Merge tag 'rpmsg-v4.16' of git://github.com/andersson/remoteproc
[linux-2.6-microblaze.git] / fs / f2fs / super.c
1 /*
2  * fs/f2fs/super.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/fs.h>
14 #include <linux/statfs.h>
15 #include <linux/buffer_head.h>
16 #include <linux/backing-dev.h>
17 #include <linux/kthread.h>
18 #include <linux/parser.h>
19 #include <linux/mount.h>
20 #include <linux/seq_file.h>
21 #include <linux/proc_fs.h>
22 #include <linux/random.h>
23 #include <linux/exportfs.h>
24 #include <linux/blkdev.h>
25 #include <linux/quotaops.h>
26 #include <linux/f2fs_fs.h>
27 #include <linux/sysfs.h>
28 #include <linux/quota.h>
29
30 #include "f2fs.h"
31 #include "node.h"
32 #include "segment.h"
33 #include "xattr.h"
34 #include "gc.h"
35 #include "trace.h"
36
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/f2fs.h>
39
40 static struct kmem_cache *f2fs_inode_cachep;
41
42 #ifdef CONFIG_F2FS_FAULT_INJECTION
43
44 char *fault_name[FAULT_MAX] = {
45         [FAULT_KMALLOC]         = "kmalloc",
46         [FAULT_KVMALLOC]        = "kvmalloc",
47         [FAULT_PAGE_ALLOC]      = "page alloc",
48         [FAULT_PAGE_GET]        = "page get",
49         [FAULT_ALLOC_BIO]       = "alloc bio",
50         [FAULT_ALLOC_NID]       = "alloc nid",
51         [FAULT_ORPHAN]          = "orphan",
52         [FAULT_BLOCK]           = "no more block",
53         [FAULT_DIR_DEPTH]       = "too big dir depth",
54         [FAULT_EVICT_INODE]     = "evict_inode fail",
55         [FAULT_TRUNCATE]        = "truncate fail",
56         [FAULT_IO]              = "IO error",
57         [FAULT_CHECKPOINT]      = "checkpoint error",
58 };
59
60 static void f2fs_build_fault_attr(struct f2fs_sb_info *sbi,
61                                                 unsigned int rate)
62 {
63         struct f2fs_fault_info *ffi = &sbi->fault_info;
64
65         if (rate) {
66                 atomic_set(&ffi->inject_ops, 0);
67                 ffi->inject_rate = rate;
68                 ffi->inject_type = (1 << FAULT_MAX) - 1;
69         } else {
70                 memset(ffi, 0, sizeof(struct f2fs_fault_info));
71         }
72 }
73 #endif
74
75 /* f2fs-wide shrinker description */
76 static struct shrinker f2fs_shrinker_info = {
77         .scan_objects = f2fs_shrink_scan,
78         .count_objects = f2fs_shrink_count,
79         .seeks = DEFAULT_SEEKS,
80 };
81
82 enum {
83         Opt_gc_background,
84         Opt_disable_roll_forward,
85         Opt_norecovery,
86         Opt_discard,
87         Opt_nodiscard,
88         Opt_noheap,
89         Opt_heap,
90         Opt_user_xattr,
91         Opt_nouser_xattr,
92         Opt_acl,
93         Opt_noacl,
94         Opt_active_logs,
95         Opt_disable_ext_identify,
96         Opt_inline_xattr,
97         Opt_noinline_xattr,
98         Opt_inline_xattr_size,
99         Opt_inline_data,
100         Opt_inline_dentry,
101         Opt_noinline_dentry,
102         Opt_flush_merge,
103         Opt_noflush_merge,
104         Opt_nobarrier,
105         Opt_fastboot,
106         Opt_extent_cache,
107         Opt_noextent_cache,
108         Opt_noinline_data,
109         Opt_data_flush,
110         Opt_reserve_root,
111         Opt_resgid,
112         Opt_resuid,
113         Opt_mode,
114         Opt_io_size_bits,
115         Opt_fault_injection,
116         Opt_lazytime,
117         Opt_nolazytime,
118         Opt_quota,
119         Opt_noquota,
120         Opt_usrquota,
121         Opt_grpquota,
122         Opt_prjquota,
123         Opt_usrjquota,
124         Opt_grpjquota,
125         Opt_prjjquota,
126         Opt_offusrjquota,
127         Opt_offgrpjquota,
128         Opt_offprjjquota,
129         Opt_jqfmt_vfsold,
130         Opt_jqfmt_vfsv0,
131         Opt_jqfmt_vfsv1,
132         Opt_err,
133 };
134
135 static match_table_t f2fs_tokens = {
136         {Opt_gc_background, "background_gc=%s"},
137         {Opt_disable_roll_forward, "disable_roll_forward"},
138         {Opt_norecovery, "norecovery"},
139         {Opt_discard, "discard"},
140         {Opt_nodiscard, "nodiscard"},
141         {Opt_noheap, "no_heap"},
142         {Opt_heap, "heap"},
143         {Opt_user_xattr, "user_xattr"},
144         {Opt_nouser_xattr, "nouser_xattr"},
145         {Opt_acl, "acl"},
146         {Opt_noacl, "noacl"},
147         {Opt_active_logs, "active_logs=%u"},
148         {Opt_disable_ext_identify, "disable_ext_identify"},
149         {Opt_inline_xattr, "inline_xattr"},
150         {Opt_noinline_xattr, "noinline_xattr"},
151         {Opt_inline_xattr_size, "inline_xattr_size=%u"},
152         {Opt_inline_data, "inline_data"},
153         {Opt_inline_dentry, "inline_dentry"},
154         {Opt_noinline_dentry, "noinline_dentry"},
155         {Opt_flush_merge, "flush_merge"},
156         {Opt_noflush_merge, "noflush_merge"},
157         {Opt_nobarrier, "nobarrier"},
158         {Opt_fastboot, "fastboot"},
159         {Opt_extent_cache, "extent_cache"},
160         {Opt_noextent_cache, "noextent_cache"},
161         {Opt_noinline_data, "noinline_data"},
162         {Opt_data_flush, "data_flush"},
163         {Opt_reserve_root, "reserve_root=%u"},
164         {Opt_resgid, "resgid=%u"},
165         {Opt_resuid, "resuid=%u"},
166         {Opt_mode, "mode=%s"},
167         {Opt_io_size_bits, "io_bits=%u"},
168         {Opt_fault_injection, "fault_injection=%u"},
169         {Opt_lazytime, "lazytime"},
170         {Opt_nolazytime, "nolazytime"},
171         {Opt_quota, "quota"},
172         {Opt_noquota, "noquota"},
173         {Opt_usrquota, "usrquota"},
174         {Opt_grpquota, "grpquota"},
175         {Opt_prjquota, "prjquota"},
176         {Opt_usrjquota, "usrjquota=%s"},
177         {Opt_grpjquota, "grpjquota=%s"},
178         {Opt_prjjquota, "prjjquota=%s"},
179         {Opt_offusrjquota, "usrjquota="},
180         {Opt_offgrpjquota, "grpjquota="},
181         {Opt_offprjjquota, "prjjquota="},
182         {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
183         {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
184         {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
185         {Opt_err, NULL},
186 };
187
188 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
189 {
190         struct va_format vaf;
191         va_list args;
192
193         va_start(args, fmt);
194         vaf.fmt = fmt;
195         vaf.va = &args;
196         printk_ratelimited("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
197         va_end(args);
198 }
199
200 static inline void limit_reserve_root(struct f2fs_sb_info *sbi)
201 {
202         block_t limit = (sbi->user_block_count << 1) / 1000;
203
204         /* limit is 0.2% */
205         if (test_opt(sbi, RESERVE_ROOT) && sbi->root_reserved_blocks > limit) {
206                 sbi->root_reserved_blocks = limit;
207                 f2fs_msg(sbi->sb, KERN_INFO,
208                         "Reduce reserved blocks for root = %u",
209                                 sbi->root_reserved_blocks);
210         }
211         if (!test_opt(sbi, RESERVE_ROOT) &&
212                 (!uid_eq(sbi->s_resuid,
213                                 make_kuid(&init_user_ns, F2FS_DEF_RESUID)) ||
214                 !gid_eq(sbi->s_resgid,
215                                 make_kgid(&init_user_ns, F2FS_DEF_RESGID))))
216                 f2fs_msg(sbi->sb, KERN_INFO,
217                         "Ignore s_resuid=%u, s_resgid=%u w/o reserve_root",
218                                 from_kuid_munged(&init_user_ns, sbi->s_resuid),
219                                 from_kgid_munged(&init_user_ns, sbi->s_resgid));
220 }
221
222 static void init_once(void *foo)
223 {
224         struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
225
226         inode_init_once(&fi->vfs_inode);
227 }
228
229 #ifdef CONFIG_QUOTA
230 static const char * const quotatypes[] = INITQFNAMES;
231 #define QTYPE2NAME(t) (quotatypes[t])
232 static int f2fs_set_qf_name(struct super_block *sb, int qtype,
233                                                         substring_t *args)
234 {
235         struct f2fs_sb_info *sbi = F2FS_SB(sb);
236         char *qname;
237         int ret = -EINVAL;
238
239         if (sb_any_quota_loaded(sb) && !sbi->s_qf_names[qtype]) {
240                 f2fs_msg(sb, KERN_ERR,
241                         "Cannot change journaled "
242                         "quota options when quota turned on");
243                 return -EINVAL;
244         }
245         if (f2fs_sb_has_quota_ino(sb)) {
246                 f2fs_msg(sb, KERN_INFO,
247                         "QUOTA feature is enabled, so ignore qf_name");
248                 return 0;
249         }
250
251         qname = match_strdup(args);
252         if (!qname) {
253                 f2fs_msg(sb, KERN_ERR,
254                         "Not enough memory for storing quotafile name");
255                 return -EINVAL;
256         }
257         if (sbi->s_qf_names[qtype]) {
258                 if (strcmp(sbi->s_qf_names[qtype], qname) == 0)
259                         ret = 0;
260                 else
261                         f2fs_msg(sb, KERN_ERR,
262                                  "%s quota file already specified",
263                                  QTYPE2NAME(qtype));
264                 goto errout;
265         }
266         if (strchr(qname, '/')) {
267                 f2fs_msg(sb, KERN_ERR,
268                         "quotafile must be on filesystem root");
269                 goto errout;
270         }
271         sbi->s_qf_names[qtype] = qname;
272         set_opt(sbi, QUOTA);
273         return 0;
274 errout:
275         kfree(qname);
276         return ret;
277 }
278
279 static int f2fs_clear_qf_name(struct super_block *sb, int qtype)
280 {
281         struct f2fs_sb_info *sbi = F2FS_SB(sb);
282
283         if (sb_any_quota_loaded(sb) && sbi->s_qf_names[qtype]) {
284                 f2fs_msg(sb, KERN_ERR, "Cannot change journaled quota options"
285                         " when quota turned on");
286                 return -EINVAL;
287         }
288         kfree(sbi->s_qf_names[qtype]);
289         sbi->s_qf_names[qtype] = NULL;
290         return 0;
291 }
292
293 static int f2fs_check_quota_options(struct f2fs_sb_info *sbi)
294 {
295         /*
296          * We do the test below only for project quotas. 'usrquota' and
297          * 'grpquota' mount options are allowed even without quota feature
298          * to support legacy quotas in quota files.
299          */
300         if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi->sb)) {
301                 f2fs_msg(sbi->sb, KERN_ERR, "Project quota feature not enabled. "
302                          "Cannot enable project quota enforcement.");
303                 return -1;
304         }
305         if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA] ||
306                         sbi->s_qf_names[PRJQUOTA]) {
307                 if (test_opt(sbi, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
308                         clear_opt(sbi, USRQUOTA);
309
310                 if (test_opt(sbi, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
311                         clear_opt(sbi, GRPQUOTA);
312
313                 if (test_opt(sbi, PRJQUOTA) && sbi->s_qf_names[PRJQUOTA])
314                         clear_opt(sbi, PRJQUOTA);
315
316                 if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) ||
317                                 test_opt(sbi, PRJQUOTA)) {
318                         f2fs_msg(sbi->sb, KERN_ERR, "old and new quota "
319                                         "format mixing");
320                         return -1;
321                 }
322
323                 if (!sbi->s_jquota_fmt) {
324                         f2fs_msg(sbi->sb, KERN_ERR, "journaled quota format "
325                                         "not specified");
326                         return -1;
327                 }
328         }
329
330         if (f2fs_sb_has_quota_ino(sbi->sb) && sbi->s_jquota_fmt) {
331                 f2fs_msg(sbi->sb, KERN_INFO,
332                         "QUOTA feature is enabled, so ignore jquota_fmt");
333                 sbi->s_jquota_fmt = 0;
334         }
335         if (f2fs_sb_has_quota_ino(sbi->sb) && sb_rdonly(sbi->sb)) {
336                 f2fs_msg(sbi->sb, KERN_INFO,
337                          "Filesystem with quota feature cannot be mounted RDWR "
338                          "without CONFIG_QUOTA");
339                 return -1;
340         }
341         return 0;
342 }
343 #endif
344
345 static int parse_options(struct super_block *sb, char *options)
346 {
347         struct f2fs_sb_info *sbi = F2FS_SB(sb);
348         struct request_queue *q;
349         substring_t args[MAX_OPT_ARGS];
350         char *p, *name;
351         int arg = 0;
352         kuid_t uid;
353         kgid_t gid;
354 #ifdef CONFIG_QUOTA
355         int ret;
356 #endif
357
358         if (!options)
359                 return 0;
360
361         while ((p = strsep(&options, ",")) != NULL) {
362                 int token;
363                 if (!*p)
364                         continue;
365                 /*
366                  * Initialize args struct so we know whether arg was
367                  * found; some options take optional arguments.
368                  */
369                 args[0].to = args[0].from = NULL;
370                 token = match_token(p, f2fs_tokens, args);
371
372                 switch (token) {
373                 case Opt_gc_background:
374                         name = match_strdup(&args[0]);
375
376                         if (!name)
377                                 return -ENOMEM;
378                         if (strlen(name) == 2 && !strncmp(name, "on", 2)) {
379                                 set_opt(sbi, BG_GC);
380                                 clear_opt(sbi, FORCE_FG_GC);
381                         } else if (strlen(name) == 3 && !strncmp(name, "off", 3)) {
382                                 clear_opt(sbi, BG_GC);
383                                 clear_opt(sbi, FORCE_FG_GC);
384                         } else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) {
385                                 set_opt(sbi, BG_GC);
386                                 set_opt(sbi, FORCE_FG_GC);
387                         } else {
388                                 kfree(name);
389                                 return -EINVAL;
390                         }
391                         kfree(name);
392                         break;
393                 case Opt_disable_roll_forward:
394                         set_opt(sbi, DISABLE_ROLL_FORWARD);
395                         break;
396                 case Opt_norecovery:
397                         /* this option mounts f2fs with ro */
398                         set_opt(sbi, DISABLE_ROLL_FORWARD);
399                         if (!f2fs_readonly(sb))
400                                 return -EINVAL;
401                         break;
402                 case Opt_discard:
403                         q = bdev_get_queue(sb->s_bdev);
404                         if (blk_queue_discard(q)) {
405                                 set_opt(sbi, DISCARD);
406                         } else if (!f2fs_sb_mounted_blkzoned(sb)) {
407                                 f2fs_msg(sb, KERN_WARNING,
408                                         "mounting with \"discard\" option, but "
409                                         "the device does not support discard");
410                         }
411                         break;
412                 case Opt_nodiscard:
413                         if (f2fs_sb_mounted_blkzoned(sb)) {
414                                 f2fs_msg(sb, KERN_WARNING,
415                                         "discard is required for zoned block devices");
416                                 return -EINVAL;
417                         }
418                         clear_opt(sbi, DISCARD);
419                         break;
420                 case Opt_noheap:
421                         set_opt(sbi, NOHEAP);
422                         break;
423                 case Opt_heap:
424                         clear_opt(sbi, NOHEAP);
425                         break;
426 #ifdef CONFIG_F2FS_FS_XATTR
427                 case Opt_user_xattr:
428                         set_opt(sbi, XATTR_USER);
429                         break;
430                 case Opt_nouser_xattr:
431                         clear_opt(sbi, XATTR_USER);
432                         break;
433                 case Opt_inline_xattr:
434                         set_opt(sbi, INLINE_XATTR);
435                         break;
436                 case Opt_noinline_xattr:
437                         clear_opt(sbi, INLINE_XATTR);
438                         break;
439                 case Opt_inline_xattr_size:
440                         if (args->from && match_int(args, &arg))
441                                 return -EINVAL;
442                         set_opt(sbi, INLINE_XATTR_SIZE);
443                         sbi->inline_xattr_size = arg;
444                         break;
445 #else
446                 case Opt_user_xattr:
447                         f2fs_msg(sb, KERN_INFO,
448                                 "user_xattr options not supported");
449                         break;
450                 case Opt_nouser_xattr:
451                         f2fs_msg(sb, KERN_INFO,
452                                 "nouser_xattr options not supported");
453                         break;
454                 case Opt_inline_xattr:
455                         f2fs_msg(sb, KERN_INFO,
456                                 "inline_xattr options not supported");
457                         break;
458                 case Opt_noinline_xattr:
459                         f2fs_msg(sb, KERN_INFO,
460                                 "noinline_xattr options not supported");
461                         break;
462 #endif
463 #ifdef CONFIG_F2FS_FS_POSIX_ACL
464                 case Opt_acl:
465                         set_opt(sbi, POSIX_ACL);
466                         break;
467                 case Opt_noacl:
468                         clear_opt(sbi, POSIX_ACL);
469                         break;
470 #else
471                 case Opt_acl:
472                         f2fs_msg(sb, KERN_INFO, "acl options not supported");
473                         break;
474                 case Opt_noacl:
475                         f2fs_msg(sb, KERN_INFO, "noacl options not supported");
476                         break;
477 #endif
478                 case Opt_active_logs:
479                         if (args->from && match_int(args, &arg))
480                                 return -EINVAL;
481                         if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
482                                 return -EINVAL;
483                         sbi->active_logs = arg;
484                         break;
485                 case Opt_disable_ext_identify:
486                         set_opt(sbi, DISABLE_EXT_IDENTIFY);
487                         break;
488                 case Opt_inline_data:
489                         set_opt(sbi, INLINE_DATA);
490                         break;
491                 case Opt_inline_dentry:
492                         set_opt(sbi, INLINE_DENTRY);
493                         break;
494                 case Opt_noinline_dentry:
495                         clear_opt(sbi, INLINE_DENTRY);
496                         break;
497                 case Opt_flush_merge:
498                         set_opt(sbi, FLUSH_MERGE);
499                         break;
500                 case Opt_noflush_merge:
501                         clear_opt(sbi, FLUSH_MERGE);
502                         break;
503                 case Opt_nobarrier:
504                         set_opt(sbi, NOBARRIER);
505                         break;
506                 case Opt_fastboot:
507                         set_opt(sbi, FASTBOOT);
508                         break;
509                 case Opt_extent_cache:
510                         set_opt(sbi, EXTENT_CACHE);
511                         break;
512                 case Opt_noextent_cache:
513                         clear_opt(sbi, EXTENT_CACHE);
514                         break;
515                 case Opt_noinline_data:
516                         clear_opt(sbi, INLINE_DATA);
517                         break;
518                 case Opt_data_flush:
519                         set_opt(sbi, DATA_FLUSH);
520                         break;
521                 case Opt_reserve_root:
522                         if (args->from && match_int(args, &arg))
523                                 return -EINVAL;
524                         if (test_opt(sbi, RESERVE_ROOT)) {
525                                 f2fs_msg(sb, KERN_INFO,
526                                         "Preserve previous reserve_root=%u",
527                                         sbi->root_reserved_blocks);
528                         } else {
529                                 sbi->root_reserved_blocks = arg;
530                                 set_opt(sbi, RESERVE_ROOT);
531                         }
532                         break;
533                 case Opt_resuid:
534                         if (args->from && match_int(args, &arg))
535                                 return -EINVAL;
536                         uid = make_kuid(current_user_ns(), arg);
537                         if (!uid_valid(uid)) {
538                                 f2fs_msg(sb, KERN_ERR,
539                                         "Invalid uid value %d", arg);
540                                 return -EINVAL;
541                         }
542                         sbi->s_resuid = uid;
543                         break;
544                 case Opt_resgid:
545                         if (args->from && match_int(args, &arg))
546                                 return -EINVAL;
547                         gid = make_kgid(current_user_ns(), arg);
548                         if (!gid_valid(gid)) {
549                                 f2fs_msg(sb, KERN_ERR,
550                                         "Invalid gid value %d", arg);
551                                 return -EINVAL;
552                         }
553                         sbi->s_resgid = gid;
554                         break;
555                 case Opt_mode:
556                         name = match_strdup(&args[0]);
557
558                         if (!name)
559                                 return -ENOMEM;
560                         if (strlen(name) == 8 &&
561                                         !strncmp(name, "adaptive", 8)) {
562                                 if (f2fs_sb_mounted_blkzoned(sb)) {
563                                         f2fs_msg(sb, KERN_WARNING,
564                                                  "adaptive mode is not allowed with "
565                                                  "zoned block device feature");
566                                         kfree(name);
567                                         return -EINVAL;
568                                 }
569                                 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
570                         } else if (strlen(name) == 3 &&
571                                         !strncmp(name, "lfs", 3)) {
572                                 set_opt_mode(sbi, F2FS_MOUNT_LFS);
573                         } else {
574                                 kfree(name);
575                                 return -EINVAL;
576                         }
577                         kfree(name);
578                         break;
579                 case Opt_io_size_bits:
580                         if (args->from && match_int(args, &arg))
581                                 return -EINVAL;
582                         if (arg > __ilog2_u32(BIO_MAX_PAGES)) {
583                                 f2fs_msg(sb, KERN_WARNING,
584                                         "Not support %d, larger than %d",
585                                         1 << arg, BIO_MAX_PAGES);
586                                 return -EINVAL;
587                         }
588                         sbi->write_io_size_bits = arg;
589                         break;
590                 case Opt_fault_injection:
591                         if (args->from && match_int(args, &arg))
592                                 return -EINVAL;
593 #ifdef CONFIG_F2FS_FAULT_INJECTION
594                         f2fs_build_fault_attr(sbi, arg);
595                         set_opt(sbi, FAULT_INJECTION);
596 #else
597                         f2fs_msg(sb, KERN_INFO,
598                                 "FAULT_INJECTION was not selected");
599 #endif
600                         break;
601                 case Opt_lazytime:
602                         sb->s_flags |= SB_LAZYTIME;
603                         break;
604                 case Opt_nolazytime:
605                         sb->s_flags &= ~SB_LAZYTIME;
606                         break;
607 #ifdef CONFIG_QUOTA
608                 case Opt_quota:
609                 case Opt_usrquota:
610                         set_opt(sbi, USRQUOTA);
611                         break;
612                 case Opt_grpquota:
613                         set_opt(sbi, GRPQUOTA);
614                         break;
615                 case Opt_prjquota:
616                         set_opt(sbi, PRJQUOTA);
617                         break;
618                 case Opt_usrjquota:
619                         ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]);
620                         if (ret)
621                                 return ret;
622                         break;
623                 case Opt_grpjquota:
624                         ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]);
625                         if (ret)
626                                 return ret;
627                         break;
628                 case Opt_prjjquota:
629                         ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]);
630                         if (ret)
631                                 return ret;
632                         break;
633                 case Opt_offusrjquota:
634                         ret = f2fs_clear_qf_name(sb, USRQUOTA);
635                         if (ret)
636                                 return ret;
637                         break;
638                 case Opt_offgrpjquota:
639                         ret = f2fs_clear_qf_name(sb, GRPQUOTA);
640                         if (ret)
641                                 return ret;
642                         break;
643                 case Opt_offprjjquota:
644                         ret = f2fs_clear_qf_name(sb, PRJQUOTA);
645                         if (ret)
646                                 return ret;
647                         break;
648                 case Opt_jqfmt_vfsold:
649                         sbi->s_jquota_fmt = QFMT_VFS_OLD;
650                         break;
651                 case Opt_jqfmt_vfsv0:
652                         sbi->s_jquota_fmt = QFMT_VFS_V0;
653                         break;
654                 case Opt_jqfmt_vfsv1:
655                         sbi->s_jquota_fmt = QFMT_VFS_V1;
656                         break;
657                 case Opt_noquota:
658                         clear_opt(sbi, QUOTA);
659                         clear_opt(sbi, USRQUOTA);
660                         clear_opt(sbi, GRPQUOTA);
661                         clear_opt(sbi, PRJQUOTA);
662                         break;
663 #else
664                 case Opt_quota:
665                 case Opt_usrquota:
666                 case Opt_grpquota:
667                 case Opt_prjquota:
668                 case Opt_usrjquota:
669                 case Opt_grpjquota:
670                 case Opt_prjjquota:
671                 case Opt_offusrjquota:
672                 case Opt_offgrpjquota:
673                 case Opt_offprjjquota:
674                 case Opt_jqfmt_vfsold:
675                 case Opt_jqfmt_vfsv0:
676                 case Opt_jqfmt_vfsv1:
677                 case Opt_noquota:
678                         f2fs_msg(sb, KERN_INFO,
679                                         "quota operations not supported");
680                         break;
681 #endif
682                 default:
683                         f2fs_msg(sb, KERN_ERR,
684                                 "Unrecognized mount option \"%s\" or missing value",
685                                 p);
686                         return -EINVAL;
687                 }
688         }
689 #ifdef CONFIG_QUOTA
690         if (f2fs_check_quota_options(sbi))
691                 return -EINVAL;
692 #endif
693
694         if (F2FS_IO_SIZE_BITS(sbi) && !test_opt(sbi, LFS)) {
695                 f2fs_msg(sb, KERN_ERR,
696                                 "Should set mode=lfs with %uKB-sized IO",
697                                 F2FS_IO_SIZE_KB(sbi));
698                 return -EINVAL;
699         }
700
701         if (test_opt(sbi, INLINE_XATTR_SIZE)) {
702                 if (!test_opt(sbi, INLINE_XATTR)) {
703                         f2fs_msg(sb, KERN_ERR,
704                                         "inline_xattr_size option should be "
705                                         "set with inline_xattr option");
706                         return -EINVAL;
707                 }
708                 if (!sbi->inline_xattr_size ||
709                         sbi->inline_xattr_size >= DEF_ADDRS_PER_INODE -
710                                         F2FS_TOTAL_EXTRA_ATTR_SIZE -
711                                         DEF_INLINE_RESERVED_SIZE -
712                                         DEF_MIN_INLINE_SIZE) {
713                         f2fs_msg(sb, KERN_ERR,
714                                         "inline xattr size is out of range");
715                         return -EINVAL;
716                 }
717         }
718         return 0;
719 }
720
721 static struct inode *f2fs_alloc_inode(struct super_block *sb)
722 {
723         struct f2fs_inode_info *fi;
724
725         fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
726         if (!fi)
727                 return NULL;
728
729         init_once((void *) fi);
730
731         /* Initialize f2fs-specific inode info */
732         atomic_set(&fi->dirty_pages, 0);
733         fi->i_current_depth = 1;
734         fi->i_advise = 0;
735         init_rwsem(&fi->i_sem);
736         INIT_LIST_HEAD(&fi->dirty_list);
737         INIT_LIST_HEAD(&fi->gdirty_list);
738         INIT_LIST_HEAD(&fi->inmem_ilist);
739         INIT_LIST_HEAD(&fi->inmem_pages);
740         mutex_init(&fi->inmem_lock);
741         init_rwsem(&fi->dio_rwsem[READ]);
742         init_rwsem(&fi->dio_rwsem[WRITE]);
743         init_rwsem(&fi->i_mmap_sem);
744         init_rwsem(&fi->i_xattr_sem);
745
746 #ifdef CONFIG_QUOTA
747         memset(&fi->i_dquot, 0, sizeof(fi->i_dquot));
748         fi->i_reserved_quota = 0;
749 #endif
750         /* Will be used by directory only */
751         fi->i_dir_level = F2FS_SB(sb)->dir_level;
752
753         return &fi->vfs_inode;
754 }
755
756 static int f2fs_drop_inode(struct inode *inode)
757 {
758         int ret;
759         /*
760          * This is to avoid a deadlock condition like below.
761          * writeback_single_inode(inode)
762          *  - f2fs_write_data_page
763          *    - f2fs_gc -> iput -> evict
764          *       - inode_wait_for_writeback(inode)
765          */
766         if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) {
767                 if (!inode->i_nlink && !is_bad_inode(inode)) {
768                         /* to avoid evict_inode call simultaneously */
769                         atomic_inc(&inode->i_count);
770                         spin_unlock(&inode->i_lock);
771
772                         /* some remained atomic pages should discarded */
773                         if (f2fs_is_atomic_file(inode))
774                                 drop_inmem_pages(inode);
775
776                         /* should remain fi->extent_tree for writepage */
777                         f2fs_destroy_extent_node(inode);
778
779                         sb_start_intwrite(inode->i_sb);
780                         f2fs_i_size_write(inode, 0);
781
782                         if (F2FS_HAS_BLOCKS(inode))
783                                 f2fs_truncate(inode);
784
785                         sb_end_intwrite(inode->i_sb);
786
787                         spin_lock(&inode->i_lock);
788                         atomic_dec(&inode->i_count);
789                 }
790                 trace_f2fs_drop_inode(inode, 0);
791                 return 0;
792         }
793         ret = generic_drop_inode(inode);
794         trace_f2fs_drop_inode(inode, ret);
795         return ret;
796 }
797
798 int f2fs_inode_dirtied(struct inode *inode, bool sync)
799 {
800         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
801         int ret = 0;
802
803         spin_lock(&sbi->inode_lock[DIRTY_META]);
804         if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
805                 ret = 1;
806         } else {
807                 set_inode_flag(inode, FI_DIRTY_INODE);
808                 stat_inc_dirty_inode(sbi, DIRTY_META);
809         }
810         if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) {
811                 list_add_tail(&F2FS_I(inode)->gdirty_list,
812                                 &sbi->inode_list[DIRTY_META]);
813                 inc_page_count(sbi, F2FS_DIRTY_IMETA);
814         }
815         spin_unlock(&sbi->inode_lock[DIRTY_META]);
816         return ret;
817 }
818
819 void f2fs_inode_synced(struct inode *inode)
820 {
821         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
822
823         spin_lock(&sbi->inode_lock[DIRTY_META]);
824         if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) {
825                 spin_unlock(&sbi->inode_lock[DIRTY_META]);
826                 return;
827         }
828         if (!list_empty(&F2FS_I(inode)->gdirty_list)) {
829                 list_del_init(&F2FS_I(inode)->gdirty_list);
830                 dec_page_count(sbi, F2FS_DIRTY_IMETA);
831         }
832         clear_inode_flag(inode, FI_DIRTY_INODE);
833         clear_inode_flag(inode, FI_AUTO_RECOVER);
834         stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META);
835         spin_unlock(&sbi->inode_lock[DIRTY_META]);
836 }
837
838 /*
839  * f2fs_dirty_inode() is called from __mark_inode_dirty()
840  *
841  * We should call set_dirty_inode to write the dirty inode through write_inode.
842  */
843 static void f2fs_dirty_inode(struct inode *inode, int flags)
844 {
845         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
846
847         if (inode->i_ino == F2FS_NODE_INO(sbi) ||
848                         inode->i_ino == F2FS_META_INO(sbi))
849                 return;
850
851         if (flags == I_DIRTY_TIME)
852                 return;
853
854         if (is_inode_flag_set(inode, FI_AUTO_RECOVER))
855                 clear_inode_flag(inode, FI_AUTO_RECOVER);
856
857         f2fs_inode_dirtied(inode, false);
858 }
859
860 static void f2fs_i_callback(struct rcu_head *head)
861 {
862         struct inode *inode = container_of(head, struct inode, i_rcu);
863         kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
864 }
865
866 static void f2fs_destroy_inode(struct inode *inode)
867 {
868         call_rcu(&inode->i_rcu, f2fs_i_callback);
869 }
870
871 static void destroy_percpu_info(struct f2fs_sb_info *sbi)
872 {
873         percpu_counter_destroy(&sbi->alloc_valid_block_count);
874         percpu_counter_destroy(&sbi->total_valid_inode_count);
875 }
876
877 static void destroy_device_list(struct f2fs_sb_info *sbi)
878 {
879         int i;
880
881         for (i = 0; i < sbi->s_ndevs; i++) {
882                 blkdev_put(FDEV(i).bdev, FMODE_EXCL);
883 #ifdef CONFIG_BLK_DEV_ZONED
884                 kfree(FDEV(i).blkz_type);
885 #endif
886         }
887         kfree(sbi->devs);
888 }
889
890 static void f2fs_put_super(struct super_block *sb)
891 {
892         struct f2fs_sb_info *sbi = F2FS_SB(sb);
893         int i;
894         bool dropped;
895
896         f2fs_quota_off_umount(sb);
897
898         /* prevent remaining shrinker jobs */
899         mutex_lock(&sbi->umount_mutex);
900
901         /*
902          * We don't need to do checkpoint when superblock is clean.
903          * But, the previous checkpoint was not done by umount, it needs to do
904          * clean checkpoint again.
905          */
906         if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
907                         !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
908                 struct cp_control cpc = {
909                         .reason = CP_UMOUNT,
910                 };
911                 write_checkpoint(sbi, &cpc);
912         }
913
914         /* be sure to wait for any on-going discard commands */
915         dropped = f2fs_wait_discard_bios(sbi);
916
917         if (f2fs_discard_en(sbi) && !sbi->discard_blks && !dropped) {
918                 struct cp_control cpc = {
919                         .reason = CP_UMOUNT | CP_TRIMMED,
920                 };
921                 write_checkpoint(sbi, &cpc);
922         }
923
924         /* write_checkpoint can update stat informaion */
925         f2fs_destroy_stats(sbi);
926
927         /*
928          * normally superblock is clean, so we need to release this.
929          * In addition, EIO will skip do checkpoint, we need this as well.
930          */
931         release_ino_entry(sbi, true);
932
933         f2fs_leave_shrinker(sbi);
934         mutex_unlock(&sbi->umount_mutex);
935
936         /* our cp_error case, we can wait for any writeback page */
937         f2fs_flush_merged_writes(sbi);
938
939         iput(sbi->node_inode);
940         iput(sbi->meta_inode);
941
942         /* destroy f2fs internal modules */
943         destroy_node_manager(sbi);
944         destroy_segment_manager(sbi);
945
946         kfree(sbi->ckpt);
947
948         f2fs_unregister_sysfs(sbi);
949
950         sb->s_fs_info = NULL;
951         if (sbi->s_chksum_driver)
952                 crypto_free_shash(sbi->s_chksum_driver);
953         kfree(sbi->raw_super);
954
955         destroy_device_list(sbi);
956         mempool_destroy(sbi->write_io_dummy);
957 #ifdef CONFIG_QUOTA
958         for (i = 0; i < MAXQUOTAS; i++)
959                 kfree(sbi->s_qf_names[i]);
960 #endif
961         destroy_percpu_info(sbi);
962         for (i = 0; i < NR_PAGE_TYPE; i++)
963                 kfree(sbi->write_io[i]);
964         kfree(sbi);
965 }
966
967 int f2fs_sync_fs(struct super_block *sb, int sync)
968 {
969         struct f2fs_sb_info *sbi = F2FS_SB(sb);
970         int err = 0;
971
972         if (unlikely(f2fs_cp_error(sbi)))
973                 return 0;
974
975         trace_f2fs_sync_fs(sb, sync);
976
977         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
978                 return -EAGAIN;
979
980         if (sync) {
981                 struct cp_control cpc;
982
983                 cpc.reason = __get_cp_reason(sbi);
984
985                 mutex_lock(&sbi->gc_mutex);
986                 err = write_checkpoint(sbi, &cpc);
987                 mutex_unlock(&sbi->gc_mutex);
988         }
989         f2fs_trace_ios(NULL, 1);
990
991         return err;
992 }
993
994 static int f2fs_freeze(struct super_block *sb)
995 {
996         if (f2fs_readonly(sb))
997                 return 0;
998
999         /* IO error happened before */
1000         if (unlikely(f2fs_cp_error(F2FS_SB(sb))))
1001                 return -EIO;
1002
1003         /* must be clean, since sync_filesystem() was already called */
1004         if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY))
1005                 return -EINVAL;
1006         return 0;
1007 }
1008
1009 static int f2fs_unfreeze(struct super_block *sb)
1010 {
1011         return 0;
1012 }
1013
1014 #ifdef CONFIG_QUOTA
1015 static int f2fs_statfs_project(struct super_block *sb,
1016                                 kprojid_t projid, struct kstatfs *buf)
1017 {
1018         struct kqid qid;
1019         struct dquot *dquot;
1020         u64 limit;
1021         u64 curblock;
1022
1023         qid = make_kqid_projid(projid);
1024         dquot = dqget(sb, qid);
1025         if (IS_ERR(dquot))
1026                 return PTR_ERR(dquot);
1027         spin_lock(&dq_data_lock);
1028
1029         limit = (dquot->dq_dqb.dqb_bsoftlimit ?
1030                  dquot->dq_dqb.dqb_bsoftlimit :
1031                  dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits;
1032         if (limit && buf->f_blocks > limit) {
1033                 curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits;
1034                 buf->f_blocks = limit;
1035                 buf->f_bfree = buf->f_bavail =
1036                         (buf->f_blocks > curblock) ?
1037                          (buf->f_blocks - curblock) : 0;
1038         }
1039
1040         limit = dquot->dq_dqb.dqb_isoftlimit ?
1041                 dquot->dq_dqb.dqb_isoftlimit :
1042                 dquot->dq_dqb.dqb_ihardlimit;
1043         if (limit && buf->f_files > limit) {
1044                 buf->f_files = limit;
1045                 buf->f_ffree =
1046                         (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
1047                          (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
1048         }
1049
1050         spin_unlock(&dq_data_lock);
1051         dqput(dquot);
1052         return 0;
1053 }
1054 #endif
1055
1056 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
1057 {
1058         struct super_block *sb = dentry->d_sb;
1059         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1060         u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
1061         block_t total_count, user_block_count, start_count;
1062         u64 avail_node_count;
1063
1064         total_count = le64_to_cpu(sbi->raw_super->block_count);
1065         user_block_count = sbi->user_block_count;
1066         start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
1067         buf->f_type = F2FS_SUPER_MAGIC;
1068         buf->f_bsize = sbi->blocksize;
1069
1070         buf->f_blocks = total_count - start_count;
1071         buf->f_bfree = user_block_count - valid_user_blocks(sbi) -
1072                                                 sbi->current_reserved_blocks;
1073         if (buf->f_bfree > sbi->root_reserved_blocks)
1074                 buf->f_bavail = buf->f_bfree - sbi->root_reserved_blocks;
1075         else
1076                 buf->f_bavail = 0;
1077
1078         avail_node_count = sbi->total_node_count - sbi->nquota_files -
1079                                                 F2FS_RESERVED_NODE_NUM;
1080
1081         if (avail_node_count > user_block_count) {
1082                 buf->f_files = user_block_count;
1083                 buf->f_ffree = buf->f_bavail;
1084         } else {
1085                 buf->f_files = avail_node_count;
1086                 buf->f_ffree = min(avail_node_count - valid_node_count(sbi),
1087                                         buf->f_bavail);
1088         }
1089
1090         buf->f_namelen = F2FS_NAME_LEN;
1091         buf->f_fsid.val[0] = (u32)id;
1092         buf->f_fsid.val[1] = (u32)(id >> 32);
1093
1094 #ifdef CONFIG_QUOTA
1095         if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) &&
1096                         sb_has_quota_limits_enabled(sb, PRJQUOTA)) {
1097                 f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf);
1098         }
1099 #endif
1100         return 0;
1101 }
1102
1103 static inline void f2fs_show_quota_options(struct seq_file *seq,
1104                                            struct super_block *sb)
1105 {
1106 #ifdef CONFIG_QUOTA
1107         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1108
1109         if (sbi->s_jquota_fmt) {
1110                 char *fmtname = "";
1111
1112                 switch (sbi->s_jquota_fmt) {
1113                 case QFMT_VFS_OLD:
1114                         fmtname = "vfsold";
1115                         break;
1116                 case QFMT_VFS_V0:
1117                         fmtname = "vfsv0";
1118                         break;
1119                 case QFMT_VFS_V1:
1120                         fmtname = "vfsv1";
1121                         break;
1122                 }
1123                 seq_printf(seq, ",jqfmt=%s", fmtname);
1124         }
1125
1126         if (sbi->s_qf_names[USRQUOTA])
1127                 seq_show_option(seq, "usrjquota", sbi->s_qf_names[USRQUOTA]);
1128
1129         if (sbi->s_qf_names[GRPQUOTA])
1130                 seq_show_option(seq, "grpjquota", sbi->s_qf_names[GRPQUOTA]);
1131
1132         if (sbi->s_qf_names[PRJQUOTA])
1133                 seq_show_option(seq, "prjjquota", sbi->s_qf_names[PRJQUOTA]);
1134 #endif
1135 }
1136
1137 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
1138 {
1139         struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
1140
1141         if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) {
1142                 if (test_opt(sbi, FORCE_FG_GC))
1143                         seq_printf(seq, ",background_gc=%s", "sync");
1144                 else
1145                         seq_printf(seq, ",background_gc=%s", "on");
1146         } else {
1147                 seq_printf(seq, ",background_gc=%s", "off");
1148         }
1149         if (test_opt(sbi, DISABLE_ROLL_FORWARD))
1150                 seq_puts(seq, ",disable_roll_forward");
1151         if (test_opt(sbi, DISCARD))
1152                 seq_puts(seq, ",discard");
1153         if (test_opt(sbi, NOHEAP))
1154                 seq_puts(seq, ",no_heap");
1155         else
1156                 seq_puts(seq, ",heap");
1157 #ifdef CONFIG_F2FS_FS_XATTR
1158         if (test_opt(sbi, XATTR_USER))
1159                 seq_puts(seq, ",user_xattr");
1160         else
1161                 seq_puts(seq, ",nouser_xattr");
1162         if (test_opt(sbi, INLINE_XATTR))
1163                 seq_puts(seq, ",inline_xattr");
1164         else
1165                 seq_puts(seq, ",noinline_xattr");
1166         if (test_opt(sbi, INLINE_XATTR_SIZE))
1167                 seq_printf(seq, ",inline_xattr_size=%u",
1168                                         sbi->inline_xattr_size);
1169 #endif
1170 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1171         if (test_opt(sbi, POSIX_ACL))
1172                 seq_puts(seq, ",acl");
1173         else
1174                 seq_puts(seq, ",noacl");
1175 #endif
1176         if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
1177                 seq_puts(seq, ",disable_ext_identify");
1178         if (test_opt(sbi, INLINE_DATA))
1179                 seq_puts(seq, ",inline_data");
1180         else
1181                 seq_puts(seq, ",noinline_data");
1182         if (test_opt(sbi, INLINE_DENTRY))
1183                 seq_puts(seq, ",inline_dentry");
1184         else
1185                 seq_puts(seq, ",noinline_dentry");
1186         if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
1187                 seq_puts(seq, ",flush_merge");
1188         if (test_opt(sbi, NOBARRIER))
1189                 seq_puts(seq, ",nobarrier");
1190         if (test_opt(sbi, FASTBOOT))
1191                 seq_puts(seq, ",fastboot");
1192         if (test_opt(sbi, EXTENT_CACHE))
1193                 seq_puts(seq, ",extent_cache");
1194         else
1195                 seq_puts(seq, ",noextent_cache");
1196         if (test_opt(sbi, DATA_FLUSH))
1197                 seq_puts(seq, ",data_flush");
1198
1199         seq_puts(seq, ",mode=");
1200         if (test_opt(sbi, ADAPTIVE))
1201                 seq_puts(seq, "adaptive");
1202         else if (test_opt(sbi, LFS))
1203                 seq_puts(seq, "lfs");
1204         seq_printf(seq, ",active_logs=%u", sbi->active_logs);
1205         if (test_opt(sbi, RESERVE_ROOT))
1206                 seq_printf(seq, ",reserve_root=%u,resuid=%u,resgid=%u",
1207                                 sbi->root_reserved_blocks,
1208                                 from_kuid_munged(&init_user_ns, sbi->s_resuid),
1209                                 from_kgid_munged(&init_user_ns, sbi->s_resgid));
1210         if (F2FS_IO_SIZE_BITS(sbi))
1211                 seq_printf(seq, ",io_size=%uKB", F2FS_IO_SIZE_KB(sbi));
1212 #ifdef CONFIG_F2FS_FAULT_INJECTION
1213         if (test_opt(sbi, FAULT_INJECTION))
1214                 seq_printf(seq, ",fault_injection=%u",
1215                                 sbi->fault_info.inject_rate);
1216 #endif
1217 #ifdef CONFIG_QUOTA
1218         if (test_opt(sbi, QUOTA))
1219                 seq_puts(seq, ",quota");
1220         if (test_opt(sbi, USRQUOTA))
1221                 seq_puts(seq, ",usrquota");
1222         if (test_opt(sbi, GRPQUOTA))
1223                 seq_puts(seq, ",grpquota");
1224         if (test_opt(sbi, PRJQUOTA))
1225                 seq_puts(seq, ",prjquota");
1226 #endif
1227         f2fs_show_quota_options(seq, sbi->sb);
1228
1229         return 0;
1230 }
1231
1232 static void default_options(struct f2fs_sb_info *sbi)
1233 {
1234         /* init some FS parameters */
1235         sbi->active_logs = NR_CURSEG_TYPE;
1236         sbi->inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS;
1237
1238         set_opt(sbi, BG_GC);
1239         set_opt(sbi, INLINE_XATTR);
1240         set_opt(sbi, INLINE_DATA);
1241         set_opt(sbi, INLINE_DENTRY);
1242         set_opt(sbi, EXTENT_CACHE);
1243         set_opt(sbi, NOHEAP);
1244         sbi->sb->s_flags |= SB_LAZYTIME;
1245         set_opt(sbi, FLUSH_MERGE);
1246         if (f2fs_sb_mounted_blkzoned(sbi->sb)) {
1247                 set_opt_mode(sbi, F2FS_MOUNT_LFS);
1248                 set_opt(sbi, DISCARD);
1249         } else {
1250                 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
1251         }
1252
1253 #ifdef CONFIG_F2FS_FS_XATTR
1254         set_opt(sbi, XATTR_USER);
1255 #endif
1256 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1257         set_opt(sbi, POSIX_ACL);
1258 #endif
1259
1260 #ifdef CONFIG_F2FS_FAULT_INJECTION
1261         f2fs_build_fault_attr(sbi, 0);
1262 #endif
1263 }
1264
1265 #ifdef CONFIG_QUOTA
1266 static int f2fs_enable_quotas(struct super_block *sb);
1267 #endif
1268 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
1269 {
1270         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1271         struct f2fs_mount_info org_mount_opt;
1272         unsigned long old_sb_flags;
1273         int err, active_logs;
1274         bool need_restart_gc = false;
1275         bool need_stop_gc = false;
1276         bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
1277 #ifdef CONFIG_F2FS_FAULT_INJECTION
1278         struct f2fs_fault_info ffi = sbi->fault_info;
1279 #endif
1280 #ifdef CONFIG_QUOTA
1281         int s_jquota_fmt;
1282         char *s_qf_names[MAXQUOTAS];
1283         int i, j;
1284 #endif
1285
1286         /*
1287          * Save the old mount options in case we
1288          * need to restore them.
1289          */
1290         org_mount_opt = sbi->mount_opt;
1291         old_sb_flags = sb->s_flags;
1292         active_logs = sbi->active_logs;
1293
1294 #ifdef CONFIG_QUOTA
1295         s_jquota_fmt = sbi->s_jquota_fmt;
1296         for (i = 0; i < MAXQUOTAS; i++) {
1297                 if (sbi->s_qf_names[i]) {
1298                         s_qf_names[i] = kstrdup(sbi->s_qf_names[i],
1299                                                          GFP_KERNEL);
1300                         if (!s_qf_names[i]) {
1301                                 for (j = 0; j < i; j++)
1302                                         kfree(s_qf_names[j]);
1303                                 return -ENOMEM;
1304                         }
1305                 } else {
1306                         s_qf_names[i] = NULL;
1307                 }
1308         }
1309 #endif
1310
1311         /* recover superblocks we couldn't write due to previous RO mount */
1312         if (!(*flags & SB_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
1313                 err = f2fs_commit_super(sbi, false);
1314                 f2fs_msg(sb, KERN_INFO,
1315                         "Try to recover all the superblocks, ret: %d", err);
1316                 if (!err)
1317                         clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1318         }
1319
1320         default_options(sbi);
1321
1322         /* parse mount options */
1323         err = parse_options(sb, data);
1324         if (err)
1325                 goto restore_opts;
1326
1327         /*
1328          * Previous and new state of filesystem is RO,
1329          * so skip checking GC and FLUSH_MERGE conditions.
1330          */
1331         if (f2fs_readonly(sb) && (*flags & SB_RDONLY))
1332                 goto skip;
1333
1334 #ifdef CONFIG_QUOTA
1335         if (!f2fs_readonly(sb) && (*flags & SB_RDONLY)) {
1336                 err = dquot_suspend(sb, -1);
1337                 if (err < 0)
1338                         goto restore_opts;
1339         } else if (f2fs_readonly(sb) && !(*flags & MS_RDONLY)) {
1340                 /* dquot_resume needs RW */
1341                 sb->s_flags &= ~SB_RDONLY;
1342                 if (sb_any_quota_suspended(sb)) {
1343                         dquot_resume(sb, -1);
1344                 } else if (f2fs_sb_has_quota_ino(sb)) {
1345                         err = f2fs_enable_quotas(sb);
1346                         if (err)
1347                                 goto restore_opts;
1348                 }
1349         }
1350 #endif
1351         /* disallow enable/disable extent_cache dynamically */
1352         if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
1353                 err = -EINVAL;
1354                 f2fs_msg(sbi->sb, KERN_WARNING,
1355                                 "switch extent_cache option is not allowed");
1356                 goto restore_opts;
1357         }
1358
1359         /*
1360          * We stop the GC thread if FS is mounted as RO
1361          * or if background_gc = off is passed in mount
1362          * option. Also sync the filesystem.
1363          */
1364         if ((*flags & SB_RDONLY) || !test_opt(sbi, BG_GC)) {
1365                 if (sbi->gc_thread) {
1366                         stop_gc_thread(sbi);
1367                         need_restart_gc = true;
1368                 }
1369         } else if (!sbi->gc_thread) {
1370                 err = start_gc_thread(sbi);
1371                 if (err)
1372                         goto restore_opts;
1373                 need_stop_gc = true;
1374         }
1375
1376         if (*flags & SB_RDONLY) {
1377                 writeback_inodes_sb(sb, WB_REASON_SYNC);
1378                 sync_inodes_sb(sb);
1379
1380                 set_sbi_flag(sbi, SBI_IS_DIRTY);
1381                 set_sbi_flag(sbi, SBI_IS_CLOSE);
1382                 f2fs_sync_fs(sb, 1);
1383                 clear_sbi_flag(sbi, SBI_IS_CLOSE);
1384         }
1385
1386         /*
1387          * We stop issue flush thread if FS is mounted as RO
1388          * or if flush_merge is not passed in mount option.
1389          */
1390         if ((*flags & SB_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
1391                 clear_opt(sbi, FLUSH_MERGE);
1392                 destroy_flush_cmd_control(sbi, false);
1393         } else {
1394                 err = create_flush_cmd_control(sbi);
1395                 if (err)
1396                         goto restore_gc;
1397         }
1398 skip:
1399 #ifdef CONFIG_QUOTA
1400         /* Release old quota file names */
1401         for (i = 0; i < MAXQUOTAS; i++)
1402                 kfree(s_qf_names[i]);
1403 #endif
1404         /* Update the POSIXACL Flag */
1405         sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
1406                 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
1407
1408         limit_reserve_root(sbi);
1409         return 0;
1410 restore_gc:
1411         if (need_restart_gc) {
1412                 if (start_gc_thread(sbi))
1413                         f2fs_msg(sbi->sb, KERN_WARNING,
1414                                 "background gc thread has stopped");
1415         } else if (need_stop_gc) {
1416                 stop_gc_thread(sbi);
1417         }
1418 restore_opts:
1419 #ifdef CONFIG_QUOTA
1420         sbi->s_jquota_fmt = s_jquota_fmt;
1421         for (i = 0; i < MAXQUOTAS; i++) {
1422                 kfree(sbi->s_qf_names[i]);
1423                 sbi->s_qf_names[i] = s_qf_names[i];
1424         }
1425 #endif
1426         sbi->mount_opt = org_mount_opt;
1427         sbi->active_logs = active_logs;
1428         sb->s_flags = old_sb_flags;
1429 #ifdef CONFIG_F2FS_FAULT_INJECTION
1430         sbi->fault_info = ffi;
1431 #endif
1432         return err;
1433 }
1434
1435 #ifdef CONFIG_QUOTA
1436 /* Read data from quotafile */
1437 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data,
1438                                size_t len, loff_t off)
1439 {
1440         struct inode *inode = sb_dqopt(sb)->files[type];
1441         struct address_space *mapping = inode->i_mapping;
1442         block_t blkidx = F2FS_BYTES_TO_BLK(off);
1443         int offset = off & (sb->s_blocksize - 1);
1444         int tocopy;
1445         size_t toread;
1446         loff_t i_size = i_size_read(inode);
1447         struct page *page;
1448         char *kaddr;
1449
1450         if (off > i_size)
1451                 return 0;
1452
1453         if (off + len > i_size)
1454                 len = i_size - off;
1455         toread = len;
1456         while (toread > 0) {
1457                 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
1458 repeat:
1459                 page = read_mapping_page(mapping, blkidx, NULL);
1460                 if (IS_ERR(page)) {
1461                         if (PTR_ERR(page) == -ENOMEM) {
1462                                 congestion_wait(BLK_RW_ASYNC, HZ/50);
1463                                 goto repeat;
1464                         }
1465                         return PTR_ERR(page);
1466                 }
1467
1468                 lock_page(page);
1469
1470                 if (unlikely(page->mapping != mapping)) {
1471                         f2fs_put_page(page, 1);
1472                         goto repeat;
1473                 }
1474                 if (unlikely(!PageUptodate(page))) {
1475                         f2fs_put_page(page, 1);
1476                         return -EIO;
1477                 }
1478
1479                 kaddr = kmap_atomic(page);
1480                 memcpy(data, kaddr + offset, tocopy);
1481                 kunmap_atomic(kaddr);
1482                 f2fs_put_page(page, 1);
1483
1484                 offset = 0;
1485                 toread -= tocopy;
1486                 data += tocopy;
1487                 blkidx++;
1488         }
1489         return len;
1490 }
1491
1492 /* Write to quotafile */
1493 static ssize_t f2fs_quota_write(struct super_block *sb, int type,
1494                                 const char *data, size_t len, loff_t off)
1495 {
1496         struct inode *inode = sb_dqopt(sb)->files[type];
1497         struct address_space *mapping = inode->i_mapping;
1498         const struct address_space_operations *a_ops = mapping->a_ops;
1499         int offset = off & (sb->s_blocksize - 1);
1500         size_t towrite = len;
1501         struct page *page;
1502         char *kaddr;
1503         int err = 0;
1504         int tocopy;
1505
1506         while (towrite > 0) {
1507                 tocopy = min_t(unsigned long, sb->s_blocksize - offset,
1508                                                                 towrite);
1509 retry:
1510                 err = a_ops->write_begin(NULL, mapping, off, tocopy, 0,
1511                                                         &page, NULL);
1512                 if (unlikely(err)) {
1513                         if (err == -ENOMEM) {
1514                                 congestion_wait(BLK_RW_ASYNC, HZ/50);
1515                                 goto retry;
1516                         }
1517                         break;
1518                 }
1519
1520                 kaddr = kmap_atomic(page);
1521                 memcpy(kaddr + offset, data, tocopy);
1522                 kunmap_atomic(kaddr);
1523                 flush_dcache_page(page);
1524
1525                 a_ops->write_end(NULL, mapping, off, tocopy, tocopy,
1526                                                 page, NULL);
1527                 offset = 0;
1528                 towrite -= tocopy;
1529                 off += tocopy;
1530                 data += tocopy;
1531                 cond_resched();
1532         }
1533
1534         if (len == towrite)
1535                 return err;
1536         inode->i_mtime = inode->i_ctime = current_time(inode);
1537         f2fs_mark_inode_dirty_sync(inode, false);
1538         return len - towrite;
1539 }
1540
1541 static struct dquot **f2fs_get_dquots(struct inode *inode)
1542 {
1543         return F2FS_I(inode)->i_dquot;
1544 }
1545
1546 static qsize_t *f2fs_get_reserved_space(struct inode *inode)
1547 {
1548         return &F2FS_I(inode)->i_reserved_quota;
1549 }
1550
1551 static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type)
1552 {
1553         return dquot_quota_on_mount(sbi->sb, sbi->s_qf_names[type],
1554                                                 sbi->s_jquota_fmt, type);
1555 }
1556
1557 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly)
1558 {
1559         int enabled = 0;
1560         int i, err;
1561
1562         if (f2fs_sb_has_quota_ino(sbi->sb) && rdonly) {
1563                 err = f2fs_enable_quotas(sbi->sb);
1564                 if (err) {
1565                         f2fs_msg(sbi->sb, KERN_ERR,
1566                                         "Cannot turn on quota_ino: %d", err);
1567                         return 0;
1568                 }
1569                 return 1;
1570         }
1571
1572         for (i = 0; i < MAXQUOTAS; i++) {
1573                 if (sbi->s_qf_names[i]) {
1574                         err = f2fs_quota_on_mount(sbi, i);
1575                         if (!err) {
1576                                 enabled = 1;
1577                                 continue;
1578                         }
1579                         f2fs_msg(sbi->sb, KERN_ERR,
1580                                 "Cannot turn on quotas: %d on %d", err, i);
1581                 }
1582         }
1583         return enabled;
1584 }
1585
1586 static int f2fs_quota_enable(struct super_block *sb, int type, int format_id,
1587                              unsigned int flags)
1588 {
1589         struct inode *qf_inode;
1590         unsigned long qf_inum;
1591         int err;
1592
1593         BUG_ON(!f2fs_sb_has_quota_ino(sb));
1594
1595         qf_inum = f2fs_qf_ino(sb, type);
1596         if (!qf_inum)
1597                 return -EPERM;
1598
1599         qf_inode = f2fs_iget(sb, qf_inum);
1600         if (IS_ERR(qf_inode)) {
1601                 f2fs_msg(sb, KERN_ERR,
1602                         "Bad quota inode %u:%lu", type, qf_inum);
1603                 return PTR_ERR(qf_inode);
1604         }
1605
1606         /* Don't account quota for quota files to avoid recursion */
1607         qf_inode->i_flags |= S_NOQUOTA;
1608         err = dquot_enable(qf_inode, type, format_id, flags);
1609         iput(qf_inode);
1610         return err;
1611 }
1612
1613 static int f2fs_enable_quotas(struct super_block *sb)
1614 {
1615         int type, err = 0;
1616         unsigned long qf_inum;
1617         bool quota_mopt[MAXQUOTAS] = {
1618                 test_opt(F2FS_SB(sb), USRQUOTA),
1619                 test_opt(F2FS_SB(sb), GRPQUOTA),
1620                 test_opt(F2FS_SB(sb), PRJQUOTA),
1621         };
1622
1623         sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
1624         for (type = 0; type < MAXQUOTAS; type++) {
1625                 qf_inum = f2fs_qf_ino(sb, type);
1626                 if (qf_inum) {
1627                         err = f2fs_quota_enable(sb, type, QFMT_VFS_V1,
1628                                 DQUOT_USAGE_ENABLED |
1629                                 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
1630                         if (err) {
1631                                 f2fs_msg(sb, KERN_ERR,
1632                                         "Failed to enable quota tracking "
1633                                         "(type=%d, err=%d). Please run "
1634                                         "fsck to fix.", type, err);
1635                                 for (type--; type >= 0; type--)
1636                                         dquot_quota_off(sb, type);
1637                                 return err;
1638                         }
1639                 }
1640         }
1641         return 0;
1642 }
1643
1644 static int f2fs_quota_sync(struct super_block *sb, int type)
1645 {
1646         struct quota_info *dqopt = sb_dqopt(sb);
1647         int cnt;
1648         int ret;
1649
1650         ret = dquot_writeback_dquots(sb, type);
1651         if (ret)
1652                 return ret;
1653
1654         /*
1655          * Now when everything is written we can discard the pagecache so
1656          * that userspace sees the changes.
1657          */
1658         for (cnt = 0; cnt < MAXQUOTAS; cnt++) {
1659                 if (type != -1 && cnt != type)
1660                         continue;
1661                 if (!sb_has_quota_active(sb, cnt))
1662                         continue;
1663
1664                 ret = filemap_write_and_wait(dqopt->files[cnt]->i_mapping);
1665                 if (ret)
1666                         return ret;
1667
1668                 inode_lock(dqopt->files[cnt]);
1669                 truncate_inode_pages(&dqopt->files[cnt]->i_data, 0);
1670                 inode_unlock(dqopt->files[cnt]);
1671         }
1672         return 0;
1673 }
1674
1675 static int f2fs_quota_on(struct super_block *sb, int type, int format_id,
1676                                                         const struct path *path)
1677 {
1678         struct inode *inode;
1679         int err;
1680
1681         err = f2fs_quota_sync(sb, type);
1682         if (err)
1683                 return err;
1684
1685         err = dquot_quota_on(sb, type, format_id, path);
1686         if (err)
1687                 return err;
1688
1689         inode = d_inode(path->dentry);
1690
1691         inode_lock(inode);
1692         F2FS_I(inode)->i_flags |= FS_NOATIME_FL | FS_IMMUTABLE_FL;
1693         inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
1694                                         S_NOATIME | S_IMMUTABLE);
1695         inode_unlock(inode);
1696         f2fs_mark_inode_dirty_sync(inode, false);
1697
1698         return 0;
1699 }
1700
1701 static int f2fs_quota_off(struct super_block *sb, int type)
1702 {
1703         struct inode *inode = sb_dqopt(sb)->files[type];
1704         int err;
1705
1706         if (!inode || !igrab(inode))
1707                 return dquot_quota_off(sb, type);
1708
1709         f2fs_quota_sync(sb, type);
1710
1711         err = dquot_quota_off(sb, type);
1712         if (err || f2fs_sb_has_quota_ino(sb))
1713                 goto out_put;
1714
1715         inode_lock(inode);
1716         F2FS_I(inode)->i_flags &= ~(FS_NOATIME_FL | FS_IMMUTABLE_FL);
1717         inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
1718         inode_unlock(inode);
1719         f2fs_mark_inode_dirty_sync(inode, false);
1720 out_put:
1721         iput(inode);
1722         return err;
1723 }
1724
1725 void f2fs_quota_off_umount(struct super_block *sb)
1726 {
1727         int type;
1728
1729         for (type = 0; type < MAXQUOTAS; type++)
1730                 f2fs_quota_off(sb, type);
1731 }
1732
1733 static int f2fs_get_projid(struct inode *inode, kprojid_t *projid)
1734 {
1735         *projid = F2FS_I(inode)->i_projid;
1736         return 0;
1737 }
1738
1739 static const struct dquot_operations f2fs_quota_operations = {
1740         .get_reserved_space = f2fs_get_reserved_space,
1741         .write_dquot    = dquot_commit,
1742         .acquire_dquot  = dquot_acquire,
1743         .release_dquot  = dquot_release,
1744         .mark_dirty     = dquot_mark_dquot_dirty,
1745         .write_info     = dquot_commit_info,
1746         .alloc_dquot    = dquot_alloc,
1747         .destroy_dquot  = dquot_destroy,
1748         .get_projid     = f2fs_get_projid,
1749         .get_next_id    = dquot_get_next_id,
1750 };
1751
1752 static const struct quotactl_ops f2fs_quotactl_ops = {
1753         .quota_on       = f2fs_quota_on,
1754         .quota_off      = f2fs_quota_off,
1755         .quota_sync     = f2fs_quota_sync,
1756         .get_state      = dquot_get_state,
1757         .set_info       = dquot_set_dqinfo,
1758         .get_dqblk      = dquot_get_dqblk,
1759         .set_dqblk      = dquot_set_dqblk,
1760         .get_nextdqblk  = dquot_get_next_dqblk,
1761 };
1762 #else
1763 void f2fs_quota_off_umount(struct super_block *sb)
1764 {
1765 }
1766 #endif
1767
1768 static const struct super_operations f2fs_sops = {
1769         .alloc_inode    = f2fs_alloc_inode,
1770         .drop_inode     = f2fs_drop_inode,
1771         .destroy_inode  = f2fs_destroy_inode,
1772         .write_inode    = f2fs_write_inode,
1773         .dirty_inode    = f2fs_dirty_inode,
1774         .show_options   = f2fs_show_options,
1775 #ifdef CONFIG_QUOTA
1776         .quota_read     = f2fs_quota_read,
1777         .quota_write    = f2fs_quota_write,
1778         .get_dquots     = f2fs_get_dquots,
1779 #endif
1780         .evict_inode    = f2fs_evict_inode,
1781         .put_super      = f2fs_put_super,
1782         .sync_fs        = f2fs_sync_fs,
1783         .freeze_fs      = f2fs_freeze,
1784         .unfreeze_fs    = f2fs_unfreeze,
1785         .statfs         = f2fs_statfs,
1786         .remount_fs     = f2fs_remount,
1787 };
1788
1789 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1790 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
1791 {
1792         return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1793                                 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1794                                 ctx, len, NULL);
1795 }
1796
1797 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
1798                                                         void *fs_data)
1799 {
1800         return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1801                                 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1802                                 ctx, len, fs_data, XATTR_CREATE);
1803 }
1804
1805 static unsigned f2fs_max_namelen(struct inode *inode)
1806 {
1807         return S_ISLNK(inode->i_mode) ?
1808                         inode->i_sb->s_blocksize : F2FS_NAME_LEN;
1809 }
1810
1811 static const struct fscrypt_operations f2fs_cryptops = {
1812         .key_prefix     = "f2fs:",
1813         .get_context    = f2fs_get_context,
1814         .set_context    = f2fs_set_context,
1815         .empty_dir      = f2fs_empty_dir,
1816         .max_namelen    = f2fs_max_namelen,
1817 };
1818 #endif
1819
1820 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
1821                 u64 ino, u32 generation)
1822 {
1823         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1824         struct inode *inode;
1825
1826         if (check_nid_range(sbi, ino))
1827                 return ERR_PTR(-ESTALE);
1828
1829         /*
1830          * f2fs_iget isn't quite right if the inode is currently unallocated!
1831          * However f2fs_iget currently does appropriate checks to handle stale
1832          * inodes so everything is OK.
1833          */
1834         inode = f2fs_iget(sb, ino);
1835         if (IS_ERR(inode))
1836                 return ERR_CAST(inode);
1837         if (unlikely(generation && inode->i_generation != generation)) {
1838                 /* we didn't find the right inode.. */
1839                 iput(inode);
1840                 return ERR_PTR(-ESTALE);
1841         }
1842         return inode;
1843 }
1844
1845 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1846                 int fh_len, int fh_type)
1847 {
1848         return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1849                                     f2fs_nfs_get_inode);
1850 }
1851
1852 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
1853                 int fh_len, int fh_type)
1854 {
1855         return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1856                                     f2fs_nfs_get_inode);
1857 }
1858
1859 static const struct export_operations f2fs_export_ops = {
1860         .fh_to_dentry = f2fs_fh_to_dentry,
1861         .fh_to_parent = f2fs_fh_to_parent,
1862         .get_parent = f2fs_get_parent,
1863 };
1864
1865 static loff_t max_file_blocks(void)
1866 {
1867         loff_t result = 0;
1868         loff_t leaf_count = ADDRS_PER_BLOCK;
1869
1870         /*
1871          * note: previously, result is equal to (DEF_ADDRS_PER_INODE -
1872          * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more
1873          * space in inode.i_addr, it will be more safe to reassign
1874          * result as zero.
1875          */
1876
1877         /* two direct node blocks */
1878         result += (leaf_count * 2);
1879
1880         /* two indirect node blocks */
1881         leaf_count *= NIDS_PER_BLOCK;
1882         result += (leaf_count * 2);
1883
1884         /* one double indirect node block */
1885         leaf_count *= NIDS_PER_BLOCK;
1886         result += leaf_count;
1887
1888         return result;
1889 }
1890
1891 static int __f2fs_commit_super(struct buffer_head *bh,
1892                         struct f2fs_super_block *super)
1893 {
1894         lock_buffer(bh);
1895         if (super)
1896                 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
1897         set_buffer_uptodate(bh);
1898         set_buffer_dirty(bh);
1899         unlock_buffer(bh);
1900
1901         /* it's rare case, we can do fua all the time */
1902         return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
1903 }
1904
1905 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
1906                                         struct buffer_head *bh)
1907 {
1908         struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
1909                                         (bh->b_data + F2FS_SUPER_OFFSET);
1910         struct super_block *sb = sbi->sb;
1911         u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
1912         u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
1913         u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
1914         u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
1915         u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
1916         u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
1917         u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
1918         u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
1919         u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
1920         u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
1921         u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
1922         u32 segment_count = le32_to_cpu(raw_super->segment_count);
1923         u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
1924         u64 main_end_blkaddr = main_blkaddr +
1925                                 (segment_count_main << log_blocks_per_seg);
1926         u64 seg_end_blkaddr = segment0_blkaddr +
1927                                 (segment_count << log_blocks_per_seg);
1928
1929         if (segment0_blkaddr != cp_blkaddr) {
1930                 f2fs_msg(sb, KERN_INFO,
1931                         "Mismatch start address, segment0(%u) cp_blkaddr(%u)",
1932                         segment0_blkaddr, cp_blkaddr);
1933                 return true;
1934         }
1935
1936         if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
1937                                                         sit_blkaddr) {
1938                 f2fs_msg(sb, KERN_INFO,
1939                         "Wrong CP boundary, start(%u) end(%u) blocks(%u)",
1940                         cp_blkaddr, sit_blkaddr,
1941                         segment_count_ckpt << log_blocks_per_seg);
1942                 return true;
1943         }
1944
1945         if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
1946                                                         nat_blkaddr) {
1947                 f2fs_msg(sb, KERN_INFO,
1948                         "Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
1949                         sit_blkaddr, nat_blkaddr,
1950                         segment_count_sit << log_blocks_per_seg);
1951                 return true;
1952         }
1953
1954         if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
1955                                                         ssa_blkaddr) {
1956                 f2fs_msg(sb, KERN_INFO,
1957                         "Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
1958                         nat_blkaddr, ssa_blkaddr,
1959                         segment_count_nat << log_blocks_per_seg);
1960                 return true;
1961         }
1962
1963         if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
1964                                                         main_blkaddr) {
1965                 f2fs_msg(sb, KERN_INFO,
1966                         "Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
1967                         ssa_blkaddr, main_blkaddr,
1968                         segment_count_ssa << log_blocks_per_seg);
1969                 return true;
1970         }
1971
1972         if (main_end_blkaddr > seg_end_blkaddr) {
1973                 f2fs_msg(sb, KERN_INFO,
1974                         "Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)",
1975                         main_blkaddr,
1976                         segment0_blkaddr +
1977                                 (segment_count << log_blocks_per_seg),
1978                         segment_count_main << log_blocks_per_seg);
1979                 return true;
1980         } else if (main_end_blkaddr < seg_end_blkaddr) {
1981                 int err = 0;
1982                 char *res;
1983
1984                 /* fix in-memory information all the time */
1985                 raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
1986                                 segment0_blkaddr) >> log_blocks_per_seg);
1987
1988                 if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
1989                         set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1990                         res = "internally";
1991                 } else {
1992                         err = __f2fs_commit_super(bh, NULL);
1993                         res = err ? "failed" : "done";
1994                 }
1995                 f2fs_msg(sb, KERN_INFO,
1996                         "Fix alignment : %s, start(%u) end(%u) block(%u)",
1997                         res, main_blkaddr,
1998                         segment0_blkaddr +
1999                                 (segment_count << log_blocks_per_seg),
2000                         segment_count_main << log_blocks_per_seg);
2001                 if (err)
2002                         return true;
2003         }
2004         return false;
2005 }
2006
2007 static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
2008                                 struct buffer_head *bh)
2009 {
2010         struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
2011                                         (bh->b_data + F2FS_SUPER_OFFSET);
2012         struct super_block *sb = sbi->sb;
2013         unsigned int blocksize;
2014
2015         if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
2016                 f2fs_msg(sb, KERN_INFO,
2017                         "Magic Mismatch, valid(0x%x) - read(0x%x)",
2018                         F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
2019                 return 1;
2020         }
2021
2022         /* Currently, support only 4KB page cache size */
2023         if (F2FS_BLKSIZE != PAGE_SIZE) {
2024                 f2fs_msg(sb, KERN_INFO,
2025                         "Invalid page_cache_size (%lu), supports only 4KB\n",
2026                         PAGE_SIZE);
2027                 return 1;
2028         }
2029
2030         /* Currently, support only 4KB block size */
2031         blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
2032         if (blocksize != F2FS_BLKSIZE) {
2033                 f2fs_msg(sb, KERN_INFO,
2034                         "Invalid blocksize (%u), supports only 4KB\n",
2035                         blocksize);
2036                 return 1;
2037         }
2038
2039         /* check log blocks per segment */
2040         if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
2041                 f2fs_msg(sb, KERN_INFO,
2042                         "Invalid log blocks per segment (%u)\n",
2043                         le32_to_cpu(raw_super->log_blocks_per_seg));
2044                 return 1;
2045         }
2046
2047         /* Currently, support 512/1024/2048/4096 bytes sector size */
2048         if (le32_to_cpu(raw_super->log_sectorsize) >
2049                                 F2FS_MAX_LOG_SECTOR_SIZE ||
2050                 le32_to_cpu(raw_super->log_sectorsize) <
2051                                 F2FS_MIN_LOG_SECTOR_SIZE) {
2052                 f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)",
2053                         le32_to_cpu(raw_super->log_sectorsize));
2054                 return 1;
2055         }
2056         if (le32_to_cpu(raw_super->log_sectors_per_block) +
2057                 le32_to_cpu(raw_super->log_sectorsize) !=
2058                         F2FS_MAX_LOG_SECTOR_SIZE) {
2059                 f2fs_msg(sb, KERN_INFO,
2060                         "Invalid log sectors per block(%u) log sectorsize(%u)",
2061                         le32_to_cpu(raw_super->log_sectors_per_block),
2062                         le32_to_cpu(raw_super->log_sectorsize));
2063                 return 1;
2064         }
2065
2066         /* check reserved ino info */
2067         if (le32_to_cpu(raw_super->node_ino) != 1 ||
2068                 le32_to_cpu(raw_super->meta_ino) != 2 ||
2069                 le32_to_cpu(raw_super->root_ino) != 3) {
2070                 f2fs_msg(sb, KERN_INFO,
2071                         "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
2072                         le32_to_cpu(raw_super->node_ino),
2073                         le32_to_cpu(raw_super->meta_ino),
2074                         le32_to_cpu(raw_super->root_ino));
2075                 return 1;
2076         }
2077
2078         if (le32_to_cpu(raw_super->segment_count) > F2FS_MAX_SEGMENT) {
2079                 f2fs_msg(sb, KERN_INFO,
2080                         "Invalid segment count (%u)",
2081                         le32_to_cpu(raw_super->segment_count));
2082                 return 1;
2083         }
2084
2085         /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
2086         if (sanity_check_area_boundary(sbi, bh))
2087                 return 1;
2088
2089         return 0;
2090 }
2091
2092 int sanity_check_ckpt(struct f2fs_sb_info *sbi)
2093 {
2094         unsigned int total, fsmeta;
2095         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2096         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2097         unsigned int ovp_segments, reserved_segments;
2098         unsigned int main_segs, blocks_per_seg;
2099         int i;
2100
2101         total = le32_to_cpu(raw_super->segment_count);
2102         fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
2103         fsmeta += le32_to_cpu(raw_super->segment_count_sit);
2104         fsmeta += le32_to_cpu(raw_super->segment_count_nat);
2105         fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
2106         fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
2107
2108         if (unlikely(fsmeta >= total))
2109                 return 1;
2110
2111         ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
2112         reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
2113
2114         if (unlikely(fsmeta < F2FS_MIN_SEGMENTS ||
2115                         ovp_segments == 0 || reserved_segments == 0)) {
2116                 f2fs_msg(sbi->sb, KERN_ERR,
2117                         "Wrong layout: check mkfs.f2fs version");
2118                 return 1;
2119         }
2120
2121         main_segs = le32_to_cpu(raw_super->segment_count_main);
2122         blocks_per_seg = sbi->blocks_per_seg;
2123
2124         for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
2125                 if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs ||
2126                         le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg)
2127                         return 1;
2128         }
2129         for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
2130                 if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs ||
2131                         le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg)
2132                         return 1;
2133         }
2134
2135         if (unlikely(f2fs_cp_error(sbi))) {
2136                 f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
2137                 return 1;
2138         }
2139         return 0;
2140 }
2141
2142 static void init_sb_info(struct f2fs_sb_info *sbi)
2143 {
2144         struct f2fs_super_block *raw_super = sbi->raw_super;
2145         int i, j;
2146
2147         sbi->log_sectors_per_block =
2148                 le32_to_cpu(raw_super->log_sectors_per_block);
2149         sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
2150         sbi->blocksize = 1 << sbi->log_blocksize;
2151         sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2152         sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
2153         sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
2154         sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
2155         sbi->total_sections = le32_to_cpu(raw_super->section_count);
2156         sbi->total_node_count =
2157                 (le32_to_cpu(raw_super->segment_count_nat) / 2)
2158                         * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
2159         sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
2160         sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
2161         sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
2162         sbi->cur_victim_sec = NULL_SECNO;
2163         sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
2164
2165         sbi->dir_level = DEF_DIR_LEVEL;
2166         sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
2167         sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
2168         clear_sbi_flag(sbi, SBI_NEED_FSCK);
2169
2170         for (i = 0; i < NR_COUNT_TYPE; i++)
2171                 atomic_set(&sbi->nr_pages[i], 0);
2172
2173         atomic_set(&sbi->wb_sync_req, 0);
2174
2175         INIT_LIST_HEAD(&sbi->s_list);
2176         mutex_init(&sbi->umount_mutex);
2177         for (i = 0; i < NR_PAGE_TYPE - 1; i++)
2178                 for (j = HOT; j < NR_TEMP_TYPE; j++)
2179                         mutex_init(&sbi->wio_mutex[i][j]);
2180         spin_lock_init(&sbi->cp_lock);
2181
2182         sbi->dirty_device = 0;
2183         spin_lock_init(&sbi->dev_lock);
2184 }
2185
2186 static int init_percpu_info(struct f2fs_sb_info *sbi)
2187 {
2188         int err;
2189
2190         err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
2191         if (err)
2192                 return err;
2193
2194         return percpu_counter_init(&sbi->total_valid_inode_count, 0,
2195                                                                 GFP_KERNEL);
2196 }
2197
2198 #ifdef CONFIG_BLK_DEV_ZONED
2199 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi)
2200 {
2201         struct block_device *bdev = FDEV(devi).bdev;
2202         sector_t nr_sectors = bdev->bd_part->nr_sects;
2203         sector_t sector = 0;
2204         struct blk_zone *zones;
2205         unsigned int i, nr_zones;
2206         unsigned int n = 0;
2207         int err = -EIO;
2208
2209         if (!f2fs_sb_mounted_blkzoned(sbi->sb))
2210                 return 0;
2211
2212         if (sbi->blocks_per_blkz && sbi->blocks_per_blkz !=
2213                                 SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)))
2214                 return -EINVAL;
2215         sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev));
2216         if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz !=
2217                                 __ilog2_u32(sbi->blocks_per_blkz))
2218                 return -EINVAL;
2219         sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz);
2220         FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >>
2221                                         sbi->log_blocks_per_blkz;
2222         if (nr_sectors & (bdev_zone_sectors(bdev) - 1))
2223                 FDEV(devi).nr_blkz++;
2224
2225         FDEV(devi).blkz_type = f2fs_kmalloc(sbi, FDEV(devi).nr_blkz,
2226                                                                 GFP_KERNEL);
2227         if (!FDEV(devi).blkz_type)
2228                 return -ENOMEM;
2229
2230 #define F2FS_REPORT_NR_ZONES   4096
2231
2232         zones = f2fs_kzalloc(sbi, sizeof(struct blk_zone) *
2233                                 F2FS_REPORT_NR_ZONES, GFP_KERNEL);
2234         if (!zones)
2235                 return -ENOMEM;
2236
2237         /* Get block zones type */
2238         while (zones && sector < nr_sectors) {
2239
2240                 nr_zones = F2FS_REPORT_NR_ZONES;
2241                 err = blkdev_report_zones(bdev, sector,
2242                                           zones, &nr_zones,
2243                                           GFP_KERNEL);
2244                 if (err)
2245                         break;
2246                 if (!nr_zones) {
2247                         err = -EIO;
2248                         break;
2249                 }
2250
2251                 for (i = 0; i < nr_zones; i++) {
2252                         FDEV(devi).blkz_type[n] = zones[i].type;
2253                         sector += zones[i].len;
2254                         n++;
2255                 }
2256         }
2257
2258         kfree(zones);
2259
2260         return err;
2261 }
2262 #endif
2263
2264 /*
2265  * Read f2fs raw super block.
2266  * Because we have two copies of super block, so read both of them
2267  * to get the first valid one. If any one of them is broken, we pass
2268  * them recovery flag back to the caller.
2269  */
2270 static int read_raw_super_block(struct f2fs_sb_info *sbi,
2271                         struct f2fs_super_block **raw_super,
2272                         int *valid_super_block, int *recovery)
2273 {
2274         struct super_block *sb = sbi->sb;
2275         int block;
2276         struct buffer_head *bh;
2277         struct f2fs_super_block *super;
2278         int err = 0;
2279
2280         super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
2281         if (!super)
2282                 return -ENOMEM;
2283
2284         for (block = 0; block < 2; block++) {
2285                 bh = sb_bread(sb, block);
2286                 if (!bh) {
2287                         f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
2288                                 block + 1);
2289                         err = -EIO;
2290                         continue;
2291                 }
2292
2293                 /* sanity checking of raw super */
2294                 if (sanity_check_raw_super(sbi, bh)) {
2295                         f2fs_msg(sb, KERN_ERR,
2296                                 "Can't find valid F2FS filesystem in %dth superblock",
2297                                 block + 1);
2298                         err = -EINVAL;
2299                         brelse(bh);
2300                         continue;
2301                 }
2302
2303                 if (!*raw_super) {
2304                         memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
2305                                                         sizeof(*super));
2306                         *valid_super_block = block;
2307                         *raw_super = super;
2308                 }
2309                 brelse(bh);
2310         }
2311
2312         /* Fail to read any one of the superblocks*/
2313         if (err < 0)
2314                 *recovery = 1;
2315
2316         /* No valid superblock */
2317         if (!*raw_super)
2318                 kfree(super);
2319         else
2320                 err = 0;
2321
2322         return err;
2323 }
2324
2325 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
2326 {
2327         struct buffer_head *bh;
2328         int err;
2329
2330         if ((recover && f2fs_readonly(sbi->sb)) ||
2331                                 bdev_read_only(sbi->sb->s_bdev)) {
2332                 set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
2333                 return -EROFS;
2334         }
2335
2336         /* write back-up superblock first */
2337         bh = sb_getblk(sbi->sb, sbi->valid_super_block ? 0: 1);
2338         if (!bh)
2339                 return -EIO;
2340         err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
2341         brelse(bh);
2342
2343         /* if we are in recovery path, skip writing valid superblock */
2344         if (recover || err)
2345                 return err;
2346
2347         /* write current valid superblock */
2348         bh = sb_getblk(sbi->sb, sbi->valid_super_block);
2349         if (!bh)
2350                 return -EIO;
2351         err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
2352         brelse(bh);
2353         return err;
2354 }
2355
2356 static int f2fs_scan_devices(struct f2fs_sb_info *sbi)
2357 {
2358         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2359         unsigned int max_devices = MAX_DEVICES;
2360         int i;
2361
2362         /* Initialize single device information */
2363         if (!RDEV(0).path[0]) {
2364                 if (!bdev_is_zoned(sbi->sb->s_bdev))
2365                         return 0;
2366                 max_devices = 1;
2367         }
2368
2369         /*
2370          * Initialize multiple devices information, or single
2371          * zoned block device information.
2372          */
2373         sbi->devs = f2fs_kzalloc(sbi, sizeof(struct f2fs_dev_info) *
2374                                                 max_devices, GFP_KERNEL);
2375         if (!sbi->devs)
2376                 return -ENOMEM;
2377
2378         for (i = 0; i < max_devices; i++) {
2379
2380                 if (i > 0 && !RDEV(i).path[0])
2381                         break;
2382
2383                 if (max_devices == 1) {
2384                         /* Single zoned block device mount */
2385                         FDEV(0).bdev =
2386                                 blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev,
2387                                         sbi->sb->s_mode, sbi->sb->s_type);
2388                 } else {
2389                         /* Multi-device mount */
2390                         memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN);
2391                         FDEV(i).total_segments =
2392                                 le32_to_cpu(RDEV(i).total_segments);
2393                         if (i == 0) {
2394                                 FDEV(i).start_blk = 0;
2395                                 FDEV(i).end_blk = FDEV(i).start_blk +
2396                                     (FDEV(i).total_segments <<
2397                                     sbi->log_blocks_per_seg) - 1 +
2398                                     le32_to_cpu(raw_super->segment0_blkaddr);
2399                         } else {
2400                                 FDEV(i).start_blk = FDEV(i - 1).end_blk + 1;
2401                                 FDEV(i).end_blk = FDEV(i).start_blk +
2402                                         (FDEV(i).total_segments <<
2403                                         sbi->log_blocks_per_seg) - 1;
2404                         }
2405                         FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path,
2406                                         sbi->sb->s_mode, sbi->sb->s_type);
2407                 }
2408                 if (IS_ERR(FDEV(i).bdev))
2409                         return PTR_ERR(FDEV(i).bdev);
2410
2411                 /* to release errored devices */
2412                 sbi->s_ndevs = i + 1;
2413
2414 #ifdef CONFIG_BLK_DEV_ZONED
2415                 if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM &&
2416                                 !f2fs_sb_mounted_blkzoned(sbi->sb)) {
2417                         f2fs_msg(sbi->sb, KERN_ERR,
2418                                 "Zoned block device feature not enabled\n");
2419                         return -EINVAL;
2420                 }
2421                 if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) {
2422                         if (init_blkz_info(sbi, i)) {
2423                                 f2fs_msg(sbi->sb, KERN_ERR,
2424                                         "Failed to initialize F2FS blkzone information");
2425                                 return -EINVAL;
2426                         }
2427                         if (max_devices == 1)
2428                                 break;
2429                         f2fs_msg(sbi->sb, KERN_INFO,
2430                                 "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)",
2431                                 i, FDEV(i).path,
2432                                 FDEV(i).total_segments,
2433                                 FDEV(i).start_blk, FDEV(i).end_blk,
2434                                 bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ?
2435                                 "Host-aware" : "Host-managed");
2436                         continue;
2437                 }
2438 #endif
2439                 f2fs_msg(sbi->sb, KERN_INFO,
2440                         "Mount Device [%2d]: %20s, %8u, %8x - %8x",
2441                                 i, FDEV(i).path,
2442                                 FDEV(i).total_segments,
2443                                 FDEV(i).start_blk, FDEV(i).end_blk);
2444         }
2445         f2fs_msg(sbi->sb, KERN_INFO,
2446                         "IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi));
2447         return 0;
2448 }
2449
2450 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
2451 {
2452         struct f2fs_sb_info *sbi;
2453         struct f2fs_super_block *raw_super;
2454         struct inode *root;
2455         int err;
2456         bool retry = true, need_fsck = false;
2457         char *options = NULL;
2458         int recovery, i, valid_super_block;
2459         struct curseg_info *seg_i;
2460
2461 try_onemore:
2462         err = -EINVAL;
2463         raw_super = NULL;
2464         valid_super_block = -1;
2465         recovery = 0;
2466
2467         /* allocate memory for f2fs-specific super block info */
2468         sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
2469         if (!sbi)
2470                 return -ENOMEM;
2471
2472         sbi->sb = sb;
2473
2474         /* Load the checksum driver */
2475         sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
2476         if (IS_ERR(sbi->s_chksum_driver)) {
2477                 f2fs_msg(sb, KERN_ERR, "Cannot load crc32 driver.");
2478                 err = PTR_ERR(sbi->s_chksum_driver);
2479                 sbi->s_chksum_driver = NULL;
2480                 goto free_sbi;
2481         }
2482
2483         /* set a block size */
2484         if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
2485                 f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
2486                 goto free_sbi;
2487         }
2488
2489         err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
2490                                                                 &recovery);
2491         if (err)
2492                 goto free_sbi;
2493
2494         sb->s_fs_info = sbi;
2495         sbi->raw_super = raw_super;
2496
2497         sbi->s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID);
2498         sbi->s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID);
2499
2500         /* precompute checksum seed for metadata */
2501         if (f2fs_sb_has_inode_chksum(sb))
2502                 sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid,
2503                                                 sizeof(raw_super->uuid));
2504
2505         /*
2506          * The BLKZONED feature indicates that the drive was formatted with
2507          * zone alignment optimization. This is optional for host-aware
2508          * devices, but mandatory for host-managed zoned block devices.
2509          */
2510 #ifndef CONFIG_BLK_DEV_ZONED
2511         if (f2fs_sb_mounted_blkzoned(sb)) {
2512                 f2fs_msg(sb, KERN_ERR,
2513                          "Zoned block device support is not enabled\n");
2514                 err = -EOPNOTSUPP;
2515                 goto free_sb_buf;
2516         }
2517 #endif
2518         default_options(sbi);
2519         /* parse mount options */
2520         options = kstrdup((const char *)data, GFP_KERNEL);
2521         if (data && !options) {
2522                 err = -ENOMEM;
2523                 goto free_sb_buf;
2524         }
2525
2526         err = parse_options(sb, options);
2527         if (err)
2528                 goto free_options;
2529
2530         sbi->max_file_blocks = max_file_blocks();
2531         sb->s_maxbytes = sbi->max_file_blocks <<
2532                                 le32_to_cpu(raw_super->log_blocksize);
2533         sb->s_max_links = F2FS_LINK_MAX;
2534         get_random_bytes(&sbi->s_next_generation, sizeof(u32));
2535
2536 #ifdef CONFIG_QUOTA
2537         sb->dq_op = &f2fs_quota_operations;
2538         if (f2fs_sb_has_quota_ino(sb))
2539                 sb->s_qcop = &dquot_quotactl_sysfile_ops;
2540         else
2541                 sb->s_qcop = &f2fs_quotactl_ops;
2542         sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
2543
2544         if (f2fs_sb_has_quota_ino(sbi->sb)) {
2545                 for (i = 0; i < MAXQUOTAS; i++) {
2546                         if (f2fs_qf_ino(sbi->sb, i))
2547                                 sbi->nquota_files++;
2548                 }
2549         }
2550 #endif
2551
2552         sb->s_op = &f2fs_sops;
2553 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2554         sb->s_cop = &f2fs_cryptops;
2555 #endif
2556         sb->s_xattr = f2fs_xattr_handlers;
2557         sb->s_export_op = &f2fs_export_ops;
2558         sb->s_magic = F2FS_SUPER_MAGIC;
2559         sb->s_time_gran = 1;
2560         sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
2561                 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
2562         memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
2563         sb->s_iflags |= SB_I_CGROUPWB;
2564
2565         /* init f2fs-specific super block info */
2566         sbi->valid_super_block = valid_super_block;
2567         mutex_init(&sbi->gc_mutex);
2568         mutex_init(&sbi->cp_mutex);
2569         init_rwsem(&sbi->node_write);
2570         init_rwsem(&sbi->node_change);
2571
2572         /* disallow all the data/node/meta page writes */
2573         set_sbi_flag(sbi, SBI_POR_DOING);
2574         spin_lock_init(&sbi->stat_lock);
2575
2576         /* init iostat info */
2577         spin_lock_init(&sbi->iostat_lock);
2578         sbi->iostat_enable = false;
2579
2580         for (i = 0; i < NR_PAGE_TYPE; i++) {
2581                 int n = (i == META) ? 1: NR_TEMP_TYPE;
2582                 int j;
2583
2584                 sbi->write_io[i] = f2fs_kmalloc(sbi,
2585                                         n * sizeof(struct f2fs_bio_info),
2586                                         GFP_KERNEL);
2587                 if (!sbi->write_io[i]) {
2588                         err = -ENOMEM;
2589                         goto free_options;
2590                 }
2591
2592                 for (j = HOT; j < n; j++) {
2593                         init_rwsem(&sbi->write_io[i][j].io_rwsem);
2594                         sbi->write_io[i][j].sbi = sbi;
2595                         sbi->write_io[i][j].bio = NULL;
2596                         spin_lock_init(&sbi->write_io[i][j].io_lock);
2597                         INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
2598                 }
2599         }
2600
2601         init_rwsem(&sbi->cp_rwsem);
2602         init_waitqueue_head(&sbi->cp_wait);
2603         init_sb_info(sbi);
2604
2605         err = init_percpu_info(sbi);
2606         if (err)
2607                 goto free_bio_info;
2608
2609         if (F2FS_IO_SIZE(sbi) > 1) {
2610                 sbi->write_io_dummy =
2611                         mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0);
2612                 if (!sbi->write_io_dummy) {
2613                         err = -ENOMEM;
2614                         goto free_percpu;
2615                 }
2616         }
2617
2618         /* get an inode for meta space */
2619         sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
2620         if (IS_ERR(sbi->meta_inode)) {
2621                 f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
2622                 err = PTR_ERR(sbi->meta_inode);
2623                 goto free_io_dummy;
2624         }
2625
2626         err = get_valid_checkpoint(sbi);
2627         if (err) {
2628                 f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
2629                 goto free_meta_inode;
2630         }
2631
2632         /* Initialize device list */
2633         err = f2fs_scan_devices(sbi);
2634         if (err) {
2635                 f2fs_msg(sb, KERN_ERR, "Failed to find devices");
2636                 goto free_devices;
2637         }
2638
2639         sbi->total_valid_node_count =
2640                                 le32_to_cpu(sbi->ckpt->valid_node_count);
2641         percpu_counter_set(&sbi->total_valid_inode_count,
2642                                 le32_to_cpu(sbi->ckpt->valid_inode_count));
2643         sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
2644         sbi->total_valid_block_count =
2645                                 le64_to_cpu(sbi->ckpt->valid_block_count);
2646         sbi->last_valid_block_count = sbi->total_valid_block_count;
2647         sbi->reserved_blocks = 0;
2648         sbi->current_reserved_blocks = 0;
2649         limit_reserve_root(sbi);
2650
2651         for (i = 0; i < NR_INODE_TYPE; i++) {
2652                 INIT_LIST_HEAD(&sbi->inode_list[i]);
2653                 spin_lock_init(&sbi->inode_lock[i]);
2654         }
2655
2656         init_extent_cache_info(sbi);
2657
2658         init_ino_entry_info(sbi);
2659
2660         /* setup f2fs internal modules */
2661         err = build_segment_manager(sbi);
2662         if (err) {
2663                 f2fs_msg(sb, KERN_ERR,
2664                         "Failed to initialize F2FS segment manager");
2665                 goto free_sm;
2666         }
2667         err = build_node_manager(sbi);
2668         if (err) {
2669                 f2fs_msg(sb, KERN_ERR,
2670                         "Failed to initialize F2FS node manager");
2671                 goto free_nm;
2672         }
2673
2674         /* For write statistics */
2675         if (sb->s_bdev->bd_part)
2676                 sbi->sectors_written_start =
2677                         (u64)part_stat_read(sb->s_bdev->bd_part, sectors[1]);
2678
2679         /* Read accumulated write IO statistics if exists */
2680         seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
2681         if (__exist_node_summaries(sbi))
2682                 sbi->kbytes_written =
2683                         le64_to_cpu(seg_i->journal->info.kbytes_written);
2684
2685         build_gc_manager(sbi);
2686
2687         /* get an inode for node space */
2688         sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
2689         if (IS_ERR(sbi->node_inode)) {
2690                 f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
2691                 err = PTR_ERR(sbi->node_inode);
2692                 goto free_nm;
2693         }
2694
2695         err = f2fs_build_stats(sbi);
2696         if (err)
2697                 goto free_node_inode;
2698
2699         /* read root inode and dentry */
2700         root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
2701         if (IS_ERR(root)) {
2702                 f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
2703                 err = PTR_ERR(root);
2704                 goto free_stats;
2705         }
2706         if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
2707                 iput(root);
2708                 err = -EINVAL;
2709                 goto free_node_inode;
2710         }
2711
2712         sb->s_root = d_make_root(root); /* allocate root dentry */
2713         if (!sb->s_root) {
2714                 err = -ENOMEM;
2715                 goto free_root_inode;
2716         }
2717
2718         err = f2fs_register_sysfs(sbi);
2719         if (err)
2720                 goto free_root_inode;
2721
2722 #ifdef CONFIG_QUOTA
2723         /*
2724          * Turn on quotas which were not enabled for read-only mounts if
2725          * filesystem has quota feature, so that they are updated correctly.
2726          */
2727         if (f2fs_sb_has_quota_ino(sb) && !sb_rdonly(sb)) {
2728                 err = f2fs_enable_quotas(sb);
2729                 if (err) {
2730                         f2fs_msg(sb, KERN_ERR,
2731                                 "Cannot turn on quotas: error %d", err);
2732                         goto free_sysfs;
2733                 }
2734         }
2735 #endif
2736         /* if there are nt orphan nodes free them */
2737         err = recover_orphan_inodes(sbi);
2738         if (err)
2739                 goto free_meta;
2740
2741         /* recover fsynced data */
2742         if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
2743                 /*
2744                  * mount should be failed, when device has readonly mode, and
2745                  * previous checkpoint was not done by clean system shutdown.
2746                  */
2747                 if (bdev_read_only(sb->s_bdev) &&
2748                                 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
2749                         err = -EROFS;
2750                         goto free_meta;
2751                 }
2752
2753                 if (need_fsck)
2754                         set_sbi_flag(sbi, SBI_NEED_FSCK);
2755
2756                 if (!retry)
2757                         goto skip_recovery;
2758
2759                 err = recover_fsync_data(sbi, false);
2760                 if (err < 0) {
2761                         need_fsck = true;
2762                         f2fs_msg(sb, KERN_ERR,
2763                                 "Cannot recover all fsync data errno=%d", err);
2764                         goto free_meta;
2765                 }
2766         } else {
2767                 err = recover_fsync_data(sbi, true);
2768
2769                 if (!f2fs_readonly(sb) && err > 0) {
2770                         err = -EINVAL;
2771                         f2fs_msg(sb, KERN_ERR,
2772                                 "Need to recover fsync data");
2773                         goto free_meta;
2774                 }
2775         }
2776 skip_recovery:
2777         /* recover_fsync_data() cleared this already */
2778         clear_sbi_flag(sbi, SBI_POR_DOING);
2779
2780         /*
2781          * If filesystem is not mounted as read-only then
2782          * do start the gc_thread.
2783          */
2784         if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) {
2785                 /* After POR, we can run background GC thread.*/
2786                 err = start_gc_thread(sbi);
2787                 if (err)
2788                         goto free_meta;
2789         }
2790         kfree(options);
2791
2792         /* recover broken superblock */
2793         if (recovery) {
2794                 err = f2fs_commit_super(sbi, true);
2795                 f2fs_msg(sb, KERN_INFO,
2796                         "Try to recover %dth superblock, ret: %d",
2797                         sbi->valid_super_block ? 1 : 2, err);
2798         }
2799
2800         f2fs_join_shrinker(sbi);
2801
2802         f2fs_msg(sbi->sb, KERN_NOTICE, "Mounted with checkpoint version = %llx",
2803                                 cur_cp_version(F2FS_CKPT(sbi)));
2804         f2fs_update_time(sbi, CP_TIME);
2805         f2fs_update_time(sbi, REQ_TIME);
2806         return 0;
2807
2808 free_meta:
2809 #ifdef CONFIG_QUOTA
2810         if (f2fs_sb_has_quota_ino(sb) && !sb_rdonly(sb))
2811                 f2fs_quota_off_umount(sbi->sb);
2812 #endif
2813         f2fs_sync_inode_meta(sbi);
2814         /*
2815          * Some dirty meta pages can be produced by recover_orphan_inodes()
2816          * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg()
2817          * followed by write_checkpoint() through f2fs_write_node_pages(), which
2818          * falls into an infinite loop in sync_meta_pages().
2819          */
2820         truncate_inode_pages_final(META_MAPPING(sbi));
2821 #ifdef CONFIG_QUOTA
2822 free_sysfs:
2823 #endif
2824         f2fs_unregister_sysfs(sbi);
2825 free_root_inode:
2826         dput(sb->s_root);
2827         sb->s_root = NULL;
2828 free_stats:
2829         f2fs_destroy_stats(sbi);
2830 free_node_inode:
2831         release_ino_entry(sbi, true);
2832         truncate_inode_pages_final(NODE_MAPPING(sbi));
2833         iput(sbi->node_inode);
2834 free_nm:
2835         destroy_node_manager(sbi);
2836 free_sm:
2837         destroy_segment_manager(sbi);
2838 free_devices:
2839         destroy_device_list(sbi);
2840         kfree(sbi->ckpt);
2841 free_meta_inode:
2842         make_bad_inode(sbi->meta_inode);
2843         iput(sbi->meta_inode);
2844 free_io_dummy:
2845         mempool_destroy(sbi->write_io_dummy);
2846 free_percpu:
2847         destroy_percpu_info(sbi);
2848 free_bio_info:
2849         for (i = 0; i < NR_PAGE_TYPE; i++)
2850                 kfree(sbi->write_io[i]);
2851 free_options:
2852 #ifdef CONFIG_QUOTA
2853         for (i = 0; i < MAXQUOTAS; i++)
2854                 kfree(sbi->s_qf_names[i]);
2855 #endif
2856         kfree(options);
2857 free_sb_buf:
2858         kfree(raw_super);
2859 free_sbi:
2860         if (sbi->s_chksum_driver)
2861                 crypto_free_shash(sbi->s_chksum_driver);
2862         kfree(sbi);
2863
2864         /* give only one another chance */
2865         if (retry) {
2866                 retry = false;
2867                 shrink_dcache_sb(sb);
2868                 goto try_onemore;
2869         }
2870         return err;
2871 }
2872
2873 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
2874                         const char *dev_name, void *data)
2875 {
2876         return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
2877 }
2878
2879 static void kill_f2fs_super(struct super_block *sb)
2880 {
2881         if (sb->s_root) {
2882                 set_sbi_flag(F2FS_SB(sb), SBI_IS_CLOSE);
2883                 stop_gc_thread(F2FS_SB(sb));
2884                 stop_discard_thread(F2FS_SB(sb));
2885         }
2886         kill_block_super(sb);
2887 }
2888
2889 static struct file_system_type f2fs_fs_type = {
2890         .owner          = THIS_MODULE,
2891         .name           = "f2fs",
2892         .mount          = f2fs_mount,
2893         .kill_sb        = kill_f2fs_super,
2894         .fs_flags       = FS_REQUIRES_DEV,
2895 };
2896 MODULE_ALIAS_FS("f2fs");
2897
2898 static int __init init_inodecache(void)
2899 {
2900         f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
2901                         sizeof(struct f2fs_inode_info), 0,
2902                         SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
2903         if (!f2fs_inode_cachep)
2904                 return -ENOMEM;
2905         return 0;
2906 }
2907
2908 static void destroy_inodecache(void)
2909 {
2910         /*
2911          * Make sure all delayed rcu free inodes are flushed before we
2912          * destroy cache.
2913          */
2914         rcu_barrier();
2915         kmem_cache_destroy(f2fs_inode_cachep);
2916 }
2917
2918 static int __init init_f2fs_fs(void)
2919 {
2920         int err;
2921
2922         f2fs_build_trace_ios();
2923
2924         err = init_inodecache();
2925         if (err)
2926                 goto fail;
2927         err = create_node_manager_caches();
2928         if (err)
2929                 goto free_inodecache;
2930         err = create_segment_manager_caches();
2931         if (err)
2932                 goto free_node_manager_caches;
2933         err = create_checkpoint_caches();
2934         if (err)
2935                 goto free_segment_manager_caches;
2936         err = create_extent_cache();
2937         if (err)
2938                 goto free_checkpoint_caches;
2939         err = f2fs_init_sysfs();
2940         if (err)
2941                 goto free_extent_cache;
2942         err = register_shrinker(&f2fs_shrinker_info);
2943         if (err)
2944                 goto free_sysfs;
2945         err = register_filesystem(&f2fs_fs_type);
2946         if (err)
2947                 goto free_shrinker;
2948         err = f2fs_create_root_stats();
2949         if (err)
2950                 goto free_filesystem;
2951         return 0;
2952
2953 free_filesystem:
2954         unregister_filesystem(&f2fs_fs_type);
2955 free_shrinker:
2956         unregister_shrinker(&f2fs_shrinker_info);
2957 free_sysfs:
2958         f2fs_exit_sysfs();
2959 free_extent_cache:
2960         destroy_extent_cache();
2961 free_checkpoint_caches:
2962         destroy_checkpoint_caches();
2963 free_segment_manager_caches:
2964         destroy_segment_manager_caches();
2965 free_node_manager_caches:
2966         destroy_node_manager_caches();
2967 free_inodecache:
2968         destroy_inodecache();
2969 fail:
2970         return err;
2971 }
2972
2973 static void __exit exit_f2fs_fs(void)
2974 {
2975         f2fs_destroy_root_stats();
2976         unregister_filesystem(&f2fs_fs_type);
2977         unregister_shrinker(&f2fs_shrinker_info);
2978         f2fs_exit_sysfs();
2979         destroy_extent_cache();
2980         destroy_checkpoint_caches();
2981         destroy_segment_manager_caches();
2982         destroy_node_manager_caches();
2983         destroy_inodecache();
2984         f2fs_destroy_trace_ios();
2985 }
2986
2987 module_init(init_f2fs_fs)
2988 module_exit(exit_f2fs_fs)
2989
2990 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
2991 MODULE_DESCRIPTION("Flash Friendly File System");
2992 MODULE_LICENSE("GPL");
2993