55203f6a4e8b196a615aa480303c4d5f13eb67ed
[linux-2.6-microblaze.git] / fs / f2fs / super.c
1 /*
2  * fs/f2fs/super.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/fs.h>
14 #include <linux/statfs.h>
15 #include <linux/buffer_head.h>
16 #include <linux/backing-dev.h>
17 #include <linux/kthread.h>
18 #include <linux/parser.h>
19 #include <linux/mount.h>
20 #include <linux/seq_file.h>
21 #include <linux/proc_fs.h>
22 #include <linux/random.h>
23 #include <linux/exportfs.h>
24 #include <linux/blkdev.h>
25 #include <linux/f2fs_fs.h>
26 #include <linux/sysfs.h>
27
28 #include "f2fs.h"
29 #include "node.h"
30 #include "segment.h"
31 #include "xattr.h"
32 #include "gc.h"
33 #include "trace.h"
34
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/f2fs.h>
37
38 static struct proc_dir_entry *f2fs_proc_root;
39 static struct kmem_cache *f2fs_inode_cachep;
40 static struct kset *f2fs_kset;
41
42 #ifdef CONFIG_F2FS_FAULT_INJECTION
43 struct f2fs_fault_info f2fs_fault;
44
45 char *fault_name[FAULT_MAX] = {
46         [FAULT_KMALLOC]         = "kmalloc",
47         [FAULT_PAGE_ALLOC]      = "page alloc",
48         [FAULT_ALLOC_NID]       = "alloc nid",
49         [FAULT_ORPHAN]          = "orphan",
50         [FAULT_BLOCK]           = "no more block",
51         [FAULT_DIR_DEPTH]       = "too big dir depth",
52 };
53
54 static void f2fs_build_fault_attr(unsigned int rate)
55 {
56         if (rate) {
57                 atomic_set(&f2fs_fault.inject_ops, 0);
58                 f2fs_fault.inject_rate = rate;
59                 f2fs_fault.inject_type = (1 << FAULT_MAX) - 1;
60         } else {
61                 memset(&f2fs_fault, 0, sizeof(struct f2fs_fault_info));
62         }
63 }
64 #endif
65
66 /* f2fs-wide shrinker description */
67 static struct shrinker f2fs_shrinker_info = {
68         .scan_objects = f2fs_shrink_scan,
69         .count_objects = f2fs_shrink_count,
70         .seeks = DEFAULT_SEEKS,
71 };
72
73 enum {
74         Opt_gc_background,
75         Opt_disable_roll_forward,
76         Opt_norecovery,
77         Opt_discard,
78         Opt_noheap,
79         Opt_user_xattr,
80         Opt_nouser_xattr,
81         Opt_acl,
82         Opt_noacl,
83         Opt_active_logs,
84         Opt_disable_ext_identify,
85         Opt_inline_xattr,
86         Opt_inline_data,
87         Opt_inline_dentry,
88         Opt_flush_merge,
89         Opt_noflush_merge,
90         Opt_nobarrier,
91         Opt_fastboot,
92         Opt_extent_cache,
93         Opt_noextent_cache,
94         Opt_noinline_data,
95         Opt_data_flush,
96         Opt_fault_injection,
97         Opt_lazytime,
98         Opt_nolazytime,
99         Opt_err,
100 };
101
102 static match_table_t f2fs_tokens = {
103         {Opt_gc_background, "background_gc=%s"},
104         {Opt_disable_roll_forward, "disable_roll_forward"},
105         {Opt_norecovery, "norecovery"},
106         {Opt_discard, "discard"},
107         {Opt_noheap, "no_heap"},
108         {Opt_user_xattr, "user_xattr"},
109         {Opt_nouser_xattr, "nouser_xattr"},
110         {Opt_acl, "acl"},
111         {Opt_noacl, "noacl"},
112         {Opt_active_logs, "active_logs=%u"},
113         {Opt_disable_ext_identify, "disable_ext_identify"},
114         {Opt_inline_xattr, "inline_xattr"},
115         {Opt_inline_data, "inline_data"},
116         {Opt_inline_dentry, "inline_dentry"},
117         {Opt_flush_merge, "flush_merge"},
118         {Opt_noflush_merge, "noflush_merge"},
119         {Opt_nobarrier, "nobarrier"},
120         {Opt_fastboot, "fastboot"},
121         {Opt_extent_cache, "extent_cache"},
122         {Opt_noextent_cache, "noextent_cache"},
123         {Opt_noinline_data, "noinline_data"},
124         {Opt_data_flush, "data_flush"},
125         {Opt_fault_injection, "fault_injection=%u"},
126         {Opt_lazytime, "lazytime"},
127         {Opt_nolazytime, "nolazytime"},
128         {Opt_err, NULL},
129 };
130
131 /* Sysfs support for f2fs */
132 enum {
133         GC_THREAD,      /* struct f2fs_gc_thread */
134         SM_INFO,        /* struct f2fs_sm_info */
135         NM_INFO,        /* struct f2fs_nm_info */
136         F2FS_SBI,       /* struct f2fs_sb_info */
137 #ifdef CONFIG_F2FS_FAULT_INJECTION
138         FAULT_INFO_RATE,        /* struct f2fs_fault_info */
139         FAULT_INFO_TYPE,        /* struct f2fs_fault_info */
140 #endif
141 };
142
143 struct f2fs_attr {
144         struct attribute attr;
145         ssize_t (*show)(struct f2fs_attr *, struct f2fs_sb_info *, char *);
146         ssize_t (*store)(struct f2fs_attr *, struct f2fs_sb_info *,
147                          const char *, size_t);
148         int struct_type;
149         int offset;
150 };
151
152 static unsigned char *__struct_ptr(struct f2fs_sb_info *sbi, int struct_type)
153 {
154         if (struct_type == GC_THREAD)
155                 return (unsigned char *)sbi->gc_thread;
156         else if (struct_type == SM_INFO)
157                 return (unsigned char *)SM_I(sbi);
158         else if (struct_type == NM_INFO)
159                 return (unsigned char *)NM_I(sbi);
160         else if (struct_type == F2FS_SBI)
161                 return (unsigned char *)sbi;
162 #ifdef CONFIG_F2FS_FAULT_INJECTION
163         else if (struct_type == FAULT_INFO_RATE ||
164                                         struct_type == FAULT_INFO_TYPE)
165                 return (unsigned char *)&f2fs_fault;
166 #endif
167         return NULL;
168 }
169
170 static ssize_t lifetime_write_kbytes_show(struct f2fs_attr *a,
171                 struct f2fs_sb_info *sbi, char *buf)
172 {
173         struct super_block *sb = sbi->sb;
174
175         if (!sb->s_bdev->bd_part)
176                 return snprintf(buf, PAGE_SIZE, "0\n");
177
178         return snprintf(buf, PAGE_SIZE, "%llu\n",
179                 (unsigned long long)(sbi->kbytes_written +
180                         BD_PART_WRITTEN(sbi)));
181 }
182
183 static ssize_t f2fs_sbi_show(struct f2fs_attr *a,
184                         struct f2fs_sb_info *sbi, char *buf)
185 {
186         unsigned char *ptr = NULL;
187         unsigned int *ui;
188
189         ptr = __struct_ptr(sbi, a->struct_type);
190         if (!ptr)
191                 return -EINVAL;
192
193         ui = (unsigned int *)(ptr + a->offset);
194
195         return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
196 }
197
198 static ssize_t f2fs_sbi_store(struct f2fs_attr *a,
199                         struct f2fs_sb_info *sbi,
200                         const char *buf, size_t count)
201 {
202         unsigned char *ptr;
203         unsigned long t;
204         unsigned int *ui;
205         ssize_t ret;
206
207         ptr = __struct_ptr(sbi, a->struct_type);
208         if (!ptr)
209                 return -EINVAL;
210
211         ui = (unsigned int *)(ptr + a->offset);
212
213         ret = kstrtoul(skip_spaces(buf), 0, &t);
214         if (ret < 0)
215                 return ret;
216 #ifdef CONFIG_F2FS_FAULT_INJECTION
217         if (a->struct_type == FAULT_INFO_TYPE && t >= (1 << FAULT_MAX))
218                 return -EINVAL;
219 #endif
220         *ui = t;
221         return count;
222 }
223
224 static ssize_t f2fs_attr_show(struct kobject *kobj,
225                                 struct attribute *attr, char *buf)
226 {
227         struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
228                                                                 s_kobj);
229         struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
230
231         return a->show ? a->show(a, sbi, buf) : 0;
232 }
233
234 static ssize_t f2fs_attr_store(struct kobject *kobj, struct attribute *attr,
235                                                 const char *buf, size_t len)
236 {
237         struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
238                                                                         s_kobj);
239         struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
240
241         return a->store ? a->store(a, sbi, buf, len) : 0;
242 }
243
244 static void f2fs_sb_release(struct kobject *kobj)
245 {
246         struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
247                                                                 s_kobj);
248         complete(&sbi->s_kobj_unregister);
249 }
250
251 #define F2FS_ATTR_OFFSET(_struct_type, _name, _mode, _show, _store, _offset) \
252 static struct f2fs_attr f2fs_attr_##_name = {                   \
253         .attr = {.name = __stringify(_name), .mode = _mode },   \
254         .show   = _show,                                        \
255         .store  = _store,                                       \
256         .struct_type = _struct_type,                            \
257         .offset = _offset                                       \
258 }
259
260 #define F2FS_RW_ATTR(struct_type, struct_name, name, elname)    \
261         F2FS_ATTR_OFFSET(struct_type, name, 0644,               \
262                 f2fs_sbi_show, f2fs_sbi_store,                  \
263                 offsetof(struct struct_name, elname))
264
265 #define F2FS_GENERAL_RO_ATTR(name) \
266 static struct f2fs_attr f2fs_attr_##name = __ATTR(name, 0444, name##_show, NULL)
267
268 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_min_sleep_time, min_sleep_time);
269 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_max_sleep_time, max_sleep_time);
270 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_no_gc_sleep_time, no_gc_sleep_time);
271 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_idle, gc_idle);
272 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, reclaim_segments, rec_prefree_segments);
273 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, max_small_discards, max_discards);
274 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, batched_trim_sections, trim_sections);
275 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, ipu_policy, ipu_policy);
276 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_ipu_util, min_ipu_util);
277 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_fsync_blocks, min_fsync_blocks);
278 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ram_thresh, ram_thresh);
279 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ra_nid_pages, ra_nid_pages);
280 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, dirty_nats_ratio, dirty_nats_ratio);
281 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, max_victim_search, max_victim_search);
282 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, dir_level, dir_level);
283 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, cp_interval, interval_time[CP_TIME]);
284 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, idle_interval, interval_time[REQ_TIME]);
285 #ifdef CONFIG_F2FS_FAULT_INJECTION
286 F2FS_RW_ATTR(FAULT_INFO_RATE, f2fs_fault_info, inject_rate, inject_rate);
287 F2FS_RW_ATTR(FAULT_INFO_TYPE, f2fs_fault_info, inject_type, inject_type);
288 #endif
289 F2FS_GENERAL_RO_ATTR(lifetime_write_kbytes);
290
291 #define ATTR_LIST(name) (&f2fs_attr_##name.attr)
292 static struct attribute *f2fs_attrs[] = {
293         ATTR_LIST(gc_min_sleep_time),
294         ATTR_LIST(gc_max_sleep_time),
295         ATTR_LIST(gc_no_gc_sleep_time),
296         ATTR_LIST(gc_idle),
297         ATTR_LIST(reclaim_segments),
298         ATTR_LIST(max_small_discards),
299         ATTR_LIST(batched_trim_sections),
300         ATTR_LIST(ipu_policy),
301         ATTR_LIST(min_ipu_util),
302         ATTR_LIST(min_fsync_blocks),
303         ATTR_LIST(max_victim_search),
304         ATTR_LIST(dir_level),
305         ATTR_LIST(ram_thresh),
306         ATTR_LIST(ra_nid_pages),
307         ATTR_LIST(dirty_nats_ratio),
308         ATTR_LIST(cp_interval),
309         ATTR_LIST(idle_interval),
310         ATTR_LIST(lifetime_write_kbytes),
311         NULL,
312 };
313
314 static const struct sysfs_ops f2fs_attr_ops = {
315         .show   = f2fs_attr_show,
316         .store  = f2fs_attr_store,
317 };
318
319 static struct kobj_type f2fs_ktype = {
320         .default_attrs  = f2fs_attrs,
321         .sysfs_ops      = &f2fs_attr_ops,
322         .release        = f2fs_sb_release,
323 };
324
325 #ifdef CONFIG_F2FS_FAULT_INJECTION
326 /* sysfs for f2fs fault injection */
327 static struct kobject f2fs_fault_inject;
328
329 static struct attribute *f2fs_fault_attrs[] = {
330         ATTR_LIST(inject_rate),
331         ATTR_LIST(inject_type),
332         NULL
333 };
334
335 static struct kobj_type f2fs_fault_ktype = {
336         .default_attrs  = f2fs_fault_attrs,
337         .sysfs_ops      = &f2fs_attr_ops,
338 };
339 #endif
340
341 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
342 {
343         struct va_format vaf;
344         va_list args;
345
346         va_start(args, fmt);
347         vaf.fmt = fmt;
348         vaf.va = &args;
349         printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
350         va_end(args);
351 }
352
353 static void init_once(void *foo)
354 {
355         struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
356
357         inode_init_once(&fi->vfs_inode);
358 }
359
360 static int parse_options(struct super_block *sb, char *options)
361 {
362         struct f2fs_sb_info *sbi = F2FS_SB(sb);
363         struct request_queue *q;
364         substring_t args[MAX_OPT_ARGS];
365         char *p, *name;
366         int arg = 0;
367
368 #ifdef CONFIG_F2FS_FAULT_INJECTION
369         f2fs_build_fault_attr(0);
370 #endif
371
372         if (!options)
373                 return 0;
374
375         while ((p = strsep(&options, ",")) != NULL) {
376                 int token;
377                 if (!*p)
378                         continue;
379                 /*
380                  * Initialize args struct so we know whether arg was
381                  * found; some options take optional arguments.
382                  */
383                 args[0].to = args[0].from = NULL;
384                 token = match_token(p, f2fs_tokens, args);
385
386                 switch (token) {
387                 case Opt_gc_background:
388                         name = match_strdup(&args[0]);
389
390                         if (!name)
391                                 return -ENOMEM;
392                         if (strlen(name) == 2 && !strncmp(name, "on", 2)) {
393                                 set_opt(sbi, BG_GC);
394                                 clear_opt(sbi, FORCE_FG_GC);
395                         } else if (strlen(name) == 3 && !strncmp(name, "off", 3)) {
396                                 clear_opt(sbi, BG_GC);
397                                 clear_opt(sbi, FORCE_FG_GC);
398                         } else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) {
399                                 set_opt(sbi, BG_GC);
400                                 set_opt(sbi, FORCE_FG_GC);
401                         } else {
402                                 kfree(name);
403                                 return -EINVAL;
404                         }
405                         kfree(name);
406                         break;
407                 case Opt_disable_roll_forward:
408                         set_opt(sbi, DISABLE_ROLL_FORWARD);
409                         break;
410                 case Opt_norecovery:
411                         /* this option mounts f2fs with ro */
412                         set_opt(sbi, DISABLE_ROLL_FORWARD);
413                         if (!f2fs_readonly(sb))
414                                 return -EINVAL;
415                         break;
416                 case Opt_discard:
417                         q = bdev_get_queue(sb->s_bdev);
418                         if (blk_queue_discard(q)) {
419                                 set_opt(sbi, DISCARD);
420                         } else {
421                                 f2fs_msg(sb, KERN_WARNING,
422                                         "mounting with \"discard\" option, but "
423                                         "the device does not support discard");
424                         }
425                         break;
426                 case Opt_noheap:
427                         set_opt(sbi, NOHEAP);
428                         break;
429 #ifdef CONFIG_F2FS_FS_XATTR
430                 case Opt_user_xattr:
431                         set_opt(sbi, XATTR_USER);
432                         break;
433                 case Opt_nouser_xattr:
434                         clear_opt(sbi, XATTR_USER);
435                         break;
436                 case Opt_inline_xattr:
437                         set_opt(sbi, INLINE_XATTR);
438                         break;
439 #else
440                 case Opt_user_xattr:
441                         f2fs_msg(sb, KERN_INFO,
442                                 "user_xattr options not supported");
443                         break;
444                 case Opt_nouser_xattr:
445                         f2fs_msg(sb, KERN_INFO,
446                                 "nouser_xattr options not supported");
447                         break;
448                 case Opt_inline_xattr:
449                         f2fs_msg(sb, KERN_INFO,
450                                 "inline_xattr options not supported");
451                         break;
452 #endif
453 #ifdef CONFIG_F2FS_FS_POSIX_ACL
454                 case Opt_acl:
455                         set_opt(sbi, POSIX_ACL);
456                         break;
457                 case Opt_noacl:
458                         clear_opt(sbi, POSIX_ACL);
459                         break;
460 #else
461                 case Opt_acl:
462                         f2fs_msg(sb, KERN_INFO, "acl options not supported");
463                         break;
464                 case Opt_noacl:
465                         f2fs_msg(sb, KERN_INFO, "noacl options not supported");
466                         break;
467 #endif
468                 case Opt_active_logs:
469                         if (args->from && match_int(args, &arg))
470                                 return -EINVAL;
471                         if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
472                                 return -EINVAL;
473                         sbi->active_logs = arg;
474                         break;
475                 case Opt_disable_ext_identify:
476                         set_opt(sbi, DISABLE_EXT_IDENTIFY);
477                         break;
478                 case Opt_inline_data:
479                         set_opt(sbi, INLINE_DATA);
480                         break;
481                 case Opt_inline_dentry:
482                         set_opt(sbi, INLINE_DENTRY);
483                         break;
484                 case Opt_flush_merge:
485                         set_opt(sbi, FLUSH_MERGE);
486                         break;
487                 case Opt_noflush_merge:
488                         clear_opt(sbi, FLUSH_MERGE);
489                         break;
490                 case Opt_nobarrier:
491                         set_opt(sbi, NOBARRIER);
492                         break;
493                 case Opt_fastboot:
494                         set_opt(sbi, FASTBOOT);
495                         break;
496                 case Opt_extent_cache:
497                         set_opt(sbi, EXTENT_CACHE);
498                         break;
499                 case Opt_noextent_cache:
500                         clear_opt(sbi, EXTENT_CACHE);
501                         break;
502                 case Opt_noinline_data:
503                         clear_opt(sbi, INLINE_DATA);
504                         break;
505                 case Opt_data_flush:
506                         set_opt(sbi, DATA_FLUSH);
507                         break;
508                 case Opt_fault_injection:
509                         if (args->from && match_int(args, &arg))
510                                 return -EINVAL;
511 #ifdef CONFIG_F2FS_FAULT_INJECTION
512                         f2fs_build_fault_attr(arg);
513 #else
514                         f2fs_msg(sb, KERN_INFO,
515                                 "FAULT_INJECTION was not selected");
516 #endif
517                         break;
518                 case Opt_lazytime:
519                         sb->s_flags |= MS_LAZYTIME;
520                         break;
521                 case Opt_nolazytime:
522                         sb->s_flags &= ~MS_LAZYTIME;
523                         break;
524                 default:
525                         f2fs_msg(sb, KERN_ERR,
526                                 "Unrecognized mount option \"%s\" or missing value",
527                                 p);
528                         return -EINVAL;
529                 }
530         }
531         return 0;
532 }
533
534 static struct inode *f2fs_alloc_inode(struct super_block *sb)
535 {
536         struct f2fs_inode_info *fi;
537
538         fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
539         if (!fi)
540                 return NULL;
541
542         init_once((void *) fi);
543
544         if (percpu_counter_init(&fi->dirty_pages, 0, GFP_NOFS)) {
545                 kmem_cache_free(f2fs_inode_cachep, fi);
546                 return NULL;
547         }
548
549         /* Initialize f2fs-specific inode info */
550         fi->vfs_inode.i_version = 1;
551         fi->i_current_depth = 1;
552         fi->i_advise = 0;
553         init_rwsem(&fi->i_sem);
554         INIT_LIST_HEAD(&fi->dirty_list);
555         INIT_LIST_HEAD(&fi->gdirty_list);
556         INIT_LIST_HEAD(&fi->inmem_pages);
557         mutex_init(&fi->inmem_lock);
558
559         /* Will be used by directory only */
560         fi->i_dir_level = F2FS_SB(sb)->dir_level;
561         return &fi->vfs_inode;
562 }
563
564 static int f2fs_drop_inode(struct inode *inode)
565 {
566         int ret;
567
568         /*
569          * This is to avoid a deadlock condition like below.
570          * writeback_single_inode(inode)
571          *  - f2fs_write_data_page
572          *    - f2fs_gc -> iput -> evict
573          *       - inode_wait_for_writeback(inode)
574          */
575         if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) {
576                 if (!inode->i_nlink && !is_bad_inode(inode)) {
577                         /* to avoid evict_inode call simultaneously */
578                         atomic_inc(&inode->i_count);
579                         spin_unlock(&inode->i_lock);
580
581                         /* some remained atomic pages should discarded */
582                         if (f2fs_is_atomic_file(inode))
583                                 drop_inmem_pages(inode);
584
585                         /* should remain fi->extent_tree for writepage */
586                         f2fs_destroy_extent_node(inode);
587
588                         sb_start_intwrite(inode->i_sb);
589                         f2fs_i_size_write(inode, 0);
590
591                         if (F2FS_HAS_BLOCKS(inode))
592                                 f2fs_truncate(inode, true);
593
594                         sb_end_intwrite(inode->i_sb);
595
596                         fscrypt_put_encryption_info(inode, NULL);
597                         spin_lock(&inode->i_lock);
598                         atomic_dec(&inode->i_count);
599                 }
600                 return 0;
601         }
602
603         ret = generic_drop_inode(inode);
604         if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
605                 if (ret)
606                         inode->i_state |= I_WILL_FREE;
607                 spin_unlock(&inode->i_lock);
608
609                 update_inode_page(inode);
610
611                 spin_lock(&inode->i_lock);
612                 if (ret)
613                         inode->i_state &= ~I_WILL_FREE;
614         }
615         return ret;
616 }
617
618 /*
619  * f2fs_dirty_inode() is called from __mark_inode_dirty()
620  *
621  * We should call set_dirty_inode to write the dirty inode through write_inode.
622  */
623 static void f2fs_dirty_inode(struct inode *inode, int flags)
624 {
625         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
626
627         if (inode->i_ino == F2FS_NODE_INO(sbi) ||
628                         inode->i_ino == F2FS_META_INO(sbi))
629                 return;
630
631         if (flags == I_DIRTY_TIME)
632                 return;
633
634         if (is_inode_flag_set(inode, FI_AUTO_RECOVER))
635                 clear_inode_flag(inode, FI_AUTO_RECOVER);
636
637         spin_lock(&sbi->inode_lock[DIRTY_META]);
638         if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
639                 spin_unlock(&sbi->inode_lock[DIRTY_META]);
640                 return;
641         }
642
643         set_inode_flag(inode, FI_DIRTY_INODE);
644         list_add_tail(&F2FS_I(inode)->gdirty_list,
645                                 &sbi->inode_list[DIRTY_META]);
646         inc_page_count(sbi, F2FS_DIRTY_IMETA);
647         spin_unlock(&sbi->inode_lock[DIRTY_META]);
648         stat_inc_dirty_inode(sbi, DIRTY_META);
649 }
650
651 void f2fs_inode_synced(struct inode *inode)
652 {
653         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
654
655         spin_lock(&sbi->inode_lock[DIRTY_META]);
656         if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) {
657                 spin_unlock(&sbi->inode_lock[DIRTY_META]);
658                 return;
659         }
660         list_del_init(&F2FS_I(inode)->gdirty_list);
661         clear_inode_flag(inode, FI_DIRTY_INODE);
662         clear_inode_flag(inode, FI_AUTO_RECOVER);
663         dec_page_count(sbi, F2FS_DIRTY_IMETA);
664         spin_unlock(&sbi->inode_lock[DIRTY_META]);
665         stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META);
666 }
667
668 static void f2fs_i_callback(struct rcu_head *head)
669 {
670         struct inode *inode = container_of(head, struct inode, i_rcu);
671         kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
672 }
673
674 static void f2fs_destroy_inode(struct inode *inode)
675 {
676         percpu_counter_destroy(&F2FS_I(inode)->dirty_pages);
677         call_rcu(&inode->i_rcu, f2fs_i_callback);
678 }
679
680 static void destroy_percpu_info(struct f2fs_sb_info *sbi)
681 {
682         int i;
683
684         for (i = 0; i < NR_COUNT_TYPE; i++)
685                 percpu_counter_destroy(&sbi->nr_pages[i]);
686         percpu_counter_destroy(&sbi->alloc_valid_block_count);
687         percpu_counter_destroy(&sbi->total_valid_inode_count);
688 }
689
690 static void f2fs_put_super(struct super_block *sb)
691 {
692         struct f2fs_sb_info *sbi = F2FS_SB(sb);
693
694         if (sbi->s_proc) {
695                 remove_proc_entry("segment_info", sbi->s_proc);
696                 remove_proc_entry("segment_bits", sbi->s_proc);
697                 remove_proc_entry(sb->s_id, f2fs_proc_root);
698         }
699         kobject_del(&sbi->s_kobj);
700
701         stop_gc_thread(sbi);
702
703         /* prevent remaining shrinker jobs */
704         mutex_lock(&sbi->umount_mutex);
705
706         /*
707          * We don't need to do checkpoint when superblock is clean.
708          * But, the previous checkpoint was not done by umount, it needs to do
709          * clean checkpoint again.
710          */
711         if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
712                         !is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG)) {
713                 struct cp_control cpc = {
714                         .reason = CP_UMOUNT,
715                 };
716                 write_checkpoint(sbi, &cpc);
717         }
718
719         /* write_checkpoint can update stat informaion */
720         f2fs_destroy_stats(sbi);
721
722         /*
723          * normally superblock is clean, so we need to release this.
724          * In addition, EIO will skip do checkpoint, we need this as well.
725          */
726         release_ino_entry(sbi, true);
727         release_discard_addrs(sbi);
728
729         f2fs_leave_shrinker(sbi);
730         mutex_unlock(&sbi->umount_mutex);
731
732         /* our cp_error case, we can wait for any writeback page */
733         f2fs_flush_merged_bios(sbi);
734
735         iput(sbi->node_inode);
736         iput(sbi->meta_inode);
737
738         /* destroy f2fs internal modules */
739         destroy_node_manager(sbi);
740         destroy_segment_manager(sbi);
741
742         kfree(sbi->ckpt);
743         kobject_put(&sbi->s_kobj);
744         wait_for_completion(&sbi->s_kobj_unregister);
745
746         sb->s_fs_info = NULL;
747         if (sbi->s_chksum_driver)
748                 crypto_free_shash(sbi->s_chksum_driver);
749         kfree(sbi->raw_super);
750
751         destroy_percpu_info(sbi);
752         kfree(sbi);
753 }
754
755 int f2fs_sync_fs(struct super_block *sb, int sync)
756 {
757         struct f2fs_sb_info *sbi = F2FS_SB(sb);
758         int err = 0;
759
760         trace_f2fs_sync_fs(sb, sync);
761
762         if (sync) {
763                 struct cp_control cpc;
764
765                 cpc.reason = __get_cp_reason(sbi);
766
767                 mutex_lock(&sbi->gc_mutex);
768                 err = write_checkpoint(sbi, &cpc);
769                 mutex_unlock(&sbi->gc_mutex);
770         }
771         f2fs_trace_ios(NULL, 1);
772
773         return err;
774 }
775
776 static int f2fs_freeze(struct super_block *sb)
777 {
778         int err;
779
780         if (f2fs_readonly(sb))
781                 return 0;
782
783         err = f2fs_sync_fs(sb, 1);
784         return err;
785 }
786
787 static int f2fs_unfreeze(struct super_block *sb)
788 {
789         return 0;
790 }
791
792 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
793 {
794         struct super_block *sb = dentry->d_sb;
795         struct f2fs_sb_info *sbi = F2FS_SB(sb);
796         u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
797         block_t total_count, user_block_count, start_count, ovp_count;
798
799         total_count = le64_to_cpu(sbi->raw_super->block_count);
800         user_block_count = sbi->user_block_count;
801         start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
802         ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg;
803         buf->f_type = F2FS_SUPER_MAGIC;
804         buf->f_bsize = sbi->blocksize;
805
806         buf->f_blocks = total_count - start_count;
807         buf->f_bfree = buf->f_blocks - valid_user_blocks(sbi) - ovp_count;
808         buf->f_bavail = user_block_count - valid_user_blocks(sbi);
809
810         buf->f_files = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
811         buf->f_ffree = buf->f_files - valid_inode_count(sbi);
812
813         buf->f_namelen = F2FS_NAME_LEN;
814         buf->f_fsid.val[0] = (u32)id;
815         buf->f_fsid.val[1] = (u32)(id >> 32);
816
817         return 0;
818 }
819
820 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
821 {
822         struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
823
824         if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) {
825                 if (test_opt(sbi, FORCE_FG_GC))
826                         seq_printf(seq, ",background_gc=%s", "sync");
827                 else
828                         seq_printf(seq, ",background_gc=%s", "on");
829         } else {
830                 seq_printf(seq, ",background_gc=%s", "off");
831         }
832         if (test_opt(sbi, DISABLE_ROLL_FORWARD))
833                 seq_puts(seq, ",disable_roll_forward");
834         if (test_opt(sbi, DISCARD))
835                 seq_puts(seq, ",discard");
836         if (test_opt(sbi, NOHEAP))
837                 seq_puts(seq, ",no_heap_alloc");
838 #ifdef CONFIG_F2FS_FS_XATTR
839         if (test_opt(sbi, XATTR_USER))
840                 seq_puts(seq, ",user_xattr");
841         else
842                 seq_puts(seq, ",nouser_xattr");
843         if (test_opt(sbi, INLINE_XATTR))
844                 seq_puts(seq, ",inline_xattr");
845 #endif
846 #ifdef CONFIG_F2FS_FS_POSIX_ACL
847         if (test_opt(sbi, POSIX_ACL))
848                 seq_puts(seq, ",acl");
849         else
850                 seq_puts(seq, ",noacl");
851 #endif
852         if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
853                 seq_puts(seq, ",disable_ext_identify");
854         if (test_opt(sbi, INLINE_DATA))
855                 seq_puts(seq, ",inline_data");
856         else
857                 seq_puts(seq, ",noinline_data");
858         if (test_opt(sbi, INLINE_DENTRY))
859                 seq_puts(seq, ",inline_dentry");
860         if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
861                 seq_puts(seq, ",flush_merge");
862         if (test_opt(sbi, NOBARRIER))
863                 seq_puts(seq, ",nobarrier");
864         if (test_opt(sbi, FASTBOOT))
865                 seq_puts(seq, ",fastboot");
866         if (test_opt(sbi, EXTENT_CACHE))
867                 seq_puts(seq, ",extent_cache");
868         else
869                 seq_puts(seq, ",noextent_cache");
870         if (test_opt(sbi, DATA_FLUSH))
871                 seq_puts(seq, ",data_flush");
872         seq_printf(seq, ",active_logs=%u", sbi->active_logs);
873
874         return 0;
875 }
876
877 static int segment_info_seq_show(struct seq_file *seq, void *offset)
878 {
879         struct super_block *sb = seq->private;
880         struct f2fs_sb_info *sbi = F2FS_SB(sb);
881         unsigned int total_segs =
882                         le32_to_cpu(sbi->raw_super->segment_count_main);
883         int i;
884
885         seq_puts(seq, "format: segment_type|valid_blocks\n"
886                 "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
887
888         for (i = 0; i < total_segs; i++) {
889                 struct seg_entry *se = get_seg_entry(sbi, i);
890
891                 if ((i % 10) == 0)
892                         seq_printf(seq, "%-10d", i);
893                 seq_printf(seq, "%d|%-3u", se->type,
894                                         get_valid_blocks(sbi, i, 1));
895                 if ((i % 10) == 9 || i == (total_segs - 1))
896                         seq_putc(seq, '\n');
897                 else
898                         seq_putc(seq, ' ');
899         }
900
901         return 0;
902 }
903
904 static int segment_bits_seq_show(struct seq_file *seq, void *offset)
905 {
906         struct super_block *sb = seq->private;
907         struct f2fs_sb_info *sbi = F2FS_SB(sb);
908         unsigned int total_segs =
909                         le32_to_cpu(sbi->raw_super->segment_count_main);
910         int i, j;
911
912         seq_puts(seq, "format: segment_type|valid_blocks|bitmaps\n"
913                 "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
914
915         for (i = 0; i < total_segs; i++) {
916                 struct seg_entry *se = get_seg_entry(sbi, i);
917
918                 seq_printf(seq, "%-10d", i);
919                 seq_printf(seq, "%d|%-3u|", se->type,
920                                         get_valid_blocks(sbi, i, 1));
921                 for (j = 0; j < SIT_VBLOCK_MAP_SIZE; j++)
922                         seq_printf(seq, "%x ", se->cur_valid_map[j]);
923                 seq_putc(seq, '\n');
924         }
925         return 0;
926 }
927
928 #define F2FS_PROC_FILE_DEF(_name)                                       \
929 static int _name##_open_fs(struct inode *inode, struct file *file)      \
930 {                                                                       \
931         return single_open(file, _name##_seq_show, PDE_DATA(inode));    \
932 }                                                                       \
933                                                                         \
934 static const struct file_operations f2fs_seq_##_name##_fops = {         \
935         .owner = THIS_MODULE,                                           \
936         .open = _name##_open_fs,                                        \
937         .read = seq_read,                                               \
938         .llseek = seq_lseek,                                            \
939         .release = single_release,                                      \
940 };
941
942 F2FS_PROC_FILE_DEF(segment_info);
943 F2FS_PROC_FILE_DEF(segment_bits);
944
945 static void default_options(struct f2fs_sb_info *sbi)
946 {
947         /* init some FS parameters */
948         sbi->active_logs = NR_CURSEG_TYPE;
949
950         set_opt(sbi, BG_GC);
951         set_opt(sbi, INLINE_DATA);
952         set_opt(sbi, EXTENT_CACHE);
953         sbi->sb->s_flags |= MS_LAZYTIME;
954         set_opt(sbi, FLUSH_MERGE);
955
956 #ifdef CONFIG_F2FS_FS_XATTR
957         set_opt(sbi, XATTR_USER);
958 #endif
959 #ifdef CONFIG_F2FS_FS_POSIX_ACL
960         set_opt(sbi, POSIX_ACL);
961 #endif
962 }
963
964 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
965 {
966         struct f2fs_sb_info *sbi = F2FS_SB(sb);
967         struct f2fs_mount_info org_mount_opt;
968         int err, active_logs;
969         bool need_restart_gc = false;
970         bool need_stop_gc = false;
971         bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
972
973         /*
974          * Save the old mount options in case we
975          * need to restore them.
976          */
977         org_mount_opt = sbi->mount_opt;
978         active_logs = sbi->active_logs;
979
980         /* recover superblocks we couldn't write due to previous RO mount */
981         if (!(*flags & MS_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
982                 err = f2fs_commit_super(sbi, false);
983                 f2fs_msg(sb, KERN_INFO,
984                         "Try to recover all the superblocks, ret: %d", err);
985                 if (!err)
986                         clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
987         }
988
989         sbi->mount_opt.opt = 0;
990         default_options(sbi);
991
992         /* parse mount options */
993         err = parse_options(sb, data);
994         if (err)
995                 goto restore_opts;
996
997         /*
998          * Previous and new state of filesystem is RO,
999          * so skip checking GC and FLUSH_MERGE conditions.
1000          */
1001         if (f2fs_readonly(sb) && (*flags & MS_RDONLY))
1002                 goto skip;
1003
1004         /* disallow enable/disable extent_cache dynamically */
1005         if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
1006                 err = -EINVAL;
1007                 f2fs_msg(sbi->sb, KERN_WARNING,
1008                                 "switch extent_cache option is not allowed");
1009                 goto restore_opts;
1010         }
1011
1012         /*
1013          * We stop the GC thread if FS is mounted as RO
1014          * or if background_gc = off is passed in mount
1015          * option. Also sync the filesystem.
1016          */
1017         if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) {
1018                 if (sbi->gc_thread) {
1019                         stop_gc_thread(sbi);
1020                         need_restart_gc = true;
1021                 }
1022         } else if (!sbi->gc_thread) {
1023                 err = start_gc_thread(sbi);
1024                 if (err)
1025                         goto restore_opts;
1026                 need_stop_gc = true;
1027         }
1028
1029         if (*flags & MS_RDONLY) {
1030                 writeback_inodes_sb(sb, WB_REASON_SYNC);
1031                 sync_inodes_sb(sb);
1032
1033                 set_sbi_flag(sbi, SBI_IS_DIRTY);
1034                 set_sbi_flag(sbi, SBI_IS_CLOSE);
1035                 f2fs_sync_fs(sb, 1);
1036                 clear_sbi_flag(sbi, SBI_IS_CLOSE);
1037         }
1038
1039         /*
1040          * We stop issue flush thread if FS is mounted as RO
1041          * or if flush_merge is not passed in mount option.
1042          */
1043         if ((*flags & MS_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
1044                 destroy_flush_cmd_control(sbi);
1045         } else if (!SM_I(sbi)->cmd_control_info) {
1046                 err = create_flush_cmd_control(sbi);
1047                 if (err)
1048                         goto restore_gc;
1049         }
1050 skip:
1051         /* Update the POSIXACL Flag */
1052         sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
1053                 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
1054
1055         return 0;
1056 restore_gc:
1057         if (need_restart_gc) {
1058                 if (start_gc_thread(sbi))
1059                         f2fs_msg(sbi->sb, KERN_WARNING,
1060                                 "background gc thread has stopped");
1061         } else if (need_stop_gc) {
1062                 stop_gc_thread(sbi);
1063         }
1064 restore_opts:
1065         sbi->mount_opt = org_mount_opt;
1066         sbi->active_logs = active_logs;
1067         return err;
1068 }
1069
1070 static struct super_operations f2fs_sops = {
1071         .alloc_inode    = f2fs_alloc_inode,
1072         .drop_inode     = f2fs_drop_inode,
1073         .destroy_inode  = f2fs_destroy_inode,
1074         .write_inode    = f2fs_write_inode,
1075         .dirty_inode    = f2fs_dirty_inode,
1076         .show_options   = f2fs_show_options,
1077         .evict_inode    = f2fs_evict_inode,
1078         .put_super      = f2fs_put_super,
1079         .sync_fs        = f2fs_sync_fs,
1080         .freeze_fs      = f2fs_freeze,
1081         .unfreeze_fs    = f2fs_unfreeze,
1082         .statfs         = f2fs_statfs,
1083         .remount_fs     = f2fs_remount,
1084 };
1085
1086 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1087 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
1088 {
1089         return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1090                                 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1091                                 ctx, len, NULL);
1092 }
1093
1094 static int f2fs_key_prefix(struct inode *inode, u8 **key)
1095 {
1096         *key = F2FS_I_SB(inode)->key_prefix;
1097         return F2FS_I_SB(inode)->key_prefix_size;
1098 }
1099
1100 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
1101                                                         void *fs_data)
1102 {
1103         return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1104                                 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1105                                 ctx, len, fs_data, XATTR_CREATE);
1106 }
1107
1108 static unsigned f2fs_max_namelen(struct inode *inode)
1109 {
1110         return S_ISLNK(inode->i_mode) ?
1111                         inode->i_sb->s_blocksize : F2FS_NAME_LEN;
1112 }
1113
1114 static struct fscrypt_operations f2fs_cryptops = {
1115         .get_context    = f2fs_get_context,
1116         .key_prefix     = f2fs_key_prefix,
1117         .set_context    = f2fs_set_context,
1118         .is_encrypted   = f2fs_encrypted_inode,
1119         .empty_dir      = f2fs_empty_dir,
1120         .max_namelen    = f2fs_max_namelen,
1121 };
1122 #else
1123 static struct fscrypt_operations f2fs_cryptops = {
1124         .is_encrypted   = f2fs_encrypted_inode,
1125 };
1126 #endif
1127
1128 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
1129                 u64 ino, u32 generation)
1130 {
1131         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1132         struct inode *inode;
1133
1134         if (check_nid_range(sbi, ino))
1135                 return ERR_PTR(-ESTALE);
1136
1137         /*
1138          * f2fs_iget isn't quite right if the inode is currently unallocated!
1139          * However f2fs_iget currently does appropriate checks to handle stale
1140          * inodes so everything is OK.
1141          */
1142         inode = f2fs_iget(sb, ino);
1143         if (IS_ERR(inode))
1144                 return ERR_CAST(inode);
1145         if (unlikely(generation && inode->i_generation != generation)) {
1146                 /* we didn't find the right inode.. */
1147                 iput(inode);
1148                 return ERR_PTR(-ESTALE);
1149         }
1150         return inode;
1151 }
1152
1153 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1154                 int fh_len, int fh_type)
1155 {
1156         return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1157                                     f2fs_nfs_get_inode);
1158 }
1159
1160 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
1161                 int fh_len, int fh_type)
1162 {
1163         return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1164                                     f2fs_nfs_get_inode);
1165 }
1166
1167 static const struct export_operations f2fs_export_ops = {
1168         .fh_to_dentry = f2fs_fh_to_dentry,
1169         .fh_to_parent = f2fs_fh_to_parent,
1170         .get_parent = f2fs_get_parent,
1171 };
1172
1173 static loff_t max_file_blocks(void)
1174 {
1175         loff_t result = (DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS);
1176         loff_t leaf_count = ADDRS_PER_BLOCK;
1177
1178         /* two direct node blocks */
1179         result += (leaf_count * 2);
1180
1181         /* two indirect node blocks */
1182         leaf_count *= NIDS_PER_BLOCK;
1183         result += (leaf_count * 2);
1184
1185         /* one double indirect node block */
1186         leaf_count *= NIDS_PER_BLOCK;
1187         result += leaf_count;
1188
1189         return result;
1190 }
1191
1192 static int __f2fs_commit_super(struct buffer_head *bh,
1193                         struct f2fs_super_block *super)
1194 {
1195         lock_buffer(bh);
1196         if (super)
1197                 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
1198         set_buffer_uptodate(bh);
1199         set_buffer_dirty(bh);
1200         unlock_buffer(bh);
1201
1202         /* it's rare case, we can do fua all the time */
1203         return __sync_dirty_buffer(bh, WRITE_FLUSH_FUA);
1204 }
1205
1206 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
1207                                         struct buffer_head *bh)
1208 {
1209         struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
1210                                         (bh->b_data + F2FS_SUPER_OFFSET);
1211         struct super_block *sb = sbi->sb;
1212         u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
1213         u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
1214         u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
1215         u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
1216         u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
1217         u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
1218         u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
1219         u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
1220         u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
1221         u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
1222         u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
1223         u32 segment_count = le32_to_cpu(raw_super->segment_count);
1224         u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
1225         u64 main_end_blkaddr = main_blkaddr +
1226                                 (segment_count_main << log_blocks_per_seg);
1227         u64 seg_end_blkaddr = segment0_blkaddr +
1228                                 (segment_count << log_blocks_per_seg);
1229
1230         if (segment0_blkaddr != cp_blkaddr) {
1231                 f2fs_msg(sb, KERN_INFO,
1232                         "Mismatch start address, segment0(%u) cp_blkaddr(%u)",
1233                         segment0_blkaddr, cp_blkaddr);
1234                 return true;
1235         }
1236
1237         if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
1238                                                         sit_blkaddr) {
1239                 f2fs_msg(sb, KERN_INFO,
1240                         "Wrong CP boundary, start(%u) end(%u) blocks(%u)",
1241                         cp_blkaddr, sit_blkaddr,
1242                         segment_count_ckpt << log_blocks_per_seg);
1243                 return true;
1244         }
1245
1246         if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
1247                                                         nat_blkaddr) {
1248                 f2fs_msg(sb, KERN_INFO,
1249                         "Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
1250                         sit_blkaddr, nat_blkaddr,
1251                         segment_count_sit << log_blocks_per_seg);
1252                 return true;
1253         }
1254
1255         if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
1256                                                         ssa_blkaddr) {
1257                 f2fs_msg(sb, KERN_INFO,
1258                         "Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
1259                         nat_blkaddr, ssa_blkaddr,
1260                         segment_count_nat << log_blocks_per_seg);
1261                 return true;
1262         }
1263
1264         if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
1265                                                         main_blkaddr) {
1266                 f2fs_msg(sb, KERN_INFO,
1267                         "Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
1268                         ssa_blkaddr, main_blkaddr,
1269                         segment_count_ssa << log_blocks_per_seg);
1270                 return true;
1271         }
1272
1273         if (main_end_blkaddr > seg_end_blkaddr) {
1274                 f2fs_msg(sb, KERN_INFO,
1275                         "Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)",
1276                         main_blkaddr,
1277                         segment0_blkaddr +
1278                                 (segment_count << log_blocks_per_seg),
1279                         segment_count_main << log_blocks_per_seg);
1280                 return true;
1281         } else if (main_end_blkaddr < seg_end_blkaddr) {
1282                 int err = 0;
1283                 char *res;
1284
1285                 /* fix in-memory information all the time */
1286                 raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
1287                                 segment0_blkaddr) >> log_blocks_per_seg);
1288
1289                 if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
1290                         set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1291                         res = "internally";
1292                 } else {
1293                         err = __f2fs_commit_super(bh, NULL);
1294                         res = err ? "failed" : "done";
1295                 }
1296                 f2fs_msg(sb, KERN_INFO,
1297                         "Fix alignment : %s, start(%u) end(%u) block(%u)",
1298                         res, main_blkaddr,
1299                         segment0_blkaddr +
1300                                 (segment_count << log_blocks_per_seg),
1301                         segment_count_main << log_blocks_per_seg);
1302                 if (err)
1303                         return true;
1304         }
1305         return false;
1306 }
1307
1308 static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
1309                                 struct buffer_head *bh)
1310 {
1311         struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
1312                                         (bh->b_data + F2FS_SUPER_OFFSET);
1313         struct super_block *sb = sbi->sb;
1314         unsigned int blocksize;
1315
1316         if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
1317                 f2fs_msg(sb, KERN_INFO,
1318                         "Magic Mismatch, valid(0x%x) - read(0x%x)",
1319                         F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
1320                 return 1;
1321         }
1322
1323         /* Currently, support only 4KB page cache size */
1324         if (F2FS_BLKSIZE != PAGE_SIZE) {
1325                 f2fs_msg(sb, KERN_INFO,
1326                         "Invalid page_cache_size (%lu), supports only 4KB\n",
1327                         PAGE_SIZE);
1328                 return 1;
1329         }
1330
1331         /* Currently, support only 4KB block size */
1332         blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
1333         if (blocksize != F2FS_BLKSIZE) {
1334                 f2fs_msg(sb, KERN_INFO,
1335                         "Invalid blocksize (%u), supports only 4KB\n",
1336                         blocksize);
1337                 return 1;
1338         }
1339
1340         /* check log blocks per segment */
1341         if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
1342                 f2fs_msg(sb, KERN_INFO,
1343                         "Invalid log blocks per segment (%u)\n",
1344                         le32_to_cpu(raw_super->log_blocks_per_seg));
1345                 return 1;
1346         }
1347
1348         /* Currently, support 512/1024/2048/4096 bytes sector size */
1349         if (le32_to_cpu(raw_super->log_sectorsize) >
1350                                 F2FS_MAX_LOG_SECTOR_SIZE ||
1351                 le32_to_cpu(raw_super->log_sectorsize) <
1352                                 F2FS_MIN_LOG_SECTOR_SIZE) {
1353                 f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)",
1354                         le32_to_cpu(raw_super->log_sectorsize));
1355                 return 1;
1356         }
1357         if (le32_to_cpu(raw_super->log_sectors_per_block) +
1358                 le32_to_cpu(raw_super->log_sectorsize) !=
1359                         F2FS_MAX_LOG_SECTOR_SIZE) {
1360                 f2fs_msg(sb, KERN_INFO,
1361                         "Invalid log sectors per block(%u) log sectorsize(%u)",
1362                         le32_to_cpu(raw_super->log_sectors_per_block),
1363                         le32_to_cpu(raw_super->log_sectorsize));
1364                 return 1;
1365         }
1366
1367         /* check reserved ino info */
1368         if (le32_to_cpu(raw_super->node_ino) != 1 ||
1369                 le32_to_cpu(raw_super->meta_ino) != 2 ||
1370                 le32_to_cpu(raw_super->root_ino) != 3) {
1371                 f2fs_msg(sb, KERN_INFO,
1372                         "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
1373                         le32_to_cpu(raw_super->node_ino),
1374                         le32_to_cpu(raw_super->meta_ino),
1375                         le32_to_cpu(raw_super->root_ino));
1376                 return 1;
1377         }
1378
1379         /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
1380         if (sanity_check_area_boundary(sbi, bh))
1381                 return 1;
1382
1383         return 0;
1384 }
1385
1386 int sanity_check_ckpt(struct f2fs_sb_info *sbi)
1387 {
1388         unsigned int total, fsmeta;
1389         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1390         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1391
1392         total = le32_to_cpu(raw_super->segment_count);
1393         fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
1394         fsmeta += le32_to_cpu(raw_super->segment_count_sit);
1395         fsmeta += le32_to_cpu(raw_super->segment_count_nat);
1396         fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
1397         fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
1398
1399         if (unlikely(fsmeta >= total))
1400                 return 1;
1401
1402         if (unlikely(f2fs_cp_error(sbi))) {
1403                 f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
1404                 return 1;
1405         }
1406         return 0;
1407 }
1408
1409 static void init_sb_info(struct f2fs_sb_info *sbi)
1410 {
1411         struct f2fs_super_block *raw_super = sbi->raw_super;
1412
1413         sbi->log_sectors_per_block =
1414                 le32_to_cpu(raw_super->log_sectors_per_block);
1415         sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
1416         sbi->blocksize = 1 << sbi->log_blocksize;
1417         sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
1418         sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
1419         sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
1420         sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
1421         sbi->total_sections = le32_to_cpu(raw_super->section_count);
1422         sbi->total_node_count =
1423                 (le32_to_cpu(raw_super->segment_count_nat) / 2)
1424                         * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
1425         sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
1426         sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
1427         sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
1428         sbi->cur_victim_sec = NULL_SECNO;
1429         sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
1430
1431         sbi->dir_level = DEF_DIR_LEVEL;
1432         sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
1433         sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
1434         clear_sbi_flag(sbi, SBI_NEED_FSCK);
1435
1436         INIT_LIST_HEAD(&sbi->s_list);
1437         mutex_init(&sbi->umount_mutex);
1438
1439 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1440         memcpy(sbi->key_prefix, F2FS_KEY_DESC_PREFIX,
1441                                 F2FS_KEY_DESC_PREFIX_SIZE);
1442         sbi->key_prefix_size = F2FS_KEY_DESC_PREFIX_SIZE;
1443 #endif
1444 }
1445
1446 static int init_percpu_info(struct f2fs_sb_info *sbi)
1447 {
1448         int i, err;
1449
1450         for (i = 0; i < NR_COUNT_TYPE; i++) {
1451                 err = percpu_counter_init(&sbi->nr_pages[i], 0, GFP_KERNEL);
1452                 if (err)
1453                         return err;
1454         }
1455
1456         err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
1457         if (err)
1458                 return err;
1459
1460         return percpu_counter_init(&sbi->total_valid_inode_count, 0,
1461                                                                 GFP_KERNEL);
1462 }
1463
1464 /*
1465  * Read f2fs raw super block.
1466  * Because we have two copies of super block, so read both of them
1467  * to get the first valid one. If any one of them is broken, we pass
1468  * them recovery flag back to the caller.
1469  */
1470 static int read_raw_super_block(struct f2fs_sb_info *sbi,
1471                         struct f2fs_super_block **raw_super,
1472                         int *valid_super_block, int *recovery)
1473 {
1474         struct super_block *sb = sbi->sb;
1475         int block;
1476         struct buffer_head *bh;
1477         struct f2fs_super_block *super;
1478         int err = 0;
1479
1480         super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
1481         if (!super)
1482                 return -ENOMEM;
1483
1484         for (block = 0; block < 2; block++) {
1485                 bh = sb_bread(sb, block);
1486                 if (!bh) {
1487                         f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
1488                                 block + 1);
1489                         err = -EIO;
1490                         continue;
1491                 }
1492
1493                 /* sanity checking of raw super */
1494                 if (sanity_check_raw_super(sbi, bh)) {
1495                         f2fs_msg(sb, KERN_ERR,
1496                                 "Can't find valid F2FS filesystem in %dth superblock",
1497                                 block + 1);
1498                         err = -EINVAL;
1499                         brelse(bh);
1500                         continue;
1501                 }
1502
1503                 if (!*raw_super) {
1504                         memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
1505                                                         sizeof(*super));
1506                         *valid_super_block = block;
1507                         *raw_super = super;
1508                 }
1509                 brelse(bh);
1510         }
1511
1512         /* Fail to read any one of the superblocks*/
1513         if (err < 0)
1514                 *recovery = 1;
1515
1516         /* No valid superblock */
1517         if (!*raw_super)
1518                 kfree(super);
1519         else
1520                 err = 0;
1521
1522         return err;
1523 }
1524
1525 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
1526 {
1527         struct buffer_head *bh;
1528         int err;
1529
1530         if ((recover && f2fs_readonly(sbi->sb)) ||
1531                                 bdev_read_only(sbi->sb->s_bdev)) {
1532                 set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1533                 return -EROFS;
1534         }
1535
1536         /* write back-up superblock first */
1537         bh = sb_getblk(sbi->sb, sbi->valid_super_block ? 0: 1);
1538         if (!bh)
1539                 return -EIO;
1540         err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
1541         brelse(bh);
1542
1543         /* if we are in recovery path, skip writing valid superblock */
1544         if (recover || err)
1545                 return err;
1546
1547         /* write current valid superblock */
1548         bh = sb_getblk(sbi->sb, sbi->valid_super_block);
1549         if (!bh)
1550                 return -EIO;
1551         err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
1552         brelse(bh);
1553         return err;
1554 }
1555
1556 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
1557 {
1558         struct f2fs_sb_info *sbi;
1559         struct f2fs_super_block *raw_super;
1560         struct inode *root;
1561         int err;
1562         bool retry = true, need_fsck = false;
1563         char *options = NULL;
1564         int recovery, i, valid_super_block;
1565         struct curseg_info *seg_i;
1566
1567 try_onemore:
1568         err = -EINVAL;
1569         raw_super = NULL;
1570         valid_super_block = -1;
1571         recovery = 0;
1572
1573         /* allocate memory for f2fs-specific super block info */
1574         sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
1575         if (!sbi)
1576                 return -ENOMEM;
1577
1578         sbi->sb = sb;
1579
1580         /* Load the checksum driver */
1581         sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
1582         if (IS_ERR(sbi->s_chksum_driver)) {
1583                 f2fs_msg(sb, KERN_ERR, "Cannot load crc32 driver.");
1584                 err = PTR_ERR(sbi->s_chksum_driver);
1585                 sbi->s_chksum_driver = NULL;
1586                 goto free_sbi;
1587         }
1588
1589         /* set a block size */
1590         if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
1591                 f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
1592                 goto free_sbi;
1593         }
1594
1595         err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
1596                                                                 &recovery);
1597         if (err)
1598                 goto free_sbi;
1599
1600         sb->s_fs_info = sbi;
1601         default_options(sbi);
1602         /* parse mount options */
1603         options = kstrdup((const char *)data, GFP_KERNEL);
1604         if (data && !options) {
1605                 err = -ENOMEM;
1606                 goto free_sb_buf;
1607         }
1608
1609         err = parse_options(sb, options);
1610         if (err)
1611                 goto free_options;
1612
1613         sbi->max_file_blocks = max_file_blocks();
1614         sb->s_maxbytes = sbi->max_file_blocks <<
1615                                 le32_to_cpu(raw_super->log_blocksize);
1616         sb->s_max_links = F2FS_LINK_MAX;
1617         get_random_bytes(&sbi->s_next_generation, sizeof(u32));
1618
1619         sb->s_op = &f2fs_sops;
1620         sb->s_cop = &f2fs_cryptops;
1621         sb->s_xattr = f2fs_xattr_handlers;
1622         sb->s_export_op = &f2fs_export_ops;
1623         sb->s_magic = F2FS_SUPER_MAGIC;
1624         sb->s_time_gran = 1;
1625         sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
1626                 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
1627         memcpy(sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
1628
1629         /* init f2fs-specific super block info */
1630         sbi->raw_super = raw_super;
1631         sbi->valid_super_block = valid_super_block;
1632         mutex_init(&sbi->gc_mutex);
1633         mutex_init(&sbi->writepages);
1634         mutex_init(&sbi->cp_mutex);
1635         init_rwsem(&sbi->node_write);
1636
1637         /* disallow all the data/node/meta page writes */
1638         set_sbi_flag(sbi, SBI_POR_DOING);
1639         spin_lock_init(&sbi->stat_lock);
1640
1641         init_rwsem(&sbi->read_io.io_rwsem);
1642         sbi->read_io.sbi = sbi;
1643         sbi->read_io.bio = NULL;
1644         for (i = 0; i < NR_PAGE_TYPE; i++) {
1645                 init_rwsem(&sbi->write_io[i].io_rwsem);
1646                 sbi->write_io[i].sbi = sbi;
1647                 sbi->write_io[i].bio = NULL;
1648         }
1649
1650         init_rwsem(&sbi->cp_rwsem);
1651         init_waitqueue_head(&sbi->cp_wait);
1652         init_sb_info(sbi);
1653
1654         err = init_percpu_info(sbi);
1655         if (err)
1656                 goto free_options;
1657
1658         /* get an inode for meta space */
1659         sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
1660         if (IS_ERR(sbi->meta_inode)) {
1661                 f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
1662                 err = PTR_ERR(sbi->meta_inode);
1663                 goto free_options;
1664         }
1665
1666         err = get_valid_checkpoint(sbi);
1667         if (err) {
1668                 f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
1669                 goto free_meta_inode;
1670         }
1671
1672         sbi->total_valid_node_count =
1673                                 le32_to_cpu(sbi->ckpt->valid_node_count);
1674         percpu_counter_set(&sbi->total_valid_inode_count,
1675                                 le32_to_cpu(sbi->ckpt->valid_inode_count));
1676         sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
1677         sbi->total_valid_block_count =
1678                                 le64_to_cpu(sbi->ckpt->valid_block_count);
1679         sbi->last_valid_block_count = sbi->total_valid_block_count;
1680
1681         for (i = 0; i < NR_INODE_TYPE; i++) {
1682                 INIT_LIST_HEAD(&sbi->inode_list[i]);
1683                 spin_lock_init(&sbi->inode_lock[i]);
1684         }
1685
1686         init_extent_cache_info(sbi);
1687
1688         init_ino_entry_info(sbi);
1689
1690         /* setup f2fs internal modules */
1691         err = build_segment_manager(sbi);
1692         if (err) {
1693                 f2fs_msg(sb, KERN_ERR,
1694                         "Failed to initialize F2FS segment manager");
1695                 goto free_sm;
1696         }
1697         err = build_node_manager(sbi);
1698         if (err) {
1699                 f2fs_msg(sb, KERN_ERR,
1700                         "Failed to initialize F2FS node manager");
1701                 goto free_nm;
1702         }
1703
1704         /* For write statistics */
1705         if (sb->s_bdev->bd_part)
1706                 sbi->sectors_written_start =
1707                         (u64)part_stat_read(sb->s_bdev->bd_part, sectors[1]);
1708
1709         /* Read accumulated write IO statistics if exists */
1710         seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1711         if (__exist_node_summaries(sbi))
1712                 sbi->kbytes_written =
1713                         le64_to_cpu(seg_i->journal->info.kbytes_written);
1714
1715         build_gc_manager(sbi);
1716
1717         /* get an inode for node space */
1718         sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
1719         if (IS_ERR(sbi->node_inode)) {
1720                 f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
1721                 err = PTR_ERR(sbi->node_inode);
1722                 goto free_nm;
1723         }
1724
1725         f2fs_join_shrinker(sbi);
1726
1727         /* if there are nt orphan nodes free them */
1728         err = recover_orphan_inodes(sbi);
1729         if (err)
1730                 goto free_node_inode;
1731
1732         /* read root inode and dentry */
1733         root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
1734         if (IS_ERR(root)) {
1735                 f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
1736                 err = PTR_ERR(root);
1737                 goto free_node_inode;
1738         }
1739         if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
1740                 iput(root);
1741                 err = -EINVAL;
1742                 goto free_node_inode;
1743         }
1744
1745         sb->s_root = d_make_root(root); /* allocate root dentry */
1746         if (!sb->s_root) {
1747                 err = -ENOMEM;
1748                 goto free_root_inode;
1749         }
1750
1751         err = f2fs_build_stats(sbi);
1752         if (err)
1753                 goto free_root_inode;
1754
1755         if (f2fs_proc_root)
1756                 sbi->s_proc = proc_mkdir(sb->s_id, f2fs_proc_root);
1757
1758         if (sbi->s_proc) {
1759                 proc_create_data("segment_info", S_IRUGO, sbi->s_proc,
1760                                  &f2fs_seq_segment_info_fops, sb);
1761                 proc_create_data("segment_bits", S_IRUGO, sbi->s_proc,
1762                                  &f2fs_seq_segment_bits_fops, sb);
1763         }
1764
1765         sbi->s_kobj.kset = f2fs_kset;
1766         init_completion(&sbi->s_kobj_unregister);
1767         err = kobject_init_and_add(&sbi->s_kobj, &f2fs_ktype, NULL,
1768                                                         "%s", sb->s_id);
1769         if (err)
1770                 goto free_proc;
1771
1772         /* recover fsynced data */
1773         if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
1774                 /*
1775                  * mount should be failed, when device has readonly mode, and
1776                  * previous checkpoint was not done by clean system shutdown.
1777                  */
1778                 if (bdev_read_only(sb->s_bdev) &&
1779                                 !is_set_ckpt_flags(sbi->ckpt, CP_UMOUNT_FLAG)) {
1780                         err = -EROFS;
1781                         goto free_kobj;
1782                 }
1783
1784                 if (need_fsck)
1785                         set_sbi_flag(sbi, SBI_NEED_FSCK);
1786
1787                 err = recover_fsync_data(sbi, false);
1788                 if (err < 0) {
1789                         need_fsck = true;
1790                         f2fs_msg(sb, KERN_ERR,
1791                                 "Cannot recover all fsync data errno=%d", err);
1792                         goto free_kobj;
1793                 }
1794         } else {
1795                 err = recover_fsync_data(sbi, true);
1796
1797                 if (!f2fs_readonly(sb) && err > 0) {
1798                         err = -EINVAL;
1799                         f2fs_msg(sb, KERN_ERR,
1800                                 "Need to recover fsync data");
1801                         goto free_kobj;
1802                 }
1803         }
1804
1805         /* recover_fsync_data() cleared this already */
1806         clear_sbi_flag(sbi, SBI_POR_DOING);
1807
1808         /*
1809          * If filesystem is not mounted as read-only then
1810          * do start the gc_thread.
1811          */
1812         if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) {
1813                 /* After POR, we can run background GC thread.*/
1814                 err = start_gc_thread(sbi);
1815                 if (err)
1816                         goto free_kobj;
1817         }
1818         kfree(options);
1819
1820         /* recover broken superblock */
1821         if (recovery) {
1822                 err = f2fs_commit_super(sbi, true);
1823                 f2fs_msg(sb, KERN_INFO,
1824                         "Try to recover %dth superblock, ret: %d",
1825                         sbi->valid_super_block ? 1 : 2, err);
1826         }
1827
1828         f2fs_update_time(sbi, CP_TIME);
1829         f2fs_update_time(sbi, REQ_TIME);
1830         return 0;
1831
1832 free_kobj:
1833         f2fs_sync_inode_meta(sbi);
1834         kobject_del(&sbi->s_kobj);
1835         kobject_put(&sbi->s_kobj);
1836         wait_for_completion(&sbi->s_kobj_unregister);
1837 free_proc:
1838         if (sbi->s_proc) {
1839                 remove_proc_entry("segment_info", sbi->s_proc);
1840                 remove_proc_entry("segment_bits", sbi->s_proc);
1841                 remove_proc_entry(sb->s_id, f2fs_proc_root);
1842         }
1843         f2fs_destroy_stats(sbi);
1844 free_root_inode:
1845         dput(sb->s_root);
1846         sb->s_root = NULL;
1847 free_node_inode:
1848         mutex_lock(&sbi->umount_mutex);
1849         f2fs_leave_shrinker(sbi);
1850         iput(sbi->node_inode);
1851         mutex_unlock(&sbi->umount_mutex);
1852 free_nm:
1853         destroy_node_manager(sbi);
1854 free_sm:
1855         destroy_segment_manager(sbi);
1856         kfree(sbi->ckpt);
1857 free_meta_inode:
1858         make_bad_inode(sbi->meta_inode);
1859         iput(sbi->meta_inode);
1860 free_options:
1861         destroy_percpu_info(sbi);
1862         kfree(options);
1863 free_sb_buf:
1864         kfree(raw_super);
1865 free_sbi:
1866         if (sbi->s_chksum_driver)
1867                 crypto_free_shash(sbi->s_chksum_driver);
1868         kfree(sbi);
1869
1870         /* give only one another chance */
1871         if (retry) {
1872                 retry = false;
1873                 shrink_dcache_sb(sb);
1874                 goto try_onemore;
1875         }
1876         return err;
1877 }
1878
1879 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
1880                         const char *dev_name, void *data)
1881 {
1882         return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
1883 }
1884
1885 static void kill_f2fs_super(struct super_block *sb)
1886 {
1887         if (sb->s_root)
1888                 set_sbi_flag(F2FS_SB(sb), SBI_IS_CLOSE);
1889         kill_block_super(sb);
1890 }
1891
1892 static struct file_system_type f2fs_fs_type = {
1893         .owner          = THIS_MODULE,
1894         .name           = "f2fs",
1895         .mount          = f2fs_mount,
1896         .kill_sb        = kill_f2fs_super,
1897         .fs_flags       = FS_REQUIRES_DEV,
1898 };
1899 MODULE_ALIAS_FS("f2fs");
1900
1901 static int __init init_inodecache(void)
1902 {
1903         f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
1904                         sizeof(struct f2fs_inode_info), 0,
1905                         SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
1906         if (!f2fs_inode_cachep)
1907                 return -ENOMEM;
1908         return 0;
1909 }
1910
1911 static void destroy_inodecache(void)
1912 {
1913         /*
1914          * Make sure all delayed rcu free inodes are flushed before we
1915          * destroy cache.
1916          */
1917         rcu_barrier();
1918         kmem_cache_destroy(f2fs_inode_cachep);
1919 }
1920
1921 static int __init init_f2fs_fs(void)
1922 {
1923         int err;
1924
1925         f2fs_build_trace_ios();
1926
1927         err = init_inodecache();
1928         if (err)
1929                 goto fail;
1930         err = create_node_manager_caches();
1931         if (err)
1932                 goto free_inodecache;
1933         err = create_segment_manager_caches();
1934         if (err)
1935                 goto free_node_manager_caches;
1936         err = create_checkpoint_caches();
1937         if (err)
1938                 goto free_segment_manager_caches;
1939         err = create_extent_cache();
1940         if (err)
1941                 goto free_checkpoint_caches;
1942         f2fs_kset = kset_create_and_add("f2fs", NULL, fs_kobj);
1943         if (!f2fs_kset) {
1944                 err = -ENOMEM;
1945                 goto free_extent_cache;
1946         }
1947 #ifdef CONFIG_F2FS_FAULT_INJECTION
1948         f2fs_fault_inject.kset = f2fs_kset;
1949         f2fs_build_fault_attr(0);
1950         err = kobject_init_and_add(&f2fs_fault_inject, &f2fs_fault_ktype,
1951                                 NULL, "fault_injection");
1952         if (err) {
1953                 f2fs_fault_inject.kset = NULL;
1954                 goto free_kset;
1955         }
1956 #endif
1957         err = register_shrinker(&f2fs_shrinker_info);
1958         if (err)
1959                 goto free_kset;
1960
1961         err = register_filesystem(&f2fs_fs_type);
1962         if (err)
1963                 goto free_shrinker;
1964         err = f2fs_create_root_stats();
1965         if (err)
1966                 goto free_filesystem;
1967         f2fs_proc_root = proc_mkdir("fs/f2fs", NULL);
1968         return 0;
1969
1970 free_filesystem:
1971         unregister_filesystem(&f2fs_fs_type);
1972 free_shrinker:
1973         unregister_shrinker(&f2fs_shrinker_info);
1974 free_kset:
1975 #ifdef CONFIG_F2FS_FAULT_INJECTION
1976         if (f2fs_fault_inject.kset)
1977                 kobject_put(&f2fs_fault_inject);
1978 #endif
1979         kset_unregister(f2fs_kset);
1980 free_extent_cache:
1981         destroy_extent_cache();
1982 free_checkpoint_caches:
1983         destroy_checkpoint_caches();
1984 free_segment_manager_caches:
1985         destroy_segment_manager_caches();
1986 free_node_manager_caches:
1987         destroy_node_manager_caches();
1988 free_inodecache:
1989         destroy_inodecache();
1990 fail:
1991         return err;
1992 }
1993
1994 static void __exit exit_f2fs_fs(void)
1995 {
1996         remove_proc_entry("fs/f2fs", NULL);
1997         f2fs_destroy_root_stats();
1998         unregister_filesystem(&f2fs_fs_type);
1999         unregister_shrinker(&f2fs_shrinker_info);
2000 #ifdef CONFIG_F2FS_FAULT_INJECTION
2001         kobject_put(&f2fs_fault_inject);
2002 #endif
2003         kset_unregister(f2fs_kset);
2004         destroy_extent_cache();
2005         destroy_checkpoint_caches();
2006         destroy_segment_manager_caches();
2007         destroy_node_manager_caches();
2008         destroy_inodecache();
2009         f2fs_destroy_trace_ios();
2010 }
2011
2012 module_init(init_f2fs_fs)
2013 module_exit(exit_f2fs_fs)
2014
2015 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
2016 MODULE_DESCRIPTION("Flash Friendly File System");
2017 MODULE_LICENSE("GPL");