20e56b0fa46a9408763692eb28d456814aee3c8b
[linux-2.6-microblaze.git] / fs / f2fs / super.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/super.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/module.h>
9 #include <linux/init.h>
10 #include <linux/fs.h>
11 #include <linux/statfs.h>
12 #include <linux/buffer_head.h>
13 #include <linux/backing-dev.h>
14 #include <linux/kthread.h>
15 #include <linux/parser.h>
16 #include <linux/mount.h>
17 #include <linux/seq_file.h>
18 #include <linux/proc_fs.h>
19 #include <linux/random.h>
20 #include <linux/exportfs.h>
21 #include <linux/blkdev.h>
22 #include <linux/quotaops.h>
23 #include <linux/f2fs_fs.h>
24 #include <linux/sysfs.h>
25 #include <linux/quota.h>
26 #include <linux/unicode.h>
27 #include <linux/part_stat.h>
28
29 #include "f2fs.h"
30 #include "node.h"
31 #include "segment.h"
32 #include "xattr.h"
33 #include "gc.h"
34 #include "trace.h"
35
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/f2fs.h>
38
39 static struct kmem_cache *f2fs_inode_cachep;
40
41 #ifdef CONFIG_F2FS_FAULT_INJECTION
42
43 const char *f2fs_fault_name[FAULT_MAX] = {
44         [FAULT_KMALLOC]         = "kmalloc",
45         [FAULT_KVMALLOC]        = "kvmalloc",
46         [FAULT_PAGE_ALLOC]      = "page alloc",
47         [FAULT_PAGE_GET]        = "page get",
48         [FAULT_ALLOC_BIO]       = "alloc bio",
49         [FAULT_ALLOC_NID]       = "alloc nid",
50         [FAULT_ORPHAN]          = "orphan",
51         [FAULT_BLOCK]           = "no more block",
52         [FAULT_DIR_DEPTH]       = "too big dir depth",
53         [FAULT_EVICT_INODE]     = "evict_inode fail",
54         [FAULT_TRUNCATE]        = "truncate fail",
55         [FAULT_READ_IO]         = "read IO error",
56         [FAULT_CHECKPOINT]      = "checkpoint error",
57         [FAULT_DISCARD]         = "discard error",
58         [FAULT_WRITE_IO]        = "write IO error",
59 };
60
61 void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
62                                                         unsigned int type)
63 {
64         struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
65
66         if (rate) {
67                 atomic_set(&ffi->inject_ops, 0);
68                 ffi->inject_rate = rate;
69         }
70
71         if (type)
72                 ffi->inject_type = type;
73
74         if (!rate && !type)
75                 memset(ffi, 0, sizeof(struct f2fs_fault_info));
76 }
77 #endif
78
79 /* f2fs-wide shrinker description */
80 static struct shrinker f2fs_shrinker_info = {
81         .scan_objects = f2fs_shrink_scan,
82         .count_objects = f2fs_shrink_count,
83         .seeks = DEFAULT_SEEKS,
84 };
85
86 enum {
87         Opt_gc_background,
88         Opt_disable_roll_forward,
89         Opt_norecovery,
90         Opt_discard,
91         Opt_nodiscard,
92         Opt_noheap,
93         Opt_heap,
94         Opt_user_xattr,
95         Opt_nouser_xattr,
96         Opt_acl,
97         Opt_noacl,
98         Opt_active_logs,
99         Opt_disable_ext_identify,
100         Opt_inline_xattr,
101         Opt_noinline_xattr,
102         Opt_inline_xattr_size,
103         Opt_inline_data,
104         Opt_inline_dentry,
105         Opt_noinline_dentry,
106         Opt_flush_merge,
107         Opt_noflush_merge,
108         Opt_nobarrier,
109         Opt_fastboot,
110         Opt_extent_cache,
111         Opt_noextent_cache,
112         Opt_noinline_data,
113         Opt_data_flush,
114         Opt_reserve_root,
115         Opt_resgid,
116         Opt_resuid,
117         Opt_mode,
118         Opt_io_size_bits,
119         Opt_fault_injection,
120         Opt_fault_type,
121         Opt_lazytime,
122         Opt_nolazytime,
123         Opt_quota,
124         Opt_noquota,
125         Opt_usrquota,
126         Opt_grpquota,
127         Opt_prjquota,
128         Opt_usrjquota,
129         Opt_grpjquota,
130         Opt_prjjquota,
131         Opt_offusrjquota,
132         Opt_offgrpjquota,
133         Opt_offprjjquota,
134         Opt_jqfmt_vfsold,
135         Opt_jqfmt_vfsv0,
136         Opt_jqfmt_vfsv1,
137         Opt_whint,
138         Opt_alloc,
139         Opt_fsync,
140         Opt_test_dummy_encryption,
141         Opt_checkpoint_disable,
142         Opt_checkpoint_disable_cap,
143         Opt_checkpoint_disable_cap_perc,
144         Opt_checkpoint_enable,
145         Opt_compress_algorithm,
146         Opt_compress_log_size,
147         Opt_compress_extension,
148         Opt_err,
149 };
150
151 static match_table_t f2fs_tokens = {
152         {Opt_gc_background, "background_gc=%s"},
153         {Opt_disable_roll_forward, "disable_roll_forward"},
154         {Opt_norecovery, "norecovery"},
155         {Opt_discard, "discard"},
156         {Opt_nodiscard, "nodiscard"},
157         {Opt_noheap, "no_heap"},
158         {Opt_heap, "heap"},
159         {Opt_user_xattr, "user_xattr"},
160         {Opt_nouser_xattr, "nouser_xattr"},
161         {Opt_acl, "acl"},
162         {Opt_noacl, "noacl"},
163         {Opt_active_logs, "active_logs=%u"},
164         {Opt_disable_ext_identify, "disable_ext_identify"},
165         {Opt_inline_xattr, "inline_xattr"},
166         {Opt_noinline_xattr, "noinline_xattr"},
167         {Opt_inline_xattr_size, "inline_xattr_size=%u"},
168         {Opt_inline_data, "inline_data"},
169         {Opt_inline_dentry, "inline_dentry"},
170         {Opt_noinline_dentry, "noinline_dentry"},
171         {Opt_flush_merge, "flush_merge"},
172         {Opt_noflush_merge, "noflush_merge"},
173         {Opt_nobarrier, "nobarrier"},
174         {Opt_fastboot, "fastboot"},
175         {Opt_extent_cache, "extent_cache"},
176         {Opt_noextent_cache, "noextent_cache"},
177         {Opt_noinline_data, "noinline_data"},
178         {Opt_data_flush, "data_flush"},
179         {Opt_reserve_root, "reserve_root=%u"},
180         {Opt_resgid, "resgid=%u"},
181         {Opt_resuid, "resuid=%u"},
182         {Opt_mode, "mode=%s"},
183         {Opt_io_size_bits, "io_bits=%u"},
184         {Opt_fault_injection, "fault_injection=%u"},
185         {Opt_fault_type, "fault_type=%u"},
186         {Opt_lazytime, "lazytime"},
187         {Opt_nolazytime, "nolazytime"},
188         {Opt_quota, "quota"},
189         {Opt_noquota, "noquota"},
190         {Opt_usrquota, "usrquota"},
191         {Opt_grpquota, "grpquota"},
192         {Opt_prjquota, "prjquota"},
193         {Opt_usrjquota, "usrjquota=%s"},
194         {Opt_grpjquota, "grpjquota=%s"},
195         {Opt_prjjquota, "prjjquota=%s"},
196         {Opt_offusrjquota, "usrjquota="},
197         {Opt_offgrpjquota, "grpjquota="},
198         {Opt_offprjjquota, "prjjquota="},
199         {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
200         {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
201         {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
202         {Opt_whint, "whint_mode=%s"},
203         {Opt_alloc, "alloc_mode=%s"},
204         {Opt_fsync, "fsync_mode=%s"},
205         {Opt_test_dummy_encryption, "test_dummy_encryption=%s"},
206         {Opt_test_dummy_encryption, "test_dummy_encryption"},
207         {Opt_checkpoint_disable, "checkpoint=disable"},
208         {Opt_checkpoint_disable_cap, "checkpoint=disable:%u"},
209         {Opt_checkpoint_disable_cap_perc, "checkpoint=disable:%u%%"},
210         {Opt_checkpoint_enable, "checkpoint=enable"},
211         {Opt_compress_algorithm, "compress_algorithm=%s"},
212         {Opt_compress_log_size, "compress_log_size=%u"},
213         {Opt_compress_extension, "compress_extension=%s"},
214         {Opt_err, NULL},
215 };
216
217 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...)
218 {
219         struct va_format vaf;
220         va_list args;
221         int level;
222
223         va_start(args, fmt);
224
225         level = printk_get_level(fmt);
226         vaf.fmt = printk_skip_level(fmt);
227         vaf.va = &args;
228         printk("%c%cF2FS-fs (%s): %pV\n",
229                KERN_SOH_ASCII, level, sbi->sb->s_id, &vaf);
230
231         va_end(args);
232 }
233
234 #ifdef CONFIG_UNICODE
235 static const struct f2fs_sb_encodings {
236         __u16 magic;
237         char *name;
238         char *version;
239 } f2fs_sb_encoding_map[] = {
240         {F2FS_ENC_UTF8_12_1, "utf8", "12.1.0"},
241 };
242
243 static int f2fs_sb_read_encoding(const struct f2fs_super_block *sb,
244                                  const struct f2fs_sb_encodings **encoding,
245                                  __u16 *flags)
246 {
247         __u16 magic = le16_to_cpu(sb->s_encoding);
248         int i;
249
250         for (i = 0; i < ARRAY_SIZE(f2fs_sb_encoding_map); i++)
251                 if (magic == f2fs_sb_encoding_map[i].magic)
252                         break;
253
254         if (i >= ARRAY_SIZE(f2fs_sb_encoding_map))
255                 return -EINVAL;
256
257         *encoding = &f2fs_sb_encoding_map[i];
258         *flags = le16_to_cpu(sb->s_encoding_flags);
259
260         return 0;
261 }
262 #endif
263
264 static inline void limit_reserve_root(struct f2fs_sb_info *sbi)
265 {
266         block_t limit = min((sbi->user_block_count << 1) / 1000,
267                         sbi->user_block_count - sbi->reserved_blocks);
268
269         /* limit is 0.2% */
270         if (test_opt(sbi, RESERVE_ROOT) &&
271                         F2FS_OPTION(sbi).root_reserved_blocks > limit) {
272                 F2FS_OPTION(sbi).root_reserved_blocks = limit;
273                 f2fs_info(sbi, "Reduce reserved blocks for root = %u",
274                           F2FS_OPTION(sbi).root_reserved_blocks);
275         }
276         if (!test_opt(sbi, RESERVE_ROOT) &&
277                 (!uid_eq(F2FS_OPTION(sbi).s_resuid,
278                                 make_kuid(&init_user_ns, F2FS_DEF_RESUID)) ||
279                 !gid_eq(F2FS_OPTION(sbi).s_resgid,
280                                 make_kgid(&init_user_ns, F2FS_DEF_RESGID))))
281                 f2fs_info(sbi, "Ignore s_resuid=%u, s_resgid=%u w/o reserve_root",
282                           from_kuid_munged(&init_user_ns,
283                                            F2FS_OPTION(sbi).s_resuid),
284                           from_kgid_munged(&init_user_ns,
285                                            F2FS_OPTION(sbi).s_resgid));
286 }
287
288 static inline void adjust_unusable_cap_perc(struct f2fs_sb_info *sbi)
289 {
290         if (!F2FS_OPTION(sbi).unusable_cap_perc)
291                 return;
292
293         if (F2FS_OPTION(sbi).unusable_cap_perc == 100)
294                 F2FS_OPTION(sbi).unusable_cap = sbi->user_block_count;
295         else
296                 F2FS_OPTION(sbi).unusable_cap = (sbi->user_block_count / 100) *
297                                         F2FS_OPTION(sbi).unusable_cap_perc;
298
299         f2fs_info(sbi, "Adjust unusable cap for checkpoint=disable = %u / %u%%",
300                         F2FS_OPTION(sbi).unusable_cap,
301                         F2FS_OPTION(sbi).unusable_cap_perc);
302 }
303
304 static void init_once(void *foo)
305 {
306         struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
307
308         inode_init_once(&fi->vfs_inode);
309 }
310
311 #ifdef CONFIG_QUOTA
312 static const char * const quotatypes[] = INITQFNAMES;
313 #define QTYPE2NAME(t) (quotatypes[t])
314 static int f2fs_set_qf_name(struct super_block *sb, int qtype,
315                                                         substring_t *args)
316 {
317         struct f2fs_sb_info *sbi = F2FS_SB(sb);
318         char *qname;
319         int ret = -EINVAL;
320
321         if (sb_any_quota_loaded(sb) && !F2FS_OPTION(sbi).s_qf_names[qtype]) {
322                 f2fs_err(sbi, "Cannot change journaled quota options when quota turned on");
323                 return -EINVAL;
324         }
325         if (f2fs_sb_has_quota_ino(sbi)) {
326                 f2fs_info(sbi, "QUOTA feature is enabled, so ignore qf_name");
327                 return 0;
328         }
329
330         qname = match_strdup(args);
331         if (!qname) {
332                 f2fs_err(sbi, "Not enough memory for storing quotafile name");
333                 return -ENOMEM;
334         }
335         if (F2FS_OPTION(sbi).s_qf_names[qtype]) {
336                 if (strcmp(F2FS_OPTION(sbi).s_qf_names[qtype], qname) == 0)
337                         ret = 0;
338                 else
339                         f2fs_err(sbi, "%s quota file already specified",
340                                  QTYPE2NAME(qtype));
341                 goto errout;
342         }
343         if (strchr(qname, '/')) {
344                 f2fs_err(sbi, "quotafile must be on filesystem root");
345                 goto errout;
346         }
347         F2FS_OPTION(sbi).s_qf_names[qtype] = qname;
348         set_opt(sbi, QUOTA);
349         return 0;
350 errout:
351         kvfree(qname);
352         return ret;
353 }
354
355 static int f2fs_clear_qf_name(struct super_block *sb, int qtype)
356 {
357         struct f2fs_sb_info *sbi = F2FS_SB(sb);
358
359         if (sb_any_quota_loaded(sb) && F2FS_OPTION(sbi).s_qf_names[qtype]) {
360                 f2fs_err(sbi, "Cannot change journaled quota options when quota turned on");
361                 return -EINVAL;
362         }
363         kvfree(F2FS_OPTION(sbi).s_qf_names[qtype]);
364         F2FS_OPTION(sbi).s_qf_names[qtype] = NULL;
365         return 0;
366 }
367
368 static int f2fs_check_quota_options(struct f2fs_sb_info *sbi)
369 {
370         /*
371          * We do the test below only for project quotas. 'usrquota' and
372          * 'grpquota' mount options are allowed even without quota feature
373          * to support legacy quotas in quota files.
374          */
375         if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi)) {
376                 f2fs_err(sbi, "Project quota feature not enabled. Cannot enable project quota enforcement.");
377                 return -1;
378         }
379         if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
380                         F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
381                         F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) {
382                 if (test_opt(sbi, USRQUOTA) &&
383                                 F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
384                         clear_opt(sbi, USRQUOTA);
385
386                 if (test_opt(sbi, GRPQUOTA) &&
387                                 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
388                         clear_opt(sbi, GRPQUOTA);
389
390                 if (test_opt(sbi, PRJQUOTA) &&
391                                 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
392                         clear_opt(sbi, PRJQUOTA);
393
394                 if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) ||
395                                 test_opt(sbi, PRJQUOTA)) {
396                         f2fs_err(sbi, "old and new quota format mixing");
397                         return -1;
398                 }
399
400                 if (!F2FS_OPTION(sbi).s_jquota_fmt) {
401                         f2fs_err(sbi, "journaled quota format not specified");
402                         return -1;
403                 }
404         }
405
406         if (f2fs_sb_has_quota_ino(sbi) && F2FS_OPTION(sbi).s_jquota_fmt) {
407                 f2fs_info(sbi, "QUOTA feature is enabled, so ignore jquota_fmt");
408                 F2FS_OPTION(sbi).s_jquota_fmt = 0;
409         }
410         return 0;
411 }
412 #endif
413
414 static int f2fs_set_test_dummy_encryption(struct super_block *sb,
415                                           const char *opt,
416                                           const substring_t *arg,
417                                           bool is_remount)
418 {
419         struct f2fs_sb_info *sbi = F2FS_SB(sb);
420 #ifdef CONFIG_FS_ENCRYPTION
421         int err;
422
423         if (!f2fs_sb_has_encrypt(sbi)) {
424                 f2fs_err(sbi, "Encrypt feature is off");
425                 return -EINVAL;
426         }
427
428         /*
429          * This mount option is just for testing, and it's not worthwhile to
430          * implement the extra complexity (e.g. RCU protection) that would be
431          * needed to allow it to be set or changed during remount.  We do allow
432          * it to be specified during remount, but only if there is no change.
433          */
434         if (is_remount && !F2FS_OPTION(sbi).dummy_enc_ctx.ctx) {
435                 f2fs_warn(sbi, "Can't set test_dummy_encryption on remount");
436                 return -EINVAL;
437         }
438         err = fscrypt_set_test_dummy_encryption(
439                 sb, arg, &F2FS_OPTION(sbi).dummy_enc_ctx);
440         if (err) {
441                 if (err == -EEXIST)
442                         f2fs_warn(sbi,
443                                   "Can't change test_dummy_encryption on remount");
444                 else if (err == -EINVAL)
445                         f2fs_warn(sbi, "Value of option \"%s\" is unrecognized",
446                                   opt);
447                 else
448                         f2fs_warn(sbi, "Error processing option \"%s\" [%d]",
449                                   opt, err);
450                 return -EINVAL;
451         }
452         f2fs_warn(sbi, "Test dummy encryption mode enabled");
453 #else
454         f2fs_warn(sbi, "Test dummy encryption mount option ignored");
455 #endif
456         return 0;
457 }
458
459 static int parse_options(struct super_block *sb, char *options, bool is_remount)
460 {
461         struct f2fs_sb_info *sbi = F2FS_SB(sb);
462         substring_t args[MAX_OPT_ARGS];
463         unsigned char (*ext)[F2FS_EXTENSION_LEN];
464         char *p, *name;
465         int arg = 0, ext_cnt;
466         kuid_t uid;
467         kgid_t gid;
468         int ret;
469
470         if (!options)
471                 return 0;
472
473         while ((p = strsep(&options, ",")) != NULL) {
474                 int token;
475                 if (!*p)
476                         continue;
477                 /*
478                  * Initialize args struct so we know whether arg was
479                  * found; some options take optional arguments.
480                  */
481                 args[0].to = args[0].from = NULL;
482                 token = match_token(p, f2fs_tokens, args);
483
484                 switch (token) {
485                 case Opt_gc_background:
486                         name = match_strdup(&args[0]);
487
488                         if (!name)
489                                 return -ENOMEM;
490                         if (!strcmp(name, "on")) {
491                                 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON;
492                         } else if (!strcmp(name, "off")) {
493                                 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_OFF;
494                         } else if (!strcmp(name, "sync")) {
495                                 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_SYNC;
496                         } else {
497                                 kvfree(name);
498                                 return -EINVAL;
499                         }
500                         kvfree(name);
501                         break;
502                 case Opt_disable_roll_forward:
503                         set_opt(sbi, DISABLE_ROLL_FORWARD);
504                         break;
505                 case Opt_norecovery:
506                         /* this option mounts f2fs with ro */
507                         set_opt(sbi, NORECOVERY);
508                         if (!f2fs_readonly(sb))
509                                 return -EINVAL;
510                         break;
511                 case Opt_discard:
512                         set_opt(sbi, DISCARD);
513                         break;
514                 case Opt_nodiscard:
515                         if (f2fs_sb_has_blkzoned(sbi)) {
516                                 f2fs_warn(sbi, "discard is required for zoned block devices");
517                                 return -EINVAL;
518                         }
519                         clear_opt(sbi, DISCARD);
520                         break;
521                 case Opt_noheap:
522                         set_opt(sbi, NOHEAP);
523                         break;
524                 case Opt_heap:
525                         clear_opt(sbi, NOHEAP);
526                         break;
527 #ifdef CONFIG_F2FS_FS_XATTR
528                 case Opt_user_xattr:
529                         set_opt(sbi, XATTR_USER);
530                         break;
531                 case Opt_nouser_xattr:
532                         clear_opt(sbi, XATTR_USER);
533                         break;
534                 case Opt_inline_xattr:
535                         set_opt(sbi, INLINE_XATTR);
536                         break;
537                 case Opt_noinline_xattr:
538                         clear_opt(sbi, INLINE_XATTR);
539                         break;
540                 case Opt_inline_xattr_size:
541                         if (args->from && match_int(args, &arg))
542                                 return -EINVAL;
543                         set_opt(sbi, INLINE_XATTR_SIZE);
544                         F2FS_OPTION(sbi).inline_xattr_size = arg;
545                         break;
546 #else
547                 case Opt_user_xattr:
548                         f2fs_info(sbi, "user_xattr options not supported");
549                         break;
550                 case Opt_nouser_xattr:
551                         f2fs_info(sbi, "nouser_xattr options not supported");
552                         break;
553                 case Opt_inline_xattr:
554                         f2fs_info(sbi, "inline_xattr options not supported");
555                         break;
556                 case Opt_noinline_xattr:
557                         f2fs_info(sbi, "noinline_xattr options not supported");
558                         break;
559 #endif
560 #ifdef CONFIG_F2FS_FS_POSIX_ACL
561                 case Opt_acl:
562                         set_opt(sbi, POSIX_ACL);
563                         break;
564                 case Opt_noacl:
565                         clear_opt(sbi, POSIX_ACL);
566                         break;
567 #else
568                 case Opt_acl:
569                         f2fs_info(sbi, "acl options not supported");
570                         break;
571                 case Opt_noacl:
572                         f2fs_info(sbi, "noacl options not supported");
573                         break;
574 #endif
575                 case Opt_active_logs:
576                         if (args->from && match_int(args, &arg))
577                                 return -EINVAL;
578                         if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
579                                 return -EINVAL;
580                         F2FS_OPTION(sbi).active_logs = arg;
581                         break;
582                 case Opt_disable_ext_identify:
583                         set_opt(sbi, DISABLE_EXT_IDENTIFY);
584                         break;
585                 case Opt_inline_data:
586                         set_opt(sbi, INLINE_DATA);
587                         break;
588                 case Opt_inline_dentry:
589                         set_opt(sbi, INLINE_DENTRY);
590                         break;
591                 case Opt_noinline_dentry:
592                         clear_opt(sbi, INLINE_DENTRY);
593                         break;
594                 case Opt_flush_merge:
595                         set_opt(sbi, FLUSH_MERGE);
596                         break;
597                 case Opt_noflush_merge:
598                         clear_opt(sbi, FLUSH_MERGE);
599                         break;
600                 case Opt_nobarrier:
601                         set_opt(sbi, NOBARRIER);
602                         break;
603                 case Opt_fastboot:
604                         set_opt(sbi, FASTBOOT);
605                         break;
606                 case Opt_extent_cache:
607                         set_opt(sbi, EXTENT_CACHE);
608                         break;
609                 case Opt_noextent_cache:
610                         clear_opt(sbi, EXTENT_CACHE);
611                         break;
612                 case Opt_noinline_data:
613                         clear_opt(sbi, INLINE_DATA);
614                         break;
615                 case Opt_data_flush:
616                         set_opt(sbi, DATA_FLUSH);
617                         break;
618                 case Opt_reserve_root:
619                         if (args->from && match_int(args, &arg))
620                                 return -EINVAL;
621                         if (test_opt(sbi, RESERVE_ROOT)) {
622                                 f2fs_info(sbi, "Preserve previous reserve_root=%u",
623                                           F2FS_OPTION(sbi).root_reserved_blocks);
624                         } else {
625                                 F2FS_OPTION(sbi).root_reserved_blocks = arg;
626                                 set_opt(sbi, RESERVE_ROOT);
627                         }
628                         break;
629                 case Opt_resuid:
630                         if (args->from && match_int(args, &arg))
631                                 return -EINVAL;
632                         uid = make_kuid(current_user_ns(), arg);
633                         if (!uid_valid(uid)) {
634                                 f2fs_err(sbi, "Invalid uid value %d", arg);
635                                 return -EINVAL;
636                         }
637                         F2FS_OPTION(sbi).s_resuid = uid;
638                         break;
639                 case Opt_resgid:
640                         if (args->from && match_int(args, &arg))
641                                 return -EINVAL;
642                         gid = make_kgid(current_user_ns(), arg);
643                         if (!gid_valid(gid)) {
644                                 f2fs_err(sbi, "Invalid gid value %d", arg);
645                                 return -EINVAL;
646                         }
647                         F2FS_OPTION(sbi).s_resgid = gid;
648                         break;
649                 case Opt_mode:
650                         name = match_strdup(&args[0]);
651
652                         if (!name)
653                                 return -ENOMEM;
654                         if (!strcmp(name, "adaptive")) {
655                                 if (f2fs_sb_has_blkzoned(sbi)) {
656                                         f2fs_warn(sbi, "adaptive mode is not allowed with zoned block device feature");
657                                         kvfree(name);
658                                         return -EINVAL;
659                                 }
660                                 F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE;
661                         } else if (!strcmp(name, "lfs")) {
662                                 F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS;
663                         } else {
664                                 kvfree(name);
665                                 return -EINVAL;
666                         }
667                         kvfree(name);
668                         break;
669                 case Opt_io_size_bits:
670                         if (args->from && match_int(args, &arg))
671                                 return -EINVAL;
672                         if (arg <= 0 || arg > __ilog2_u32(BIO_MAX_PAGES)) {
673                                 f2fs_warn(sbi, "Not support %d, larger than %d",
674                                           1 << arg, BIO_MAX_PAGES);
675                                 return -EINVAL;
676                         }
677                         F2FS_OPTION(sbi).write_io_size_bits = arg;
678                         break;
679 #ifdef CONFIG_F2FS_FAULT_INJECTION
680                 case Opt_fault_injection:
681                         if (args->from && match_int(args, &arg))
682                                 return -EINVAL;
683                         f2fs_build_fault_attr(sbi, arg, F2FS_ALL_FAULT_TYPE);
684                         set_opt(sbi, FAULT_INJECTION);
685                         break;
686
687                 case Opt_fault_type:
688                         if (args->from && match_int(args, &arg))
689                                 return -EINVAL;
690                         f2fs_build_fault_attr(sbi, 0, arg);
691                         set_opt(sbi, FAULT_INJECTION);
692                         break;
693 #else
694                 case Opt_fault_injection:
695                         f2fs_info(sbi, "fault_injection options not supported");
696                         break;
697
698                 case Opt_fault_type:
699                         f2fs_info(sbi, "fault_type options not supported");
700                         break;
701 #endif
702                 case Opt_lazytime:
703                         sb->s_flags |= SB_LAZYTIME;
704                         break;
705                 case Opt_nolazytime:
706                         sb->s_flags &= ~SB_LAZYTIME;
707                         break;
708 #ifdef CONFIG_QUOTA
709                 case Opt_quota:
710                 case Opt_usrquota:
711                         set_opt(sbi, USRQUOTA);
712                         break;
713                 case Opt_grpquota:
714                         set_opt(sbi, GRPQUOTA);
715                         break;
716                 case Opt_prjquota:
717                         set_opt(sbi, PRJQUOTA);
718                         break;
719                 case Opt_usrjquota:
720                         ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]);
721                         if (ret)
722                                 return ret;
723                         break;
724                 case Opt_grpjquota:
725                         ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]);
726                         if (ret)
727                                 return ret;
728                         break;
729                 case Opt_prjjquota:
730                         ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]);
731                         if (ret)
732                                 return ret;
733                         break;
734                 case Opt_offusrjquota:
735                         ret = f2fs_clear_qf_name(sb, USRQUOTA);
736                         if (ret)
737                                 return ret;
738                         break;
739                 case Opt_offgrpjquota:
740                         ret = f2fs_clear_qf_name(sb, GRPQUOTA);
741                         if (ret)
742                                 return ret;
743                         break;
744                 case Opt_offprjjquota:
745                         ret = f2fs_clear_qf_name(sb, PRJQUOTA);
746                         if (ret)
747                                 return ret;
748                         break;
749                 case Opt_jqfmt_vfsold:
750                         F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_OLD;
751                         break;
752                 case Opt_jqfmt_vfsv0:
753                         F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V0;
754                         break;
755                 case Opt_jqfmt_vfsv1:
756                         F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V1;
757                         break;
758                 case Opt_noquota:
759                         clear_opt(sbi, QUOTA);
760                         clear_opt(sbi, USRQUOTA);
761                         clear_opt(sbi, GRPQUOTA);
762                         clear_opt(sbi, PRJQUOTA);
763                         break;
764 #else
765                 case Opt_quota:
766                 case Opt_usrquota:
767                 case Opt_grpquota:
768                 case Opt_prjquota:
769                 case Opt_usrjquota:
770                 case Opt_grpjquota:
771                 case Opt_prjjquota:
772                 case Opt_offusrjquota:
773                 case Opt_offgrpjquota:
774                 case Opt_offprjjquota:
775                 case Opt_jqfmt_vfsold:
776                 case Opt_jqfmt_vfsv0:
777                 case Opt_jqfmt_vfsv1:
778                 case Opt_noquota:
779                         f2fs_info(sbi, "quota operations not supported");
780                         break;
781 #endif
782                 case Opt_whint:
783                         name = match_strdup(&args[0]);
784                         if (!name)
785                                 return -ENOMEM;
786                         if (!strcmp(name, "user-based")) {
787                                 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_USER;
788                         } else if (!strcmp(name, "off")) {
789                                 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
790                         } else if (!strcmp(name, "fs-based")) {
791                                 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_FS;
792                         } else {
793                                 kvfree(name);
794                                 return -EINVAL;
795                         }
796                         kvfree(name);
797                         break;
798                 case Opt_alloc:
799                         name = match_strdup(&args[0]);
800                         if (!name)
801                                 return -ENOMEM;
802
803                         if (!strcmp(name, "default")) {
804                                 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
805                         } else if (!strcmp(name, "reuse")) {
806                                 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
807                         } else {
808                                 kvfree(name);
809                                 return -EINVAL;
810                         }
811                         kvfree(name);
812                         break;
813                 case Opt_fsync:
814                         name = match_strdup(&args[0]);
815                         if (!name)
816                                 return -ENOMEM;
817                         if (!strcmp(name, "posix")) {
818                                 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
819                         } else if (!strcmp(name, "strict")) {
820                                 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_STRICT;
821                         } else if (!strcmp(name, "nobarrier")) {
822                                 F2FS_OPTION(sbi).fsync_mode =
823                                                         FSYNC_MODE_NOBARRIER;
824                         } else {
825                                 kvfree(name);
826                                 return -EINVAL;
827                         }
828                         kvfree(name);
829                         break;
830                 case Opt_test_dummy_encryption:
831                         ret = f2fs_set_test_dummy_encryption(sb, p, &args[0],
832                                                              is_remount);
833                         if (ret)
834                                 return ret;
835                         break;
836                 case Opt_checkpoint_disable_cap_perc:
837                         if (args->from && match_int(args, &arg))
838                                 return -EINVAL;
839                         if (arg < 0 || arg > 100)
840                                 return -EINVAL;
841                         F2FS_OPTION(sbi).unusable_cap_perc = arg;
842                         set_opt(sbi, DISABLE_CHECKPOINT);
843                         break;
844                 case Opt_checkpoint_disable_cap:
845                         if (args->from && match_int(args, &arg))
846                                 return -EINVAL;
847                         F2FS_OPTION(sbi).unusable_cap = arg;
848                         set_opt(sbi, DISABLE_CHECKPOINT);
849                         break;
850                 case Opt_checkpoint_disable:
851                         set_opt(sbi, DISABLE_CHECKPOINT);
852                         break;
853                 case Opt_checkpoint_enable:
854                         clear_opt(sbi, DISABLE_CHECKPOINT);
855                         break;
856                 case Opt_compress_algorithm:
857                         if (!f2fs_sb_has_compression(sbi)) {
858                                 f2fs_err(sbi, "Compression feature if off");
859                                 return -EINVAL;
860                         }
861                         name = match_strdup(&args[0]);
862                         if (!name)
863                                 return -ENOMEM;
864                         if (!strcmp(name, "lzo")) {
865                                 F2FS_OPTION(sbi).compress_algorithm =
866                                                                 COMPRESS_LZO;
867                         } else if (!strcmp(name, "lz4")) {
868                                 F2FS_OPTION(sbi).compress_algorithm =
869                                                                 COMPRESS_LZ4;
870                         } else if (!strcmp(name, "zstd")) {
871                                 F2FS_OPTION(sbi).compress_algorithm =
872                                                                 COMPRESS_ZSTD;
873                         } else if (!strcmp(name, "lzo-rle")) {
874                                 F2FS_OPTION(sbi).compress_algorithm =
875                                                                 COMPRESS_LZORLE;
876                         } else {
877                                 kfree(name);
878                                 return -EINVAL;
879                         }
880                         kfree(name);
881                         break;
882                 case Opt_compress_log_size:
883                         if (!f2fs_sb_has_compression(sbi)) {
884                                 f2fs_err(sbi, "Compression feature is off");
885                                 return -EINVAL;
886                         }
887                         if (args->from && match_int(args, &arg))
888                                 return -EINVAL;
889                         if (arg < MIN_COMPRESS_LOG_SIZE ||
890                                 arg > MAX_COMPRESS_LOG_SIZE) {
891                                 f2fs_err(sbi,
892                                         "Compress cluster log size is out of range");
893                                 return -EINVAL;
894                         }
895                         F2FS_OPTION(sbi).compress_log_size = arg;
896                         break;
897                 case Opt_compress_extension:
898                         if (!f2fs_sb_has_compression(sbi)) {
899                                 f2fs_err(sbi, "Compression feature is off");
900                                 return -EINVAL;
901                         }
902                         name = match_strdup(&args[0]);
903                         if (!name)
904                                 return -ENOMEM;
905
906                         ext = F2FS_OPTION(sbi).extensions;
907                         ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt;
908
909                         if (strlen(name) >= F2FS_EXTENSION_LEN ||
910                                 ext_cnt >= COMPRESS_EXT_NUM) {
911                                 f2fs_err(sbi,
912                                         "invalid extension length/number");
913                                 kfree(name);
914                                 return -EINVAL;
915                         }
916
917                         strcpy(ext[ext_cnt], name);
918                         F2FS_OPTION(sbi).compress_ext_cnt++;
919                         kfree(name);
920                         break;
921                 default:
922                         f2fs_err(sbi, "Unrecognized mount option \"%s\" or missing value",
923                                  p);
924                         return -EINVAL;
925                 }
926         }
927 #ifdef CONFIG_QUOTA
928         if (f2fs_check_quota_options(sbi))
929                 return -EINVAL;
930 #else
931         if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sbi->sb)) {
932                 f2fs_info(sbi, "Filesystem with quota feature cannot be mounted RDWR without CONFIG_QUOTA");
933                 return -EINVAL;
934         }
935         if (f2fs_sb_has_project_quota(sbi) && !f2fs_readonly(sbi->sb)) {
936                 f2fs_err(sbi, "Filesystem with project quota feature cannot be mounted RDWR without CONFIG_QUOTA");
937                 return -EINVAL;
938         }
939 #endif
940 #ifndef CONFIG_UNICODE
941         if (f2fs_sb_has_casefold(sbi)) {
942                 f2fs_err(sbi,
943                         "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE");
944                 return -EINVAL;
945         }
946 #endif
947
948         if (F2FS_IO_SIZE_BITS(sbi) && !f2fs_lfs_mode(sbi)) {
949                 f2fs_err(sbi, "Should set mode=lfs with %uKB-sized IO",
950                          F2FS_IO_SIZE_KB(sbi));
951                 return -EINVAL;
952         }
953
954         if (test_opt(sbi, INLINE_XATTR_SIZE)) {
955                 int min_size, max_size;
956
957                 if (!f2fs_sb_has_extra_attr(sbi) ||
958                         !f2fs_sb_has_flexible_inline_xattr(sbi)) {
959                         f2fs_err(sbi, "extra_attr or flexible_inline_xattr feature is off");
960                         return -EINVAL;
961                 }
962                 if (!test_opt(sbi, INLINE_XATTR)) {
963                         f2fs_err(sbi, "inline_xattr_size option should be set with inline_xattr option");
964                         return -EINVAL;
965                 }
966
967                 min_size = sizeof(struct f2fs_xattr_header) / sizeof(__le32);
968                 max_size = MAX_INLINE_XATTR_SIZE;
969
970                 if (F2FS_OPTION(sbi).inline_xattr_size < min_size ||
971                                 F2FS_OPTION(sbi).inline_xattr_size > max_size) {
972                         f2fs_err(sbi, "inline xattr size is out of range: %d ~ %d",
973                                  min_size, max_size);
974                         return -EINVAL;
975                 }
976         }
977
978         if (test_opt(sbi, DISABLE_CHECKPOINT) && f2fs_lfs_mode(sbi)) {
979                 f2fs_err(sbi, "LFS not compatible with checkpoint=disable\n");
980                 return -EINVAL;
981         }
982
983         /* Not pass down write hints if the number of active logs is lesser
984          * than NR_CURSEG_TYPE.
985          */
986         if (F2FS_OPTION(sbi).active_logs != NR_CURSEG_TYPE)
987                 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
988         return 0;
989 }
990
991 static struct inode *f2fs_alloc_inode(struct super_block *sb)
992 {
993         struct f2fs_inode_info *fi;
994
995         fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
996         if (!fi)
997                 return NULL;
998
999         init_once((void *) fi);
1000
1001         /* Initialize f2fs-specific inode info */
1002         atomic_set(&fi->dirty_pages, 0);
1003         init_rwsem(&fi->i_sem);
1004         spin_lock_init(&fi->i_size_lock);
1005         INIT_LIST_HEAD(&fi->dirty_list);
1006         INIT_LIST_HEAD(&fi->gdirty_list);
1007         INIT_LIST_HEAD(&fi->inmem_ilist);
1008         INIT_LIST_HEAD(&fi->inmem_pages);
1009         mutex_init(&fi->inmem_lock);
1010         init_rwsem(&fi->i_gc_rwsem[READ]);
1011         init_rwsem(&fi->i_gc_rwsem[WRITE]);
1012         init_rwsem(&fi->i_mmap_sem);
1013         init_rwsem(&fi->i_xattr_sem);
1014
1015         /* Will be used by directory only */
1016         fi->i_dir_level = F2FS_SB(sb)->dir_level;
1017
1018         return &fi->vfs_inode;
1019 }
1020
1021 static int f2fs_drop_inode(struct inode *inode)
1022 {
1023         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1024         int ret;
1025
1026         /*
1027          * during filesystem shutdown, if checkpoint is disabled,
1028          * drop useless meta/node dirty pages.
1029          */
1030         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
1031                 if (inode->i_ino == F2FS_NODE_INO(sbi) ||
1032                         inode->i_ino == F2FS_META_INO(sbi)) {
1033                         trace_f2fs_drop_inode(inode, 1);
1034                         return 1;
1035                 }
1036         }
1037
1038         /*
1039          * This is to avoid a deadlock condition like below.
1040          * writeback_single_inode(inode)
1041          *  - f2fs_write_data_page
1042          *    - f2fs_gc -> iput -> evict
1043          *       - inode_wait_for_writeback(inode)
1044          */
1045         if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) {
1046                 if (!inode->i_nlink && !is_bad_inode(inode)) {
1047                         /* to avoid evict_inode call simultaneously */
1048                         atomic_inc(&inode->i_count);
1049                         spin_unlock(&inode->i_lock);
1050
1051                         /* some remained atomic pages should discarded */
1052                         if (f2fs_is_atomic_file(inode))
1053                                 f2fs_drop_inmem_pages(inode);
1054
1055                         /* should remain fi->extent_tree for writepage */
1056                         f2fs_destroy_extent_node(inode);
1057
1058                         sb_start_intwrite(inode->i_sb);
1059                         f2fs_i_size_write(inode, 0);
1060
1061                         f2fs_submit_merged_write_cond(F2FS_I_SB(inode),
1062                                         inode, NULL, 0, DATA);
1063                         truncate_inode_pages_final(inode->i_mapping);
1064
1065                         if (F2FS_HAS_BLOCKS(inode))
1066                                 f2fs_truncate(inode);
1067
1068                         sb_end_intwrite(inode->i_sb);
1069
1070                         spin_lock(&inode->i_lock);
1071                         atomic_dec(&inode->i_count);
1072                 }
1073                 trace_f2fs_drop_inode(inode, 0);
1074                 return 0;
1075         }
1076         ret = generic_drop_inode(inode);
1077         if (!ret)
1078                 ret = fscrypt_drop_inode(inode);
1079         trace_f2fs_drop_inode(inode, ret);
1080         return ret;
1081 }
1082
1083 int f2fs_inode_dirtied(struct inode *inode, bool sync)
1084 {
1085         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1086         int ret = 0;
1087
1088         spin_lock(&sbi->inode_lock[DIRTY_META]);
1089         if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
1090                 ret = 1;
1091         } else {
1092                 set_inode_flag(inode, FI_DIRTY_INODE);
1093                 stat_inc_dirty_inode(sbi, DIRTY_META);
1094         }
1095         if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) {
1096                 list_add_tail(&F2FS_I(inode)->gdirty_list,
1097                                 &sbi->inode_list[DIRTY_META]);
1098                 inc_page_count(sbi, F2FS_DIRTY_IMETA);
1099         }
1100         spin_unlock(&sbi->inode_lock[DIRTY_META]);
1101         return ret;
1102 }
1103
1104 void f2fs_inode_synced(struct inode *inode)
1105 {
1106         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1107
1108         spin_lock(&sbi->inode_lock[DIRTY_META]);
1109         if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) {
1110                 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1111                 return;
1112         }
1113         if (!list_empty(&F2FS_I(inode)->gdirty_list)) {
1114                 list_del_init(&F2FS_I(inode)->gdirty_list);
1115                 dec_page_count(sbi, F2FS_DIRTY_IMETA);
1116         }
1117         clear_inode_flag(inode, FI_DIRTY_INODE);
1118         clear_inode_flag(inode, FI_AUTO_RECOVER);
1119         stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META);
1120         spin_unlock(&sbi->inode_lock[DIRTY_META]);
1121 }
1122
1123 /*
1124  * f2fs_dirty_inode() is called from __mark_inode_dirty()
1125  *
1126  * We should call set_dirty_inode to write the dirty inode through write_inode.
1127  */
1128 static void f2fs_dirty_inode(struct inode *inode, int flags)
1129 {
1130         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1131
1132         if (inode->i_ino == F2FS_NODE_INO(sbi) ||
1133                         inode->i_ino == F2FS_META_INO(sbi))
1134                 return;
1135
1136         if (flags == I_DIRTY_TIME)
1137                 return;
1138
1139         if (is_inode_flag_set(inode, FI_AUTO_RECOVER))
1140                 clear_inode_flag(inode, FI_AUTO_RECOVER);
1141
1142         f2fs_inode_dirtied(inode, false);
1143 }
1144
1145 static void f2fs_free_inode(struct inode *inode)
1146 {
1147         fscrypt_free_inode(inode);
1148         kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
1149 }
1150
1151 static void destroy_percpu_info(struct f2fs_sb_info *sbi)
1152 {
1153         percpu_counter_destroy(&sbi->alloc_valid_block_count);
1154         percpu_counter_destroy(&sbi->total_valid_inode_count);
1155 }
1156
1157 static void destroy_device_list(struct f2fs_sb_info *sbi)
1158 {
1159         int i;
1160
1161         for (i = 0; i < sbi->s_ndevs; i++) {
1162                 blkdev_put(FDEV(i).bdev, FMODE_EXCL);
1163 #ifdef CONFIG_BLK_DEV_ZONED
1164                 kvfree(FDEV(i).blkz_seq);
1165 #endif
1166         }
1167         kvfree(sbi->devs);
1168 }
1169
1170 static void f2fs_put_super(struct super_block *sb)
1171 {
1172         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1173         int i;
1174         bool dropped;
1175
1176         f2fs_quota_off_umount(sb);
1177
1178         /* prevent remaining shrinker jobs */
1179         mutex_lock(&sbi->umount_mutex);
1180
1181         /*
1182          * We don't need to do checkpoint when superblock is clean.
1183          * But, the previous checkpoint was not done by umount, it needs to do
1184          * clean checkpoint again.
1185          */
1186         if ((is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
1187                         !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG))) {
1188                 struct cp_control cpc = {
1189                         .reason = CP_UMOUNT,
1190                 };
1191                 f2fs_write_checkpoint(sbi, &cpc);
1192         }
1193
1194         /* be sure to wait for any on-going discard commands */
1195         dropped = f2fs_issue_discard_timeout(sbi);
1196
1197         if ((f2fs_hw_support_discard(sbi) || f2fs_hw_should_discard(sbi)) &&
1198                                         !sbi->discard_blks && !dropped) {
1199                 struct cp_control cpc = {
1200                         .reason = CP_UMOUNT | CP_TRIMMED,
1201                 };
1202                 f2fs_write_checkpoint(sbi, &cpc);
1203         }
1204
1205         /*
1206          * normally superblock is clean, so we need to release this.
1207          * In addition, EIO will skip do checkpoint, we need this as well.
1208          */
1209         f2fs_release_ino_entry(sbi, true);
1210
1211         f2fs_leave_shrinker(sbi);
1212         mutex_unlock(&sbi->umount_mutex);
1213
1214         /* our cp_error case, we can wait for any writeback page */
1215         f2fs_flush_merged_writes(sbi);
1216
1217         f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
1218
1219         f2fs_bug_on(sbi, sbi->fsync_node_num);
1220
1221         iput(sbi->node_inode);
1222         sbi->node_inode = NULL;
1223
1224         iput(sbi->meta_inode);
1225         sbi->meta_inode = NULL;
1226
1227         /*
1228          * iput() can update stat information, if f2fs_write_checkpoint()
1229          * above failed with error.
1230          */
1231         f2fs_destroy_stats(sbi);
1232
1233         /* destroy f2fs internal modules */
1234         f2fs_destroy_node_manager(sbi);
1235         f2fs_destroy_segment_manager(sbi);
1236
1237         f2fs_destroy_post_read_wq(sbi);
1238
1239         kvfree(sbi->ckpt);
1240
1241         f2fs_unregister_sysfs(sbi);
1242
1243         sb->s_fs_info = NULL;
1244         if (sbi->s_chksum_driver)
1245                 crypto_free_shash(sbi->s_chksum_driver);
1246         kvfree(sbi->raw_super);
1247
1248         destroy_device_list(sbi);
1249         f2fs_destroy_xattr_caches(sbi);
1250         mempool_destroy(sbi->write_io_dummy);
1251 #ifdef CONFIG_QUOTA
1252         for (i = 0; i < MAXQUOTAS; i++)
1253                 kvfree(F2FS_OPTION(sbi).s_qf_names[i]);
1254 #endif
1255         fscrypt_free_dummy_context(&F2FS_OPTION(sbi).dummy_enc_ctx);
1256         destroy_percpu_info(sbi);
1257         for (i = 0; i < NR_PAGE_TYPE; i++)
1258                 kvfree(sbi->write_io[i]);
1259 #ifdef CONFIG_UNICODE
1260         utf8_unload(sbi->s_encoding);
1261 #endif
1262         kvfree(sbi);
1263 }
1264
1265 int f2fs_sync_fs(struct super_block *sb, int sync)
1266 {
1267         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1268         int err = 0;
1269
1270         if (unlikely(f2fs_cp_error(sbi)))
1271                 return 0;
1272         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
1273                 return 0;
1274
1275         trace_f2fs_sync_fs(sb, sync);
1276
1277         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1278                 return -EAGAIN;
1279
1280         if (sync) {
1281                 struct cp_control cpc;
1282
1283                 cpc.reason = __get_cp_reason(sbi);
1284
1285                 down_write(&sbi->gc_lock);
1286                 err = f2fs_write_checkpoint(sbi, &cpc);
1287                 up_write(&sbi->gc_lock);
1288         }
1289         f2fs_trace_ios(NULL, 1);
1290
1291         return err;
1292 }
1293
1294 static int f2fs_freeze(struct super_block *sb)
1295 {
1296         if (f2fs_readonly(sb))
1297                 return 0;
1298
1299         /* IO error happened before */
1300         if (unlikely(f2fs_cp_error(F2FS_SB(sb))))
1301                 return -EIO;
1302
1303         /* must be clean, since sync_filesystem() was already called */
1304         if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY))
1305                 return -EINVAL;
1306         return 0;
1307 }
1308
1309 static int f2fs_unfreeze(struct super_block *sb)
1310 {
1311         return 0;
1312 }
1313
1314 #ifdef CONFIG_QUOTA
1315 static int f2fs_statfs_project(struct super_block *sb,
1316                                 kprojid_t projid, struct kstatfs *buf)
1317 {
1318         struct kqid qid;
1319         struct dquot *dquot;
1320         u64 limit;
1321         u64 curblock;
1322
1323         qid = make_kqid_projid(projid);
1324         dquot = dqget(sb, qid);
1325         if (IS_ERR(dquot))
1326                 return PTR_ERR(dquot);
1327         spin_lock(&dquot->dq_dqb_lock);
1328
1329         limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
1330                                         dquot->dq_dqb.dqb_bhardlimit);
1331         if (limit)
1332                 limit >>= sb->s_blocksize_bits;
1333
1334         if (limit && buf->f_blocks > limit) {
1335                 curblock = (dquot->dq_dqb.dqb_curspace +
1336                             dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
1337                 buf->f_blocks = limit;
1338                 buf->f_bfree = buf->f_bavail =
1339                         (buf->f_blocks > curblock) ?
1340                          (buf->f_blocks - curblock) : 0;
1341         }
1342
1343         limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
1344                                         dquot->dq_dqb.dqb_ihardlimit);
1345
1346         if (limit && buf->f_files > limit) {
1347                 buf->f_files = limit;
1348                 buf->f_ffree =
1349                         (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
1350                          (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
1351         }
1352
1353         spin_unlock(&dquot->dq_dqb_lock);
1354         dqput(dquot);
1355         return 0;
1356 }
1357 #endif
1358
1359 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
1360 {
1361         struct super_block *sb = dentry->d_sb;
1362         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1363         u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
1364         block_t total_count, user_block_count, start_count;
1365         u64 avail_node_count;
1366
1367         total_count = le64_to_cpu(sbi->raw_super->block_count);
1368         user_block_count = sbi->user_block_count;
1369         start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
1370         buf->f_type = F2FS_SUPER_MAGIC;
1371         buf->f_bsize = sbi->blocksize;
1372
1373         buf->f_blocks = total_count - start_count;
1374         buf->f_bfree = user_block_count - valid_user_blocks(sbi) -
1375                                                 sbi->current_reserved_blocks;
1376
1377         spin_lock(&sbi->stat_lock);
1378         if (unlikely(buf->f_bfree <= sbi->unusable_block_count))
1379                 buf->f_bfree = 0;
1380         else
1381                 buf->f_bfree -= sbi->unusable_block_count;
1382         spin_unlock(&sbi->stat_lock);
1383
1384         if (buf->f_bfree > F2FS_OPTION(sbi).root_reserved_blocks)
1385                 buf->f_bavail = buf->f_bfree -
1386                                 F2FS_OPTION(sbi).root_reserved_blocks;
1387         else
1388                 buf->f_bavail = 0;
1389
1390         avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
1391
1392         if (avail_node_count > user_block_count) {
1393                 buf->f_files = user_block_count;
1394                 buf->f_ffree = buf->f_bavail;
1395         } else {
1396                 buf->f_files = avail_node_count;
1397                 buf->f_ffree = min(avail_node_count - valid_node_count(sbi),
1398                                         buf->f_bavail);
1399         }
1400
1401         buf->f_namelen = F2FS_NAME_LEN;
1402         buf->f_fsid.val[0] = (u32)id;
1403         buf->f_fsid.val[1] = (u32)(id >> 32);
1404
1405 #ifdef CONFIG_QUOTA
1406         if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) &&
1407                         sb_has_quota_limits_enabled(sb, PRJQUOTA)) {
1408                 f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf);
1409         }
1410 #endif
1411         return 0;
1412 }
1413
1414 static inline void f2fs_show_quota_options(struct seq_file *seq,
1415                                            struct super_block *sb)
1416 {
1417 #ifdef CONFIG_QUOTA
1418         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1419
1420         if (F2FS_OPTION(sbi).s_jquota_fmt) {
1421                 char *fmtname = "";
1422
1423                 switch (F2FS_OPTION(sbi).s_jquota_fmt) {
1424                 case QFMT_VFS_OLD:
1425                         fmtname = "vfsold";
1426                         break;
1427                 case QFMT_VFS_V0:
1428                         fmtname = "vfsv0";
1429                         break;
1430                 case QFMT_VFS_V1:
1431                         fmtname = "vfsv1";
1432                         break;
1433                 }
1434                 seq_printf(seq, ",jqfmt=%s", fmtname);
1435         }
1436
1437         if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
1438                 seq_show_option(seq, "usrjquota",
1439                         F2FS_OPTION(sbi).s_qf_names[USRQUOTA]);
1440
1441         if (F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
1442                 seq_show_option(seq, "grpjquota",
1443                         F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]);
1444
1445         if (F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
1446                 seq_show_option(seq, "prjjquota",
1447                         F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]);
1448 #endif
1449 }
1450
1451 static inline void f2fs_show_compress_options(struct seq_file *seq,
1452                                                         struct super_block *sb)
1453 {
1454         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1455         char *algtype = "";
1456         int i;
1457
1458         if (!f2fs_sb_has_compression(sbi))
1459                 return;
1460
1461         switch (F2FS_OPTION(sbi).compress_algorithm) {
1462         case COMPRESS_LZO:
1463                 algtype = "lzo";
1464                 break;
1465         case COMPRESS_LZ4:
1466                 algtype = "lz4";
1467                 break;
1468         case COMPRESS_ZSTD:
1469                 algtype = "zstd";
1470                 break;
1471         case COMPRESS_LZORLE:
1472                 algtype = "lzo-rle";
1473                 break;
1474         }
1475         seq_printf(seq, ",compress_algorithm=%s", algtype);
1476
1477         seq_printf(seq, ",compress_log_size=%u",
1478                         F2FS_OPTION(sbi).compress_log_size);
1479
1480         for (i = 0; i < F2FS_OPTION(sbi).compress_ext_cnt; i++) {
1481                 seq_printf(seq, ",compress_extension=%s",
1482                         F2FS_OPTION(sbi).extensions[i]);
1483         }
1484 }
1485
1486 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
1487 {
1488         struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
1489
1490         if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_SYNC)
1491                 seq_printf(seq, ",background_gc=%s", "sync");
1492         else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_ON)
1493                 seq_printf(seq, ",background_gc=%s", "on");
1494         else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF)
1495                 seq_printf(seq, ",background_gc=%s", "off");
1496
1497         if (test_opt(sbi, DISABLE_ROLL_FORWARD))
1498                 seq_puts(seq, ",disable_roll_forward");
1499         if (test_opt(sbi, NORECOVERY))
1500                 seq_puts(seq, ",norecovery");
1501         if (test_opt(sbi, DISCARD))
1502                 seq_puts(seq, ",discard");
1503         else
1504                 seq_puts(seq, ",nodiscard");
1505         if (test_opt(sbi, NOHEAP))
1506                 seq_puts(seq, ",no_heap");
1507         else
1508                 seq_puts(seq, ",heap");
1509 #ifdef CONFIG_F2FS_FS_XATTR
1510         if (test_opt(sbi, XATTR_USER))
1511                 seq_puts(seq, ",user_xattr");
1512         else
1513                 seq_puts(seq, ",nouser_xattr");
1514         if (test_opt(sbi, INLINE_XATTR))
1515                 seq_puts(seq, ",inline_xattr");
1516         else
1517                 seq_puts(seq, ",noinline_xattr");
1518         if (test_opt(sbi, INLINE_XATTR_SIZE))
1519                 seq_printf(seq, ",inline_xattr_size=%u",
1520                                         F2FS_OPTION(sbi).inline_xattr_size);
1521 #endif
1522 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1523         if (test_opt(sbi, POSIX_ACL))
1524                 seq_puts(seq, ",acl");
1525         else
1526                 seq_puts(seq, ",noacl");
1527 #endif
1528         if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
1529                 seq_puts(seq, ",disable_ext_identify");
1530         if (test_opt(sbi, INLINE_DATA))
1531                 seq_puts(seq, ",inline_data");
1532         else
1533                 seq_puts(seq, ",noinline_data");
1534         if (test_opt(sbi, INLINE_DENTRY))
1535                 seq_puts(seq, ",inline_dentry");
1536         else
1537                 seq_puts(seq, ",noinline_dentry");
1538         if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
1539                 seq_puts(seq, ",flush_merge");
1540         if (test_opt(sbi, NOBARRIER))
1541                 seq_puts(seq, ",nobarrier");
1542         if (test_opt(sbi, FASTBOOT))
1543                 seq_puts(seq, ",fastboot");
1544         if (test_opt(sbi, EXTENT_CACHE))
1545                 seq_puts(seq, ",extent_cache");
1546         else
1547                 seq_puts(seq, ",noextent_cache");
1548         if (test_opt(sbi, DATA_FLUSH))
1549                 seq_puts(seq, ",data_flush");
1550
1551         seq_puts(seq, ",mode=");
1552         if (F2FS_OPTION(sbi).fs_mode == FS_MODE_ADAPTIVE)
1553                 seq_puts(seq, "adaptive");
1554         else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS)
1555                 seq_puts(seq, "lfs");
1556         seq_printf(seq, ",active_logs=%u", F2FS_OPTION(sbi).active_logs);
1557         if (test_opt(sbi, RESERVE_ROOT))
1558                 seq_printf(seq, ",reserve_root=%u,resuid=%u,resgid=%u",
1559                                 F2FS_OPTION(sbi).root_reserved_blocks,
1560                                 from_kuid_munged(&init_user_ns,
1561                                         F2FS_OPTION(sbi).s_resuid),
1562                                 from_kgid_munged(&init_user_ns,
1563                                         F2FS_OPTION(sbi).s_resgid));
1564         if (F2FS_IO_SIZE_BITS(sbi))
1565                 seq_printf(seq, ",io_bits=%u",
1566                                 F2FS_OPTION(sbi).write_io_size_bits);
1567 #ifdef CONFIG_F2FS_FAULT_INJECTION
1568         if (test_opt(sbi, FAULT_INJECTION)) {
1569                 seq_printf(seq, ",fault_injection=%u",
1570                                 F2FS_OPTION(sbi).fault_info.inject_rate);
1571                 seq_printf(seq, ",fault_type=%u",
1572                                 F2FS_OPTION(sbi).fault_info.inject_type);
1573         }
1574 #endif
1575 #ifdef CONFIG_QUOTA
1576         if (test_opt(sbi, QUOTA))
1577                 seq_puts(seq, ",quota");
1578         if (test_opt(sbi, USRQUOTA))
1579                 seq_puts(seq, ",usrquota");
1580         if (test_opt(sbi, GRPQUOTA))
1581                 seq_puts(seq, ",grpquota");
1582         if (test_opt(sbi, PRJQUOTA))
1583                 seq_puts(seq, ",prjquota");
1584 #endif
1585         f2fs_show_quota_options(seq, sbi->sb);
1586         if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER)
1587                 seq_printf(seq, ",whint_mode=%s", "user-based");
1588         else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS)
1589                 seq_printf(seq, ",whint_mode=%s", "fs-based");
1590
1591         fscrypt_show_test_dummy_encryption(seq, ',', sbi->sb);
1592
1593         if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_DEFAULT)
1594                 seq_printf(seq, ",alloc_mode=%s", "default");
1595         else if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
1596                 seq_printf(seq, ",alloc_mode=%s", "reuse");
1597
1598         if (test_opt(sbi, DISABLE_CHECKPOINT))
1599                 seq_printf(seq, ",checkpoint=disable:%u",
1600                                 F2FS_OPTION(sbi).unusable_cap);
1601         if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_POSIX)
1602                 seq_printf(seq, ",fsync_mode=%s", "posix");
1603         else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT)
1604                 seq_printf(seq, ",fsync_mode=%s", "strict");
1605         else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_NOBARRIER)
1606                 seq_printf(seq, ",fsync_mode=%s", "nobarrier");
1607
1608         f2fs_show_compress_options(seq, sbi->sb);
1609         return 0;
1610 }
1611
1612 static void default_options(struct f2fs_sb_info *sbi)
1613 {
1614         /* init some FS parameters */
1615         F2FS_OPTION(sbi).active_logs = NR_CURSEG_TYPE;
1616         F2FS_OPTION(sbi).inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS;
1617         F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
1618         F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
1619         F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
1620         F2FS_OPTION(sbi).s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID);
1621         F2FS_OPTION(sbi).s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID);
1622         F2FS_OPTION(sbi).compress_algorithm = COMPRESS_LZ4;
1623         F2FS_OPTION(sbi).compress_log_size = MIN_COMPRESS_LOG_SIZE;
1624         F2FS_OPTION(sbi).compress_ext_cnt = 0;
1625         F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON;
1626
1627         set_opt(sbi, INLINE_XATTR);
1628         set_opt(sbi, INLINE_DATA);
1629         set_opt(sbi, INLINE_DENTRY);
1630         set_opt(sbi, EXTENT_CACHE);
1631         set_opt(sbi, NOHEAP);
1632         clear_opt(sbi, DISABLE_CHECKPOINT);
1633         F2FS_OPTION(sbi).unusable_cap = 0;
1634         sbi->sb->s_flags |= SB_LAZYTIME;
1635         set_opt(sbi, FLUSH_MERGE);
1636         set_opt(sbi, DISCARD);
1637         if (f2fs_sb_has_blkzoned(sbi))
1638                 F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS;
1639         else
1640                 F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE;
1641
1642 #ifdef CONFIG_F2FS_FS_XATTR
1643         set_opt(sbi, XATTR_USER);
1644 #endif
1645 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1646         set_opt(sbi, POSIX_ACL);
1647 #endif
1648
1649         f2fs_build_fault_attr(sbi, 0, 0);
1650 }
1651
1652 #ifdef CONFIG_QUOTA
1653 static int f2fs_enable_quotas(struct super_block *sb);
1654 #endif
1655
1656 static int f2fs_disable_checkpoint(struct f2fs_sb_info *sbi)
1657 {
1658         unsigned int s_flags = sbi->sb->s_flags;
1659         struct cp_control cpc;
1660         int err = 0;
1661         int ret;
1662         block_t unusable;
1663
1664         if (s_flags & SB_RDONLY) {
1665                 f2fs_err(sbi, "checkpoint=disable on readonly fs");
1666                 return -EINVAL;
1667         }
1668         sbi->sb->s_flags |= SB_ACTIVE;
1669
1670         f2fs_update_time(sbi, DISABLE_TIME);
1671
1672         while (!f2fs_time_over(sbi, DISABLE_TIME)) {
1673                 down_write(&sbi->gc_lock);
1674                 err = f2fs_gc(sbi, true, false, NULL_SEGNO);
1675                 if (err == -ENODATA) {
1676                         err = 0;
1677                         break;
1678                 }
1679                 if (err && err != -EAGAIN)
1680                         break;
1681         }
1682
1683         ret = sync_filesystem(sbi->sb);
1684         if (ret || err) {
1685                 err = ret ? ret: err;
1686                 goto restore_flag;
1687         }
1688
1689         unusable = f2fs_get_unusable_blocks(sbi);
1690         if (f2fs_disable_cp_again(sbi, unusable)) {
1691                 err = -EAGAIN;
1692                 goto restore_flag;
1693         }
1694
1695         down_write(&sbi->gc_lock);
1696         cpc.reason = CP_PAUSE;
1697         set_sbi_flag(sbi, SBI_CP_DISABLED);
1698         err = f2fs_write_checkpoint(sbi, &cpc);
1699         if (err)
1700                 goto out_unlock;
1701
1702         spin_lock(&sbi->stat_lock);
1703         sbi->unusable_block_count = unusable;
1704         spin_unlock(&sbi->stat_lock);
1705
1706 out_unlock:
1707         up_write(&sbi->gc_lock);
1708 restore_flag:
1709         sbi->sb->s_flags = s_flags;     /* Restore SB_RDONLY status */
1710         return err;
1711 }
1712
1713 static void f2fs_enable_checkpoint(struct f2fs_sb_info *sbi)
1714 {
1715         down_write(&sbi->gc_lock);
1716         f2fs_dirty_to_prefree(sbi);
1717
1718         clear_sbi_flag(sbi, SBI_CP_DISABLED);
1719         set_sbi_flag(sbi, SBI_IS_DIRTY);
1720         up_write(&sbi->gc_lock);
1721
1722         f2fs_sync_fs(sbi->sb, 1);
1723 }
1724
1725 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
1726 {
1727         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1728         struct f2fs_mount_info org_mount_opt;
1729         unsigned long old_sb_flags;
1730         int err;
1731         bool need_restart_gc = false;
1732         bool need_stop_gc = false;
1733         bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
1734         bool disable_checkpoint = test_opt(sbi, DISABLE_CHECKPOINT);
1735         bool no_io_align = !F2FS_IO_ALIGNED(sbi);
1736         bool checkpoint_changed;
1737 #ifdef CONFIG_QUOTA
1738         int i, j;
1739 #endif
1740
1741         /*
1742          * Save the old mount options in case we
1743          * need to restore them.
1744          */
1745         org_mount_opt = sbi->mount_opt;
1746         old_sb_flags = sb->s_flags;
1747
1748 #ifdef CONFIG_QUOTA
1749         org_mount_opt.s_jquota_fmt = F2FS_OPTION(sbi).s_jquota_fmt;
1750         for (i = 0; i < MAXQUOTAS; i++) {
1751                 if (F2FS_OPTION(sbi).s_qf_names[i]) {
1752                         org_mount_opt.s_qf_names[i] =
1753                                 kstrdup(F2FS_OPTION(sbi).s_qf_names[i],
1754                                 GFP_KERNEL);
1755                         if (!org_mount_opt.s_qf_names[i]) {
1756                                 for (j = 0; j < i; j++)
1757                                         kvfree(org_mount_opt.s_qf_names[j]);
1758                                 return -ENOMEM;
1759                         }
1760                 } else {
1761                         org_mount_opt.s_qf_names[i] = NULL;
1762                 }
1763         }
1764 #endif
1765
1766         /* recover superblocks we couldn't write due to previous RO mount */
1767         if (!(*flags & SB_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
1768                 err = f2fs_commit_super(sbi, false);
1769                 f2fs_info(sbi, "Try to recover all the superblocks, ret: %d",
1770                           err);
1771                 if (!err)
1772                         clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1773         }
1774
1775         default_options(sbi);
1776
1777         /* parse mount options */
1778         err = parse_options(sb, data, true);
1779         if (err)
1780                 goto restore_opts;
1781         checkpoint_changed =
1782                         disable_checkpoint != test_opt(sbi, DISABLE_CHECKPOINT);
1783
1784         /*
1785          * Previous and new state of filesystem is RO,
1786          * so skip checking GC and FLUSH_MERGE conditions.
1787          */
1788         if (f2fs_readonly(sb) && (*flags & SB_RDONLY))
1789                 goto skip;
1790
1791 #ifdef CONFIG_QUOTA
1792         if (!f2fs_readonly(sb) && (*flags & SB_RDONLY)) {
1793                 err = dquot_suspend(sb, -1);
1794                 if (err < 0)
1795                         goto restore_opts;
1796         } else if (f2fs_readonly(sb) && !(*flags & SB_RDONLY)) {
1797                 /* dquot_resume needs RW */
1798                 sb->s_flags &= ~SB_RDONLY;
1799                 if (sb_any_quota_suspended(sb)) {
1800                         dquot_resume(sb, -1);
1801                 } else if (f2fs_sb_has_quota_ino(sbi)) {
1802                         err = f2fs_enable_quotas(sb);
1803                         if (err)
1804                                 goto restore_opts;
1805                 }
1806         }
1807 #endif
1808         /* disallow enable/disable extent_cache dynamically */
1809         if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
1810                 err = -EINVAL;
1811                 f2fs_warn(sbi, "switch extent_cache option is not allowed");
1812                 goto restore_opts;
1813         }
1814
1815         if (no_io_align == !!F2FS_IO_ALIGNED(sbi)) {
1816                 err = -EINVAL;
1817                 f2fs_warn(sbi, "switch io_bits option is not allowed");
1818                 goto restore_opts;
1819         }
1820
1821         if ((*flags & SB_RDONLY) && test_opt(sbi, DISABLE_CHECKPOINT)) {
1822                 err = -EINVAL;
1823                 f2fs_warn(sbi, "disabling checkpoint not compatible with read-only");
1824                 goto restore_opts;
1825         }
1826
1827         /*
1828          * We stop the GC thread if FS is mounted as RO
1829          * or if background_gc = off is passed in mount
1830          * option. Also sync the filesystem.
1831          */
1832         if ((*flags & SB_RDONLY) ||
1833                         F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF) {
1834                 if (sbi->gc_thread) {
1835                         f2fs_stop_gc_thread(sbi);
1836                         need_restart_gc = true;
1837                 }
1838         } else if (!sbi->gc_thread) {
1839                 err = f2fs_start_gc_thread(sbi);
1840                 if (err)
1841                         goto restore_opts;
1842                 need_stop_gc = true;
1843         }
1844
1845         if (*flags & SB_RDONLY ||
1846                 F2FS_OPTION(sbi).whint_mode != org_mount_opt.whint_mode) {
1847                 writeback_inodes_sb(sb, WB_REASON_SYNC);
1848                 sync_inodes_sb(sb);
1849
1850                 set_sbi_flag(sbi, SBI_IS_DIRTY);
1851                 set_sbi_flag(sbi, SBI_IS_CLOSE);
1852                 f2fs_sync_fs(sb, 1);
1853                 clear_sbi_flag(sbi, SBI_IS_CLOSE);
1854         }
1855
1856         if (checkpoint_changed) {
1857                 if (test_opt(sbi, DISABLE_CHECKPOINT)) {
1858                         err = f2fs_disable_checkpoint(sbi);
1859                         if (err)
1860                                 goto restore_gc;
1861                 } else {
1862                         f2fs_enable_checkpoint(sbi);
1863                 }
1864         }
1865
1866         /*
1867          * We stop issue flush thread if FS is mounted as RO
1868          * or if flush_merge is not passed in mount option.
1869          */
1870         if ((*flags & SB_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
1871                 clear_opt(sbi, FLUSH_MERGE);
1872                 f2fs_destroy_flush_cmd_control(sbi, false);
1873         } else {
1874                 err = f2fs_create_flush_cmd_control(sbi);
1875                 if (err)
1876                         goto restore_gc;
1877         }
1878 skip:
1879 #ifdef CONFIG_QUOTA
1880         /* Release old quota file names */
1881         for (i = 0; i < MAXQUOTAS; i++)
1882                 kvfree(org_mount_opt.s_qf_names[i]);
1883 #endif
1884         /* Update the POSIXACL Flag */
1885         sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
1886                 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
1887
1888         limit_reserve_root(sbi);
1889         adjust_unusable_cap_perc(sbi);
1890         *flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME);
1891         return 0;
1892 restore_gc:
1893         if (need_restart_gc) {
1894                 if (f2fs_start_gc_thread(sbi))
1895                         f2fs_warn(sbi, "background gc thread has stopped");
1896         } else if (need_stop_gc) {
1897                 f2fs_stop_gc_thread(sbi);
1898         }
1899 restore_opts:
1900 #ifdef CONFIG_QUOTA
1901         F2FS_OPTION(sbi).s_jquota_fmt = org_mount_opt.s_jquota_fmt;
1902         for (i = 0; i < MAXQUOTAS; i++) {
1903                 kvfree(F2FS_OPTION(sbi).s_qf_names[i]);
1904                 F2FS_OPTION(sbi).s_qf_names[i] = org_mount_opt.s_qf_names[i];
1905         }
1906 #endif
1907         sbi->mount_opt = org_mount_opt;
1908         sb->s_flags = old_sb_flags;
1909         return err;
1910 }
1911
1912 #ifdef CONFIG_QUOTA
1913 /* Read data from quotafile */
1914 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data,
1915                                size_t len, loff_t off)
1916 {
1917         struct inode *inode = sb_dqopt(sb)->files[type];
1918         struct address_space *mapping = inode->i_mapping;
1919         block_t blkidx = F2FS_BYTES_TO_BLK(off);
1920         int offset = off & (sb->s_blocksize - 1);
1921         int tocopy;
1922         size_t toread;
1923         loff_t i_size = i_size_read(inode);
1924         struct page *page;
1925         char *kaddr;
1926
1927         if (off > i_size)
1928                 return 0;
1929
1930         if (off + len > i_size)
1931                 len = i_size - off;
1932         toread = len;
1933         while (toread > 0) {
1934                 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
1935 repeat:
1936                 page = read_cache_page_gfp(mapping, blkidx, GFP_NOFS);
1937                 if (IS_ERR(page)) {
1938                         if (PTR_ERR(page) == -ENOMEM) {
1939                                 congestion_wait(BLK_RW_ASYNC,
1940                                                 DEFAULT_IO_TIMEOUT);
1941                                 goto repeat;
1942                         }
1943                         set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
1944                         return PTR_ERR(page);
1945                 }
1946
1947                 lock_page(page);
1948
1949                 if (unlikely(page->mapping != mapping)) {
1950                         f2fs_put_page(page, 1);
1951                         goto repeat;
1952                 }
1953                 if (unlikely(!PageUptodate(page))) {
1954                         f2fs_put_page(page, 1);
1955                         set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
1956                         return -EIO;
1957                 }
1958
1959                 kaddr = kmap_atomic(page);
1960                 memcpy(data, kaddr + offset, tocopy);
1961                 kunmap_atomic(kaddr);
1962                 f2fs_put_page(page, 1);
1963
1964                 offset = 0;
1965                 toread -= tocopy;
1966                 data += tocopy;
1967                 blkidx++;
1968         }
1969         return len;
1970 }
1971
1972 /* Write to quotafile */
1973 static ssize_t f2fs_quota_write(struct super_block *sb, int type,
1974                                 const char *data, size_t len, loff_t off)
1975 {
1976         struct inode *inode = sb_dqopt(sb)->files[type];
1977         struct address_space *mapping = inode->i_mapping;
1978         const struct address_space_operations *a_ops = mapping->a_ops;
1979         int offset = off & (sb->s_blocksize - 1);
1980         size_t towrite = len;
1981         struct page *page;
1982         void *fsdata = NULL;
1983         char *kaddr;
1984         int err = 0;
1985         int tocopy;
1986
1987         while (towrite > 0) {
1988                 tocopy = min_t(unsigned long, sb->s_blocksize - offset,
1989                                                                 towrite);
1990 retry:
1991                 err = a_ops->write_begin(NULL, mapping, off, tocopy, 0,
1992                                                         &page, &fsdata);
1993                 if (unlikely(err)) {
1994                         if (err == -ENOMEM) {
1995                                 congestion_wait(BLK_RW_ASYNC,
1996                                                 DEFAULT_IO_TIMEOUT);
1997                                 goto retry;
1998                         }
1999                         set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2000                         break;
2001                 }
2002
2003                 kaddr = kmap_atomic(page);
2004                 memcpy(kaddr + offset, data, tocopy);
2005                 kunmap_atomic(kaddr);
2006                 flush_dcache_page(page);
2007
2008                 a_ops->write_end(NULL, mapping, off, tocopy, tocopy,
2009                                                 page, fsdata);
2010                 offset = 0;
2011                 towrite -= tocopy;
2012                 off += tocopy;
2013                 data += tocopy;
2014                 cond_resched();
2015         }
2016
2017         if (len == towrite)
2018                 return err;
2019         inode->i_mtime = inode->i_ctime = current_time(inode);
2020         f2fs_mark_inode_dirty_sync(inode, false);
2021         return len - towrite;
2022 }
2023
2024 static struct dquot **f2fs_get_dquots(struct inode *inode)
2025 {
2026         return F2FS_I(inode)->i_dquot;
2027 }
2028
2029 static qsize_t *f2fs_get_reserved_space(struct inode *inode)
2030 {
2031         return &F2FS_I(inode)->i_reserved_quota;
2032 }
2033
2034 static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type)
2035 {
2036         if (is_set_ckpt_flags(sbi, CP_QUOTA_NEED_FSCK_FLAG)) {
2037                 f2fs_err(sbi, "quota sysfile may be corrupted, skip loading it");
2038                 return 0;
2039         }
2040
2041         return dquot_quota_on_mount(sbi->sb, F2FS_OPTION(sbi).s_qf_names[type],
2042                                         F2FS_OPTION(sbi).s_jquota_fmt, type);
2043 }
2044
2045 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly)
2046 {
2047         int enabled = 0;
2048         int i, err;
2049
2050         if (f2fs_sb_has_quota_ino(sbi) && rdonly) {
2051                 err = f2fs_enable_quotas(sbi->sb);
2052                 if (err) {
2053                         f2fs_err(sbi, "Cannot turn on quota_ino: %d", err);
2054                         return 0;
2055                 }
2056                 return 1;
2057         }
2058
2059         for (i = 0; i < MAXQUOTAS; i++) {
2060                 if (F2FS_OPTION(sbi).s_qf_names[i]) {
2061                         err = f2fs_quota_on_mount(sbi, i);
2062                         if (!err) {
2063                                 enabled = 1;
2064                                 continue;
2065                         }
2066                         f2fs_err(sbi, "Cannot turn on quotas: %d on %d",
2067                                  err, i);
2068                 }
2069         }
2070         return enabled;
2071 }
2072
2073 static int f2fs_quota_enable(struct super_block *sb, int type, int format_id,
2074                              unsigned int flags)
2075 {
2076         struct inode *qf_inode;
2077         unsigned long qf_inum;
2078         int err;
2079
2080         BUG_ON(!f2fs_sb_has_quota_ino(F2FS_SB(sb)));
2081
2082         qf_inum = f2fs_qf_ino(sb, type);
2083         if (!qf_inum)
2084                 return -EPERM;
2085
2086         qf_inode = f2fs_iget(sb, qf_inum);
2087         if (IS_ERR(qf_inode)) {
2088                 f2fs_err(F2FS_SB(sb), "Bad quota inode %u:%lu", type, qf_inum);
2089                 return PTR_ERR(qf_inode);
2090         }
2091
2092         /* Don't account quota for quota files to avoid recursion */
2093         qf_inode->i_flags |= S_NOQUOTA;
2094         err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
2095         iput(qf_inode);
2096         return err;
2097 }
2098
2099 static int f2fs_enable_quotas(struct super_block *sb)
2100 {
2101         struct f2fs_sb_info *sbi = F2FS_SB(sb);
2102         int type, err = 0;
2103         unsigned long qf_inum;
2104         bool quota_mopt[MAXQUOTAS] = {
2105                 test_opt(sbi, USRQUOTA),
2106                 test_opt(sbi, GRPQUOTA),
2107                 test_opt(sbi, PRJQUOTA),
2108         };
2109
2110         if (is_set_ckpt_flags(F2FS_SB(sb), CP_QUOTA_NEED_FSCK_FLAG)) {
2111                 f2fs_err(sbi, "quota file may be corrupted, skip loading it");
2112                 return 0;
2113         }
2114
2115         sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
2116
2117         for (type = 0; type < MAXQUOTAS; type++) {
2118                 qf_inum = f2fs_qf_ino(sb, type);
2119                 if (qf_inum) {
2120                         err = f2fs_quota_enable(sb, type, QFMT_VFS_V1,
2121                                 DQUOT_USAGE_ENABLED |
2122                                 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
2123                         if (err) {
2124                                 f2fs_err(sbi, "Failed to enable quota tracking (type=%d, err=%d). Please run fsck to fix.",
2125                                          type, err);
2126                                 for (type--; type >= 0; type--)
2127                                         dquot_quota_off(sb, type);
2128                                 set_sbi_flag(F2FS_SB(sb),
2129                                                 SBI_QUOTA_NEED_REPAIR);
2130                                 return err;
2131                         }
2132                 }
2133         }
2134         return 0;
2135 }
2136
2137 int f2fs_quota_sync(struct super_block *sb, int type)
2138 {
2139         struct f2fs_sb_info *sbi = F2FS_SB(sb);
2140         struct quota_info *dqopt = sb_dqopt(sb);
2141         int cnt;
2142         int ret;
2143
2144         /*
2145          * do_quotactl
2146          *  f2fs_quota_sync
2147          *  down_read(quota_sem)
2148          *  dquot_writeback_dquots()
2149          *  f2fs_dquot_commit
2150          *                            block_operation
2151          *                            down_read(quota_sem)
2152          */
2153         f2fs_lock_op(sbi);
2154
2155         down_read(&sbi->quota_sem);
2156         ret = dquot_writeback_dquots(sb, type);
2157         if (ret)
2158                 goto out;
2159
2160         /*
2161          * Now when everything is written we can discard the pagecache so
2162          * that userspace sees the changes.
2163          */
2164         for (cnt = 0; cnt < MAXQUOTAS; cnt++) {
2165                 struct address_space *mapping;
2166
2167                 if (type != -1 && cnt != type)
2168                         continue;
2169                 if (!sb_has_quota_active(sb, cnt))
2170                         continue;
2171
2172                 mapping = dqopt->files[cnt]->i_mapping;
2173
2174                 ret = filemap_fdatawrite(mapping);
2175                 if (ret)
2176                         goto out;
2177
2178                 /* if we are using journalled quota */
2179                 if (is_journalled_quota(sbi))
2180                         continue;
2181
2182                 ret = filemap_fdatawait(mapping);
2183                 if (ret)
2184                         set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2185
2186                 inode_lock(dqopt->files[cnt]);
2187                 truncate_inode_pages(&dqopt->files[cnt]->i_data, 0);
2188                 inode_unlock(dqopt->files[cnt]);
2189         }
2190 out:
2191         if (ret)
2192                 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2193         up_read(&sbi->quota_sem);
2194         f2fs_unlock_op(sbi);
2195         return ret;
2196 }
2197
2198 static int f2fs_quota_on(struct super_block *sb, int type, int format_id,
2199                                                         const struct path *path)
2200 {
2201         struct inode *inode;
2202         int err;
2203
2204         /* if quota sysfile exists, deny enabling quota with specific file */
2205         if (f2fs_sb_has_quota_ino(F2FS_SB(sb))) {
2206                 f2fs_err(F2FS_SB(sb), "quota sysfile already exists");
2207                 return -EBUSY;
2208         }
2209
2210         err = f2fs_quota_sync(sb, type);
2211         if (err)
2212                 return err;
2213
2214         err = dquot_quota_on(sb, type, format_id, path);
2215         if (err)
2216                 return err;
2217
2218         inode = d_inode(path->dentry);
2219
2220         inode_lock(inode);
2221         F2FS_I(inode)->i_flags |= F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL;
2222         f2fs_set_inode_flags(inode);
2223         inode_unlock(inode);
2224         f2fs_mark_inode_dirty_sync(inode, false);
2225
2226         return 0;
2227 }
2228
2229 static int __f2fs_quota_off(struct super_block *sb, int type)
2230 {
2231         struct inode *inode = sb_dqopt(sb)->files[type];
2232         int err;
2233
2234         if (!inode || !igrab(inode))
2235                 return dquot_quota_off(sb, type);
2236
2237         err = f2fs_quota_sync(sb, type);
2238         if (err)
2239                 goto out_put;
2240
2241         err = dquot_quota_off(sb, type);
2242         if (err || f2fs_sb_has_quota_ino(F2FS_SB(sb)))
2243                 goto out_put;
2244
2245         inode_lock(inode);
2246         F2FS_I(inode)->i_flags &= ~(F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL);
2247         f2fs_set_inode_flags(inode);
2248         inode_unlock(inode);
2249         f2fs_mark_inode_dirty_sync(inode, false);
2250 out_put:
2251         iput(inode);
2252         return err;
2253 }
2254
2255 static int f2fs_quota_off(struct super_block *sb, int type)
2256 {
2257         struct f2fs_sb_info *sbi = F2FS_SB(sb);
2258         int err;
2259
2260         err = __f2fs_quota_off(sb, type);
2261
2262         /*
2263          * quotactl can shutdown journalled quota, result in inconsistence
2264          * between quota record and fs data by following updates, tag the
2265          * flag to let fsck be aware of it.
2266          */
2267         if (is_journalled_quota(sbi))
2268                 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2269         return err;
2270 }
2271
2272 void f2fs_quota_off_umount(struct super_block *sb)
2273 {
2274         int type;
2275         int err;
2276
2277         for (type = 0; type < MAXQUOTAS; type++) {
2278                 err = __f2fs_quota_off(sb, type);
2279                 if (err) {
2280                         int ret = dquot_quota_off(sb, type);
2281
2282                         f2fs_err(F2FS_SB(sb), "Fail to turn off disk quota (type: %d, err: %d, ret:%d), Please run fsck to fix it.",
2283                                  type, err, ret);
2284                         set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2285                 }
2286         }
2287         /*
2288          * In case of checkpoint=disable, we must flush quota blocks.
2289          * This can cause NULL exception for node_inode in end_io, since
2290          * put_super already dropped it.
2291          */
2292         sync_filesystem(sb);
2293 }
2294
2295 static void f2fs_truncate_quota_inode_pages(struct super_block *sb)
2296 {
2297         struct quota_info *dqopt = sb_dqopt(sb);
2298         int type;
2299
2300         for (type = 0; type < MAXQUOTAS; type++) {
2301                 if (!dqopt->files[type])
2302                         continue;
2303                 f2fs_inode_synced(dqopt->files[type]);
2304         }
2305 }
2306
2307 static int f2fs_dquot_commit(struct dquot *dquot)
2308 {
2309         struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
2310         int ret;
2311
2312         down_read_nested(&sbi->quota_sem, SINGLE_DEPTH_NESTING);
2313         ret = dquot_commit(dquot);
2314         if (ret < 0)
2315                 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2316         up_read(&sbi->quota_sem);
2317         return ret;
2318 }
2319
2320 static int f2fs_dquot_acquire(struct dquot *dquot)
2321 {
2322         struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
2323         int ret;
2324
2325         down_read(&sbi->quota_sem);
2326         ret = dquot_acquire(dquot);
2327         if (ret < 0)
2328                 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2329         up_read(&sbi->quota_sem);
2330         return ret;
2331 }
2332
2333 static int f2fs_dquot_release(struct dquot *dquot)
2334 {
2335         struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
2336         int ret = dquot_release(dquot);
2337
2338         if (ret < 0)
2339                 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2340         return ret;
2341 }
2342
2343 static int f2fs_dquot_mark_dquot_dirty(struct dquot *dquot)
2344 {
2345         struct super_block *sb = dquot->dq_sb;
2346         struct f2fs_sb_info *sbi = F2FS_SB(sb);
2347         int ret = dquot_mark_dquot_dirty(dquot);
2348
2349         /* if we are using journalled quota */
2350         if (is_journalled_quota(sbi))
2351                 set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
2352
2353         return ret;
2354 }
2355
2356 static int f2fs_dquot_commit_info(struct super_block *sb, int type)
2357 {
2358         struct f2fs_sb_info *sbi = F2FS_SB(sb);
2359         int ret = dquot_commit_info(sb, type);
2360
2361         if (ret < 0)
2362                 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2363         return ret;
2364 }
2365
2366 static int f2fs_get_projid(struct inode *inode, kprojid_t *projid)
2367 {
2368         *projid = F2FS_I(inode)->i_projid;
2369         return 0;
2370 }
2371
2372 static const struct dquot_operations f2fs_quota_operations = {
2373         .get_reserved_space = f2fs_get_reserved_space,
2374         .write_dquot    = f2fs_dquot_commit,
2375         .acquire_dquot  = f2fs_dquot_acquire,
2376         .release_dquot  = f2fs_dquot_release,
2377         .mark_dirty     = f2fs_dquot_mark_dquot_dirty,
2378         .write_info     = f2fs_dquot_commit_info,
2379         .alloc_dquot    = dquot_alloc,
2380         .destroy_dquot  = dquot_destroy,
2381         .get_projid     = f2fs_get_projid,
2382         .get_next_id    = dquot_get_next_id,
2383 };
2384
2385 static const struct quotactl_ops f2fs_quotactl_ops = {
2386         .quota_on       = f2fs_quota_on,
2387         .quota_off      = f2fs_quota_off,
2388         .quota_sync     = f2fs_quota_sync,
2389         .get_state      = dquot_get_state,
2390         .set_info       = dquot_set_dqinfo,
2391         .get_dqblk      = dquot_get_dqblk,
2392         .set_dqblk      = dquot_set_dqblk,
2393         .get_nextdqblk  = dquot_get_next_dqblk,
2394 };
2395 #else
2396 int f2fs_quota_sync(struct super_block *sb, int type)
2397 {
2398         return 0;
2399 }
2400
2401 void f2fs_quota_off_umount(struct super_block *sb)
2402 {
2403 }
2404 #endif
2405
2406 static const struct super_operations f2fs_sops = {
2407         .alloc_inode    = f2fs_alloc_inode,
2408         .free_inode     = f2fs_free_inode,
2409         .drop_inode     = f2fs_drop_inode,
2410         .write_inode    = f2fs_write_inode,
2411         .dirty_inode    = f2fs_dirty_inode,
2412         .show_options   = f2fs_show_options,
2413 #ifdef CONFIG_QUOTA
2414         .quota_read     = f2fs_quota_read,
2415         .quota_write    = f2fs_quota_write,
2416         .get_dquots     = f2fs_get_dquots,
2417 #endif
2418         .evict_inode    = f2fs_evict_inode,
2419         .put_super      = f2fs_put_super,
2420         .sync_fs        = f2fs_sync_fs,
2421         .freeze_fs      = f2fs_freeze,
2422         .unfreeze_fs    = f2fs_unfreeze,
2423         .statfs         = f2fs_statfs,
2424         .remount_fs     = f2fs_remount,
2425 };
2426
2427 #ifdef CONFIG_FS_ENCRYPTION
2428 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
2429 {
2430         return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
2431                                 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
2432                                 ctx, len, NULL);
2433 }
2434
2435 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
2436                                                         void *fs_data)
2437 {
2438         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2439
2440         /*
2441          * Encrypting the root directory is not allowed because fsck
2442          * expects lost+found directory to exist and remain unencrypted
2443          * if LOST_FOUND feature is enabled.
2444          *
2445          */
2446         if (f2fs_sb_has_lost_found(sbi) &&
2447                         inode->i_ino == F2FS_ROOT_INO(sbi))
2448                 return -EPERM;
2449
2450         return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
2451                                 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
2452                                 ctx, len, fs_data, XATTR_CREATE);
2453 }
2454
2455 static const union fscrypt_context *
2456 f2fs_get_dummy_context(struct super_block *sb)
2457 {
2458         return F2FS_OPTION(F2FS_SB(sb)).dummy_enc_ctx.ctx;
2459 }
2460
2461 static bool f2fs_has_stable_inodes(struct super_block *sb)
2462 {
2463         return true;
2464 }
2465
2466 static void f2fs_get_ino_and_lblk_bits(struct super_block *sb,
2467                                        int *ino_bits_ret, int *lblk_bits_ret)
2468 {
2469         *ino_bits_ret = 8 * sizeof(nid_t);
2470         *lblk_bits_ret = 8 * sizeof(block_t);
2471 }
2472
2473 static const struct fscrypt_operations f2fs_cryptops = {
2474         .key_prefix             = "f2fs:",
2475         .get_context            = f2fs_get_context,
2476         .set_context            = f2fs_set_context,
2477         .get_dummy_context      = f2fs_get_dummy_context,
2478         .empty_dir              = f2fs_empty_dir,
2479         .max_namelen            = F2FS_NAME_LEN,
2480         .has_stable_inodes      = f2fs_has_stable_inodes,
2481         .get_ino_and_lblk_bits  = f2fs_get_ino_and_lblk_bits,
2482 };
2483 #endif
2484
2485 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
2486                 u64 ino, u32 generation)
2487 {
2488         struct f2fs_sb_info *sbi = F2FS_SB(sb);
2489         struct inode *inode;
2490
2491         if (f2fs_check_nid_range(sbi, ino))
2492                 return ERR_PTR(-ESTALE);
2493
2494         /*
2495          * f2fs_iget isn't quite right if the inode is currently unallocated!
2496          * However f2fs_iget currently does appropriate checks to handle stale
2497          * inodes so everything is OK.
2498          */
2499         inode = f2fs_iget(sb, ino);
2500         if (IS_ERR(inode))
2501                 return ERR_CAST(inode);
2502         if (unlikely(generation && inode->i_generation != generation)) {
2503                 /* we didn't find the right inode.. */
2504                 iput(inode);
2505                 return ERR_PTR(-ESTALE);
2506         }
2507         return inode;
2508 }
2509
2510 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
2511                 int fh_len, int fh_type)
2512 {
2513         return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
2514                                     f2fs_nfs_get_inode);
2515 }
2516
2517 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
2518                 int fh_len, int fh_type)
2519 {
2520         return generic_fh_to_parent(sb, fid, fh_len, fh_type,
2521                                     f2fs_nfs_get_inode);
2522 }
2523
2524 static const struct export_operations f2fs_export_ops = {
2525         .fh_to_dentry = f2fs_fh_to_dentry,
2526         .fh_to_parent = f2fs_fh_to_parent,
2527         .get_parent = f2fs_get_parent,
2528 };
2529
2530 static loff_t max_file_blocks(void)
2531 {
2532         loff_t result = 0;
2533         loff_t leaf_count = DEF_ADDRS_PER_BLOCK;
2534
2535         /*
2536          * note: previously, result is equal to (DEF_ADDRS_PER_INODE -
2537          * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more
2538          * space in inode.i_addr, it will be more safe to reassign
2539          * result as zero.
2540          */
2541
2542         /* two direct node blocks */
2543         result += (leaf_count * 2);
2544
2545         /* two indirect node blocks */
2546         leaf_count *= NIDS_PER_BLOCK;
2547         result += (leaf_count * 2);
2548
2549         /* one double indirect node block */
2550         leaf_count *= NIDS_PER_BLOCK;
2551         result += leaf_count;
2552
2553         return result;
2554 }
2555
2556 static int __f2fs_commit_super(struct buffer_head *bh,
2557                         struct f2fs_super_block *super)
2558 {
2559         lock_buffer(bh);
2560         if (super)
2561                 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
2562         set_buffer_dirty(bh);
2563         unlock_buffer(bh);
2564
2565         /* it's rare case, we can do fua all the time */
2566         return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
2567 }
2568
2569 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
2570                                         struct buffer_head *bh)
2571 {
2572         struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
2573                                         (bh->b_data + F2FS_SUPER_OFFSET);
2574         struct super_block *sb = sbi->sb;
2575         u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
2576         u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
2577         u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
2578         u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
2579         u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
2580         u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
2581         u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
2582         u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
2583         u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
2584         u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
2585         u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
2586         u32 segment_count = le32_to_cpu(raw_super->segment_count);
2587         u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2588         u64 main_end_blkaddr = main_blkaddr +
2589                                 (segment_count_main << log_blocks_per_seg);
2590         u64 seg_end_blkaddr = segment0_blkaddr +
2591                                 (segment_count << log_blocks_per_seg);
2592
2593         if (segment0_blkaddr != cp_blkaddr) {
2594                 f2fs_info(sbi, "Mismatch start address, segment0(%u) cp_blkaddr(%u)",
2595                           segment0_blkaddr, cp_blkaddr);
2596                 return true;
2597         }
2598
2599         if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
2600                                                         sit_blkaddr) {
2601                 f2fs_info(sbi, "Wrong CP boundary, start(%u) end(%u) blocks(%u)",
2602                           cp_blkaddr, sit_blkaddr,
2603                           segment_count_ckpt << log_blocks_per_seg);
2604                 return true;
2605         }
2606
2607         if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
2608                                                         nat_blkaddr) {
2609                 f2fs_info(sbi, "Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
2610                           sit_blkaddr, nat_blkaddr,
2611                           segment_count_sit << log_blocks_per_seg);
2612                 return true;
2613         }
2614
2615         if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
2616                                                         ssa_blkaddr) {
2617                 f2fs_info(sbi, "Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
2618                           nat_blkaddr, ssa_blkaddr,
2619                           segment_count_nat << log_blocks_per_seg);
2620                 return true;
2621         }
2622
2623         if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
2624                                                         main_blkaddr) {
2625                 f2fs_info(sbi, "Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
2626                           ssa_blkaddr, main_blkaddr,
2627                           segment_count_ssa << log_blocks_per_seg);
2628                 return true;
2629         }
2630
2631         if (main_end_blkaddr > seg_end_blkaddr) {
2632                 f2fs_info(sbi, "Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)",
2633                           main_blkaddr,
2634                           segment0_blkaddr +
2635                           (segment_count << log_blocks_per_seg),
2636                           segment_count_main << log_blocks_per_seg);
2637                 return true;
2638         } else if (main_end_blkaddr < seg_end_blkaddr) {
2639                 int err = 0;
2640                 char *res;
2641
2642                 /* fix in-memory information all the time */
2643                 raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
2644                                 segment0_blkaddr) >> log_blocks_per_seg);
2645
2646                 if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
2647                         set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
2648                         res = "internally";
2649                 } else {
2650                         err = __f2fs_commit_super(bh, NULL);
2651                         res = err ? "failed" : "done";
2652                 }
2653                 f2fs_info(sbi, "Fix alignment : %s, start(%u) end(%u) block(%u)",
2654                           res, main_blkaddr,
2655                           segment0_blkaddr +
2656                           (segment_count << log_blocks_per_seg),
2657                           segment_count_main << log_blocks_per_seg);
2658                 if (err)
2659                         return true;
2660         }
2661         return false;
2662 }
2663
2664 static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
2665                                 struct buffer_head *bh)
2666 {
2667         block_t segment_count, segs_per_sec, secs_per_zone;
2668         block_t total_sections, blocks_per_seg;
2669         struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
2670                                         (bh->b_data + F2FS_SUPER_OFFSET);
2671         unsigned int blocksize;
2672         size_t crc_offset = 0;
2673         __u32 crc = 0;
2674
2675         if (le32_to_cpu(raw_super->magic) != F2FS_SUPER_MAGIC) {
2676                 f2fs_info(sbi, "Magic Mismatch, valid(0x%x) - read(0x%x)",
2677                           F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
2678                 return -EINVAL;
2679         }
2680
2681         /* Check checksum_offset and crc in superblock */
2682         if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_SB_CHKSUM)) {
2683                 crc_offset = le32_to_cpu(raw_super->checksum_offset);
2684                 if (crc_offset !=
2685                         offsetof(struct f2fs_super_block, crc)) {
2686                         f2fs_info(sbi, "Invalid SB checksum offset: %zu",
2687                                   crc_offset);
2688                         return -EFSCORRUPTED;
2689                 }
2690                 crc = le32_to_cpu(raw_super->crc);
2691                 if (!f2fs_crc_valid(sbi, crc, raw_super, crc_offset)) {
2692                         f2fs_info(sbi, "Invalid SB checksum value: %u", crc);
2693                         return -EFSCORRUPTED;
2694                 }
2695         }
2696
2697         /* Currently, support only 4KB page cache size */
2698         if (F2FS_BLKSIZE != PAGE_SIZE) {
2699                 f2fs_info(sbi, "Invalid page_cache_size (%lu), supports only 4KB",
2700                           PAGE_SIZE);
2701                 return -EFSCORRUPTED;
2702         }
2703
2704         /* Currently, support only 4KB block size */
2705         blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
2706         if (blocksize != F2FS_BLKSIZE) {
2707                 f2fs_info(sbi, "Invalid blocksize (%u), supports only 4KB",
2708                           blocksize);
2709                 return -EFSCORRUPTED;
2710         }
2711
2712         /* check log blocks per segment */
2713         if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
2714                 f2fs_info(sbi, "Invalid log blocks per segment (%u)",
2715                           le32_to_cpu(raw_super->log_blocks_per_seg));
2716                 return -EFSCORRUPTED;
2717         }
2718
2719         /* Currently, support 512/1024/2048/4096 bytes sector size */
2720         if (le32_to_cpu(raw_super->log_sectorsize) >
2721                                 F2FS_MAX_LOG_SECTOR_SIZE ||
2722                 le32_to_cpu(raw_super->log_sectorsize) <
2723                                 F2FS_MIN_LOG_SECTOR_SIZE) {
2724                 f2fs_info(sbi, "Invalid log sectorsize (%u)",
2725                           le32_to_cpu(raw_super->log_sectorsize));
2726                 return -EFSCORRUPTED;
2727         }
2728         if (le32_to_cpu(raw_super->log_sectors_per_block) +
2729                 le32_to_cpu(raw_super->log_sectorsize) !=
2730                         F2FS_MAX_LOG_SECTOR_SIZE) {
2731                 f2fs_info(sbi, "Invalid log sectors per block(%u) log sectorsize(%u)",
2732                           le32_to_cpu(raw_super->log_sectors_per_block),
2733                           le32_to_cpu(raw_super->log_sectorsize));
2734                 return -EFSCORRUPTED;
2735         }
2736
2737         segment_count = le32_to_cpu(raw_super->segment_count);
2738         segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
2739         secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
2740         total_sections = le32_to_cpu(raw_super->section_count);
2741
2742         /* blocks_per_seg should be 512, given the above check */
2743         blocks_per_seg = 1 << le32_to_cpu(raw_super->log_blocks_per_seg);
2744
2745         if (segment_count > F2FS_MAX_SEGMENT ||
2746                                 segment_count < F2FS_MIN_SEGMENTS) {
2747                 f2fs_info(sbi, "Invalid segment count (%u)", segment_count);
2748                 return -EFSCORRUPTED;
2749         }
2750
2751         if (total_sections > segment_count ||
2752                         total_sections < F2FS_MIN_SEGMENTS ||
2753                         segs_per_sec > segment_count || !segs_per_sec) {
2754                 f2fs_info(sbi, "Invalid segment/section count (%u, %u x %u)",
2755                           segment_count, total_sections, segs_per_sec);
2756                 return -EFSCORRUPTED;
2757         }
2758
2759         if ((segment_count / segs_per_sec) < total_sections) {
2760                 f2fs_info(sbi, "Small segment_count (%u < %u * %u)",
2761                           segment_count, segs_per_sec, total_sections);
2762                 return -EFSCORRUPTED;
2763         }
2764
2765         if (segment_count > (le64_to_cpu(raw_super->block_count) >> 9)) {
2766                 f2fs_info(sbi, "Wrong segment_count / block_count (%u > %llu)",
2767                           segment_count, le64_to_cpu(raw_super->block_count));
2768                 return -EFSCORRUPTED;
2769         }
2770
2771         if (RDEV(0).path[0]) {
2772                 block_t dev_seg_count = le32_to_cpu(RDEV(0).total_segments);
2773                 int i = 1;
2774
2775                 while (i < MAX_DEVICES && RDEV(i).path[0]) {
2776                         dev_seg_count += le32_to_cpu(RDEV(i).total_segments);
2777                         i++;
2778                 }
2779                 if (segment_count != dev_seg_count) {
2780                         f2fs_info(sbi, "Segment count (%u) mismatch with total segments from devices (%u)",
2781                                         segment_count, dev_seg_count);
2782                         return -EFSCORRUPTED;
2783                 }
2784         }
2785
2786         if (secs_per_zone > total_sections || !secs_per_zone) {
2787                 f2fs_info(sbi, "Wrong secs_per_zone / total_sections (%u, %u)",
2788                           secs_per_zone, total_sections);
2789                 return -EFSCORRUPTED;
2790         }
2791         if (le32_to_cpu(raw_super->extension_count) > F2FS_MAX_EXTENSION ||
2792                         raw_super->hot_ext_count > F2FS_MAX_EXTENSION ||
2793                         (le32_to_cpu(raw_super->extension_count) +
2794                         raw_super->hot_ext_count) > F2FS_MAX_EXTENSION) {
2795                 f2fs_info(sbi, "Corrupted extension count (%u + %u > %u)",
2796                           le32_to_cpu(raw_super->extension_count),
2797                           raw_super->hot_ext_count,
2798                           F2FS_MAX_EXTENSION);
2799                 return -EFSCORRUPTED;
2800         }
2801
2802         if (le32_to_cpu(raw_super->cp_payload) >
2803                                 (blocks_per_seg - F2FS_CP_PACKS)) {
2804                 f2fs_info(sbi, "Insane cp_payload (%u > %u)",
2805                           le32_to_cpu(raw_super->cp_payload),
2806                           blocks_per_seg - F2FS_CP_PACKS);
2807                 return -EFSCORRUPTED;
2808         }
2809
2810         /* check reserved ino info */
2811         if (le32_to_cpu(raw_super->node_ino) != 1 ||
2812                 le32_to_cpu(raw_super->meta_ino) != 2 ||
2813                 le32_to_cpu(raw_super->root_ino) != 3) {
2814                 f2fs_info(sbi, "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
2815                           le32_to_cpu(raw_super->node_ino),
2816                           le32_to_cpu(raw_super->meta_ino),
2817                           le32_to_cpu(raw_super->root_ino));
2818                 return -EFSCORRUPTED;
2819         }
2820
2821         /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
2822         if (sanity_check_area_boundary(sbi, bh))
2823                 return -EFSCORRUPTED;
2824
2825         return 0;
2826 }
2827
2828 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi)
2829 {
2830         unsigned int total, fsmeta;
2831         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2832         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2833         unsigned int ovp_segments, reserved_segments;
2834         unsigned int main_segs, blocks_per_seg;
2835         unsigned int sit_segs, nat_segs;
2836         unsigned int sit_bitmap_size, nat_bitmap_size;
2837         unsigned int log_blocks_per_seg;
2838         unsigned int segment_count_main;
2839         unsigned int cp_pack_start_sum, cp_payload;
2840         block_t user_block_count, valid_user_blocks;
2841         block_t avail_node_count, valid_node_count;
2842         int i, j;
2843
2844         total = le32_to_cpu(raw_super->segment_count);
2845         fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
2846         sit_segs = le32_to_cpu(raw_super->segment_count_sit);
2847         fsmeta += sit_segs;
2848         nat_segs = le32_to_cpu(raw_super->segment_count_nat);
2849         fsmeta += nat_segs;
2850         fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
2851         fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
2852
2853         if (unlikely(fsmeta >= total))
2854                 return 1;
2855
2856         ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
2857         reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
2858
2859         if (unlikely(fsmeta < F2FS_MIN_SEGMENTS ||
2860                         ovp_segments == 0 || reserved_segments == 0)) {
2861                 f2fs_err(sbi, "Wrong layout: check mkfs.f2fs version");
2862                 return 1;
2863         }
2864
2865         user_block_count = le64_to_cpu(ckpt->user_block_count);
2866         segment_count_main = le32_to_cpu(raw_super->segment_count_main);
2867         log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2868         if (!user_block_count || user_block_count >=
2869                         segment_count_main << log_blocks_per_seg) {
2870                 f2fs_err(sbi, "Wrong user_block_count: %u",
2871                          user_block_count);
2872                 return 1;
2873         }
2874
2875         valid_user_blocks = le64_to_cpu(ckpt->valid_block_count);
2876         if (valid_user_blocks > user_block_count) {
2877                 f2fs_err(sbi, "Wrong valid_user_blocks: %u, user_block_count: %u",
2878                          valid_user_blocks, user_block_count);
2879                 return 1;
2880         }
2881
2882         valid_node_count = le32_to_cpu(ckpt->valid_node_count);
2883         avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
2884         if (valid_node_count > avail_node_count) {
2885                 f2fs_err(sbi, "Wrong valid_node_count: %u, avail_node_count: %u",
2886                          valid_node_count, avail_node_count);
2887                 return 1;
2888         }
2889
2890         main_segs = le32_to_cpu(raw_super->segment_count_main);
2891         blocks_per_seg = sbi->blocks_per_seg;
2892
2893         for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
2894                 if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs ||
2895                         le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg)
2896                         return 1;
2897                 for (j = i + 1; j < NR_CURSEG_NODE_TYPE; j++) {
2898                         if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
2899                                 le32_to_cpu(ckpt->cur_node_segno[j])) {
2900                                 f2fs_err(sbi, "Node segment (%u, %u) has the same segno: %u",
2901                                          i, j,
2902                                          le32_to_cpu(ckpt->cur_node_segno[i]));
2903                                 return 1;
2904                         }
2905                 }
2906         }
2907         for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
2908                 if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs ||
2909                         le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg)
2910                         return 1;
2911                 for (j = i + 1; j < NR_CURSEG_DATA_TYPE; j++) {
2912                         if (le32_to_cpu(ckpt->cur_data_segno[i]) ==
2913                                 le32_to_cpu(ckpt->cur_data_segno[j])) {
2914                                 f2fs_err(sbi, "Data segment (%u, %u) has the same segno: %u",
2915                                          i, j,
2916                                          le32_to_cpu(ckpt->cur_data_segno[i]));
2917                                 return 1;
2918                         }
2919                 }
2920         }
2921         for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
2922                 for (j = 0; j < NR_CURSEG_DATA_TYPE; j++) {
2923                         if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
2924                                 le32_to_cpu(ckpt->cur_data_segno[j])) {
2925                                 f2fs_err(sbi, "Node segment (%u) and Data segment (%u) has the same segno: %u",
2926                                          i, j,
2927                                          le32_to_cpu(ckpt->cur_node_segno[i]));
2928                                 return 1;
2929                         }
2930                 }
2931         }
2932
2933         sit_bitmap_size = le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2934         nat_bitmap_size = le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2935
2936         if (sit_bitmap_size != ((sit_segs / 2) << log_blocks_per_seg) / 8 ||
2937                 nat_bitmap_size != ((nat_segs / 2) << log_blocks_per_seg) / 8) {
2938                 f2fs_err(sbi, "Wrong bitmap size: sit: %u, nat:%u",
2939                          sit_bitmap_size, nat_bitmap_size);
2940                 return 1;
2941         }
2942
2943         cp_pack_start_sum = __start_sum_addr(sbi);
2944         cp_payload = __cp_payload(sbi);
2945         if (cp_pack_start_sum < cp_payload + 1 ||
2946                 cp_pack_start_sum > blocks_per_seg - 1 -
2947                         NR_CURSEG_TYPE) {
2948                 f2fs_err(sbi, "Wrong cp_pack_start_sum: %u",
2949                          cp_pack_start_sum);
2950                 return 1;
2951         }
2952
2953         if (__is_set_ckpt_flags(ckpt, CP_LARGE_NAT_BITMAP_FLAG) &&
2954                 le32_to_cpu(ckpt->checksum_offset) != CP_MIN_CHKSUM_OFFSET) {
2955                 f2fs_warn(sbi, "using deprecated layout of large_nat_bitmap, "
2956                           "please run fsck v1.13.0 or higher to repair, chksum_offset: %u, "
2957                           "fixed with patch: \"f2fs-tools: relocate chksum_offset for large_nat_bitmap feature\"",
2958                           le32_to_cpu(ckpt->checksum_offset));
2959                 return 1;
2960         }
2961
2962         if (unlikely(f2fs_cp_error(sbi))) {
2963                 f2fs_err(sbi, "A bug case: need to run fsck");
2964                 return 1;
2965         }
2966         return 0;
2967 }
2968
2969 static void init_sb_info(struct f2fs_sb_info *sbi)
2970 {
2971         struct f2fs_super_block *raw_super = sbi->raw_super;
2972         int i;
2973
2974         sbi->log_sectors_per_block =
2975                 le32_to_cpu(raw_super->log_sectors_per_block);
2976         sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
2977         sbi->blocksize = 1 << sbi->log_blocksize;
2978         sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2979         sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
2980         sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
2981         sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
2982         sbi->total_sections = le32_to_cpu(raw_super->section_count);
2983         sbi->total_node_count =
2984                 (le32_to_cpu(raw_super->segment_count_nat) / 2)
2985                         * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
2986         sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
2987         sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
2988         sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
2989         sbi->cur_victim_sec = NULL_SECNO;
2990         sbi->next_victim_seg[BG_GC] = NULL_SEGNO;
2991         sbi->next_victim_seg[FG_GC] = NULL_SEGNO;
2992         sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
2993         sbi->migration_granularity = sbi->segs_per_sec;
2994
2995         sbi->dir_level = DEF_DIR_LEVEL;
2996         sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
2997         sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
2998         sbi->interval_time[DISCARD_TIME] = DEF_IDLE_INTERVAL;
2999         sbi->interval_time[GC_TIME] = DEF_IDLE_INTERVAL;
3000         sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_INTERVAL;
3001         sbi->interval_time[UMOUNT_DISCARD_TIMEOUT] =
3002                                 DEF_UMOUNT_DISCARD_TIMEOUT;
3003         clear_sbi_flag(sbi, SBI_NEED_FSCK);
3004
3005         for (i = 0; i < NR_COUNT_TYPE; i++)
3006                 atomic_set(&sbi->nr_pages[i], 0);
3007
3008         for (i = 0; i < META; i++)
3009                 atomic_set(&sbi->wb_sync_req[i], 0);
3010
3011         INIT_LIST_HEAD(&sbi->s_list);
3012         mutex_init(&sbi->umount_mutex);
3013         init_rwsem(&sbi->io_order_lock);
3014         spin_lock_init(&sbi->cp_lock);
3015
3016         sbi->dirty_device = 0;
3017         spin_lock_init(&sbi->dev_lock);
3018
3019         init_rwsem(&sbi->sb_lock);
3020         init_rwsem(&sbi->pin_sem);
3021 }
3022
3023 static int init_percpu_info(struct f2fs_sb_info *sbi)
3024 {
3025         int err;
3026
3027         err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
3028         if (err)
3029                 return err;
3030
3031         err = percpu_counter_init(&sbi->total_valid_inode_count, 0,
3032                                                                 GFP_KERNEL);
3033         if (err)
3034                 percpu_counter_destroy(&sbi->alloc_valid_block_count);
3035
3036         return err;
3037 }
3038
3039 #ifdef CONFIG_BLK_DEV_ZONED
3040 static int f2fs_report_zone_cb(struct blk_zone *zone, unsigned int idx,
3041                                void *data)
3042 {
3043         struct f2fs_dev_info *dev = data;
3044
3045         if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL)
3046                 set_bit(idx, dev->blkz_seq);
3047         return 0;
3048 }
3049
3050 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi)
3051 {
3052         struct block_device *bdev = FDEV(devi).bdev;
3053         sector_t nr_sectors = bdev->bd_part->nr_sects;
3054         int ret;
3055
3056         if (!f2fs_sb_has_blkzoned(sbi))
3057                 return 0;
3058
3059         if (sbi->blocks_per_blkz && sbi->blocks_per_blkz !=
3060                                 SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)))
3061                 return -EINVAL;
3062         sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev));
3063         if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz !=
3064                                 __ilog2_u32(sbi->blocks_per_blkz))
3065                 return -EINVAL;
3066         sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz);
3067         FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >>
3068                                         sbi->log_blocks_per_blkz;
3069         if (nr_sectors & (bdev_zone_sectors(bdev) - 1))
3070                 FDEV(devi).nr_blkz++;
3071
3072         FDEV(devi).blkz_seq = f2fs_kvzalloc(sbi,
3073                                         BITS_TO_LONGS(FDEV(devi).nr_blkz)
3074                                         * sizeof(unsigned long),
3075                                         GFP_KERNEL);
3076         if (!FDEV(devi).blkz_seq)
3077                 return -ENOMEM;
3078
3079         /* Get block zones type */
3080         ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES, f2fs_report_zone_cb,
3081                                   &FDEV(devi));
3082         if (ret < 0)
3083                 return ret;
3084
3085         return 0;
3086 }
3087 #endif
3088
3089 /*
3090  * Read f2fs raw super block.
3091  * Because we have two copies of super block, so read both of them
3092  * to get the first valid one. If any one of them is broken, we pass
3093  * them recovery flag back to the caller.
3094  */
3095 static int read_raw_super_block(struct f2fs_sb_info *sbi,
3096                         struct f2fs_super_block **raw_super,
3097                         int *valid_super_block, int *recovery)
3098 {
3099         struct super_block *sb = sbi->sb;
3100         int block;
3101         struct buffer_head *bh;
3102         struct f2fs_super_block *super;
3103         int err = 0;
3104
3105         super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
3106         if (!super)
3107                 return -ENOMEM;
3108
3109         for (block = 0; block < 2; block++) {
3110                 bh = sb_bread(sb, block);
3111                 if (!bh) {
3112                         f2fs_err(sbi, "Unable to read %dth superblock",
3113                                  block + 1);
3114                         err = -EIO;
3115                         *recovery = 1;
3116                         continue;
3117                 }
3118
3119                 /* sanity checking of raw super */
3120                 err = sanity_check_raw_super(sbi, bh);
3121                 if (err) {
3122                         f2fs_err(sbi, "Can't find valid F2FS filesystem in %dth superblock",
3123                                  block + 1);
3124                         brelse(bh);
3125                         *recovery = 1;
3126                         continue;
3127                 }
3128
3129                 if (!*raw_super) {
3130                         memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
3131                                                         sizeof(*super));
3132                         *valid_super_block = block;
3133                         *raw_super = super;
3134                 }
3135                 brelse(bh);
3136         }
3137
3138         /* No valid superblock */
3139         if (!*raw_super)
3140                 kvfree(super);
3141         else
3142                 err = 0;
3143
3144         return err;
3145 }
3146
3147 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
3148 {
3149         struct buffer_head *bh;
3150         __u32 crc = 0;
3151         int err;
3152
3153         if ((recover && f2fs_readonly(sbi->sb)) ||
3154                                 bdev_read_only(sbi->sb->s_bdev)) {
3155                 set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
3156                 return -EROFS;
3157         }
3158
3159         /* we should update superblock crc here */
3160         if (!recover && f2fs_sb_has_sb_chksum(sbi)) {
3161                 crc = f2fs_crc32(sbi, F2FS_RAW_SUPER(sbi),
3162                                 offsetof(struct f2fs_super_block, crc));
3163                 F2FS_RAW_SUPER(sbi)->crc = cpu_to_le32(crc);
3164         }
3165
3166         /* write back-up superblock first */
3167         bh = sb_bread(sbi->sb, sbi->valid_super_block ? 0 : 1);
3168         if (!bh)
3169                 return -EIO;
3170         err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
3171         brelse(bh);
3172
3173         /* if we are in recovery path, skip writing valid superblock */
3174         if (recover || err)
3175                 return err;
3176
3177         /* write current valid superblock */
3178         bh = sb_bread(sbi->sb, sbi->valid_super_block);
3179         if (!bh)
3180                 return -EIO;
3181         err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
3182         brelse(bh);
3183         return err;
3184 }
3185
3186 static int f2fs_scan_devices(struct f2fs_sb_info *sbi)
3187 {
3188         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3189         unsigned int max_devices = MAX_DEVICES;
3190         int i;
3191
3192         /* Initialize single device information */
3193         if (!RDEV(0).path[0]) {
3194                 if (!bdev_is_zoned(sbi->sb->s_bdev))
3195                         return 0;
3196                 max_devices = 1;
3197         }
3198
3199         /*
3200          * Initialize multiple devices information, or single
3201          * zoned block device information.
3202          */
3203         sbi->devs = f2fs_kzalloc(sbi,
3204                                  array_size(max_devices,
3205                                             sizeof(struct f2fs_dev_info)),
3206                                  GFP_KERNEL);
3207         if (!sbi->devs)
3208                 return -ENOMEM;
3209
3210         for (i = 0; i < max_devices; i++) {
3211
3212                 if (i > 0 && !RDEV(i).path[0])
3213                         break;
3214
3215                 if (max_devices == 1) {
3216                         /* Single zoned block device mount */
3217                         FDEV(0).bdev =
3218                                 blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev,
3219                                         sbi->sb->s_mode, sbi->sb->s_type);
3220                 } else {
3221                         /* Multi-device mount */
3222                         memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN);
3223                         FDEV(i).total_segments =
3224                                 le32_to_cpu(RDEV(i).total_segments);
3225                         if (i == 0) {
3226                                 FDEV(i).start_blk = 0;
3227                                 FDEV(i).end_blk = FDEV(i).start_blk +
3228                                     (FDEV(i).total_segments <<
3229                                     sbi->log_blocks_per_seg) - 1 +
3230                                     le32_to_cpu(raw_super->segment0_blkaddr);
3231                         } else {
3232                                 FDEV(i).start_blk = FDEV(i - 1).end_blk + 1;
3233                                 FDEV(i).end_blk = FDEV(i).start_blk +
3234                                         (FDEV(i).total_segments <<
3235                                         sbi->log_blocks_per_seg) - 1;
3236                         }
3237                         FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path,
3238                                         sbi->sb->s_mode, sbi->sb->s_type);
3239                 }
3240                 if (IS_ERR(FDEV(i).bdev))
3241                         return PTR_ERR(FDEV(i).bdev);
3242
3243                 /* to release errored devices */
3244                 sbi->s_ndevs = i + 1;
3245
3246 #ifdef CONFIG_BLK_DEV_ZONED
3247                 if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM &&
3248                                 !f2fs_sb_has_blkzoned(sbi)) {
3249                         f2fs_err(sbi, "Zoned block device feature not enabled\n");
3250                         return -EINVAL;
3251                 }
3252                 if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) {
3253                         if (init_blkz_info(sbi, i)) {
3254                                 f2fs_err(sbi, "Failed to initialize F2FS blkzone information");
3255                                 return -EINVAL;
3256                         }
3257                         if (max_devices == 1)
3258                                 break;
3259                         f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)",
3260                                   i, FDEV(i).path,
3261                                   FDEV(i).total_segments,
3262                                   FDEV(i).start_blk, FDEV(i).end_blk,
3263                                   bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ?
3264                                   "Host-aware" : "Host-managed");
3265                         continue;
3266                 }
3267 #endif
3268                 f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x",
3269                           i, FDEV(i).path,
3270                           FDEV(i).total_segments,
3271                           FDEV(i).start_blk, FDEV(i).end_blk);
3272         }
3273         f2fs_info(sbi,
3274                   "IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi));
3275         return 0;
3276 }
3277
3278 static int f2fs_setup_casefold(struct f2fs_sb_info *sbi)
3279 {
3280 #ifdef CONFIG_UNICODE
3281         if (f2fs_sb_has_casefold(sbi) && !sbi->s_encoding) {
3282                 const struct f2fs_sb_encodings *encoding_info;
3283                 struct unicode_map *encoding;
3284                 __u16 encoding_flags;
3285
3286                 if (f2fs_sb_has_encrypt(sbi)) {
3287                         f2fs_err(sbi,
3288                                 "Can't mount with encoding and encryption");
3289                         return -EINVAL;
3290                 }
3291
3292                 if (f2fs_sb_read_encoding(sbi->raw_super, &encoding_info,
3293                                           &encoding_flags)) {
3294                         f2fs_err(sbi,
3295                                  "Encoding requested by superblock is unknown");
3296                         return -EINVAL;
3297                 }
3298
3299                 encoding = utf8_load(encoding_info->version);
3300                 if (IS_ERR(encoding)) {
3301                         f2fs_err(sbi,
3302                                  "can't mount with superblock charset: %s-%s "
3303                                  "not supported by the kernel. flags: 0x%x.",
3304                                  encoding_info->name, encoding_info->version,
3305                                  encoding_flags);
3306                         return PTR_ERR(encoding);
3307                 }
3308                 f2fs_info(sbi, "Using encoding defined by superblock: "
3309                          "%s-%s with flags 0x%hx", encoding_info->name,
3310                          encoding_info->version?:"\b", encoding_flags);
3311
3312                 sbi->s_encoding = encoding;
3313                 sbi->s_encoding_flags = encoding_flags;
3314                 sbi->sb->s_d_op = &f2fs_dentry_ops;
3315         }
3316 #else
3317         if (f2fs_sb_has_casefold(sbi)) {
3318                 f2fs_err(sbi, "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE");
3319                 return -EINVAL;
3320         }
3321 #endif
3322         return 0;
3323 }
3324
3325 static void f2fs_tuning_parameters(struct f2fs_sb_info *sbi)
3326 {
3327         struct f2fs_sm_info *sm_i = SM_I(sbi);
3328
3329         /* adjust parameters according to the volume size */
3330         if (sm_i->main_segments <= SMALL_VOLUME_SEGMENTS) {
3331                 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
3332                 sm_i->dcc_info->discard_granularity = 1;
3333                 sm_i->ipu_policy = 1 << F2FS_IPU_FORCE;
3334         }
3335
3336         sbi->readdir_ra = 1;
3337 }
3338
3339 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
3340 {
3341         struct f2fs_sb_info *sbi;
3342         struct f2fs_super_block *raw_super;
3343         struct inode *root;
3344         int err;
3345         bool skip_recovery = false, need_fsck = false;
3346         char *options = NULL;
3347         int recovery, i, valid_super_block;
3348         struct curseg_info *seg_i;
3349         int retry_cnt = 1;
3350
3351 try_onemore:
3352         err = -EINVAL;
3353         raw_super = NULL;
3354         valid_super_block = -1;
3355         recovery = 0;
3356
3357         /* allocate memory for f2fs-specific super block info */
3358         sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
3359         if (!sbi)
3360                 return -ENOMEM;
3361
3362         sbi->sb = sb;
3363
3364         /* Load the checksum driver */
3365         sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
3366         if (IS_ERR(sbi->s_chksum_driver)) {
3367                 f2fs_err(sbi, "Cannot load crc32 driver.");
3368                 err = PTR_ERR(sbi->s_chksum_driver);
3369                 sbi->s_chksum_driver = NULL;
3370                 goto free_sbi;
3371         }
3372
3373         /* set a block size */
3374         if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
3375                 f2fs_err(sbi, "unable to set blocksize");
3376                 goto free_sbi;
3377         }
3378
3379         err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
3380                                                                 &recovery);
3381         if (err)
3382                 goto free_sbi;
3383
3384         sb->s_fs_info = sbi;
3385         sbi->raw_super = raw_super;
3386
3387         /* precompute checksum seed for metadata */
3388         if (f2fs_sb_has_inode_chksum(sbi))
3389                 sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid,
3390                                                 sizeof(raw_super->uuid));
3391
3392         /*
3393          * The BLKZONED feature indicates that the drive was formatted with
3394          * zone alignment optimization. This is optional for host-aware
3395          * devices, but mandatory for host-managed zoned block devices.
3396          */
3397 #ifndef CONFIG_BLK_DEV_ZONED
3398         if (f2fs_sb_has_blkzoned(sbi)) {
3399                 f2fs_err(sbi, "Zoned block device support is not enabled");
3400                 err = -EOPNOTSUPP;
3401                 goto free_sb_buf;
3402         }
3403 #endif
3404         default_options(sbi);
3405         /* parse mount options */
3406         options = kstrdup((const char *)data, GFP_KERNEL);
3407         if (data && !options) {
3408                 err = -ENOMEM;
3409                 goto free_sb_buf;
3410         }
3411
3412         err = parse_options(sb, options, false);
3413         if (err)
3414                 goto free_options;
3415
3416         sbi->max_file_blocks = max_file_blocks();
3417         sb->s_maxbytes = sbi->max_file_blocks <<
3418                                 le32_to_cpu(raw_super->log_blocksize);
3419         sb->s_max_links = F2FS_LINK_MAX;
3420
3421         err = f2fs_setup_casefold(sbi);
3422         if (err)
3423                 goto free_options;
3424
3425 #ifdef CONFIG_QUOTA
3426         sb->dq_op = &f2fs_quota_operations;
3427         sb->s_qcop = &f2fs_quotactl_ops;
3428         sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
3429
3430         if (f2fs_sb_has_quota_ino(sbi)) {
3431                 for (i = 0; i < MAXQUOTAS; i++) {
3432                         if (f2fs_qf_ino(sbi->sb, i))
3433                                 sbi->nquota_files++;
3434                 }
3435         }
3436 #endif
3437
3438         sb->s_op = &f2fs_sops;
3439 #ifdef CONFIG_FS_ENCRYPTION
3440         sb->s_cop = &f2fs_cryptops;
3441 #endif
3442 #ifdef CONFIG_FS_VERITY
3443         sb->s_vop = &f2fs_verityops;
3444 #endif
3445         sb->s_xattr = f2fs_xattr_handlers;
3446         sb->s_export_op = &f2fs_export_ops;
3447         sb->s_magic = F2FS_SUPER_MAGIC;
3448         sb->s_time_gran = 1;
3449         sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
3450                 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
3451         memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
3452         sb->s_iflags |= SB_I_CGROUPWB;
3453
3454         /* init f2fs-specific super block info */
3455         sbi->valid_super_block = valid_super_block;
3456         init_rwsem(&sbi->gc_lock);
3457         mutex_init(&sbi->writepages);
3458         mutex_init(&sbi->cp_mutex);
3459         init_rwsem(&sbi->node_write);
3460         init_rwsem(&sbi->node_change);
3461
3462         /* disallow all the data/node/meta page writes */
3463         set_sbi_flag(sbi, SBI_POR_DOING);
3464         spin_lock_init(&sbi->stat_lock);
3465
3466         /* init iostat info */
3467         spin_lock_init(&sbi->iostat_lock);
3468         sbi->iostat_enable = false;
3469         sbi->iostat_period_ms = DEFAULT_IOSTAT_PERIOD_MS;
3470
3471         for (i = 0; i < NR_PAGE_TYPE; i++) {
3472                 int n = (i == META) ? 1: NR_TEMP_TYPE;
3473                 int j;
3474
3475                 sbi->write_io[i] =
3476                         f2fs_kmalloc(sbi,
3477                                      array_size(n,
3478                                                 sizeof(struct f2fs_bio_info)),
3479                                      GFP_KERNEL);
3480                 if (!sbi->write_io[i]) {
3481                         err = -ENOMEM;
3482                         goto free_bio_info;
3483                 }
3484
3485                 for (j = HOT; j < n; j++) {
3486                         init_rwsem(&sbi->write_io[i][j].io_rwsem);
3487                         sbi->write_io[i][j].sbi = sbi;
3488                         sbi->write_io[i][j].bio = NULL;
3489                         spin_lock_init(&sbi->write_io[i][j].io_lock);
3490                         INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
3491                         INIT_LIST_HEAD(&sbi->write_io[i][j].bio_list);
3492                         init_rwsem(&sbi->write_io[i][j].bio_list_lock);
3493                 }
3494         }
3495
3496         init_rwsem(&sbi->cp_rwsem);
3497         init_rwsem(&sbi->quota_sem);
3498         init_waitqueue_head(&sbi->cp_wait);
3499         init_sb_info(sbi);
3500
3501         err = init_percpu_info(sbi);
3502         if (err)
3503                 goto free_bio_info;
3504
3505         if (F2FS_IO_ALIGNED(sbi)) {
3506                 sbi->write_io_dummy =
3507                         mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0);
3508                 if (!sbi->write_io_dummy) {
3509                         err = -ENOMEM;
3510                         goto free_percpu;
3511                 }
3512         }
3513
3514         /* init per sbi slab cache */
3515         err = f2fs_init_xattr_caches(sbi);
3516         if (err)
3517                 goto free_io_dummy;
3518
3519         /* get an inode for meta space */
3520         sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
3521         if (IS_ERR(sbi->meta_inode)) {
3522                 f2fs_err(sbi, "Failed to read F2FS meta data inode");
3523                 err = PTR_ERR(sbi->meta_inode);
3524                 goto free_xattr_cache;
3525         }
3526
3527         err = f2fs_get_valid_checkpoint(sbi);
3528         if (err) {
3529                 f2fs_err(sbi, "Failed to get valid F2FS checkpoint");
3530                 goto free_meta_inode;
3531         }
3532
3533         if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_QUOTA_NEED_FSCK_FLAG))
3534                 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3535         if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_DISABLED_QUICK_FLAG)) {
3536                 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
3537                 sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_QUICK_INTERVAL;
3538         }
3539
3540         if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FSCK_FLAG))
3541                 set_sbi_flag(sbi, SBI_NEED_FSCK);
3542
3543         /* Initialize device list */
3544         err = f2fs_scan_devices(sbi);
3545         if (err) {
3546                 f2fs_err(sbi, "Failed to find devices");
3547                 goto free_devices;
3548         }
3549
3550         err = f2fs_init_post_read_wq(sbi);
3551         if (err) {
3552                 f2fs_err(sbi, "Failed to initialize post read workqueue");
3553                 goto free_devices;
3554         }
3555
3556         sbi->total_valid_node_count =
3557                                 le32_to_cpu(sbi->ckpt->valid_node_count);
3558         percpu_counter_set(&sbi->total_valid_inode_count,
3559                                 le32_to_cpu(sbi->ckpt->valid_inode_count));
3560         sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
3561         sbi->total_valid_block_count =
3562                                 le64_to_cpu(sbi->ckpt->valid_block_count);
3563         sbi->last_valid_block_count = sbi->total_valid_block_count;
3564         sbi->reserved_blocks = 0;
3565         sbi->current_reserved_blocks = 0;
3566         limit_reserve_root(sbi);
3567         adjust_unusable_cap_perc(sbi);
3568
3569         for (i = 0; i < NR_INODE_TYPE; i++) {
3570                 INIT_LIST_HEAD(&sbi->inode_list[i]);
3571                 spin_lock_init(&sbi->inode_lock[i]);
3572         }
3573         mutex_init(&sbi->flush_lock);
3574
3575         f2fs_init_extent_cache_info(sbi);
3576
3577         f2fs_init_ino_entry_info(sbi);
3578
3579         f2fs_init_fsync_node_info(sbi);
3580
3581         /* setup f2fs internal modules */
3582         err = f2fs_build_segment_manager(sbi);
3583         if (err) {
3584                 f2fs_err(sbi, "Failed to initialize F2FS segment manager (%d)",
3585                          err);
3586                 goto free_sm;
3587         }
3588         err = f2fs_build_node_manager(sbi);
3589         if (err) {
3590                 f2fs_err(sbi, "Failed to initialize F2FS node manager (%d)",
3591                          err);
3592                 goto free_nm;
3593         }
3594
3595         /* For write statistics */
3596         if (sb->s_bdev->bd_part)
3597                 sbi->sectors_written_start =
3598                         (u64)part_stat_read(sb->s_bdev->bd_part,
3599                                             sectors[STAT_WRITE]);
3600
3601         /* Read accumulated write IO statistics if exists */
3602         seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
3603         if (__exist_node_summaries(sbi))
3604                 sbi->kbytes_written =
3605                         le64_to_cpu(seg_i->journal->info.kbytes_written);
3606
3607         f2fs_build_gc_manager(sbi);
3608
3609         err = f2fs_build_stats(sbi);
3610         if (err)
3611                 goto free_nm;
3612
3613         /* get an inode for node space */
3614         sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
3615         if (IS_ERR(sbi->node_inode)) {
3616                 f2fs_err(sbi, "Failed to read node inode");
3617                 err = PTR_ERR(sbi->node_inode);
3618                 goto free_stats;
3619         }
3620
3621         /* read root inode and dentry */
3622         root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
3623         if (IS_ERR(root)) {
3624                 f2fs_err(sbi, "Failed to read root inode");
3625                 err = PTR_ERR(root);
3626                 goto free_node_inode;
3627         }
3628         if (!S_ISDIR(root->i_mode) || !root->i_blocks ||
3629                         !root->i_size || !root->i_nlink) {
3630                 iput(root);
3631                 err = -EINVAL;
3632                 goto free_node_inode;
3633         }
3634
3635         sb->s_root = d_make_root(root); /* allocate root dentry */
3636         if (!sb->s_root) {
3637                 err = -ENOMEM;
3638                 goto free_node_inode;
3639         }
3640
3641         err = f2fs_register_sysfs(sbi);
3642         if (err)
3643                 goto free_root_inode;
3644
3645 #ifdef CONFIG_QUOTA
3646         /* Enable quota usage during mount */
3647         if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) {
3648                 err = f2fs_enable_quotas(sb);
3649                 if (err)
3650                         f2fs_err(sbi, "Cannot turn on quotas: error %d", err);
3651         }
3652 #endif
3653         /* if there are any orphan inodes, free them */
3654         err = f2fs_recover_orphan_inodes(sbi);
3655         if (err)
3656                 goto free_meta;
3657
3658         if (unlikely(is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)))
3659                 goto reset_checkpoint;
3660
3661         /* recover fsynced data */
3662         if (!test_opt(sbi, DISABLE_ROLL_FORWARD) &&
3663                         !test_opt(sbi, NORECOVERY)) {
3664                 /*
3665                  * mount should be failed, when device has readonly mode, and
3666                  * previous checkpoint was not done by clean system shutdown.
3667                  */
3668                 if (f2fs_hw_is_readonly(sbi)) {
3669                         if (!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
3670                                 err = -EROFS;
3671                                 f2fs_err(sbi, "Need to recover fsync data, but write access unavailable");
3672                                 goto free_meta;
3673                         }
3674                         f2fs_info(sbi, "write access unavailable, skipping recovery");
3675                         goto reset_checkpoint;
3676                 }
3677
3678                 if (need_fsck)
3679                         set_sbi_flag(sbi, SBI_NEED_FSCK);
3680
3681                 if (skip_recovery)
3682                         goto reset_checkpoint;
3683
3684                 err = f2fs_recover_fsync_data(sbi, false);
3685                 if (err < 0) {
3686                         if (err != -ENOMEM)
3687                                 skip_recovery = true;
3688                         need_fsck = true;
3689                         f2fs_err(sbi, "Cannot recover all fsync data errno=%d",
3690                                  err);
3691                         goto free_meta;
3692                 }
3693         } else {
3694                 err = f2fs_recover_fsync_data(sbi, true);
3695
3696                 if (!f2fs_readonly(sb) && err > 0) {
3697                         err = -EINVAL;
3698                         f2fs_err(sbi, "Need to recover fsync data");
3699                         goto free_meta;
3700                 }
3701         }
3702
3703         /*
3704          * If the f2fs is not readonly and fsync data recovery succeeds,
3705          * check zoned block devices' write pointer consistency.
3706          */
3707         if (!err && !f2fs_readonly(sb) && f2fs_sb_has_blkzoned(sbi)) {
3708                 err = f2fs_check_write_pointer(sbi);
3709                 if (err)
3710                         goto free_meta;
3711         }
3712
3713 reset_checkpoint:
3714         /* f2fs_recover_fsync_data() cleared this already */
3715         clear_sbi_flag(sbi, SBI_POR_DOING);
3716
3717         if (test_opt(sbi, DISABLE_CHECKPOINT)) {
3718                 err = f2fs_disable_checkpoint(sbi);
3719                 if (err)
3720                         goto sync_free_meta;
3721         } else if (is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)) {
3722                 f2fs_enable_checkpoint(sbi);
3723         }
3724
3725         /*
3726          * If filesystem is not mounted as read-only then
3727          * do start the gc_thread.
3728          */
3729         if (F2FS_OPTION(sbi).bggc_mode != BGGC_MODE_OFF && !f2fs_readonly(sb)) {
3730                 /* After POR, we can run background GC thread.*/
3731                 err = f2fs_start_gc_thread(sbi);
3732                 if (err)
3733                         goto sync_free_meta;
3734         }
3735         kvfree(options);
3736
3737         /* recover broken superblock */
3738         if (recovery) {
3739                 err = f2fs_commit_super(sbi, true);
3740                 f2fs_info(sbi, "Try to recover %dth superblock, ret: %d",
3741                           sbi->valid_super_block ? 1 : 2, err);
3742         }
3743
3744         f2fs_join_shrinker(sbi);
3745
3746         f2fs_tuning_parameters(sbi);
3747
3748         f2fs_notice(sbi, "Mounted with checkpoint version = %llx",
3749                     cur_cp_version(F2FS_CKPT(sbi)));
3750         f2fs_update_time(sbi, CP_TIME);
3751         f2fs_update_time(sbi, REQ_TIME);
3752         clear_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
3753         return 0;
3754
3755 sync_free_meta:
3756         /* safe to flush all the data */
3757         sync_filesystem(sbi->sb);
3758         retry_cnt = 0;
3759
3760 free_meta:
3761 #ifdef CONFIG_QUOTA
3762         f2fs_truncate_quota_inode_pages(sb);
3763         if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb))
3764                 f2fs_quota_off_umount(sbi->sb);
3765 #endif
3766         /*
3767          * Some dirty meta pages can be produced by f2fs_recover_orphan_inodes()
3768          * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg()
3769          * followed by f2fs_write_checkpoint() through f2fs_write_node_pages(), which
3770          * falls into an infinite loop in f2fs_sync_meta_pages().
3771          */
3772         truncate_inode_pages_final(META_MAPPING(sbi));
3773         /* evict some inodes being cached by GC */
3774         evict_inodes(sb);
3775         f2fs_unregister_sysfs(sbi);
3776 free_root_inode:
3777         dput(sb->s_root);
3778         sb->s_root = NULL;
3779 free_node_inode:
3780         f2fs_release_ino_entry(sbi, true);
3781         truncate_inode_pages_final(NODE_MAPPING(sbi));
3782         iput(sbi->node_inode);
3783         sbi->node_inode = NULL;
3784 free_stats:
3785         f2fs_destroy_stats(sbi);
3786 free_nm:
3787         f2fs_destroy_node_manager(sbi);
3788 free_sm:
3789         f2fs_destroy_segment_manager(sbi);
3790         f2fs_destroy_post_read_wq(sbi);
3791 free_devices:
3792         destroy_device_list(sbi);
3793         kvfree(sbi->ckpt);
3794 free_meta_inode:
3795         make_bad_inode(sbi->meta_inode);
3796         iput(sbi->meta_inode);
3797         sbi->meta_inode = NULL;
3798 free_xattr_cache:
3799         f2fs_destroy_xattr_caches(sbi);
3800 free_io_dummy:
3801         mempool_destroy(sbi->write_io_dummy);
3802 free_percpu:
3803         destroy_percpu_info(sbi);
3804 free_bio_info:
3805         for (i = 0; i < NR_PAGE_TYPE; i++)
3806                 kvfree(sbi->write_io[i]);
3807
3808 #ifdef CONFIG_UNICODE
3809         utf8_unload(sbi->s_encoding);
3810 #endif
3811 free_options:
3812 #ifdef CONFIG_QUOTA
3813         for (i = 0; i < MAXQUOTAS; i++)
3814                 kvfree(F2FS_OPTION(sbi).s_qf_names[i]);
3815 #endif
3816         fscrypt_free_dummy_context(&F2FS_OPTION(sbi).dummy_enc_ctx);
3817         kvfree(options);
3818 free_sb_buf:
3819         kvfree(raw_super);
3820 free_sbi:
3821         if (sbi->s_chksum_driver)
3822                 crypto_free_shash(sbi->s_chksum_driver);
3823         kvfree(sbi);
3824
3825         /* give only one another chance */
3826         if (retry_cnt > 0 && skip_recovery) {
3827                 retry_cnt--;
3828                 shrink_dcache_sb(sb);
3829                 goto try_onemore;
3830         }
3831         return err;
3832 }
3833
3834 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
3835                         const char *dev_name, void *data)
3836 {
3837         return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
3838 }
3839
3840 static void kill_f2fs_super(struct super_block *sb)
3841 {
3842         if (sb->s_root) {
3843                 struct f2fs_sb_info *sbi = F2FS_SB(sb);
3844
3845                 set_sbi_flag(sbi, SBI_IS_CLOSE);
3846                 f2fs_stop_gc_thread(sbi);
3847                 f2fs_stop_discard_thread(sbi);
3848
3849                 if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
3850                                 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
3851                         struct cp_control cpc = {
3852                                 .reason = CP_UMOUNT,
3853                         };
3854                         f2fs_write_checkpoint(sbi, &cpc);
3855                 }
3856
3857                 if (is_sbi_flag_set(sbi, SBI_IS_RECOVERED) && f2fs_readonly(sb))
3858                         sb->s_flags &= ~SB_RDONLY;
3859         }
3860         kill_block_super(sb);
3861 }
3862
3863 static struct file_system_type f2fs_fs_type = {
3864         .owner          = THIS_MODULE,
3865         .name           = "f2fs",
3866         .mount          = f2fs_mount,
3867         .kill_sb        = kill_f2fs_super,
3868         .fs_flags       = FS_REQUIRES_DEV,
3869 };
3870 MODULE_ALIAS_FS("f2fs");
3871
3872 static int __init init_inodecache(void)
3873 {
3874         f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
3875                         sizeof(struct f2fs_inode_info), 0,
3876                         SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
3877         if (!f2fs_inode_cachep)
3878                 return -ENOMEM;
3879         return 0;
3880 }
3881
3882 static void destroy_inodecache(void)
3883 {
3884         /*
3885          * Make sure all delayed rcu free inodes are flushed before we
3886          * destroy cache.
3887          */
3888         rcu_barrier();
3889         kmem_cache_destroy(f2fs_inode_cachep);
3890 }
3891
3892 static int __init init_f2fs_fs(void)
3893 {
3894         int err;
3895
3896         if (PAGE_SIZE != F2FS_BLKSIZE) {
3897                 printk("F2FS not supported on PAGE_SIZE(%lu) != %d\n",
3898                                 PAGE_SIZE, F2FS_BLKSIZE);
3899                 return -EINVAL;
3900         }
3901
3902         f2fs_build_trace_ios();
3903
3904         err = init_inodecache();
3905         if (err)
3906                 goto fail;
3907         err = f2fs_create_node_manager_caches();
3908         if (err)
3909                 goto free_inodecache;
3910         err = f2fs_create_segment_manager_caches();
3911         if (err)
3912                 goto free_node_manager_caches;
3913         err = f2fs_create_checkpoint_caches();
3914         if (err)
3915                 goto free_segment_manager_caches;
3916         err = f2fs_create_extent_cache();
3917         if (err)
3918                 goto free_checkpoint_caches;
3919         err = f2fs_init_sysfs();
3920         if (err)
3921                 goto free_extent_cache;
3922         err = register_shrinker(&f2fs_shrinker_info);
3923         if (err)
3924                 goto free_sysfs;
3925         err = register_filesystem(&f2fs_fs_type);
3926         if (err)
3927                 goto free_shrinker;
3928         f2fs_create_root_stats();
3929         err = f2fs_init_post_read_processing();
3930         if (err)
3931                 goto free_root_stats;
3932         err = f2fs_init_bio_entry_cache();
3933         if (err)
3934                 goto free_post_read;
3935         err = f2fs_init_bioset();
3936         if (err)
3937                 goto free_bio_enrty_cache;
3938         err = f2fs_init_compress_mempool();
3939         if (err)
3940                 goto free_bioset;
3941         return 0;
3942 free_bioset:
3943         f2fs_destroy_bioset();
3944 free_bio_enrty_cache:
3945         f2fs_destroy_bio_entry_cache();
3946 free_post_read:
3947         f2fs_destroy_post_read_processing();
3948 free_root_stats:
3949         f2fs_destroy_root_stats();
3950         unregister_filesystem(&f2fs_fs_type);
3951 free_shrinker:
3952         unregister_shrinker(&f2fs_shrinker_info);
3953 free_sysfs:
3954         f2fs_exit_sysfs();
3955 free_extent_cache:
3956         f2fs_destroy_extent_cache();
3957 free_checkpoint_caches:
3958         f2fs_destroy_checkpoint_caches();
3959 free_segment_manager_caches:
3960         f2fs_destroy_segment_manager_caches();
3961 free_node_manager_caches:
3962         f2fs_destroy_node_manager_caches();
3963 free_inodecache:
3964         destroy_inodecache();
3965 fail:
3966         return err;
3967 }
3968
3969 static void __exit exit_f2fs_fs(void)
3970 {
3971         f2fs_destroy_compress_mempool();
3972         f2fs_destroy_bioset();
3973         f2fs_destroy_bio_entry_cache();
3974         f2fs_destroy_post_read_processing();
3975         f2fs_destroy_root_stats();
3976         unregister_filesystem(&f2fs_fs_type);
3977         unregister_shrinker(&f2fs_shrinker_info);
3978         f2fs_exit_sysfs();
3979         f2fs_destroy_extent_cache();
3980         f2fs_destroy_checkpoint_caches();
3981         f2fs_destroy_segment_manager_caches();
3982         f2fs_destroy_node_manager_caches();
3983         destroy_inodecache();
3984         f2fs_destroy_trace_ios();
3985 }
3986
3987 module_init(init_f2fs_fs)
3988 module_exit(exit_f2fs_fs)
3989
3990 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
3991 MODULE_DESCRIPTION("Flash Friendly File System");
3992 MODULE_LICENSE("GPL");
3993