Merge tag 'fs_for_v5.16-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/jack...
[linux-2.6-microblaze.git] / fs / f2fs / segment.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/segment.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/prefetch.h>
13 #include <linux/kthread.h>
14 #include <linux/swap.h>
15 #include <linux/timer.h>
16 #include <linux/freezer.h>
17 #include <linux/sched/signal.h>
18 #include <linux/random.h>
19
20 #include "f2fs.h"
21 #include "segment.h"
22 #include "node.h"
23 #include "gc.h"
24 #include "iostat.h"
25 #include <trace/events/f2fs.h>
26
27 #define __reverse_ffz(x) __reverse_ffs(~(x))
28
29 static struct kmem_cache *discard_entry_slab;
30 static struct kmem_cache *discard_cmd_slab;
31 static struct kmem_cache *sit_entry_set_slab;
32 static struct kmem_cache *inmem_entry_slab;
33
34 static unsigned long __reverse_ulong(unsigned char *str)
35 {
36         unsigned long tmp = 0;
37         int shift = 24, idx = 0;
38
39 #if BITS_PER_LONG == 64
40         shift = 56;
41 #endif
42         while (shift >= 0) {
43                 tmp |= (unsigned long)str[idx++] << shift;
44                 shift -= BITS_PER_BYTE;
45         }
46         return tmp;
47 }
48
49 /*
50  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
51  * MSB and LSB are reversed in a byte by f2fs_set_bit.
52  */
53 static inline unsigned long __reverse_ffs(unsigned long word)
54 {
55         int num = 0;
56
57 #if BITS_PER_LONG == 64
58         if ((word & 0xffffffff00000000UL) == 0)
59                 num += 32;
60         else
61                 word >>= 32;
62 #endif
63         if ((word & 0xffff0000) == 0)
64                 num += 16;
65         else
66                 word >>= 16;
67
68         if ((word & 0xff00) == 0)
69                 num += 8;
70         else
71                 word >>= 8;
72
73         if ((word & 0xf0) == 0)
74                 num += 4;
75         else
76                 word >>= 4;
77
78         if ((word & 0xc) == 0)
79                 num += 2;
80         else
81                 word >>= 2;
82
83         if ((word & 0x2) == 0)
84                 num += 1;
85         return num;
86 }
87
88 /*
89  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
90  * f2fs_set_bit makes MSB and LSB reversed in a byte.
91  * @size must be integral times of unsigned long.
92  * Example:
93  *                             MSB <--> LSB
94  *   f2fs_set_bit(0, bitmap) => 1000 0000
95  *   f2fs_set_bit(7, bitmap) => 0000 0001
96  */
97 static unsigned long __find_rev_next_bit(const unsigned long *addr,
98                         unsigned long size, unsigned long offset)
99 {
100         const unsigned long *p = addr + BIT_WORD(offset);
101         unsigned long result = size;
102         unsigned long tmp;
103
104         if (offset >= size)
105                 return size;
106
107         size -= (offset & ~(BITS_PER_LONG - 1));
108         offset %= BITS_PER_LONG;
109
110         while (1) {
111                 if (*p == 0)
112                         goto pass;
113
114                 tmp = __reverse_ulong((unsigned char *)p);
115
116                 tmp &= ~0UL >> offset;
117                 if (size < BITS_PER_LONG)
118                         tmp &= (~0UL << (BITS_PER_LONG - size));
119                 if (tmp)
120                         goto found;
121 pass:
122                 if (size <= BITS_PER_LONG)
123                         break;
124                 size -= BITS_PER_LONG;
125                 offset = 0;
126                 p++;
127         }
128         return result;
129 found:
130         return result - size + __reverse_ffs(tmp);
131 }
132
133 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
134                         unsigned long size, unsigned long offset)
135 {
136         const unsigned long *p = addr + BIT_WORD(offset);
137         unsigned long result = size;
138         unsigned long tmp;
139
140         if (offset >= size)
141                 return size;
142
143         size -= (offset & ~(BITS_PER_LONG - 1));
144         offset %= BITS_PER_LONG;
145
146         while (1) {
147                 if (*p == ~0UL)
148                         goto pass;
149
150                 tmp = __reverse_ulong((unsigned char *)p);
151
152                 if (offset)
153                         tmp |= ~0UL << (BITS_PER_LONG - offset);
154                 if (size < BITS_PER_LONG)
155                         tmp |= ~0UL >> size;
156                 if (tmp != ~0UL)
157                         goto found;
158 pass:
159                 if (size <= BITS_PER_LONG)
160                         break;
161                 size -= BITS_PER_LONG;
162                 offset = 0;
163                 p++;
164         }
165         return result;
166 found:
167         return result - size + __reverse_ffz(tmp);
168 }
169
170 bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
171 {
172         int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
173         int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
174         int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
175
176         if (f2fs_lfs_mode(sbi))
177                 return false;
178         if (sbi->gc_mode == GC_URGENT_HIGH)
179                 return true;
180         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
181                 return true;
182
183         return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
184                         SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
185 }
186
187 void f2fs_register_inmem_page(struct inode *inode, struct page *page)
188 {
189         struct inmem_pages *new;
190
191         set_page_private_atomic(page);
192
193         new = f2fs_kmem_cache_alloc(inmem_entry_slab,
194                                         GFP_NOFS, true, NULL);
195
196         /* add atomic page indices to the list */
197         new->page = page;
198         INIT_LIST_HEAD(&new->list);
199
200         /* increase reference count with clean state */
201         get_page(page);
202         mutex_lock(&F2FS_I(inode)->inmem_lock);
203         list_add_tail(&new->list, &F2FS_I(inode)->inmem_pages);
204         inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
205         mutex_unlock(&F2FS_I(inode)->inmem_lock);
206
207         trace_f2fs_register_inmem_page(page, INMEM);
208 }
209
210 static int __revoke_inmem_pages(struct inode *inode,
211                                 struct list_head *head, bool drop, bool recover,
212                                 bool trylock)
213 {
214         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
215         struct inmem_pages *cur, *tmp;
216         int err = 0;
217
218         list_for_each_entry_safe(cur, tmp, head, list) {
219                 struct page *page = cur->page;
220
221                 if (drop)
222                         trace_f2fs_commit_inmem_page(page, INMEM_DROP);
223
224                 if (trylock) {
225                         /*
226                          * to avoid deadlock in between page lock and
227                          * inmem_lock.
228                          */
229                         if (!trylock_page(page))
230                                 continue;
231                 } else {
232                         lock_page(page);
233                 }
234
235                 f2fs_wait_on_page_writeback(page, DATA, true, true);
236
237                 if (recover) {
238                         struct dnode_of_data dn;
239                         struct node_info ni;
240
241                         trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
242 retry:
243                         set_new_dnode(&dn, inode, NULL, NULL, 0);
244                         err = f2fs_get_dnode_of_data(&dn, page->index,
245                                                                 LOOKUP_NODE);
246                         if (err) {
247                                 if (err == -ENOMEM) {
248                                         congestion_wait(BLK_RW_ASYNC,
249                                                         DEFAULT_IO_TIMEOUT);
250                                         cond_resched();
251                                         goto retry;
252                                 }
253                                 err = -EAGAIN;
254                                 goto next;
255                         }
256
257                         err = f2fs_get_node_info(sbi, dn.nid, &ni);
258                         if (err) {
259                                 f2fs_put_dnode(&dn);
260                                 return err;
261                         }
262
263                         if (cur->old_addr == NEW_ADDR) {
264                                 f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
265                                 f2fs_update_data_blkaddr(&dn, NEW_ADDR);
266                         } else
267                                 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
268                                         cur->old_addr, ni.version, true, true);
269                         f2fs_put_dnode(&dn);
270                 }
271 next:
272                 /* we don't need to invalidate this in the sccessful status */
273                 if (drop || recover) {
274                         ClearPageUptodate(page);
275                         clear_page_private_gcing(page);
276                 }
277                 detach_page_private(page);
278                 set_page_private(page, 0);
279                 f2fs_put_page(page, 1);
280
281                 list_del(&cur->list);
282                 kmem_cache_free(inmem_entry_slab, cur);
283                 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
284         }
285         return err;
286 }
287
288 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure)
289 {
290         struct list_head *head = &sbi->inode_list[ATOMIC_FILE];
291         struct inode *inode;
292         struct f2fs_inode_info *fi;
293         unsigned int count = sbi->atomic_files;
294         unsigned int looped = 0;
295 next:
296         spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
297         if (list_empty(head)) {
298                 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
299                 return;
300         }
301         fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist);
302         inode = igrab(&fi->vfs_inode);
303         if (inode)
304                 list_move_tail(&fi->inmem_ilist, head);
305         spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
306
307         if (inode) {
308                 if (gc_failure) {
309                         if (!fi->i_gc_failures[GC_FAILURE_ATOMIC])
310                                 goto skip;
311                 }
312                 set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
313                 f2fs_drop_inmem_pages(inode);
314 skip:
315                 iput(inode);
316         }
317         congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
318         cond_resched();
319         if (gc_failure) {
320                 if (++looped >= count)
321                         return;
322         }
323         goto next;
324 }
325
326 void f2fs_drop_inmem_pages(struct inode *inode)
327 {
328         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
329         struct f2fs_inode_info *fi = F2FS_I(inode);
330
331         do {
332                 mutex_lock(&fi->inmem_lock);
333                 if (list_empty(&fi->inmem_pages)) {
334                         fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0;
335
336                         spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
337                         if (!list_empty(&fi->inmem_ilist))
338                                 list_del_init(&fi->inmem_ilist);
339                         if (f2fs_is_atomic_file(inode)) {
340                                 clear_inode_flag(inode, FI_ATOMIC_FILE);
341                                 sbi->atomic_files--;
342                         }
343                         spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
344
345                         mutex_unlock(&fi->inmem_lock);
346                         break;
347                 }
348                 __revoke_inmem_pages(inode, &fi->inmem_pages,
349                                                 true, false, true);
350                 mutex_unlock(&fi->inmem_lock);
351         } while (1);
352 }
353
354 void f2fs_drop_inmem_page(struct inode *inode, struct page *page)
355 {
356         struct f2fs_inode_info *fi = F2FS_I(inode);
357         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
358         struct list_head *head = &fi->inmem_pages;
359         struct inmem_pages *cur = NULL;
360
361         f2fs_bug_on(sbi, !page_private_atomic(page));
362
363         mutex_lock(&fi->inmem_lock);
364         list_for_each_entry(cur, head, list) {
365                 if (cur->page == page)
366                         break;
367         }
368
369         f2fs_bug_on(sbi, list_empty(head) || cur->page != page);
370         list_del(&cur->list);
371         mutex_unlock(&fi->inmem_lock);
372
373         dec_page_count(sbi, F2FS_INMEM_PAGES);
374         kmem_cache_free(inmem_entry_slab, cur);
375
376         ClearPageUptodate(page);
377         clear_page_private_atomic(page);
378         f2fs_put_page(page, 0);
379
380         detach_page_private(page);
381         set_page_private(page, 0);
382
383         trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
384 }
385
386 static int __f2fs_commit_inmem_pages(struct inode *inode)
387 {
388         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
389         struct f2fs_inode_info *fi = F2FS_I(inode);
390         struct inmem_pages *cur, *tmp;
391         struct f2fs_io_info fio = {
392                 .sbi = sbi,
393                 .ino = inode->i_ino,
394                 .type = DATA,
395                 .op = REQ_OP_WRITE,
396                 .op_flags = REQ_SYNC | REQ_PRIO,
397                 .io_type = FS_DATA_IO,
398         };
399         struct list_head revoke_list;
400         bool submit_bio = false;
401         int err = 0;
402
403         INIT_LIST_HEAD(&revoke_list);
404
405         list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
406                 struct page *page = cur->page;
407
408                 lock_page(page);
409                 if (page->mapping == inode->i_mapping) {
410                         trace_f2fs_commit_inmem_page(page, INMEM);
411
412                         f2fs_wait_on_page_writeback(page, DATA, true, true);
413
414                         set_page_dirty(page);
415                         if (clear_page_dirty_for_io(page)) {
416                                 inode_dec_dirty_pages(inode);
417                                 f2fs_remove_dirty_inode(inode);
418                         }
419 retry:
420                         fio.page = page;
421                         fio.old_blkaddr = NULL_ADDR;
422                         fio.encrypted_page = NULL;
423                         fio.need_lock = LOCK_DONE;
424                         err = f2fs_do_write_data_page(&fio);
425                         if (err) {
426                                 if (err == -ENOMEM) {
427                                         congestion_wait(BLK_RW_ASYNC,
428                                                         DEFAULT_IO_TIMEOUT);
429                                         cond_resched();
430                                         goto retry;
431                                 }
432                                 unlock_page(page);
433                                 break;
434                         }
435                         /* record old blkaddr for revoking */
436                         cur->old_addr = fio.old_blkaddr;
437                         submit_bio = true;
438                 }
439                 unlock_page(page);
440                 list_move_tail(&cur->list, &revoke_list);
441         }
442
443         if (submit_bio)
444                 f2fs_submit_merged_write_cond(sbi, inode, NULL, 0, DATA);
445
446         if (err) {
447                 /*
448                  * try to revoke all committed pages, but still we could fail
449                  * due to no memory or other reason, if that happened, EAGAIN
450                  * will be returned, which means in such case, transaction is
451                  * already not integrity, caller should use journal to do the
452                  * recovery or rewrite & commit last transaction. For other
453                  * error number, revoking was done by filesystem itself.
454                  */
455                 err = __revoke_inmem_pages(inode, &revoke_list,
456                                                 false, true, false);
457
458                 /* drop all uncommitted pages */
459                 __revoke_inmem_pages(inode, &fi->inmem_pages,
460                                                 true, false, false);
461         } else {
462                 __revoke_inmem_pages(inode, &revoke_list,
463                                                 false, false, false);
464         }
465
466         return err;
467 }
468
469 int f2fs_commit_inmem_pages(struct inode *inode)
470 {
471         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
472         struct f2fs_inode_info *fi = F2FS_I(inode);
473         int err;
474
475         f2fs_balance_fs(sbi, true);
476
477         down_write(&fi->i_gc_rwsem[WRITE]);
478
479         f2fs_lock_op(sbi);
480         set_inode_flag(inode, FI_ATOMIC_COMMIT);
481
482         mutex_lock(&fi->inmem_lock);
483         err = __f2fs_commit_inmem_pages(inode);
484         mutex_unlock(&fi->inmem_lock);
485
486         clear_inode_flag(inode, FI_ATOMIC_COMMIT);
487
488         f2fs_unlock_op(sbi);
489         up_write(&fi->i_gc_rwsem[WRITE]);
490
491         return err;
492 }
493
494 /*
495  * This function balances dirty node and dentry pages.
496  * In addition, it controls garbage collection.
497  */
498 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
499 {
500         if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
501                 f2fs_show_injection_info(sbi, FAULT_CHECKPOINT);
502                 f2fs_stop_checkpoint(sbi, false);
503         }
504
505         /* balance_fs_bg is able to be pending */
506         if (need && excess_cached_nats(sbi))
507                 f2fs_balance_fs_bg(sbi, false);
508
509         if (!f2fs_is_checkpoint_ready(sbi))
510                 return;
511
512         /*
513          * We should do GC or end up with checkpoint, if there are so many dirty
514          * dir/node pages without enough free segments.
515          */
516         if (has_not_enough_free_secs(sbi, 0, 0)) {
517                 if (test_opt(sbi, GC_MERGE) && sbi->gc_thread &&
518                                         sbi->gc_thread->f2fs_gc_task) {
519                         DEFINE_WAIT(wait);
520
521                         prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait,
522                                                 TASK_UNINTERRUPTIBLE);
523                         wake_up(&sbi->gc_thread->gc_wait_queue_head);
524                         io_schedule();
525                         finish_wait(&sbi->gc_thread->fggc_wq, &wait);
526                 } else {
527                         down_write(&sbi->gc_lock);
528                         f2fs_gc(sbi, false, false, false, NULL_SEGNO);
529                 }
530         }
531 }
532
533 static inline bool excess_dirty_threshold(struct f2fs_sb_info *sbi)
534 {
535         int factor = rwsem_is_locked(&sbi->cp_rwsem) ? 3 : 2;
536         unsigned int dents = get_pages(sbi, F2FS_DIRTY_DENTS);
537         unsigned int qdata = get_pages(sbi, F2FS_DIRTY_QDATA);
538         unsigned int nodes = get_pages(sbi, F2FS_DIRTY_NODES);
539         unsigned int meta = get_pages(sbi, F2FS_DIRTY_META);
540         unsigned int imeta = get_pages(sbi, F2FS_DIRTY_IMETA);
541         unsigned int threshold = sbi->blocks_per_seg * factor *
542                                         DEFAULT_DIRTY_THRESHOLD;
543         unsigned int global_threshold = threshold * 3 / 2;
544
545         if (dents >= threshold || qdata >= threshold ||
546                 nodes >= threshold || meta >= threshold ||
547                 imeta >= threshold)
548                 return true;
549         return dents + qdata + nodes + meta + imeta >  global_threshold;
550 }
551
552 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg)
553 {
554         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
555                 return;
556
557         /* try to shrink extent cache when there is no enough memory */
558         if (!f2fs_available_free_memory(sbi, EXTENT_CACHE))
559                 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
560
561         /* check the # of cached NAT entries */
562         if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
563                 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
564
565         if (!f2fs_available_free_memory(sbi, FREE_NIDS))
566                 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
567         else
568                 f2fs_build_free_nids(sbi, false, false);
569
570         if (excess_dirty_nats(sbi) || excess_dirty_threshold(sbi) ||
571                 excess_prefree_segs(sbi) || !f2fs_space_for_roll_forward(sbi))
572                 goto do_sync;
573
574         /* there is background inflight IO or foreground operation recently */
575         if (is_inflight_io(sbi, REQ_TIME) ||
576                 (!f2fs_time_over(sbi, REQ_TIME) && rwsem_is_locked(&sbi->cp_rwsem)))
577                 return;
578
579         /* exceed periodical checkpoint timeout threshold */
580         if (f2fs_time_over(sbi, CP_TIME))
581                 goto do_sync;
582
583         /* checkpoint is the only way to shrink partial cached entries */
584         if (f2fs_available_free_memory(sbi, NAT_ENTRIES) &&
585                 f2fs_available_free_memory(sbi, INO_ENTRIES))
586                 return;
587
588 do_sync:
589         if (test_opt(sbi, DATA_FLUSH) && from_bg) {
590                 struct blk_plug plug;
591
592                 mutex_lock(&sbi->flush_lock);
593
594                 blk_start_plug(&plug);
595                 f2fs_sync_dirty_inodes(sbi, FILE_INODE);
596                 blk_finish_plug(&plug);
597
598                 mutex_unlock(&sbi->flush_lock);
599         }
600         f2fs_sync_fs(sbi->sb, true);
601         stat_inc_bg_cp_count(sbi->stat_info);
602 }
603
604 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
605                                 struct block_device *bdev)
606 {
607         int ret = blkdev_issue_flush(bdev);
608
609         trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
610                                 test_opt(sbi, FLUSH_MERGE), ret);
611         return ret;
612 }
613
614 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
615 {
616         int ret = 0;
617         int i;
618
619         if (!f2fs_is_multi_device(sbi))
620                 return __submit_flush_wait(sbi, sbi->sb->s_bdev);
621
622         for (i = 0; i < sbi->s_ndevs; i++) {
623                 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
624                         continue;
625                 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
626                 if (ret)
627                         break;
628         }
629         return ret;
630 }
631
632 static int issue_flush_thread(void *data)
633 {
634         struct f2fs_sb_info *sbi = data;
635         struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
636         wait_queue_head_t *q = &fcc->flush_wait_queue;
637 repeat:
638         if (kthread_should_stop())
639                 return 0;
640
641         if (!llist_empty(&fcc->issue_list)) {
642                 struct flush_cmd *cmd, *next;
643                 int ret;
644
645                 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
646                 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
647
648                 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
649
650                 ret = submit_flush_wait(sbi, cmd->ino);
651                 atomic_inc(&fcc->issued_flush);
652
653                 llist_for_each_entry_safe(cmd, next,
654                                           fcc->dispatch_list, llnode) {
655                         cmd->ret = ret;
656                         complete(&cmd->wait);
657                 }
658                 fcc->dispatch_list = NULL;
659         }
660
661         wait_event_interruptible(*q,
662                 kthread_should_stop() || !llist_empty(&fcc->issue_list));
663         goto repeat;
664 }
665
666 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
667 {
668         struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
669         struct flush_cmd cmd;
670         int ret;
671
672         if (test_opt(sbi, NOBARRIER))
673                 return 0;
674
675         if (!test_opt(sbi, FLUSH_MERGE)) {
676                 atomic_inc(&fcc->queued_flush);
677                 ret = submit_flush_wait(sbi, ino);
678                 atomic_dec(&fcc->queued_flush);
679                 atomic_inc(&fcc->issued_flush);
680                 return ret;
681         }
682
683         if (atomic_inc_return(&fcc->queued_flush) == 1 ||
684             f2fs_is_multi_device(sbi)) {
685                 ret = submit_flush_wait(sbi, ino);
686                 atomic_dec(&fcc->queued_flush);
687
688                 atomic_inc(&fcc->issued_flush);
689                 return ret;
690         }
691
692         cmd.ino = ino;
693         init_completion(&cmd.wait);
694
695         llist_add(&cmd.llnode, &fcc->issue_list);
696
697         /*
698          * update issue_list before we wake up issue_flush thread, this
699          * smp_mb() pairs with another barrier in ___wait_event(), see
700          * more details in comments of waitqueue_active().
701          */
702         smp_mb();
703
704         if (waitqueue_active(&fcc->flush_wait_queue))
705                 wake_up(&fcc->flush_wait_queue);
706
707         if (fcc->f2fs_issue_flush) {
708                 wait_for_completion(&cmd.wait);
709                 atomic_dec(&fcc->queued_flush);
710         } else {
711                 struct llist_node *list;
712
713                 list = llist_del_all(&fcc->issue_list);
714                 if (!list) {
715                         wait_for_completion(&cmd.wait);
716                         atomic_dec(&fcc->queued_flush);
717                 } else {
718                         struct flush_cmd *tmp, *next;
719
720                         ret = submit_flush_wait(sbi, ino);
721
722                         llist_for_each_entry_safe(tmp, next, list, llnode) {
723                                 if (tmp == &cmd) {
724                                         cmd.ret = ret;
725                                         atomic_dec(&fcc->queued_flush);
726                                         continue;
727                                 }
728                                 tmp->ret = ret;
729                                 complete(&tmp->wait);
730                         }
731                 }
732         }
733
734         return cmd.ret;
735 }
736
737 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
738 {
739         dev_t dev = sbi->sb->s_bdev->bd_dev;
740         struct flush_cmd_control *fcc;
741         int err = 0;
742
743         if (SM_I(sbi)->fcc_info) {
744                 fcc = SM_I(sbi)->fcc_info;
745                 if (fcc->f2fs_issue_flush)
746                         return err;
747                 goto init_thread;
748         }
749
750         fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
751         if (!fcc)
752                 return -ENOMEM;
753         atomic_set(&fcc->issued_flush, 0);
754         atomic_set(&fcc->queued_flush, 0);
755         init_waitqueue_head(&fcc->flush_wait_queue);
756         init_llist_head(&fcc->issue_list);
757         SM_I(sbi)->fcc_info = fcc;
758         if (!test_opt(sbi, FLUSH_MERGE))
759                 return err;
760
761 init_thread:
762         fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
763                                 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
764         if (IS_ERR(fcc->f2fs_issue_flush)) {
765                 err = PTR_ERR(fcc->f2fs_issue_flush);
766                 kfree(fcc);
767                 SM_I(sbi)->fcc_info = NULL;
768                 return err;
769         }
770
771         return err;
772 }
773
774 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
775 {
776         struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
777
778         if (fcc && fcc->f2fs_issue_flush) {
779                 struct task_struct *flush_thread = fcc->f2fs_issue_flush;
780
781                 fcc->f2fs_issue_flush = NULL;
782                 kthread_stop(flush_thread);
783         }
784         if (free) {
785                 kfree(fcc);
786                 SM_I(sbi)->fcc_info = NULL;
787         }
788 }
789
790 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
791 {
792         int ret = 0, i;
793
794         if (!f2fs_is_multi_device(sbi))
795                 return 0;
796
797         if (test_opt(sbi, NOBARRIER))
798                 return 0;
799
800         for (i = 1; i < sbi->s_ndevs; i++) {
801                 int count = DEFAULT_RETRY_IO_COUNT;
802
803                 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
804                         continue;
805
806                 do {
807                         ret = __submit_flush_wait(sbi, FDEV(i).bdev);
808                         if (ret)
809                                 congestion_wait(BLK_RW_ASYNC,
810                                                 DEFAULT_IO_TIMEOUT);
811                 } while (ret && --count);
812
813                 if (ret) {
814                         f2fs_stop_checkpoint(sbi, false);
815                         break;
816                 }
817
818                 spin_lock(&sbi->dev_lock);
819                 f2fs_clear_bit(i, (char *)&sbi->dirty_device);
820                 spin_unlock(&sbi->dev_lock);
821         }
822
823         return ret;
824 }
825
826 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
827                 enum dirty_type dirty_type)
828 {
829         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
830
831         /* need not be added */
832         if (IS_CURSEG(sbi, segno))
833                 return;
834
835         if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
836                 dirty_i->nr_dirty[dirty_type]++;
837
838         if (dirty_type == DIRTY) {
839                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
840                 enum dirty_type t = sentry->type;
841
842                 if (unlikely(t >= DIRTY)) {
843                         f2fs_bug_on(sbi, 1);
844                         return;
845                 }
846                 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
847                         dirty_i->nr_dirty[t]++;
848
849                 if (__is_large_section(sbi)) {
850                         unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
851                         block_t valid_blocks =
852                                 get_valid_blocks(sbi, segno, true);
853
854                         f2fs_bug_on(sbi, unlikely(!valid_blocks ||
855                                         valid_blocks == BLKS_PER_SEC(sbi)));
856
857                         if (!IS_CURSEC(sbi, secno))
858                                 set_bit(secno, dirty_i->dirty_secmap);
859                 }
860         }
861 }
862
863 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
864                 enum dirty_type dirty_type)
865 {
866         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
867         block_t valid_blocks;
868
869         if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
870                 dirty_i->nr_dirty[dirty_type]--;
871
872         if (dirty_type == DIRTY) {
873                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
874                 enum dirty_type t = sentry->type;
875
876                 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
877                         dirty_i->nr_dirty[t]--;
878
879                 valid_blocks = get_valid_blocks(sbi, segno, true);
880                 if (valid_blocks == 0) {
881                         clear_bit(GET_SEC_FROM_SEG(sbi, segno),
882                                                 dirty_i->victim_secmap);
883 #ifdef CONFIG_F2FS_CHECK_FS
884                         clear_bit(segno, SIT_I(sbi)->invalid_segmap);
885 #endif
886                 }
887                 if (__is_large_section(sbi)) {
888                         unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
889
890                         if (!valid_blocks ||
891                                         valid_blocks == BLKS_PER_SEC(sbi)) {
892                                 clear_bit(secno, dirty_i->dirty_secmap);
893                                 return;
894                         }
895
896                         if (!IS_CURSEC(sbi, secno))
897                                 set_bit(secno, dirty_i->dirty_secmap);
898                 }
899         }
900 }
901
902 /*
903  * Should not occur error such as -ENOMEM.
904  * Adding dirty entry into seglist is not critical operation.
905  * If a given segment is one of current working segments, it won't be added.
906  */
907 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
908 {
909         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
910         unsigned short valid_blocks, ckpt_valid_blocks;
911         unsigned int usable_blocks;
912
913         if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
914                 return;
915
916         usable_blocks = f2fs_usable_blks_in_seg(sbi, segno);
917         mutex_lock(&dirty_i->seglist_lock);
918
919         valid_blocks = get_valid_blocks(sbi, segno, false);
920         ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false);
921
922         if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
923                 ckpt_valid_blocks == usable_blocks)) {
924                 __locate_dirty_segment(sbi, segno, PRE);
925                 __remove_dirty_segment(sbi, segno, DIRTY);
926         } else if (valid_blocks < usable_blocks) {
927                 __locate_dirty_segment(sbi, segno, DIRTY);
928         } else {
929                 /* Recovery routine with SSR needs this */
930                 __remove_dirty_segment(sbi, segno, DIRTY);
931         }
932
933         mutex_unlock(&dirty_i->seglist_lock);
934 }
935
936 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
937 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
938 {
939         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
940         unsigned int segno;
941
942         mutex_lock(&dirty_i->seglist_lock);
943         for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
944                 if (get_valid_blocks(sbi, segno, false))
945                         continue;
946                 if (IS_CURSEG(sbi, segno))
947                         continue;
948                 __locate_dirty_segment(sbi, segno, PRE);
949                 __remove_dirty_segment(sbi, segno, DIRTY);
950         }
951         mutex_unlock(&dirty_i->seglist_lock);
952 }
953
954 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
955 {
956         int ovp_hole_segs =
957                 (overprovision_segments(sbi) - reserved_segments(sbi));
958         block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg;
959         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
960         block_t holes[2] = {0, 0};      /* DATA and NODE */
961         block_t unusable;
962         struct seg_entry *se;
963         unsigned int segno;
964
965         mutex_lock(&dirty_i->seglist_lock);
966         for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
967                 se = get_seg_entry(sbi, segno);
968                 if (IS_NODESEG(se->type))
969                         holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) -
970                                                         se->valid_blocks;
971                 else
972                         holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) -
973                                                         se->valid_blocks;
974         }
975         mutex_unlock(&dirty_i->seglist_lock);
976
977         unusable = holes[DATA] > holes[NODE] ? holes[DATA] : holes[NODE];
978         if (unusable > ovp_holes)
979                 return unusable - ovp_holes;
980         return 0;
981 }
982
983 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
984 {
985         int ovp_hole_segs =
986                 (overprovision_segments(sbi) - reserved_segments(sbi));
987         if (unusable > F2FS_OPTION(sbi).unusable_cap)
988                 return -EAGAIN;
989         if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
990                 dirty_segments(sbi) > ovp_hole_segs)
991                 return -EAGAIN;
992         return 0;
993 }
994
995 /* This is only used by SBI_CP_DISABLED */
996 static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
997 {
998         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
999         unsigned int segno = 0;
1000
1001         mutex_lock(&dirty_i->seglist_lock);
1002         for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
1003                 if (get_valid_blocks(sbi, segno, false))
1004                         continue;
1005                 if (get_ckpt_valid_blocks(sbi, segno, false))
1006                         continue;
1007                 mutex_unlock(&dirty_i->seglist_lock);
1008                 return segno;
1009         }
1010         mutex_unlock(&dirty_i->seglist_lock);
1011         return NULL_SEGNO;
1012 }
1013
1014 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
1015                 struct block_device *bdev, block_t lstart,
1016                 block_t start, block_t len)
1017 {
1018         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1019         struct list_head *pend_list;
1020         struct discard_cmd *dc;
1021
1022         f2fs_bug_on(sbi, !len);
1023
1024         pend_list = &dcc->pend_list[plist_idx(len)];
1025
1026         dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS, true, NULL);
1027         INIT_LIST_HEAD(&dc->list);
1028         dc->bdev = bdev;
1029         dc->lstart = lstart;
1030         dc->start = start;
1031         dc->len = len;
1032         dc->ref = 0;
1033         dc->state = D_PREP;
1034         dc->queued = 0;
1035         dc->error = 0;
1036         init_completion(&dc->wait);
1037         list_add_tail(&dc->list, pend_list);
1038         spin_lock_init(&dc->lock);
1039         dc->bio_ref = 0;
1040         atomic_inc(&dcc->discard_cmd_cnt);
1041         dcc->undiscard_blks += len;
1042
1043         return dc;
1044 }
1045
1046 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
1047                                 struct block_device *bdev, block_t lstart,
1048                                 block_t start, block_t len,
1049                                 struct rb_node *parent, struct rb_node **p,
1050                                 bool leftmost)
1051 {
1052         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1053         struct discard_cmd *dc;
1054
1055         dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
1056
1057         rb_link_node(&dc->rb_node, parent, p);
1058         rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
1059
1060         return dc;
1061 }
1062
1063 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
1064                                                         struct discard_cmd *dc)
1065 {
1066         if (dc->state == D_DONE)
1067                 atomic_sub(dc->queued, &dcc->queued_discard);
1068
1069         list_del(&dc->list);
1070         rb_erase_cached(&dc->rb_node, &dcc->root);
1071         dcc->undiscard_blks -= dc->len;
1072
1073         kmem_cache_free(discard_cmd_slab, dc);
1074
1075         atomic_dec(&dcc->discard_cmd_cnt);
1076 }
1077
1078 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
1079                                                         struct discard_cmd *dc)
1080 {
1081         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1082         unsigned long flags;
1083
1084         trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
1085
1086         spin_lock_irqsave(&dc->lock, flags);
1087         if (dc->bio_ref) {
1088                 spin_unlock_irqrestore(&dc->lock, flags);
1089                 return;
1090         }
1091         spin_unlock_irqrestore(&dc->lock, flags);
1092
1093         f2fs_bug_on(sbi, dc->ref);
1094
1095         if (dc->error == -EOPNOTSUPP)
1096                 dc->error = 0;
1097
1098         if (dc->error)
1099                 printk_ratelimited(
1100                         "%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d",
1101                         KERN_INFO, sbi->sb->s_id,
1102                         dc->lstart, dc->start, dc->len, dc->error);
1103         __detach_discard_cmd(dcc, dc);
1104 }
1105
1106 static void f2fs_submit_discard_endio(struct bio *bio)
1107 {
1108         struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1109         unsigned long flags;
1110
1111         spin_lock_irqsave(&dc->lock, flags);
1112         if (!dc->error)
1113                 dc->error = blk_status_to_errno(bio->bi_status);
1114         dc->bio_ref--;
1115         if (!dc->bio_ref && dc->state == D_SUBMIT) {
1116                 dc->state = D_DONE;
1117                 complete_all(&dc->wait);
1118         }
1119         spin_unlock_irqrestore(&dc->lock, flags);
1120         bio_put(bio);
1121 }
1122
1123 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1124                                 block_t start, block_t end)
1125 {
1126 #ifdef CONFIG_F2FS_CHECK_FS
1127         struct seg_entry *sentry;
1128         unsigned int segno;
1129         block_t blk = start;
1130         unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
1131         unsigned long *map;
1132
1133         while (blk < end) {
1134                 segno = GET_SEGNO(sbi, blk);
1135                 sentry = get_seg_entry(sbi, segno);
1136                 offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1137
1138                 if (end < START_BLOCK(sbi, segno + 1))
1139                         size = GET_BLKOFF_FROM_SEG0(sbi, end);
1140                 else
1141                         size = max_blocks;
1142                 map = (unsigned long *)(sentry->cur_valid_map);
1143                 offset = __find_rev_next_bit(map, size, offset);
1144                 f2fs_bug_on(sbi, offset != size);
1145                 blk = START_BLOCK(sbi, segno + 1);
1146         }
1147 #endif
1148 }
1149
1150 static void __init_discard_policy(struct f2fs_sb_info *sbi,
1151                                 struct discard_policy *dpolicy,
1152                                 int discard_type, unsigned int granularity)
1153 {
1154         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1155
1156         /* common policy */
1157         dpolicy->type = discard_type;
1158         dpolicy->sync = true;
1159         dpolicy->ordered = false;
1160         dpolicy->granularity = granularity;
1161
1162         dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
1163         dpolicy->io_aware_gran = MAX_PLIST_NUM;
1164         dpolicy->timeout = false;
1165
1166         if (discard_type == DPOLICY_BG) {
1167                 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1168                 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1169                 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1170                 dpolicy->io_aware = true;
1171                 dpolicy->sync = false;
1172                 dpolicy->ordered = true;
1173                 if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) {
1174                         dpolicy->granularity = 1;
1175                         if (atomic_read(&dcc->discard_cmd_cnt))
1176                                 dpolicy->max_interval =
1177                                         DEF_MIN_DISCARD_ISSUE_TIME;
1178                 }
1179         } else if (discard_type == DPOLICY_FORCE) {
1180                 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1181                 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1182                 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1183                 dpolicy->io_aware = false;
1184         } else if (discard_type == DPOLICY_FSTRIM) {
1185                 dpolicy->io_aware = false;
1186         } else if (discard_type == DPOLICY_UMOUNT) {
1187                 dpolicy->io_aware = false;
1188                 /* we need to issue all to keep CP_TRIMMED_FLAG */
1189                 dpolicy->granularity = 1;
1190                 dpolicy->timeout = true;
1191         }
1192 }
1193
1194 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1195                                 struct block_device *bdev, block_t lstart,
1196                                 block_t start, block_t len);
1197 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
1198 static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1199                                                 struct discard_policy *dpolicy,
1200                                                 struct discard_cmd *dc,
1201                                                 unsigned int *issued)
1202 {
1203         struct block_device *bdev = dc->bdev;
1204         struct request_queue *q = bdev_get_queue(bdev);
1205         unsigned int max_discard_blocks =
1206                         SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1207         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1208         struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1209                                         &(dcc->fstrim_list) : &(dcc->wait_list);
1210         int flag = dpolicy->sync ? REQ_SYNC : 0;
1211         block_t lstart, start, len, total_len;
1212         int err = 0;
1213
1214         if (dc->state != D_PREP)
1215                 return 0;
1216
1217         if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1218                 return 0;
1219
1220         trace_f2fs_issue_discard(bdev, dc->start, dc->len);
1221
1222         lstart = dc->lstart;
1223         start = dc->start;
1224         len = dc->len;
1225         total_len = len;
1226
1227         dc->len = 0;
1228
1229         while (total_len && *issued < dpolicy->max_requests && !err) {
1230                 struct bio *bio = NULL;
1231                 unsigned long flags;
1232                 bool last = true;
1233
1234                 if (len > max_discard_blocks) {
1235                         len = max_discard_blocks;
1236                         last = false;
1237                 }
1238
1239                 (*issued)++;
1240                 if (*issued == dpolicy->max_requests)
1241                         last = true;
1242
1243                 dc->len += len;
1244
1245                 if (time_to_inject(sbi, FAULT_DISCARD)) {
1246                         f2fs_show_injection_info(sbi, FAULT_DISCARD);
1247                         err = -EIO;
1248                         goto submit;
1249                 }
1250                 err = __blkdev_issue_discard(bdev,
1251                                         SECTOR_FROM_BLOCK(start),
1252                                         SECTOR_FROM_BLOCK(len),
1253                                         GFP_NOFS, 0, &bio);
1254 submit:
1255                 if (err) {
1256                         spin_lock_irqsave(&dc->lock, flags);
1257                         if (dc->state == D_PARTIAL)
1258                                 dc->state = D_SUBMIT;
1259                         spin_unlock_irqrestore(&dc->lock, flags);
1260
1261                         break;
1262                 }
1263
1264                 f2fs_bug_on(sbi, !bio);
1265
1266                 /*
1267                  * should keep before submission to avoid D_DONE
1268                  * right away
1269                  */
1270                 spin_lock_irqsave(&dc->lock, flags);
1271                 if (last)
1272                         dc->state = D_SUBMIT;
1273                 else
1274                         dc->state = D_PARTIAL;
1275                 dc->bio_ref++;
1276                 spin_unlock_irqrestore(&dc->lock, flags);
1277
1278                 atomic_inc(&dcc->queued_discard);
1279                 dc->queued++;
1280                 list_move_tail(&dc->list, wait_list);
1281
1282                 /* sanity check on discard range */
1283                 __check_sit_bitmap(sbi, lstart, lstart + len);
1284
1285                 bio->bi_private = dc;
1286                 bio->bi_end_io = f2fs_submit_discard_endio;
1287                 bio->bi_opf |= flag;
1288                 submit_bio(bio);
1289
1290                 atomic_inc(&dcc->issued_discard);
1291
1292                 f2fs_update_iostat(sbi, FS_DISCARD, 1);
1293
1294                 lstart += len;
1295                 start += len;
1296                 total_len -= len;
1297                 len = total_len;
1298         }
1299
1300         if (!err && len) {
1301                 dcc->undiscard_blks -= len;
1302                 __update_discard_tree_range(sbi, bdev, lstart, start, len);
1303         }
1304         return err;
1305 }
1306
1307 static void __insert_discard_tree(struct f2fs_sb_info *sbi,
1308                                 struct block_device *bdev, block_t lstart,
1309                                 block_t start, block_t len,
1310                                 struct rb_node **insert_p,
1311                                 struct rb_node *insert_parent)
1312 {
1313         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1314         struct rb_node **p;
1315         struct rb_node *parent = NULL;
1316         bool leftmost = true;
1317
1318         if (insert_p && insert_parent) {
1319                 parent = insert_parent;
1320                 p = insert_p;
1321                 goto do_insert;
1322         }
1323
1324         p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent,
1325                                                         lstart, &leftmost);
1326 do_insert:
1327         __attach_discard_cmd(sbi, bdev, lstart, start, len, parent,
1328                                                                 p, leftmost);
1329 }
1330
1331 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1332                                                 struct discard_cmd *dc)
1333 {
1334         list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
1335 }
1336
1337 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1338                                 struct discard_cmd *dc, block_t blkaddr)
1339 {
1340         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1341         struct discard_info di = dc->di;
1342         bool modified = false;
1343
1344         if (dc->state == D_DONE || dc->len == 1) {
1345                 __remove_discard_cmd(sbi, dc);
1346                 return;
1347         }
1348
1349         dcc->undiscard_blks -= di.len;
1350
1351         if (blkaddr > di.lstart) {
1352                 dc->len = blkaddr - dc->lstart;
1353                 dcc->undiscard_blks += dc->len;
1354                 __relocate_discard_cmd(dcc, dc);
1355                 modified = true;
1356         }
1357
1358         if (blkaddr < di.lstart + di.len - 1) {
1359                 if (modified) {
1360                         __insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1361                                         di.start + blkaddr + 1 - di.lstart,
1362                                         di.lstart + di.len - 1 - blkaddr,
1363                                         NULL, NULL);
1364                 } else {
1365                         dc->lstart++;
1366                         dc->len--;
1367                         dc->start++;
1368                         dcc->undiscard_blks += dc->len;
1369                         __relocate_discard_cmd(dcc, dc);
1370                 }
1371         }
1372 }
1373
1374 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1375                                 struct block_device *bdev, block_t lstart,
1376                                 block_t start, block_t len)
1377 {
1378         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1379         struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1380         struct discard_cmd *dc;
1381         struct discard_info di = {0};
1382         struct rb_node **insert_p = NULL, *insert_parent = NULL;
1383         struct request_queue *q = bdev_get_queue(bdev);
1384         unsigned int max_discard_blocks =
1385                         SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1386         block_t end = lstart + len;
1387
1388         dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1389                                         NULL, lstart,
1390                                         (struct rb_entry **)&prev_dc,
1391                                         (struct rb_entry **)&next_dc,
1392                                         &insert_p, &insert_parent, true, NULL);
1393         if (dc)
1394                 prev_dc = dc;
1395
1396         if (!prev_dc) {
1397                 di.lstart = lstart;
1398                 di.len = next_dc ? next_dc->lstart - lstart : len;
1399                 di.len = min(di.len, len);
1400                 di.start = start;
1401         }
1402
1403         while (1) {
1404                 struct rb_node *node;
1405                 bool merged = false;
1406                 struct discard_cmd *tdc = NULL;
1407
1408                 if (prev_dc) {
1409                         di.lstart = prev_dc->lstart + prev_dc->len;
1410                         if (di.lstart < lstart)
1411                                 di.lstart = lstart;
1412                         if (di.lstart >= end)
1413                                 break;
1414
1415                         if (!next_dc || next_dc->lstart > end)
1416                                 di.len = end - di.lstart;
1417                         else
1418                                 di.len = next_dc->lstart - di.lstart;
1419                         di.start = start + di.lstart - lstart;
1420                 }
1421
1422                 if (!di.len)
1423                         goto next;
1424
1425                 if (prev_dc && prev_dc->state == D_PREP &&
1426                         prev_dc->bdev == bdev &&
1427                         __is_discard_back_mergeable(&di, &prev_dc->di,
1428                                                         max_discard_blocks)) {
1429                         prev_dc->di.len += di.len;
1430                         dcc->undiscard_blks += di.len;
1431                         __relocate_discard_cmd(dcc, prev_dc);
1432                         di = prev_dc->di;
1433                         tdc = prev_dc;
1434                         merged = true;
1435                 }
1436
1437                 if (next_dc && next_dc->state == D_PREP &&
1438                         next_dc->bdev == bdev &&
1439                         __is_discard_front_mergeable(&di, &next_dc->di,
1440                                                         max_discard_blocks)) {
1441                         next_dc->di.lstart = di.lstart;
1442                         next_dc->di.len += di.len;
1443                         next_dc->di.start = di.start;
1444                         dcc->undiscard_blks += di.len;
1445                         __relocate_discard_cmd(dcc, next_dc);
1446                         if (tdc)
1447                                 __remove_discard_cmd(sbi, tdc);
1448                         merged = true;
1449                 }
1450
1451                 if (!merged) {
1452                         __insert_discard_tree(sbi, bdev, di.lstart, di.start,
1453                                                         di.len, NULL, NULL);
1454                 }
1455  next:
1456                 prev_dc = next_dc;
1457                 if (!prev_dc)
1458                         break;
1459
1460                 node = rb_next(&prev_dc->rb_node);
1461                 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1462         }
1463 }
1464
1465 static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
1466                 struct block_device *bdev, block_t blkstart, block_t blklen)
1467 {
1468         block_t lblkstart = blkstart;
1469
1470         if (!f2fs_bdev_support_discard(bdev))
1471                 return 0;
1472
1473         trace_f2fs_queue_discard(bdev, blkstart, blklen);
1474
1475         if (f2fs_is_multi_device(sbi)) {
1476                 int devi = f2fs_target_device_index(sbi, blkstart);
1477
1478                 blkstart -= FDEV(devi).start_blk;
1479         }
1480         mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1481         __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1482         mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1483         return 0;
1484 }
1485
1486 static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1487                                         struct discard_policy *dpolicy)
1488 {
1489         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1490         struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1491         struct rb_node **insert_p = NULL, *insert_parent = NULL;
1492         struct discard_cmd *dc;
1493         struct blk_plug plug;
1494         unsigned int pos = dcc->next_pos;
1495         unsigned int issued = 0;
1496         bool io_interrupted = false;
1497
1498         mutex_lock(&dcc->cmd_lock);
1499         dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1500                                         NULL, pos,
1501                                         (struct rb_entry **)&prev_dc,
1502                                         (struct rb_entry **)&next_dc,
1503                                         &insert_p, &insert_parent, true, NULL);
1504         if (!dc)
1505                 dc = next_dc;
1506
1507         blk_start_plug(&plug);
1508
1509         while (dc) {
1510                 struct rb_node *node;
1511                 int err = 0;
1512
1513                 if (dc->state != D_PREP)
1514                         goto next;
1515
1516                 if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1517                         io_interrupted = true;
1518                         break;
1519                 }
1520
1521                 dcc->next_pos = dc->lstart + dc->len;
1522                 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1523
1524                 if (issued >= dpolicy->max_requests)
1525                         break;
1526 next:
1527                 node = rb_next(&dc->rb_node);
1528                 if (err)
1529                         __remove_discard_cmd(sbi, dc);
1530                 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1531         }
1532
1533         blk_finish_plug(&plug);
1534
1535         if (!dc)
1536                 dcc->next_pos = 0;
1537
1538         mutex_unlock(&dcc->cmd_lock);
1539
1540         if (!issued && io_interrupted)
1541                 issued = -1;
1542
1543         return issued;
1544 }
1545 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1546                                         struct discard_policy *dpolicy);
1547
1548 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1549                                         struct discard_policy *dpolicy)
1550 {
1551         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1552         struct list_head *pend_list;
1553         struct discard_cmd *dc, *tmp;
1554         struct blk_plug plug;
1555         int i, issued;
1556         bool io_interrupted = false;
1557
1558         if (dpolicy->timeout)
1559                 f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT);
1560
1561 retry:
1562         issued = 0;
1563         for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1564                 if (dpolicy->timeout &&
1565                                 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1566                         break;
1567
1568                 if (i + 1 < dpolicy->granularity)
1569                         break;
1570
1571                 if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered)
1572                         return __issue_discard_cmd_orderly(sbi, dpolicy);
1573
1574                 pend_list = &dcc->pend_list[i];
1575
1576                 mutex_lock(&dcc->cmd_lock);
1577                 if (list_empty(pend_list))
1578                         goto next;
1579                 if (unlikely(dcc->rbtree_check))
1580                         f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
1581                                                         &dcc->root, false));
1582                 blk_start_plug(&plug);
1583                 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1584                         f2fs_bug_on(sbi, dc->state != D_PREP);
1585
1586                         if (dpolicy->timeout &&
1587                                 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1588                                 break;
1589
1590                         if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1591                                                 !is_idle(sbi, DISCARD_TIME)) {
1592                                 io_interrupted = true;
1593                                 break;
1594                         }
1595
1596                         __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1597
1598                         if (issued >= dpolicy->max_requests)
1599                                 break;
1600                 }
1601                 blk_finish_plug(&plug);
1602 next:
1603                 mutex_unlock(&dcc->cmd_lock);
1604
1605                 if (issued >= dpolicy->max_requests || io_interrupted)
1606                         break;
1607         }
1608
1609         if (dpolicy->type == DPOLICY_UMOUNT && issued) {
1610                 __wait_all_discard_cmd(sbi, dpolicy);
1611                 goto retry;
1612         }
1613
1614         if (!issued && io_interrupted)
1615                 issued = -1;
1616
1617         return issued;
1618 }
1619
1620 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1621 {
1622         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1623         struct list_head *pend_list;
1624         struct discard_cmd *dc, *tmp;
1625         int i;
1626         bool dropped = false;
1627
1628         mutex_lock(&dcc->cmd_lock);
1629         for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1630                 pend_list = &dcc->pend_list[i];
1631                 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1632                         f2fs_bug_on(sbi, dc->state != D_PREP);
1633                         __remove_discard_cmd(sbi, dc);
1634                         dropped = true;
1635                 }
1636         }
1637         mutex_unlock(&dcc->cmd_lock);
1638
1639         return dropped;
1640 }
1641
1642 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1643 {
1644         __drop_discard_cmd(sbi);
1645 }
1646
1647 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1648                                                         struct discard_cmd *dc)
1649 {
1650         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1651         unsigned int len = 0;
1652
1653         wait_for_completion_io(&dc->wait);
1654         mutex_lock(&dcc->cmd_lock);
1655         f2fs_bug_on(sbi, dc->state != D_DONE);
1656         dc->ref--;
1657         if (!dc->ref) {
1658                 if (!dc->error)
1659                         len = dc->len;
1660                 __remove_discard_cmd(sbi, dc);
1661         }
1662         mutex_unlock(&dcc->cmd_lock);
1663
1664         return len;
1665 }
1666
1667 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1668                                                 struct discard_policy *dpolicy,
1669                                                 block_t start, block_t end)
1670 {
1671         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1672         struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1673                                         &(dcc->fstrim_list) : &(dcc->wait_list);
1674         struct discard_cmd *dc, *tmp;
1675         bool need_wait;
1676         unsigned int trimmed = 0;
1677
1678 next:
1679         need_wait = false;
1680
1681         mutex_lock(&dcc->cmd_lock);
1682         list_for_each_entry_safe(dc, tmp, wait_list, list) {
1683                 if (dc->lstart + dc->len <= start || end <= dc->lstart)
1684                         continue;
1685                 if (dc->len < dpolicy->granularity)
1686                         continue;
1687                 if (dc->state == D_DONE && !dc->ref) {
1688                         wait_for_completion_io(&dc->wait);
1689                         if (!dc->error)
1690                                 trimmed += dc->len;
1691                         __remove_discard_cmd(sbi, dc);
1692                 } else {
1693                         dc->ref++;
1694                         need_wait = true;
1695                         break;
1696                 }
1697         }
1698         mutex_unlock(&dcc->cmd_lock);
1699
1700         if (need_wait) {
1701                 trimmed += __wait_one_discard_bio(sbi, dc);
1702                 goto next;
1703         }
1704
1705         return trimmed;
1706 }
1707
1708 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1709                                                 struct discard_policy *dpolicy)
1710 {
1711         struct discard_policy dp;
1712         unsigned int discard_blks;
1713
1714         if (dpolicy)
1715                 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1716
1717         /* wait all */
1718         __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
1719         discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1720         __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
1721         discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1722
1723         return discard_blks;
1724 }
1725
1726 /* This should be covered by global mutex, &sit_i->sentry_lock */
1727 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1728 {
1729         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1730         struct discard_cmd *dc;
1731         bool need_wait = false;
1732
1733         mutex_lock(&dcc->cmd_lock);
1734         dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
1735                                                         NULL, blkaddr);
1736         if (dc) {
1737                 if (dc->state == D_PREP) {
1738                         __punch_discard_cmd(sbi, dc, blkaddr);
1739                 } else {
1740                         dc->ref++;
1741                         need_wait = true;
1742                 }
1743         }
1744         mutex_unlock(&dcc->cmd_lock);
1745
1746         if (need_wait)
1747                 __wait_one_discard_bio(sbi, dc);
1748 }
1749
1750 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1751 {
1752         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1753
1754         if (dcc && dcc->f2fs_issue_discard) {
1755                 struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1756
1757                 dcc->f2fs_issue_discard = NULL;
1758                 kthread_stop(discard_thread);
1759         }
1760 }
1761
1762 /* This comes from f2fs_put_super */
1763 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1764 {
1765         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1766         struct discard_policy dpolicy;
1767         bool dropped;
1768
1769         __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1770                                         dcc->discard_granularity);
1771         __issue_discard_cmd(sbi, &dpolicy);
1772         dropped = __drop_discard_cmd(sbi);
1773
1774         /* just to make sure there is no pending discard commands */
1775         __wait_all_discard_cmd(sbi, NULL);
1776
1777         f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1778         return dropped;
1779 }
1780
1781 static int issue_discard_thread(void *data)
1782 {
1783         struct f2fs_sb_info *sbi = data;
1784         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1785         wait_queue_head_t *q = &dcc->discard_wait_queue;
1786         struct discard_policy dpolicy;
1787         unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
1788         int issued;
1789
1790         set_freezable();
1791
1792         do {
1793                 if (sbi->gc_mode == GC_URGENT_HIGH ||
1794                         !f2fs_available_free_memory(sbi, DISCARD_CACHE))
1795                         __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1);
1796                 else
1797                         __init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1798                                                 dcc->discard_granularity);
1799
1800                 if (!atomic_read(&dcc->discard_cmd_cnt))
1801                        wait_ms = dpolicy.max_interval;
1802
1803                 wait_event_interruptible_timeout(*q,
1804                                 kthread_should_stop() || freezing(current) ||
1805                                 dcc->discard_wake,
1806                                 msecs_to_jiffies(wait_ms));
1807
1808                 if (dcc->discard_wake)
1809                         dcc->discard_wake = 0;
1810
1811                 /* clean up pending candidates before going to sleep */
1812                 if (atomic_read(&dcc->queued_discard))
1813                         __wait_all_discard_cmd(sbi, NULL);
1814
1815                 if (try_to_freeze())
1816                         continue;
1817                 if (f2fs_readonly(sbi->sb))
1818                         continue;
1819                 if (kthread_should_stop())
1820                         return 0;
1821                 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1822                         wait_ms = dpolicy.max_interval;
1823                         continue;
1824                 }
1825                 if (!atomic_read(&dcc->discard_cmd_cnt))
1826                         continue;
1827
1828                 sb_start_intwrite(sbi->sb);
1829
1830                 issued = __issue_discard_cmd(sbi, &dpolicy);
1831                 if (issued > 0) {
1832                         __wait_all_discard_cmd(sbi, &dpolicy);
1833                         wait_ms = dpolicy.min_interval;
1834                 } else if (issued == -1) {
1835                         wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1836                         if (!wait_ms)
1837                                 wait_ms = dpolicy.mid_interval;
1838                 } else {
1839                         wait_ms = dpolicy.max_interval;
1840                 }
1841
1842                 sb_end_intwrite(sbi->sb);
1843
1844         } while (!kthread_should_stop());
1845         return 0;
1846 }
1847
1848 #ifdef CONFIG_BLK_DEV_ZONED
1849 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1850                 struct block_device *bdev, block_t blkstart, block_t blklen)
1851 {
1852         sector_t sector, nr_sects;
1853         block_t lblkstart = blkstart;
1854         int devi = 0;
1855
1856         if (f2fs_is_multi_device(sbi)) {
1857                 devi = f2fs_target_device_index(sbi, blkstart);
1858                 if (blkstart < FDEV(devi).start_blk ||
1859                     blkstart > FDEV(devi).end_blk) {
1860                         f2fs_err(sbi, "Invalid block %x", blkstart);
1861                         return -EIO;
1862                 }
1863                 blkstart -= FDEV(devi).start_blk;
1864         }
1865
1866         /* For sequential zones, reset the zone write pointer */
1867         if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1868                 sector = SECTOR_FROM_BLOCK(blkstart);
1869                 nr_sects = SECTOR_FROM_BLOCK(blklen);
1870
1871                 if (sector & (bdev_zone_sectors(bdev) - 1) ||
1872                                 nr_sects != bdev_zone_sectors(bdev)) {
1873                         f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1874                                  devi, sbi->s_ndevs ? FDEV(devi).path : "",
1875                                  blkstart, blklen);
1876                         return -EIO;
1877                 }
1878                 trace_f2fs_issue_reset_zone(bdev, blkstart);
1879                 return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1880                                         sector, nr_sects, GFP_NOFS);
1881         }
1882
1883         /* For conventional zones, use regular discard if supported */
1884         return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1885 }
1886 #endif
1887
1888 static int __issue_discard_async(struct f2fs_sb_info *sbi,
1889                 struct block_device *bdev, block_t blkstart, block_t blklen)
1890 {
1891 #ifdef CONFIG_BLK_DEV_ZONED
1892         if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
1893                 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1894 #endif
1895         return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1896 }
1897
1898 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1899                                 block_t blkstart, block_t blklen)
1900 {
1901         sector_t start = blkstart, len = 0;
1902         struct block_device *bdev;
1903         struct seg_entry *se;
1904         unsigned int offset;
1905         block_t i;
1906         int err = 0;
1907
1908         bdev = f2fs_target_device(sbi, blkstart, NULL);
1909
1910         for (i = blkstart; i < blkstart + blklen; i++, len++) {
1911                 if (i != start) {
1912                         struct block_device *bdev2 =
1913                                 f2fs_target_device(sbi, i, NULL);
1914
1915                         if (bdev2 != bdev) {
1916                                 err = __issue_discard_async(sbi, bdev,
1917                                                 start, len);
1918                                 if (err)
1919                                         return err;
1920                                 bdev = bdev2;
1921                                 start = i;
1922                                 len = 0;
1923                         }
1924                 }
1925
1926                 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1927                 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1928
1929                 if (f2fs_block_unit_discard(sbi) &&
1930                                 !f2fs_test_and_set_bit(offset, se->discard_map))
1931                         sbi->discard_blks--;
1932         }
1933
1934         if (len)
1935                 err = __issue_discard_async(sbi, bdev, start, len);
1936         return err;
1937 }
1938
1939 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1940                                                         bool check_only)
1941 {
1942         int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1943         int max_blocks = sbi->blocks_per_seg;
1944         struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1945         unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1946         unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1947         unsigned long *discard_map = (unsigned long *)se->discard_map;
1948         unsigned long *dmap = SIT_I(sbi)->tmp_map;
1949         unsigned int start = 0, end = -1;
1950         bool force = (cpc->reason & CP_DISCARD);
1951         struct discard_entry *de = NULL;
1952         struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1953         int i;
1954
1955         if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi) ||
1956                         !f2fs_block_unit_discard(sbi))
1957                 return false;
1958
1959         if (!force) {
1960                 if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
1961                         SM_I(sbi)->dcc_info->nr_discards >=
1962                                 SM_I(sbi)->dcc_info->max_discards)
1963                         return false;
1964         }
1965
1966         /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1967         for (i = 0; i < entries; i++)
1968                 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1969                                 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1970
1971         while (force || SM_I(sbi)->dcc_info->nr_discards <=
1972                                 SM_I(sbi)->dcc_info->max_discards) {
1973                 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1974                 if (start >= max_blocks)
1975                         break;
1976
1977                 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1978                 if (force && start && end != max_blocks
1979                                         && (end - start) < cpc->trim_minlen)
1980                         continue;
1981
1982                 if (check_only)
1983                         return true;
1984
1985                 if (!de) {
1986                         de = f2fs_kmem_cache_alloc(discard_entry_slab,
1987                                                 GFP_F2FS_ZERO, true, NULL);
1988                         de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1989                         list_add_tail(&de->list, head);
1990                 }
1991
1992                 for (i = start; i < end; i++)
1993                         __set_bit_le(i, (void *)de->discard_map);
1994
1995                 SM_I(sbi)->dcc_info->nr_discards += end - start;
1996         }
1997         return false;
1998 }
1999
2000 static void release_discard_addr(struct discard_entry *entry)
2001 {
2002         list_del(&entry->list);
2003         kmem_cache_free(discard_entry_slab, entry);
2004 }
2005
2006 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
2007 {
2008         struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
2009         struct discard_entry *entry, *this;
2010
2011         /* drop caches */
2012         list_for_each_entry_safe(entry, this, head, list)
2013                 release_discard_addr(entry);
2014 }
2015
2016 /*
2017  * Should call f2fs_clear_prefree_segments after checkpoint is done.
2018  */
2019 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
2020 {
2021         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2022         unsigned int segno;
2023
2024         mutex_lock(&dirty_i->seglist_lock);
2025         for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
2026                 __set_test_and_free(sbi, segno, false);
2027         mutex_unlock(&dirty_i->seglist_lock);
2028 }
2029
2030 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
2031                                                 struct cp_control *cpc)
2032 {
2033         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2034         struct list_head *head = &dcc->entry_list;
2035         struct discard_entry *entry, *this;
2036         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2037         unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
2038         unsigned int start = 0, end = -1;
2039         unsigned int secno, start_segno;
2040         bool force = (cpc->reason & CP_DISCARD);
2041         bool section_alignment = F2FS_OPTION(sbi).discard_unit ==
2042                                                 DISCARD_UNIT_SECTION;
2043
2044         if (f2fs_lfs_mode(sbi) && __is_large_section(sbi))
2045                 section_alignment = true;
2046
2047         mutex_lock(&dirty_i->seglist_lock);
2048
2049         while (1) {
2050                 int i;
2051
2052                 if (section_alignment && end != -1)
2053                         end--;
2054                 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
2055                 if (start >= MAIN_SEGS(sbi))
2056                         break;
2057                 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
2058                                                                 start + 1);
2059
2060                 if (section_alignment) {
2061                         start = rounddown(start, sbi->segs_per_sec);
2062                         end = roundup(end, sbi->segs_per_sec);
2063                 }
2064
2065                 for (i = start; i < end; i++) {
2066                         if (test_and_clear_bit(i, prefree_map))
2067                                 dirty_i->nr_dirty[PRE]--;
2068                 }
2069
2070                 if (!f2fs_realtime_discard_enable(sbi))
2071                         continue;
2072
2073                 if (force && start >= cpc->trim_start &&
2074                                         (end - 1) <= cpc->trim_end)
2075                                 continue;
2076
2077                 if (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi)) {
2078                         f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
2079                                 (end - start) << sbi->log_blocks_per_seg);
2080                         continue;
2081                 }
2082 next:
2083                 secno = GET_SEC_FROM_SEG(sbi, start);
2084                 start_segno = GET_SEG_FROM_SEC(sbi, secno);
2085                 if (!IS_CURSEC(sbi, secno) &&
2086                         !get_valid_blocks(sbi, start, true))
2087                         f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
2088                                 sbi->segs_per_sec << sbi->log_blocks_per_seg);
2089
2090                 start = start_segno + sbi->segs_per_sec;
2091                 if (start < end)
2092                         goto next;
2093                 else
2094                         end = start - 1;
2095         }
2096         mutex_unlock(&dirty_i->seglist_lock);
2097
2098         if (!f2fs_block_unit_discard(sbi))
2099                 goto wakeup;
2100
2101         /* send small discards */
2102         list_for_each_entry_safe(entry, this, head, list) {
2103                 unsigned int cur_pos = 0, next_pos, len, total_len = 0;
2104                 bool is_valid = test_bit_le(0, entry->discard_map);
2105
2106 find_next:
2107                 if (is_valid) {
2108                         next_pos = find_next_zero_bit_le(entry->discard_map,
2109                                         sbi->blocks_per_seg, cur_pos);
2110                         len = next_pos - cur_pos;
2111
2112                         if (f2fs_sb_has_blkzoned(sbi) ||
2113                             (force && len < cpc->trim_minlen))
2114                                 goto skip;
2115
2116                         f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2117                                                                         len);
2118                         total_len += len;
2119                 } else {
2120                         next_pos = find_next_bit_le(entry->discard_map,
2121                                         sbi->blocks_per_seg, cur_pos);
2122                 }
2123 skip:
2124                 cur_pos = next_pos;
2125                 is_valid = !is_valid;
2126
2127                 if (cur_pos < sbi->blocks_per_seg)
2128                         goto find_next;
2129
2130                 release_discard_addr(entry);
2131                 dcc->nr_discards -= total_len;
2132         }
2133
2134 wakeup:
2135         wake_up_discard_thread(sbi, false);
2136 }
2137
2138 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi)
2139 {
2140         dev_t dev = sbi->sb->s_bdev->bd_dev;
2141         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2142         int err = 0;
2143
2144         if (!f2fs_realtime_discard_enable(sbi))
2145                 return 0;
2146
2147         dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2148                                 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2149         if (IS_ERR(dcc->f2fs_issue_discard))
2150                 err = PTR_ERR(dcc->f2fs_issue_discard);
2151
2152         return err;
2153 }
2154
2155 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2156 {
2157         struct discard_cmd_control *dcc;
2158         int err = 0, i;
2159
2160         if (SM_I(sbi)->dcc_info) {
2161                 dcc = SM_I(sbi)->dcc_info;
2162                 goto init_thread;
2163         }
2164
2165         dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2166         if (!dcc)
2167                 return -ENOMEM;
2168
2169         dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2170         if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT)
2171                 dcc->discard_granularity = sbi->blocks_per_seg;
2172         else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION)
2173                 dcc->discard_granularity = BLKS_PER_SEC(sbi);
2174
2175         INIT_LIST_HEAD(&dcc->entry_list);
2176         for (i = 0; i < MAX_PLIST_NUM; i++)
2177                 INIT_LIST_HEAD(&dcc->pend_list[i]);
2178         INIT_LIST_HEAD(&dcc->wait_list);
2179         INIT_LIST_HEAD(&dcc->fstrim_list);
2180         mutex_init(&dcc->cmd_lock);
2181         atomic_set(&dcc->issued_discard, 0);
2182         atomic_set(&dcc->queued_discard, 0);
2183         atomic_set(&dcc->discard_cmd_cnt, 0);
2184         dcc->nr_discards = 0;
2185         dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
2186         dcc->undiscard_blks = 0;
2187         dcc->next_pos = 0;
2188         dcc->root = RB_ROOT_CACHED;
2189         dcc->rbtree_check = false;
2190
2191         init_waitqueue_head(&dcc->discard_wait_queue);
2192         SM_I(sbi)->dcc_info = dcc;
2193 init_thread:
2194         err = f2fs_start_discard_thread(sbi);
2195         if (err) {
2196                 kfree(dcc);
2197                 SM_I(sbi)->dcc_info = NULL;
2198         }
2199
2200         return err;
2201 }
2202
2203 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2204 {
2205         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2206
2207         if (!dcc)
2208                 return;
2209
2210         f2fs_stop_discard_thread(sbi);
2211
2212         /*
2213          * Recovery can cache discard commands, so in error path of
2214          * fill_super(), it needs to give a chance to handle them.
2215          */
2216         if (unlikely(atomic_read(&dcc->discard_cmd_cnt)))
2217                 f2fs_issue_discard_timeout(sbi);
2218
2219         kfree(dcc);
2220         SM_I(sbi)->dcc_info = NULL;
2221 }
2222
2223 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2224 {
2225         struct sit_info *sit_i = SIT_I(sbi);
2226
2227         if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2228                 sit_i->dirty_sentries++;
2229                 return false;
2230         }
2231
2232         return true;
2233 }
2234
2235 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2236                                         unsigned int segno, int modified)
2237 {
2238         struct seg_entry *se = get_seg_entry(sbi, segno);
2239
2240         se->type = type;
2241         if (modified)
2242                 __mark_sit_entry_dirty(sbi, segno);
2243 }
2244
2245 static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi,
2246                                                                 block_t blkaddr)
2247 {
2248         unsigned int segno = GET_SEGNO(sbi, blkaddr);
2249
2250         if (segno == NULL_SEGNO)
2251                 return 0;
2252         return get_seg_entry(sbi, segno)->mtime;
2253 }
2254
2255 static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr,
2256                                                 unsigned long long old_mtime)
2257 {
2258         struct seg_entry *se;
2259         unsigned int segno = GET_SEGNO(sbi, blkaddr);
2260         unsigned long long ctime = get_mtime(sbi, false);
2261         unsigned long long mtime = old_mtime ? old_mtime : ctime;
2262
2263         if (segno == NULL_SEGNO)
2264                 return;
2265
2266         se = get_seg_entry(sbi, segno);
2267
2268         if (!se->mtime)
2269                 se->mtime = mtime;
2270         else
2271                 se->mtime = div_u64(se->mtime * se->valid_blocks + mtime,
2272                                                 se->valid_blocks + 1);
2273
2274         if (ctime > SIT_I(sbi)->max_mtime)
2275                 SIT_I(sbi)->max_mtime = ctime;
2276 }
2277
2278 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2279 {
2280         struct seg_entry *se;
2281         unsigned int segno, offset;
2282         long int new_vblocks;
2283         bool exist;
2284 #ifdef CONFIG_F2FS_CHECK_FS
2285         bool mir_exist;
2286 #endif
2287
2288         segno = GET_SEGNO(sbi, blkaddr);
2289
2290         se = get_seg_entry(sbi, segno);
2291         new_vblocks = se->valid_blocks + del;
2292         offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2293
2294         f2fs_bug_on(sbi, (new_vblocks < 0 ||
2295                         (new_vblocks > f2fs_usable_blks_in_seg(sbi, segno))));
2296
2297         se->valid_blocks = new_vblocks;
2298
2299         /* Update valid block bitmap */
2300         if (del > 0) {
2301                 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2302 #ifdef CONFIG_F2FS_CHECK_FS
2303                 mir_exist = f2fs_test_and_set_bit(offset,
2304                                                 se->cur_valid_map_mir);
2305                 if (unlikely(exist != mir_exist)) {
2306                         f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2307                                  blkaddr, exist);
2308                         f2fs_bug_on(sbi, 1);
2309                 }
2310 #endif
2311                 if (unlikely(exist)) {
2312                         f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
2313                                  blkaddr);
2314                         f2fs_bug_on(sbi, 1);
2315                         se->valid_blocks--;
2316                         del = 0;
2317                 }
2318
2319                 if (f2fs_block_unit_discard(sbi) &&
2320                                 !f2fs_test_and_set_bit(offset, se->discard_map))
2321                         sbi->discard_blks--;
2322
2323                 /*
2324                  * SSR should never reuse block which is checkpointed
2325                  * or newly invalidated.
2326                  */
2327                 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2328                         if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2329                                 se->ckpt_valid_blocks++;
2330                 }
2331         } else {
2332                 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2333 #ifdef CONFIG_F2FS_CHECK_FS
2334                 mir_exist = f2fs_test_and_clear_bit(offset,
2335                                                 se->cur_valid_map_mir);
2336                 if (unlikely(exist != mir_exist)) {
2337                         f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2338                                  blkaddr, exist);
2339                         f2fs_bug_on(sbi, 1);
2340                 }
2341 #endif
2342                 if (unlikely(!exist)) {
2343                         f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
2344                                  blkaddr);
2345                         f2fs_bug_on(sbi, 1);
2346                         se->valid_blocks++;
2347                         del = 0;
2348                 } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2349                         /*
2350                          * If checkpoints are off, we must not reuse data that
2351                          * was used in the previous checkpoint. If it was used
2352                          * before, we must track that to know how much space we
2353                          * really have.
2354                          */
2355                         if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
2356                                 spin_lock(&sbi->stat_lock);
2357                                 sbi->unusable_block_count++;
2358                                 spin_unlock(&sbi->stat_lock);
2359                         }
2360                 }
2361
2362                 if (f2fs_block_unit_discard(sbi) &&
2363                         f2fs_test_and_clear_bit(offset, se->discard_map))
2364                         sbi->discard_blks++;
2365         }
2366         if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2367                 se->ckpt_valid_blocks += del;
2368
2369         __mark_sit_entry_dirty(sbi, segno);
2370
2371         /* update total number of valid blocks to be written in ckpt area */
2372         SIT_I(sbi)->written_valid_blocks += del;
2373
2374         if (__is_large_section(sbi))
2375                 get_sec_entry(sbi, segno)->valid_blocks += del;
2376 }
2377
2378 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2379 {
2380         unsigned int segno = GET_SEGNO(sbi, addr);
2381         struct sit_info *sit_i = SIT_I(sbi);
2382
2383         f2fs_bug_on(sbi, addr == NULL_ADDR);
2384         if (addr == NEW_ADDR || addr == COMPRESS_ADDR)
2385                 return;
2386
2387         invalidate_mapping_pages(META_MAPPING(sbi), addr, addr);
2388         f2fs_invalidate_compress_page(sbi, addr);
2389
2390         /* add it into sit main buffer */
2391         down_write(&sit_i->sentry_lock);
2392
2393         update_segment_mtime(sbi, addr, 0);
2394         update_sit_entry(sbi, addr, -1);
2395
2396         /* add it into dirty seglist */
2397         locate_dirty_segment(sbi, segno);
2398
2399         up_write(&sit_i->sentry_lock);
2400 }
2401
2402 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2403 {
2404         struct sit_info *sit_i = SIT_I(sbi);
2405         unsigned int segno, offset;
2406         struct seg_entry *se;
2407         bool is_cp = false;
2408
2409         if (!__is_valid_data_blkaddr(blkaddr))
2410                 return true;
2411
2412         down_read(&sit_i->sentry_lock);
2413
2414         segno = GET_SEGNO(sbi, blkaddr);
2415         se = get_seg_entry(sbi, segno);
2416         offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2417
2418         if (f2fs_test_bit(offset, se->ckpt_valid_map))
2419                 is_cp = true;
2420
2421         up_read(&sit_i->sentry_lock);
2422
2423         return is_cp;
2424 }
2425
2426 /*
2427  * This function should be resided under the curseg_mutex lock
2428  */
2429 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
2430                                         struct f2fs_summary *sum)
2431 {
2432         struct curseg_info *curseg = CURSEG_I(sbi, type);
2433         void *addr = curseg->sum_blk;
2434
2435         addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
2436         memcpy(addr, sum, sizeof(struct f2fs_summary));
2437 }
2438
2439 /*
2440  * Calculate the number of current summary pages for writing
2441  */
2442 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2443 {
2444         int valid_sum_count = 0;
2445         int i, sum_in_page;
2446
2447         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2448                 if (sbi->ckpt->alloc_type[i] == SSR)
2449                         valid_sum_count += sbi->blocks_per_seg;
2450                 else {
2451                         if (for_ra)
2452                                 valid_sum_count += le16_to_cpu(
2453                                         F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2454                         else
2455                                 valid_sum_count += curseg_blkoff(sbi, i);
2456                 }
2457         }
2458
2459         sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2460                         SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2461         if (valid_sum_count <= sum_in_page)
2462                 return 1;
2463         else if ((valid_sum_count - sum_in_page) <=
2464                 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2465                 return 2;
2466         return 3;
2467 }
2468
2469 /*
2470  * Caller should put this summary page
2471  */
2472 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2473 {
2474         if (unlikely(f2fs_cp_error(sbi)))
2475                 return ERR_PTR(-EIO);
2476         return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno));
2477 }
2478
2479 void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2480                                         void *src, block_t blk_addr)
2481 {
2482         struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2483
2484         memcpy(page_address(page), src, PAGE_SIZE);
2485         set_page_dirty(page);
2486         f2fs_put_page(page, 1);
2487 }
2488
2489 static void write_sum_page(struct f2fs_sb_info *sbi,
2490                         struct f2fs_summary_block *sum_blk, block_t blk_addr)
2491 {
2492         f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2493 }
2494
2495 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2496                                                 int type, block_t blk_addr)
2497 {
2498         struct curseg_info *curseg = CURSEG_I(sbi, type);
2499         struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2500         struct f2fs_summary_block *src = curseg->sum_blk;
2501         struct f2fs_summary_block *dst;
2502
2503         dst = (struct f2fs_summary_block *)page_address(page);
2504         memset(dst, 0, PAGE_SIZE);
2505
2506         mutex_lock(&curseg->curseg_mutex);
2507
2508         down_read(&curseg->journal_rwsem);
2509         memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2510         up_read(&curseg->journal_rwsem);
2511
2512         memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2513         memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2514
2515         mutex_unlock(&curseg->curseg_mutex);
2516
2517         set_page_dirty(page);
2518         f2fs_put_page(page, 1);
2519 }
2520
2521 static int is_next_segment_free(struct f2fs_sb_info *sbi,
2522                                 struct curseg_info *curseg, int type)
2523 {
2524         unsigned int segno = curseg->segno + 1;
2525         struct free_segmap_info *free_i = FREE_I(sbi);
2526
2527         if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2528                 return !test_bit(segno, free_i->free_segmap);
2529         return 0;
2530 }
2531
2532 /*
2533  * Find a new segment from the free segments bitmap to right order
2534  * This function should be returned with success, otherwise BUG
2535  */
2536 static void get_new_segment(struct f2fs_sb_info *sbi,
2537                         unsigned int *newseg, bool new_sec, int dir)
2538 {
2539         struct free_segmap_info *free_i = FREE_I(sbi);
2540         unsigned int segno, secno, zoneno;
2541         unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2542         unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2543         unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2544         unsigned int left_start = hint;
2545         bool init = true;
2546         int go_left = 0;
2547         int i;
2548
2549         spin_lock(&free_i->segmap_lock);
2550
2551         if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2552                 segno = find_next_zero_bit(free_i->free_segmap,
2553                         GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2554                 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2555                         goto got_it;
2556         }
2557 find_other_zone:
2558         secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2559         if (secno >= MAIN_SECS(sbi)) {
2560                 if (dir == ALLOC_RIGHT) {
2561                         secno = find_next_zero_bit(free_i->free_secmap,
2562                                                         MAIN_SECS(sbi), 0);
2563                         f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2564                 } else {
2565                         go_left = 1;
2566                         left_start = hint - 1;
2567                 }
2568         }
2569         if (go_left == 0)
2570                 goto skip_left;
2571
2572         while (test_bit(left_start, free_i->free_secmap)) {
2573                 if (left_start > 0) {
2574                         left_start--;
2575                         continue;
2576                 }
2577                 left_start = find_next_zero_bit(free_i->free_secmap,
2578                                                         MAIN_SECS(sbi), 0);
2579                 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2580                 break;
2581         }
2582         secno = left_start;
2583 skip_left:
2584         segno = GET_SEG_FROM_SEC(sbi, secno);
2585         zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2586
2587         /* give up on finding another zone */
2588         if (!init)
2589                 goto got_it;
2590         if (sbi->secs_per_zone == 1)
2591                 goto got_it;
2592         if (zoneno == old_zoneno)
2593                 goto got_it;
2594         if (dir == ALLOC_LEFT) {
2595                 if (!go_left && zoneno + 1 >= total_zones)
2596                         goto got_it;
2597                 if (go_left && zoneno == 0)
2598                         goto got_it;
2599         }
2600         for (i = 0; i < NR_CURSEG_TYPE; i++)
2601                 if (CURSEG_I(sbi, i)->zone == zoneno)
2602                         break;
2603
2604         if (i < NR_CURSEG_TYPE) {
2605                 /* zone is in user, try another */
2606                 if (go_left)
2607                         hint = zoneno * sbi->secs_per_zone - 1;
2608                 else if (zoneno + 1 >= total_zones)
2609                         hint = 0;
2610                 else
2611                         hint = (zoneno + 1) * sbi->secs_per_zone;
2612                 init = false;
2613                 goto find_other_zone;
2614         }
2615 got_it:
2616         /* set it as dirty segment in free segmap */
2617         f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2618         __set_inuse(sbi, segno);
2619         *newseg = segno;
2620         spin_unlock(&free_i->segmap_lock);
2621 }
2622
2623 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2624 {
2625         struct curseg_info *curseg = CURSEG_I(sbi, type);
2626         struct summary_footer *sum_footer;
2627         unsigned short seg_type = curseg->seg_type;
2628
2629         curseg->inited = true;
2630         curseg->segno = curseg->next_segno;
2631         curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2632         curseg->next_blkoff = 0;
2633         curseg->next_segno = NULL_SEGNO;
2634
2635         sum_footer = &(curseg->sum_blk->footer);
2636         memset(sum_footer, 0, sizeof(struct summary_footer));
2637
2638         sanity_check_seg_type(sbi, seg_type);
2639
2640         if (IS_DATASEG(seg_type))
2641                 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2642         if (IS_NODESEG(seg_type))
2643                 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2644         __set_sit_entry_type(sbi, seg_type, curseg->segno, modified);
2645 }
2646
2647 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2648 {
2649         struct curseg_info *curseg = CURSEG_I(sbi, type);
2650         unsigned short seg_type = curseg->seg_type;
2651
2652         sanity_check_seg_type(sbi, seg_type);
2653         if (f2fs_need_rand_seg(sbi))
2654                 return prandom_u32() % (MAIN_SECS(sbi) * sbi->segs_per_sec);
2655
2656         /* if segs_per_sec is large than 1, we need to keep original policy. */
2657         if (__is_large_section(sbi))
2658                 return curseg->segno;
2659
2660         /* inmem log may not locate on any segment after mount */
2661         if (!curseg->inited)
2662                 return 0;
2663
2664         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2665                 return 0;
2666
2667         if (test_opt(sbi, NOHEAP) &&
2668                 (seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type)))
2669                 return 0;
2670
2671         if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2672                 return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2673
2674         /* find segments from 0 to reuse freed segments */
2675         if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2676                 return 0;
2677
2678         return curseg->segno;
2679 }
2680
2681 /*
2682  * Allocate a current working segment.
2683  * This function always allocates a free segment in LFS manner.
2684  */
2685 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2686 {
2687         struct curseg_info *curseg = CURSEG_I(sbi, type);
2688         unsigned short seg_type = curseg->seg_type;
2689         unsigned int segno = curseg->segno;
2690         int dir = ALLOC_LEFT;
2691
2692         if (curseg->inited)
2693                 write_sum_page(sbi, curseg->sum_blk,
2694                                 GET_SUM_BLOCK(sbi, segno));
2695         if (seg_type == CURSEG_WARM_DATA || seg_type == CURSEG_COLD_DATA)
2696                 dir = ALLOC_RIGHT;
2697
2698         if (test_opt(sbi, NOHEAP))
2699                 dir = ALLOC_RIGHT;
2700
2701         segno = __get_next_segno(sbi, type);
2702         get_new_segment(sbi, &segno, new_sec, dir);
2703         curseg->next_segno = segno;
2704         reset_curseg(sbi, type, 1);
2705         curseg->alloc_type = LFS;
2706         if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
2707                 curseg->fragment_remained_chunk =
2708                                 prandom_u32() % sbi->max_fragment_chunk + 1;
2709 }
2710
2711 static int __next_free_blkoff(struct f2fs_sb_info *sbi,
2712                                         int segno, block_t start)
2713 {
2714         struct seg_entry *se = get_seg_entry(sbi, segno);
2715         int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2716         unsigned long *target_map = SIT_I(sbi)->tmp_map;
2717         unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2718         unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2719         int i;
2720
2721         for (i = 0; i < entries; i++)
2722                 target_map[i] = ckpt_map[i] | cur_map[i];
2723
2724         return __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2725 }
2726
2727 /*
2728  * If a segment is written by LFS manner, next block offset is just obtained
2729  * by increasing the current block offset. However, if a segment is written by
2730  * SSR manner, next block offset obtained by calling __next_free_blkoff
2731  */
2732 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2733                                 struct curseg_info *seg)
2734 {
2735         if (seg->alloc_type == SSR) {
2736                 seg->next_blkoff =
2737                         __next_free_blkoff(sbi, seg->segno,
2738                                                 seg->next_blkoff + 1);
2739         } else {
2740                 seg->next_blkoff++;
2741                 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK) {
2742                         /* To allocate block chunks in different sizes, use random number */
2743                         if (--seg->fragment_remained_chunk <= 0) {
2744                                 seg->fragment_remained_chunk =
2745                                    prandom_u32() % sbi->max_fragment_chunk + 1;
2746                                 seg->next_blkoff +=
2747                                    prandom_u32() % sbi->max_fragment_hole + 1;
2748                         }
2749                 }
2750         }
2751 }
2752
2753 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno)
2754 {
2755         return __next_free_blkoff(sbi, segno, 0) < sbi->blocks_per_seg;
2756 }
2757
2758 /*
2759  * This function always allocates a used segment(from dirty seglist) by SSR
2760  * manner, so it should recover the existing segment information of valid blocks
2761  */
2762 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool flush)
2763 {
2764         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2765         struct curseg_info *curseg = CURSEG_I(sbi, type);
2766         unsigned int new_segno = curseg->next_segno;
2767         struct f2fs_summary_block *sum_node;
2768         struct page *sum_page;
2769
2770         if (flush)
2771                 write_sum_page(sbi, curseg->sum_blk,
2772                                         GET_SUM_BLOCK(sbi, curseg->segno));
2773
2774         __set_test_and_inuse(sbi, new_segno);
2775
2776         mutex_lock(&dirty_i->seglist_lock);
2777         __remove_dirty_segment(sbi, new_segno, PRE);
2778         __remove_dirty_segment(sbi, new_segno, DIRTY);
2779         mutex_unlock(&dirty_i->seglist_lock);
2780
2781         reset_curseg(sbi, type, 1);
2782         curseg->alloc_type = SSR;
2783         curseg->next_blkoff = __next_free_blkoff(sbi, curseg->segno, 0);
2784
2785         sum_page = f2fs_get_sum_page(sbi, new_segno);
2786         if (IS_ERR(sum_page)) {
2787                 /* GC won't be able to use stale summary pages by cp_error */
2788                 memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE);
2789                 return;
2790         }
2791         sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2792         memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2793         f2fs_put_page(sum_page, 1);
2794 }
2795
2796 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2797                                 int alloc_mode, unsigned long long age);
2798
2799 static void get_atssr_segment(struct f2fs_sb_info *sbi, int type,
2800                                         int target_type, int alloc_mode,
2801                                         unsigned long long age)
2802 {
2803         struct curseg_info *curseg = CURSEG_I(sbi, type);
2804
2805         curseg->seg_type = target_type;
2806
2807         if (get_ssr_segment(sbi, type, alloc_mode, age)) {
2808                 struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno);
2809
2810                 curseg->seg_type = se->type;
2811                 change_curseg(sbi, type, true);
2812         } else {
2813                 /* allocate cold segment by default */
2814                 curseg->seg_type = CURSEG_COLD_DATA;
2815                 new_curseg(sbi, type, true);
2816         }
2817         stat_inc_seg_type(sbi, curseg);
2818 }
2819
2820 static void __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi)
2821 {
2822         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC);
2823
2824         if (!sbi->am.atgc_enabled)
2825                 return;
2826
2827         down_read(&SM_I(sbi)->curseg_lock);
2828
2829         mutex_lock(&curseg->curseg_mutex);
2830         down_write(&SIT_I(sbi)->sentry_lock);
2831
2832         get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC, CURSEG_COLD_DATA, SSR, 0);
2833
2834         up_write(&SIT_I(sbi)->sentry_lock);
2835         mutex_unlock(&curseg->curseg_mutex);
2836
2837         up_read(&SM_I(sbi)->curseg_lock);
2838
2839 }
2840 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi)
2841 {
2842         __f2fs_init_atgc_curseg(sbi);
2843 }
2844
2845 static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2846 {
2847         struct curseg_info *curseg = CURSEG_I(sbi, type);
2848
2849         mutex_lock(&curseg->curseg_mutex);
2850         if (!curseg->inited)
2851                 goto out;
2852
2853         if (get_valid_blocks(sbi, curseg->segno, false)) {
2854                 write_sum_page(sbi, curseg->sum_blk,
2855                                 GET_SUM_BLOCK(sbi, curseg->segno));
2856         } else {
2857                 mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2858                 __set_test_and_free(sbi, curseg->segno, true);
2859                 mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2860         }
2861 out:
2862         mutex_unlock(&curseg->curseg_mutex);
2863 }
2864
2865 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi)
2866 {
2867         __f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2868
2869         if (sbi->am.atgc_enabled)
2870                 __f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2871 }
2872
2873 static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2874 {
2875         struct curseg_info *curseg = CURSEG_I(sbi, type);
2876
2877         mutex_lock(&curseg->curseg_mutex);
2878         if (!curseg->inited)
2879                 goto out;
2880         if (get_valid_blocks(sbi, curseg->segno, false))
2881                 goto out;
2882
2883         mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2884         __set_test_and_inuse(sbi, curseg->segno);
2885         mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2886 out:
2887         mutex_unlock(&curseg->curseg_mutex);
2888 }
2889
2890 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi)
2891 {
2892         __f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2893
2894         if (sbi->am.atgc_enabled)
2895                 __f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2896 }
2897
2898 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2899                                 int alloc_mode, unsigned long long age)
2900 {
2901         struct curseg_info *curseg = CURSEG_I(sbi, type);
2902         const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2903         unsigned segno = NULL_SEGNO;
2904         unsigned short seg_type = curseg->seg_type;
2905         int i, cnt;
2906         bool reversed = false;
2907
2908         sanity_check_seg_type(sbi, seg_type);
2909
2910         /* f2fs_need_SSR() already forces to do this */
2911         if (!v_ops->get_victim(sbi, &segno, BG_GC, seg_type, alloc_mode, age)) {
2912                 curseg->next_segno = segno;
2913                 return 1;
2914         }
2915
2916         /* For node segments, let's do SSR more intensively */
2917         if (IS_NODESEG(seg_type)) {
2918                 if (seg_type >= CURSEG_WARM_NODE) {
2919                         reversed = true;
2920                         i = CURSEG_COLD_NODE;
2921                 } else {
2922                         i = CURSEG_HOT_NODE;
2923                 }
2924                 cnt = NR_CURSEG_NODE_TYPE;
2925         } else {
2926                 if (seg_type >= CURSEG_WARM_DATA) {
2927                         reversed = true;
2928                         i = CURSEG_COLD_DATA;
2929                 } else {
2930                         i = CURSEG_HOT_DATA;
2931                 }
2932                 cnt = NR_CURSEG_DATA_TYPE;
2933         }
2934
2935         for (; cnt-- > 0; reversed ? i-- : i++) {
2936                 if (i == seg_type)
2937                         continue;
2938                 if (!v_ops->get_victim(sbi, &segno, BG_GC, i, alloc_mode, age)) {
2939                         curseg->next_segno = segno;
2940                         return 1;
2941                 }
2942         }
2943
2944         /* find valid_blocks=0 in dirty list */
2945         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2946                 segno = get_free_segment(sbi);
2947                 if (segno != NULL_SEGNO) {
2948                         curseg->next_segno = segno;
2949                         return 1;
2950                 }
2951         }
2952         return 0;
2953 }
2954
2955 /*
2956  * flush out current segment and replace it with new segment
2957  * This function should be returned with success, otherwise BUG
2958  */
2959 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
2960                                                 int type, bool force)
2961 {
2962         struct curseg_info *curseg = CURSEG_I(sbi, type);
2963
2964         if (force)
2965                 new_curseg(sbi, type, true);
2966         else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2967                                         curseg->seg_type == CURSEG_WARM_NODE)
2968                 new_curseg(sbi, type, false);
2969         else if (curseg->alloc_type == LFS &&
2970                         is_next_segment_free(sbi, curseg, type) &&
2971                         likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2972                 new_curseg(sbi, type, false);
2973         else if (f2fs_need_SSR(sbi) &&
2974                         get_ssr_segment(sbi, type, SSR, 0))
2975                 change_curseg(sbi, type, true);
2976         else
2977                 new_curseg(sbi, type, false);
2978
2979         stat_inc_seg_type(sbi, curseg);
2980 }
2981
2982 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
2983                                         unsigned int start, unsigned int end)
2984 {
2985         struct curseg_info *curseg = CURSEG_I(sbi, type);
2986         unsigned int segno;
2987
2988         down_read(&SM_I(sbi)->curseg_lock);
2989         mutex_lock(&curseg->curseg_mutex);
2990         down_write(&SIT_I(sbi)->sentry_lock);
2991
2992         segno = CURSEG_I(sbi, type)->segno;
2993         if (segno < start || segno > end)
2994                 goto unlock;
2995
2996         if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0))
2997                 change_curseg(sbi, type, true);
2998         else
2999                 new_curseg(sbi, type, true);
3000
3001         stat_inc_seg_type(sbi, curseg);
3002
3003         locate_dirty_segment(sbi, segno);
3004 unlock:
3005         up_write(&SIT_I(sbi)->sentry_lock);
3006
3007         if (segno != curseg->segno)
3008                 f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
3009                             type, segno, curseg->segno);
3010
3011         mutex_unlock(&curseg->curseg_mutex);
3012         up_read(&SM_I(sbi)->curseg_lock);
3013 }
3014
3015 static void __allocate_new_segment(struct f2fs_sb_info *sbi, int type,
3016                                                 bool new_sec, bool force)
3017 {
3018         struct curseg_info *curseg = CURSEG_I(sbi, type);
3019         unsigned int old_segno;
3020
3021         if (!curseg->inited)
3022                 goto alloc;
3023
3024         if (force || curseg->next_blkoff ||
3025                 get_valid_blocks(sbi, curseg->segno, new_sec))
3026                 goto alloc;
3027
3028         if (!get_ckpt_valid_blocks(sbi, curseg->segno, new_sec))
3029                 return;
3030 alloc:
3031         old_segno = curseg->segno;
3032         SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true);
3033         locate_dirty_segment(sbi, old_segno);
3034 }
3035
3036 static void __allocate_new_section(struct f2fs_sb_info *sbi,
3037                                                 int type, bool force)
3038 {
3039         __allocate_new_segment(sbi, type, true, force);
3040 }
3041
3042 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force)
3043 {
3044         down_read(&SM_I(sbi)->curseg_lock);
3045         down_write(&SIT_I(sbi)->sentry_lock);
3046         __allocate_new_section(sbi, type, force);
3047         up_write(&SIT_I(sbi)->sentry_lock);
3048         up_read(&SM_I(sbi)->curseg_lock);
3049 }
3050
3051 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
3052 {
3053         int i;
3054
3055         down_read(&SM_I(sbi)->curseg_lock);
3056         down_write(&SIT_I(sbi)->sentry_lock);
3057         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
3058                 __allocate_new_segment(sbi, i, false, false);
3059         up_write(&SIT_I(sbi)->sentry_lock);
3060         up_read(&SM_I(sbi)->curseg_lock);
3061 }
3062
3063 static const struct segment_allocation default_salloc_ops = {
3064         .allocate_segment = allocate_segment_by_default,
3065 };
3066
3067 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3068                                                 struct cp_control *cpc)
3069 {
3070         __u64 trim_start = cpc->trim_start;
3071         bool has_candidate = false;
3072
3073         down_write(&SIT_I(sbi)->sentry_lock);
3074         for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
3075                 if (add_discard_addrs(sbi, cpc, true)) {
3076                         has_candidate = true;
3077                         break;
3078                 }
3079         }
3080         up_write(&SIT_I(sbi)->sentry_lock);
3081
3082         cpc->trim_start = trim_start;
3083         return has_candidate;
3084 }
3085
3086 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
3087                                         struct discard_policy *dpolicy,
3088                                         unsigned int start, unsigned int end)
3089 {
3090         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
3091         struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
3092         struct rb_node **insert_p = NULL, *insert_parent = NULL;
3093         struct discard_cmd *dc;
3094         struct blk_plug plug;
3095         int issued;
3096         unsigned int trimmed = 0;
3097
3098 next:
3099         issued = 0;
3100
3101         mutex_lock(&dcc->cmd_lock);
3102         if (unlikely(dcc->rbtree_check))
3103                 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
3104                                                         &dcc->root, false));
3105
3106         dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
3107                                         NULL, start,
3108                                         (struct rb_entry **)&prev_dc,
3109                                         (struct rb_entry **)&next_dc,
3110                                         &insert_p, &insert_parent, true, NULL);
3111         if (!dc)
3112                 dc = next_dc;
3113
3114         blk_start_plug(&plug);
3115
3116         while (dc && dc->lstart <= end) {
3117                 struct rb_node *node;
3118                 int err = 0;
3119
3120                 if (dc->len < dpolicy->granularity)
3121                         goto skip;
3122
3123                 if (dc->state != D_PREP) {
3124                         list_move_tail(&dc->list, &dcc->fstrim_list);
3125                         goto skip;
3126                 }
3127
3128                 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
3129
3130                 if (issued >= dpolicy->max_requests) {
3131                         start = dc->lstart + dc->len;
3132
3133                         if (err)
3134                                 __remove_discard_cmd(sbi, dc);
3135
3136                         blk_finish_plug(&plug);
3137                         mutex_unlock(&dcc->cmd_lock);
3138                         trimmed += __wait_all_discard_cmd(sbi, NULL);
3139                         congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
3140                         goto next;
3141                 }
3142 skip:
3143                 node = rb_next(&dc->rb_node);
3144                 if (err)
3145                         __remove_discard_cmd(sbi, dc);
3146                 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
3147
3148                 if (fatal_signal_pending(current))
3149                         break;
3150         }
3151
3152         blk_finish_plug(&plug);
3153         mutex_unlock(&dcc->cmd_lock);
3154
3155         return trimmed;
3156 }
3157
3158 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
3159 {
3160         __u64 start = F2FS_BYTES_TO_BLK(range->start);
3161         __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
3162         unsigned int start_segno, end_segno;
3163         block_t start_block, end_block;
3164         struct cp_control cpc;
3165         struct discard_policy dpolicy;
3166         unsigned long long trimmed = 0;
3167         int err = 0;
3168         bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
3169
3170         if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
3171                 return -EINVAL;
3172
3173         if (end < MAIN_BLKADDR(sbi))
3174                 goto out;
3175
3176         if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
3177                 f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
3178                 return -EFSCORRUPTED;
3179         }
3180
3181         /* start/end segment number in main_area */
3182         start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
3183         end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
3184                                                 GET_SEGNO(sbi, end);
3185         if (need_align) {
3186                 start_segno = rounddown(start_segno, sbi->segs_per_sec);
3187                 end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
3188         }
3189
3190         cpc.reason = CP_DISCARD;
3191         cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
3192         cpc.trim_start = start_segno;
3193         cpc.trim_end = end_segno;
3194
3195         if (sbi->discard_blks == 0)
3196                 goto out;
3197
3198         down_write(&sbi->gc_lock);
3199         err = f2fs_write_checkpoint(sbi, &cpc);
3200         up_write(&sbi->gc_lock);
3201         if (err)
3202                 goto out;
3203
3204         /*
3205          * We filed discard candidates, but actually we don't need to wait for
3206          * all of them, since they'll be issued in idle time along with runtime
3207          * discard option. User configuration looks like using runtime discard
3208          * or periodic fstrim instead of it.
3209          */
3210         if (f2fs_realtime_discard_enable(sbi))
3211                 goto out;
3212
3213         start_block = START_BLOCK(sbi, start_segno);
3214         end_block = START_BLOCK(sbi, end_segno + 1);
3215
3216         __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
3217         trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
3218                                         start_block, end_block);
3219
3220         trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
3221                                         start_block, end_block);
3222 out:
3223         if (!err)
3224                 range->len = F2FS_BLK_TO_BYTES(trimmed);
3225         return err;
3226 }
3227
3228 static bool __has_curseg_space(struct f2fs_sb_info *sbi,
3229                                         struct curseg_info *curseg)
3230 {
3231         return curseg->next_blkoff < f2fs_usable_blks_in_seg(sbi,
3232                                                         curseg->segno);
3233 }
3234
3235 int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
3236 {
3237         switch (hint) {
3238         case WRITE_LIFE_SHORT:
3239                 return CURSEG_HOT_DATA;
3240         case WRITE_LIFE_EXTREME:
3241                 return CURSEG_COLD_DATA;
3242         default:
3243                 return CURSEG_WARM_DATA;
3244         }
3245 }
3246
3247 /* This returns write hints for each segment type. This hints will be
3248  * passed down to block layer. There are mapping tables which depend on
3249  * the mount option 'whint_mode'.
3250  *
3251  * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET.
3252  *
3253  * 2) whint_mode=user-based. F2FS tries to pass down hints given by users.
3254  *
3255  * User                  F2FS                     Block
3256  * ----                  ----                     -----
3257  *                       META                     WRITE_LIFE_NOT_SET
3258  *                       HOT_NODE                 "
3259  *                       WARM_NODE                "
3260  *                       COLD_NODE                "
3261  * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
3262  * extension list        "                        "
3263  *
3264  * -- buffered io
3265  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3266  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3267  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
3268  * WRITE_LIFE_NONE       "                        "
3269  * WRITE_LIFE_MEDIUM     "                        "
3270  * WRITE_LIFE_LONG       "                        "
3271  *
3272  * -- direct io
3273  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3274  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3275  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
3276  * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
3277  * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
3278  * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
3279  *
3280  * 3) whint_mode=fs-based. F2FS passes down hints with its policy.
3281  *
3282  * User                  F2FS                     Block
3283  * ----                  ----                     -----
3284  *                       META                     WRITE_LIFE_MEDIUM;
3285  *                       HOT_NODE                 WRITE_LIFE_NOT_SET
3286  *                       WARM_NODE                "
3287  *                       COLD_NODE                WRITE_LIFE_NONE
3288  * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
3289  * extension list        "                        "
3290  *
3291  * -- buffered io
3292  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3293  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3294  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_LONG
3295  * WRITE_LIFE_NONE       "                        "
3296  * WRITE_LIFE_MEDIUM     "                        "
3297  * WRITE_LIFE_LONG       "                        "
3298  *
3299  * -- direct io
3300  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3301  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3302  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
3303  * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
3304  * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
3305  * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
3306  */
3307
3308 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3309                                 enum page_type type, enum temp_type temp)
3310 {
3311         if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) {
3312                 if (type == DATA) {
3313                         if (temp == WARM)
3314                                 return WRITE_LIFE_NOT_SET;
3315                         else if (temp == HOT)
3316                                 return WRITE_LIFE_SHORT;
3317                         else if (temp == COLD)
3318                                 return WRITE_LIFE_EXTREME;
3319                 } else {
3320                         return WRITE_LIFE_NOT_SET;
3321                 }
3322         } else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) {
3323                 if (type == DATA) {
3324                         if (temp == WARM)
3325                                 return WRITE_LIFE_LONG;
3326                         else if (temp == HOT)
3327                                 return WRITE_LIFE_SHORT;
3328                         else if (temp == COLD)
3329                                 return WRITE_LIFE_EXTREME;
3330                 } else if (type == NODE) {
3331                         if (temp == WARM || temp == HOT)
3332                                 return WRITE_LIFE_NOT_SET;
3333                         else if (temp == COLD)
3334                                 return WRITE_LIFE_NONE;
3335                 } else if (type == META) {
3336                         return WRITE_LIFE_MEDIUM;
3337                 }
3338         }
3339         return WRITE_LIFE_NOT_SET;
3340 }
3341
3342 static int __get_segment_type_2(struct f2fs_io_info *fio)
3343 {
3344         if (fio->type == DATA)
3345                 return CURSEG_HOT_DATA;
3346         else
3347                 return CURSEG_HOT_NODE;
3348 }
3349
3350 static int __get_segment_type_4(struct f2fs_io_info *fio)
3351 {
3352         if (fio->type == DATA) {
3353                 struct inode *inode = fio->page->mapping->host;
3354
3355                 if (S_ISDIR(inode->i_mode))
3356                         return CURSEG_HOT_DATA;
3357                 else
3358                         return CURSEG_COLD_DATA;
3359         } else {
3360                 if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3361                         return CURSEG_WARM_NODE;
3362                 else
3363                         return CURSEG_COLD_NODE;
3364         }
3365 }
3366
3367 static int __get_segment_type_6(struct f2fs_io_info *fio)
3368 {
3369         if (fio->type == DATA) {
3370                 struct inode *inode = fio->page->mapping->host;
3371
3372                 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
3373                         return CURSEG_COLD_DATA_PINNED;
3374
3375                 if (page_private_gcing(fio->page)) {
3376                         if (fio->sbi->am.atgc_enabled &&
3377                                 (fio->io_type == FS_DATA_IO) &&
3378                                 (fio->sbi->gc_mode != GC_URGENT_HIGH))
3379                                 return CURSEG_ALL_DATA_ATGC;
3380                         else
3381                                 return CURSEG_COLD_DATA;
3382                 }
3383                 if (file_is_cold(inode) || f2fs_need_compress_data(inode))
3384                         return CURSEG_COLD_DATA;
3385                 if (file_is_hot(inode) ||
3386                                 is_inode_flag_set(inode, FI_HOT_DATA) ||
3387                                 f2fs_is_atomic_file(inode) ||
3388                                 f2fs_is_volatile_file(inode))
3389                         return CURSEG_HOT_DATA;
3390                 return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
3391         } else {
3392                 if (IS_DNODE(fio->page))
3393                         return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3394                                                 CURSEG_HOT_NODE;
3395                 return CURSEG_COLD_NODE;
3396         }
3397 }
3398
3399 static int __get_segment_type(struct f2fs_io_info *fio)
3400 {
3401         int type = 0;
3402
3403         switch (F2FS_OPTION(fio->sbi).active_logs) {
3404         case 2:
3405                 type = __get_segment_type_2(fio);
3406                 break;
3407         case 4:
3408                 type = __get_segment_type_4(fio);
3409                 break;
3410         case 6:
3411                 type = __get_segment_type_6(fio);
3412                 break;
3413         default:
3414                 f2fs_bug_on(fio->sbi, true);
3415         }
3416
3417         if (IS_HOT(type))
3418                 fio->temp = HOT;
3419         else if (IS_WARM(type))
3420                 fio->temp = WARM;
3421         else
3422                 fio->temp = COLD;
3423         return type;
3424 }
3425
3426 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3427                 block_t old_blkaddr, block_t *new_blkaddr,
3428                 struct f2fs_summary *sum, int type,
3429                 struct f2fs_io_info *fio)
3430 {
3431         struct sit_info *sit_i = SIT_I(sbi);
3432         struct curseg_info *curseg = CURSEG_I(sbi, type);
3433         unsigned long long old_mtime;
3434         bool from_gc = (type == CURSEG_ALL_DATA_ATGC);
3435         struct seg_entry *se = NULL;
3436
3437         down_read(&SM_I(sbi)->curseg_lock);
3438
3439         mutex_lock(&curseg->curseg_mutex);
3440         down_write(&sit_i->sentry_lock);
3441
3442         if (from_gc) {
3443                 f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO);
3444                 se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr));
3445                 sanity_check_seg_type(sbi, se->type);
3446                 f2fs_bug_on(sbi, IS_NODESEG(se->type));
3447         }
3448         *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3449
3450         f2fs_bug_on(sbi, curseg->next_blkoff >= sbi->blocks_per_seg);
3451
3452         f2fs_wait_discard_bio(sbi, *new_blkaddr);
3453
3454         /*
3455          * __add_sum_entry should be resided under the curseg_mutex
3456          * because, this function updates a summary entry in the
3457          * current summary block.
3458          */
3459         __add_sum_entry(sbi, type, sum);
3460
3461         __refresh_next_blkoff(sbi, curseg);
3462
3463         stat_inc_block_count(sbi, curseg);
3464
3465         if (from_gc) {
3466                 old_mtime = get_segment_mtime(sbi, old_blkaddr);
3467         } else {
3468                 update_segment_mtime(sbi, old_blkaddr, 0);
3469                 old_mtime = 0;
3470         }
3471         update_segment_mtime(sbi, *new_blkaddr, old_mtime);
3472
3473         /*
3474          * SIT information should be updated before segment allocation,
3475          * since SSR needs latest valid block information.
3476          */
3477         update_sit_entry(sbi, *new_blkaddr, 1);
3478         if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
3479                 update_sit_entry(sbi, old_blkaddr, -1);
3480
3481         if (!__has_curseg_space(sbi, curseg)) {
3482                 if (from_gc)
3483                         get_atssr_segment(sbi, type, se->type,
3484                                                 AT_SSR, se->mtime);
3485                 else
3486                         sit_i->s_ops->allocate_segment(sbi, type, false);
3487         }
3488         /*
3489          * segment dirty status should be updated after segment allocation,
3490          * so we just need to update status only one time after previous
3491          * segment being closed.
3492          */
3493         locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3494         locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3495
3496         up_write(&sit_i->sentry_lock);
3497
3498         if (page && IS_NODESEG(type)) {
3499                 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3500
3501                 f2fs_inode_chksum_set(sbi, page);
3502         }
3503
3504         if (fio) {
3505                 struct f2fs_bio_info *io;
3506
3507                 if (F2FS_IO_ALIGNED(sbi))
3508                         fio->retry = false;
3509
3510                 INIT_LIST_HEAD(&fio->list);
3511                 fio->in_list = true;
3512                 io = sbi->write_io[fio->type] + fio->temp;
3513                 spin_lock(&io->io_lock);
3514                 list_add_tail(&fio->list, &io->io_list);
3515                 spin_unlock(&io->io_lock);
3516         }
3517
3518         mutex_unlock(&curseg->curseg_mutex);
3519
3520         up_read(&SM_I(sbi)->curseg_lock);
3521 }
3522
3523 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3524                                         block_t blkaddr, unsigned int blkcnt)
3525 {
3526         if (!f2fs_is_multi_device(sbi))
3527                 return;
3528
3529         while (1) {
3530                 unsigned int devidx = f2fs_target_device_index(sbi, blkaddr);
3531                 unsigned int blks = FDEV(devidx).end_blk - blkaddr + 1;
3532
3533                 /* update device state for fsync */
3534                 f2fs_set_dirty_device(sbi, ino, devidx, FLUSH_INO);
3535
3536                 /* update device state for checkpoint */
3537                 if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3538                         spin_lock(&sbi->dev_lock);
3539                         f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3540                         spin_unlock(&sbi->dev_lock);
3541                 }
3542
3543                 if (blkcnt <= blks)
3544                         break;
3545                 blkcnt -= blks;
3546                 blkaddr += blks;
3547         }
3548 }
3549
3550 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3551 {
3552         int type = __get_segment_type(fio);
3553         bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA);
3554
3555         if (keep_order)
3556                 down_read(&fio->sbi->io_order_lock);
3557 reallocate:
3558         f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3559                         &fio->new_blkaddr, sum, type, fio);
3560         if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO) {
3561                 invalidate_mapping_pages(META_MAPPING(fio->sbi),
3562                                         fio->old_blkaddr, fio->old_blkaddr);
3563                 f2fs_invalidate_compress_page(fio->sbi, fio->old_blkaddr);
3564         }
3565
3566         /* writeout dirty page into bdev */
3567         f2fs_submit_page_write(fio);
3568         if (fio->retry) {
3569                 fio->old_blkaddr = fio->new_blkaddr;
3570                 goto reallocate;
3571         }
3572
3573         f2fs_update_device_state(fio->sbi, fio->ino, fio->new_blkaddr, 1);
3574
3575         if (keep_order)
3576                 up_read(&fio->sbi->io_order_lock);
3577 }
3578
3579 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3580                                         enum iostat_type io_type)
3581 {
3582         struct f2fs_io_info fio = {
3583                 .sbi = sbi,
3584                 .type = META,
3585                 .temp = HOT,
3586                 .op = REQ_OP_WRITE,
3587                 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3588                 .old_blkaddr = page->index,
3589                 .new_blkaddr = page->index,
3590                 .page = page,
3591                 .encrypted_page = NULL,
3592                 .in_list = false,
3593         };
3594
3595         if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3596                 fio.op_flags &= ~REQ_META;
3597
3598         set_page_writeback(page);
3599         ClearPageError(page);
3600         f2fs_submit_page_write(&fio);
3601
3602         stat_inc_meta_count(sbi, page->index);
3603         f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
3604 }
3605
3606 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3607 {
3608         struct f2fs_summary sum;
3609
3610         set_summary(&sum, nid, 0, 0);
3611         do_write_page(&sum, fio);
3612
3613         f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3614 }
3615
3616 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3617                                         struct f2fs_io_info *fio)
3618 {
3619         struct f2fs_sb_info *sbi = fio->sbi;
3620         struct f2fs_summary sum;
3621
3622         f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3623         set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3624         do_write_page(&sum, fio);
3625         f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3626
3627         f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
3628 }
3629
3630 int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3631 {
3632         int err;
3633         struct f2fs_sb_info *sbi = fio->sbi;
3634         unsigned int segno;
3635
3636         fio->new_blkaddr = fio->old_blkaddr;
3637         /* i/o temperature is needed for passing down write hints */
3638         __get_segment_type(fio);
3639
3640         segno = GET_SEGNO(sbi, fio->new_blkaddr);
3641
3642         if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3643                 set_sbi_flag(sbi, SBI_NEED_FSCK);
3644                 f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
3645                           __func__, segno);
3646                 err = -EFSCORRUPTED;
3647                 goto drop_bio;
3648         }
3649
3650         if (f2fs_cp_error(sbi)) {
3651                 err = -EIO;
3652                 goto drop_bio;
3653         }
3654
3655         invalidate_mapping_pages(META_MAPPING(sbi),
3656                                 fio->new_blkaddr, fio->new_blkaddr);
3657
3658         stat_inc_inplace_blocks(fio->sbi);
3659
3660         if (fio->bio && !(SM_I(sbi)->ipu_policy & (1 << F2FS_IPU_NOCACHE)))
3661                 err = f2fs_merge_page_bio(fio);
3662         else
3663                 err = f2fs_submit_page_bio(fio);
3664         if (!err) {
3665                 f2fs_update_device_state(fio->sbi, fio->ino,
3666                                                 fio->new_blkaddr, 1);
3667                 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3668         }
3669
3670         return err;
3671 drop_bio:
3672         if (fio->bio && *(fio->bio)) {
3673                 struct bio *bio = *(fio->bio);
3674
3675                 bio->bi_status = BLK_STS_IOERR;
3676                 bio_endio(bio);
3677                 *(fio->bio) = NULL;
3678         }
3679         return err;
3680 }
3681
3682 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3683                                                 unsigned int segno)
3684 {
3685         int i;
3686
3687         for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3688                 if (CURSEG_I(sbi, i)->segno == segno)
3689                         break;
3690         }
3691         return i;
3692 }
3693
3694 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3695                                 block_t old_blkaddr, block_t new_blkaddr,
3696                                 bool recover_curseg, bool recover_newaddr,
3697                                 bool from_gc)
3698 {
3699         struct sit_info *sit_i = SIT_I(sbi);
3700         struct curseg_info *curseg;
3701         unsigned int segno, old_cursegno;
3702         struct seg_entry *se;
3703         int type;
3704         unsigned short old_blkoff;
3705         unsigned char old_alloc_type;
3706
3707         segno = GET_SEGNO(sbi, new_blkaddr);
3708         se = get_seg_entry(sbi, segno);
3709         type = se->type;
3710
3711         down_write(&SM_I(sbi)->curseg_lock);
3712
3713         if (!recover_curseg) {
3714                 /* for recovery flow */
3715                 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3716                         if (old_blkaddr == NULL_ADDR)
3717                                 type = CURSEG_COLD_DATA;
3718                         else
3719                                 type = CURSEG_WARM_DATA;
3720                 }
3721         } else {
3722                 if (IS_CURSEG(sbi, segno)) {
3723                         /* se->type is volatile as SSR allocation */
3724                         type = __f2fs_get_curseg(sbi, segno);
3725                         f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3726                 } else {
3727                         type = CURSEG_WARM_DATA;
3728                 }
3729         }
3730
3731         f2fs_bug_on(sbi, !IS_DATASEG(type));
3732         curseg = CURSEG_I(sbi, type);
3733
3734         mutex_lock(&curseg->curseg_mutex);
3735         down_write(&sit_i->sentry_lock);
3736
3737         old_cursegno = curseg->segno;
3738         old_blkoff = curseg->next_blkoff;
3739         old_alloc_type = curseg->alloc_type;
3740
3741         /* change the current segment */
3742         if (segno != curseg->segno) {
3743                 curseg->next_segno = segno;
3744                 change_curseg(sbi, type, true);
3745         }
3746
3747         curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3748         __add_sum_entry(sbi, type, sum);
3749
3750         if (!recover_curseg || recover_newaddr) {
3751                 if (!from_gc)
3752                         update_segment_mtime(sbi, new_blkaddr, 0);
3753                 update_sit_entry(sbi, new_blkaddr, 1);
3754         }
3755         if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3756                 invalidate_mapping_pages(META_MAPPING(sbi),
3757                                         old_blkaddr, old_blkaddr);
3758                 f2fs_invalidate_compress_page(sbi, old_blkaddr);
3759                 if (!from_gc)
3760                         update_segment_mtime(sbi, old_blkaddr, 0);
3761                 update_sit_entry(sbi, old_blkaddr, -1);
3762         }
3763
3764         locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3765         locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3766
3767         locate_dirty_segment(sbi, old_cursegno);
3768
3769         if (recover_curseg) {
3770                 if (old_cursegno != curseg->segno) {
3771                         curseg->next_segno = old_cursegno;
3772                         change_curseg(sbi, type, true);
3773                 }
3774                 curseg->next_blkoff = old_blkoff;
3775                 curseg->alloc_type = old_alloc_type;
3776         }
3777
3778         up_write(&sit_i->sentry_lock);
3779         mutex_unlock(&curseg->curseg_mutex);
3780         up_write(&SM_I(sbi)->curseg_lock);
3781 }
3782
3783 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3784                                 block_t old_addr, block_t new_addr,
3785                                 unsigned char version, bool recover_curseg,
3786                                 bool recover_newaddr)
3787 {
3788         struct f2fs_summary sum;
3789
3790         set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3791
3792         f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3793                                         recover_curseg, recover_newaddr, false);
3794
3795         f2fs_update_data_blkaddr(dn, new_addr);
3796 }
3797
3798 void f2fs_wait_on_page_writeback(struct page *page,
3799                                 enum page_type type, bool ordered, bool locked)
3800 {
3801         if (PageWriteback(page)) {
3802                 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3803
3804                 /* submit cached LFS IO */
3805                 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3806                 /* sbumit cached IPU IO */
3807                 f2fs_submit_merged_ipu_write(sbi, NULL, page);
3808                 if (ordered) {
3809                         wait_on_page_writeback(page);
3810                         f2fs_bug_on(sbi, locked && PageWriteback(page));
3811                 } else {
3812                         wait_for_stable_page(page);
3813                 }
3814         }
3815 }
3816
3817 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
3818 {
3819         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3820         struct page *cpage;
3821
3822         if (!f2fs_post_read_required(inode))
3823                 return;
3824
3825         if (!__is_valid_data_blkaddr(blkaddr))
3826                 return;
3827
3828         cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3829         if (cpage) {
3830                 f2fs_wait_on_page_writeback(cpage, DATA, true, true);
3831                 f2fs_put_page(cpage, 1);
3832         }
3833 }
3834
3835 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3836                                                                 block_t len)
3837 {
3838         block_t i;
3839
3840         for (i = 0; i < len; i++)
3841                 f2fs_wait_on_block_writeback(inode, blkaddr + i);
3842 }
3843
3844 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3845 {
3846         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3847         struct curseg_info *seg_i;
3848         unsigned char *kaddr;
3849         struct page *page;
3850         block_t start;
3851         int i, j, offset;
3852
3853         start = start_sum_block(sbi);
3854
3855         page = f2fs_get_meta_page(sbi, start++);
3856         if (IS_ERR(page))
3857                 return PTR_ERR(page);
3858         kaddr = (unsigned char *)page_address(page);
3859
3860         /* Step 1: restore nat cache */
3861         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3862         memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3863
3864         /* Step 2: restore sit cache */
3865         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3866         memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3867         offset = 2 * SUM_JOURNAL_SIZE;
3868
3869         /* Step 3: restore summary entries */
3870         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3871                 unsigned short blk_off;
3872                 unsigned int segno;
3873
3874                 seg_i = CURSEG_I(sbi, i);
3875                 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3876                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3877                 seg_i->next_segno = segno;
3878                 reset_curseg(sbi, i, 0);
3879                 seg_i->alloc_type = ckpt->alloc_type[i];
3880                 seg_i->next_blkoff = blk_off;
3881
3882                 if (seg_i->alloc_type == SSR)
3883                         blk_off = sbi->blocks_per_seg;
3884
3885                 for (j = 0; j < blk_off; j++) {
3886                         struct f2fs_summary *s;
3887
3888                         s = (struct f2fs_summary *)(kaddr + offset);
3889                         seg_i->sum_blk->entries[j] = *s;
3890                         offset += SUMMARY_SIZE;
3891                         if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3892                                                 SUM_FOOTER_SIZE)
3893                                 continue;
3894
3895                         f2fs_put_page(page, 1);
3896                         page = NULL;
3897
3898                         page = f2fs_get_meta_page(sbi, start++);
3899                         if (IS_ERR(page))
3900                                 return PTR_ERR(page);
3901                         kaddr = (unsigned char *)page_address(page);
3902                         offset = 0;
3903                 }
3904         }
3905         f2fs_put_page(page, 1);
3906         return 0;
3907 }
3908
3909 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3910 {
3911         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3912         struct f2fs_summary_block *sum;
3913         struct curseg_info *curseg;
3914         struct page *new;
3915         unsigned short blk_off;
3916         unsigned int segno = 0;
3917         block_t blk_addr = 0;
3918         int err = 0;
3919
3920         /* get segment number and block addr */
3921         if (IS_DATASEG(type)) {
3922                 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3923                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3924                                                         CURSEG_HOT_DATA]);
3925                 if (__exist_node_summaries(sbi))
3926                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type);
3927                 else
3928                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3929         } else {
3930                 segno = le32_to_cpu(ckpt->cur_node_segno[type -
3931                                                         CURSEG_HOT_NODE]);
3932                 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3933                                                         CURSEG_HOT_NODE]);
3934                 if (__exist_node_summaries(sbi))
3935                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3936                                                         type - CURSEG_HOT_NODE);
3937                 else
3938                         blk_addr = GET_SUM_BLOCK(sbi, segno);
3939         }
3940
3941         new = f2fs_get_meta_page(sbi, blk_addr);
3942         if (IS_ERR(new))
3943                 return PTR_ERR(new);
3944         sum = (struct f2fs_summary_block *)page_address(new);
3945
3946         if (IS_NODESEG(type)) {
3947                 if (__exist_node_summaries(sbi)) {
3948                         struct f2fs_summary *ns = &sum->entries[0];
3949                         int i;
3950
3951                         for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3952                                 ns->version = 0;
3953                                 ns->ofs_in_node = 0;
3954                         }
3955                 } else {
3956                         err = f2fs_restore_node_summary(sbi, segno, sum);
3957                         if (err)
3958                                 goto out;
3959                 }
3960         }
3961
3962         /* set uncompleted segment to curseg */
3963         curseg = CURSEG_I(sbi, type);
3964         mutex_lock(&curseg->curseg_mutex);
3965
3966         /* update journal info */
3967         down_write(&curseg->journal_rwsem);
3968         memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3969         up_write(&curseg->journal_rwsem);
3970
3971         memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3972         memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3973         curseg->next_segno = segno;
3974         reset_curseg(sbi, type, 0);
3975         curseg->alloc_type = ckpt->alloc_type[type];
3976         curseg->next_blkoff = blk_off;
3977         mutex_unlock(&curseg->curseg_mutex);
3978 out:
3979         f2fs_put_page(new, 1);
3980         return err;
3981 }
3982
3983 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3984 {
3985         struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3986         struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3987         int type = CURSEG_HOT_DATA;
3988         int err;
3989
3990         if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
3991                 int npages = f2fs_npages_for_summary_flush(sbi, true);
3992
3993                 if (npages >= 2)
3994                         f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
3995                                                         META_CP, true);
3996
3997                 /* restore for compacted data summary */
3998                 err = read_compacted_summaries(sbi);
3999                 if (err)
4000                         return err;
4001                 type = CURSEG_HOT_NODE;
4002         }
4003
4004         if (__exist_node_summaries(sbi))
4005                 f2fs_ra_meta_pages(sbi,
4006                                 sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type),
4007                                 NR_CURSEG_PERSIST_TYPE - type, META_CP, true);
4008
4009         for (; type <= CURSEG_COLD_NODE; type++) {
4010                 err = read_normal_summaries(sbi, type);
4011                 if (err)
4012                         return err;
4013         }
4014
4015         /* sanity check for summary blocks */
4016         if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
4017                         sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
4018                 f2fs_err(sbi, "invalid journal entries nats %u sits %u",
4019                          nats_in_cursum(nat_j), sits_in_cursum(sit_j));
4020                 return -EINVAL;
4021         }
4022
4023         return 0;
4024 }
4025
4026 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
4027 {
4028         struct page *page;
4029         unsigned char *kaddr;
4030         struct f2fs_summary *summary;
4031         struct curseg_info *seg_i;
4032         int written_size = 0;
4033         int i, j;
4034
4035         page = f2fs_grab_meta_page(sbi, blkaddr++);
4036         kaddr = (unsigned char *)page_address(page);
4037         memset(kaddr, 0, PAGE_SIZE);
4038
4039         /* Step 1: write nat cache */
4040         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
4041         memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
4042         written_size += SUM_JOURNAL_SIZE;
4043
4044         /* Step 2: write sit cache */
4045         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
4046         memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
4047         written_size += SUM_JOURNAL_SIZE;
4048
4049         /* Step 3: write summary entries */
4050         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
4051                 unsigned short blkoff;
4052
4053                 seg_i = CURSEG_I(sbi, i);
4054                 if (sbi->ckpt->alloc_type[i] == SSR)
4055                         blkoff = sbi->blocks_per_seg;
4056                 else
4057                         blkoff = curseg_blkoff(sbi, i);
4058
4059                 for (j = 0; j < blkoff; j++) {
4060                         if (!page) {
4061                                 page = f2fs_grab_meta_page(sbi, blkaddr++);
4062                                 kaddr = (unsigned char *)page_address(page);
4063                                 memset(kaddr, 0, PAGE_SIZE);
4064                                 written_size = 0;
4065                         }
4066                         summary = (struct f2fs_summary *)(kaddr + written_size);
4067                         *summary = seg_i->sum_blk->entries[j];
4068                         written_size += SUMMARY_SIZE;
4069
4070                         if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
4071                                                         SUM_FOOTER_SIZE)
4072                                 continue;
4073
4074                         set_page_dirty(page);
4075                         f2fs_put_page(page, 1);
4076                         page = NULL;
4077                 }
4078         }
4079         if (page) {
4080                 set_page_dirty(page);
4081                 f2fs_put_page(page, 1);
4082         }
4083 }
4084
4085 static void write_normal_summaries(struct f2fs_sb_info *sbi,
4086                                         block_t blkaddr, int type)
4087 {
4088         int i, end;
4089
4090         if (IS_DATASEG(type))
4091                 end = type + NR_CURSEG_DATA_TYPE;
4092         else
4093                 end = type + NR_CURSEG_NODE_TYPE;
4094
4095         for (i = type; i < end; i++)
4096                 write_current_sum_page(sbi, i, blkaddr + (i - type));
4097 }
4098
4099 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4100 {
4101         if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
4102                 write_compacted_summaries(sbi, start_blk);
4103         else
4104                 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
4105 }
4106
4107 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4108 {
4109         write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
4110 }
4111
4112 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
4113                                         unsigned int val, int alloc)
4114 {
4115         int i;
4116
4117         if (type == NAT_JOURNAL) {
4118                 for (i = 0; i < nats_in_cursum(journal); i++) {
4119                         if (le32_to_cpu(nid_in_journal(journal, i)) == val)
4120                                 return i;
4121                 }
4122                 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
4123                         return update_nats_in_cursum(journal, 1);
4124         } else if (type == SIT_JOURNAL) {
4125                 for (i = 0; i < sits_in_cursum(journal); i++)
4126                         if (le32_to_cpu(segno_in_journal(journal, i)) == val)
4127                                 return i;
4128                 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
4129                         return update_sits_in_cursum(journal, 1);
4130         }
4131         return -1;
4132 }
4133
4134 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
4135                                         unsigned int segno)
4136 {
4137         return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno));
4138 }
4139
4140 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
4141                                         unsigned int start)
4142 {
4143         struct sit_info *sit_i = SIT_I(sbi);
4144         struct page *page;
4145         pgoff_t src_off, dst_off;
4146
4147         src_off = current_sit_addr(sbi, start);
4148         dst_off = next_sit_addr(sbi, src_off);
4149
4150         page = f2fs_grab_meta_page(sbi, dst_off);
4151         seg_info_to_sit_page(sbi, page, start);
4152
4153         set_page_dirty(page);
4154         set_to_next_sit(sit_i, start);
4155
4156         return page;
4157 }
4158
4159 static struct sit_entry_set *grab_sit_entry_set(void)
4160 {
4161         struct sit_entry_set *ses =
4162                         f2fs_kmem_cache_alloc(sit_entry_set_slab,
4163                                                 GFP_NOFS, true, NULL);
4164
4165         ses->entry_cnt = 0;
4166         INIT_LIST_HEAD(&ses->set_list);
4167         return ses;
4168 }
4169
4170 static void release_sit_entry_set(struct sit_entry_set *ses)
4171 {
4172         list_del(&ses->set_list);
4173         kmem_cache_free(sit_entry_set_slab, ses);
4174 }
4175
4176 static void adjust_sit_entry_set(struct sit_entry_set *ses,
4177                                                 struct list_head *head)
4178 {
4179         struct sit_entry_set *next = ses;
4180
4181         if (list_is_last(&ses->set_list, head))
4182                 return;
4183
4184         list_for_each_entry_continue(next, head, set_list)
4185                 if (ses->entry_cnt <= next->entry_cnt)
4186                         break;
4187
4188         list_move_tail(&ses->set_list, &next->set_list);
4189 }
4190
4191 static void add_sit_entry(unsigned int segno, struct list_head *head)
4192 {
4193         struct sit_entry_set *ses;
4194         unsigned int start_segno = START_SEGNO(segno);
4195
4196         list_for_each_entry(ses, head, set_list) {
4197                 if (ses->start_segno == start_segno) {
4198                         ses->entry_cnt++;
4199                         adjust_sit_entry_set(ses, head);
4200                         return;
4201                 }
4202         }
4203
4204         ses = grab_sit_entry_set();
4205
4206         ses->start_segno = start_segno;
4207         ses->entry_cnt++;
4208         list_add(&ses->set_list, head);
4209 }
4210
4211 static void add_sits_in_set(struct f2fs_sb_info *sbi)
4212 {
4213         struct f2fs_sm_info *sm_info = SM_I(sbi);
4214         struct list_head *set_list = &sm_info->sit_entry_set;
4215         unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
4216         unsigned int segno;
4217
4218         for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
4219                 add_sit_entry(segno, set_list);
4220 }
4221
4222 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
4223 {
4224         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4225         struct f2fs_journal *journal = curseg->journal;
4226         int i;
4227
4228         down_write(&curseg->journal_rwsem);
4229         for (i = 0; i < sits_in_cursum(journal); i++) {
4230                 unsigned int segno;
4231                 bool dirtied;
4232
4233                 segno = le32_to_cpu(segno_in_journal(journal, i));
4234                 dirtied = __mark_sit_entry_dirty(sbi, segno);
4235
4236                 if (!dirtied)
4237                         add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
4238         }
4239         update_sits_in_cursum(journal, -i);
4240         up_write(&curseg->journal_rwsem);
4241 }
4242
4243 /*
4244  * CP calls this function, which flushes SIT entries including sit_journal,
4245  * and moves prefree segs to free segs.
4246  */
4247 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
4248 {
4249         struct sit_info *sit_i = SIT_I(sbi);
4250         unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
4251         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4252         struct f2fs_journal *journal = curseg->journal;
4253         struct sit_entry_set *ses, *tmp;
4254         struct list_head *head = &SM_I(sbi)->sit_entry_set;
4255         bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
4256         struct seg_entry *se;
4257
4258         down_write(&sit_i->sentry_lock);
4259
4260         if (!sit_i->dirty_sentries)
4261                 goto out;
4262
4263         /*
4264          * add and account sit entries of dirty bitmap in sit entry
4265          * set temporarily
4266          */
4267         add_sits_in_set(sbi);
4268
4269         /*
4270          * if there are no enough space in journal to store dirty sit
4271          * entries, remove all entries from journal and add and account
4272          * them in sit entry set.
4273          */
4274         if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
4275                                                                 !to_journal)
4276                 remove_sits_in_journal(sbi);
4277
4278         /*
4279          * there are two steps to flush sit entries:
4280          * #1, flush sit entries to journal in current cold data summary block.
4281          * #2, flush sit entries to sit page.
4282          */
4283         list_for_each_entry_safe(ses, tmp, head, set_list) {
4284                 struct page *page = NULL;
4285                 struct f2fs_sit_block *raw_sit = NULL;
4286                 unsigned int start_segno = ses->start_segno;
4287                 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
4288                                                 (unsigned long)MAIN_SEGS(sbi));
4289                 unsigned int segno = start_segno;
4290
4291                 if (to_journal &&
4292                         !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
4293                         to_journal = false;
4294
4295                 if (to_journal) {
4296                         down_write(&curseg->journal_rwsem);
4297                 } else {
4298                         page = get_next_sit_page(sbi, start_segno);
4299                         raw_sit = page_address(page);
4300                 }
4301
4302                 /* flush dirty sit entries in region of current sit set */
4303                 for_each_set_bit_from(segno, bitmap, end) {
4304                         int offset, sit_offset;
4305
4306                         se = get_seg_entry(sbi, segno);
4307 #ifdef CONFIG_F2FS_CHECK_FS
4308                         if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
4309                                                 SIT_VBLOCK_MAP_SIZE))
4310                                 f2fs_bug_on(sbi, 1);
4311 #endif
4312
4313                         /* add discard candidates */
4314                         if (!(cpc->reason & CP_DISCARD)) {
4315                                 cpc->trim_start = segno;
4316                                 add_discard_addrs(sbi, cpc, false);
4317                         }
4318
4319                         if (to_journal) {
4320                                 offset = f2fs_lookup_journal_in_cursum(journal,
4321                                                         SIT_JOURNAL, segno, 1);
4322                                 f2fs_bug_on(sbi, offset < 0);
4323                                 segno_in_journal(journal, offset) =
4324                                                         cpu_to_le32(segno);
4325                                 seg_info_to_raw_sit(se,
4326                                         &sit_in_journal(journal, offset));
4327                                 check_block_count(sbi, segno,
4328                                         &sit_in_journal(journal, offset));
4329                         } else {
4330                                 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
4331                                 seg_info_to_raw_sit(se,
4332                                                 &raw_sit->entries[sit_offset]);
4333                                 check_block_count(sbi, segno,
4334                                                 &raw_sit->entries[sit_offset]);
4335                         }
4336
4337                         __clear_bit(segno, bitmap);
4338                         sit_i->dirty_sentries--;
4339                         ses->entry_cnt--;
4340                 }
4341
4342                 if (to_journal)
4343                         up_write(&curseg->journal_rwsem);
4344                 else
4345                         f2fs_put_page(page, 1);
4346
4347                 f2fs_bug_on(sbi, ses->entry_cnt);
4348                 release_sit_entry_set(ses);
4349         }
4350
4351         f2fs_bug_on(sbi, !list_empty(head));
4352         f2fs_bug_on(sbi, sit_i->dirty_sentries);
4353 out:
4354         if (cpc->reason & CP_DISCARD) {
4355                 __u64 trim_start = cpc->trim_start;
4356
4357                 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
4358                         add_discard_addrs(sbi, cpc, false);
4359
4360                 cpc->trim_start = trim_start;
4361         }
4362         up_write(&sit_i->sentry_lock);
4363
4364         set_prefree_as_free_segments(sbi);
4365 }
4366
4367 static int build_sit_info(struct f2fs_sb_info *sbi)
4368 {
4369         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4370         struct sit_info *sit_i;
4371         unsigned int sit_segs, start;
4372         char *src_bitmap, *bitmap;
4373         unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
4374         unsigned int discard_map = f2fs_block_unit_discard(sbi) ? 1 : 0;
4375
4376         /* allocate memory for SIT information */
4377         sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
4378         if (!sit_i)
4379                 return -ENOMEM;
4380
4381         SM_I(sbi)->sit_info = sit_i;
4382
4383         sit_i->sentries =
4384                 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
4385                                               MAIN_SEGS(sbi)),
4386                               GFP_KERNEL);
4387         if (!sit_i->sentries)
4388                 return -ENOMEM;
4389
4390         main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4391         sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
4392                                                                 GFP_KERNEL);
4393         if (!sit_i->dirty_sentries_bitmap)
4394                 return -ENOMEM;
4395
4396 #ifdef CONFIG_F2FS_CHECK_FS
4397         bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (3 + discard_map);
4398 #else
4399         bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (2 + discard_map);
4400 #endif
4401         sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4402         if (!sit_i->bitmap)
4403                 return -ENOMEM;
4404
4405         bitmap = sit_i->bitmap;
4406
4407         for (start = 0; start < MAIN_SEGS(sbi); start++) {
4408                 sit_i->sentries[start].cur_valid_map = bitmap;
4409                 bitmap += SIT_VBLOCK_MAP_SIZE;
4410
4411                 sit_i->sentries[start].ckpt_valid_map = bitmap;
4412                 bitmap += SIT_VBLOCK_MAP_SIZE;
4413
4414 #ifdef CONFIG_F2FS_CHECK_FS
4415                 sit_i->sentries[start].cur_valid_map_mir = bitmap;
4416                 bitmap += SIT_VBLOCK_MAP_SIZE;
4417 #endif
4418
4419                 if (discard_map) {
4420                         sit_i->sentries[start].discard_map = bitmap;
4421                         bitmap += SIT_VBLOCK_MAP_SIZE;
4422                 }
4423         }
4424
4425         sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
4426         if (!sit_i->tmp_map)
4427                 return -ENOMEM;
4428
4429         if (__is_large_section(sbi)) {
4430                 sit_i->sec_entries =
4431                         f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
4432                                                       MAIN_SECS(sbi)),
4433                                       GFP_KERNEL);
4434                 if (!sit_i->sec_entries)
4435                         return -ENOMEM;
4436         }
4437
4438         /* get information related with SIT */
4439         sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4440
4441         /* setup SIT bitmap from ckeckpoint pack */
4442         sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4443         src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4444
4445         sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4446         if (!sit_i->sit_bitmap)
4447                 return -ENOMEM;
4448
4449 #ifdef CONFIG_F2FS_CHECK_FS
4450         sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4451                                         sit_bitmap_size, GFP_KERNEL);
4452         if (!sit_i->sit_bitmap_mir)
4453                 return -ENOMEM;
4454
4455         sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4456                                         main_bitmap_size, GFP_KERNEL);
4457         if (!sit_i->invalid_segmap)
4458                 return -ENOMEM;
4459 #endif
4460
4461         /* init SIT information */
4462         sit_i->s_ops = &default_salloc_ops;
4463
4464         sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4465         sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
4466         sit_i->written_valid_blocks = 0;
4467         sit_i->bitmap_size = sit_bitmap_size;
4468         sit_i->dirty_sentries = 0;
4469         sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4470         sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4471         sit_i->mounted_time = ktime_get_boottime_seconds();
4472         init_rwsem(&sit_i->sentry_lock);
4473         return 0;
4474 }
4475
4476 static int build_free_segmap(struct f2fs_sb_info *sbi)
4477 {
4478         struct free_segmap_info *free_i;
4479         unsigned int bitmap_size, sec_bitmap_size;
4480
4481         /* allocate memory for free segmap information */
4482         free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4483         if (!free_i)
4484                 return -ENOMEM;
4485
4486         SM_I(sbi)->free_info = free_i;
4487
4488         bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4489         free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4490         if (!free_i->free_segmap)
4491                 return -ENOMEM;
4492
4493         sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4494         free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4495         if (!free_i->free_secmap)
4496                 return -ENOMEM;
4497
4498         /* set all segments as dirty temporarily */
4499         memset(free_i->free_segmap, 0xff, bitmap_size);
4500         memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4501
4502         /* init free segmap information */
4503         free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4504         free_i->free_segments = 0;
4505         free_i->free_sections = 0;
4506         spin_lock_init(&free_i->segmap_lock);
4507         return 0;
4508 }
4509
4510 static int build_curseg(struct f2fs_sb_info *sbi)
4511 {
4512         struct curseg_info *array;
4513         int i;
4514
4515         array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE,
4516                                         sizeof(*array)), GFP_KERNEL);
4517         if (!array)
4518                 return -ENOMEM;
4519
4520         SM_I(sbi)->curseg_array = array;
4521
4522         for (i = 0; i < NO_CHECK_TYPE; i++) {
4523                 mutex_init(&array[i].curseg_mutex);
4524                 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4525                 if (!array[i].sum_blk)
4526                         return -ENOMEM;
4527                 init_rwsem(&array[i].journal_rwsem);
4528                 array[i].journal = f2fs_kzalloc(sbi,
4529                                 sizeof(struct f2fs_journal), GFP_KERNEL);
4530                 if (!array[i].journal)
4531                         return -ENOMEM;
4532                 if (i < NR_PERSISTENT_LOG)
4533                         array[i].seg_type = CURSEG_HOT_DATA + i;
4534                 else if (i == CURSEG_COLD_DATA_PINNED)
4535                         array[i].seg_type = CURSEG_COLD_DATA;
4536                 else if (i == CURSEG_ALL_DATA_ATGC)
4537                         array[i].seg_type = CURSEG_COLD_DATA;
4538                 array[i].segno = NULL_SEGNO;
4539                 array[i].next_blkoff = 0;
4540                 array[i].inited = false;
4541         }
4542         return restore_curseg_summaries(sbi);
4543 }
4544
4545 static int build_sit_entries(struct f2fs_sb_info *sbi)
4546 {
4547         struct sit_info *sit_i = SIT_I(sbi);
4548         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4549         struct f2fs_journal *journal = curseg->journal;
4550         struct seg_entry *se;
4551         struct f2fs_sit_entry sit;
4552         int sit_blk_cnt = SIT_BLK_CNT(sbi);
4553         unsigned int i, start, end;
4554         unsigned int readed, start_blk = 0;
4555         int err = 0;
4556         block_t total_node_blocks = 0;
4557
4558         do {
4559                 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS,
4560                                                         META_SIT, true);
4561
4562                 start = start_blk * sit_i->sents_per_block;
4563                 end = (start_blk + readed) * sit_i->sents_per_block;
4564
4565                 for (; start < end && start < MAIN_SEGS(sbi); start++) {
4566                         struct f2fs_sit_block *sit_blk;
4567                         struct page *page;
4568
4569                         se = &sit_i->sentries[start];
4570                         page = get_current_sit_page(sbi, start);
4571                         if (IS_ERR(page))
4572                                 return PTR_ERR(page);
4573                         sit_blk = (struct f2fs_sit_block *)page_address(page);
4574                         sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4575                         f2fs_put_page(page, 1);
4576
4577                         err = check_block_count(sbi, start, &sit);
4578                         if (err)
4579                                 return err;
4580                         seg_info_from_raw_sit(se, &sit);
4581                         if (IS_NODESEG(se->type))
4582                                 total_node_blocks += se->valid_blocks;
4583
4584                         if (f2fs_block_unit_discard(sbi)) {
4585                                 /* build discard map only one time */
4586                                 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4587                                         memset(se->discard_map, 0xff,
4588                                                 SIT_VBLOCK_MAP_SIZE);
4589                                 } else {
4590                                         memcpy(se->discard_map,
4591                                                 se->cur_valid_map,
4592                                                 SIT_VBLOCK_MAP_SIZE);
4593                                         sbi->discard_blks +=
4594                                                 sbi->blocks_per_seg -
4595                                                 se->valid_blocks;
4596                                 }
4597                         }
4598
4599                         if (__is_large_section(sbi))
4600                                 get_sec_entry(sbi, start)->valid_blocks +=
4601                                                         se->valid_blocks;
4602                 }
4603                 start_blk += readed;
4604         } while (start_blk < sit_blk_cnt);
4605
4606         down_read(&curseg->journal_rwsem);
4607         for (i = 0; i < sits_in_cursum(journal); i++) {
4608                 unsigned int old_valid_blocks;
4609
4610                 start = le32_to_cpu(segno_in_journal(journal, i));
4611                 if (start >= MAIN_SEGS(sbi)) {
4612                         f2fs_err(sbi, "Wrong journal entry on segno %u",
4613                                  start);
4614                         err = -EFSCORRUPTED;
4615                         break;
4616                 }
4617
4618                 se = &sit_i->sentries[start];
4619                 sit = sit_in_journal(journal, i);
4620
4621                 old_valid_blocks = se->valid_blocks;
4622                 if (IS_NODESEG(se->type))
4623                         total_node_blocks -= old_valid_blocks;
4624
4625                 err = check_block_count(sbi, start, &sit);
4626                 if (err)
4627                         break;
4628                 seg_info_from_raw_sit(se, &sit);
4629                 if (IS_NODESEG(se->type))
4630                         total_node_blocks += se->valid_blocks;
4631
4632                 if (f2fs_block_unit_discard(sbi)) {
4633                         if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4634                                 memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4635                         } else {
4636                                 memcpy(se->discard_map, se->cur_valid_map,
4637                                                         SIT_VBLOCK_MAP_SIZE);
4638                                 sbi->discard_blks += old_valid_blocks;
4639                                 sbi->discard_blks -= se->valid_blocks;
4640                         }
4641                 }
4642
4643                 if (__is_large_section(sbi)) {
4644                         get_sec_entry(sbi, start)->valid_blocks +=
4645                                                         se->valid_blocks;
4646                         get_sec_entry(sbi, start)->valid_blocks -=
4647                                                         old_valid_blocks;
4648                 }
4649         }
4650         up_read(&curseg->journal_rwsem);
4651
4652         if (!err && total_node_blocks != valid_node_count(sbi)) {
4653                 f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
4654                          total_node_blocks, valid_node_count(sbi));
4655                 err = -EFSCORRUPTED;
4656         }
4657
4658         return err;
4659 }
4660
4661 static void init_free_segmap(struct f2fs_sb_info *sbi)
4662 {
4663         unsigned int start;
4664         int type;
4665         struct seg_entry *sentry;
4666
4667         for (start = 0; start < MAIN_SEGS(sbi); start++) {
4668                 if (f2fs_usable_blks_in_seg(sbi, start) == 0)
4669                         continue;
4670                 sentry = get_seg_entry(sbi, start);
4671                 if (!sentry->valid_blocks)
4672                         __set_free(sbi, start);
4673                 else
4674                         SIT_I(sbi)->written_valid_blocks +=
4675                                                 sentry->valid_blocks;
4676         }
4677
4678         /* set use the current segments */
4679         for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4680                 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4681
4682                 __set_test_and_inuse(sbi, curseg_t->segno);
4683         }
4684 }
4685
4686 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4687 {
4688         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4689         struct free_segmap_info *free_i = FREE_I(sbi);
4690         unsigned int segno = 0, offset = 0, secno;
4691         block_t valid_blocks, usable_blks_in_seg;
4692         block_t blks_per_sec = BLKS_PER_SEC(sbi);
4693
4694         while (1) {
4695                 /* find dirty segment based on free segmap */
4696                 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4697                 if (segno >= MAIN_SEGS(sbi))
4698                         break;
4699                 offset = segno + 1;
4700                 valid_blocks = get_valid_blocks(sbi, segno, false);
4701                 usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
4702                 if (valid_blocks == usable_blks_in_seg || !valid_blocks)
4703                         continue;
4704                 if (valid_blocks > usable_blks_in_seg) {
4705                         f2fs_bug_on(sbi, 1);
4706                         continue;
4707                 }
4708                 mutex_lock(&dirty_i->seglist_lock);
4709                 __locate_dirty_segment(sbi, segno, DIRTY);
4710                 mutex_unlock(&dirty_i->seglist_lock);
4711         }
4712
4713         if (!__is_large_section(sbi))
4714                 return;
4715
4716         mutex_lock(&dirty_i->seglist_lock);
4717         for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
4718                 valid_blocks = get_valid_blocks(sbi, segno, true);
4719                 secno = GET_SEC_FROM_SEG(sbi, segno);
4720
4721                 if (!valid_blocks || valid_blocks == blks_per_sec)
4722                         continue;
4723                 if (IS_CURSEC(sbi, secno))
4724                         continue;
4725                 set_bit(secno, dirty_i->dirty_secmap);
4726         }
4727         mutex_unlock(&dirty_i->seglist_lock);
4728 }
4729
4730 static int init_victim_secmap(struct f2fs_sb_info *sbi)
4731 {
4732         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4733         unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4734
4735         dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4736         if (!dirty_i->victim_secmap)
4737                 return -ENOMEM;
4738         return 0;
4739 }
4740
4741 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4742 {
4743         struct dirty_seglist_info *dirty_i;
4744         unsigned int bitmap_size, i;
4745
4746         /* allocate memory for dirty segments list information */
4747         dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4748                                                                 GFP_KERNEL);
4749         if (!dirty_i)
4750                 return -ENOMEM;
4751
4752         SM_I(sbi)->dirty_info = dirty_i;
4753         mutex_init(&dirty_i->seglist_lock);
4754
4755         bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4756
4757         for (i = 0; i < NR_DIRTY_TYPE; i++) {
4758                 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4759                                                                 GFP_KERNEL);
4760                 if (!dirty_i->dirty_segmap[i])
4761                         return -ENOMEM;
4762         }
4763
4764         if (__is_large_section(sbi)) {
4765                 bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4766                 dirty_i->dirty_secmap = f2fs_kvzalloc(sbi,
4767                                                 bitmap_size, GFP_KERNEL);
4768                 if (!dirty_i->dirty_secmap)
4769                         return -ENOMEM;
4770         }
4771
4772         init_dirty_segmap(sbi);
4773         return init_victim_secmap(sbi);
4774 }
4775
4776 static int sanity_check_curseg(struct f2fs_sb_info *sbi)
4777 {
4778         int i;
4779
4780         /*
4781          * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
4782          * In LFS curseg, all blkaddr after .next_blkoff should be unused.
4783          */
4784         for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4785                 struct curseg_info *curseg = CURSEG_I(sbi, i);
4786                 struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
4787                 unsigned int blkofs = curseg->next_blkoff;
4788
4789                 if (f2fs_sb_has_readonly(sbi) &&
4790                         i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE)
4791                         continue;
4792
4793                 sanity_check_seg_type(sbi, curseg->seg_type);
4794
4795                 if (f2fs_test_bit(blkofs, se->cur_valid_map))
4796                         goto out;
4797
4798                 if (curseg->alloc_type == SSR)
4799                         continue;
4800
4801                 for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) {
4802                         if (!f2fs_test_bit(blkofs, se->cur_valid_map))
4803                                 continue;
4804 out:
4805                         f2fs_err(sbi,
4806                                  "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
4807                                  i, curseg->segno, curseg->alloc_type,
4808                                  curseg->next_blkoff, blkofs);
4809                         return -EFSCORRUPTED;
4810                 }
4811         }
4812         return 0;
4813 }
4814
4815 #ifdef CONFIG_BLK_DEV_ZONED
4816
4817 static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
4818                                     struct f2fs_dev_info *fdev,
4819                                     struct blk_zone *zone)
4820 {
4821         unsigned int wp_segno, wp_blkoff, zone_secno, zone_segno, segno;
4822         block_t zone_block, wp_block, last_valid_block;
4823         unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4824         int i, s, b, ret;
4825         struct seg_entry *se;
4826
4827         if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4828                 return 0;
4829
4830         wp_block = fdev->start_blk + (zone->wp >> log_sectors_per_block);
4831         wp_segno = GET_SEGNO(sbi, wp_block);
4832         wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4833         zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block);
4834         zone_segno = GET_SEGNO(sbi, zone_block);
4835         zone_secno = GET_SEC_FROM_SEG(sbi, zone_segno);
4836
4837         if (zone_segno >= MAIN_SEGS(sbi))
4838                 return 0;
4839
4840         /*
4841          * Skip check of zones cursegs point to, since
4842          * fix_curseg_write_pointer() checks them.
4843          */
4844         for (i = 0; i < NO_CHECK_TYPE; i++)
4845                 if (zone_secno == GET_SEC_FROM_SEG(sbi,
4846                                                    CURSEG_I(sbi, i)->segno))
4847                         return 0;
4848
4849         /*
4850          * Get last valid block of the zone.
4851          */
4852         last_valid_block = zone_block - 1;
4853         for (s = sbi->segs_per_sec - 1; s >= 0; s--) {
4854                 segno = zone_segno + s;
4855                 se = get_seg_entry(sbi, segno);
4856                 for (b = sbi->blocks_per_seg - 1; b >= 0; b--)
4857                         if (f2fs_test_bit(b, se->cur_valid_map)) {
4858                                 last_valid_block = START_BLOCK(sbi, segno) + b;
4859                                 break;
4860                         }
4861                 if (last_valid_block >= zone_block)
4862                         break;
4863         }
4864
4865         /*
4866          * If last valid block is beyond the write pointer, report the
4867          * inconsistency. This inconsistency does not cause write error
4868          * because the zone will not be selected for write operation until
4869          * it get discarded. Just report it.
4870          */
4871         if (last_valid_block >= wp_block) {
4872                 f2fs_notice(sbi, "Valid block beyond write pointer: "
4873                             "valid block[0x%x,0x%x] wp[0x%x,0x%x]",
4874                             GET_SEGNO(sbi, last_valid_block),
4875                             GET_BLKOFF_FROM_SEG0(sbi, last_valid_block),
4876                             wp_segno, wp_blkoff);
4877                 return 0;
4878         }
4879
4880         /*
4881          * If there is no valid block in the zone and if write pointer is
4882          * not at zone start, reset the write pointer.
4883          */
4884         if (last_valid_block + 1 == zone_block && zone->wp != zone->start) {
4885                 f2fs_notice(sbi,
4886                             "Zone without valid block has non-zero write "
4887                             "pointer. Reset the write pointer: wp[0x%x,0x%x]",
4888                             wp_segno, wp_blkoff);
4889                 ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
4890                                         zone->len >> log_sectors_per_block);
4891                 if (ret) {
4892                         f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4893                                  fdev->path, ret);
4894                         return ret;
4895                 }
4896         }
4897
4898         return 0;
4899 }
4900
4901 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
4902                                                   block_t zone_blkaddr)
4903 {
4904         int i;
4905
4906         for (i = 0; i < sbi->s_ndevs; i++) {
4907                 if (!bdev_is_zoned(FDEV(i).bdev))
4908                         continue;
4909                 if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
4910                                 zone_blkaddr <= FDEV(i).end_blk))
4911                         return &FDEV(i);
4912         }
4913
4914         return NULL;
4915 }
4916
4917 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
4918                               void *data)
4919 {
4920         memcpy(data, zone, sizeof(struct blk_zone));
4921         return 0;
4922 }
4923
4924 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
4925 {
4926         struct curseg_info *cs = CURSEG_I(sbi, type);
4927         struct f2fs_dev_info *zbd;
4928         struct blk_zone zone;
4929         unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
4930         block_t cs_zone_block, wp_block;
4931         unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4932         sector_t zone_sector;
4933         int err;
4934
4935         cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4936         cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4937
4938         zbd = get_target_zoned_dev(sbi, cs_zone_block);
4939         if (!zbd)
4940                 return 0;
4941
4942         /* report zone for the sector the curseg points to */
4943         zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4944                 << log_sectors_per_block;
4945         err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4946                                   report_one_zone_cb, &zone);
4947         if (err != 1) {
4948                 f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4949                          zbd->path, err);
4950                 return err;
4951         }
4952
4953         if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4954                 return 0;
4955
4956         wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block);
4957         wp_segno = GET_SEGNO(sbi, wp_block);
4958         wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4959         wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0);
4960
4961         if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
4962                 wp_sector_off == 0)
4963                 return 0;
4964
4965         f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
4966                     "curseg[0x%x,0x%x] wp[0x%x,0x%x]",
4967                     type, cs->segno, cs->next_blkoff, wp_segno, wp_blkoff);
4968
4969         f2fs_notice(sbi, "Assign new section to curseg[%d]: "
4970                     "curseg[0x%x,0x%x]", type, cs->segno, cs->next_blkoff);
4971
4972         f2fs_allocate_new_section(sbi, type, true);
4973
4974         /* check consistency of the zone curseg pointed to */
4975         if (check_zone_write_pointer(sbi, zbd, &zone))
4976                 return -EIO;
4977
4978         /* check newly assigned zone */
4979         cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4980         cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4981
4982         zbd = get_target_zoned_dev(sbi, cs_zone_block);
4983         if (!zbd)
4984                 return 0;
4985
4986         zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4987                 << log_sectors_per_block;
4988         err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4989                                   report_one_zone_cb, &zone);
4990         if (err != 1) {
4991                 f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4992                          zbd->path, err);
4993                 return err;
4994         }
4995
4996         if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4997                 return 0;
4998
4999         if (zone.wp != zone.start) {
5000                 f2fs_notice(sbi,
5001                             "New zone for curseg[%d] is not yet discarded. "
5002                             "Reset the zone: curseg[0x%x,0x%x]",
5003                             type, cs->segno, cs->next_blkoff);
5004                 err = __f2fs_issue_discard_zone(sbi, zbd->bdev,
5005                                 zone_sector >> log_sectors_per_block,
5006                                 zone.len >> log_sectors_per_block);
5007                 if (err) {
5008                         f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
5009                                  zbd->path, err);
5010                         return err;
5011                 }
5012         }
5013
5014         return 0;
5015 }
5016
5017 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5018 {
5019         int i, ret;
5020
5021         for (i = 0; i < NR_PERSISTENT_LOG; i++) {
5022                 ret = fix_curseg_write_pointer(sbi, i);
5023                 if (ret)
5024                         return ret;
5025         }
5026
5027         return 0;
5028 }
5029
5030 struct check_zone_write_pointer_args {
5031         struct f2fs_sb_info *sbi;
5032         struct f2fs_dev_info *fdev;
5033 };
5034
5035 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
5036                                       void *data)
5037 {
5038         struct check_zone_write_pointer_args *args;
5039
5040         args = (struct check_zone_write_pointer_args *)data;
5041
5042         return check_zone_write_pointer(args->sbi, args->fdev, zone);
5043 }
5044
5045 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
5046 {
5047         int i, ret;
5048         struct check_zone_write_pointer_args args;
5049
5050         for (i = 0; i < sbi->s_ndevs; i++) {
5051                 if (!bdev_is_zoned(FDEV(i).bdev))
5052                         continue;
5053
5054                 args.sbi = sbi;
5055                 args.fdev = &FDEV(i);
5056                 ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
5057                                           check_zone_write_pointer_cb, &args);
5058                 if (ret < 0)
5059                         return ret;
5060         }
5061
5062         return 0;
5063 }
5064
5065 static bool is_conv_zone(struct f2fs_sb_info *sbi, unsigned int zone_idx,
5066                                                 unsigned int dev_idx)
5067 {
5068         if (!bdev_is_zoned(FDEV(dev_idx).bdev))
5069                 return true;
5070         return !test_bit(zone_idx, FDEV(dev_idx).blkz_seq);
5071 }
5072
5073 /* Return the zone index in the given device */
5074 static unsigned int get_zone_idx(struct f2fs_sb_info *sbi, unsigned int secno,
5075                                         int dev_idx)
5076 {
5077         block_t sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
5078
5079         return (sec_start_blkaddr - FDEV(dev_idx).start_blk) >>
5080                                                 sbi->log_blocks_per_blkz;
5081 }
5082
5083 /*
5084  * Return the usable segments in a section based on the zone's
5085  * corresponding zone capacity. Zone is equal to a section.
5086  */
5087 static inline unsigned int f2fs_usable_zone_segs_in_sec(
5088                 struct f2fs_sb_info *sbi, unsigned int segno)
5089 {
5090         unsigned int dev_idx, zone_idx, unusable_segs_in_sec;
5091
5092         dev_idx = f2fs_target_device_index(sbi, START_BLOCK(sbi, segno));
5093         zone_idx = get_zone_idx(sbi, GET_SEC_FROM_SEG(sbi, segno), dev_idx);
5094
5095         /* Conventional zone's capacity is always equal to zone size */
5096         if (is_conv_zone(sbi, zone_idx, dev_idx))
5097                 return sbi->segs_per_sec;
5098
5099         /*
5100          * If the zone_capacity_blocks array is NULL, then zone capacity
5101          * is equal to the zone size for all zones
5102          */
5103         if (!FDEV(dev_idx).zone_capacity_blocks)
5104                 return sbi->segs_per_sec;
5105
5106         /* Get the segment count beyond zone capacity block */
5107         unusable_segs_in_sec = (sbi->blocks_per_blkz -
5108                                 FDEV(dev_idx).zone_capacity_blocks[zone_idx]) >>
5109                                 sbi->log_blocks_per_seg;
5110         return sbi->segs_per_sec - unusable_segs_in_sec;
5111 }
5112
5113 /*
5114  * Return the number of usable blocks in a segment. The number of blocks
5115  * returned is always equal to the number of blocks in a segment for
5116  * segments fully contained within a sequential zone capacity or a
5117  * conventional zone. For segments partially contained in a sequential
5118  * zone capacity, the number of usable blocks up to the zone capacity
5119  * is returned. 0 is returned in all other cases.
5120  */
5121 static inline unsigned int f2fs_usable_zone_blks_in_seg(
5122                         struct f2fs_sb_info *sbi, unsigned int segno)
5123 {
5124         block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr;
5125         unsigned int zone_idx, dev_idx, secno;
5126
5127         secno = GET_SEC_FROM_SEG(sbi, segno);
5128         seg_start = START_BLOCK(sbi, segno);
5129         dev_idx = f2fs_target_device_index(sbi, seg_start);
5130         zone_idx = get_zone_idx(sbi, secno, dev_idx);
5131
5132         /*
5133          * Conventional zone's capacity is always equal to zone size,
5134          * so, blocks per segment is unchanged.
5135          */
5136         if (is_conv_zone(sbi, zone_idx, dev_idx))
5137                 return sbi->blocks_per_seg;
5138
5139         if (!FDEV(dev_idx).zone_capacity_blocks)
5140                 return sbi->blocks_per_seg;
5141
5142         sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
5143         sec_cap_blkaddr = sec_start_blkaddr +
5144                                 FDEV(dev_idx).zone_capacity_blocks[zone_idx];
5145
5146         /*
5147          * If segment starts before zone capacity and spans beyond
5148          * zone capacity, then usable blocks are from seg start to
5149          * zone capacity. If the segment starts after the zone capacity,
5150          * then there are no usable blocks.
5151          */
5152         if (seg_start >= sec_cap_blkaddr)
5153                 return 0;
5154         if (seg_start + sbi->blocks_per_seg > sec_cap_blkaddr)
5155                 return sec_cap_blkaddr - seg_start;
5156
5157         return sbi->blocks_per_seg;
5158 }
5159 #else
5160 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5161 {
5162         return 0;
5163 }
5164
5165 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
5166 {
5167         return 0;
5168 }
5169
5170 static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi,
5171                                                         unsigned int segno)
5172 {
5173         return 0;
5174 }
5175
5176 static inline unsigned int f2fs_usable_zone_segs_in_sec(struct f2fs_sb_info *sbi,
5177                                                         unsigned int segno)
5178 {
5179         return 0;
5180 }
5181 #endif
5182 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
5183                                         unsigned int segno)
5184 {
5185         if (f2fs_sb_has_blkzoned(sbi))
5186                 return f2fs_usable_zone_blks_in_seg(sbi, segno);
5187
5188         return sbi->blocks_per_seg;
5189 }
5190
5191 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
5192                                         unsigned int segno)
5193 {
5194         if (f2fs_sb_has_blkzoned(sbi))
5195                 return f2fs_usable_zone_segs_in_sec(sbi, segno);
5196
5197         return sbi->segs_per_sec;
5198 }
5199
5200 /*
5201  * Update min, max modified time for cost-benefit GC algorithm
5202  */
5203 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
5204 {
5205         struct sit_info *sit_i = SIT_I(sbi);
5206         unsigned int segno;
5207
5208         down_write(&sit_i->sentry_lock);
5209
5210         sit_i->min_mtime = ULLONG_MAX;
5211
5212         for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
5213                 unsigned int i;
5214                 unsigned long long mtime = 0;
5215
5216                 for (i = 0; i < sbi->segs_per_sec; i++)
5217                         mtime += get_seg_entry(sbi, segno + i)->mtime;
5218
5219                 mtime = div_u64(mtime, sbi->segs_per_sec);
5220
5221                 if (sit_i->min_mtime > mtime)
5222                         sit_i->min_mtime = mtime;
5223         }
5224         sit_i->max_mtime = get_mtime(sbi, false);
5225         sit_i->dirty_max_mtime = 0;
5226         up_write(&sit_i->sentry_lock);
5227 }
5228
5229 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
5230 {
5231         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
5232         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
5233         struct f2fs_sm_info *sm_info;
5234         int err;
5235
5236         sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
5237         if (!sm_info)
5238                 return -ENOMEM;
5239
5240         /* init sm info */
5241         sbi->sm_info = sm_info;
5242         sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
5243         sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
5244         sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
5245         sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
5246         sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
5247         sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
5248         sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
5249         sm_info->rec_prefree_segments = sm_info->main_segments *
5250                                         DEF_RECLAIM_PREFREE_SEGMENTS / 100;
5251         if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
5252                 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
5253
5254         if (!f2fs_lfs_mode(sbi))
5255                 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
5256         sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
5257         sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
5258         sm_info->min_seq_blocks = sbi->blocks_per_seg;
5259         sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
5260         sm_info->min_ssr_sections = reserved_sections(sbi);
5261
5262         INIT_LIST_HEAD(&sm_info->sit_entry_set);
5263
5264         init_rwsem(&sm_info->curseg_lock);
5265
5266         if (!f2fs_readonly(sbi->sb)) {
5267                 err = f2fs_create_flush_cmd_control(sbi);
5268                 if (err)
5269                         return err;
5270         }
5271
5272         err = create_discard_cmd_control(sbi);
5273         if (err)
5274                 return err;
5275
5276         err = build_sit_info(sbi);
5277         if (err)
5278                 return err;
5279         err = build_free_segmap(sbi);
5280         if (err)
5281                 return err;
5282         err = build_curseg(sbi);
5283         if (err)
5284                 return err;
5285
5286         /* reinit free segmap based on SIT */
5287         err = build_sit_entries(sbi);
5288         if (err)
5289                 return err;
5290
5291         init_free_segmap(sbi);
5292         err = build_dirty_segmap(sbi);
5293         if (err)
5294                 return err;
5295
5296         err = sanity_check_curseg(sbi);
5297         if (err)
5298                 return err;
5299
5300         init_min_max_mtime(sbi);
5301         return 0;
5302 }
5303
5304 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
5305                 enum dirty_type dirty_type)
5306 {
5307         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5308
5309         mutex_lock(&dirty_i->seglist_lock);
5310         kvfree(dirty_i->dirty_segmap[dirty_type]);
5311         dirty_i->nr_dirty[dirty_type] = 0;
5312         mutex_unlock(&dirty_i->seglist_lock);
5313 }
5314
5315 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
5316 {
5317         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5318
5319         kvfree(dirty_i->victim_secmap);
5320 }
5321
5322 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
5323 {
5324         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5325         int i;
5326
5327         if (!dirty_i)
5328                 return;
5329
5330         /* discard pre-free/dirty segments list */
5331         for (i = 0; i < NR_DIRTY_TYPE; i++)
5332                 discard_dirty_segmap(sbi, i);
5333
5334         if (__is_large_section(sbi)) {
5335                 mutex_lock(&dirty_i->seglist_lock);
5336                 kvfree(dirty_i->dirty_secmap);
5337                 mutex_unlock(&dirty_i->seglist_lock);
5338         }
5339
5340         destroy_victim_secmap(sbi);
5341         SM_I(sbi)->dirty_info = NULL;
5342         kfree(dirty_i);
5343 }
5344
5345 static void destroy_curseg(struct f2fs_sb_info *sbi)
5346 {
5347         struct curseg_info *array = SM_I(sbi)->curseg_array;
5348         int i;
5349
5350         if (!array)
5351                 return;
5352         SM_I(sbi)->curseg_array = NULL;
5353         for (i = 0; i < NR_CURSEG_TYPE; i++) {
5354                 kfree(array[i].sum_blk);
5355                 kfree(array[i].journal);
5356         }
5357         kfree(array);
5358 }
5359
5360 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
5361 {
5362         struct free_segmap_info *free_i = SM_I(sbi)->free_info;
5363
5364         if (!free_i)
5365                 return;
5366         SM_I(sbi)->free_info = NULL;
5367         kvfree(free_i->free_segmap);
5368         kvfree(free_i->free_secmap);
5369         kfree(free_i);
5370 }
5371
5372 static void destroy_sit_info(struct f2fs_sb_info *sbi)
5373 {
5374         struct sit_info *sit_i = SIT_I(sbi);
5375
5376         if (!sit_i)
5377                 return;
5378
5379         if (sit_i->sentries)
5380                 kvfree(sit_i->bitmap);
5381         kfree(sit_i->tmp_map);
5382
5383         kvfree(sit_i->sentries);
5384         kvfree(sit_i->sec_entries);
5385         kvfree(sit_i->dirty_sentries_bitmap);
5386
5387         SM_I(sbi)->sit_info = NULL;
5388         kvfree(sit_i->sit_bitmap);
5389 #ifdef CONFIG_F2FS_CHECK_FS
5390         kvfree(sit_i->sit_bitmap_mir);
5391         kvfree(sit_i->invalid_segmap);
5392 #endif
5393         kfree(sit_i);
5394 }
5395
5396 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
5397 {
5398         struct f2fs_sm_info *sm_info = SM_I(sbi);
5399
5400         if (!sm_info)
5401                 return;
5402         f2fs_destroy_flush_cmd_control(sbi, true);
5403         destroy_discard_cmd_control(sbi);
5404         destroy_dirty_segmap(sbi);
5405         destroy_curseg(sbi);
5406         destroy_free_segmap(sbi);
5407         destroy_sit_info(sbi);
5408         sbi->sm_info = NULL;
5409         kfree(sm_info);
5410 }
5411
5412 int __init f2fs_create_segment_manager_caches(void)
5413 {
5414         discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry",
5415                         sizeof(struct discard_entry));
5416         if (!discard_entry_slab)
5417                 goto fail;
5418
5419         discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd",
5420                         sizeof(struct discard_cmd));
5421         if (!discard_cmd_slab)
5422                 goto destroy_discard_entry;
5423
5424         sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set",
5425                         sizeof(struct sit_entry_set));
5426         if (!sit_entry_set_slab)
5427                 goto destroy_discard_cmd;
5428
5429         inmem_entry_slab = f2fs_kmem_cache_create("f2fs_inmem_page_entry",
5430                         sizeof(struct inmem_pages));
5431         if (!inmem_entry_slab)
5432                 goto destroy_sit_entry_set;
5433         return 0;
5434
5435 destroy_sit_entry_set:
5436         kmem_cache_destroy(sit_entry_set_slab);
5437 destroy_discard_cmd:
5438         kmem_cache_destroy(discard_cmd_slab);
5439 destroy_discard_entry:
5440         kmem_cache_destroy(discard_entry_slab);
5441 fail:
5442         return -ENOMEM;
5443 }
5444
5445 void f2fs_destroy_segment_manager_caches(void)
5446 {
5447         kmem_cache_destroy(sit_entry_set_slab);
5448         kmem_cache_destroy(discard_cmd_slab);
5449         kmem_cache_destroy(discard_entry_slab);
5450         kmem_cache_destroy(inmem_entry_slab);
5451 }