs_msg(sb, KERN_INFO,
1233                         "Mismatch start address, segment0(%u) cp_blkaddr(%u)",
1234                         segment0_blkaddr, cp_blkaddr);
1235                 return true;
1236         }
1237
1238         if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
1239                                                         sit_blkaddr) {
1240                 f2fs_msg(sb, KERN_INFO,
1241                         "Wrong CP boundary, start(%u) end(%u) blocks(%u)",
1242                         cp_blkaddr, sit_blkaddr,
1243                         segment_count_ckpt << log_blocks_per_seg);
1244                 return true;
1245         }
1246
1247         if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
1248                                                         nat_blkaddr) {
1249                 f2fs_msg(sb, KERN_INFO,
1250                         "Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
1251                         sit_blkaddr, nat_blkaddr,
1252                         segment_count_sit << log_blocks_per_seg);
1253                 return true;
1254         }
1255
1256         if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
1257                                                         ssa_blkaddr) {
1258                 f2fs_msg(sb, KERN_INFO,
1259                         "Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
1260                         nat_blkaddr, ssa_blkaddr,
1261                         segment_count_nat << log_blocks_per_seg);
1262                 return true;
1263         }
1264
1265         if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
1266                                                         main_blkaddr) {
1267                 f2fs_msg(sb, KERN_INFO,
1268                         "Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
1269                         ssa_blkaddr, main_blkaddr,
1270                         segment_count_ssa << log_blocks_per_seg);
1271                 return true;
1272         }
1273
1274         if (main_end_blkaddr > seg_end_blkaddr) {
1275                 f2fs_msg(sb, KERN_INFO,
1276                         "Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)",
1277                         main_blkaddr,
1278                         segment0_blkaddr +
1279                                 (segment_count << log_blocks_per_seg),
1280                         segment_count_main << log_blocks_per_seg);
1281                 return true;
1282         } else if (main_end_blkaddr < seg_end_blkaddr) {
1283                 int err = 0;
1284                 char *res;
1285
1286                 /* fix in-memory information all the time */
1287                 raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
1288                                 segment0_blkaddr) >> log_blocks_per_seg);
1289
1290                 if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
1291                         set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1292                         res = "internally";
1293                 } else {
1294                         err = __f2fs_commit_super(bh, NULL);
1295                         res = err ? "failed" : "done";
1296                 }
1297                 f2fs_msg(sb, KERN_INFO,
1298                         "Fix alignment : %s, start(%u) end(%u) block(%u)",
1299                         res, main_blkaddr,
1300                         segment0_blkaddr +
1301                                 (segment_count << log_blocks_per_seg),
1302                         segment_count_main << log_blocks_per_seg);
1303                 if (err)
1304                         return true;
1305         }
1306         return false;
1307 }
1308
1309 static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
1310                                 struct buffer_head *bh)
1311 {
1312         struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
1313                                         (bh->b_data + F2FS_SUPER_OFFSET);
1314         struct super_block *sb = sbi->sb;
1315         unsigned int blocksize;
1316
1317         if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
1318                 f2fs_msg(sb, KERN_INFO,
1319                         "Magic Mismatch, valid(0x%x) - read(0x%x)",
1320                         F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
1321                 return 1;
1322         }
1323
1324         /* Currently, support only 4KB page cache size */
1325         if (F2FS_BLKSIZE != PAGE_SIZE) {
1326                 f2fs_msg(sb, KERN_INFO,
1327                         "Invalid page_cache_size (%lu), supports only 4KB\n",
1328                         PAGE_SIZE);
1329                 return 1;
1330         }
1331
1332         /* Currently, support only 4KB block size */
1333         blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
1334         if (blocksize != F2FS_BLKSIZE) {
1335                 f2fs_msg(sb, KERN_INFO,
1336                         "Invalid blocksize (%u), supports only 4KB\n",
1337                         blocksize);
1338                 return 1;
1339         }
1340
1341         /* check log blocks per segment */
1342         if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
1343                 f2fs_msg(sb, KERN_INFO,
1344                         "Invalid log blocks per segment (%u)\n",
1345                         le32_to_cpu(raw_super->log_blocks_per_seg));
1346                 return 1;
1347         }
1348
1349         /* Currently, support 512/1024/2048/4096 bytes sector size */
1350         if (le32_to_cpu(raw_super->log_sectorsize) >
1351                                 F2FS_MAX_LOG_SECTOR_SIZE ||
1352                 le32_to_cpu(raw_super->log_sectorsize) <
1353                                 F2FS_MIN_LOG_SECTOR_SIZE) {
1354                 f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)",
1355                         le32_to_cpu(raw_super->log_sectorsize));
1356                 return 1;
1357         }
1358         if (le32_to_cpu(raw_super->log_sectors_per_block) +
1359                 le32_to_cpu(raw_super->log_sectorsize) !=
1360                         F2FS_MAX_LOG_SECTOR_SIZE) {
1361                 f2fs_msg(sb, KERN_INFO,
1362                         "Invalid log sectors per block(%u) log sectorsize(%u)",
1363                         le32_to_cpu(raw_super->log_sectors_per_block),
1364                         le32_to_cpu(raw_super->log_sectorsize));
1365                 return 1;
1366         }
1367
1368         /* check reserved ino info */
1369         if (le32_to_cpu(raw_super->node_ino) != 1 ||
1370                 le32_to_cpu(raw_super->meta_ino) != 2 ||
1371                 le32_to_cpu(raw_super->root_ino) != 3) {
1372                 f2fs_msg(sb, KERN_INFO,
1373                         "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
1374                         le32_to_cpu(raw_super->node_ino),
1375                         le32_to_cpu(raw_super->meta_ino),
1376                         le32_to_cpu(raw_super->root_ino));
1377                 return 1;
1378         }
1379
1380         /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
1381         if (sanity_check_area_boundary(sbi, bh))
1382                 return 1;
1383
1384         return 0;
1385 }
1386
1387 int sanity_check_ckpt(struct f2fs_sb_info *sbi)
1388 {
1389         unsigned int total, fsmeta;
1390         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1391         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1392
1393         total = le32_to_cpu(raw_super->segment_count);
1394         fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
1395         fsmeta += le32_to_cpu(raw_super->segment_count_sit);
1396         fsmeta += le32_to_cpu(raw_super->segment_count_nat);
1397         fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
1398         fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
1399
1400         if (unlikely(fsmeta >= total))
1401                 return 1;
1402
1403         if (unlikely(f2fs_cp_error(sbi))) {
1404                 f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
1405                 return 1;
1406         }
1407         return 0;
1408 }
1409
1410 static void init_sb_info(struct f2fs_sb_info *sbi)
1411 {
1412         struct f2fs_super_block *raw_super = sbi->raw_super;
1413
1414         sbi->log_sectors_per_block =
1415                 le32_to_cpu(raw_super->log_sectors_per_block);
1416         sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
1417         sbi->blocksize = 1 << sbi->log_blocksize;
1418         sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
1419         sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
1420         sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
1421         sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
1422         sbi->total_sections = le32_to_cpu(raw_super->section_count);
1423         sbi->total_node_count =
1424                 (le32_to_cpu(raw_super->segment_count_nat) / 2)
1425                         * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
1426         sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
1427         sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
1428         sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
1429         sbi->cur_victim_sec = NULL_SECNO;
1430         sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
1431
1432         sbi->dir_level = DEF_DIR_LEVEL;
1433         sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
1434         sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
1435         clear_sbi_flag(sbi, SBI_NEED_FSCK);
1436
1437         INIT_LIST_HEAD(&sbi->s_list);
1438         mutex_init(&sbi->umount_mutex);
1439         mutex_init(&sbi->wio_mutex[NODE]);
1440         mutex_init(&sbi->wio_mutex[DATA]);
1441
1442 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1443         memcpy(sbi->key_prefix, F2FS_KEY_DESC_PREFIX,
1444                                 F2FS_KEY_DESC_PREFIX_SIZE);
1445         sbi->key_prefix_size = F2FS_KEY_DESC_PREFIX_SIZE;
1446 #endif
1447 }
1448
1449 static int init_percpu_info(struct f2fs_sb_info *sbi)
1450 {
1451         int i, err;
1452
1453         for (i = 0; i < NR_COUNT_TYPE; i++) {
1454                 err = percpu_counter_init(&sbi->nr_pages[i], 0, GFP_KERNEL);
1455                 if (err)
1456                         return err;
1457         }
1458
1459         err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
1460         if (err)
1461                 return err;
1462
1463         return percpu_counter_init(&sbi->total_valid_inode_count, 0,
1464                                                                 GFP_KERNEL);
1465 }
1466
1467 /*
1468  * Read f2fs raw super block.
1469  * Because we have two copies of super block, so read both of them
1470  * to get the first valid one. If any one of them is broken, we pass
1471  * them recovery flag back to the caller.
1472  */
1473 static int read_raw_super_block(struct f2fs_sb_info *sbi,
1474                         struct f2fs_super_block **raw_super,
1475                         int *valid_super_block, int *recovery)
1476 {
1477         struct super_block *sb = sbi->sb;
1478         int block;
1479         struct buffer_head *bh;
1480         struct f2fs_super_block *super;
1481         int err = 0;
1482
1483         super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
1484         if (!super)
1485                 return -ENOMEM;
1486
1487         for (block = 0; block < 2; block++) {
1488                 bh = sb_bread(sb, block);
1489                 if (!bh) {
1490                         f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
1491                                 block + 1);
1492                         err = -EIO;
1493                         continue;
1494                 }
1495
1496                 /* sanity checking of raw super */
1497                 if (sanity_check_raw_super(sbi, bh)) {
1498                         f2fs_msg(sb, KERN_ERR,
1499                                 "Can't find valid F2FS filesystem in %dth superblock",
1500                                 block + 1);
1501                         err = -EINVAL;
1502                         brelse(bh);
1503                         continue;
1504                 }
1505
1506                 if (!*raw_super) {
1507                         memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
1508                                                         sizeof(*super));
1509                         *valid_super_block = block;
1510                         *raw_super = super;
1511                 }
1512                 brelse(bh);
1513         }
1514
1515         /* Fail to read any one of the superblocks*/
1516         if (err < 0)
1517                 *recovery = 1;
1518
1519         /* No valid superblock */
1520         if (!*raw_super)
1521                 kfree(super);
1522         else
1523                 err = 0;
1524
1525         return err;
1526 }
1527
1528 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
1529 {
1530         struct buffer_head *bh;
1531         int err;
1532
1533         if ((recover && f2fs_readonly(sbi->sb)) ||
1534                                 bdev_read_only(sbi->sb->s_bdev)) {
1535                 set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1536                 return -EROFS;
1537         }
1538
1539         /* write back-up superblock first */
1540         bh = sb_getblk(sbi->sb, sbi->valid_super_block ? 0: 1);
1541         if (!bh)
1542                 return -EIO;
1543         err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
1544         brelse(bh);
1545
1546         /* if we are in recovery path, skip writing valid superblock */
1547         if (recover || err)
1548                 return err;
1549
1550         /* write current valid superblock */
1551         bh = sb_getblk(sbi->sb, sbi->valid_super_block);
1552         if (!bh)
1553                 return -EIO;
1554         err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
1555         brelse(bh);
1556         return err;
1557 }
1558
1559 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
1560 {
1561         struct f2fs_sb_info *sbi;
1562         struct f2fs_super_block *raw_super;
1563         struct inode *root;
1564         int err;
1565         bool retry = true, need_fsck = false;
1566         char *options = NULL;
1567         int recovery, i, valid_super_block;
1568         struct curseg_info *seg_i;
1569
1570 try_onemore:
1571         err = -EINVAL;
1572         raw_super = NULL;
1573         valid_super_block = -1;
1574         recovery = 0;
1575
1576         /* allocate memory for f2fs-specific super block info */
1577         sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
1578         if (!sbi)
1579                 return -ENOMEM;
1580
1581         sbi->sb = sb;
1582
1583         /* Load the checksum driver */
1584         sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
1585         if (IS_ERR(sbi->s_chksum_driver)) {
1586                 f2fs_msg(sb, KERN_ERR, "Cannot load crc32 driver.");
1587                 err = PTR_ERR(sbi->s_chksum_driver);
1588                 sbi->s_chksum_driver = NULL;
1589                 goto free_sbi;
1590         }
1591
1592         /* set a block size */
1593         if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
1594                 f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
1595                 goto free_sbi;
1596         }
1597
1598         err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
1599                                                                 &recovery);
1600         if (err)
1601                 goto free_sbi;
1602
1603         sb->s_fs_info = sbi;
1604         default_options(sbi);
1605         /* parse mount options */
1606         options = kstrdup((const char *)data, GFP_KERNEL);
1607         if (data && !options) {
1608                 err = -ENOMEM;
1609                 goto free_sb_buf;
1610         }
1611
1612         err = parse_options(sb, options);
1613         if (err)
1614                 goto free_options;
1615
1616         sbi->max_file_blocks = max_file_blocks();
1617         sb->s_maxbytes = sbi->max_file_blocks <<
1618                                 le32_to_cpu(raw_super->log_blocksize);
1619         sb->s_max_links = F2FS_LINK_MAX;
1620         get_random_bytes(&sbi->s_next_generation, sizeof(u32));
1621
1622         sb->s_op = &f2fs_sops;
1623         sb->s_cop = &f2fs_cryptops;
1624         sb->s_xattr = f2fs_xattr_handlers;
1625         sb->s_export_op = &f2fs_export_ops;
1626         sb->s_magic = F2FS_SUPER_MAGIC;
1627         sb->s_time_gran = 1;
1628         sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
1629                 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
1630         memcpy(sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
1631
1632         /* init f2fs-specific super block info */
1633         sbi->raw_super = raw_super;
1634         sbi->valid_super_block = valid_super_block;
1635         mutex_init(&sbi->gc_mutex);
1636         mutex_init(&sbi->cp_mutex);
1637         init_rwsem(&sbi->node_write);
1638
1639         /* disallow all the data/node/meta page writes */
1640         set_sbi_flag(sbi, SBI_POR_DOING);
1641         spin_lock_init(&sbi->stat_lock);
1642
1643         init_rwsem(&sbi->read_io.io_rwsem);
1644         sbi->read_io.sbi = sbi;
1645         sbi->read_io.bio = NULL;
1646         for (i = 0; i < NR_PAGE_TYPE; i++) {
1647                 init_rwsem(&sbi->write_io[i].io_rwsem);
1648                 sbi->write_io[i].sbi = sbi;
1649                 sbi->write_io[i].bio = NULL;
1650         }
1651
1652         init_rwsem(&sbi->cp_rwsem);
1653         init_waitqueue_head(&sbi->cp_wait);
1654         init_sb_info(sbi);
1655
1656         err = init_percpu_info(sbi);
1657         if (err)
1658                 goto free_options;
1659
1660         /* get an inode for meta space */
1661         sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
1662         if (IS_ERR(sbi->meta_inode)) {
1663                 f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
1664                 err = PTR_ERR(sbi->meta_inode);
1665                 goto free_options;
1666         }
1667
1668         err = get_valid_checkpoint(sbi);
1669         if (err) {
1670                 f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
1671                 goto free_meta_inode;
1672         }
1673
1674         sbi->total_valid_node_count =
1675                                 le32_to_cpu(sbi->ckpt->valid_node_count);
1676         percpu_counter_set(&sbi->total_valid_inode_count,
1677                                 le32_to_cpu(sbi->ckpt->valid_inode_count));
1678         sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
1679         sbi->total_valid_block_count =
1680                                 le64_to_cpu(sbi->ckpt->valid_block_count);
1681         sbi->last_valid_block_count = sbi->total_valid_block_count;
1682
1683         for (i = 0; i < NR_INODE_TYPE; i++) {
1684                 INIT_LIST_HEAD(&sbi->inode_list[i]);
1685                 spin_lock_init(&sbi->inode_lock[i]);
1686         }
1687
1688         init_extent_cache_info(sbi);
1689
1690         init_ino_entry_info(sbi);
1691
1692         /* setup f2fs internal modules */
1693         err = build_segment_manager(sbi);
1694         if (err) {
1695                 f2fs_msg(sb, KERN_ERR,
1696                         "Failed to initialize F2FS segment manager");
1697                 goto free_sm;
1698         }
1699         err = build_node_manager(sbi);
1700         if (err) {
1701                 f2fs_msg(sb, KERN_ERR,
1702                         "Failed to initialize F2FS node manager");
1703                 goto free_nm;
1704         }
1705
1706         /* For write statistics */
1707         if (sb->s_bdev->bd_part)
1708                 sbi->sectors_written_start =
1709                         (u64)part_stat_read(sb->s_bdev->bd_part, sectors[1]);
1710
1711         /* Read accumulated write IO statistics if exists */
1712         seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1713         if (__exist_node_summaries(sbi))
1714                 sbi->kbytes_written =
1715                         le64_to_cpu(seg_i->journal->info.kbytes_written);
1716
1717         build_gc_manager(sbi);
1718
1719         /* get an inode for node space */
1720         sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
1721         if (IS_ERR(sbi->node_inode)) {
1722                 f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
1723                 err = PTR_ERR(sbi->node_inode);
1724                 goto free_nm;
1725         }
1726
1727         f2fs_join_shrinker(sbi);
1728
1729         /* if there are nt orphan nodes free them */
1730         err = recover_orphan_inodes(sbi);
1731         if (err)
1732                 goto free_node_inode;
1733
1734         /* read root inode and dentry */
1735         root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
1736         if (IS_ERR(root)) {
1737                 f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
1738                 err = PTR_ERR(root);
1739                 goto free_node_inode;
1740         }
1741         if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
1742                 iput(root);
1743                 err = -EINVAL;
1744                 goto free_node_inode;
1745         }
1746
1747         sb->s_root = d_make_root(root); /* allocate root dentry */
1748         if (!sb->s_root) {
1749                 err = -ENOMEM;
1750                 goto free_root_inode;
1751         }
1752
1753         err = f2fs_build_stats(sbi);
1754         if (err)
1755                 goto free_root_inode;
1756
1757         if (f2fs_proc_root)
1758                 sbi->s_proc = proc_mkdir(sb->s_id, f2fs_proc_root);
1759
1760         if (sbi->s_proc) {
1761                 proc_create_data("segment_info", S_IRUGO, sbi->s_proc,
1762                                  &f2fs_seq_segment_info_fops, sb);
1763                 proc_create_data("segment_bits", S_IRUGO, sbi->s_proc,
1764                                  &f2fs_seq_segment_bits_fops, sb);
1765         }
1766
1767         sbi->s_kobj.kset = f2fs_kset;
1768         init_completion(&sbi->s_kobj_unregister);
1769         err = kobject_init_and_add(&sbi->s_kobj, &f2fs_ktype, NULL,
1770                                                         "%s", sb->s_id);
1771         if (err)
1772                 goto free_proc;
1773
1774         /* recover fsynced data */
1775         if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
1776                 /*
1777                  * mount should be failed, when device has readonly mode, and
1778                  * previous checkpoint was not done by clean system shutdown.
1779                  */
1780                 if (bdev_read_only(sb->s_bdev) &&
1781                                 !is_set_ckpt_flags(sbi->ckpt, CP_UMOUNT_FLAG)) {
1782                         err = -EROFS;
1783                         goto free_kobj;
1784                 }
1785
1786                 if (need_fsck)
1787                         set_sbi_flag(sbi, SBI_NEED_FSCK);
1788
1789                 err = recover_fsync_data(sbi, false);
1790                 if (err < 0) {
1791                         need_fsck = true;
1792                         f2fs_msg(sb, KERN_ERR,
1793                                 "Cannot recover all fsync data errno=%d", err);
1794                         goto free_kobj;
1795                 }
1796         } else {
1797                 err = recover_fsync_data(sbi, true);
1798
1799                 if (!f2fs_readonly(sb) && err > 0) {
1800                         err = -EINVAL;
1801                         f2fs_msg(sb, KERN_ERR,
1802                                 "Need to recover fsync data");
1803                         goto free_kobj;
1804                 }
1805         }
1806
1807         /* recover_fsync_data() cleared this already */
1808         clear_sbi_flag(sbi, SBI_POR_DOING);
1809
1810         /*
1811          * If filesystem is not mounted as read-only then
1812          * do start the gc_thread.
1813          */
1814         if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) {
1815                 /* After POR, we can run background GC thread.*/
1816                 err = start_gc_thread(sbi);
1817                 if (err)
1818                         goto free_kobj;
1819         }
1820         kfree(options);
1821
1822         /* recover broken superblock */
1823         if (recovery) {
1824                 err = f2fs_commit_super(sbi, true);
1825                 f2fs_msg(sb, KERN_INFO,
1826                         "Try to recover %dth superblock, ret: %d",
1827                         sbi->valid_super_block ? 1 : 2, err);
1828         }
1829
1830         f2fs_update_time(sbi, CP_TIME);
1831         f2fs_update_time(sbi, REQ_TIME);
1832         return 0;
1833
1834 free_kobj:
1835         f2fs_sync_inode_meta(sbi);
1836         kobject_del(&sbi->s_kobj);
1837         kobject_put(&sbi->s_kobj);
1838         wait_for_completion(&sbi->s_kobj_unregister);
1839 free_proc:
1840         if (sbi->s_proc) {
1841                 remove_proc_entry("segment_info", sbi->s_proc);
1842                 remove_proc_entry("segment_bits", sbi->s_proc);
1843                 remove_proc_entry(sb->s_id, f2fs_proc_root);
1844         }
1845         f2fs_destroy_stats(sbi);
1846 free_root_inode:
1847         dput(sb->s_root);
1848         sb->s_root = NULL;
1849 free_node_inode:
1850         mutex_lock(&sbi->umount_mutex);
1851         f2fs_leave_shrinker(sbi);
1852         iput(sbi->node_inode);
1853         mutex_unlock(&sbi->umount_mutex);
1854 free_nm:
1855         destroy_node_manager(sbi);
1856 free_sm:
1857         destroy_segment_manager(sbi);
1858         kfree(sbi->ckpt);
1859 free_meta_inode:
1860         make_bad_inode(sbi->meta_inode);
1861         iput(sbi->meta_inode);
1862 free_options:
1863         destroy_percpu_info(sbi);
1864         kfree(options);
1865 free_sb_buf:
1866         kfree(raw_super);
1867 free_sbi:
1868         if (sbi->s_chksum_driver)
1869                 crypto_free_shash(sbi->s_chksum_driver);
1870         kfree(sbi);
1871
1872         /* give only one another chance */
1873         if (retry) {
1874                 retry = false;
1875                 shrink_dcache_sb(sb);
1876                 goto try_onemore;
1877         }
1878         return err;
1879 }
1880
1881 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
1882                         const char *dev_name, void *data)
1883 {
1884         return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
1885 }
1886
1887 static void kill_f2fs_super(struct super_block *sb)
1888 {
1889         if (sb->s_root)
1890                 set_sbi_flag(F2FS_SB(sb), SBI_IS_CLOSE);
1891         kill_block_super(sb);
1892 }
1893
1894 static struct file_system_type f2fs_fs_type = {
1895         .owner          = THIS_MODULE,
1896         .name           = "f2fs",
1897         .mount          = f2fs_mount,
1898         .kill_sb        = kill_f2fs_super,
1899         .fs_flags       = FS_REQUIRES_DEV,
1900 };
1901 MODULE_ALIAS_FS("f2fs");
1902
1903 static int __init init_inodecache(void)
1904 {
1905         f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
1906                         sizeof(struct f2fs_inode_info), 0,
1907                         SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
1908         if (!f2fs_inode_cachep)
1909                 return -ENOMEM;
1910         return 0;
1911 }
1912
1913 static void destroy_inodecache(void)
1914 {
1915         /*
1916          * Make sure all delayed rcu free inodes are flushed before we
1917          * destroy cache.
1918          */
1919         rcu_barrier();
1920         kmem_cache_destroy(f2fs_inode_cachep);
1921 }
1922
1923 static int __init init_f2fs_fs(void)
1924 {
1925         int err;
1926
1927         f2fs_build_trace_ios();
1928
1929         err = init_inodecache();
1930         if (err)
1931                 goto fail;
1932         err = create_node_manager_caches();
1933         if (err)
1934                 goto free_inodecache;
1935         err = create_segment_manager_caches();
1936         if (err)
1937                 goto free_node_manager_caches;
1938         err = create_checkpoint_caches();
1939         if (err)
1940                 goto free_segment_manager_caches;
1941         err = create_extent_cache();
1942         if (err)
1943                 goto free_checkpoint_caches;
1944         f2fs_kset = kset_create_and_add("f2fs", NULL, fs_kobj);
1945         if (!f2fs_kset) {
1946                 err = -ENOMEM;
1947                 goto free_extent_cache;
1948         }
1949 #ifdef CONFIG_F2FS_FAULT_INJECTION
1950         f2fs_fault_inject.kset = f2fs_kset;
1951         f2fs_build_fault_attr(0);
1952         err = kobject_init_and_add(&f2fs_fault_inject, &f2fs_fault_ktype,
1953                                 NULL, "fault_injection");
1954         if (err) {
1955                 f2fs_fault_inject.kset = NULL;
1956                 goto free_kset;
1957         }
1958 #endif
1959         err = register_shrinker(&f2fs_shrinker_info);
1960         if (err)
1961                 goto free_kset;
1962
1963         err = register_filesystem(&f2fs_fs_type);
1964         if (err)
1965                 goto free_shrinker;
1966         err = f2fs_create_root_stats();
1967         if (err)
1968                 goto free_filesystem;
1969         f2fs_proc_root = proc_mkdir("fs/f2fs", NULL);
1970         return 0;
1971
1972 free_filesystem:
1973         unregister_filesystem(&f2fs_fs_type);
1974 free_shrinker:
1975         unregister_shrinker(&f2fs_shrinker_info);
1976 free_kset:
1977 #ifdef CONFIG_F2FS_FAULT_INJECTION
1978         if (f2fs_fault_inject.kset)
1979                 kobject_put(&f2fs_fault_inject);
1980 #endif
1981         kset_unregister(f2fs_kset);
1982 free_extent_cache:
1983         destroy_extent_cache();
1984 free_checkpoint_caches:
1985         destroy_checkpoint_caches();
1986 free_segment_manager_caches:
1987         destroy_segment_manager_caches();
1988 free_node_manager_caches:
1989         destroy_node_manager_caches();
1990 free_inodecache:
1991         destroy_inodecache();
1992 fail:
1993         return err;
1994 }
1995
1996 static void __exit exit_f2fs_fs(void)
1997 {
1998         remove_proc_entry("fs/f2fs", NULL);
1999         f2fs_destroy_root_stats();
2000         unregister_filesystem(&f2fs_fs_type);
2001         unregister_shrinker(&f2fs_shrinker_info);
2002 #ifdef CONFIG_F2FS_FAULT_INJECTION
2003         kobject_put(&f2fs_fault_inject);
2004 #endif
2005         kset_unregister(f2fs_kset);
2006         destroy_extent_cache();
2007         destroy_checkpoint_caches();
2008         destroy_segment_manager_caches();
2009         destroy_node_manager_caches();
2010         destroy_inodecache();
2011         f2fs_destroy_trace_ios();
2012 }
2013
2014 module_init(init_f2fs_fs)
2015 module_exit(exit_f2fs_fs)
2016
2017 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
2018 MODULE_DESCRIPTION("Flash Friendly File System");
2019 MODULE_LICENSE("GPL");