Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
[linux-2.6-microblaze.git] / fs / f2fs / super.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/super.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/module.h>
9 #include <linux/init.h>
10 #include <linux/fs.h>
11 #include <linux/statfs.h>
12 #include <linux/buffer_head.h>
13 #include <linux/backing-dev.h>
14 #include <linux/kthread.h>
15 #include <linux/parser.h>
16 #include <linux/mount.h>
17 #include <linux/seq_file.h>
18 #include <linux/proc_fs.h>
19 #include <linux/random.h>
20 #include <linux/exportfs.h>
21 #include <linux/blkdev.h>
22 #include <linux/quotaops.h>
23 #include <linux/f2fs_fs.h>
24 #include <linux/sysfs.h>
25 #include <linux/quota.h>
26
27 #include "f2fs.h"
28 #include "node.h"
29 #include "segment.h"
30 #include "xattr.h"
31 #include "gc.h"
32 #include "trace.h"
33
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/f2fs.h>
36
37 static struct kmem_cache *f2fs_inode_cachep;
38
39 #ifdef CONFIG_F2FS_FAULT_INJECTION
40
41 const char *f2fs_fault_name[FAULT_MAX] = {
42         [FAULT_KMALLOC]         = "kmalloc",
43         [FAULT_KVMALLOC]        = "kvmalloc",
44         [FAULT_PAGE_ALLOC]      = "page alloc",
45         [FAULT_PAGE_GET]        = "page get",
46         [FAULT_ALLOC_BIO]       = "alloc bio",
47         [FAULT_ALLOC_NID]       = "alloc nid",
48         [FAULT_ORPHAN]          = "orphan",
49         [FAULT_BLOCK]           = "no more block",
50         [FAULT_DIR_DEPTH]       = "too big dir depth",
51         [FAULT_EVICT_INODE]     = "evict_inode fail",
52         [FAULT_TRUNCATE]        = "truncate fail",
53         [FAULT_READ_IO]         = "read IO error",
54         [FAULT_CHECKPOINT]      = "checkpoint error",
55         [FAULT_DISCARD]         = "discard error",
56         [FAULT_WRITE_IO]        = "write IO error",
57 };
58
59 void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
60                                                         unsigned int type)
61 {
62         struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
63
64         if (rate) {
65                 atomic_set(&ffi->inject_ops, 0);
66                 ffi->inject_rate = rate;
67         }
68
69         if (type)
70                 ffi->inject_type = type;
71
72         if (!rate && !type)
73                 memset(ffi, 0, sizeof(struct f2fs_fault_info));
74 }
75 #endif
76
77 /* f2fs-wide shrinker description */
78 static struct shrinker f2fs_shrinker_info = {
79         .scan_objects = f2fs_shrink_scan,
80         .count_objects = f2fs_shrink_count,
81         .seeks = DEFAULT_SEEKS,
82 };
83
84 enum {
85         Opt_gc_background,
86         Opt_disable_roll_forward,
87         Opt_norecovery,
88         Opt_discard,
89         Opt_nodiscard,
90         Opt_noheap,
91         Opt_heap,
92         Opt_user_xattr,
93         Opt_nouser_xattr,
94         Opt_acl,
95         Opt_noacl,
96         Opt_active_logs,
97         Opt_disable_ext_identify,
98         Opt_inline_xattr,
99         Opt_noinline_xattr,
100         Opt_inline_xattr_size,
101         Opt_inline_data,
102         Opt_inline_dentry,
103         Opt_noinline_dentry,
104         Opt_flush_merge,
105         Opt_noflush_merge,
106         Opt_nobarrier,
107         Opt_fastboot,
108         Opt_extent_cache,
109         Opt_noextent_cache,
110         Opt_noinline_data,
111         Opt_data_flush,
112         Opt_reserve_root,
113         Opt_resgid,
114         Opt_resuid,
115         Opt_mode,
116         Opt_io_size_bits,
117         Opt_fault_injection,
118         Opt_fault_type,
119         Opt_lazytime,
120         Opt_nolazytime,
121         Opt_quota,
122         Opt_noquota,
123         Opt_usrquota,
124         Opt_grpquota,
125         Opt_prjquota,
126         Opt_usrjquota,
127         Opt_grpjquota,
128         Opt_prjjquota,
129         Opt_offusrjquota,
130         Opt_offgrpjquota,
131         Opt_offprjjquota,
132         Opt_jqfmt_vfsold,
133         Opt_jqfmt_vfsv0,
134         Opt_jqfmt_vfsv1,
135         Opt_whint,
136         Opt_alloc,
137         Opt_fsync,
138         Opt_test_dummy_encryption,
139         Opt_checkpoint,
140         Opt_err,
141 };
142
143 static match_table_t f2fs_tokens = {
144         {Opt_gc_background, "background_gc=%s"},
145         {Opt_disable_roll_forward, "disable_roll_forward"},
146         {Opt_norecovery, "norecovery"},
147         {Opt_discard, "discard"},
148         {Opt_nodiscard, "nodiscard"},
149         {Opt_noheap, "no_heap"},
150         {Opt_heap, "heap"},
151         {Opt_user_xattr, "user_xattr"},
152         {Opt_nouser_xattr, "nouser_xattr"},
153         {Opt_acl, "acl"},
154         {Opt_noacl, "noacl"},
155         {Opt_active_logs, "active_logs=%u"},
156         {Opt_disable_ext_identify, "disable_ext_identify"},
157         {Opt_inline_xattr, "inline_xattr"},
158         {Opt_noinline_xattr, "noinline_xattr"},
159         {Opt_inline_xattr_size, "inline_xattr_size=%u"},
160         {Opt_inline_data, "inline_data"},
161         {Opt_inline_dentry, "inline_dentry"},
162         {Opt_noinline_dentry, "noinline_dentry"},
163         {Opt_flush_merge, "flush_merge"},
164         {Opt_noflush_merge, "noflush_merge"},
165         {Opt_nobarrier, "nobarrier"},
166         {Opt_fastboot, "fastboot"},
167         {Opt_extent_cache, "extent_cache"},
168         {Opt_noextent_cache, "noextent_cache"},
169         {Opt_noinline_data, "noinline_data"},
170         {Opt_data_flush, "data_flush"},
171         {Opt_reserve_root, "reserve_root=%u"},
172         {Opt_resgid, "resgid=%u"},
173         {Opt_resuid, "resuid=%u"},
174         {Opt_mode, "mode=%s"},
175         {Opt_io_size_bits, "io_bits=%u"},
176         {Opt_fault_injection, "fault_injection=%u"},
177         {Opt_fault_type, "fault_type=%u"},
178         {Opt_lazytime, "lazytime"},
179         {Opt_nolazytime, "nolazytime"},
180         {Opt_quota, "quota"},
181         {Opt_noquota, "noquota"},
182         {Opt_usrquota, "usrquota"},
183         {Opt_grpquota, "grpquota"},
184         {Opt_prjquota, "prjquota"},
185         {Opt_usrjquota, "usrjquota=%s"},
186         {Opt_grpjquota, "grpjquota=%s"},
187         {Opt_prjjquota, "prjjquota=%s"},
188         {Opt_offusrjquota, "usrjquota="},
189         {Opt_offgrpjquota, "grpjquota="},
190         {Opt_offprjjquota, "prjjquota="},
191         {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
192         {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
193         {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
194         {Opt_whint, "whint_mode=%s"},
195         {Opt_alloc, "alloc_mode=%s"},
196         {Opt_fsync, "fsync_mode=%s"},
197         {Opt_test_dummy_encryption, "test_dummy_encryption"},
198         {Opt_checkpoint, "checkpoint=%s"},
199         {Opt_err, NULL},
200 };
201
202 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
203 {
204         struct va_format vaf;
205         va_list args;
206
207         va_start(args, fmt);
208         vaf.fmt = fmt;
209         vaf.va = &args;
210         printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
211         va_end(args);
212 }
213
214 static inline void limit_reserve_root(struct f2fs_sb_info *sbi)
215 {
216         block_t limit = (sbi->user_block_count << 1) / 1000;
217
218         /* limit is 0.2% */
219         if (test_opt(sbi, RESERVE_ROOT) &&
220                         F2FS_OPTION(sbi).root_reserved_blocks > limit) {
221                 F2FS_OPTION(sbi).root_reserved_blocks = limit;
222                 f2fs_msg(sbi->sb, KERN_INFO,
223                         "Reduce reserved blocks for root = %u",
224                         F2FS_OPTION(sbi).root_reserved_blocks);
225         }
226         if (!test_opt(sbi, RESERVE_ROOT) &&
227                 (!uid_eq(F2FS_OPTION(sbi).s_resuid,
228                                 make_kuid(&init_user_ns, F2FS_DEF_RESUID)) ||
229                 !gid_eq(F2FS_OPTION(sbi).s_resgid,
230                                 make_kgid(&init_user_ns, F2FS_DEF_RESGID))))
231                 f2fs_msg(sbi->sb, KERN_INFO,
232                         "Ignore s_resuid=%u, s_resgid=%u w/o reserve_root",
233                                 from_kuid_munged(&init_user_ns,
234                                         F2FS_OPTION(sbi).s_resuid),
235                                 from_kgid_munged(&init_user_ns,
236                                         F2FS_OPTION(sbi).s_resgid));
237 }
238
239 static void init_once(void *foo)
240 {
241         struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
242
243         inode_init_once(&fi->vfs_inode);
244 }
245
246 #ifdef CONFIG_QUOTA
247 static const char * const quotatypes[] = INITQFNAMES;
248 #define QTYPE2NAME(t) (quotatypes[t])
249 static int f2fs_set_qf_name(struct super_block *sb, int qtype,
250                                                         substring_t *args)
251 {
252         struct f2fs_sb_info *sbi = F2FS_SB(sb);
253         char *qname;
254         int ret = -EINVAL;
255
256         if (sb_any_quota_loaded(sb) && !F2FS_OPTION(sbi).s_qf_names[qtype]) {
257                 f2fs_msg(sb, KERN_ERR,
258                         "Cannot change journaled "
259                         "quota options when quota turned on");
260                 return -EINVAL;
261         }
262         if (f2fs_sb_has_quota_ino(sbi)) {
263                 f2fs_msg(sb, KERN_INFO,
264                         "QUOTA feature is enabled, so ignore qf_name");
265                 return 0;
266         }
267
268         qname = match_strdup(args);
269         if (!qname) {
270                 f2fs_msg(sb, KERN_ERR,
271                         "Not enough memory for storing quotafile name");
272                 return -ENOMEM;
273         }
274         if (F2FS_OPTION(sbi).s_qf_names[qtype]) {
275                 if (strcmp(F2FS_OPTION(sbi).s_qf_names[qtype], qname) == 0)
276                         ret = 0;
277                 else
278                         f2fs_msg(sb, KERN_ERR,
279                                  "%s quota file already specified",
280                                  QTYPE2NAME(qtype));
281                 goto errout;
282         }
283         if (strchr(qname, '/')) {
284                 f2fs_msg(sb, KERN_ERR,
285                         "quotafile must be on filesystem root");
286                 goto errout;
287         }
288         F2FS_OPTION(sbi).s_qf_names[qtype] = qname;
289         set_opt(sbi, QUOTA);
290         return 0;
291 errout:
292         kvfree(qname);
293         return ret;
294 }
295
296 static int f2fs_clear_qf_name(struct super_block *sb, int qtype)
297 {
298         struct f2fs_sb_info *sbi = F2FS_SB(sb);
299
300         if (sb_any_quota_loaded(sb) && F2FS_OPTION(sbi).s_qf_names[qtype]) {
301                 f2fs_msg(sb, KERN_ERR, "Cannot change journaled quota options"
302                         " when quota turned on");
303                 return -EINVAL;
304         }
305         kvfree(F2FS_OPTION(sbi).s_qf_names[qtype]);
306         F2FS_OPTION(sbi).s_qf_names[qtype] = NULL;
307         return 0;
308 }
309
310 static int f2fs_check_quota_options(struct f2fs_sb_info *sbi)
311 {
312         /*
313          * We do the test below only for project quotas. 'usrquota' and
314          * 'grpquota' mount options are allowed even without quota feature
315          * to support legacy quotas in quota files.
316          */
317         if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi)) {
318                 f2fs_msg(sbi->sb, KERN_ERR, "Project quota feature not enabled. "
319                          "Cannot enable project quota enforcement.");
320                 return -1;
321         }
322         if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
323                         F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
324                         F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) {
325                 if (test_opt(sbi, USRQUOTA) &&
326                                 F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
327                         clear_opt(sbi, USRQUOTA);
328
329                 if (test_opt(sbi, GRPQUOTA) &&
330                                 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
331                         clear_opt(sbi, GRPQUOTA);
332
333                 if (test_opt(sbi, PRJQUOTA) &&
334                                 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
335                         clear_opt(sbi, PRJQUOTA);
336
337                 if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) ||
338                                 test_opt(sbi, PRJQUOTA)) {
339                         f2fs_msg(sbi->sb, KERN_ERR, "old and new quota "
340                                         "format mixing");
341                         return -1;
342                 }
343
344                 if (!F2FS_OPTION(sbi).s_jquota_fmt) {
345                         f2fs_msg(sbi->sb, KERN_ERR, "journaled quota format "
346                                         "not specified");
347                         return -1;
348                 }
349         }
350
351         if (f2fs_sb_has_quota_ino(sbi) && F2FS_OPTION(sbi).s_jquota_fmt) {
352                 f2fs_msg(sbi->sb, KERN_INFO,
353                         "QUOTA feature is enabled, so ignore jquota_fmt");
354                 F2FS_OPTION(sbi).s_jquota_fmt = 0;
355         }
356         return 0;
357 }
358 #endif
359
360 static int parse_options(struct super_block *sb, char *options)
361 {
362         struct f2fs_sb_info *sbi = F2FS_SB(sb);
363         substring_t args[MAX_OPT_ARGS];
364         char *p, *name;
365         int arg = 0;
366         kuid_t uid;
367         kgid_t gid;
368 #ifdef CONFIG_QUOTA
369         int ret;
370 #endif
371
372         if (!options)
373                 return 0;
374
375         while ((p = strsep(&options, ",")) != NULL) {
376                 int token;
377                 if (!*p)
378                         continue;
379                 /*
380                  * Initialize args struct so we know whether arg was
381                  * found; some options take optional arguments.
382                  */
383                 args[0].to = args[0].from = NULL;
384                 token = match_token(p, f2fs_tokens, args);
385
386                 switch (token) {
387                 case Opt_gc_background:
388                         name = match_strdup(&args[0]);
389
390                         if (!name)
391                                 return -ENOMEM;
392                         if (strlen(name) == 2 && !strncmp(name, "on", 2)) {
393                                 set_opt(sbi, BG_GC);
394                                 clear_opt(sbi, FORCE_FG_GC);
395                         } else if (strlen(name) == 3 && !strncmp(name, "off", 3)) {
396                                 clear_opt(sbi, BG_GC);
397                                 clear_opt(sbi, FORCE_FG_GC);
398                         } else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) {
399                                 set_opt(sbi, BG_GC);
400                                 set_opt(sbi, FORCE_FG_GC);
401                         } else {
402                                 kvfree(name);
403                                 return -EINVAL;
404                         }
405                         kvfree(name);
406                         break;
407                 case Opt_disable_roll_forward:
408                         set_opt(sbi, DISABLE_ROLL_FORWARD);
409                         break;
410                 case Opt_norecovery:
411                         /* this option mounts f2fs with ro */
412                         set_opt(sbi, DISABLE_ROLL_FORWARD);
413                         if (!f2fs_readonly(sb))
414                                 return -EINVAL;
415                         break;
416                 case Opt_discard:
417                         set_opt(sbi, DISCARD);
418                         break;
419                 case Opt_nodiscard:
420                         if (f2fs_sb_has_blkzoned(sbi)) {
421                                 f2fs_msg(sb, KERN_WARNING,
422                                         "discard is required for zoned block devices");
423                                 return -EINVAL;
424                         }
425                         clear_opt(sbi, DISCARD);
426                         break;
427                 case Opt_noheap:
428                         set_opt(sbi, NOHEAP);
429                         break;
430                 case Opt_heap:
431                         clear_opt(sbi, NOHEAP);
432                         break;
433 #ifdef CONFIG_F2FS_FS_XATTR
434                 case Opt_user_xattr:
435                         set_opt(sbi, XATTR_USER);
436                         break;
437                 case Opt_nouser_xattr:
438                         clear_opt(sbi, XATTR_USER);
439                         break;
440                 case Opt_inline_xattr:
441                         set_opt(sbi, INLINE_XATTR);
442                         break;
443                 case Opt_noinline_xattr:
444                         clear_opt(sbi, INLINE_XATTR);
445                         break;
446                 case Opt_inline_xattr_size:
447                         if (args->from && match_int(args, &arg))
448                                 return -EINVAL;
449                         set_opt(sbi, INLINE_XATTR_SIZE);
450                         F2FS_OPTION(sbi).inline_xattr_size = arg;
451                         break;
452 #else
453                 case Opt_user_xattr:
454                         f2fs_msg(sb, KERN_INFO,
455                                 "user_xattr options not supported");
456                         break;
457                 case Opt_nouser_xattr:
458                         f2fs_msg(sb, KERN_INFO,
459                                 "nouser_xattr options not supported");
460                         break;
461                 case Opt_inline_xattr:
462                         f2fs_msg(sb, KERN_INFO,
463                                 "inline_xattr options not supported");
464                         break;
465                 case Opt_noinline_xattr:
466                         f2fs_msg(sb, KERN_INFO,
467                                 "noinline_xattr options not supported");
468                         break;
469 #endif
470 #ifdef CONFIG_F2FS_FS_POSIX_ACL
471                 case Opt_acl:
472                         set_opt(sbi, POSIX_ACL);
473                         break;
474                 case Opt_noacl:
475                         clear_opt(sbi, POSIX_ACL);
476                         break;
477 #else
478                 case Opt_acl:
479                         f2fs_msg(sb, KERN_INFO, "acl options not supported");
480                         break;
481                 case Opt_noacl:
482                         f2fs_msg(sb, KERN_INFO, "noacl options not supported");
483                         break;
484 #endif
485                 case Opt_active_logs:
486                         if (args->from && match_int(args, &arg))
487                                 return -EINVAL;
488                         if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
489                                 return -EINVAL;
490                         F2FS_OPTION(sbi).active_logs = arg;
491                         break;
492                 case Opt_disable_ext_identify:
493                         set_opt(sbi, DISABLE_EXT_IDENTIFY);
494                         break;
495                 case Opt_inline_data:
496                         set_opt(sbi, INLINE_DATA);
497                         break;
498                 case Opt_inline_dentry:
499                         set_opt(sbi, INLINE_DENTRY);
500                         break;
501                 case Opt_noinline_dentry:
502                         clear_opt(sbi, INLINE_DENTRY);
503                         break;
504                 case Opt_flush_merge:
505                         set_opt(sbi, FLUSH_MERGE);
506                         break;
507                 case Opt_noflush_merge:
508                         clear_opt(sbi, FLUSH_MERGE);
509                         break;
510                 case Opt_nobarrier:
511                         set_opt(sbi, NOBARRIER);
512                         break;
513                 case Opt_fastboot:
514                         set_opt(sbi, FASTBOOT);
515                         break;
516                 case Opt_extent_cache:
517                         set_opt(sbi, EXTENT_CACHE);
518                         break;
519                 case Opt_noextent_cache:
520                         clear_opt(sbi, EXTENT_CACHE);
521                         break;
522                 case Opt_noinline_data:
523                         clear_opt(sbi, INLINE_DATA);
524                         break;
525                 case Opt_data_flush:
526                         set_opt(sbi, DATA_FLUSH);
527                         break;
528                 case Opt_reserve_root:
529                         if (args->from && match_int(args, &arg))
530                                 return -EINVAL;
531                         if (test_opt(sbi, RESERVE_ROOT)) {
532                                 f2fs_msg(sb, KERN_INFO,
533                                         "Preserve previous reserve_root=%u",
534                                         F2FS_OPTION(sbi).root_reserved_blocks);
535                         } else {
536                                 F2FS_OPTION(sbi).root_reserved_blocks = arg;
537                                 set_opt(sbi, RESERVE_ROOT);
538                         }
539                         break;
540                 case Opt_resuid:
541                         if (args->from && match_int(args, &arg))
542                                 return -EINVAL;
543                         uid = make_kuid(current_user_ns(), arg);
544                         if (!uid_valid(uid)) {
545                                 f2fs_msg(sb, KERN_ERR,
546                                         "Invalid uid value %d", arg);
547                                 return -EINVAL;
548                         }
549                         F2FS_OPTION(sbi).s_resuid = uid;
550                         break;
551                 case Opt_resgid:
552                         if (args->from && match_int(args, &arg))
553                                 return -EINVAL;
554                         gid = make_kgid(current_user_ns(), arg);
555                         if (!gid_valid(gid)) {
556                                 f2fs_msg(sb, KERN_ERR,
557                                         "Invalid gid value %d", arg);
558                                 return -EINVAL;
559                         }
560                         F2FS_OPTION(sbi).s_resgid = gid;
561                         break;
562                 case Opt_mode:
563                         name = match_strdup(&args[0]);
564
565                         if (!name)
566                                 return -ENOMEM;
567                         if (strlen(name) == 8 &&
568                                         !strncmp(name, "adaptive", 8)) {
569                                 if (f2fs_sb_has_blkzoned(sbi)) {
570                                         f2fs_msg(sb, KERN_WARNING,
571                                                  "adaptive mode is not allowed with "
572                                                  "zoned block device feature");
573                                         kvfree(name);
574                                         return -EINVAL;
575                                 }
576                                 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
577                         } else if (strlen(name) == 3 &&
578                                         !strncmp(name, "lfs", 3)) {
579                                 set_opt_mode(sbi, F2FS_MOUNT_LFS);
580                         } else {
581                                 kvfree(name);
582                                 return -EINVAL;
583                         }
584                         kvfree(name);
585                         break;
586                 case Opt_io_size_bits:
587                         if (args->from && match_int(args, &arg))
588                                 return -EINVAL;
589                         if (arg <= 0 || arg > __ilog2_u32(BIO_MAX_PAGES)) {
590                                 f2fs_msg(sb, KERN_WARNING,
591                                         "Not support %d, larger than %d",
592                                         1 << arg, BIO_MAX_PAGES);
593                                 return -EINVAL;
594                         }
595                         F2FS_OPTION(sbi).write_io_size_bits = arg;
596                         break;
597 #ifdef CONFIG_F2FS_FAULT_INJECTION
598                 case Opt_fault_injection:
599                         if (args->from && match_int(args, &arg))
600                                 return -EINVAL;
601                         f2fs_build_fault_attr(sbi, arg, F2FS_ALL_FAULT_TYPE);
602                         set_opt(sbi, FAULT_INJECTION);
603                         break;
604
605                 case Opt_fault_type:
606                         if (args->from && match_int(args, &arg))
607                                 return -EINVAL;
608                         f2fs_build_fault_attr(sbi, 0, arg);
609                         set_opt(sbi, FAULT_INJECTION);
610                         break;
611 #else
612                 case Opt_fault_injection:
613                         f2fs_msg(sb, KERN_INFO,
614                                 "fault_injection options not supported");
615                         break;
616
617                 case Opt_fault_type:
618                         f2fs_msg(sb, KERN_INFO,
619                                 "fault_type options not supported");
620                         break;
621 #endif
622                 case Opt_lazytime:
623                         sb->s_flags |= SB_LAZYTIME;
624                         break;
625                 case Opt_nolazytime:
626                         sb->s_flags &= ~SB_LAZYTIME;
627                         break;
628 #ifdef CONFIG_QUOTA
629                 case Opt_quota:
630                 case Opt_usrquota:
631                         set_opt(sbi, USRQUOTA);
632                         break;
633                 case Opt_grpquota:
634                         set_opt(sbi, GRPQUOTA);
635                         break;
636                 case Opt_prjquota:
637                         set_opt(sbi, PRJQUOTA);
638                         break;
639                 case Opt_usrjquota:
640                         ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]);
641                         if (ret)
642                                 return ret;
643                         break;
644                 case Opt_grpjquota:
645                         ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]);
646                         if (ret)
647                                 return ret;
648                         break;
649                 case Opt_prjjquota:
650                         ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]);
651                         if (ret)
652                                 return ret;
653                         break;
654                 case Opt_offusrjquota:
655                         ret = f2fs_clear_qf_name(sb, USRQUOTA);
656                         if (ret)
657                                 return ret;
658                         break;
659                 case Opt_offgrpjquota:
660                         ret = f2fs_clear_qf_name(sb, GRPQUOTA);
661                         if (ret)
662                                 return ret;
663                         break;
664                 case Opt_offprjjquota:
665                         ret = f2fs_clear_qf_name(sb, PRJQUOTA);
666                         if (ret)
667                                 return ret;
668                         break;
669                 case Opt_jqfmt_vfsold:
670                         F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_OLD;
671                         break;
672                 case Opt_jqfmt_vfsv0:
673                         F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V0;
674                         break;
675                 case Opt_jqfmt_vfsv1:
676                         F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V1;
677                         break;
678                 case Opt_noquota:
679                         clear_opt(sbi, QUOTA);
680                         clear_opt(sbi, USRQUOTA);
681                         clear_opt(sbi, GRPQUOTA);
682                         clear_opt(sbi, PRJQUOTA);
683                         break;
684 #else
685                 case Opt_quota:
686                 case Opt_usrquota:
687                 case Opt_grpquota:
688                 case Opt_prjquota:
689                 case Opt_usrjquota:
690                 case Opt_grpjquota:
691                 case Opt_prjjquota:
692                 case Opt_offusrjquota:
693                 case Opt_offgrpjquota:
694                 case Opt_offprjjquota:
695                 case Opt_jqfmt_vfsold:
696                 case Opt_jqfmt_vfsv0:
697                 case Opt_jqfmt_vfsv1:
698                 case Opt_noquota:
699                         f2fs_msg(sb, KERN_INFO,
700                                         "quota operations not supported");
701                         break;
702 #endif
703                 case Opt_whint:
704                         name = match_strdup(&args[0]);
705                         if (!name)
706                                 return -ENOMEM;
707                         if (strlen(name) == 10 &&
708                                         !strncmp(name, "user-based", 10)) {
709                                 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_USER;
710                         } else if (strlen(name) == 3 &&
711                                         !strncmp(name, "off", 3)) {
712                                 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
713                         } else if (strlen(name) == 8 &&
714                                         !strncmp(name, "fs-based", 8)) {
715                                 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_FS;
716                         } else {
717                                 kvfree(name);
718                                 return -EINVAL;
719                         }
720                         kvfree(name);
721                         break;
722                 case Opt_alloc:
723                         name = match_strdup(&args[0]);
724                         if (!name)
725                                 return -ENOMEM;
726
727                         if (strlen(name) == 7 &&
728                                         !strncmp(name, "default", 7)) {
729                                 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
730                         } else if (strlen(name) == 5 &&
731                                         !strncmp(name, "reuse", 5)) {
732                                 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
733                         } else {
734                                 kvfree(name);
735                                 return -EINVAL;
736                         }
737                         kvfree(name);
738                         break;
739                 case Opt_fsync:
740                         name = match_strdup(&args[0]);
741                         if (!name)
742                                 return -ENOMEM;
743                         if (strlen(name) == 5 &&
744                                         !strncmp(name, "posix", 5)) {
745                                 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
746                         } else if (strlen(name) == 6 &&
747                                         !strncmp(name, "strict", 6)) {
748                                 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_STRICT;
749                         } else if (strlen(name) == 9 &&
750                                         !strncmp(name, "nobarrier", 9)) {
751                                 F2FS_OPTION(sbi).fsync_mode =
752                                                         FSYNC_MODE_NOBARRIER;
753                         } else {
754                                 kvfree(name);
755                                 return -EINVAL;
756                         }
757                         kvfree(name);
758                         break;
759                 case Opt_test_dummy_encryption:
760 #ifdef CONFIG_FS_ENCRYPTION
761                         if (!f2fs_sb_has_encrypt(sbi)) {
762                                 f2fs_msg(sb, KERN_ERR, "Encrypt feature is off");
763                                 return -EINVAL;
764                         }
765
766                         F2FS_OPTION(sbi).test_dummy_encryption = true;
767                         f2fs_msg(sb, KERN_INFO,
768                                         "Test dummy encryption mode enabled");
769 #else
770                         f2fs_msg(sb, KERN_INFO,
771                                         "Test dummy encryption mount option ignored");
772 #endif
773                         break;
774                 case Opt_checkpoint:
775                         name = match_strdup(&args[0]);
776                         if (!name)
777                                 return -ENOMEM;
778
779                         if (strlen(name) == 6 &&
780                                         !strncmp(name, "enable", 6)) {
781                                 clear_opt(sbi, DISABLE_CHECKPOINT);
782                         } else if (strlen(name) == 7 &&
783                                         !strncmp(name, "disable", 7)) {
784                                 set_opt(sbi, DISABLE_CHECKPOINT);
785                         } else {
786                                 kvfree(name);
787                                 return -EINVAL;
788                         }
789                         kvfree(name);
790                         break;
791                 default:
792                         f2fs_msg(sb, KERN_ERR,
793                                 "Unrecognized mount option \"%s\" or missing value",
794                                 p);
795                         return -EINVAL;
796                 }
797         }
798 #ifdef CONFIG_QUOTA
799         if (f2fs_check_quota_options(sbi))
800                 return -EINVAL;
801 #else
802         if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sbi->sb)) {
803                 f2fs_msg(sbi->sb, KERN_INFO,
804                          "Filesystem with quota feature cannot be mounted RDWR "
805                          "without CONFIG_QUOTA");
806                 return -EINVAL;
807         }
808         if (f2fs_sb_has_project_quota(sbi) && !f2fs_readonly(sbi->sb)) {
809                 f2fs_msg(sb, KERN_ERR,
810                         "Filesystem with project quota feature cannot be "
811                         "mounted RDWR without CONFIG_QUOTA");
812                 return -EINVAL;
813         }
814 #endif
815
816         if (F2FS_IO_SIZE_BITS(sbi) && !test_opt(sbi, LFS)) {
817                 f2fs_msg(sb, KERN_ERR,
818                                 "Should set mode=lfs with %uKB-sized IO",
819                                 F2FS_IO_SIZE_KB(sbi));
820                 return -EINVAL;
821         }
822
823         if (test_opt(sbi, INLINE_XATTR_SIZE)) {
824                 int min_size, max_size;
825
826                 if (!f2fs_sb_has_extra_attr(sbi) ||
827                         !f2fs_sb_has_flexible_inline_xattr(sbi)) {
828                         f2fs_msg(sb, KERN_ERR,
829                                         "extra_attr or flexible_inline_xattr "
830                                         "feature is off");
831                         return -EINVAL;
832                 }
833                 if (!test_opt(sbi, INLINE_XATTR)) {
834                         f2fs_msg(sb, KERN_ERR,
835                                         "inline_xattr_size option should be "
836                                         "set with inline_xattr option");
837                         return -EINVAL;
838                 }
839
840                 min_size = sizeof(struct f2fs_xattr_header) / sizeof(__le32);
841                 max_size = MAX_INLINE_XATTR_SIZE;
842
843                 if (F2FS_OPTION(sbi).inline_xattr_size < min_size ||
844                                 F2FS_OPTION(sbi).inline_xattr_size > max_size) {
845                         f2fs_msg(sb, KERN_ERR,
846                                 "inline xattr size is out of range: %d ~ %d",
847                                 min_size, max_size);
848                         return -EINVAL;
849                 }
850         }
851
852         if (test_opt(sbi, DISABLE_CHECKPOINT) && test_opt(sbi, LFS)) {
853                 f2fs_msg(sb, KERN_ERR,
854                                 "LFS not compatible with checkpoint=disable\n");
855                 return -EINVAL;
856         }
857
858         /* Not pass down write hints if the number of active logs is lesser
859          * than NR_CURSEG_TYPE.
860          */
861         if (F2FS_OPTION(sbi).active_logs != NR_CURSEG_TYPE)
862                 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
863         return 0;
864 }
865
866 static struct inode *f2fs_alloc_inode(struct super_block *sb)
867 {
868         struct f2fs_inode_info *fi;
869
870         fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
871         if (!fi)
872                 return NULL;
873
874         init_once((void *) fi);
875
876         /* Initialize f2fs-specific inode info */
877         atomic_set(&fi->dirty_pages, 0);
878         init_rwsem(&fi->i_sem);
879         INIT_LIST_HEAD(&fi->dirty_list);
880         INIT_LIST_HEAD(&fi->gdirty_list);
881         INIT_LIST_HEAD(&fi->inmem_ilist);
882         INIT_LIST_HEAD(&fi->inmem_pages);
883         mutex_init(&fi->inmem_lock);
884         init_rwsem(&fi->i_gc_rwsem[READ]);
885         init_rwsem(&fi->i_gc_rwsem[WRITE]);
886         init_rwsem(&fi->i_mmap_sem);
887         init_rwsem(&fi->i_xattr_sem);
888
889         /* Will be used by directory only */
890         fi->i_dir_level = F2FS_SB(sb)->dir_level;
891
892         return &fi->vfs_inode;
893 }
894
895 static int f2fs_drop_inode(struct inode *inode)
896 {
897         int ret;
898         /*
899          * This is to avoid a deadlock condition like below.
900          * writeback_single_inode(inode)
901          *  - f2fs_write_data_page
902          *    - f2fs_gc -> iput -> evict
903          *       - inode_wait_for_writeback(inode)
904          */
905         if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) {
906                 if (!inode->i_nlink && !is_bad_inode(inode)) {
907                         /* to avoid evict_inode call simultaneously */
908                         atomic_inc(&inode->i_count);
909                         spin_unlock(&inode->i_lock);
910
911                         /* some remained atomic pages should discarded */
912                         if (f2fs_is_atomic_file(inode))
913                                 f2fs_drop_inmem_pages(inode);
914
915                         /* should remain fi->extent_tree for writepage */
916                         f2fs_destroy_extent_node(inode);
917
918                         sb_start_intwrite(inode->i_sb);
919                         f2fs_i_size_write(inode, 0);
920
921                         f2fs_submit_merged_write_cond(F2FS_I_SB(inode),
922                                         inode, NULL, 0, DATA);
923                         truncate_inode_pages_final(inode->i_mapping);
924
925                         if (F2FS_HAS_BLOCKS(inode))
926                                 f2fs_truncate(inode);
927
928                         sb_end_intwrite(inode->i_sb);
929
930                         spin_lock(&inode->i_lock);
931                         atomic_dec(&inode->i_count);
932                 }
933                 trace_f2fs_drop_inode(inode, 0);
934                 return 0;
935         }
936         ret = generic_drop_inode(inode);
937         trace_f2fs_drop_inode(inode, ret);
938         return ret;
939 }
940
941 int f2fs_inode_dirtied(struct inode *inode, bool sync)
942 {
943         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
944         int ret = 0;
945
946         spin_lock(&sbi->inode_lock[DIRTY_META]);
947         if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
948                 ret = 1;
949         } else {
950                 set_inode_flag(inode, FI_DIRTY_INODE);
951                 stat_inc_dirty_inode(sbi, DIRTY_META);
952         }
953         if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) {
954                 list_add_tail(&F2FS_I(inode)->gdirty_list,
955                                 &sbi->inode_list[DIRTY_META]);
956                 inc_page_count(sbi, F2FS_DIRTY_IMETA);
957         }
958         spin_unlock(&sbi->inode_lock[DIRTY_META]);
959         return ret;
960 }
961
962 void f2fs_inode_synced(struct inode *inode)
963 {
964         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
965
966         spin_lock(&sbi->inode_lock[DIRTY_META]);
967         if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) {
968                 spin_unlock(&sbi->inode_lock[DIRTY_META]);
969                 return;
970         }
971         if (!list_empty(&F2FS_I(inode)->gdirty_list)) {
972                 list_del_init(&F2FS_I(inode)->gdirty_list);
973                 dec_page_count(sbi, F2FS_DIRTY_IMETA);
974         }
975         clear_inode_flag(inode, FI_DIRTY_INODE);
976         clear_inode_flag(inode, FI_AUTO_RECOVER);
977         stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META);
978         spin_unlock(&sbi->inode_lock[DIRTY_META]);
979 }
980
981 /*
982  * f2fs_dirty_inode() is called from __mark_inode_dirty()
983  *
984  * We should call set_dirty_inode to write the dirty inode through write_inode.
985  */
986 static void f2fs_dirty_inode(struct inode *inode, int flags)
987 {
988         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
989
990         if (inode->i_ino == F2FS_NODE_INO(sbi) ||
991                         inode->i_ino == F2FS_META_INO(sbi))
992                 return;
993
994         if (flags == I_DIRTY_TIME)
995                 return;
996
997         if (is_inode_flag_set(inode, FI_AUTO_RECOVER))
998                 clear_inode_flag(inode, FI_AUTO_RECOVER);
999
1000         f2fs_inode_dirtied(inode, false);
1001 }
1002
1003 static void f2fs_free_inode(struct inode *inode)
1004 {
1005         fscrypt_free_inode(inode);
1006         kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
1007 }
1008
1009 static void destroy_percpu_info(struct f2fs_sb_info *sbi)
1010 {
1011         percpu_counter_destroy(&sbi->alloc_valid_block_count);
1012         percpu_counter_destroy(&sbi->total_valid_inode_count);
1013 }
1014
1015 static void destroy_device_list(struct f2fs_sb_info *sbi)
1016 {
1017         int i;
1018
1019         for (i = 0; i < sbi->s_ndevs; i++) {
1020                 blkdev_put(FDEV(i).bdev, FMODE_EXCL);
1021 #ifdef CONFIG_BLK_DEV_ZONED
1022                 kvfree(FDEV(i).blkz_seq);
1023 #endif
1024         }
1025         kvfree(sbi->devs);
1026 }
1027
1028 static void f2fs_put_super(struct super_block *sb)
1029 {
1030         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1031         int i;
1032         bool dropped;
1033
1034         f2fs_quota_off_umount(sb);
1035
1036         /* prevent remaining shrinker jobs */
1037         mutex_lock(&sbi->umount_mutex);
1038
1039         /*
1040          * We don't need to do checkpoint when superblock is clean.
1041          * But, the previous checkpoint was not done by umount, it needs to do
1042          * clean checkpoint again.
1043          */
1044         if ((is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
1045                         !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG))) {
1046                 struct cp_control cpc = {
1047                         .reason = CP_UMOUNT,
1048                 };
1049                 f2fs_write_checkpoint(sbi, &cpc);
1050         }
1051
1052         /* be sure to wait for any on-going discard commands */
1053         dropped = f2fs_issue_discard_timeout(sbi);
1054
1055         if ((f2fs_hw_support_discard(sbi) || f2fs_hw_should_discard(sbi)) &&
1056                                         !sbi->discard_blks && !dropped) {
1057                 struct cp_control cpc = {
1058                         .reason = CP_UMOUNT | CP_TRIMMED,
1059                 };
1060                 f2fs_write_checkpoint(sbi, &cpc);
1061         }
1062
1063         /*
1064          * normally superblock is clean, so we need to release this.
1065          * In addition, EIO will skip do checkpoint, we need this as well.
1066          */
1067         f2fs_release_ino_entry(sbi, true);
1068
1069         f2fs_leave_shrinker(sbi);
1070         mutex_unlock(&sbi->umount_mutex);
1071
1072         /* our cp_error case, we can wait for any writeback page */
1073         f2fs_flush_merged_writes(sbi);
1074
1075         f2fs_wait_on_all_pages_writeback(sbi);
1076
1077         f2fs_bug_on(sbi, sbi->fsync_node_num);
1078
1079         iput(sbi->node_inode);
1080         sbi->node_inode = NULL;
1081
1082         iput(sbi->meta_inode);
1083         sbi->meta_inode = NULL;
1084
1085         /*
1086          * iput() can update stat information, if f2fs_write_checkpoint()
1087          * above failed with error.
1088          */
1089         f2fs_destroy_stats(sbi);
1090
1091         /* destroy f2fs internal modules */
1092         f2fs_destroy_node_manager(sbi);
1093         f2fs_destroy_segment_manager(sbi);
1094
1095         kvfree(sbi->ckpt);
1096
1097         f2fs_unregister_sysfs(sbi);
1098
1099         sb->s_fs_info = NULL;
1100         if (sbi->s_chksum_driver)
1101                 crypto_free_shash(sbi->s_chksum_driver);
1102         kvfree(sbi->raw_super);
1103
1104         destroy_device_list(sbi);
1105         mempool_destroy(sbi->write_io_dummy);
1106 #ifdef CONFIG_QUOTA
1107         for (i = 0; i < MAXQUOTAS; i++)
1108                 kvfree(F2FS_OPTION(sbi).s_qf_names[i]);
1109 #endif
1110         destroy_percpu_info(sbi);
1111         for (i = 0; i < NR_PAGE_TYPE; i++)
1112                 kvfree(sbi->write_io[i]);
1113         kvfree(sbi);
1114 }
1115
1116 int f2fs_sync_fs(struct super_block *sb, int sync)
1117 {
1118         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1119         int err = 0;
1120
1121         if (unlikely(f2fs_cp_error(sbi)))
1122                 return 0;
1123         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
1124                 return 0;
1125
1126         trace_f2fs_sync_fs(sb, sync);
1127
1128         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1129                 return -EAGAIN;
1130
1131         if (sync) {
1132                 struct cp_control cpc;
1133
1134                 cpc.reason = __get_cp_reason(sbi);
1135
1136                 mutex_lock(&sbi->gc_mutex);
1137                 err = f2fs_write_checkpoint(sbi, &cpc);
1138                 mutex_unlock(&sbi->gc_mutex);
1139         }
1140         f2fs_trace_ios(NULL, 1);
1141
1142         return err;
1143 }
1144
1145 static int f2fs_freeze(struct super_block *sb)
1146 {
1147         if (f2fs_readonly(sb))
1148                 return 0;
1149
1150         /* IO error happened before */
1151         if (unlikely(f2fs_cp_error(F2FS_SB(sb))))
1152                 return -EIO;
1153
1154         /* must be clean, since sync_filesystem() was already called */
1155         if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY))
1156                 return -EINVAL;
1157         return 0;
1158 }
1159
1160 static int f2fs_unfreeze(struct super_block *sb)
1161 {
1162         return 0;
1163 }
1164
1165 #ifdef CONFIG_QUOTA
1166 static int f2fs_statfs_project(struct super_block *sb,
1167                                 kprojid_t projid, struct kstatfs *buf)
1168 {
1169         struct kqid qid;
1170         struct dquot *dquot;
1171         u64 limit;
1172         u64 curblock;
1173
1174         qid = make_kqid_projid(projid);
1175         dquot = dqget(sb, qid);
1176         if (IS_ERR(dquot))
1177                 return PTR_ERR(dquot);
1178         spin_lock(&dquot->dq_dqb_lock);
1179
1180         limit = (dquot->dq_dqb.dqb_bsoftlimit ?
1181                  dquot->dq_dqb.dqb_bsoftlimit :
1182                  dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits;
1183         if (limit && buf->f_blocks > limit) {
1184                 curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits;
1185                 buf->f_blocks = limit;
1186                 buf->f_bfree = buf->f_bavail =
1187                         (buf->f_blocks > curblock) ?
1188                          (buf->f_blocks - curblock) : 0;
1189         }
1190
1191         limit = dquot->dq_dqb.dqb_isoftlimit ?
1192                 dquot->dq_dqb.dqb_isoftlimit :
1193                 dquot->dq_dqb.dqb_ihardlimit;
1194         if (limit && buf->f_files > limit) {
1195                 buf->f_files = limit;
1196                 buf->f_ffree =
1197                         (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
1198                          (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
1199         }
1200
1201         spin_unlock(&dquot->dq_dqb_lock);
1202         dqput(dquot);
1203         return 0;
1204 }
1205 #endif
1206
1207 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
1208 {
1209         struct super_block *sb = dentry->d_sb;
1210         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1211         u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
1212         block_t total_count, user_block_count, start_count;
1213         u64 avail_node_count;
1214
1215         total_count = le64_to_cpu(sbi->raw_super->block_count);
1216         user_block_count = sbi->user_block_count;
1217         start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
1218         buf->f_type = F2FS_SUPER_MAGIC;
1219         buf->f_bsize = sbi->blocksize;
1220
1221         buf->f_blocks = total_count - start_count;
1222         buf->f_bfree = user_block_count - valid_user_blocks(sbi) -
1223                                                 sbi->current_reserved_blocks;
1224
1225         spin_lock(&sbi->stat_lock);
1226         if (unlikely(buf->f_bfree <= sbi->unusable_block_count))
1227                 buf->f_bfree = 0;
1228         else
1229                 buf->f_bfree -= sbi->unusable_block_count;
1230         spin_unlock(&sbi->stat_lock);
1231
1232         if (buf->f_bfree > F2FS_OPTION(sbi).root_reserved_blocks)
1233                 buf->f_bavail = buf->f_bfree -
1234                                 F2FS_OPTION(sbi).root_reserved_blocks;
1235         else
1236                 buf->f_bavail = 0;
1237
1238         avail_node_count = sbi->total_node_count - sbi->nquota_files -
1239                                                 F2FS_RESERVED_NODE_NUM;
1240
1241         if (avail_node_count > user_block_count) {
1242                 buf->f_files = user_block_count;
1243                 buf->f_ffree = buf->f_bavail;
1244         } else {
1245                 buf->f_files = avail_node_count;
1246                 buf->f_ffree = min(avail_node_count - valid_node_count(sbi),
1247                                         buf->f_bavail);
1248         }
1249
1250         buf->f_namelen = F2FS_NAME_LEN;
1251         buf->f_fsid.val[0] = (u32)id;
1252         buf->f_fsid.val[1] = (u32)(id >> 32);
1253
1254 #ifdef CONFIG_QUOTA
1255         if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) &&
1256                         sb_has_quota_limits_enabled(sb, PRJQUOTA)) {
1257                 f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf);
1258         }
1259 #endif
1260         return 0;
1261 }
1262
1263 static inline void f2fs_show_quota_options(struct seq_file *seq,
1264                                            struct super_block *sb)
1265 {
1266 #ifdef CONFIG_QUOTA
1267         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1268
1269         if (F2FS_OPTION(sbi).s_jquota_fmt) {
1270                 char *fmtname = "";
1271
1272                 switch (F2FS_OPTION(sbi).s_jquota_fmt) {
1273                 case QFMT_VFS_OLD:
1274                         fmtname = "vfsold";
1275                         break;
1276                 case QFMT_VFS_V0:
1277                         fmtname = "vfsv0";
1278                         break;
1279                 case QFMT_VFS_V1:
1280                         fmtname = "vfsv1";
1281                         break;
1282                 }
1283                 seq_printf(seq, ",jqfmt=%s", fmtname);
1284         }
1285
1286         if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
1287                 seq_show_option(seq, "usrjquota",
1288                         F2FS_OPTION(sbi).s_qf_names[USRQUOTA]);
1289
1290         if (F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
1291                 seq_show_option(seq, "grpjquota",
1292                         F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]);
1293
1294         if (F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
1295                 seq_show_option(seq, "prjjquota",
1296                         F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]);
1297 #endif
1298 }
1299
1300 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
1301 {
1302         struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
1303
1304         if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) {
1305                 if (test_opt(sbi, FORCE_FG_GC))
1306                         seq_printf(seq, ",background_gc=%s", "sync");
1307                 else
1308                         seq_printf(seq, ",background_gc=%s", "on");
1309         } else {
1310                 seq_printf(seq, ",background_gc=%s", "off");
1311         }
1312         if (test_opt(sbi, DISABLE_ROLL_FORWARD))
1313                 seq_puts(seq, ",disable_roll_forward");
1314         if (test_opt(sbi, DISCARD))
1315                 seq_puts(seq, ",discard");
1316         if (test_opt(sbi, NOHEAP))
1317                 seq_puts(seq, ",no_heap");
1318         else
1319                 seq_puts(seq, ",heap");
1320 #ifdef CONFIG_F2FS_FS_XATTR
1321         if (test_opt(sbi, XATTR_USER))
1322                 seq_puts(seq, ",user_xattr");
1323         else
1324                 seq_puts(seq, ",nouser_xattr");
1325         if (test_opt(sbi, INLINE_XATTR))
1326                 seq_puts(seq, ",inline_xattr");
1327         else
1328                 seq_puts(seq, ",noinline_xattr");
1329         if (test_opt(sbi, INLINE_XATTR_SIZE))
1330                 seq_printf(seq, ",inline_xattr_size=%u",
1331                                         F2FS_OPTION(sbi).inline_xattr_size);
1332 #endif
1333 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1334         if (test_opt(sbi, POSIX_ACL))
1335                 seq_puts(seq, ",acl");
1336         else
1337                 seq_puts(seq, ",noacl");
1338 #endif
1339         if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
1340                 seq_puts(seq, ",disable_ext_identify");
1341         if (test_opt(sbi, INLINE_DATA))
1342                 seq_puts(seq, ",inline_data");
1343         else
1344                 seq_puts(seq, ",noinline_data");
1345         if (test_opt(sbi, INLINE_DENTRY))
1346                 seq_puts(seq, ",inline_dentry");
1347         else
1348                 seq_puts(seq, ",noinline_dentry");
1349         if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
1350                 seq_puts(seq, ",flush_merge");
1351         if (test_opt(sbi, NOBARRIER))
1352                 seq_puts(seq, ",nobarrier");
1353         if (test_opt(sbi, FASTBOOT))
1354                 seq_puts(seq, ",fastboot");
1355         if (test_opt(sbi, EXTENT_CACHE))
1356                 seq_puts(seq, ",extent_cache");
1357         else
1358                 seq_puts(seq, ",noextent_cache");
1359         if (test_opt(sbi, DATA_FLUSH))
1360                 seq_puts(seq, ",data_flush");
1361
1362         seq_puts(seq, ",mode=");
1363         if (test_opt(sbi, ADAPTIVE))
1364                 seq_puts(seq, "adaptive");
1365         else if (test_opt(sbi, LFS))
1366                 seq_puts(seq, "lfs");
1367         seq_printf(seq, ",active_logs=%u", F2FS_OPTION(sbi).active_logs);
1368         if (test_opt(sbi, RESERVE_ROOT))
1369                 seq_printf(seq, ",reserve_root=%u,resuid=%u,resgid=%u",
1370                                 F2FS_OPTION(sbi).root_reserved_blocks,
1371                                 from_kuid_munged(&init_user_ns,
1372                                         F2FS_OPTION(sbi).s_resuid),
1373                                 from_kgid_munged(&init_user_ns,
1374                                         F2FS_OPTION(sbi).s_resgid));
1375         if (F2FS_IO_SIZE_BITS(sbi))
1376                 seq_printf(seq, ",io_bits=%u",
1377                                 F2FS_OPTION(sbi).write_io_size_bits);
1378 #ifdef CONFIG_F2FS_FAULT_INJECTION
1379         if (test_opt(sbi, FAULT_INJECTION)) {
1380                 seq_printf(seq, ",fault_injection=%u",
1381                                 F2FS_OPTION(sbi).fault_info.inject_rate);
1382                 seq_printf(seq, ",fault_type=%u",
1383                                 F2FS_OPTION(sbi).fault_info.inject_type);
1384         }
1385 #endif
1386 #ifdef CONFIG_QUOTA
1387         if (test_opt(sbi, QUOTA))
1388                 seq_puts(seq, ",quota");
1389         if (test_opt(sbi, USRQUOTA))
1390                 seq_puts(seq, ",usrquota");
1391         if (test_opt(sbi, GRPQUOTA))
1392                 seq_puts(seq, ",grpquota");
1393         if (test_opt(sbi, PRJQUOTA))
1394                 seq_puts(seq, ",prjquota");
1395 #endif
1396         f2fs_show_quota_options(seq, sbi->sb);
1397         if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER)
1398                 seq_printf(seq, ",whint_mode=%s", "user-based");
1399         else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS)
1400                 seq_printf(seq, ",whint_mode=%s", "fs-based");
1401 #ifdef CONFIG_FS_ENCRYPTION
1402         if (F2FS_OPTION(sbi).test_dummy_encryption)
1403                 seq_puts(seq, ",test_dummy_encryption");
1404 #endif
1405
1406         if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_DEFAULT)
1407                 seq_printf(seq, ",alloc_mode=%s", "default");
1408         else if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
1409                 seq_printf(seq, ",alloc_mode=%s", "reuse");
1410
1411         if (test_opt(sbi, DISABLE_CHECKPOINT))
1412                 seq_puts(seq, ",checkpoint=disable");
1413
1414         if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_POSIX)
1415                 seq_printf(seq, ",fsync_mode=%s", "posix");
1416         else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT)
1417                 seq_printf(seq, ",fsync_mode=%s", "strict");
1418         else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_NOBARRIER)
1419                 seq_printf(seq, ",fsync_mode=%s", "nobarrier");
1420         return 0;
1421 }
1422
1423 static void default_options(struct f2fs_sb_info *sbi)
1424 {
1425         /* init some FS parameters */
1426         F2FS_OPTION(sbi).active_logs = NR_CURSEG_TYPE;
1427         F2FS_OPTION(sbi).inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS;
1428         F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
1429         F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
1430         F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
1431         F2FS_OPTION(sbi).test_dummy_encryption = false;
1432         F2FS_OPTION(sbi).s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID);
1433         F2FS_OPTION(sbi).s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID);
1434
1435         set_opt(sbi, BG_GC);
1436         set_opt(sbi, INLINE_XATTR);
1437         set_opt(sbi, INLINE_DATA);
1438         set_opt(sbi, INLINE_DENTRY);
1439         set_opt(sbi, EXTENT_CACHE);
1440         set_opt(sbi, NOHEAP);
1441         clear_opt(sbi, DISABLE_CHECKPOINT);
1442         sbi->sb->s_flags |= SB_LAZYTIME;
1443         set_opt(sbi, FLUSH_MERGE);
1444         set_opt(sbi, DISCARD);
1445         if (f2fs_sb_has_blkzoned(sbi))
1446                 set_opt_mode(sbi, F2FS_MOUNT_LFS);
1447         else
1448                 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
1449
1450 #ifdef CONFIG_F2FS_FS_XATTR
1451         set_opt(sbi, XATTR_USER);
1452 #endif
1453 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1454         set_opt(sbi, POSIX_ACL);
1455 #endif
1456
1457         f2fs_build_fault_attr(sbi, 0, 0);
1458 }
1459
1460 #ifdef CONFIG_QUOTA
1461 static int f2fs_enable_quotas(struct super_block *sb);
1462 #endif
1463
1464 static int f2fs_disable_checkpoint(struct f2fs_sb_info *sbi)
1465 {
1466         unsigned int s_flags = sbi->sb->s_flags;
1467         struct cp_control cpc;
1468         int err = 0;
1469         int ret;
1470
1471         if (s_flags & SB_RDONLY) {
1472                 f2fs_msg(sbi->sb, KERN_ERR,
1473                                 "checkpoint=disable on readonly fs");
1474                 return -EINVAL;
1475         }
1476         sbi->sb->s_flags |= SB_ACTIVE;
1477
1478         f2fs_update_time(sbi, DISABLE_TIME);
1479
1480         while (!f2fs_time_over(sbi, DISABLE_TIME)) {
1481                 mutex_lock(&sbi->gc_mutex);
1482                 err = f2fs_gc(sbi, true, false, NULL_SEGNO);
1483                 if (err == -ENODATA) {
1484                         err = 0;
1485                         break;
1486                 }
1487                 if (err && err != -EAGAIN)
1488                         break;
1489         }
1490
1491         ret = sync_filesystem(sbi->sb);
1492         if (ret || err) {
1493                 err = ret ? ret: err;
1494                 goto restore_flag;
1495         }
1496
1497         if (f2fs_disable_cp_again(sbi)) {
1498                 err = -EAGAIN;
1499                 goto restore_flag;
1500         }
1501
1502         mutex_lock(&sbi->gc_mutex);
1503         cpc.reason = CP_PAUSE;
1504         set_sbi_flag(sbi, SBI_CP_DISABLED);
1505         err = f2fs_write_checkpoint(sbi, &cpc);
1506         if (err)
1507                 goto out_unlock;
1508
1509         spin_lock(&sbi->stat_lock);
1510         sbi->unusable_block_count = 0;
1511         spin_unlock(&sbi->stat_lock);
1512
1513 out_unlock:
1514         mutex_unlock(&sbi->gc_mutex);
1515 restore_flag:
1516         sbi->sb->s_flags = s_flags;     /* Restore MS_RDONLY status */
1517         return err;
1518 }
1519
1520 static void f2fs_enable_checkpoint(struct f2fs_sb_info *sbi)
1521 {
1522         mutex_lock(&sbi->gc_mutex);
1523         f2fs_dirty_to_prefree(sbi);
1524
1525         clear_sbi_flag(sbi, SBI_CP_DISABLED);
1526         set_sbi_flag(sbi, SBI_IS_DIRTY);
1527         mutex_unlock(&sbi->gc_mutex);
1528
1529         f2fs_sync_fs(sbi->sb, 1);
1530 }
1531
1532 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
1533 {
1534         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1535         struct f2fs_mount_info org_mount_opt;
1536         unsigned long old_sb_flags;
1537         int err;
1538         bool need_restart_gc = false;
1539         bool need_stop_gc = false;
1540         bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
1541         bool disable_checkpoint = test_opt(sbi, DISABLE_CHECKPOINT);
1542         bool checkpoint_changed;
1543 #ifdef CONFIG_QUOTA
1544         int i, j;
1545 #endif
1546
1547         /*
1548          * Save the old mount options in case we
1549          * need to restore them.
1550          */
1551         org_mount_opt = sbi->mount_opt;
1552         old_sb_flags = sb->s_flags;
1553
1554 #ifdef CONFIG_QUOTA
1555         org_mount_opt.s_jquota_fmt = F2FS_OPTION(sbi).s_jquota_fmt;
1556         for (i = 0; i < MAXQUOTAS; i++) {
1557                 if (F2FS_OPTION(sbi).s_qf_names[i]) {
1558                         org_mount_opt.s_qf_names[i] =
1559                                 kstrdup(F2FS_OPTION(sbi).s_qf_names[i],
1560                                 GFP_KERNEL);
1561                         if (!org_mount_opt.s_qf_names[i]) {
1562                                 for (j = 0; j < i; j++)
1563                                         kvfree(org_mount_opt.s_qf_names[j]);
1564                                 return -ENOMEM;
1565                         }
1566                 } else {
1567                         org_mount_opt.s_qf_names[i] = NULL;
1568                 }
1569         }
1570 #endif
1571
1572         /* recover superblocks we couldn't write due to previous RO mount */
1573         if (!(*flags & SB_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
1574                 err = f2fs_commit_super(sbi, false);
1575                 f2fs_msg(sb, KERN_INFO,
1576                         "Try to recover all the superblocks, ret: %d", err);
1577                 if (!err)
1578                         clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1579         }
1580
1581         default_options(sbi);
1582
1583         /* parse mount options */
1584         err = parse_options(sb, data);
1585         if (err)
1586                 goto restore_opts;
1587         checkpoint_changed =
1588                         disable_checkpoint != test_opt(sbi, DISABLE_CHECKPOINT);
1589
1590         /*
1591          * Previous and new state of filesystem is RO,
1592          * so skip checking GC and FLUSH_MERGE conditions.
1593          */
1594         if (f2fs_readonly(sb) && (*flags & SB_RDONLY))
1595                 goto skip;
1596
1597 #ifdef CONFIG_QUOTA
1598         if (!f2fs_readonly(sb) && (*flags & SB_RDONLY)) {
1599                 err = dquot_suspend(sb, -1);
1600                 if (err < 0)
1601                         goto restore_opts;
1602         } else if (f2fs_readonly(sb) && !(*flags & SB_RDONLY)) {
1603                 /* dquot_resume needs RW */
1604                 sb->s_flags &= ~SB_RDONLY;
1605                 if (sb_any_quota_suspended(sb)) {
1606                         dquot_resume(sb, -1);
1607                 } else if (f2fs_sb_has_quota_ino(sbi)) {
1608                         err = f2fs_enable_quotas(sb);
1609                         if (err)
1610                                 goto restore_opts;
1611                 }
1612         }
1613 #endif
1614         /* disallow enable/disable extent_cache dynamically */
1615         if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
1616                 err = -EINVAL;
1617                 f2fs_msg(sbi->sb, KERN_WARNING,
1618                                 "switch extent_cache option is not allowed");
1619                 goto restore_opts;
1620         }
1621
1622         if ((*flags & SB_RDONLY) && test_opt(sbi, DISABLE_CHECKPOINT)) {
1623                 err = -EINVAL;
1624                 f2fs_msg(sbi->sb, KERN_WARNING,
1625                         "disabling checkpoint not compatible with read-only");
1626                 goto restore_opts;
1627         }
1628
1629         /*
1630          * We stop the GC thread if FS is mounted as RO
1631          * or if background_gc = off is passed in mount
1632          * option. Also sync the filesystem.
1633          */
1634         if ((*flags & SB_RDONLY) || !test_opt(sbi, BG_GC)) {
1635                 if (sbi->gc_thread) {
1636                         f2fs_stop_gc_thread(sbi);
1637                         need_restart_gc = true;
1638                 }
1639         } else if (!sbi->gc_thread) {
1640                 err = f2fs_start_gc_thread(sbi);
1641                 if (err)
1642                         goto restore_opts;
1643                 need_stop_gc = true;
1644         }
1645
1646         if (*flags & SB_RDONLY ||
1647                 F2FS_OPTION(sbi).whint_mode != org_mount_opt.whint_mode) {
1648                 writeback_inodes_sb(sb, WB_REASON_SYNC);
1649                 sync_inodes_sb(sb);
1650
1651                 set_sbi_flag(sbi, SBI_IS_DIRTY);
1652                 set_sbi_flag(sbi, SBI_IS_CLOSE);
1653                 f2fs_sync_fs(sb, 1);
1654                 clear_sbi_flag(sbi, SBI_IS_CLOSE);
1655         }
1656
1657         if (checkpoint_changed) {
1658                 if (test_opt(sbi, DISABLE_CHECKPOINT)) {
1659                         err = f2fs_disable_checkpoint(sbi);
1660                         if (err)
1661                                 goto restore_gc;
1662                 } else {
1663                         f2fs_enable_checkpoint(sbi);
1664                 }
1665         }
1666
1667         /*
1668          * We stop issue flush thread if FS is mounted as RO
1669          * or if flush_merge is not passed in mount option.
1670          */
1671         if ((*flags & SB_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
1672                 clear_opt(sbi, FLUSH_MERGE);
1673                 f2fs_destroy_flush_cmd_control(sbi, false);
1674         } else {
1675                 err = f2fs_create_flush_cmd_control(sbi);
1676                 if (err)
1677                         goto restore_gc;
1678         }
1679 skip:
1680 #ifdef CONFIG_QUOTA
1681         /* Release old quota file names */
1682         for (i = 0; i < MAXQUOTAS; i++)
1683                 kvfree(org_mount_opt.s_qf_names[i]);
1684 #endif
1685         /* Update the POSIXACL Flag */
1686         sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
1687                 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
1688
1689         limit_reserve_root(sbi);
1690         *flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME);
1691         return 0;
1692 restore_gc:
1693         if (need_restart_gc) {
1694                 if (f2fs_start_gc_thread(sbi))
1695                         f2fs_msg(sbi->sb, KERN_WARNING,
1696                                 "background gc thread has stopped");
1697         } else if (need_stop_gc) {
1698                 f2fs_stop_gc_thread(sbi);
1699         }
1700 restore_opts:
1701 #ifdef CONFIG_QUOTA
1702         F2FS_OPTION(sbi).s_jquota_fmt = org_mount_opt.s_jquota_fmt;
1703         for (i = 0; i < MAXQUOTAS; i++) {
1704                 kvfree(F2FS_OPTION(sbi).s_qf_names[i]);
1705                 F2FS_OPTION(sbi).s_qf_names[i] = org_mount_opt.s_qf_names[i];
1706         }
1707 #endif
1708         sbi->mount_opt = org_mount_opt;
1709         sb->s_flags = old_sb_flags;
1710         return err;
1711 }
1712
1713 #ifdef CONFIG_QUOTA
1714 /* Read data from quotafile */
1715 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data,
1716                                size_t len, loff_t off)
1717 {
1718         struct inode *inode = sb_dqopt(sb)->files[type];
1719         struct address_space *mapping = inode->i_mapping;
1720         block_t blkidx = F2FS_BYTES_TO_BLK(off);
1721         int offset = off & (sb->s_blocksize - 1);
1722         int tocopy;
1723         size_t toread;
1724         loff_t i_size = i_size_read(inode);
1725         struct page *page;
1726         char *kaddr;
1727
1728         if (off > i_size)
1729                 return 0;
1730
1731         if (off + len > i_size)
1732                 len = i_size - off;
1733         toread = len;
1734         while (toread > 0) {
1735                 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
1736 repeat:
1737                 page = read_cache_page_gfp(mapping, blkidx, GFP_NOFS);
1738                 if (IS_ERR(page)) {
1739                         if (PTR_ERR(page) == -ENOMEM) {
1740                                 congestion_wait(BLK_RW_ASYNC, HZ/50);
1741                                 goto repeat;
1742                         }
1743                         set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
1744                         return PTR_ERR(page);
1745                 }
1746
1747                 lock_page(page);
1748
1749                 if (unlikely(page->mapping != mapping)) {
1750                         f2fs_put_page(page, 1);
1751                         goto repeat;
1752                 }
1753                 if (unlikely(!PageUptodate(page))) {
1754                         f2fs_put_page(page, 1);
1755                         set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
1756                         return -EIO;
1757                 }
1758
1759                 kaddr = kmap_atomic(page);
1760                 memcpy(data, kaddr + offset, tocopy);
1761                 kunmap_atomic(kaddr);
1762                 f2fs_put_page(page, 1);
1763
1764                 offset = 0;
1765                 toread -= tocopy;
1766                 data += tocopy;
1767                 blkidx++;
1768         }
1769         return len;
1770 }
1771
1772 /* Write to quotafile */
1773 static ssize_t f2fs_quota_write(struct super_block *sb, int type,
1774                                 const char *data, size_t len, loff_t off)
1775 {
1776         struct inode *inode = sb_dqopt(sb)->files[type];
1777         struct address_space *mapping = inode->i_mapping;
1778         const struct address_space_operations *a_ops = mapping->a_ops;
1779         int offset = off & (sb->s_blocksize - 1);
1780         size_t towrite = len;
1781         struct page *page;
1782         char *kaddr;
1783         int err = 0;
1784         int tocopy;
1785
1786         while (towrite > 0) {
1787                 tocopy = min_t(unsigned long, sb->s_blocksize - offset,
1788                                                                 towrite);
1789 retry:
1790                 err = a_ops->write_begin(NULL, mapping, off, tocopy, 0,
1791                                                         &page, NULL);
1792                 if (unlikely(err)) {
1793                         if (err == -ENOMEM) {
1794                                 congestion_wait(BLK_RW_ASYNC, HZ/50);
1795                                 goto retry;
1796                         }
1797                         set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
1798                         break;
1799                 }
1800
1801                 kaddr = kmap_atomic(page);
1802                 memcpy(kaddr + offset, data, tocopy);
1803                 kunmap_atomic(kaddr);
1804                 flush_dcache_page(page);
1805
1806                 a_ops->write_end(NULL, mapping, off, tocopy, tocopy,
1807                                                 page, NULL);
1808                 offset = 0;
1809                 towrite -= tocopy;
1810                 off += tocopy;
1811                 data += tocopy;
1812                 cond_resched();
1813         }
1814
1815         if (len == towrite)
1816                 return err;
1817         inode->i_mtime = inode->i_ctime = current_time(inode);
1818         f2fs_mark_inode_dirty_sync(inode, false);
1819         return len - towrite;
1820 }
1821
1822 static struct dquot **f2fs_get_dquots(struct inode *inode)
1823 {
1824         return F2FS_I(inode)->i_dquot;
1825 }
1826
1827 static qsize_t *f2fs_get_reserved_space(struct inode *inode)
1828 {
1829         return &F2FS_I(inode)->i_reserved_quota;
1830 }
1831
1832 static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type)
1833 {
1834         if (is_set_ckpt_flags(sbi, CP_QUOTA_NEED_FSCK_FLAG)) {
1835                 f2fs_msg(sbi->sb, KERN_ERR,
1836                         "quota sysfile may be corrupted, skip loading it");
1837                 return 0;
1838         }
1839
1840         return dquot_quota_on_mount(sbi->sb, F2FS_OPTION(sbi).s_qf_names[type],
1841                                         F2FS_OPTION(sbi).s_jquota_fmt, type);
1842 }
1843
1844 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly)
1845 {
1846         int enabled = 0;
1847         int i, err;
1848
1849         if (f2fs_sb_has_quota_ino(sbi) && rdonly) {
1850                 err = f2fs_enable_quotas(sbi->sb);
1851                 if (err) {
1852                         f2fs_msg(sbi->sb, KERN_ERR,
1853                                         "Cannot turn on quota_ino: %d", err);
1854                         return 0;
1855                 }
1856                 return 1;
1857         }
1858
1859         for (i = 0; i < MAXQUOTAS; i++) {
1860                 if (F2FS_OPTION(sbi).s_qf_names[i]) {
1861                         err = f2fs_quota_on_mount(sbi, i);
1862                         if (!err) {
1863                                 enabled = 1;
1864                                 continue;
1865                         }
1866                         f2fs_msg(sbi->sb, KERN_ERR,
1867                                 "Cannot turn on quotas: %d on %d", err, i);
1868                 }
1869         }
1870         return enabled;
1871 }
1872
1873 static int f2fs_quota_enable(struct super_block *sb, int type, int format_id,
1874                              unsigned int flags)
1875 {
1876         struct inode *qf_inode;
1877         unsigned long qf_inum;
1878         int err;
1879
1880         BUG_ON(!f2fs_sb_has_quota_ino(F2FS_SB(sb)));
1881
1882         qf_inum = f2fs_qf_ino(sb, type);
1883         if (!qf_inum)
1884                 return -EPERM;
1885
1886         qf_inode = f2fs_iget(sb, qf_inum);
1887         if (IS_ERR(qf_inode)) {
1888                 f2fs_msg(sb, KERN_ERR,
1889                         "Bad quota inode %u:%lu", type, qf_inum);
1890                 return PTR_ERR(qf_inode);
1891         }
1892
1893         /* Don't account quota for quota files to avoid recursion */
1894         qf_inode->i_flags |= S_NOQUOTA;
1895         err = dquot_enable(qf_inode, type, format_id, flags);
1896         iput(qf_inode);
1897         return err;
1898 }
1899
1900 static int f2fs_enable_quotas(struct super_block *sb)
1901 {
1902         int type, err = 0;
1903         unsigned long qf_inum;
1904         bool quota_mopt[MAXQUOTAS] = {
1905                 test_opt(F2FS_SB(sb), USRQUOTA),
1906                 test_opt(F2FS_SB(sb), GRPQUOTA),
1907                 test_opt(F2FS_SB(sb), PRJQUOTA),
1908         };
1909
1910         if (is_set_ckpt_flags(F2FS_SB(sb), CP_QUOTA_NEED_FSCK_FLAG)) {
1911                 f2fs_msg(sb, KERN_ERR,
1912                         "quota file may be corrupted, skip loading it");
1913                 return 0;
1914         }
1915
1916         sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
1917
1918         for (type = 0; type < MAXQUOTAS; type++) {
1919                 qf_inum = f2fs_qf_ino(sb, type);
1920                 if (qf_inum) {
1921                         err = f2fs_quota_enable(sb, type, QFMT_VFS_V1,
1922                                 DQUOT_USAGE_ENABLED |
1923                                 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
1924                         if (err) {
1925                                 f2fs_msg(sb, KERN_ERR,
1926                                         "Failed to enable quota tracking "
1927                                         "(type=%d, err=%d). Please run "
1928                                         "fsck to fix.", type, err);
1929                                 for (type--; type >= 0; type--)
1930                                         dquot_quota_off(sb, type);
1931                                 set_sbi_flag(F2FS_SB(sb),
1932                                                 SBI_QUOTA_NEED_REPAIR);
1933                                 return err;
1934                         }
1935                 }
1936         }
1937         return 0;
1938 }
1939
1940 int f2fs_quota_sync(struct super_block *sb, int type)
1941 {
1942         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1943         struct quota_info *dqopt = sb_dqopt(sb);
1944         int cnt;
1945         int ret;
1946
1947         ret = dquot_writeback_dquots(sb, type);
1948         if (ret)
1949                 goto out;
1950
1951         /*
1952          * Now when everything is written we can discard the pagecache so
1953          * that userspace sees the changes.
1954          */
1955         for (cnt = 0; cnt < MAXQUOTAS; cnt++) {
1956                 struct address_space *mapping;
1957
1958                 if (type != -1 && cnt != type)
1959                         continue;
1960                 if (!sb_has_quota_active(sb, cnt))
1961                         continue;
1962
1963                 mapping = dqopt->files[cnt]->i_mapping;
1964
1965                 ret = filemap_fdatawrite(mapping);
1966                 if (ret)
1967                         goto out;
1968
1969                 /* if we are using journalled quota */
1970                 if (is_journalled_quota(sbi))
1971                         continue;
1972
1973                 ret = filemap_fdatawait(mapping);
1974                 if (ret)
1975                         set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
1976
1977                 inode_lock(dqopt->files[cnt]);
1978                 truncate_inode_pages(&dqopt->files[cnt]->i_data, 0);
1979                 inode_unlock(dqopt->files[cnt]);
1980         }
1981 out:
1982         if (ret)
1983                 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
1984         return ret;
1985 }
1986
1987 static int f2fs_quota_on(struct super_block *sb, int type, int format_id,
1988                                                         const struct path *path)
1989 {
1990         struct inode *inode;
1991         int err;
1992
1993         err = f2fs_quota_sync(sb, type);
1994         if (err)
1995                 return err;
1996
1997         err = dquot_quota_on(sb, type, format_id, path);
1998         if (err)
1999                 return err;
2000
2001         inode = d_inode(path->dentry);
2002
2003         inode_lock(inode);
2004         F2FS_I(inode)->i_flags |= F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL;
2005         f2fs_set_inode_flags(inode);
2006         inode_unlock(inode);
2007         f2fs_mark_inode_dirty_sync(inode, false);
2008
2009         return 0;
2010 }
2011
2012 static int f2fs_quota_off(struct super_block *sb, int type)
2013 {
2014         struct inode *inode = sb_dqopt(sb)->files[type];
2015         int err;
2016
2017         if (!inode || !igrab(inode))
2018                 return dquot_quota_off(sb, type);
2019
2020         err = f2fs_quota_sync(sb, type);
2021         if (err)
2022                 goto out_put;
2023
2024         err = dquot_quota_off(sb, type);
2025         if (err || f2fs_sb_has_quota_ino(F2FS_SB(sb)))
2026                 goto out_put;
2027
2028         inode_lock(inode);
2029         F2FS_I(inode)->i_flags &= ~(F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL);
2030         f2fs_set_inode_flags(inode);
2031         inode_unlock(inode);
2032         f2fs_mark_inode_dirty_sync(inode, false);
2033 out_put:
2034         iput(inode);
2035         return err;
2036 }
2037
2038 void f2fs_quota_off_umount(struct super_block *sb)
2039 {
2040         int type;
2041         int err;
2042
2043         for (type = 0; type < MAXQUOTAS; type++) {
2044                 err = f2fs_quota_off(sb, type);
2045                 if (err) {
2046                         int ret = dquot_quota_off(sb, type);
2047
2048                         f2fs_msg(sb, KERN_ERR,
2049                                 "Fail to turn off disk quota "
2050                                 "(type: %d, err: %d, ret:%d), Please "
2051                                 "run fsck to fix it.", type, err, ret);
2052                         set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2053                 }
2054         }
2055         /*
2056          * In case of checkpoint=disable, we must flush quota blocks.
2057          * This can cause NULL exception for node_inode in end_io, since
2058          * put_super already dropped it.
2059          */
2060         sync_filesystem(sb);
2061 }
2062
2063 static void f2fs_truncate_quota_inode_pages(struct super_block *sb)
2064 {
2065         struct quota_info *dqopt = sb_dqopt(sb);
2066         int type;
2067
2068         for (type = 0; type < MAXQUOTAS; type++) {
2069                 if (!dqopt->files[type])
2070                         continue;
2071                 f2fs_inode_synced(dqopt->files[type]);
2072         }
2073 }
2074
2075 static int f2fs_dquot_commit(struct dquot *dquot)
2076 {
2077         int ret;
2078
2079         ret = dquot_commit(dquot);
2080         if (ret < 0)
2081                 set_sbi_flag(F2FS_SB(dquot->dq_sb), SBI_QUOTA_NEED_REPAIR);
2082         return ret;
2083 }
2084
2085 static int f2fs_dquot_acquire(struct dquot *dquot)
2086 {
2087         int ret;
2088
2089         ret = dquot_acquire(dquot);
2090         if (ret < 0)
2091                 set_sbi_flag(F2FS_SB(dquot->dq_sb), SBI_QUOTA_NEED_REPAIR);
2092
2093         return ret;
2094 }
2095
2096 static int f2fs_dquot_release(struct dquot *dquot)
2097 {
2098         int ret;
2099
2100         ret = dquot_release(dquot);
2101         if (ret < 0)
2102                 set_sbi_flag(F2FS_SB(dquot->dq_sb), SBI_QUOTA_NEED_REPAIR);
2103         return ret;
2104 }
2105
2106 static int f2fs_dquot_mark_dquot_dirty(struct dquot *dquot)
2107 {
2108         struct super_block *sb = dquot->dq_sb;
2109         struct f2fs_sb_info *sbi = F2FS_SB(sb);
2110         int ret;
2111
2112         ret = dquot_mark_dquot_dirty(dquot);
2113
2114         /* if we are using journalled quota */
2115         if (is_journalled_quota(sbi))
2116                 set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
2117
2118         return ret;
2119 }
2120
2121 static int f2fs_dquot_commit_info(struct super_block *sb, int type)
2122 {
2123         int ret;
2124
2125         ret = dquot_commit_info(sb, type);
2126         if (ret < 0)
2127                 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2128         return ret;
2129 }
2130
2131 static int f2fs_get_projid(struct inode *inode, kprojid_t *projid)
2132 {
2133         *projid = F2FS_I(inode)->i_projid;
2134         return 0;
2135 }
2136
2137 static const struct dquot_operations f2fs_quota_operations = {
2138         .get_reserved_space = f2fs_get_reserved_space,
2139         .write_dquot    = f2fs_dquot_commit,
2140         .acquire_dquot  = f2fs_dquot_acquire,
2141         .release_dquot  = f2fs_dquot_release,
2142         .mark_dirty     = f2fs_dquot_mark_dquot_dirty,
2143         .write_info     = f2fs_dquot_commit_info,
2144         .alloc_dquot    = dquot_alloc,
2145         .destroy_dquot  = dquot_destroy,
2146         .get_projid     = f2fs_get_projid,
2147         .get_next_id    = dquot_get_next_id,
2148 };
2149
2150 static const struct quotactl_ops f2fs_quotactl_ops = {
2151         .quota_on       = f2fs_quota_on,
2152         .quota_off      = f2fs_quota_off,
2153         .quota_sync     = f2fs_quota_sync,
2154         .get_state      = dquot_get_state,
2155         .set_info       = dquot_set_dqinfo,
2156         .get_dqblk      = dquot_get_dqblk,
2157         .set_dqblk      = dquot_set_dqblk,
2158         .get_nextdqblk  = dquot_get_next_dqblk,
2159 };
2160 #else
2161 int f2fs_quota_sync(struct super_block *sb, int type)
2162 {
2163         return 0;
2164 }
2165
2166 void f2fs_quota_off_umount(struct super_block *sb)
2167 {
2168 }
2169 #endif
2170
2171 static const struct super_operations f2fs_sops = {
2172         .alloc_inode    = f2fs_alloc_inode,
2173         .free_inode     = f2fs_free_inode,
2174         .drop_inode     = f2fs_drop_inode,
2175         .write_inode    = f2fs_write_inode,
2176         .dirty_inode    = f2fs_dirty_inode,
2177         .show_options   = f2fs_show_options,
2178 #ifdef CONFIG_QUOTA
2179         .quota_read     = f2fs_quota_read,
2180         .quota_write    = f2fs_quota_write,
2181         .get_dquots     = f2fs_get_dquots,
2182 #endif
2183         .evict_inode    = f2fs_evict_inode,
2184         .put_super      = f2fs_put_super,
2185         .sync_fs        = f2fs_sync_fs,
2186         .freeze_fs      = f2fs_freeze,
2187         .unfreeze_fs    = f2fs_unfreeze,
2188         .statfs         = f2fs_statfs,
2189         .remount_fs     = f2fs_remount,
2190 };
2191
2192 #ifdef CONFIG_FS_ENCRYPTION
2193 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
2194 {
2195         return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
2196                                 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
2197                                 ctx, len, NULL);
2198 }
2199
2200 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
2201                                                         void *fs_data)
2202 {
2203         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2204
2205         /*
2206          * Encrypting the root directory is not allowed because fsck
2207          * expects lost+found directory to exist and remain unencrypted
2208          * if LOST_FOUND feature is enabled.
2209          *
2210          */
2211         if (f2fs_sb_has_lost_found(sbi) &&
2212                         inode->i_ino == F2FS_ROOT_INO(sbi))
2213                 return -EPERM;
2214
2215         return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
2216                                 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
2217                                 ctx, len, fs_data, XATTR_CREATE);
2218 }
2219
2220 static bool f2fs_dummy_context(struct inode *inode)
2221 {
2222         return DUMMY_ENCRYPTION_ENABLED(F2FS_I_SB(inode));
2223 }
2224
2225 static const struct fscrypt_operations f2fs_cryptops = {
2226         .key_prefix     = "f2fs:",
2227         .get_context    = f2fs_get_context,
2228         .set_context    = f2fs_set_context,
2229         .dummy_context  = f2fs_dummy_context,
2230         .empty_dir      = f2fs_empty_dir,
2231         .max_namelen    = F2FS_NAME_LEN,
2232 };
2233 #endif
2234
2235 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
2236                 u64 ino, u32 generation)
2237 {
2238         struct f2fs_sb_info *sbi = F2FS_SB(sb);
2239         struct inode *inode;
2240
2241         if (f2fs_check_nid_range(sbi, ino))
2242                 return ERR_PTR(-ESTALE);
2243
2244         /*
2245          * f2fs_iget isn't quite right if the inode is currently unallocated!
2246          * However f2fs_iget currently does appropriate checks to handle stale
2247          * inodes so everything is OK.
2248          */
2249         inode = f2fs_iget(sb, ino);
2250         if (IS_ERR(inode))
2251                 return ERR_CAST(inode);
2252         if (unlikely(generation && inode->i_generation != generation)) {
2253                 /* we didn't find the right inode.. */
2254                 iput(inode);
2255                 return ERR_PTR(-ESTALE);
2256         }
2257         return inode;
2258 }
2259
2260 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
2261                 int fh_len, int fh_type)
2262 {
2263         return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
2264                                     f2fs_nfs_get_inode);
2265 }
2266
2267 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
2268                 int fh_len, int fh_type)
2269 {
2270         return generic_fh_to_parent(sb, fid, fh_len, fh_type,
2271                                     f2fs_nfs_get_inode);
2272 }
2273
2274 static const struct export_operations f2fs_export_ops = {
2275         .fh_to_dentry = f2fs_fh_to_dentry,
2276         .fh_to_parent = f2fs_fh_to_parent,
2277         .get_parent = f2fs_get_parent,
2278 };
2279
2280 static loff_t max_file_blocks(void)
2281 {
2282         loff_t result = 0;
2283         loff_t leaf_count = DEF_ADDRS_PER_BLOCK;
2284
2285         /*
2286          * note: previously, result is equal to (DEF_ADDRS_PER_INODE -
2287          * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more
2288          * space in inode.i_addr, it will be more safe to reassign
2289          * result as zero.
2290          */
2291
2292         /* two direct node blocks */
2293         result += (leaf_count * 2);
2294
2295         /* two indirect node blocks */
2296         leaf_count *= NIDS_PER_BLOCK;
2297         result += (leaf_count * 2);
2298
2299         /* one double indirect node block */
2300         leaf_count *= NIDS_PER_BLOCK;
2301         result += leaf_count;
2302
2303         return result;
2304 }
2305
2306 static int __f2fs_commit_super(struct buffer_head *bh,
2307                         struct f2fs_super_block *super)
2308 {
2309         lock_buffer(bh);
2310         if (super)
2311                 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
2312         set_buffer_dirty(bh);
2313         unlock_buffer(bh);
2314
2315         /* it's rare case, we can do fua all the time */
2316         return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
2317 }
2318
2319 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
2320                                         struct buffer_head *bh)
2321 {
2322         struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
2323                                         (bh->b_data + F2FS_SUPER_OFFSET);
2324         struct super_block *sb = sbi->sb;
2325         u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
2326         u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
2327         u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
2328         u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
2329         u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
2330         u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
2331         u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
2332         u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
2333         u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
2334         u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
2335         u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
2336         u32 segment_count = le32_to_cpu(raw_super->segment_count);
2337         u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2338         u64 main_end_blkaddr = main_blkaddr +
2339                                 (segment_count_main << log_blocks_per_seg);
2340         u64 seg_end_blkaddr = segment0_blkaddr +
2341                                 (segment_count << log_blocks_per_seg);
2342
2343         if (segment0_blkaddr != cp_blkaddr) {
2344                 f2fs_msg(sb, KERN_INFO,
2345                         "Mismatch start address, segment0(%u) cp_blkaddr(%u)",
2346                         segment0_blkaddr, cp_blkaddr);
2347                 return true;
2348         }
2349
2350         if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
2351                                                         sit_blkaddr) {
2352                 f2fs_msg(sb, KERN_INFO,
2353                         "Wrong CP boundary, start(%u) end(%u) blocks(%u)",
2354                         cp_blkaddr, sit_blkaddr,
2355                         segment_count_ckpt << log_blocks_per_seg);
2356                 return true;
2357         }
2358
2359         if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
2360                                                         nat_blkaddr) {
2361                 f2fs_msg(sb, KERN_INFO,
2362                         "Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
2363                         sit_blkaddr, nat_blkaddr,
2364                         segment_count_sit << log_blocks_per_seg);
2365                 return true;
2366         }
2367
2368         if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
2369                                                         ssa_blkaddr) {
2370                 f2fs_msg(sb, KERN_INFO,
2371                         "Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
2372                         nat_blkaddr, ssa_blkaddr,
2373                         segment_count_nat << log_blocks_per_seg);
2374                 return true;
2375         }
2376
2377         if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
2378                                                         main_blkaddr) {
2379                 f2fs_msg(sb, KERN_INFO,
2380                         "Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
2381                         ssa_blkaddr, main_blkaddr,
2382                         segment_count_ssa << log_blocks_per_seg);
2383                 return true;
2384         }
2385
2386         if (main_end_blkaddr > seg_end_blkaddr) {
2387                 f2fs_msg(sb, KERN_INFO,
2388                         "Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)",
2389                         main_blkaddr,
2390                         segment0_blkaddr +
2391                                 (segment_count << log_blocks_per_seg),
2392                         segment_count_main << log_blocks_per_seg);
2393                 return true;
2394         } else if (main_end_blkaddr < seg_end_blkaddr) {
2395                 int err = 0;
2396                 char *res;
2397
2398                 /* fix in-memory information all the time */
2399                 raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
2400                                 segment0_blkaddr) >> log_blocks_per_seg);
2401
2402                 if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
2403                         set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
2404                         res = "internally";
2405                 } else {
2406                         err = __f2fs_commit_super(bh, NULL);
2407                         res = err ? "failed" : "done";
2408                 }
2409                 f2fs_msg(sb, KERN_INFO,
2410                         "Fix alignment : %s, start(%u) end(%u) block(%u)",
2411                         res, main_blkaddr,
2412                         segment0_blkaddr +
2413                                 (segment_count << log_blocks_per_seg),
2414                         segment_count_main << log_blocks_per_seg);
2415                 if (err)
2416                         return true;
2417         }
2418         return false;
2419 }
2420
2421 static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
2422                                 struct buffer_head *bh)
2423 {
2424         block_t segment_count, segs_per_sec, secs_per_zone;
2425         block_t total_sections, blocks_per_seg;
2426         struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
2427                                         (bh->b_data + F2FS_SUPER_OFFSET);
2428         struct super_block *sb = sbi->sb;
2429         unsigned int blocksize;
2430         size_t crc_offset = 0;
2431         __u32 crc = 0;
2432
2433         /* Check checksum_offset and crc in superblock */
2434         if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_SB_CHKSUM)) {
2435                 crc_offset = le32_to_cpu(raw_super->checksum_offset);
2436                 if (crc_offset !=
2437                         offsetof(struct f2fs_super_block, crc)) {
2438                         f2fs_msg(sb, KERN_INFO,
2439                                 "Invalid SB checksum offset: %zu",
2440                                 crc_offset);
2441                         return 1;
2442                 }
2443                 crc = le32_to_cpu(raw_super->crc);
2444                 if (!f2fs_crc_valid(sbi, crc, raw_super, crc_offset)) {
2445                         f2fs_msg(sb, KERN_INFO,
2446                                 "Invalid SB checksum value: %u", crc);
2447                         return 1;
2448                 }
2449         }
2450
2451         if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
2452                 f2fs_msg(sb, KERN_INFO,
2453                         "Magic Mismatch, valid(0x%x) - read(0x%x)",
2454                         F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
2455                 return 1;
2456         }
2457
2458         /* Currently, support only 4KB page cache size */
2459         if (F2FS_BLKSIZE != PAGE_SIZE) {
2460                 f2fs_msg(sb, KERN_INFO,
2461                         "Invalid page_cache_size (%lu), supports only 4KB",
2462                         PAGE_SIZE);
2463                 return 1;
2464         }
2465
2466         /* Currently, support only 4KB block size */
2467         blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
2468         if (blocksize != F2FS_BLKSIZE) {
2469                 f2fs_msg(sb, KERN_INFO,
2470                         "Invalid blocksize (%u), supports only 4KB",
2471                         blocksize);
2472                 return 1;
2473         }
2474
2475         /* check log blocks per segment */
2476         if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
2477                 f2fs_msg(sb, KERN_INFO,
2478                         "Invalid log blocks per segment (%u)",
2479                         le32_to_cpu(raw_super->log_blocks_per_seg));
2480                 return 1;
2481         }
2482
2483         /* Currently, support 512/1024/2048/4096 bytes sector size */
2484         if (le32_to_cpu(raw_super->log_sectorsize) >
2485                                 F2FS_MAX_LOG_SECTOR_SIZE ||
2486                 le32_to_cpu(raw_super->log_sectorsize) <
2487                                 F2FS_MIN_LOG_SECTOR_SIZE) {
2488                 f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)",
2489                         le32_to_cpu(raw_super->log_sectorsize));
2490                 return 1;
2491         }
2492         if (le32_to_cpu(raw_super->log_sectors_per_block) +
2493                 le32_to_cpu(raw_super->log_sectorsize) !=
2494                         F2FS_MAX_LOG_SECTOR_SIZE) {
2495                 f2fs_msg(sb, KERN_INFO,
2496                         "Invalid log sectors per block(%u) log sectorsize(%u)",
2497                         le32_to_cpu(raw_super->log_sectors_per_block),
2498                         le32_to_cpu(raw_super->log_sectorsize));
2499                 return 1;
2500         }
2501
2502         segment_count = le32_to_cpu(raw_super->segment_count);
2503         segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
2504         secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
2505         total_sections = le32_to_cpu(raw_super->section_count);
2506
2507         /* blocks_per_seg should be 512, given the above check */
2508         blocks_per_seg = 1 << le32_to_cpu(raw_super->log_blocks_per_seg);
2509
2510         if (segment_count > F2FS_MAX_SEGMENT ||
2511                                 segment_count < F2FS_MIN_SEGMENTS) {
2512                 f2fs_msg(sb, KERN_INFO,
2513                         "Invalid segment count (%u)",
2514                         segment_count);
2515                 return 1;
2516         }
2517
2518         if (total_sections > segment_count ||
2519                         total_sections < F2FS_MIN_SEGMENTS ||
2520                         segs_per_sec > segment_count || !segs_per_sec) {
2521                 f2fs_msg(sb, KERN_INFO,
2522                         "Invalid segment/section count (%u, %u x %u)",
2523                         segment_count, total_sections, segs_per_sec);
2524                 return 1;
2525         }
2526
2527         if ((segment_count / segs_per_sec) < total_sections) {
2528                 f2fs_msg(sb, KERN_INFO,
2529                         "Small segment_count (%u < %u * %u)",
2530                         segment_count, segs_per_sec, total_sections);
2531                 return 1;
2532         }
2533
2534         if (segment_count > (le64_to_cpu(raw_super->block_count) >> 9)) {
2535                 f2fs_msg(sb, KERN_INFO,
2536                         "Wrong segment_count / block_count (%u > %llu)",
2537                         segment_count, le64_to_cpu(raw_super->block_count));
2538                 return 1;
2539         }
2540
2541         if (secs_per_zone > total_sections || !secs_per_zone) {
2542                 f2fs_msg(sb, KERN_INFO,
2543                         "Wrong secs_per_zone / total_sections (%u, %u)",
2544                         secs_per_zone, total_sections);
2545                 return 1;
2546         }
2547         if (le32_to_cpu(raw_super->extension_count) > F2FS_MAX_EXTENSION ||
2548                         raw_super->hot_ext_count > F2FS_MAX_EXTENSION ||
2549                         (le32_to_cpu(raw_super->extension_count) +
2550                         raw_super->hot_ext_count) > F2FS_MAX_EXTENSION) {
2551                 f2fs_msg(sb, KERN_INFO,
2552                         "Corrupted extension count (%u + %u > %u)",
2553                         le32_to_cpu(raw_super->extension_count),
2554                         raw_super->hot_ext_count,
2555                         F2FS_MAX_EXTENSION);
2556                 return 1;
2557         }
2558
2559         if (le32_to_cpu(raw_super->cp_payload) >
2560                                 (blocks_per_seg - F2FS_CP_PACKS)) {
2561                 f2fs_msg(sb, KERN_INFO,
2562                         "Insane cp_payload (%u > %u)",
2563                         le32_to_cpu(raw_super->cp_payload),
2564                         blocks_per_seg - F2FS_CP_PACKS);
2565                 return 1;
2566         }
2567
2568         /* check reserved ino info */
2569         if (le32_to_cpu(raw_super->node_ino) != 1 ||
2570                 le32_to_cpu(raw_super->meta_ino) != 2 ||
2571                 le32_to_cpu(raw_super->root_ino) != 3) {
2572                 f2fs_msg(sb, KERN_INFO,
2573                         "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
2574                         le32_to_cpu(raw_super->node_ino),
2575                         le32_to_cpu(raw_super->meta_ino),
2576                         le32_to_cpu(raw_super->root_ino));
2577                 return 1;
2578         }
2579
2580         /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
2581         if (sanity_check_area_boundary(sbi, bh))
2582                 return 1;
2583
2584         return 0;
2585 }
2586
2587 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi)
2588 {
2589         unsigned int total, fsmeta;
2590         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2591         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2592         unsigned int ovp_segments, reserved_segments;
2593         unsigned int main_segs, blocks_per_seg;
2594         unsigned int sit_segs, nat_segs;
2595         unsigned int sit_bitmap_size, nat_bitmap_size;
2596         unsigned int log_blocks_per_seg;
2597         unsigned int segment_count_main;
2598         unsigned int cp_pack_start_sum, cp_payload;
2599         block_t user_block_count, valid_user_blocks;
2600         block_t avail_node_count, valid_node_count;
2601         int i, j;
2602
2603         total = le32_to_cpu(raw_super->segment_count);
2604         fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
2605         sit_segs = le32_to_cpu(raw_super->segment_count_sit);
2606         fsmeta += sit_segs;
2607         nat_segs = le32_to_cpu(raw_super->segment_count_nat);
2608         fsmeta += nat_segs;
2609         fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
2610         fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
2611
2612         if (unlikely(fsmeta >= total))
2613                 return 1;
2614
2615         ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
2616         reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
2617
2618         if (unlikely(fsmeta < F2FS_MIN_SEGMENTS ||
2619                         ovp_segments == 0 || reserved_segments == 0)) {
2620                 f2fs_msg(sbi->sb, KERN_ERR,
2621                         "Wrong layout: check mkfs.f2fs version");
2622                 return 1;
2623         }
2624
2625         user_block_count = le64_to_cpu(ckpt->user_block_count);
2626         segment_count_main = le32_to_cpu(raw_super->segment_count_main);
2627         log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2628         if (!user_block_count || user_block_count >=
2629                         segment_count_main << log_blocks_per_seg) {
2630                 f2fs_msg(sbi->sb, KERN_ERR,
2631                         "Wrong user_block_count: %u", user_block_count);
2632                 return 1;
2633         }
2634
2635         valid_user_blocks = le64_to_cpu(ckpt->valid_block_count);
2636         if (valid_user_blocks > user_block_count) {
2637                 f2fs_msg(sbi->sb, KERN_ERR,
2638                         "Wrong valid_user_blocks: %u, user_block_count: %u",
2639                         valid_user_blocks, user_block_count);
2640                 return 1;
2641         }
2642
2643         valid_node_count = le32_to_cpu(ckpt->valid_node_count);
2644         avail_node_count = sbi->total_node_count - sbi->nquota_files -
2645                                                 F2FS_RESERVED_NODE_NUM;
2646         if (valid_node_count > avail_node_count) {
2647                 f2fs_msg(sbi->sb, KERN_ERR,
2648                         "Wrong valid_node_count: %u, avail_node_count: %u",
2649                         valid_node_count, avail_node_count);
2650                 return 1;
2651         }
2652
2653         main_segs = le32_to_cpu(raw_super->segment_count_main);
2654         blocks_per_seg = sbi->blocks_per_seg;
2655
2656         for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
2657                 if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs ||
2658                         le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg)
2659                         return 1;
2660                 for (j = i + 1; j < NR_CURSEG_NODE_TYPE; j++) {
2661                         if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
2662                                 le32_to_cpu(ckpt->cur_node_segno[j])) {
2663                                 f2fs_msg(sbi->sb, KERN_ERR,
2664                                         "Node segment (%u, %u) has the same "
2665                                         "segno: %u", i, j,
2666                                         le32_to_cpu(ckpt->cur_node_segno[i]));
2667                                 return 1;
2668                         }
2669                 }
2670         }
2671         for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
2672                 if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs ||
2673                         le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg)
2674                         return 1;
2675                 for (j = i + 1; j < NR_CURSEG_DATA_TYPE; j++) {
2676                         if (le32_to_cpu(ckpt->cur_data_segno[i]) ==
2677                                 le32_to_cpu(ckpt->cur_data_segno[j])) {
2678                                 f2fs_msg(sbi->sb, KERN_ERR,
2679                                         "Data segment (%u, %u) has the same "
2680                                         "segno: %u", i, j,
2681                                         le32_to_cpu(ckpt->cur_data_segno[i]));
2682                                 return 1;
2683                         }
2684                 }
2685         }
2686         for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
2687                 for (j = i; j < NR_CURSEG_DATA_TYPE; j++) {
2688                         if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
2689                                 le32_to_cpu(ckpt->cur_data_segno[j])) {
2690                                 f2fs_msg(sbi->sb, KERN_ERR,
2691                                         "Data segment (%u) and Data segment (%u)"
2692                                         " has the same segno: %u", i, j,
2693                                         le32_to_cpu(ckpt->cur_node_segno[i]));
2694                                 return 1;
2695                         }
2696                 }
2697         }
2698
2699         sit_bitmap_size = le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2700         nat_bitmap_size = le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2701
2702         if (sit_bitmap_size != ((sit_segs / 2) << log_blocks_per_seg) / 8 ||
2703                 nat_bitmap_size != ((nat_segs / 2) << log_blocks_per_seg) / 8) {
2704                 f2fs_msg(sbi->sb, KERN_ERR,
2705                         "Wrong bitmap size: sit: %u, nat:%u",
2706                         sit_bitmap_size, nat_bitmap_size);
2707                 return 1;
2708         }
2709
2710         cp_pack_start_sum = __start_sum_addr(sbi);
2711         cp_payload = __cp_payload(sbi);
2712         if (cp_pack_start_sum < cp_payload + 1 ||
2713                 cp_pack_start_sum > blocks_per_seg - 1 -
2714                         NR_CURSEG_TYPE) {
2715                 f2fs_msg(sbi->sb, KERN_ERR,
2716                         "Wrong cp_pack_start_sum: %u",
2717                         cp_pack_start_sum);
2718                 return 1;
2719         }
2720
2721         if (unlikely(f2fs_cp_error(sbi))) {
2722                 f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
2723                 return 1;
2724         }
2725         return 0;
2726 }
2727
2728 static void init_sb_info(struct f2fs_sb_info *sbi)
2729 {
2730         struct f2fs_super_block *raw_super = sbi->raw_super;
2731         int i;
2732
2733         sbi->log_sectors_per_block =
2734                 le32_to_cpu(raw_super->log_sectors_per_block);
2735         sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
2736         sbi->blocksize = 1 << sbi->log_blocksize;
2737         sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2738         sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
2739         sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
2740         sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
2741         sbi->total_sections = le32_to_cpu(raw_super->section_count);
2742         sbi->total_node_count =
2743                 (le32_to_cpu(raw_super->segment_count_nat) / 2)
2744                         * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
2745         sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
2746         sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
2747         sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
2748         sbi->cur_victim_sec = NULL_SECNO;
2749         sbi->next_victim_seg[BG_GC] = NULL_SEGNO;
2750         sbi->next_victim_seg[FG_GC] = NULL_SEGNO;
2751         sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
2752         sbi->migration_granularity = sbi->segs_per_sec;
2753
2754         sbi->dir_level = DEF_DIR_LEVEL;
2755         sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
2756         sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
2757         sbi->interval_time[DISCARD_TIME] = DEF_IDLE_INTERVAL;
2758         sbi->interval_time[GC_TIME] = DEF_IDLE_INTERVAL;
2759         sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_INTERVAL;
2760         sbi->interval_time[UMOUNT_DISCARD_TIMEOUT] =
2761                                 DEF_UMOUNT_DISCARD_TIMEOUT;
2762         clear_sbi_flag(sbi, SBI_NEED_FSCK);
2763
2764         for (i = 0; i < NR_COUNT_TYPE; i++)
2765                 atomic_set(&sbi->nr_pages[i], 0);
2766
2767         for (i = 0; i < META; i++)
2768                 atomic_set(&sbi->wb_sync_req[i], 0);
2769
2770         INIT_LIST_HEAD(&sbi->s_list);
2771         mutex_init(&sbi->umount_mutex);
2772         init_rwsem(&sbi->io_order_lock);
2773         spin_lock_init(&sbi->cp_lock);
2774
2775         sbi->dirty_device = 0;
2776         spin_lock_init(&sbi->dev_lock);
2777
2778         init_rwsem(&sbi->sb_lock);
2779 }
2780
2781 static int init_percpu_info(struct f2fs_sb_info *sbi)
2782 {
2783         int err;
2784
2785         err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
2786         if (err)
2787                 return err;
2788
2789         err = percpu_counter_init(&sbi->total_valid_inode_count, 0,
2790                                                                 GFP_KERNEL);
2791         if (err)
2792                 percpu_counter_destroy(&sbi->alloc_valid_block_count);
2793
2794         return err;
2795 }
2796
2797 #ifdef CONFIG_BLK_DEV_ZONED
2798 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi)
2799 {
2800         struct block_device *bdev = FDEV(devi).bdev;
2801         sector_t nr_sectors = bdev->bd_part->nr_sects;
2802         sector_t sector = 0;
2803         struct blk_zone *zones;
2804         unsigned int i, nr_zones;
2805         unsigned int n = 0;
2806         int err = -EIO;
2807
2808         if (!f2fs_sb_has_blkzoned(sbi))
2809                 return 0;
2810
2811         if (sbi->blocks_per_blkz && sbi->blocks_per_blkz !=
2812                                 SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)))
2813                 return -EINVAL;
2814         sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev));
2815         if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz !=
2816                                 __ilog2_u32(sbi->blocks_per_blkz))
2817                 return -EINVAL;
2818         sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz);
2819         FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >>
2820                                         sbi->log_blocks_per_blkz;
2821         if (nr_sectors & (bdev_zone_sectors(bdev) - 1))
2822                 FDEV(devi).nr_blkz++;
2823
2824         FDEV(devi).blkz_seq = f2fs_kzalloc(sbi,
2825                                         BITS_TO_LONGS(FDEV(devi).nr_blkz)
2826                                         * sizeof(unsigned long),
2827                                         GFP_KERNEL);
2828         if (!FDEV(devi).blkz_seq)
2829                 return -ENOMEM;
2830
2831 #define F2FS_REPORT_NR_ZONES   4096
2832
2833         zones = f2fs_kzalloc(sbi,
2834                              array_size(F2FS_REPORT_NR_ZONES,
2835                                         sizeof(struct blk_zone)),
2836                              GFP_KERNEL);
2837         if (!zones)
2838                 return -ENOMEM;
2839
2840         /* Get block zones type */
2841         while (zones && sector < nr_sectors) {
2842
2843                 nr_zones = F2FS_REPORT_NR_ZONES;
2844                 err = blkdev_report_zones(bdev, sector,
2845                                           zones, &nr_zones,
2846                                           GFP_KERNEL);
2847                 if (err)
2848                         break;
2849                 if (!nr_zones) {
2850                         err = -EIO;
2851                         break;
2852                 }
2853
2854                 for (i = 0; i < nr_zones; i++) {
2855                         if (zones[i].type != BLK_ZONE_TYPE_CONVENTIONAL)
2856                                 set_bit(n, FDEV(devi).blkz_seq);
2857                         sector += zones[i].len;
2858                         n++;
2859                 }
2860         }
2861
2862         kvfree(zones);
2863
2864         return err;
2865 }
2866 #endif
2867
2868 /*
2869  * Read f2fs raw super block.
2870  * Because we have two copies of super block, so read both of them
2871  * to get the first valid one. If any one of them is broken, we pass
2872  * them recovery flag back to the caller.
2873  */
2874 static int read_raw_super_block(struct f2fs_sb_info *sbi,
2875                         struct f2fs_super_block **raw_super,
2876                         int *valid_super_block, int *recovery)
2877 {
2878         struct super_block *sb = sbi->sb;
2879         int block;
2880         struct buffer_head *bh;
2881         struct f2fs_super_block *super;
2882         int err = 0;
2883
2884         super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
2885         if (!super)
2886                 return -ENOMEM;
2887
2888         for (block = 0; block < 2; block++) {
2889                 bh = sb_bread(sb, block);
2890                 if (!bh) {
2891                         f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
2892                                 block + 1);
2893                         err = -EIO;
2894                         continue;
2895                 }
2896
2897                 /* sanity checking of raw super */
2898                 if (sanity_check_raw_super(sbi, bh)) {
2899                         f2fs_msg(sb, KERN_ERR,
2900                                 "Can't find valid F2FS filesystem in %dth superblock",
2901                                 block + 1);
2902                         err = -EINVAL;
2903                         brelse(bh);
2904                         continue;
2905                 }
2906
2907                 if (!*raw_super) {
2908                         memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
2909                                                         sizeof(*super));
2910                         *valid_super_block = block;
2911                         *raw_super = super;
2912                 }
2913                 brelse(bh);
2914         }
2915
2916         /* Fail to read any one of the superblocks*/
2917         if (err < 0)
2918                 *recovery = 1;
2919
2920         /* No valid superblock */
2921         if (!*raw_super)
2922                 kvfree(super);
2923         else
2924                 err = 0;
2925
2926         return err;
2927 }
2928
2929 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
2930 {
2931         struct buffer_head *bh;
2932         __u32 crc = 0;
2933         int err;
2934
2935         if ((recover && f2fs_readonly(sbi->sb)) ||
2936                                 bdev_read_only(sbi->sb->s_bdev)) {
2937                 set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
2938                 return -EROFS;
2939         }
2940
2941         /* we should update superblock crc here */
2942         if (!recover && f2fs_sb_has_sb_chksum(sbi)) {
2943                 crc = f2fs_crc32(sbi, F2FS_RAW_SUPER(sbi),
2944                                 offsetof(struct f2fs_super_block, crc));
2945                 F2FS_RAW_SUPER(sbi)->crc = cpu_to_le32(crc);
2946         }
2947
2948         /* write back-up superblock first */
2949         bh = sb_bread(sbi->sb, sbi->valid_super_block ? 0 : 1);
2950         if (!bh)
2951                 return -EIO;
2952         err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
2953         brelse(bh);
2954
2955         /* if we are in recovery path, skip writing valid superblock */
2956         if (recover || err)
2957                 return err;
2958
2959         /* write current valid superblock */
2960         bh = sb_bread(sbi->sb, sbi->valid_super_block);
2961         if (!bh)
2962                 return -EIO;
2963         err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
2964         brelse(bh);
2965         return err;
2966 }
2967
2968 static int f2fs_scan_devices(struct f2fs_sb_info *sbi)
2969 {
2970         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2971         unsigned int max_devices = MAX_DEVICES;
2972         int i;
2973
2974         /* Initialize single device information */
2975         if (!RDEV(0).path[0]) {
2976                 if (!bdev_is_zoned(sbi->sb->s_bdev))
2977                         return 0;
2978                 max_devices = 1;
2979         }
2980
2981         /*
2982          * Initialize multiple devices information, or single
2983          * zoned block device information.
2984          */
2985         sbi->devs = f2fs_kzalloc(sbi,
2986                                  array_size(max_devices,
2987                                             sizeof(struct f2fs_dev_info)),
2988                                  GFP_KERNEL);
2989         if (!sbi->devs)
2990                 return -ENOMEM;
2991
2992         for (i = 0; i < max_devices; i++) {
2993
2994                 if (i > 0 && !RDEV(i).path[0])
2995                         break;
2996
2997                 if (max_devices == 1) {
2998                         /* Single zoned block device mount */
2999                         FDEV(0).bdev =
3000                                 blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev,
3001                                         sbi->sb->s_mode, sbi->sb->s_type);
3002                 } else {
3003                         /* Multi-device mount */
3004                         memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN);
3005                         FDEV(i).total_segments =
3006                                 le32_to_cpu(RDEV(i).total_segments);
3007                         if (i == 0) {
3008                                 FDEV(i).start_blk = 0;
3009                                 FDEV(i).end_blk = FDEV(i).start_blk +
3010                                     (FDEV(i).total_segments <<
3011                                     sbi->log_blocks_per_seg) - 1 +
3012                                     le32_to_cpu(raw_super->segment0_blkaddr);
3013                         } else {
3014                                 FDEV(i).start_blk = FDEV(i - 1).end_blk + 1;
3015                                 FDEV(i).end_blk = FDEV(i).start_blk +
3016                                         (FDEV(i).total_segments <<
3017                                         sbi->log_blocks_per_seg) - 1;
3018                         }
3019                         FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path,
3020                                         sbi->sb->s_mode, sbi->sb->s_type);
3021                 }
3022                 if (IS_ERR(FDEV(i).bdev))
3023                         return PTR_ERR(FDEV(i).bdev);
3024
3025                 /* to release errored devices */
3026                 sbi->s_ndevs = i + 1;
3027
3028 #ifdef CONFIG_BLK_DEV_ZONED
3029                 if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM &&
3030                                 !f2fs_sb_has_blkzoned(sbi)) {
3031                         f2fs_msg(sbi->sb, KERN_ERR,
3032                                 "Zoned block device feature not enabled\n");
3033                         return -EINVAL;
3034                 }
3035                 if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) {
3036                         if (init_blkz_info(sbi, i)) {
3037                                 f2fs_msg(sbi->sb, KERN_ERR,
3038                                         "Failed to initialize F2FS blkzone information");
3039                                 return -EINVAL;
3040                         }
3041                         if (max_devices == 1)
3042                                 break;
3043                         f2fs_msg(sbi->sb, KERN_INFO,
3044                                 "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)",
3045                                 i, FDEV(i).path,
3046                                 FDEV(i).total_segments,
3047                                 FDEV(i).start_blk, FDEV(i).end_blk,
3048                                 bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ?
3049                                 "Host-aware" : "Host-managed");
3050                         continue;
3051                 }
3052 #endif
3053                 f2fs_msg(sbi->sb, KERN_INFO,
3054                         "Mount Device [%2d]: %20s, %8u, %8x - %8x",
3055                                 i, FDEV(i).path,
3056                                 FDEV(i).total_segments,
3057                                 FDEV(i).start_blk, FDEV(i).end_blk);
3058         }
3059         f2fs_msg(sbi->sb, KERN_INFO,
3060                         "IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi));
3061         return 0;
3062 }
3063
3064 static void f2fs_tuning_parameters(struct f2fs_sb_info *sbi)
3065 {
3066         struct f2fs_sm_info *sm_i = SM_I(sbi);
3067
3068         /* adjust parameters according to the volume size */
3069         if (sm_i->main_segments <= SMALL_VOLUME_SEGMENTS) {
3070                 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
3071                 sm_i->dcc_info->discard_granularity = 1;
3072                 sm_i->ipu_policy = 1 << F2FS_IPU_FORCE;
3073         }
3074
3075         sbi->readdir_ra = 1;
3076 }
3077
3078 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
3079 {
3080         struct f2fs_sb_info *sbi;
3081         struct f2fs_super_block *raw_super;
3082         struct inode *root;
3083         int err;
3084         bool skip_recovery = false, need_fsck = false;
3085         char *options = NULL;
3086         int recovery, i, valid_super_block;
3087         struct curseg_info *seg_i;
3088         int retry_cnt = 1;
3089
3090 try_onemore:
3091         err = -EINVAL;
3092         raw_super = NULL;
3093         valid_super_block = -1;
3094         recovery = 0;
3095
3096         /* allocate memory for f2fs-specific super block info */
3097         sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
3098         if (!sbi)
3099                 return -ENOMEM;
3100
3101         sbi->sb = sb;
3102
3103         /* Load the checksum driver */
3104         sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
3105         if (IS_ERR(sbi->s_chksum_driver)) {
3106                 f2fs_msg(sb, KERN_ERR, "Cannot load crc32 driver.");
3107                 err = PTR_ERR(sbi->s_chksum_driver);
3108                 sbi->s_chksum_driver = NULL;
3109                 goto free_sbi;
3110         }
3111
3112         /* set a block size */
3113         if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
3114                 f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
3115                 goto free_sbi;
3116         }
3117
3118         err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
3119                                                                 &recovery);
3120         if (err)
3121                 goto free_sbi;
3122
3123         sb->s_fs_info = sbi;
3124         sbi->raw_super = raw_super;
3125
3126         /* precompute checksum seed for metadata */
3127         if (f2fs_sb_has_inode_chksum(sbi))
3128                 sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid,
3129                                                 sizeof(raw_super->uuid));
3130
3131         /*
3132          * The BLKZONED feature indicates that the drive was formatted with
3133          * zone alignment optimization. This is optional for host-aware
3134          * devices, but mandatory for host-managed zoned block devices.
3135          */
3136 #ifndef CONFIG_BLK_DEV_ZONED
3137         if (f2fs_sb_has_blkzoned(sbi)) {
3138                 f2fs_msg(sb, KERN_ERR,
3139                          "Zoned block device support is not enabled");
3140                 err = -EOPNOTSUPP;
3141                 goto free_sb_buf;
3142         }
3143 #endif
3144         default_options(sbi);
3145         /* parse mount options */
3146         options = kstrdup((const char *)data, GFP_KERNEL);
3147         if (data && !options) {
3148                 err = -ENOMEM;
3149                 goto free_sb_buf;
3150         }
3151
3152         err = parse_options(sb, options);
3153         if (err)
3154                 goto free_options;
3155
3156         sbi->max_file_blocks = max_file_blocks();
3157         sb->s_maxbytes = sbi->max_file_blocks <<
3158                                 le32_to_cpu(raw_super->log_blocksize);
3159         sb->s_max_links = F2FS_LINK_MAX;
3160
3161 #ifdef CONFIG_QUOTA
3162         sb->dq_op = &f2fs_quota_operations;
3163         if (f2fs_sb_has_quota_ino(sbi))
3164                 sb->s_qcop = &dquot_quotactl_sysfile_ops;
3165         else
3166                 sb->s_qcop = &f2fs_quotactl_ops;
3167         sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
3168
3169         if (f2fs_sb_has_quota_ino(sbi)) {
3170                 for (i = 0; i < MAXQUOTAS; i++) {
3171                         if (f2fs_qf_ino(sbi->sb, i))
3172                                 sbi->nquota_files++;
3173                 }
3174         }
3175 #endif
3176
3177         sb->s_op = &f2fs_sops;
3178 #ifdef CONFIG_FS_ENCRYPTION
3179         sb->s_cop = &f2fs_cryptops;
3180 #endif
3181         sb->s_xattr = f2fs_xattr_handlers;
3182         sb->s_export_op = &f2fs_export_ops;
3183         sb->s_magic = F2FS_SUPER_MAGIC;
3184         sb->s_time_gran = 1;
3185         sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
3186                 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
3187         memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
3188         sb->s_iflags |= SB_I_CGROUPWB;
3189
3190         /* init f2fs-specific super block info */
3191         sbi->valid_super_block = valid_super_block;
3192         mutex_init(&sbi->gc_mutex);
3193         mutex_init(&sbi->writepages);
3194         mutex_init(&sbi->cp_mutex);
3195         init_rwsem(&sbi->node_write);
3196         init_rwsem(&sbi->node_change);
3197
3198         /* disallow all the data/node/meta page writes */
3199         set_sbi_flag(sbi, SBI_POR_DOING);
3200         spin_lock_init(&sbi->stat_lock);
3201
3202         /* init iostat info */
3203         spin_lock_init(&sbi->iostat_lock);
3204         sbi->iostat_enable = false;
3205
3206         for (i = 0; i < NR_PAGE_TYPE; i++) {
3207                 int n = (i == META) ? 1: NR_TEMP_TYPE;
3208                 int j;
3209
3210                 sbi->write_io[i] =
3211                         f2fs_kmalloc(sbi,
3212                                      array_size(n,
3213                                                 sizeof(struct f2fs_bio_info)),
3214                                      GFP_KERNEL);
3215                 if (!sbi->write_io[i]) {
3216                         err = -ENOMEM;
3217                         goto free_bio_info;
3218                 }
3219
3220                 for (j = HOT; j < n; j++) {
3221                         init_rwsem(&sbi->write_io[i][j].io_rwsem);
3222                         sbi->write_io[i][j].sbi = sbi;
3223                         sbi->write_io[i][j].bio = NULL;
3224                         spin_lock_init(&sbi->write_io[i][j].io_lock);
3225                         INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
3226                 }
3227         }
3228
3229         init_rwsem(&sbi->cp_rwsem);
3230         init_waitqueue_head(&sbi->cp_wait);
3231         init_sb_info(sbi);
3232
3233         err = init_percpu_info(sbi);
3234         if (err)
3235                 goto free_bio_info;
3236
3237         if (F2FS_IO_SIZE(sbi) > 1) {
3238                 sbi->write_io_dummy =
3239                         mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0);
3240                 if (!sbi->write_io_dummy) {
3241                         err = -ENOMEM;
3242                         goto free_percpu;
3243                 }
3244         }
3245
3246         /* get an inode for meta space */
3247         sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
3248         if (IS_ERR(sbi->meta_inode)) {
3249                 f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
3250                 err = PTR_ERR(sbi->meta_inode);
3251                 goto free_io_dummy;
3252         }
3253
3254         err = f2fs_get_valid_checkpoint(sbi);
3255         if (err) {
3256                 f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
3257                 goto free_meta_inode;
3258         }
3259
3260         if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_QUOTA_NEED_FSCK_FLAG))
3261                 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3262         if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_DISABLED_QUICK_FLAG)) {
3263                 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
3264                 sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_QUICK_INTERVAL;
3265         }
3266
3267         /* Initialize device list */
3268         err = f2fs_scan_devices(sbi);
3269         if (err) {
3270                 f2fs_msg(sb, KERN_ERR, "Failed to find devices");
3271                 goto free_devices;
3272         }
3273
3274         sbi->total_valid_node_count =
3275                                 le32_to_cpu(sbi->ckpt->valid_node_count);
3276         percpu_counter_set(&sbi->total_valid_inode_count,
3277                                 le32_to_cpu(sbi->ckpt->valid_inode_count));
3278         sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
3279         sbi->total_valid_block_count =
3280                                 le64_to_cpu(sbi->ckpt->valid_block_count);
3281         sbi->last_valid_block_count = sbi->total_valid_block_count;
3282         sbi->reserved_blocks = 0;
3283         sbi->current_reserved_blocks = 0;
3284         limit_reserve_root(sbi);
3285
3286         for (i = 0; i < NR_INODE_TYPE; i++) {
3287                 INIT_LIST_HEAD(&sbi->inode_list[i]);
3288                 spin_lock_init(&sbi->inode_lock[i]);
3289         }
3290
3291         f2fs_init_extent_cache_info(sbi);
3292
3293         f2fs_init_ino_entry_info(sbi);
3294
3295         f2fs_init_fsync_node_info(sbi);
3296
3297         /* setup f2fs internal modules */
3298         err = f2fs_build_segment_manager(sbi);
3299         if (err) {
3300                 f2fs_msg(sb, KERN_ERR,
3301                         "Failed to initialize F2FS segment manager");
3302                 goto free_sm;
3303         }
3304         err = f2fs_build_node_manager(sbi);
3305         if (err) {
3306                 f2fs_msg(sb, KERN_ERR,
3307                         "Failed to initialize F2FS node manager");
3308                 goto free_nm;
3309         }
3310
3311         /* For write statistics */
3312         if (sb->s_bdev->bd_part)
3313                 sbi->sectors_written_start =
3314                         (u64)part_stat_read(sb->s_bdev->bd_part,
3315                                             sectors[STAT_WRITE]);
3316
3317         /* Read accumulated write IO statistics if exists */
3318         seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
3319         if (__exist_node_summaries(sbi))
3320                 sbi->kbytes_written =
3321                         le64_to_cpu(seg_i->journal->info.kbytes_written);
3322
3323         f2fs_build_gc_manager(sbi);
3324
3325         err = f2fs_build_stats(sbi);
3326         if (err)
3327                 goto free_nm;
3328
3329         /* get an inode for node space */
3330         sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
3331         if (IS_ERR(sbi->node_inode)) {
3332                 f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
3333                 err = PTR_ERR(sbi->node_inode);
3334                 goto free_stats;
3335         }
3336
3337         /* read root inode and dentry */
3338         root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
3339         if (IS_ERR(root)) {
3340                 f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
3341                 err = PTR_ERR(root);
3342                 goto free_node_inode;
3343         }
3344         if (!S_ISDIR(root->i_mode) || !root->i_blocks ||
3345                         !root->i_size || !root->i_nlink) {
3346                 iput(root);
3347                 err = -EINVAL;
3348                 goto free_node_inode;
3349         }
3350
3351         sb->s_root = d_make_root(root); /* allocate root dentry */
3352         if (!sb->s_root) {
3353                 err = -ENOMEM;
3354                 goto free_node_inode;
3355         }
3356
3357         err = f2fs_register_sysfs(sbi);
3358         if (err)
3359                 goto free_root_inode;
3360
3361 #ifdef CONFIG_QUOTA
3362         /* Enable quota usage during mount */
3363         if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) {
3364                 err = f2fs_enable_quotas(sb);
3365                 if (err)
3366                         f2fs_msg(sb, KERN_ERR,
3367                                 "Cannot turn on quotas: error %d", err);
3368         }
3369 #endif
3370         /* if there are nt orphan nodes free them */
3371         err = f2fs_recover_orphan_inodes(sbi);
3372         if (err)
3373                 goto free_meta;
3374
3375         if (unlikely(is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)))
3376                 goto reset_checkpoint;
3377
3378         /* recover fsynced data */
3379         if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
3380                 /*
3381                  * mount should be failed, when device has readonly mode, and
3382                  * previous checkpoint was not done by clean system shutdown.
3383                  */
3384                 if (f2fs_hw_is_readonly(sbi)) {
3385                         if (!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
3386                                 err = -EROFS;
3387                                 f2fs_msg(sb, KERN_ERR,
3388                                         "Need to recover fsync data, but "
3389                                         "write access unavailable");
3390                                 goto free_meta;
3391                         }
3392                         f2fs_msg(sbi->sb, KERN_INFO, "write access "
3393                                 "unavailable, skipping recovery");
3394                         goto reset_checkpoint;
3395                 }
3396
3397                 if (need_fsck)
3398                         set_sbi_flag(sbi, SBI_NEED_FSCK);
3399
3400                 if (skip_recovery)
3401                         goto reset_checkpoint;
3402
3403                 err = f2fs_recover_fsync_data(sbi, false);
3404                 if (err < 0) {
3405                         if (err != -ENOMEM)
3406                                 skip_recovery = true;
3407                         need_fsck = true;
3408                         f2fs_msg(sb, KERN_ERR,
3409                                 "Cannot recover all fsync data errno=%d", err);
3410                         goto free_meta;
3411                 }
3412         } else {
3413                 err = f2fs_recover_fsync_data(sbi, true);
3414
3415                 if (!f2fs_readonly(sb) && err > 0) {
3416                         err = -EINVAL;
3417                         f2fs_msg(sb, KERN_ERR,
3418                                 "Need to recover fsync data");
3419                         goto free_meta;
3420                 }
3421         }
3422 reset_checkpoint:
3423         /* f2fs_recover_fsync_data() cleared this already */
3424         clear_sbi_flag(sbi, SBI_POR_DOING);
3425
3426         if (test_opt(sbi, DISABLE_CHECKPOINT)) {
3427                 err = f2fs_disable_checkpoint(sbi);
3428                 if (err)
3429                         goto sync_free_meta;
3430         } else if (is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)) {
3431                 f2fs_enable_checkpoint(sbi);
3432         }
3433
3434         /*
3435          * If filesystem is not mounted as read-only then
3436          * do start the gc_thread.
3437          */
3438         if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) {
3439                 /* After POR, we can run background GC thread.*/
3440                 err = f2fs_start_gc_thread(sbi);
3441                 if (err)
3442                         goto sync_free_meta;
3443         }
3444         kvfree(options);
3445
3446         /* recover broken superblock */
3447         if (recovery) {
3448                 err = f2fs_commit_super(sbi, true);
3449                 f2fs_msg(sb, KERN_INFO,
3450                         "Try to recover %dth superblock, ret: %d",
3451                         sbi->valid_super_block ? 1 : 2, err);
3452         }
3453
3454         f2fs_join_shrinker(sbi);
3455
3456         f2fs_tuning_parameters(sbi);
3457
3458         f2fs_msg(sbi->sb, KERN_NOTICE, "Mounted with checkpoint version = %llx",
3459                                 cur_cp_version(F2FS_CKPT(sbi)));
3460         f2fs_update_time(sbi, CP_TIME);
3461         f2fs_update_time(sbi, REQ_TIME);
3462         clear_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
3463         return 0;
3464
3465 sync_free_meta:
3466         /* safe to flush all the data */
3467         sync_filesystem(sbi->sb);
3468         retry_cnt = 0;
3469
3470 free_meta:
3471 #ifdef CONFIG_QUOTA
3472         f2fs_truncate_quota_inode_pages(sb);
3473         if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb))
3474                 f2fs_quota_off_umount(sbi->sb);
3475 #endif
3476         /*
3477          * Some dirty meta pages can be produced by f2fs_recover_orphan_inodes()
3478          * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg()
3479          * followed by f2fs_write_checkpoint() through f2fs_write_node_pages(), which
3480          * falls into an infinite loop in f2fs_sync_meta_pages().
3481          */
3482         truncate_inode_pages_final(META_MAPPING(sbi));
3483         /* evict some inodes being cached by GC */
3484         evict_inodes(sb);
3485         f2fs_unregister_sysfs(sbi);
3486 free_root_inode:
3487         dput(sb->s_root);
3488         sb->s_root = NULL;
3489 free_node_inode:
3490         f2fs_release_ino_entry(sbi, true);
3491         truncate_inode_pages_final(NODE_MAPPING(sbi));
3492         iput(sbi->node_inode);
3493         sbi->node_inode = NULL;
3494 free_stats:
3495         f2fs_destroy_stats(sbi);
3496 free_nm:
3497         f2fs_destroy_node_manager(sbi);
3498 free_sm:
3499         f2fs_destroy_segment_manager(sbi);
3500 free_devices:
3501         destroy_device_list(sbi);
3502         kvfree(sbi->ckpt);
3503 free_meta_inode:
3504         make_bad_inode(sbi->meta_inode);
3505         iput(sbi->meta_inode);
3506         sbi->meta_inode = NULL;
3507 free_io_dummy:
3508         mempool_destroy(sbi->write_io_dummy);
3509 free_percpu:
3510         destroy_percpu_info(sbi);
3511 free_bio_info:
3512         for (i = 0; i < NR_PAGE_TYPE; i++)
3513                 kvfree(sbi->write_io[i]);
3514 free_options:
3515 #ifdef CONFIG_QUOTA
3516         for (i = 0; i < MAXQUOTAS; i++)
3517                 kvfree(F2FS_OPTION(sbi).s_qf_names[i]);
3518 #endif
3519         kvfree(options);
3520 free_sb_buf:
3521         kvfree(raw_super);
3522 free_sbi:
3523         if (sbi->s_chksum_driver)
3524                 crypto_free_shash(sbi->s_chksum_driver);
3525         kvfree(sbi);
3526
3527         /* give only one another chance */
3528         if (retry_cnt > 0 && skip_recovery) {
3529                 retry_cnt--;
3530                 shrink_dcache_sb(sb);
3531                 goto try_onemore;
3532         }
3533         return err;
3534 }
3535
3536 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
3537                         const char *dev_name, void *data)
3538 {
3539         return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
3540 }
3541
3542 static void kill_f2fs_super(struct super_block *sb)
3543 {
3544         if (sb->s_root) {
3545                 struct f2fs_sb_info *sbi = F2FS_SB(sb);
3546
3547                 set_sbi_flag(sbi, SBI_IS_CLOSE);
3548                 f2fs_stop_gc_thread(sbi);
3549                 f2fs_stop_discard_thread(sbi);
3550
3551                 if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
3552                                 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
3553                         struct cp_control cpc = {
3554                                 .reason = CP_UMOUNT,
3555                         };
3556                         f2fs_write_checkpoint(sbi, &cpc);
3557                 }
3558
3559                 if (is_sbi_flag_set(sbi, SBI_IS_RECOVERED) && f2fs_readonly(sb))
3560                         sb->s_flags &= ~SB_RDONLY;
3561         }
3562         kill_block_super(sb);
3563 }
3564
3565 static struct file_system_type f2fs_fs_type = {
3566         .owner          = THIS_MODULE,
3567         .name           = "f2fs",
3568         .mount          = f2fs_mount,
3569         .kill_sb        = kill_f2fs_super,
3570         .fs_flags       = FS_REQUIRES_DEV,
3571 };
3572 MODULE_ALIAS_FS("f2fs");
3573
3574 static int __init init_inodecache(void)
3575 {
3576         f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
3577                         sizeof(struct f2fs_inode_info), 0,
3578                         SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
3579         if (!f2fs_inode_cachep)
3580                 return -ENOMEM;
3581         return 0;
3582 }
3583
3584 static void destroy_inodecache(void)
3585 {
3586         /*
3587          * Make sure all delayed rcu free inodes are flushed before we
3588          * destroy cache.
3589          */
3590         rcu_barrier();
3591         kmem_cache_destroy(f2fs_inode_cachep);
3592 }
3593
3594 static int __init init_f2fs_fs(void)
3595 {
3596         int err;
3597
3598         if (PAGE_SIZE != F2FS_BLKSIZE) {
3599                 printk("F2FS not supported on PAGE_SIZE(%lu) != %d\n",
3600                                 PAGE_SIZE, F2FS_BLKSIZE);
3601                 return -EINVAL;
3602         }
3603
3604         f2fs_build_trace_ios();
3605
3606         err = init_inodecache();
3607         if (err)
3608                 goto fail;
3609         err = f2fs_create_node_manager_caches();
3610         if (err)
3611                 goto free_inodecache;
3612         err = f2fs_create_segment_manager_caches();
3613         if (err)
3614                 goto free_node_manager_caches;
3615         err = f2fs_create_checkpoint_caches();
3616         if (err)
3617                 goto free_segment_manager_caches;
3618         err = f2fs_create_extent_cache();
3619         if (err)
3620                 goto free_checkpoint_caches;
3621         err = f2fs_init_sysfs();
3622         if (err)
3623                 goto free_extent_cache;
3624         err = register_shrinker(&f2fs_shrinker_info);
3625         if (err)
3626                 goto free_sysfs;
3627         err = register_filesystem(&f2fs_fs_type);
3628         if (err)
3629                 goto free_shrinker;
3630         f2fs_create_root_stats();
3631         err = f2fs_init_post_read_processing();
3632         if (err)
3633                 goto free_root_stats;
3634         return 0;
3635
3636 free_root_stats:
3637         f2fs_destroy_root_stats();
3638         unregister_filesystem(&f2fs_fs_type);
3639 free_shrinker:
3640         unregister_shrinker(&f2fs_shrinker_info);
3641 free_sysfs:
3642         f2fs_exit_sysfs();
3643 free_extent_cache:
3644         f2fs_destroy_extent_cache();
3645 free_checkpoint_caches:
3646         f2fs_destroy_checkpoint_caches();
3647 free_segment_manager_caches:
3648         f2fs_destroy_segment_manager_caches();
3649 free_node_manager_caches:
3650         f2fs_destroy_node_manager_caches();
3651 free_inodecache:
3652         destroy_inodecache();
3653 fail:
3654         return err;
3655 }
3656
3657 static void __exit exit_f2fs_fs(void)
3658 {
3659         f2fs_destroy_post_read_processing();
3660         f2fs_destroy_root_stats();
3661         unregister_filesystem(&f2fs_fs_type);
3662         unregister_shrinker(&f2fs_shrinker_info);
3663         f2fs_exit_sysfs();
3664         f2fs_destroy_extent_cache();
3665         f2fs_destroy_checkpoint_caches();
3666         f2fs_destroy_segment_manager_caches();
3667         f2fs_destroy_node_manager_caches();
3668         destroy_inodecache();
3669         f2fs_destroy_trace_ios();
3670 }
3671
3672 module_init(init_f2fs_fs)
3673 module_exit(exit_f2fs_fs)
3674
3675 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
3676 MODULE_DESCRIPTION("Flash Friendly File System");
3677 MODULE_LICENSE("GPL");
3678