f2fs: Check write pointer consistency of non-open zones
[linux-2.6-microblaze.git] / fs / f2fs / segment.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/segment.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/prefetch.h>
13 #include <linux/kthread.h>
14 #include <linux/swap.h>
15 #include <linux/timer.h>
16 #include <linux/freezer.h>
17 #include <linux/sched/signal.h>
18
19 #include "f2fs.h"
20 #include "segment.h"
21 #include "node.h"
22 #include "gc.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25
26 #define __reverse_ffz(x) __reverse_ffs(~(x))
27
28 static struct kmem_cache *discard_entry_slab;
29 static struct kmem_cache *discard_cmd_slab;
30 static struct kmem_cache *sit_entry_set_slab;
31 static struct kmem_cache *inmem_entry_slab;
32
33 static unsigned long __reverse_ulong(unsigned char *str)
34 {
35         unsigned long tmp = 0;
36         int shift = 24, idx = 0;
37
38 #if BITS_PER_LONG == 64
39         shift = 56;
40 #endif
41         while (shift >= 0) {
42                 tmp |= (unsigned long)str[idx++] << shift;
43                 shift -= BITS_PER_BYTE;
44         }
45         return tmp;
46 }
47
48 /*
49  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
50  * MSB and LSB are reversed in a byte by f2fs_set_bit.
51  */
52 static inline unsigned long __reverse_ffs(unsigned long word)
53 {
54         int num = 0;
55
56 #if BITS_PER_LONG == 64
57         if ((word & 0xffffffff00000000UL) == 0)
58                 num += 32;
59         else
60                 word >>= 32;
61 #endif
62         if ((word & 0xffff0000) == 0)
63                 num += 16;
64         else
65                 word >>= 16;
66
67         if ((word & 0xff00) == 0)
68                 num += 8;
69         else
70                 word >>= 8;
71
72         if ((word & 0xf0) == 0)
73                 num += 4;
74         else
75                 word >>= 4;
76
77         if ((word & 0xc) == 0)
78                 num += 2;
79         else
80                 word >>= 2;
81
82         if ((word & 0x2) == 0)
83                 num += 1;
84         return num;
85 }
86
87 /*
88  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
89  * f2fs_set_bit makes MSB and LSB reversed in a byte.
90  * @size must be integral times of unsigned long.
91  * Example:
92  *                             MSB <--> LSB
93  *   f2fs_set_bit(0, bitmap) => 1000 0000
94  *   f2fs_set_bit(7, bitmap) => 0000 0001
95  */
96 static unsigned long __find_rev_next_bit(const unsigned long *addr,
97                         unsigned long size, unsigned long offset)
98 {
99         const unsigned long *p = addr + BIT_WORD(offset);
100         unsigned long result = size;
101         unsigned long tmp;
102
103         if (offset >= size)
104                 return size;
105
106         size -= (offset & ~(BITS_PER_LONG - 1));
107         offset %= BITS_PER_LONG;
108
109         while (1) {
110                 if (*p == 0)
111                         goto pass;
112
113                 tmp = __reverse_ulong((unsigned char *)p);
114
115                 tmp &= ~0UL >> offset;
116                 if (size < BITS_PER_LONG)
117                         tmp &= (~0UL << (BITS_PER_LONG - size));
118                 if (tmp)
119                         goto found;
120 pass:
121                 if (size <= BITS_PER_LONG)
122                         break;
123                 size -= BITS_PER_LONG;
124                 offset = 0;
125                 p++;
126         }
127         return result;
128 found:
129         return result - size + __reverse_ffs(tmp);
130 }
131
132 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
133                         unsigned long size, unsigned long offset)
134 {
135         const unsigned long *p = addr + BIT_WORD(offset);
136         unsigned long result = size;
137         unsigned long tmp;
138
139         if (offset >= size)
140                 return size;
141
142         size -= (offset & ~(BITS_PER_LONG - 1));
143         offset %= BITS_PER_LONG;
144
145         while (1) {
146                 if (*p == ~0UL)
147                         goto pass;
148
149                 tmp = __reverse_ulong((unsigned char *)p);
150
151                 if (offset)
152                         tmp |= ~0UL << (BITS_PER_LONG - offset);
153                 if (size < BITS_PER_LONG)
154                         tmp |= ~0UL >> size;
155                 if (tmp != ~0UL)
156                         goto found;
157 pass:
158                 if (size <= BITS_PER_LONG)
159                         break;
160                 size -= BITS_PER_LONG;
161                 offset = 0;
162                 p++;
163         }
164         return result;
165 found:
166         return result - size + __reverse_ffz(tmp);
167 }
168
169 bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
170 {
171         int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
172         int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
173         int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
174
175         if (test_opt(sbi, LFS))
176                 return false;
177         if (sbi->gc_mode == GC_URGENT)
178                 return true;
179         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
180                 return true;
181
182         return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
183                         SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
184 }
185
186 void f2fs_register_inmem_page(struct inode *inode, struct page *page)
187 {
188         struct inmem_pages *new;
189
190         f2fs_trace_pid(page);
191
192         f2fs_set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
193
194         new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
195
196         /* add atomic page indices to the list */
197         new->page = page;
198         INIT_LIST_HEAD(&new->list);
199
200         /* increase reference count with clean state */
201         get_page(page);
202         mutex_lock(&F2FS_I(inode)->inmem_lock);
203         list_add_tail(&new->list, &F2FS_I(inode)->inmem_pages);
204         inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
205         mutex_unlock(&F2FS_I(inode)->inmem_lock);
206
207         trace_f2fs_register_inmem_page(page, INMEM);
208 }
209
210 static int __revoke_inmem_pages(struct inode *inode,
211                                 struct list_head *head, bool drop, bool recover,
212                                 bool trylock)
213 {
214         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
215         struct inmem_pages *cur, *tmp;
216         int err = 0;
217
218         list_for_each_entry_safe(cur, tmp, head, list) {
219                 struct page *page = cur->page;
220
221                 if (drop)
222                         trace_f2fs_commit_inmem_page(page, INMEM_DROP);
223
224                 if (trylock) {
225                         /*
226                          * to avoid deadlock in between page lock and
227                          * inmem_lock.
228                          */
229                         if (!trylock_page(page))
230                                 continue;
231                 } else {
232                         lock_page(page);
233                 }
234
235                 f2fs_wait_on_page_writeback(page, DATA, true, true);
236
237                 if (recover) {
238                         struct dnode_of_data dn;
239                         struct node_info ni;
240
241                         trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
242 retry:
243                         set_new_dnode(&dn, inode, NULL, NULL, 0);
244                         err = f2fs_get_dnode_of_data(&dn, page->index,
245                                                                 LOOKUP_NODE);
246                         if (err) {
247                                 if (err == -ENOMEM) {
248                                         congestion_wait(BLK_RW_ASYNC, HZ/50);
249                                         cond_resched();
250                                         goto retry;
251                                 }
252                                 err = -EAGAIN;
253                                 goto next;
254                         }
255
256                         err = f2fs_get_node_info(sbi, dn.nid, &ni);
257                         if (err) {
258                                 f2fs_put_dnode(&dn);
259                                 return err;
260                         }
261
262                         if (cur->old_addr == NEW_ADDR) {
263                                 f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
264                                 f2fs_update_data_blkaddr(&dn, NEW_ADDR);
265                         } else
266                                 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
267                                         cur->old_addr, ni.version, true, true);
268                         f2fs_put_dnode(&dn);
269                 }
270 next:
271                 /* we don't need to invalidate this in the sccessful status */
272                 if (drop || recover) {
273                         ClearPageUptodate(page);
274                         clear_cold_data(page);
275                 }
276                 f2fs_clear_page_private(page);
277                 f2fs_put_page(page, 1);
278
279                 list_del(&cur->list);
280                 kmem_cache_free(inmem_entry_slab, cur);
281                 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
282         }
283         return err;
284 }
285
286 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure)
287 {
288         struct list_head *head = &sbi->inode_list[ATOMIC_FILE];
289         struct inode *inode;
290         struct f2fs_inode_info *fi;
291         unsigned int count = sbi->atomic_files;
292         unsigned int looped = 0;
293 next:
294         spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
295         if (list_empty(head)) {
296                 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
297                 return;
298         }
299         fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist);
300         inode = igrab(&fi->vfs_inode);
301         if (inode)
302                 list_move_tail(&fi->inmem_ilist, head);
303         spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
304
305         if (inode) {
306                 if (gc_failure) {
307                         if (!fi->i_gc_failures[GC_FAILURE_ATOMIC])
308                                 goto skip;
309                 }
310                 set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
311                 f2fs_drop_inmem_pages(inode);
312 skip:
313                 iput(inode);
314         }
315         congestion_wait(BLK_RW_ASYNC, HZ/50);
316         cond_resched();
317         if (gc_failure) {
318                 if (++looped >= count)
319                         return;
320         }
321         goto next;
322 }
323
324 void f2fs_drop_inmem_pages(struct inode *inode)
325 {
326         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
327         struct f2fs_inode_info *fi = F2FS_I(inode);
328
329         while (!list_empty(&fi->inmem_pages)) {
330                 mutex_lock(&fi->inmem_lock);
331                 __revoke_inmem_pages(inode, &fi->inmem_pages,
332                                                 true, false, true);
333                 mutex_unlock(&fi->inmem_lock);
334         }
335
336         fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0;
337         stat_dec_atomic_write(inode);
338
339         spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
340         if (!list_empty(&fi->inmem_ilist))
341                 list_del_init(&fi->inmem_ilist);
342         if (f2fs_is_atomic_file(inode)) {
343                 clear_inode_flag(inode, FI_ATOMIC_FILE);
344                 sbi->atomic_files--;
345         }
346         spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
347 }
348
349 void f2fs_drop_inmem_page(struct inode *inode, struct page *page)
350 {
351         struct f2fs_inode_info *fi = F2FS_I(inode);
352         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
353         struct list_head *head = &fi->inmem_pages;
354         struct inmem_pages *cur = NULL;
355
356         f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page));
357
358         mutex_lock(&fi->inmem_lock);
359         list_for_each_entry(cur, head, list) {
360                 if (cur->page == page)
361                         break;
362         }
363
364         f2fs_bug_on(sbi, list_empty(head) || cur->page != page);
365         list_del(&cur->list);
366         mutex_unlock(&fi->inmem_lock);
367
368         dec_page_count(sbi, F2FS_INMEM_PAGES);
369         kmem_cache_free(inmem_entry_slab, cur);
370
371         ClearPageUptodate(page);
372         f2fs_clear_page_private(page);
373         f2fs_put_page(page, 0);
374
375         trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
376 }
377
378 static int __f2fs_commit_inmem_pages(struct inode *inode)
379 {
380         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
381         struct f2fs_inode_info *fi = F2FS_I(inode);
382         struct inmem_pages *cur, *tmp;
383         struct f2fs_io_info fio = {
384                 .sbi = sbi,
385                 .ino = inode->i_ino,
386                 .type = DATA,
387                 .op = REQ_OP_WRITE,
388                 .op_flags = REQ_SYNC | REQ_PRIO,
389                 .io_type = FS_DATA_IO,
390         };
391         struct list_head revoke_list;
392         bool submit_bio = false;
393         int err = 0;
394
395         INIT_LIST_HEAD(&revoke_list);
396
397         list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
398                 struct page *page = cur->page;
399
400                 lock_page(page);
401                 if (page->mapping == inode->i_mapping) {
402                         trace_f2fs_commit_inmem_page(page, INMEM);
403
404                         f2fs_wait_on_page_writeback(page, DATA, true, true);
405
406                         set_page_dirty(page);
407                         if (clear_page_dirty_for_io(page)) {
408                                 inode_dec_dirty_pages(inode);
409                                 f2fs_remove_dirty_inode(inode);
410                         }
411 retry:
412                         fio.page = page;
413                         fio.old_blkaddr = NULL_ADDR;
414                         fio.encrypted_page = NULL;
415                         fio.need_lock = LOCK_DONE;
416                         err = f2fs_do_write_data_page(&fio);
417                         if (err) {
418                                 if (err == -ENOMEM) {
419                                         congestion_wait(BLK_RW_ASYNC, HZ/50);
420                                         cond_resched();
421                                         goto retry;
422                                 }
423                                 unlock_page(page);
424                                 break;
425                         }
426                         /* record old blkaddr for revoking */
427                         cur->old_addr = fio.old_blkaddr;
428                         submit_bio = true;
429                 }
430                 unlock_page(page);
431                 list_move_tail(&cur->list, &revoke_list);
432         }
433
434         if (submit_bio)
435                 f2fs_submit_merged_write_cond(sbi, inode, NULL, 0, DATA);
436
437         if (err) {
438                 /*
439                  * try to revoke all committed pages, but still we could fail
440                  * due to no memory or other reason, if that happened, EAGAIN
441                  * will be returned, which means in such case, transaction is
442                  * already not integrity, caller should use journal to do the
443                  * recovery or rewrite & commit last transaction. For other
444                  * error number, revoking was done by filesystem itself.
445                  */
446                 err = __revoke_inmem_pages(inode, &revoke_list,
447                                                 false, true, false);
448
449                 /* drop all uncommitted pages */
450                 __revoke_inmem_pages(inode, &fi->inmem_pages,
451                                                 true, false, false);
452         } else {
453                 __revoke_inmem_pages(inode, &revoke_list,
454                                                 false, false, false);
455         }
456
457         return err;
458 }
459
460 int f2fs_commit_inmem_pages(struct inode *inode)
461 {
462         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
463         struct f2fs_inode_info *fi = F2FS_I(inode);
464         int err;
465
466         f2fs_balance_fs(sbi, true);
467
468         down_write(&fi->i_gc_rwsem[WRITE]);
469
470         f2fs_lock_op(sbi);
471         set_inode_flag(inode, FI_ATOMIC_COMMIT);
472
473         mutex_lock(&fi->inmem_lock);
474         err = __f2fs_commit_inmem_pages(inode);
475         mutex_unlock(&fi->inmem_lock);
476
477         clear_inode_flag(inode, FI_ATOMIC_COMMIT);
478
479         f2fs_unlock_op(sbi);
480         up_write(&fi->i_gc_rwsem[WRITE]);
481
482         return err;
483 }
484
485 /*
486  * This function balances dirty node and dentry pages.
487  * In addition, it controls garbage collection.
488  */
489 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
490 {
491         if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
492                 f2fs_show_injection_info(sbi, FAULT_CHECKPOINT);
493                 f2fs_stop_checkpoint(sbi, false);
494         }
495
496         /* balance_fs_bg is able to be pending */
497         if (need && excess_cached_nats(sbi))
498                 f2fs_balance_fs_bg(sbi);
499
500         if (!f2fs_is_checkpoint_ready(sbi))
501                 return;
502
503         /*
504          * We should do GC or end up with checkpoint, if there are so many dirty
505          * dir/node pages without enough free segments.
506          */
507         if (has_not_enough_free_secs(sbi, 0, 0)) {
508                 mutex_lock(&sbi->gc_mutex);
509                 f2fs_gc(sbi, false, false, NULL_SEGNO);
510         }
511 }
512
513 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
514 {
515         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
516                 return;
517
518         /* try to shrink extent cache when there is no enough memory */
519         if (!f2fs_available_free_memory(sbi, EXTENT_CACHE))
520                 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
521
522         /* check the # of cached NAT entries */
523         if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
524                 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
525
526         if (!f2fs_available_free_memory(sbi, FREE_NIDS))
527                 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
528         else
529                 f2fs_build_free_nids(sbi, false, false);
530
531         if (!is_idle(sbi, REQ_TIME) &&
532                 (!excess_dirty_nats(sbi) && !excess_dirty_nodes(sbi)))
533                 return;
534
535         /* checkpoint is the only way to shrink partial cached entries */
536         if (!f2fs_available_free_memory(sbi, NAT_ENTRIES) ||
537                         !f2fs_available_free_memory(sbi, INO_ENTRIES) ||
538                         excess_prefree_segs(sbi) ||
539                         excess_dirty_nats(sbi) ||
540                         excess_dirty_nodes(sbi) ||
541                         f2fs_time_over(sbi, CP_TIME)) {
542                 if (test_opt(sbi, DATA_FLUSH)) {
543                         struct blk_plug plug;
544
545                         mutex_lock(&sbi->flush_lock);
546
547                         blk_start_plug(&plug);
548                         f2fs_sync_dirty_inodes(sbi, FILE_INODE);
549                         blk_finish_plug(&plug);
550
551                         mutex_unlock(&sbi->flush_lock);
552                 }
553                 f2fs_sync_fs(sbi->sb, true);
554                 stat_inc_bg_cp_count(sbi->stat_info);
555         }
556 }
557
558 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
559                                 struct block_device *bdev)
560 {
561         struct bio *bio;
562         int ret;
563
564         bio = f2fs_bio_alloc(sbi, 0, false);
565         if (!bio)
566                 return -ENOMEM;
567
568         bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
569         bio_set_dev(bio, bdev);
570         ret = submit_bio_wait(bio);
571         bio_put(bio);
572
573         trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
574                                 test_opt(sbi, FLUSH_MERGE), ret);
575         return ret;
576 }
577
578 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
579 {
580         int ret = 0;
581         int i;
582
583         if (!f2fs_is_multi_device(sbi))
584                 return __submit_flush_wait(sbi, sbi->sb->s_bdev);
585
586         for (i = 0; i < sbi->s_ndevs; i++) {
587                 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
588                         continue;
589                 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
590                 if (ret)
591                         break;
592         }
593         return ret;
594 }
595
596 static int issue_flush_thread(void *data)
597 {
598         struct f2fs_sb_info *sbi = data;
599         struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
600         wait_queue_head_t *q = &fcc->flush_wait_queue;
601 repeat:
602         if (kthread_should_stop())
603                 return 0;
604
605         sb_start_intwrite(sbi->sb);
606
607         if (!llist_empty(&fcc->issue_list)) {
608                 struct flush_cmd *cmd, *next;
609                 int ret;
610
611                 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
612                 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
613
614                 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
615
616                 ret = submit_flush_wait(sbi, cmd->ino);
617                 atomic_inc(&fcc->issued_flush);
618
619                 llist_for_each_entry_safe(cmd, next,
620                                           fcc->dispatch_list, llnode) {
621                         cmd->ret = ret;
622                         complete(&cmd->wait);
623                 }
624                 fcc->dispatch_list = NULL;
625         }
626
627         sb_end_intwrite(sbi->sb);
628
629         wait_event_interruptible(*q,
630                 kthread_should_stop() || !llist_empty(&fcc->issue_list));
631         goto repeat;
632 }
633
634 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
635 {
636         struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
637         struct flush_cmd cmd;
638         int ret;
639
640         if (test_opt(sbi, NOBARRIER))
641                 return 0;
642
643         if (!test_opt(sbi, FLUSH_MERGE)) {
644                 atomic_inc(&fcc->queued_flush);
645                 ret = submit_flush_wait(sbi, ino);
646                 atomic_dec(&fcc->queued_flush);
647                 atomic_inc(&fcc->issued_flush);
648                 return ret;
649         }
650
651         if (atomic_inc_return(&fcc->queued_flush) == 1 ||
652             f2fs_is_multi_device(sbi)) {
653                 ret = submit_flush_wait(sbi, ino);
654                 atomic_dec(&fcc->queued_flush);
655
656                 atomic_inc(&fcc->issued_flush);
657                 return ret;
658         }
659
660         cmd.ino = ino;
661         init_completion(&cmd.wait);
662
663         llist_add(&cmd.llnode, &fcc->issue_list);
664
665         /* update issue_list before we wake up issue_flush thread */
666         smp_mb();
667
668         if (waitqueue_active(&fcc->flush_wait_queue))
669                 wake_up(&fcc->flush_wait_queue);
670
671         if (fcc->f2fs_issue_flush) {
672                 wait_for_completion(&cmd.wait);
673                 atomic_dec(&fcc->queued_flush);
674         } else {
675                 struct llist_node *list;
676
677                 list = llist_del_all(&fcc->issue_list);
678                 if (!list) {
679                         wait_for_completion(&cmd.wait);
680                         atomic_dec(&fcc->queued_flush);
681                 } else {
682                         struct flush_cmd *tmp, *next;
683
684                         ret = submit_flush_wait(sbi, ino);
685
686                         llist_for_each_entry_safe(tmp, next, list, llnode) {
687                                 if (tmp == &cmd) {
688                                         cmd.ret = ret;
689                                         atomic_dec(&fcc->queued_flush);
690                                         continue;
691                                 }
692                                 tmp->ret = ret;
693                                 complete(&tmp->wait);
694                         }
695                 }
696         }
697
698         return cmd.ret;
699 }
700
701 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
702 {
703         dev_t dev = sbi->sb->s_bdev->bd_dev;
704         struct flush_cmd_control *fcc;
705         int err = 0;
706
707         if (SM_I(sbi)->fcc_info) {
708                 fcc = SM_I(sbi)->fcc_info;
709                 if (fcc->f2fs_issue_flush)
710                         return err;
711                 goto init_thread;
712         }
713
714         fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
715         if (!fcc)
716                 return -ENOMEM;
717         atomic_set(&fcc->issued_flush, 0);
718         atomic_set(&fcc->queued_flush, 0);
719         init_waitqueue_head(&fcc->flush_wait_queue);
720         init_llist_head(&fcc->issue_list);
721         SM_I(sbi)->fcc_info = fcc;
722         if (!test_opt(sbi, FLUSH_MERGE))
723                 return err;
724
725 init_thread:
726         fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
727                                 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
728         if (IS_ERR(fcc->f2fs_issue_flush)) {
729                 err = PTR_ERR(fcc->f2fs_issue_flush);
730                 kvfree(fcc);
731                 SM_I(sbi)->fcc_info = NULL;
732                 return err;
733         }
734
735         return err;
736 }
737
738 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
739 {
740         struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
741
742         if (fcc && fcc->f2fs_issue_flush) {
743                 struct task_struct *flush_thread = fcc->f2fs_issue_flush;
744
745                 fcc->f2fs_issue_flush = NULL;
746                 kthread_stop(flush_thread);
747         }
748         if (free) {
749                 kvfree(fcc);
750                 SM_I(sbi)->fcc_info = NULL;
751         }
752 }
753
754 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
755 {
756         int ret = 0, i;
757
758         if (!f2fs_is_multi_device(sbi))
759                 return 0;
760
761         for (i = 1; i < sbi->s_ndevs; i++) {
762                 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
763                         continue;
764                 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
765                 if (ret)
766                         break;
767
768                 spin_lock(&sbi->dev_lock);
769                 f2fs_clear_bit(i, (char *)&sbi->dirty_device);
770                 spin_unlock(&sbi->dev_lock);
771         }
772
773         return ret;
774 }
775
776 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
777                 enum dirty_type dirty_type)
778 {
779         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
780
781         /* need not be added */
782         if (IS_CURSEG(sbi, segno))
783                 return;
784
785         if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
786                 dirty_i->nr_dirty[dirty_type]++;
787
788         if (dirty_type == DIRTY) {
789                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
790                 enum dirty_type t = sentry->type;
791
792                 if (unlikely(t >= DIRTY)) {
793                         f2fs_bug_on(sbi, 1);
794                         return;
795                 }
796                 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
797                         dirty_i->nr_dirty[t]++;
798         }
799 }
800
801 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
802                 enum dirty_type dirty_type)
803 {
804         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
805
806         if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
807                 dirty_i->nr_dirty[dirty_type]--;
808
809         if (dirty_type == DIRTY) {
810                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
811                 enum dirty_type t = sentry->type;
812
813                 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
814                         dirty_i->nr_dirty[t]--;
815
816                 if (get_valid_blocks(sbi, segno, true) == 0) {
817                         clear_bit(GET_SEC_FROM_SEG(sbi, segno),
818                                                 dirty_i->victim_secmap);
819 #ifdef CONFIG_F2FS_CHECK_FS
820                         clear_bit(segno, SIT_I(sbi)->invalid_segmap);
821 #endif
822                 }
823         }
824 }
825
826 /*
827  * Should not occur error such as -ENOMEM.
828  * Adding dirty entry into seglist is not critical operation.
829  * If a given segment is one of current working segments, it won't be added.
830  */
831 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
832 {
833         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
834         unsigned short valid_blocks, ckpt_valid_blocks;
835
836         if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
837                 return;
838
839         mutex_lock(&dirty_i->seglist_lock);
840
841         valid_blocks = get_valid_blocks(sbi, segno, false);
842         ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno);
843
844         if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
845                                 ckpt_valid_blocks == sbi->blocks_per_seg)) {
846                 __locate_dirty_segment(sbi, segno, PRE);
847                 __remove_dirty_segment(sbi, segno, DIRTY);
848         } else if (valid_blocks < sbi->blocks_per_seg) {
849                 __locate_dirty_segment(sbi, segno, DIRTY);
850         } else {
851                 /* Recovery routine with SSR needs this */
852                 __remove_dirty_segment(sbi, segno, DIRTY);
853         }
854
855         mutex_unlock(&dirty_i->seglist_lock);
856 }
857
858 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
859 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
860 {
861         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
862         unsigned int segno;
863
864         mutex_lock(&dirty_i->seglist_lock);
865         for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
866                 if (get_valid_blocks(sbi, segno, false))
867                         continue;
868                 if (IS_CURSEG(sbi, segno))
869                         continue;
870                 __locate_dirty_segment(sbi, segno, PRE);
871                 __remove_dirty_segment(sbi, segno, DIRTY);
872         }
873         mutex_unlock(&dirty_i->seglist_lock);
874 }
875
876 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
877 {
878         int ovp_hole_segs =
879                 (overprovision_segments(sbi) - reserved_segments(sbi));
880         block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg;
881         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
882         block_t holes[2] = {0, 0};      /* DATA and NODE */
883         block_t unusable;
884         struct seg_entry *se;
885         unsigned int segno;
886
887         mutex_lock(&dirty_i->seglist_lock);
888         for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
889                 se = get_seg_entry(sbi, segno);
890                 if (IS_NODESEG(se->type))
891                         holes[NODE] += sbi->blocks_per_seg - se->valid_blocks;
892                 else
893                         holes[DATA] += sbi->blocks_per_seg - se->valid_blocks;
894         }
895         mutex_unlock(&dirty_i->seglist_lock);
896
897         unusable = holes[DATA] > holes[NODE] ? holes[DATA] : holes[NODE];
898         if (unusable > ovp_holes)
899                 return unusable - ovp_holes;
900         return 0;
901 }
902
903 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
904 {
905         int ovp_hole_segs =
906                 (overprovision_segments(sbi) - reserved_segments(sbi));
907         if (unusable > F2FS_OPTION(sbi).unusable_cap)
908                 return -EAGAIN;
909         if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
910                 dirty_segments(sbi) > ovp_hole_segs)
911                 return -EAGAIN;
912         return 0;
913 }
914
915 /* This is only used by SBI_CP_DISABLED */
916 static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
917 {
918         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
919         unsigned int segno = 0;
920
921         mutex_lock(&dirty_i->seglist_lock);
922         for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
923                 if (get_valid_blocks(sbi, segno, false))
924                         continue;
925                 if (get_ckpt_valid_blocks(sbi, segno))
926                         continue;
927                 mutex_unlock(&dirty_i->seglist_lock);
928                 return segno;
929         }
930         mutex_unlock(&dirty_i->seglist_lock);
931         return NULL_SEGNO;
932 }
933
934 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
935                 struct block_device *bdev, block_t lstart,
936                 block_t start, block_t len)
937 {
938         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
939         struct list_head *pend_list;
940         struct discard_cmd *dc;
941
942         f2fs_bug_on(sbi, !len);
943
944         pend_list = &dcc->pend_list[plist_idx(len)];
945
946         dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
947         INIT_LIST_HEAD(&dc->list);
948         dc->bdev = bdev;
949         dc->lstart = lstart;
950         dc->start = start;
951         dc->len = len;
952         dc->ref = 0;
953         dc->state = D_PREP;
954         dc->queued = 0;
955         dc->error = 0;
956         init_completion(&dc->wait);
957         list_add_tail(&dc->list, pend_list);
958         spin_lock_init(&dc->lock);
959         dc->bio_ref = 0;
960         atomic_inc(&dcc->discard_cmd_cnt);
961         dcc->undiscard_blks += len;
962
963         return dc;
964 }
965
966 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
967                                 struct block_device *bdev, block_t lstart,
968                                 block_t start, block_t len,
969                                 struct rb_node *parent, struct rb_node **p,
970                                 bool leftmost)
971 {
972         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
973         struct discard_cmd *dc;
974
975         dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
976
977         rb_link_node(&dc->rb_node, parent, p);
978         rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
979
980         return dc;
981 }
982
983 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
984                                                         struct discard_cmd *dc)
985 {
986         if (dc->state == D_DONE)
987                 atomic_sub(dc->queued, &dcc->queued_discard);
988
989         list_del(&dc->list);
990         rb_erase_cached(&dc->rb_node, &dcc->root);
991         dcc->undiscard_blks -= dc->len;
992
993         kmem_cache_free(discard_cmd_slab, dc);
994
995         atomic_dec(&dcc->discard_cmd_cnt);
996 }
997
998 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
999                                                         struct discard_cmd *dc)
1000 {
1001         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1002         unsigned long flags;
1003
1004         trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
1005
1006         spin_lock_irqsave(&dc->lock, flags);
1007         if (dc->bio_ref) {
1008                 spin_unlock_irqrestore(&dc->lock, flags);
1009                 return;
1010         }
1011         spin_unlock_irqrestore(&dc->lock, flags);
1012
1013         f2fs_bug_on(sbi, dc->ref);
1014
1015         if (dc->error == -EOPNOTSUPP)
1016                 dc->error = 0;
1017
1018         if (dc->error)
1019                 printk_ratelimited(
1020                         "%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d",
1021                         KERN_INFO, sbi->sb->s_id,
1022                         dc->lstart, dc->start, dc->len, dc->error);
1023         __detach_discard_cmd(dcc, dc);
1024 }
1025
1026 static void f2fs_submit_discard_endio(struct bio *bio)
1027 {
1028         struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1029         unsigned long flags;
1030
1031         dc->error = blk_status_to_errno(bio->bi_status);
1032
1033         spin_lock_irqsave(&dc->lock, flags);
1034         dc->bio_ref--;
1035         if (!dc->bio_ref && dc->state == D_SUBMIT) {
1036                 dc->state = D_DONE;
1037                 complete_all(&dc->wait);
1038         }
1039         spin_unlock_irqrestore(&dc->lock, flags);
1040         bio_put(bio);
1041 }
1042
1043 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1044                                 block_t start, block_t end)
1045 {
1046 #ifdef CONFIG_F2FS_CHECK_FS
1047         struct seg_entry *sentry;
1048         unsigned int segno;
1049         block_t blk = start;
1050         unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
1051         unsigned long *map;
1052
1053         while (blk < end) {
1054                 segno = GET_SEGNO(sbi, blk);
1055                 sentry = get_seg_entry(sbi, segno);
1056                 offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1057
1058                 if (end < START_BLOCK(sbi, segno + 1))
1059                         size = GET_BLKOFF_FROM_SEG0(sbi, end);
1060                 else
1061                         size = max_blocks;
1062                 map = (unsigned long *)(sentry->cur_valid_map);
1063                 offset = __find_rev_next_bit(map, size, offset);
1064                 f2fs_bug_on(sbi, offset != size);
1065                 blk = START_BLOCK(sbi, segno + 1);
1066         }
1067 #endif
1068 }
1069
1070 static void __init_discard_policy(struct f2fs_sb_info *sbi,
1071                                 struct discard_policy *dpolicy,
1072                                 int discard_type, unsigned int granularity)
1073 {
1074         /* common policy */
1075         dpolicy->type = discard_type;
1076         dpolicy->sync = true;
1077         dpolicy->ordered = false;
1078         dpolicy->granularity = granularity;
1079
1080         dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
1081         dpolicy->io_aware_gran = MAX_PLIST_NUM;
1082         dpolicy->timeout = 0;
1083
1084         if (discard_type == DPOLICY_BG) {
1085                 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1086                 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1087                 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1088                 dpolicy->io_aware = true;
1089                 dpolicy->sync = false;
1090                 dpolicy->ordered = true;
1091                 if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) {
1092                         dpolicy->granularity = 1;
1093                         dpolicy->max_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1094                 }
1095         } else if (discard_type == DPOLICY_FORCE) {
1096                 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1097                 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1098                 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1099                 dpolicy->io_aware = false;
1100         } else if (discard_type == DPOLICY_FSTRIM) {
1101                 dpolicy->io_aware = false;
1102         } else if (discard_type == DPOLICY_UMOUNT) {
1103                 dpolicy->max_requests = UINT_MAX;
1104                 dpolicy->io_aware = false;
1105                 /* we need to issue all to keep CP_TRIMMED_FLAG */
1106                 dpolicy->granularity = 1;
1107         }
1108 }
1109
1110 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1111                                 struct block_device *bdev, block_t lstart,
1112                                 block_t start, block_t len);
1113 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
1114 static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1115                                                 struct discard_policy *dpolicy,
1116                                                 struct discard_cmd *dc,
1117                                                 unsigned int *issued)
1118 {
1119         struct block_device *bdev = dc->bdev;
1120         struct request_queue *q = bdev_get_queue(bdev);
1121         unsigned int max_discard_blocks =
1122                         SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1123         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1124         struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1125                                         &(dcc->fstrim_list) : &(dcc->wait_list);
1126         int flag = dpolicy->sync ? REQ_SYNC : 0;
1127         block_t lstart, start, len, total_len;
1128         int err = 0;
1129
1130         if (dc->state != D_PREP)
1131                 return 0;
1132
1133         if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1134                 return 0;
1135
1136         trace_f2fs_issue_discard(bdev, dc->start, dc->len);
1137
1138         lstart = dc->lstart;
1139         start = dc->start;
1140         len = dc->len;
1141         total_len = len;
1142
1143         dc->len = 0;
1144
1145         while (total_len && *issued < dpolicy->max_requests && !err) {
1146                 struct bio *bio = NULL;
1147                 unsigned long flags;
1148                 bool last = true;
1149
1150                 if (len > max_discard_blocks) {
1151                         len = max_discard_blocks;
1152                         last = false;
1153                 }
1154
1155                 (*issued)++;
1156                 if (*issued == dpolicy->max_requests)
1157                         last = true;
1158
1159                 dc->len += len;
1160
1161                 if (time_to_inject(sbi, FAULT_DISCARD)) {
1162                         f2fs_show_injection_info(sbi, FAULT_DISCARD);
1163                         err = -EIO;
1164                         goto submit;
1165                 }
1166                 err = __blkdev_issue_discard(bdev,
1167                                         SECTOR_FROM_BLOCK(start),
1168                                         SECTOR_FROM_BLOCK(len),
1169                                         GFP_NOFS, 0, &bio);
1170 submit:
1171                 if (err) {
1172                         spin_lock_irqsave(&dc->lock, flags);
1173                         if (dc->state == D_PARTIAL)
1174                                 dc->state = D_SUBMIT;
1175                         spin_unlock_irqrestore(&dc->lock, flags);
1176
1177                         break;
1178                 }
1179
1180                 f2fs_bug_on(sbi, !bio);
1181
1182                 /*
1183                  * should keep before submission to avoid D_DONE
1184                  * right away
1185                  */
1186                 spin_lock_irqsave(&dc->lock, flags);
1187                 if (last)
1188                         dc->state = D_SUBMIT;
1189                 else
1190                         dc->state = D_PARTIAL;
1191                 dc->bio_ref++;
1192                 spin_unlock_irqrestore(&dc->lock, flags);
1193
1194                 atomic_inc(&dcc->queued_discard);
1195                 dc->queued++;
1196                 list_move_tail(&dc->list, wait_list);
1197
1198                 /* sanity check on discard range */
1199                 __check_sit_bitmap(sbi, lstart, lstart + len);
1200
1201                 bio->bi_private = dc;
1202                 bio->bi_end_io = f2fs_submit_discard_endio;
1203                 bio->bi_opf |= flag;
1204                 submit_bio(bio);
1205
1206                 atomic_inc(&dcc->issued_discard);
1207
1208                 f2fs_update_iostat(sbi, FS_DISCARD, 1);
1209
1210                 lstart += len;
1211                 start += len;
1212                 total_len -= len;
1213                 len = total_len;
1214         }
1215
1216         if (!err && len)
1217                 __update_discard_tree_range(sbi, bdev, lstart, start, len);
1218         return err;
1219 }
1220
1221 static struct discard_cmd *__insert_discard_tree(struct f2fs_sb_info *sbi,
1222                                 struct block_device *bdev, block_t lstart,
1223                                 block_t start, block_t len,
1224                                 struct rb_node **insert_p,
1225                                 struct rb_node *insert_parent)
1226 {
1227         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1228         struct rb_node **p;
1229         struct rb_node *parent = NULL;
1230         struct discard_cmd *dc = NULL;
1231         bool leftmost = true;
1232
1233         if (insert_p && insert_parent) {
1234                 parent = insert_parent;
1235                 p = insert_p;
1236                 goto do_insert;
1237         }
1238
1239         p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent,
1240                                                         lstart, &leftmost);
1241 do_insert:
1242         dc = __attach_discard_cmd(sbi, bdev, lstart, start, len, parent,
1243                                                                 p, leftmost);
1244         if (!dc)
1245                 return NULL;
1246
1247         return dc;
1248 }
1249
1250 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1251                                                 struct discard_cmd *dc)
1252 {
1253         list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
1254 }
1255
1256 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1257                                 struct discard_cmd *dc, block_t blkaddr)
1258 {
1259         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1260         struct discard_info di = dc->di;
1261         bool modified = false;
1262
1263         if (dc->state == D_DONE || dc->len == 1) {
1264                 __remove_discard_cmd(sbi, dc);
1265                 return;
1266         }
1267
1268         dcc->undiscard_blks -= di.len;
1269
1270         if (blkaddr > di.lstart) {
1271                 dc->len = blkaddr - dc->lstart;
1272                 dcc->undiscard_blks += dc->len;
1273                 __relocate_discard_cmd(dcc, dc);
1274                 modified = true;
1275         }
1276
1277         if (blkaddr < di.lstart + di.len - 1) {
1278                 if (modified) {
1279                         __insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1280                                         di.start + blkaddr + 1 - di.lstart,
1281                                         di.lstart + di.len - 1 - blkaddr,
1282                                         NULL, NULL);
1283                 } else {
1284                         dc->lstart++;
1285                         dc->len--;
1286                         dc->start++;
1287                         dcc->undiscard_blks += dc->len;
1288                         __relocate_discard_cmd(dcc, dc);
1289                 }
1290         }
1291 }
1292
1293 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1294                                 struct block_device *bdev, block_t lstart,
1295                                 block_t start, block_t len)
1296 {
1297         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1298         struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1299         struct discard_cmd *dc;
1300         struct discard_info di = {0};
1301         struct rb_node **insert_p = NULL, *insert_parent = NULL;
1302         struct request_queue *q = bdev_get_queue(bdev);
1303         unsigned int max_discard_blocks =
1304                         SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1305         block_t end = lstart + len;
1306
1307         dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1308                                         NULL, lstart,
1309                                         (struct rb_entry **)&prev_dc,
1310                                         (struct rb_entry **)&next_dc,
1311                                         &insert_p, &insert_parent, true, NULL);
1312         if (dc)
1313                 prev_dc = dc;
1314
1315         if (!prev_dc) {
1316                 di.lstart = lstart;
1317                 di.len = next_dc ? next_dc->lstart - lstart : len;
1318                 di.len = min(di.len, len);
1319                 di.start = start;
1320         }
1321
1322         while (1) {
1323                 struct rb_node *node;
1324                 bool merged = false;
1325                 struct discard_cmd *tdc = NULL;
1326
1327                 if (prev_dc) {
1328                         di.lstart = prev_dc->lstart + prev_dc->len;
1329                         if (di.lstart < lstart)
1330                                 di.lstart = lstart;
1331                         if (di.lstart >= end)
1332                                 break;
1333
1334                         if (!next_dc || next_dc->lstart > end)
1335                                 di.len = end - di.lstart;
1336                         else
1337                                 di.len = next_dc->lstart - di.lstart;
1338                         di.start = start + di.lstart - lstart;
1339                 }
1340
1341                 if (!di.len)
1342                         goto next;
1343
1344                 if (prev_dc && prev_dc->state == D_PREP &&
1345                         prev_dc->bdev == bdev &&
1346                         __is_discard_back_mergeable(&di, &prev_dc->di,
1347                                                         max_discard_blocks)) {
1348                         prev_dc->di.len += di.len;
1349                         dcc->undiscard_blks += di.len;
1350                         __relocate_discard_cmd(dcc, prev_dc);
1351                         di = prev_dc->di;
1352                         tdc = prev_dc;
1353                         merged = true;
1354                 }
1355
1356                 if (next_dc && next_dc->state == D_PREP &&
1357                         next_dc->bdev == bdev &&
1358                         __is_discard_front_mergeable(&di, &next_dc->di,
1359                                                         max_discard_blocks)) {
1360                         next_dc->di.lstart = di.lstart;
1361                         next_dc->di.len += di.len;
1362                         next_dc->di.start = di.start;
1363                         dcc->undiscard_blks += di.len;
1364                         __relocate_discard_cmd(dcc, next_dc);
1365                         if (tdc)
1366                                 __remove_discard_cmd(sbi, tdc);
1367                         merged = true;
1368                 }
1369
1370                 if (!merged) {
1371                         __insert_discard_tree(sbi, bdev, di.lstart, di.start,
1372                                                         di.len, NULL, NULL);
1373                 }
1374  next:
1375                 prev_dc = next_dc;
1376                 if (!prev_dc)
1377                         break;
1378
1379                 node = rb_next(&prev_dc->rb_node);
1380                 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1381         }
1382 }
1383
1384 static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
1385                 struct block_device *bdev, block_t blkstart, block_t blklen)
1386 {
1387         block_t lblkstart = blkstart;
1388
1389         if (!f2fs_bdev_support_discard(bdev))
1390                 return 0;
1391
1392         trace_f2fs_queue_discard(bdev, blkstart, blklen);
1393
1394         if (f2fs_is_multi_device(sbi)) {
1395                 int devi = f2fs_target_device_index(sbi, blkstart);
1396
1397                 blkstart -= FDEV(devi).start_blk;
1398         }
1399         mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1400         __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1401         mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1402         return 0;
1403 }
1404
1405 static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1406                                         struct discard_policy *dpolicy)
1407 {
1408         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1409         struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1410         struct rb_node **insert_p = NULL, *insert_parent = NULL;
1411         struct discard_cmd *dc;
1412         struct blk_plug plug;
1413         unsigned int pos = dcc->next_pos;
1414         unsigned int issued = 0;
1415         bool io_interrupted = false;
1416
1417         mutex_lock(&dcc->cmd_lock);
1418         dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1419                                         NULL, pos,
1420                                         (struct rb_entry **)&prev_dc,
1421                                         (struct rb_entry **)&next_dc,
1422                                         &insert_p, &insert_parent, true, NULL);
1423         if (!dc)
1424                 dc = next_dc;
1425
1426         blk_start_plug(&plug);
1427
1428         while (dc) {
1429                 struct rb_node *node;
1430                 int err = 0;
1431
1432                 if (dc->state != D_PREP)
1433                         goto next;
1434
1435                 if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1436                         io_interrupted = true;
1437                         break;
1438                 }
1439
1440                 dcc->next_pos = dc->lstart + dc->len;
1441                 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1442
1443                 if (issued >= dpolicy->max_requests)
1444                         break;
1445 next:
1446                 node = rb_next(&dc->rb_node);
1447                 if (err)
1448                         __remove_discard_cmd(sbi, dc);
1449                 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1450         }
1451
1452         blk_finish_plug(&plug);
1453
1454         if (!dc)
1455                 dcc->next_pos = 0;
1456
1457         mutex_unlock(&dcc->cmd_lock);
1458
1459         if (!issued && io_interrupted)
1460                 issued = -1;
1461
1462         return issued;
1463 }
1464
1465 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1466                                         struct discard_policy *dpolicy)
1467 {
1468         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1469         struct list_head *pend_list;
1470         struct discard_cmd *dc, *tmp;
1471         struct blk_plug plug;
1472         int i, issued = 0;
1473         bool io_interrupted = false;
1474
1475         if (dpolicy->timeout != 0)
1476                 f2fs_update_time(sbi, dpolicy->timeout);
1477
1478         for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1479                 if (dpolicy->timeout != 0 &&
1480                                 f2fs_time_over(sbi, dpolicy->timeout))
1481                         break;
1482
1483                 if (i + 1 < dpolicy->granularity)
1484                         break;
1485
1486                 if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered)
1487                         return __issue_discard_cmd_orderly(sbi, dpolicy);
1488
1489                 pend_list = &dcc->pend_list[i];
1490
1491                 mutex_lock(&dcc->cmd_lock);
1492                 if (list_empty(pend_list))
1493                         goto next;
1494                 if (unlikely(dcc->rbtree_check))
1495                         f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
1496                                                                 &dcc->root));
1497                 blk_start_plug(&plug);
1498                 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1499                         f2fs_bug_on(sbi, dc->state != D_PREP);
1500
1501                         if (dpolicy->timeout != 0 &&
1502                                 f2fs_time_over(sbi, dpolicy->timeout))
1503                                 break;
1504
1505                         if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1506                                                 !is_idle(sbi, DISCARD_TIME)) {
1507                                 io_interrupted = true;
1508                                 break;
1509                         }
1510
1511                         __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1512
1513                         if (issued >= dpolicy->max_requests)
1514                                 break;
1515                 }
1516                 blk_finish_plug(&plug);
1517 next:
1518                 mutex_unlock(&dcc->cmd_lock);
1519
1520                 if (issued >= dpolicy->max_requests || io_interrupted)
1521                         break;
1522         }
1523
1524         if (!issued && io_interrupted)
1525                 issued = -1;
1526
1527         return issued;
1528 }
1529
1530 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1531 {
1532         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1533         struct list_head *pend_list;
1534         struct discard_cmd *dc, *tmp;
1535         int i;
1536         bool dropped = false;
1537
1538         mutex_lock(&dcc->cmd_lock);
1539         for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1540                 pend_list = &dcc->pend_list[i];
1541                 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1542                         f2fs_bug_on(sbi, dc->state != D_PREP);
1543                         __remove_discard_cmd(sbi, dc);
1544                         dropped = true;
1545                 }
1546         }
1547         mutex_unlock(&dcc->cmd_lock);
1548
1549         return dropped;
1550 }
1551
1552 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1553 {
1554         __drop_discard_cmd(sbi);
1555 }
1556
1557 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1558                                                         struct discard_cmd *dc)
1559 {
1560         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1561         unsigned int len = 0;
1562
1563         wait_for_completion_io(&dc->wait);
1564         mutex_lock(&dcc->cmd_lock);
1565         f2fs_bug_on(sbi, dc->state != D_DONE);
1566         dc->ref--;
1567         if (!dc->ref) {
1568                 if (!dc->error)
1569                         len = dc->len;
1570                 __remove_discard_cmd(sbi, dc);
1571         }
1572         mutex_unlock(&dcc->cmd_lock);
1573
1574         return len;
1575 }
1576
1577 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1578                                                 struct discard_policy *dpolicy,
1579                                                 block_t start, block_t end)
1580 {
1581         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1582         struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1583                                         &(dcc->fstrim_list) : &(dcc->wait_list);
1584         struct discard_cmd *dc, *tmp;
1585         bool need_wait;
1586         unsigned int trimmed = 0;
1587
1588 next:
1589         need_wait = false;
1590
1591         mutex_lock(&dcc->cmd_lock);
1592         list_for_each_entry_safe(dc, tmp, wait_list, list) {
1593                 if (dc->lstart + dc->len <= start || end <= dc->lstart)
1594                         continue;
1595                 if (dc->len < dpolicy->granularity)
1596                         continue;
1597                 if (dc->state == D_DONE && !dc->ref) {
1598                         wait_for_completion_io(&dc->wait);
1599                         if (!dc->error)
1600                                 trimmed += dc->len;
1601                         __remove_discard_cmd(sbi, dc);
1602                 } else {
1603                         dc->ref++;
1604                         need_wait = true;
1605                         break;
1606                 }
1607         }
1608         mutex_unlock(&dcc->cmd_lock);
1609
1610         if (need_wait) {
1611                 trimmed += __wait_one_discard_bio(sbi, dc);
1612                 goto next;
1613         }
1614
1615         return trimmed;
1616 }
1617
1618 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1619                                                 struct discard_policy *dpolicy)
1620 {
1621         struct discard_policy dp;
1622         unsigned int discard_blks;
1623
1624         if (dpolicy)
1625                 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1626
1627         /* wait all */
1628         __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
1629         discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1630         __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
1631         discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1632
1633         return discard_blks;
1634 }
1635
1636 /* This should be covered by global mutex, &sit_i->sentry_lock */
1637 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1638 {
1639         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1640         struct discard_cmd *dc;
1641         bool need_wait = false;
1642
1643         mutex_lock(&dcc->cmd_lock);
1644         dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
1645                                                         NULL, blkaddr);
1646         if (dc) {
1647                 if (dc->state == D_PREP) {
1648                         __punch_discard_cmd(sbi, dc, blkaddr);
1649                 } else {
1650                         dc->ref++;
1651                         need_wait = true;
1652                 }
1653         }
1654         mutex_unlock(&dcc->cmd_lock);
1655
1656         if (need_wait)
1657                 __wait_one_discard_bio(sbi, dc);
1658 }
1659
1660 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1661 {
1662         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1663
1664         if (dcc && dcc->f2fs_issue_discard) {
1665                 struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1666
1667                 dcc->f2fs_issue_discard = NULL;
1668                 kthread_stop(discard_thread);
1669         }
1670 }
1671
1672 /* This comes from f2fs_put_super */
1673 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1674 {
1675         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1676         struct discard_policy dpolicy;
1677         bool dropped;
1678
1679         __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1680                                         dcc->discard_granularity);
1681         dpolicy.timeout = UMOUNT_DISCARD_TIMEOUT;
1682         __issue_discard_cmd(sbi, &dpolicy);
1683         dropped = __drop_discard_cmd(sbi);
1684
1685         /* just to make sure there is no pending discard commands */
1686         __wait_all_discard_cmd(sbi, NULL);
1687
1688         f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1689         return dropped;
1690 }
1691
1692 static int issue_discard_thread(void *data)
1693 {
1694         struct f2fs_sb_info *sbi = data;
1695         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1696         wait_queue_head_t *q = &dcc->discard_wait_queue;
1697         struct discard_policy dpolicy;
1698         unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
1699         int issued;
1700
1701         set_freezable();
1702
1703         do {
1704                 __init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1705                                         dcc->discard_granularity);
1706
1707                 wait_event_interruptible_timeout(*q,
1708                                 kthread_should_stop() || freezing(current) ||
1709                                 dcc->discard_wake,
1710                                 msecs_to_jiffies(wait_ms));
1711
1712                 if (dcc->discard_wake)
1713                         dcc->discard_wake = 0;
1714
1715                 /* clean up pending candidates before going to sleep */
1716                 if (atomic_read(&dcc->queued_discard))
1717                         __wait_all_discard_cmd(sbi, NULL);
1718
1719                 if (try_to_freeze())
1720                         continue;
1721                 if (f2fs_readonly(sbi->sb))
1722                         continue;
1723                 if (kthread_should_stop())
1724                         return 0;
1725                 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1726                         wait_ms = dpolicy.max_interval;
1727                         continue;
1728                 }
1729
1730                 if (sbi->gc_mode == GC_URGENT)
1731                         __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1);
1732
1733                 sb_start_intwrite(sbi->sb);
1734
1735                 issued = __issue_discard_cmd(sbi, &dpolicy);
1736                 if (issued > 0) {
1737                         __wait_all_discard_cmd(sbi, &dpolicy);
1738                         wait_ms = dpolicy.min_interval;
1739                 } else if (issued == -1){
1740                         wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1741                         if (!wait_ms)
1742                                 wait_ms = dpolicy.mid_interval;
1743                 } else {
1744                         wait_ms = dpolicy.max_interval;
1745                 }
1746
1747                 sb_end_intwrite(sbi->sb);
1748
1749         } while (!kthread_should_stop());
1750         return 0;
1751 }
1752
1753 #ifdef CONFIG_BLK_DEV_ZONED
1754 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1755                 struct block_device *bdev, block_t blkstart, block_t blklen)
1756 {
1757         sector_t sector, nr_sects;
1758         block_t lblkstart = blkstart;
1759         int devi = 0;
1760
1761         if (f2fs_is_multi_device(sbi)) {
1762                 devi = f2fs_target_device_index(sbi, blkstart);
1763                 if (blkstart < FDEV(devi).start_blk ||
1764                     blkstart > FDEV(devi).end_blk) {
1765                         f2fs_err(sbi, "Invalid block %x", blkstart);
1766                         return -EIO;
1767                 }
1768                 blkstart -= FDEV(devi).start_blk;
1769         }
1770
1771         /* For sequential zones, reset the zone write pointer */
1772         if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1773                 sector = SECTOR_FROM_BLOCK(blkstart);
1774                 nr_sects = SECTOR_FROM_BLOCK(blklen);
1775
1776                 if (sector & (bdev_zone_sectors(bdev) - 1) ||
1777                                 nr_sects != bdev_zone_sectors(bdev)) {
1778                         f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1779                                  devi, sbi->s_ndevs ? FDEV(devi).path : "",
1780                                  blkstart, blklen);
1781                         return -EIO;
1782                 }
1783                 trace_f2fs_issue_reset_zone(bdev, blkstart);
1784                 return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1785                                         sector, nr_sects, GFP_NOFS);
1786         }
1787
1788         /* For conventional zones, use regular discard if supported */
1789         return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1790 }
1791 #endif
1792
1793 static int __issue_discard_async(struct f2fs_sb_info *sbi,
1794                 struct block_device *bdev, block_t blkstart, block_t blklen)
1795 {
1796 #ifdef CONFIG_BLK_DEV_ZONED
1797         if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
1798                 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1799 #endif
1800         return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1801 }
1802
1803 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1804                                 block_t blkstart, block_t blklen)
1805 {
1806         sector_t start = blkstart, len = 0;
1807         struct block_device *bdev;
1808         struct seg_entry *se;
1809         unsigned int offset;
1810         block_t i;
1811         int err = 0;
1812
1813         bdev = f2fs_target_device(sbi, blkstart, NULL);
1814
1815         for (i = blkstart; i < blkstart + blklen; i++, len++) {
1816                 if (i != start) {
1817                         struct block_device *bdev2 =
1818                                 f2fs_target_device(sbi, i, NULL);
1819
1820                         if (bdev2 != bdev) {
1821                                 err = __issue_discard_async(sbi, bdev,
1822                                                 start, len);
1823                                 if (err)
1824                                         return err;
1825                                 bdev = bdev2;
1826                                 start = i;
1827                                 len = 0;
1828                         }
1829                 }
1830
1831                 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1832                 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1833
1834                 if (!f2fs_test_and_set_bit(offset, se->discard_map))
1835                         sbi->discard_blks--;
1836         }
1837
1838         if (len)
1839                 err = __issue_discard_async(sbi, bdev, start, len);
1840         return err;
1841 }
1842
1843 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1844                                                         bool check_only)
1845 {
1846         int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1847         int max_blocks = sbi->blocks_per_seg;
1848         struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1849         unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1850         unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1851         unsigned long *discard_map = (unsigned long *)se->discard_map;
1852         unsigned long *dmap = SIT_I(sbi)->tmp_map;
1853         unsigned int start = 0, end = -1;
1854         bool force = (cpc->reason & CP_DISCARD);
1855         struct discard_entry *de = NULL;
1856         struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1857         int i;
1858
1859         if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi))
1860                 return false;
1861
1862         if (!force) {
1863                 if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
1864                         SM_I(sbi)->dcc_info->nr_discards >=
1865                                 SM_I(sbi)->dcc_info->max_discards)
1866                         return false;
1867         }
1868
1869         /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1870         for (i = 0; i < entries; i++)
1871                 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1872                                 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1873
1874         while (force || SM_I(sbi)->dcc_info->nr_discards <=
1875                                 SM_I(sbi)->dcc_info->max_discards) {
1876                 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1877                 if (start >= max_blocks)
1878                         break;
1879
1880                 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1881                 if (force && start && end != max_blocks
1882                                         && (end - start) < cpc->trim_minlen)
1883                         continue;
1884
1885                 if (check_only)
1886                         return true;
1887
1888                 if (!de) {
1889                         de = f2fs_kmem_cache_alloc(discard_entry_slab,
1890                                                                 GFP_F2FS_ZERO);
1891                         de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1892                         list_add_tail(&de->list, head);
1893                 }
1894
1895                 for (i = start; i < end; i++)
1896                         __set_bit_le(i, (void *)de->discard_map);
1897
1898                 SM_I(sbi)->dcc_info->nr_discards += end - start;
1899         }
1900         return false;
1901 }
1902
1903 static void release_discard_addr(struct discard_entry *entry)
1904 {
1905         list_del(&entry->list);
1906         kmem_cache_free(discard_entry_slab, entry);
1907 }
1908
1909 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
1910 {
1911         struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1912         struct discard_entry *entry, *this;
1913
1914         /* drop caches */
1915         list_for_each_entry_safe(entry, this, head, list)
1916                 release_discard_addr(entry);
1917 }
1918
1919 /*
1920  * Should call f2fs_clear_prefree_segments after checkpoint is done.
1921  */
1922 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
1923 {
1924         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1925         unsigned int segno;
1926
1927         mutex_lock(&dirty_i->seglist_lock);
1928         for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
1929                 __set_test_and_free(sbi, segno);
1930         mutex_unlock(&dirty_i->seglist_lock);
1931 }
1932
1933 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
1934                                                 struct cp_control *cpc)
1935 {
1936         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1937         struct list_head *head = &dcc->entry_list;
1938         struct discard_entry *entry, *this;
1939         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1940         unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
1941         unsigned int start = 0, end = -1;
1942         unsigned int secno, start_segno;
1943         bool force = (cpc->reason & CP_DISCARD);
1944         bool need_align = test_opt(sbi, LFS) && __is_large_section(sbi);
1945
1946         mutex_lock(&dirty_i->seglist_lock);
1947
1948         while (1) {
1949                 int i;
1950
1951                 if (need_align && end != -1)
1952                         end--;
1953                 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
1954                 if (start >= MAIN_SEGS(sbi))
1955                         break;
1956                 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
1957                                                                 start + 1);
1958
1959                 if (need_align) {
1960                         start = rounddown(start, sbi->segs_per_sec);
1961                         end = roundup(end, sbi->segs_per_sec);
1962                 }
1963
1964                 for (i = start; i < end; i++) {
1965                         if (test_and_clear_bit(i, prefree_map))
1966                                 dirty_i->nr_dirty[PRE]--;
1967                 }
1968
1969                 if (!f2fs_realtime_discard_enable(sbi))
1970                         continue;
1971
1972                 if (force && start >= cpc->trim_start &&
1973                                         (end - 1) <= cpc->trim_end)
1974                                 continue;
1975
1976                 if (!test_opt(sbi, LFS) || !__is_large_section(sbi)) {
1977                         f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
1978                                 (end - start) << sbi->log_blocks_per_seg);
1979                         continue;
1980                 }
1981 next:
1982                 secno = GET_SEC_FROM_SEG(sbi, start);
1983                 start_segno = GET_SEG_FROM_SEC(sbi, secno);
1984                 if (!IS_CURSEC(sbi, secno) &&
1985                         !get_valid_blocks(sbi, start, true))
1986                         f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
1987                                 sbi->segs_per_sec << sbi->log_blocks_per_seg);
1988
1989                 start = start_segno + sbi->segs_per_sec;
1990                 if (start < end)
1991                         goto next;
1992                 else
1993                         end = start - 1;
1994         }
1995         mutex_unlock(&dirty_i->seglist_lock);
1996
1997         /* send small discards */
1998         list_for_each_entry_safe(entry, this, head, list) {
1999                 unsigned int cur_pos = 0, next_pos, len, total_len = 0;
2000                 bool is_valid = test_bit_le(0, entry->discard_map);
2001
2002 find_next:
2003                 if (is_valid) {
2004                         next_pos = find_next_zero_bit_le(entry->discard_map,
2005                                         sbi->blocks_per_seg, cur_pos);
2006                         len = next_pos - cur_pos;
2007
2008                         if (f2fs_sb_has_blkzoned(sbi) ||
2009                             (force && len < cpc->trim_minlen))
2010                                 goto skip;
2011
2012                         f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2013                                                                         len);
2014                         total_len += len;
2015                 } else {
2016                         next_pos = find_next_bit_le(entry->discard_map,
2017                                         sbi->blocks_per_seg, cur_pos);
2018                 }
2019 skip:
2020                 cur_pos = next_pos;
2021                 is_valid = !is_valid;
2022
2023                 if (cur_pos < sbi->blocks_per_seg)
2024                         goto find_next;
2025
2026                 release_discard_addr(entry);
2027                 dcc->nr_discards -= total_len;
2028         }
2029
2030         wake_up_discard_thread(sbi, false);
2031 }
2032
2033 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2034 {
2035         dev_t dev = sbi->sb->s_bdev->bd_dev;
2036         struct discard_cmd_control *dcc;
2037         int err = 0, i;
2038
2039         if (SM_I(sbi)->dcc_info) {
2040                 dcc = SM_I(sbi)->dcc_info;
2041                 goto init_thread;
2042         }
2043
2044         dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2045         if (!dcc)
2046                 return -ENOMEM;
2047
2048         dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2049         INIT_LIST_HEAD(&dcc->entry_list);
2050         for (i = 0; i < MAX_PLIST_NUM; i++)
2051                 INIT_LIST_HEAD(&dcc->pend_list[i]);
2052         INIT_LIST_HEAD(&dcc->wait_list);
2053         INIT_LIST_HEAD(&dcc->fstrim_list);
2054         mutex_init(&dcc->cmd_lock);
2055         atomic_set(&dcc->issued_discard, 0);
2056         atomic_set(&dcc->queued_discard, 0);
2057         atomic_set(&dcc->discard_cmd_cnt, 0);
2058         dcc->nr_discards = 0;
2059         dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
2060         dcc->undiscard_blks = 0;
2061         dcc->next_pos = 0;
2062         dcc->root = RB_ROOT_CACHED;
2063         dcc->rbtree_check = false;
2064
2065         init_waitqueue_head(&dcc->discard_wait_queue);
2066         SM_I(sbi)->dcc_info = dcc;
2067 init_thread:
2068         dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2069                                 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2070         if (IS_ERR(dcc->f2fs_issue_discard)) {
2071                 err = PTR_ERR(dcc->f2fs_issue_discard);
2072                 kvfree(dcc);
2073                 SM_I(sbi)->dcc_info = NULL;
2074                 return err;
2075         }
2076
2077         return err;
2078 }
2079
2080 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2081 {
2082         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2083
2084         if (!dcc)
2085                 return;
2086
2087         f2fs_stop_discard_thread(sbi);
2088
2089         /*
2090          * Recovery can cache discard commands, so in error path of
2091          * fill_super(), it needs to give a chance to handle them.
2092          */
2093         if (unlikely(atomic_read(&dcc->discard_cmd_cnt)))
2094                 f2fs_issue_discard_timeout(sbi);
2095
2096         kvfree(dcc);
2097         SM_I(sbi)->dcc_info = NULL;
2098 }
2099
2100 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2101 {
2102         struct sit_info *sit_i = SIT_I(sbi);
2103
2104         if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2105                 sit_i->dirty_sentries++;
2106                 return false;
2107         }
2108
2109         return true;
2110 }
2111
2112 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2113                                         unsigned int segno, int modified)
2114 {
2115         struct seg_entry *se = get_seg_entry(sbi, segno);
2116         se->type = type;
2117         if (modified)
2118                 __mark_sit_entry_dirty(sbi, segno);
2119 }
2120
2121 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2122 {
2123         struct seg_entry *se;
2124         unsigned int segno, offset;
2125         long int new_vblocks;
2126         bool exist;
2127 #ifdef CONFIG_F2FS_CHECK_FS
2128         bool mir_exist;
2129 #endif
2130
2131         segno = GET_SEGNO(sbi, blkaddr);
2132
2133         se = get_seg_entry(sbi, segno);
2134         new_vblocks = se->valid_blocks + del;
2135         offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2136
2137         f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
2138                                 (new_vblocks > sbi->blocks_per_seg)));
2139
2140         se->valid_blocks = new_vblocks;
2141         se->mtime = get_mtime(sbi, false);
2142         if (se->mtime > SIT_I(sbi)->max_mtime)
2143                 SIT_I(sbi)->max_mtime = se->mtime;
2144
2145         /* Update valid block bitmap */
2146         if (del > 0) {
2147                 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2148 #ifdef CONFIG_F2FS_CHECK_FS
2149                 mir_exist = f2fs_test_and_set_bit(offset,
2150                                                 se->cur_valid_map_mir);
2151                 if (unlikely(exist != mir_exist)) {
2152                         f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2153                                  blkaddr, exist);
2154                         f2fs_bug_on(sbi, 1);
2155                 }
2156 #endif
2157                 if (unlikely(exist)) {
2158                         f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
2159                                  blkaddr);
2160                         f2fs_bug_on(sbi, 1);
2161                         se->valid_blocks--;
2162                         del = 0;
2163                 }
2164
2165                 if (!f2fs_test_and_set_bit(offset, se->discard_map))
2166                         sbi->discard_blks--;
2167
2168                 /*
2169                  * SSR should never reuse block which is checkpointed
2170                  * or newly invalidated.
2171                  */
2172                 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2173                         if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2174                                 se->ckpt_valid_blocks++;
2175                 }
2176         } else {
2177                 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2178 #ifdef CONFIG_F2FS_CHECK_FS
2179                 mir_exist = f2fs_test_and_clear_bit(offset,
2180                                                 se->cur_valid_map_mir);
2181                 if (unlikely(exist != mir_exist)) {
2182                         f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2183                                  blkaddr, exist);
2184                         f2fs_bug_on(sbi, 1);
2185                 }
2186 #endif
2187                 if (unlikely(!exist)) {
2188                         f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
2189                                  blkaddr);
2190                         f2fs_bug_on(sbi, 1);
2191                         se->valid_blocks++;
2192                         del = 0;
2193                 } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2194                         /*
2195                          * If checkpoints are off, we must not reuse data that
2196                          * was used in the previous checkpoint. If it was used
2197                          * before, we must track that to know how much space we
2198                          * really have.
2199                          */
2200                         if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
2201                                 spin_lock(&sbi->stat_lock);
2202                                 sbi->unusable_block_count++;
2203                                 spin_unlock(&sbi->stat_lock);
2204                         }
2205                 }
2206
2207                 if (f2fs_test_and_clear_bit(offset, se->discard_map))
2208                         sbi->discard_blks++;
2209         }
2210         if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2211                 se->ckpt_valid_blocks += del;
2212
2213         __mark_sit_entry_dirty(sbi, segno);
2214
2215         /* update total number of valid blocks to be written in ckpt area */
2216         SIT_I(sbi)->written_valid_blocks += del;
2217
2218         if (__is_large_section(sbi))
2219                 get_sec_entry(sbi, segno)->valid_blocks += del;
2220 }
2221
2222 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2223 {
2224         unsigned int segno = GET_SEGNO(sbi, addr);
2225         struct sit_info *sit_i = SIT_I(sbi);
2226
2227         f2fs_bug_on(sbi, addr == NULL_ADDR);
2228         if (addr == NEW_ADDR)
2229                 return;
2230
2231         invalidate_mapping_pages(META_MAPPING(sbi), addr, addr);
2232
2233         /* add it into sit main buffer */
2234         down_write(&sit_i->sentry_lock);
2235
2236         update_sit_entry(sbi, addr, -1);
2237
2238         /* add it into dirty seglist */
2239         locate_dirty_segment(sbi, segno);
2240
2241         up_write(&sit_i->sentry_lock);
2242 }
2243
2244 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2245 {
2246         struct sit_info *sit_i = SIT_I(sbi);
2247         unsigned int segno, offset;
2248         struct seg_entry *se;
2249         bool is_cp = false;
2250
2251         if (!__is_valid_data_blkaddr(blkaddr))
2252                 return true;
2253
2254         down_read(&sit_i->sentry_lock);
2255
2256         segno = GET_SEGNO(sbi, blkaddr);
2257         se = get_seg_entry(sbi, segno);
2258         offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2259
2260         if (f2fs_test_bit(offset, se->ckpt_valid_map))
2261                 is_cp = true;
2262
2263         up_read(&sit_i->sentry_lock);
2264
2265         return is_cp;
2266 }
2267
2268 /*
2269  * This function should be resided under the curseg_mutex lock
2270  */
2271 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
2272                                         struct f2fs_summary *sum)
2273 {
2274         struct curseg_info *curseg = CURSEG_I(sbi, type);
2275         void *addr = curseg->sum_blk;
2276         addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
2277         memcpy(addr, sum, sizeof(struct f2fs_summary));
2278 }
2279
2280 /*
2281  * Calculate the number of current summary pages for writing
2282  */
2283 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2284 {
2285         int valid_sum_count = 0;
2286         int i, sum_in_page;
2287
2288         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2289                 if (sbi->ckpt->alloc_type[i] == SSR)
2290                         valid_sum_count += sbi->blocks_per_seg;
2291                 else {
2292                         if (for_ra)
2293                                 valid_sum_count += le16_to_cpu(
2294                                         F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2295                         else
2296                                 valid_sum_count += curseg_blkoff(sbi, i);
2297                 }
2298         }
2299
2300         sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2301                         SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2302         if (valid_sum_count <= sum_in_page)
2303                 return 1;
2304         else if ((valid_sum_count - sum_in_page) <=
2305                 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2306                 return 2;
2307         return 3;
2308 }
2309
2310 /*
2311  * Caller should put this summary page
2312  */
2313 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2314 {
2315         return f2fs_get_meta_page_nofail(sbi, GET_SUM_BLOCK(sbi, segno));
2316 }
2317
2318 void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2319                                         void *src, block_t blk_addr)
2320 {
2321         struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2322
2323         memcpy(page_address(page), src, PAGE_SIZE);
2324         set_page_dirty(page);
2325         f2fs_put_page(page, 1);
2326 }
2327
2328 static void write_sum_page(struct f2fs_sb_info *sbi,
2329                         struct f2fs_summary_block *sum_blk, block_t blk_addr)
2330 {
2331         f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2332 }
2333
2334 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2335                                                 int type, block_t blk_addr)
2336 {
2337         struct curseg_info *curseg = CURSEG_I(sbi, type);
2338         struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2339         struct f2fs_summary_block *src = curseg->sum_blk;
2340         struct f2fs_summary_block *dst;
2341
2342         dst = (struct f2fs_summary_block *)page_address(page);
2343         memset(dst, 0, PAGE_SIZE);
2344
2345         mutex_lock(&curseg->curseg_mutex);
2346
2347         down_read(&curseg->journal_rwsem);
2348         memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2349         up_read(&curseg->journal_rwsem);
2350
2351         memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2352         memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2353
2354         mutex_unlock(&curseg->curseg_mutex);
2355
2356         set_page_dirty(page);
2357         f2fs_put_page(page, 1);
2358 }
2359
2360 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
2361 {
2362         struct curseg_info *curseg = CURSEG_I(sbi, type);
2363         unsigned int segno = curseg->segno + 1;
2364         struct free_segmap_info *free_i = FREE_I(sbi);
2365
2366         if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2367                 return !test_bit(segno, free_i->free_segmap);
2368         return 0;
2369 }
2370
2371 /*
2372  * Find a new segment from the free segments bitmap to right order
2373  * This function should be returned with success, otherwise BUG
2374  */
2375 static void get_new_segment(struct f2fs_sb_info *sbi,
2376                         unsigned int *newseg, bool new_sec, int dir)
2377 {
2378         struct free_segmap_info *free_i = FREE_I(sbi);
2379         unsigned int segno, secno, zoneno;
2380         unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2381         unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2382         unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2383         unsigned int left_start = hint;
2384         bool init = true;
2385         int go_left = 0;
2386         int i;
2387
2388         spin_lock(&free_i->segmap_lock);
2389
2390         if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2391                 segno = find_next_zero_bit(free_i->free_segmap,
2392                         GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2393                 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2394                         goto got_it;
2395         }
2396 find_other_zone:
2397         secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2398         if (secno >= MAIN_SECS(sbi)) {
2399                 if (dir == ALLOC_RIGHT) {
2400                         secno = find_next_zero_bit(free_i->free_secmap,
2401                                                         MAIN_SECS(sbi), 0);
2402                         f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2403                 } else {
2404                         go_left = 1;
2405                         left_start = hint - 1;
2406                 }
2407         }
2408         if (go_left == 0)
2409                 goto skip_left;
2410
2411         while (test_bit(left_start, free_i->free_secmap)) {
2412                 if (left_start > 0) {
2413                         left_start--;
2414                         continue;
2415                 }
2416                 left_start = find_next_zero_bit(free_i->free_secmap,
2417                                                         MAIN_SECS(sbi), 0);
2418                 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2419                 break;
2420         }
2421         secno = left_start;
2422 skip_left:
2423         segno = GET_SEG_FROM_SEC(sbi, secno);
2424         zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2425
2426         /* give up on finding another zone */
2427         if (!init)
2428                 goto got_it;
2429         if (sbi->secs_per_zone == 1)
2430                 goto got_it;
2431         if (zoneno == old_zoneno)
2432                 goto got_it;
2433         if (dir == ALLOC_LEFT) {
2434                 if (!go_left && zoneno + 1 >= total_zones)
2435                         goto got_it;
2436                 if (go_left && zoneno == 0)
2437                         goto got_it;
2438         }
2439         for (i = 0; i < NR_CURSEG_TYPE; i++)
2440                 if (CURSEG_I(sbi, i)->zone == zoneno)
2441                         break;
2442
2443         if (i < NR_CURSEG_TYPE) {
2444                 /* zone is in user, try another */
2445                 if (go_left)
2446                         hint = zoneno * sbi->secs_per_zone - 1;
2447                 else if (zoneno + 1 >= total_zones)
2448                         hint = 0;
2449                 else
2450                         hint = (zoneno + 1) * sbi->secs_per_zone;
2451                 init = false;
2452                 goto find_other_zone;
2453         }
2454 got_it:
2455         /* set it as dirty segment in free segmap */
2456         f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2457         __set_inuse(sbi, segno);
2458         *newseg = segno;
2459         spin_unlock(&free_i->segmap_lock);
2460 }
2461
2462 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2463 {
2464         struct curseg_info *curseg = CURSEG_I(sbi, type);
2465         struct summary_footer *sum_footer;
2466
2467         curseg->segno = curseg->next_segno;
2468         curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2469         curseg->next_blkoff = 0;
2470         curseg->next_segno = NULL_SEGNO;
2471
2472         sum_footer = &(curseg->sum_blk->footer);
2473         memset(sum_footer, 0, sizeof(struct summary_footer));
2474         if (IS_DATASEG(type))
2475                 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2476         if (IS_NODESEG(type))
2477                 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2478         __set_sit_entry_type(sbi, type, curseg->segno, modified);
2479 }
2480
2481 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2482 {
2483         /* if segs_per_sec is large than 1, we need to keep original policy. */
2484         if (__is_large_section(sbi))
2485                 return CURSEG_I(sbi, type)->segno;
2486
2487         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2488                 return 0;
2489
2490         if (test_opt(sbi, NOHEAP) &&
2491                 (type == CURSEG_HOT_DATA || IS_NODESEG(type)))
2492                 return 0;
2493
2494         if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2495                 return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2496
2497         /* find segments from 0 to reuse freed segments */
2498         if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2499                 return 0;
2500
2501         return CURSEG_I(sbi, type)->segno;
2502 }
2503
2504 /*
2505  * Allocate a current working segment.
2506  * This function always allocates a free segment in LFS manner.
2507  */
2508 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2509 {
2510         struct curseg_info *curseg = CURSEG_I(sbi, type);
2511         unsigned int segno = curseg->segno;
2512         int dir = ALLOC_LEFT;
2513
2514         write_sum_page(sbi, curseg->sum_blk,
2515                                 GET_SUM_BLOCK(sbi, segno));
2516         if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
2517                 dir = ALLOC_RIGHT;
2518
2519         if (test_opt(sbi, NOHEAP))
2520                 dir = ALLOC_RIGHT;
2521
2522         segno = __get_next_segno(sbi, type);
2523         get_new_segment(sbi, &segno, new_sec, dir);
2524         curseg->next_segno = segno;
2525         reset_curseg(sbi, type, 1);
2526         curseg->alloc_type = LFS;
2527 }
2528
2529 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
2530                         struct curseg_info *seg, block_t start)
2531 {
2532         struct seg_entry *se = get_seg_entry(sbi, seg->segno);
2533         int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2534         unsigned long *target_map = SIT_I(sbi)->tmp_map;
2535         unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2536         unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2537         int i, pos;
2538
2539         for (i = 0; i < entries; i++)
2540                 target_map[i] = ckpt_map[i] | cur_map[i];
2541
2542         pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2543
2544         seg->next_blkoff = pos;
2545 }
2546
2547 /*
2548  * If a segment is written by LFS manner, next block offset is just obtained
2549  * by increasing the current block offset. However, if a segment is written by
2550  * SSR manner, next block offset obtained by calling __next_free_blkoff
2551  */
2552 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2553                                 struct curseg_info *seg)
2554 {
2555         if (seg->alloc_type == SSR)
2556                 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
2557         else
2558                 seg->next_blkoff++;
2559 }
2560
2561 /*
2562  * This function always allocates a used segment(from dirty seglist) by SSR
2563  * manner, so it should recover the existing segment information of valid blocks
2564  */
2565 static void change_curseg(struct f2fs_sb_info *sbi, int type)
2566 {
2567         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2568         struct curseg_info *curseg = CURSEG_I(sbi, type);
2569         unsigned int new_segno = curseg->next_segno;
2570         struct f2fs_summary_block *sum_node;
2571         struct page *sum_page;
2572
2573         write_sum_page(sbi, curseg->sum_blk,
2574                                 GET_SUM_BLOCK(sbi, curseg->segno));
2575         __set_test_and_inuse(sbi, new_segno);
2576
2577         mutex_lock(&dirty_i->seglist_lock);
2578         __remove_dirty_segment(sbi, new_segno, PRE);
2579         __remove_dirty_segment(sbi, new_segno, DIRTY);
2580         mutex_unlock(&dirty_i->seglist_lock);
2581
2582         reset_curseg(sbi, type, 1);
2583         curseg->alloc_type = SSR;
2584         __next_free_blkoff(sbi, curseg, 0);
2585
2586         sum_page = f2fs_get_sum_page(sbi, new_segno);
2587         f2fs_bug_on(sbi, IS_ERR(sum_page));
2588         sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2589         memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2590         f2fs_put_page(sum_page, 1);
2591 }
2592
2593 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
2594 {
2595         struct curseg_info *curseg = CURSEG_I(sbi, type);
2596         const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2597         unsigned segno = NULL_SEGNO;
2598         int i, cnt;
2599         bool reversed = false;
2600
2601         /* f2fs_need_SSR() already forces to do this */
2602         if (v_ops->get_victim(sbi, &segno, BG_GC, type, SSR)) {
2603                 curseg->next_segno = segno;
2604                 return 1;
2605         }
2606
2607         /* For node segments, let's do SSR more intensively */
2608         if (IS_NODESEG(type)) {
2609                 if (type >= CURSEG_WARM_NODE) {
2610                         reversed = true;
2611                         i = CURSEG_COLD_NODE;
2612                 } else {
2613                         i = CURSEG_HOT_NODE;
2614                 }
2615                 cnt = NR_CURSEG_NODE_TYPE;
2616         } else {
2617                 if (type >= CURSEG_WARM_DATA) {
2618                         reversed = true;
2619                         i = CURSEG_COLD_DATA;
2620                 } else {
2621                         i = CURSEG_HOT_DATA;
2622                 }
2623                 cnt = NR_CURSEG_DATA_TYPE;
2624         }
2625
2626         for (; cnt-- > 0; reversed ? i-- : i++) {
2627                 if (i == type)
2628                         continue;
2629                 if (v_ops->get_victim(sbi, &segno, BG_GC, i, SSR)) {
2630                         curseg->next_segno = segno;
2631                         return 1;
2632                 }
2633         }
2634
2635         /* find valid_blocks=0 in dirty list */
2636         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2637                 segno = get_free_segment(sbi);
2638                 if (segno != NULL_SEGNO) {
2639                         curseg->next_segno = segno;
2640                         return 1;
2641                 }
2642         }
2643         return 0;
2644 }
2645
2646 /*
2647  * flush out current segment and replace it with new segment
2648  * This function should be returned with success, otherwise BUG
2649  */
2650 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
2651                                                 int type, bool force)
2652 {
2653         struct curseg_info *curseg = CURSEG_I(sbi, type);
2654
2655         if (force)
2656                 new_curseg(sbi, type, true);
2657         else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2658                                         type == CURSEG_WARM_NODE)
2659                 new_curseg(sbi, type, false);
2660         else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type) &&
2661                         likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2662                 new_curseg(sbi, type, false);
2663         else if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type))
2664                 change_curseg(sbi, type);
2665         else
2666                 new_curseg(sbi, type, false);
2667
2668         stat_inc_seg_type(sbi, curseg);
2669 }
2670
2671 void allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
2672                                         unsigned int start, unsigned int end)
2673 {
2674         struct curseg_info *curseg = CURSEG_I(sbi, type);
2675         unsigned int segno;
2676
2677         down_read(&SM_I(sbi)->curseg_lock);
2678         mutex_lock(&curseg->curseg_mutex);
2679         down_write(&SIT_I(sbi)->sentry_lock);
2680
2681         segno = CURSEG_I(sbi, type)->segno;
2682         if (segno < start || segno > end)
2683                 goto unlock;
2684
2685         if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type))
2686                 change_curseg(sbi, type);
2687         else
2688                 new_curseg(sbi, type, true);
2689
2690         stat_inc_seg_type(sbi, curseg);
2691
2692         locate_dirty_segment(sbi, segno);
2693 unlock:
2694         up_write(&SIT_I(sbi)->sentry_lock);
2695
2696         if (segno != curseg->segno)
2697                 f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
2698                             type, segno, curseg->segno);
2699
2700         mutex_unlock(&curseg->curseg_mutex);
2701         up_read(&SM_I(sbi)->curseg_lock);
2702 }
2703
2704 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi, int type)
2705 {
2706         struct curseg_info *curseg;
2707         unsigned int old_segno;
2708         int i;
2709
2710         down_write(&SIT_I(sbi)->sentry_lock);
2711
2712         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2713                 if (type != NO_CHECK_TYPE && i != type)
2714                         continue;
2715
2716                 curseg = CURSEG_I(sbi, i);
2717                 if (type == NO_CHECK_TYPE || curseg->next_blkoff ||
2718                                 get_valid_blocks(sbi, curseg->segno, false) ||
2719                                 get_ckpt_valid_blocks(sbi, curseg->segno)) {
2720                         old_segno = curseg->segno;
2721                         SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
2722                         locate_dirty_segment(sbi, old_segno);
2723                 }
2724         }
2725
2726         up_write(&SIT_I(sbi)->sentry_lock);
2727 }
2728
2729 static const struct segment_allocation default_salloc_ops = {
2730         .allocate_segment = allocate_segment_by_default,
2731 };
2732
2733 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
2734                                                 struct cp_control *cpc)
2735 {
2736         __u64 trim_start = cpc->trim_start;
2737         bool has_candidate = false;
2738
2739         down_write(&SIT_I(sbi)->sentry_lock);
2740         for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
2741                 if (add_discard_addrs(sbi, cpc, true)) {
2742                         has_candidate = true;
2743                         break;
2744                 }
2745         }
2746         up_write(&SIT_I(sbi)->sentry_lock);
2747
2748         cpc->trim_start = trim_start;
2749         return has_candidate;
2750 }
2751
2752 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
2753                                         struct discard_policy *dpolicy,
2754                                         unsigned int start, unsigned int end)
2755 {
2756         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2757         struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
2758         struct rb_node **insert_p = NULL, *insert_parent = NULL;
2759         struct discard_cmd *dc;
2760         struct blk_plug plug;
2761         int issued;
2762         unsigned int trimmed = 0;
2763
2764 next:
2765         issued = 0;
2766
2767         mutex_lock(&dcc->cmd_lock);
2768         if (unlikely(dcc->rbtree_check))
2769                 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
2770                                                                 &dcc->root));
2771
2772         dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
2773                                         NULL, start,
2774                                         (struct rb_entry **)&prev_dc,
2775                                         (struct rb_entry **)&next_dc,
2776                                         &insert_p, &insert_parent, true, NULL);
2777         if (!dc)
2778                 dc = next_dc;
2779
2780         blk_start_plug(&plug);
2781
2782         while (dc && dc->lstart <= end) {
2783                 struct rb_node *node;
2784                 int err = 0;
2785
2786                 if (dc->len < dpolicy->granularity)
2787                         goto skip;
2788
2789                 if (dc->state != D_PREP) {
2790                         list_move_tail(&dc->list, &dcc->fstrim_list);
2791                         goto skip;
2792                 }
2793
2794                 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
2795
2796                 if (issued >= dpolicy->max_requests) {
2797                         start = dc->lstart + dc->len;
2798
2799                         if (err)
2800                                 __remove_discard_cmd(sbi, dc);
2801
2802                         blk_finish_plug(&plug);
2803                         mutex_unlock(&dcc->cmd_lock);
2804                         trimmed += __wait_all_discard_cmd(sbi, NULL);
2805                         congestion_wait(BLK_RW_ASYNC, HZ/50);
2806                         goto next;
2807                 }
2808 skip:
2809                 node = rb_next(&dc->rb_node);
2810                 if (err)
2811                         __remove_discard_cmd(sbi, dc);
2812                 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
2813
2814                 if (fatal_signal_pending(current))
2815                         break;
2816         }
2817
2818         blk_finish_plug(&plug);
2819         mutex_unlock(&dcc->cmd_lock);
2820
2821         return trimmed;
2822 }
2823
2824 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
2825 {
2826         __u64 start = F2FS_BYTES_TO_BLK(range->start);
2827         __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
2828         unsigned int start_segno, end_segno;
2829         block_t start_block, end_block;
2830         struct cp_control cpc;
2831         struct discard_policy dpolicy;
2832         unsigned long long trimmed = 0;
2833         int err = 0;
2834         bool need_align = test_opt(sbi, LFS) && __is_large_section(sbi);
2835
2836         if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
2837                 return -EINVAL;
2838
2839         if (end < MAIN_BLKADDR(sbi))
2840                 goto out;
2841
2842         if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
2843                 f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
2844                 return -EFSCORRUPTED;
2845         }
2846
2847         /* start/end segment number in main_area */
2848         start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
2849         end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
2850                                                 GET_SEGNO(sbi, end);
2851         if (need_align) {
2852                 start_segno = rounddown(start_segno, sbi->segs_per_sec);
2853                 end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
2854         }
2855
2856         cpc.reason = CP_DISCARD;
2857         cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
2858         cpc.trim_start = start_segno;
2859         cpc.trim_end = end_segno;
2860
2861         if (sbi->discard_blks == 0)
2862                 goto out;
2863
2864         mutex_lock(&sbi->gc_mutex);
2865         err = f2fs_write_checkpoint(sbi, &cpc);
2866         mutex_unlock(&sbi->gc_mutex);
2867         if (err)
2868                 goto out;
2869
2870         /*
2871          * We filed discard candidates, but actually we don't need to wait for
2872          * all of them, since they'll be issued in idle time along with runtime
2873          * discard option. User configuration looks like using runtime discard
2874          * or periodic fstrim instead of it.
2875          */
2876         if (f2fs_realtime_discard_enable(sbi))
2877                 goto out;
2878
2879         start_block = START_BLOCK(sbi, start_segno);
2880         end_block = START_BLOCK(sbi, end_segno + 1);
2881
2882         __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
2883         trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
2884                                         start_block, end_block);
2885
2886         trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
2887                                         start_block, end_block);
2888 out:
2889         if (!err)
2890                 range->len = F2FS_BLK_TO_BYTES(trimmed);
2891         return err;
2892 }
2893
2894 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
2895 {
2896         struct curseg_info *curseg = CURSEG_I(sbi, type);
2897         if (curseg->next_blkoff < sbi->blocks_per_seg)
2898                 return true;
2899         return false;
2900 }
2901
2902 int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
2903 {
2904         switch (hint) {
2905         case WRITE_LIFE_SHORT:
2906                 return CURSEG_HOT_DATA;
2907         case WRITE_LIFE_EXTREME:
2908                 return CURSEG_COLD_DATA;
2909         default:
2910                 return CURSEG_WARM_DATA;
2911         }
2912 }
2913
2914 /* This returns write hints for each segment type. This hints will be
2915  * passed down to block layer. There are mapping tables which depend on
2916  * the mount option 'whint_mode'.
2917  *
2918  * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET.
2919  *
2920  * 2) whint_mode=user-based. F2FS tries to pass down hints given by users.
2921  *
2922  * User                  F2FS                     Block
2923  * ----                  ----                     -----
2924  *                       META                     WRITE_LIFE_NOT_SET
2925  *                       HOT_NODE                 "
2926  *                       WARM_NODE                "
2927  *                       COLD_NODE                "
2928  * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
2929  * extension list        "                        "
2930  *
2931  * -- buffered io
2932  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2933  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2934  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
2935  * WRITE_LIFE_NONE       "                        "
2936  * WRITE_LIFE_MEDIUM     "                        "
2937  * WRITE_LIFE_LONG       "                        "
2938  *
2939  * -- direct io
2940  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2941  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2942  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
2943  * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
2944  * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
2945  * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
2946  *
2947  * 3) whint_mode=fs-based. F2FS passes down hints with its policy.
2948  *
2949  * User                  F2FS                     Block
2950  * ----                  ----                     -----
2951  *                       META                     WRITE_LIFE_MEDIUM;
2952  *                       HOT_NODE                 WRITE_LIFE_NOT_SET
2953  *                       WARM_NODE                "
2954  *                       COLD_NODE                WRITE_LIFE_NONE
2955  * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
2956  * extension list        "                        "
2957  *
2958  * -- buffered io
2959  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2960  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2961  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_LONG
2962  * WRITE_LIFE_NONE       "                        "
2963  * WRITE_LIFE_MEDIUM     "                        "
2964  * WRITE_LIFE_LONG       "                        "
2965  *
2966  * -- direct io
2967  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2968  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2969  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
2970  * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
2971  * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
2972  * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
2973  */
2974
2975 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
2976                                 enum page_type type, enum temp_type temp)
2977 {
2978         if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) {
2979                 if (type == DATA) {
2980                         if (temp == WARM)
2981                                 return WRITE_LIFE_NOT_SET;
2982                         else if (temp == HOT)
2983                                 return WRITE_LIFE_SHORT;
2984                         else if (temp == COLD)
2985                                 return WRITE_LIFE_EXTREME;
2986                 } else {
2987                         return WRITE_LIFE_NOT_SET;
2988                 }
2989         } else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) {
2990                 if (type == DATA) {
2991                         if (temp == WARM)
2992                                 return WRITE_LIFE_LONG;
2993                         else if (temp == HOT)
2994                                 return WRITE_LIFE_SHORT;
2995                         else if (temp == COLD)
2996                                 return WRITE_LIFE_EXTREME;
2997                 } else if (type == NODE) {
2998                         if (temp == WARM || temp == HOT)
2999                                 return WRITE_LIFE_NOT_SET;
3000                         else if (temp == COLD)
3001                                 return WRITE_LIFE_NONE;
3002                 } else if (type == META) {
3003                         return WRITE_LIFE_MEDIUM;
3004                 }
3005         }
3006         return WRITE_LIFE_NOT_SET;
3007 }
3008
3009 static int __get_segment_type_2(struct f2fs_io_info *fio)
3010 {
3011         if (fio->type == DATA)
3012                 return CURSEG_HOT_DATA;
3013         else
3014                 return CURSEG_HOT_NODE;
3015 }
3016
3017 static int __get_segment_type_4(struct f2fs_io_info *fio)
3018 {
3019         if (fio->type == DATA) {
3020                 struct inode *inode = fio->page->mapping->host;
3021
3022                 if (S_ISDIR(inode->i_mode))
3023                         return CURSEG_HOT_DATA;
3024                 else
3025                         return CURSEG_COLD_DATA;
3026         } else {
3027                 if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3028                         return CURSEG_WARM_NODE;
3029                 else
3030                         return CURSEG_COLD_NODE;
3031         }
3032 }
3033
3034 static int __get_segment_type_6(struct f2fs_io_info *fio)
3035 {
3036         if (fio->type == DATA) {
3037                 struct inode *inode = fio->page->mapping->host;
3038
3039                 if (is_cold_data(fio->page) || file_is_cold(inode))
3040                         return CURSEG_COLD_DATA;
3041                 if (file_is_hot(inode) ||
3042                                 is_inode_flag_set(inode, FI_HOT_DATA) ||
3043                                 f2fs_is_atomic_file(inode) ||
3044                                 f2fs_is_volatile_file(inode))
3045                         return CURSEG_HOT_DATA;
3046                 return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
3047         } else {
3048                 if (IS_DNODE(fio->page))
3049                         return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3050                                                 CURSEG_HOT_NODE;
3051                 return CURSEG_COLD_NODE;
3052         }
3053 }
3054
3055 static int __get_segment_type(struct f2fs_io_info *fio)
3056 {
3057         int type = 0;
3058
3059         switch (F2FS_OPTION(fio->sbi).active_logs) {
3060         case 2:
3061                 type = __get_segment_type_2(fio);
3062                 break;
3063         case 4:
3064                 type = __get_segment_type_4(fio);
3065                 break;
3066         case 6:
3067                 type = __get_segment_type_6(fio);
3068                 break;
3069         default:
3070                 f2fs_bug_on(fio->sbi, true);
3071         }
3072
3073         if (IS_HOT(type))
3074                 fio->temp = HOT;
3075         else if (IS_WARM(type))
3076                 fio->temp = WARM;
3077         else
3078                 fio->temp = COLD;
3079         return type;
3080 }
3081
3082 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3083                 block_t old_blkaddr, block_t *new_blkaddr,
3084                 struct f2fs_summary *sum, int type,
3085                 struct f2fs_io_info *fio, bool add_list)
3086 {
3087         struct sit_info *sit_i = SIT_I(sbi);
3088         struct curseg_info *curseg = CURSEG_I(sbi, type);
3089         bool put_pin_sem = false;
3090
3091         if (type == CURSEG_COLD_DATA) {
3092                 /* GC during CURSEG_COLD_DATA_PINNED allocation */
3093                 if (down_read_trylock(&sbi->pin_sem)) {
3094                         put_pin_sem = true;
3095                 } else {
3096                         type = CURSEG_WARM_DATA;
3097                         curseg = CURSEG_I(sbi, type);
3098                 }
3099         } else if (type == CURSEG_COLD_DATA_PINNED) {
3100                 type = CURSEG_COLD_DATA;
3101         }
3102
3103         down_read(&SM_I(sbi)->curseg_lock);
3104
3105         mutex_lock(&curseg->curseg_mutex);
3106         down_write(&sit_i->sentry_lock);
3107
3108         *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3109
3110         f2fs_wait_discard_bio(sbi, *new_blkaddr);
3111
3112         /*
3113          * __add_sum_entry should be resided under the curseg_mutex
3114          * because, this function updates a summary entry in the
3115          * current summary block.
3116          */
3117         __add_sum_entry(sbi, type, sum);
3118
3119         __refresh_next_blkoff(sbi, curseg);
3120
3121         stat_inc_block_count(sbi, curseg);
3122
3123         /*
3124          * SIT information should be updated before segment allocation,
3125          * since SSR needs latest valid block information.
3126          */
3127         update_sit_entry(sbi, *new_blkaddr, 1);
3128         if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
3129                 update_sit_entry(sbi, old_blkaddr, -1);
3130
3131         if (!__has_curseg_space(sbi, type))
3132                 sit_i->s_ops->allocate_segment(sbi, type, false);
3133
3134         /*
3135          * segment dirty status should be updated after segment allocation,
3136          * so we just need to update status only one time after previous
3137          * segment being closed.
3138          */
3139         locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3140         locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3141
3142         up_write(&sit_i->sentry_lock);
3143
3144         if (page && IS_NODESEG(type)) {
3145                 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3146
3147                 f2fs_inode_chksum_set(sbi, page);
3148         }
3149
3150         if (F2FS_IO_ALIGNED(sbi))
3151                 fio->retry = false;
3152
3153         if (add_list) {
3154                 struct f2fs_bio_info *io;
3155
3156                 INIT_LIST_HEAD(&fio->list);
3157                 fio->in_list = true;
3158                 io = sbi->write_io[fio->type] + fio->temp;
3159                 spin_lock(&io->io_lock);
3160                 list_add_tail(&fio->list, &io->io_list);
3161                 spin_unlock(&io->io_lock);
3162         }
3163
3164         mutex_unlock(&curseg->curseg_mutex);
3165
3166         up_read(&SM_I(sbi)->curseg_lock);
3167
3168         if (put_pin_sem)
3169                 up_read(&sbi->pin_sem);
3170 }
3171
3172 static void update_device_state(struct f2fs_io_info *fio)
3173 {
3174         struct f2fs_sb_info *sbi = fio->sbi;
3175         unsigned int devidx;
3176
3177         if (!f2fs_is_multi_device(sbi))
3178                 return;
3179
3180         devidx = f2fs_target_device_index(sbi, fio->new_blkaddr);
3181
3182         /* update device state for fsync */
3183         f2fs_set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO);
3184
3185         /* update device state for checkpoint */
3186         if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3187                 spin_lock(&sbi->dev_lock);
3188                 f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3189                 spin_unlock(&sbi->dev_lock);
3190         }
3191 }
3192
3193 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3194 {
3195         int type = __get_segment_type(fio);
3196         bool keep_order = (test_opt(fio->sbi, LFS) && type == CURSEG_COLD_DATA);
3197
3198         if (keep_order)
3199                 down_read(&fio->sbi->io_order_lock);
3200 reallocate:
3201         f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3202                         &fio->new_blkaddr, sum, type, fio, true);
3203         if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO)
3204                 invalidate_mapping_pages(META_MAPPING(fio->sbi),
3205                                         fio->old_blkaddr, fio->old_blkaddr);
3206
3207         /* writeout dirty page into bdev */
3208         f2fs_submit_page_write(fio);
3209         if (fio->retry) {
3210                 fio->old_blkaddr = fio->new_blkaddr;
3211                 goto reallocate;
3212         }
3213
3214         update_device_state(fio);
3215
3216         if (keep_order)
3217                 up_read(&fio->sbi->io_order_lock);
3218 }
3219
3220 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3221                                         enum iostat_type io_type)
3222 {
3223         struct f2fs_io_info fio = {
3224                 .sbi = sbi,
3225                 .type = META,
3226                 .temp = HOT,
3227                 .op = REQ_OP_WRITE,
3228                 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3229                 .old_blkaddr = page->index,
3230                 .new_blkaddr = page->index,
3231                 .page = page,
3232                 .encrypted_page = NULL,
3233                 .in_list = false,
3234         };
3235
3236         if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3237                 fio.op_flags &= ~REQ_META;
3238
3239         set_page_writeback(page);
3240         ClearPageError(page);
3241         f2fs_submit_page_write(&fio);
3242
3243         stat_inc_meta_count(sbi, page->index);
3244         f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
3245 }
3246
3247 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3248 {
3249         struct f2fs_summary sum;
3250
3251         set_summary(&sum, nid, 0, 0);
3252         do_write_page(&sum, fio);
3253
3254         f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3255 }
3256
3257 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3258                                         struct f2fs_io_info *fio)
3259 {
3260         struct f2fs_sb_info *sbi = fio->sbi;
3261         struct f2fs_summary sum;
3262
3263         f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3264         set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3265         do_write_page(&sum, fio);
3266         f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3267
3268         f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
3269 }
3270
3271 int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3272 {
3273         int err;
3274         struct f2fs_sb_info *sbi = fio->sbi;
3275         unsigned int segno;
3276
3277         fio->new_blkaddr = fio->old_blkaddr;
3278         /* i/o temperature is needed for passing down write hints */
3279         __get_segment_type(fio);
3280
3281         segno = GET_SEGNO(sbi, fio->new_blkaddr);
3282
3283         if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3284                 set_sbi_flag(sbi, SBI_NEED_FSCK);
3285                 f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
3286                           __func__, segno);
3287                 return -EFSCORRUPTED;
3288         }
3289
3290         stat_inc_inplace_blocks(fio->sbi);
3291
3292         if (fio->bio)
3293                 err = f2fs_merge_page_bio(fio);
3294         else
3295                 err = f2fs_submit_page_bio(fio);
3296         if (!err) {
3297                 update_device_state(fio);
3298                 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3299         }
3300
3301         return err;
3302 }
3303
3304 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3305                                                 unsigned int segno)
3306 {
3307         int i;
3308
3309         for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3310                 if (CURSEG_I(sbi, i)->segno == segno)
3311                         break;
3312         }
3313         return i;
3314 }
3315
3316 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3317                                 block_t old_blkaddr, block_t new_blkaddr,
3318                                 bool recover_curseg, bool recover_newaddr)
3319 {
3320         struct sit_info *sit_i = SIT_I(sbi);
3321         struct curseg_info *curseg;
3322         unsigned int segno, old_cursegno;
3323         struct seg_entry *se;
3324         int type;
3325         unsigned short old_blkoff;
3326
3327         segno = GET_SEGNO(sbi, new_blkaddr);
3328         se = get_seg_entry(sbi, segno);
3329         type = se->type;
3330
3331         down_write(&SM_I(sbi)->curseg_lock);
3332
3333         if (!recover_curseg) {
3334                 /* for recovery flow */
3335                 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3336                         if (old_blkaddr == NULL_ADDR)
3337                                 type = CURSEG_COLD_DATA;
3338                         else
3339                                 type = CURSEG_WARM_DATA;
3340                 }
3341         } else {
3342                 if (IS_CURSEG(sbi, segno)) {
3343                         /* se->type is volatile as SSR allocation */
3344                         type = __f2fs_get_curseg(sbi, segno);
3345                         f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3346                 } else {
3347                         type = CURSEG_WARM_DATA;
3348                 }
3349         }
3350
3351         f2fs_bug_on(sbi, !IS_DATASEG(type));
3352         curseg = CURSEG_I(sbi, type);
3353
3354         mutex_lock(&curseg->curseg_mutex);
3355         down_write(&sit_i->sentry_lock);
3356
3357         old_cursegno = curseg->segno;
3358         old_blkoff = curseg->next_blkoff;
3359
3360         /* change the current segment */
3361         if (segno != curseg->segno) {
3362                 curseg->next_segno = segno;
3363                 change_curseg(sbi, type);
3364         }
3365
3366         curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3367         __add_sum_entry(sbi, type, sum);
3368
3369         if (!recover_curseg || recover_newaddr)
3370                 update_sit_entry(sbi, new_blkaddr, 1);
3371         if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3372                 invalidate_mapping_pages(META_MAPPING(sbi),
3373                                         old_blkaddr, old_blkaddr);
3374                 update_sit_entry(sbi, old_blkaddr, -1);
3375         }
3376
3377         locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3378         locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3379
3380         locate_dirty_segment(sbi, old_cursegno);
3381
3382         if (recover_curseg) {
3383                 if (old_cursegno != curseg->segno) {
3384                         curseg->next_segno = old_cursegno;
3385                         change_curseg(sbi, type);
3386                 }
3387                 curseg->next_blkoff = old_blkoff;
3388         }
3389
3390         up_write(&sit_i->sentry_lock);
3391         mutex_unlock(&curseg->curseg_mutex);
3392         up_write(&SM_I(sbi)->curseg_lock);
3393 }
3394
3395 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3396                                 block_t old_addr, block_t new_addr,
3397                                 unsigned char version, bool recover_curseg,
3398                                 bool recover_newaddr)
3399 {
3400         struct f2fs_summary sum;
3401
3402         set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3403
3404         f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3405                                         recover_curseg, recover_newaddr);
3406
3407         f2fs_update_data_blkaddr(dn, new_addr);
3408 }
3409
3410 void f2fs_wait_on_page_writeback(struct page *page,
3411                                 enum page_type type, bool ordered, bool locked)
3412 {
3413         if (PageWriteback(page)) {
3414                 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3415
3416                 /* submit cached LFS IO */
3417                 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3418                 /* sbumit cached IPU IO */
3419                 f2fs_submit_merged_ipu_write(sbi, NULL, page);
3420                 if (ordered) {
3421                         wait_on_page_writeback(page);
3422                         f2fs_bug_on(sbi, locked && PageWriteback(page));
3423                 } else {
3424                         wait_for_stable_page(page);
3425                 }
3426         }
3427 }
3428
3429 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
3430 {
3431         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3432         struct page *cpage;
3433
3434         if (!f2fs_post_read_required(inode))
3435                 return;
3436
3437         if (!__is_valid_data_blkaddr(blkaddr))
3438                 return;
3439
3440         cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3441         if (cpage) {
3442                 f2fs_wait_on_page_writeback(cpage, DATA, true, true);
3443                 f2fs_put_page(cpage, 1);
3444         }
3445 }
3446
3447 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3448                                                                 block_t len)
3449 {
3450         block_t i;
3451
3452         for (i = 0; i < len; i++)
3453                 f2fs_wait_on_block_writeback(inode, blkaddr + i);
3454 }
3455
3456 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3457 {
3458         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3459         struct curseg_info *seg_i;
3460         unsigned char *kaddr;
3461         struct page *page;
3462         block_t start;
3463         int i, j, offset;
3464
3465         start = start_sum_block(sbi);
3466
3467         page = f2fs_get_meta_page(sbi, start++);
3468         if (IS_ERR(page))
3469                 return PTR_ERR(page);
3470         kaddr = (unsigned char *)page_address(page);
3471
3472         /* Step 1: restore nat cache */
3473         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3474         memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3475
3476         /* Step 2: restore sit cache */
3477         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3478         memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3479         offset = 2 * SUM_JOURNAL_SIZE;
3480
3481         /* Step 3: restore summary entries */
3482         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3483                 unsigned short blk_off;
3484                 unsigned int segno;
3485
3486                 seg_i = CURSEG_I(sbi, i);
3487                 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3488                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3489                 seg_i->next_segno = segno;
3490                 reset_curseg(sbi, i, 0);
3491                 seg_i->alloc_type = ckpt->alloc_type[i];
3492                 seg_i->next_blkoff = blk_off;
3493
3494                 if (seg_i->alloc_type == SSR)
3495                         blk_off = sbi->blocks_per_seg;
3496
3497                 for (j = 0; j < blk_off; j++) {
3498                         struct f2fs_summary *s;
3499                         s = (struct f2fs_summary *)(kaddr + offset);
3500                         seg_i->sum_blk->entries[j] = *s;
3501                         offset += SUMMARY_SIZE;
3502                         if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3503                                                 SUM_FOOTER_SIZE)
3504                                 continue;
3505
3506                         f2fs_put_page(page, 1);
3507                         page = NULL;
3508
3509                         page = f2fs_get_meta_page(sbi, start++);
3510                         if (IS_ERR(page))
3511                                 return PTR_ERR(page);
3512                         kaddr = (unsigned char *)page_address(page);
3513                         offset = 0;
3514                 }
3515         }
3516         f2fs_put_page(page, 1);
3517         return 0;
3518 }
3519
3520 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3521 {
3522         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3523         struct f2fs_summary_block *sum;
3524         struct curseg_info *curseg;
3525         struct page *new;
3526         unsigned short blk_off;
3527         unsigned int segno = 0;
3528         block_t blk_addr = 0;
3529         int err = 0;
3530
3531         /* get segment number and block addr */
3532         if (IS_DATASEG(type)) {
3533                 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3534                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3535                                                         CURSEG_HOT_DATA]);
3536                 if (__exist_node_summaries(sbi))
3537                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
3538                 else
3539                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3540         } else {
3541                 segno = le32_to_cpu(ckpt->cur_node_segno[type -
3542                                                         CURSEG_HOT_NODE]);
3543                 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3544                                                         CURSEG_HOT_NODE]);
3545                 if (__exist_node_summaries(sbi))
3546                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3547                                                         type - CURSEG_HOT_NODE);
3548                 else
3549                         blk_addr = GET_SUM_BLOCK(sbi, segno);
3550         }
3551
3552         new = f2fs_get_meta_page(sbi, blk_addr);
3553         if (IS_ERR(new))
3554                 return PTR_ERR(new);
3555         sum = (struct f2fs_summary_block *)page_address(new);
3556
3557         if (IS_NODESEG(type)) {
3558                 if (__exist_node_summaries(sbi)) {
3559                         struct f2fs_summary *ns = &sum->entries[0];
3560                         int i;
3561                         for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3562                                 ns->version = 0;
3563                                 ns->ofs_in_node = 0;
3564                         }
3565                 } else {
3566                         err = f2fs_restore_node_summary(sbi, segno, sum);
3567                         if (err)
3568                                 goto out;
3569                 }
3570         }
3571
3572         /* set uncompleted segment to curseg */
3573         curseg = CURSEG_I(sbi, type);
3574         mutex_lock(&curseg->curseg_mutex);
3575
3576         /* update journal info */
3577         down_write(&curseg->journal_rwsem);
3578         memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3579         up_write(&curseg->journal_rwsem);
3580
3581         memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3582         memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3583         curseg->next_segno = segno;
3584         reset_curseg(sbi, type, 0);
3585         curseg->alloc_type = ckpt->alloc_type[type];
3586         curseg->next_blkoff = blk_off;
3587         mutex_unlock(&curseg->curseg_mutex);
3588 out:
3589         f2fs_put_page(new, 1);
3590         return err;
3591 }
3592
3593 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3594 {
3595         struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3596         struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3597         int type = CURSEG_HOT_DATA;
3598         int err;
3599
3600         if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
3601                 int npages = f2fs_npages_for_summary_flush(sbi, true);
3602
3603                 if (npages >= 2)
3604                         f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
3605                                                         META_CP, true);
3606
3607                 /* restore for compacted data summary */
3608                 err = read_compacted_summaries(sbi);
3609                 if (err)
3610                         return err;
3611                 type = CURSEG_HOT_NODE;
3612         }
3613
3614         if (__exist_node_summaries(sbi))
3615                 f2fs_ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
3616                                         NR_CURSEG_TYPE - type, META_CP, true);
3617
3618         for (; type <= CURSEG_COLD_NODE; type++) {
3619                 err = read_normal_summaries(sbi, type);
3620                 if (err)
3621                         return err;
3622         }
3623
3624         /* sanity check for summary blocks */
3625         if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
3626                         sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
3627                 f2fs_err(sbi, "invalid journal entries nats %u sits %u\n",
3628                          nats_in_cursum(nat_j), sits_in_cursum(sit_j));
3629                 return -EINVAL;
3630         }
3631
3632         return 0;
3633 }
3634
3635 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
3636 {
3637         struct page *page;
3638         unsigned char *kaddr;
3639         struct f2fs_summary *summary;
3640         struct curseg_info *seg_i;
3641         int written_size = 0;
3642         int i, j;
3643
3644         page = f2fs_grab_meta_page(sbi, blkaddr++);
3645         kaddr = (unsigned char *)page_address(page);
3646         memset(kaddr, 0, PAGE_SIZE);
3647
3648         /* Step 1: write nat cache */
3649         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3650         memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
3651         written_size += SUM_JOURNAL_SIZE;
3652
3653         /* Step 2: write sit cache */
3654         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3655         memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
3656         written_size += SUM_JOURNAL_SIZE;
3657
3658         /* Step 3: write summary entries */
3659         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3660                 unsigned short blkoff;
3661                 seg_i = CURSEG_I(sbi, i);
3662                 if (sbi->ckpt->alloc_type[i] == SSR)
3663                         blkoff = sbi->blocks_per_seg;
3664                 else
3665                         blkoff = curseg_blkoff(sbi, i);
3666
3667                 for (j = 0; j < blkoff; j++) {
3668                         if (!page) {
3669                                 page = f2fs_grab_meta_page(sbi, blkaddr++);
3670                                 kaddr = (unsigned char *)page_address(page);
3671                                 memset(kaddr, 0, PAGE_SIZE);
3672                                 written_size = 0;
3673                         }
3674                         summary = (struct f2fs_summary *)(kaddr + written_size);
3675                         *summary = seg_i->sum_blk->entries[j];
3676                         written_size += SUMMARY_SIZE;
3677
3678                         if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
3679                                                         SUM_FOOTER_SIZE)
3680                                 continue;
3681
3682                         set_page_dirty(page);
3683                         f2fs_put_page(page, 1);
3684                         page = NULL;
3685                 }
3686         }
3687         if (page) {
3688                 set_page_dirty(page);
3689                 f2fs_put_page(page, 1);
3690         }
3691 }
3692
3693 static void write_normal_summaries(struct f2fs_sb_info *sbi,
3694                                         block_t blkaddr, int type)
3695 {
3696         int i, end;
3697         if (IS_DATASEG(type))
3698                 end = type + NR_CURSEG_DATA_TYPE;
3699         else
3700                 end = type + NR_CURSEG_NODE_TYPE;
3701
3702         for (i = type; i < end; i++)
3703                 write_current_sum_page(sbi, i, blkaddr + (i - type));
3704 }
3705
3706 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3707 {
3708         if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
3709                 write_compacted_summaries(sbi, start_blk);
3710         else
3711                 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
3712 }
3713
3714 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3715 {
3716         write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
3717 }
3718
3719 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3720                                         unsigned int val, int alloc)
3721 {
3722         int i;
3723
3724         if (type == NAT_JOURNAL) {
3725                 for (i = 0; i < nats_in_cursum(journal); i++) {
3726                         if (le32_to_cpu(nid_in_journal(journal, i)) == val)
3727                                 return i;
3728                 }
3729                 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
3730                         return update_nats_in_cursum(journal, 1);
3731         } else if (type == SIT_JOURNAL) {
3732                 for (i = 0; i < sits_in_cursum(journal); i++)
3733                         if (le32_to_cpu(segno_in_journal(journal, i)) == val)
3734                                 return i;
3735                 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
3736                         return update_sits_in_cursum(journal, 1);
3737         }
3738         return -1;
3739 }
3740
3741 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
3742                                         unsigned int segno)
3743 {
3744         return f2fs_get_meta_page_nofail(sbi, current_sit_addr(sbi, segno));
3745 }
3746
3747 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
3748                                         unsigned int start)
3749 {
3750         struct sit_info *sit_i = SIT_I(sbi);
3751         struct page *page;
3752         pgoff_t src_off, dst_off;
3753
3754         src_off = current_sit_addr(sbi, start);
3755         dst_off = next_sit_addr(sbi, src_off);
3756
3757         page = f2fs_grab_meta_page(sbi, dst_off);
3758         seg_info_to_sit_page(sbi, page, start);
3759
3760         set_page_dirty(page);
3761         set_to_next_sit(sit_i, start);
3762
3763         return page;
3764 }
3765
3766 static struct sit_entry_set *grab_sit_entry_set(void)
3767 {
3768         struct sit_entry_set *ses =
3769                         f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
3770
3771         ses->entry_cnt = 0;
3772         INIT_LIST_HEAD(&ses->set_list);
3773         return ses;
3774 }
3775
3776 static void release_sit_entry_set(struct sit_entry_set *ses)
3777 {
3778         list_del(&ses->set_list);
3779         kmem_cache_free(sit_entry_set_slab, ses);
3780 }
3781
3782 static void adjust_sit_entry_set(struct sit_entry_set *ses,
3783                                                 struct list_head *head)
3784 {
3785         struct sit_entry_set *next = ses;
3786
3787         if (list_is_last(&ses->set_list, head))
3788                 return;
3789
3790         list_for_each_entry_continue(next, head, set_list)
3791                 if (ses->entry_cnt <= next->entry_cnt)
3792                         break;
3793
3794         list_move_tail(&ses->set_list, &next->set_list);
3795 }
3796
3797 static void add_sit_entry(unsigned int segno, struct list_head *head)
3798 {
3799         struct sit_entry_set *ses;
3800         unsigned int start_segno = START_SEGNO(segno);
3801
3802         list_for_each_entry(ses, head, set_list) {
3803                 if (ses->start_segno == start_segno) {
3804                         ses->entry_cnt++;
3805                         adjust_sit_entry_set(ses, head);
3806                         return;
3807                 }
3808         }
3809
3810         ses = grab_sit_entry_set();
3811
3812         ses->start_segno = start_segno;
3813         ses->entry_cnt++;
3814         list_add(&ses->set_list, head);
3815 }
3816
3817 static void add_sits_in_set(struct f2fs_sb_info *sbi)
3818 {
3819         struct f2fs_sm_info *sm_info = SM_I(sbi);
3820         struct list_head *set_list = &sm_info->sit_entry_set;
3821         unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
3822         unsigned int segno;
3823
3824         for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
3825                 add_sit_entry(segno, set_list);
3826 }
3827
3828 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
3829 {
3830         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3831         struct f2fs_journal *journal = curseg->journal;
3832         int i;
3833
3834         down_write(&curseg->journal_rwsem);
3835         for (i = 0; i < sits_in_cursum(journal); i++) {
3836                 unsigned int segno;
3837                 bool dirtied;
3838
3839                 segno = le32_to_cpu(segno_in_journal(journal, i));
3840                 dirtied = __mark_sit_entry_dirty(sbi, segno);
3841
3842                 if (!dirtied)
3843                         add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
3844         }
3845         update_sits_in_cursum(journal, -i);
3846         up_write(&curseg->journal_rwsem);
3847 }
3848
3849 /*
3850  * CP calls this function, which flushes SIT entries including sit_journal,
3851  * and moves prefree segs to free segs.
3852  */
3853 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3854 {
3855         struct sit_info *sit_i = SIT_I(sbi);
3856         unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
3857         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3858         struct f2fs_journal *journal = curseg->journal;
3859         struct sit_entry_set *ses, *tmp;
3860         struct list_head *head = &SM_I(sbi)->sit_entry_set;
3861         bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
3862         struct seg_entry *se;
3863
3864         down_write(&sit_i->sentry_lock);
3865
3866         if (!sit_i->dirty_sentries)
3867                 goto out;
3868
3869         /*
3870          * add and account sit entries of dirty bitmap in sit entry
3871          * set temporarily
3872          */
3873         add_sits_in_set(sbi);
3874
3875         /*
3876          * if there are no enough space in journal to store dirty sit
3877          * entries, remove all entries from journal and add and account
3878          * them in sit entry set.
3879          */
3880         if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
3881                                                                 !to_journal)
3882                 remove_sits_in_journal(sbi);
3883
3884         /*
3885          * there are two steps to flush sit entries:
3886          * #1, flush sit entries to journal in current cold data summary block.
3887          * #2, flush sit entries to sit page.
3888          */
3889         list_for_each_entry_safe(ses, tmp, head, set_list) {
3890                 struct page *page = NULL;
3891                 struct f2fs_sit_block *raw_sit = NULL;
3892                 unsigned int start_segno = ses->start_segno;
3893                 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
3894                                                 (unsigned long)MAIN_SEGS(sbi));
3895                 unsigned int segno = start_segno;
3896
3897                 if (to_journal &&
3898                         !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
3899                         to_journal = false;
3900
3901                 if (to_journal) {
3902                         down_write(&curseg->journal_rwsem);
3903                 } else {
3904                         page = get_next_sit_page(sbi, start_segno);
3905                         raw_sit = page_address(page);
3906                 }
3907
3908                 /* flush dirty sit entries in region of current sit set */
3909                 for_each_set_bit_from(segno, bitmap, end) {
3910                         int offset, sit_offset;
3911
3912                         se = get_seg_entry(sbi, segno);
3913 #ifdef CONFIG_F2FS_CHECK_FS
3914                         if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
3915                                                 SIT_VBLOCK_MAP_SIZE))
3916                                 f2fs_bug_on(sbi, 1);
3917 #endif
3918
3919                         /* add discard candidates */
3920                         if (!(cpc->reason & CP_DISCARD)) {
3921                                 cpc->trim_start = segno;
3922                                 add_discard_addrs(sbi, cpc, false);
3923                         }
3924
3925                         if (to_journal) {
3926                                 offset = f2fs_lookup_journal_in_cursum(journal,
3927                                                         SIT_JOURNAL, segno, 1);
3928                                 f2fs_bug_on(sbi, offset < 0);
3929                                 segno_in_journal(journal, offset) =
3930                                                         cpu_to_le32(segno);
3931                                 seg_info_to_raw_sit(se,
3932                                         &sit_in_journal(journal, offset));
3933                                 check_block_count(sbi, segno,
3934                                         &sit_in_journal(journal, offset));
3935                         } else {
3936                                 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
3937                                 seg_info_to_raw_sit(se,
3938                                                 &raw_sit->entries[sit_offset]);
3939                                 check_block_count(sbi, segno,
3940                                                 &raw_sit->entries[sit_offset]);
3941                         }
3942
3943                         __clear_bit(segno, bitmap);
3944                         sit_i->dirty_sentries--;
3945                         ses->entry_cnt--;
3946                 }
3947
3948                 if (to_journal)
3949                         up_write(&curseg->journal_rwsem);
3950                 else
3951                         f2fs_put_page(page, 1);
3952
3953                 f2fs_bug_on(sbi, ses->entry_cnt);
3954                 release_sit_entry_set(ses);
3955         }
3956
3957         f2fs_bug_on(sbi, !list_empty(head));
3958         f2fs_bug_on(sbi, sit_i->dirty_sentries);
3959 out:
3960         if (cpc->reason & CP_DISCARD) {
3961                 __u64 trim_start = cpc->trim_start;
3962
3963                 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
3964                         add_discard_addrs(sbi, cpc, false);
3965
3966                 cpc->trim_start = trim_start;
3967         }
3968         up_write(&sit_i->sentry_lock);
3969
3970         set_prefree_as_free_segments(sbi);
3971 }
3972
3973 static int build_sit_info(struct f2fs_sb_info *sbi)
3974 {
3975         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3976         struct sit_info *sit_i;
3977         unsigned int sit_segs, start;
3978         char *src_bitmap, *bitmap;
3979         unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
3980
3981         /* allocate memory for SIT information */
3982         sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
3983         if (!sit_i)
3984                 return -ENOMEM;
3985
3986         SM_I(sbi)->sit_info = sit_i;
3987
3988         sit_i->sentries =
3989                 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
3990                                               MAIN_SEGS(sbi)),
3991                               GFP_KERNEL);
3992         if (!sit_i->sentries)
3993                 return -ENOMEM;
3994
3995         main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
3996         sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
3997                                                                 GFP_KERNEL);
3998         if (!sit_i->dirty_sentries_bitmap)
3999                 return -ENOMEM;
4000
4001 #ifdef CONFIG_F2FS_CHECK_FS
4002         bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 4;
4003 #else
4004         bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 3;
4005 #endif
4006         sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4007         if (!sit_i->bitmap)
4008                 return -ENOMEM;
4009
4010         bitmap = sit_i->bitmap;
4011
4012         for (start = 0; start < MAIN_SEGS(sbi); start++) {
4013                 sit_i->sentries[start].cur_valid_map = bitmap;
4014                 bitmap += SIT_VBLOCK_MAP_SIZE;
4015
4016                 sit_i->sentries[start].ckpt_valid_map = bitmap;
4017                 bitmap += SIT_VBLOCK_MAP_SIZE;
4018
4019 #ifdef CONFIG_F2FS_CHECK_FS
4020                 sit_i->sentries[start].cur_valid_map_mir = bitmap;
4021                 bitmap += SIT_VBLOCK_MAP_SIZE;
4022 #endif
4023
4024                 sit_i->sentries[start].discard_map = bitmap;
4025                 bitmap += SIT_VBLOCK_MAP_SIZE;
4026         }
4027
4028         sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
4029         if (!sit_i->tmp_map)
4030                 return -ENOMEM;
4031
4032         if (__is_large_section(sbi)) {
4033                 sit_i->sec_entries =
4034                         f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
4035                                                       MAIN_SECS(sbi)),
4036                                       GFP_KERNEL);
4037                 if (!sit_i->sec_entries)
4038                         return -ENOMEM;
4039         }
4040
4041         /* get information related with SIT */
4042         sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4043
4044         /* setup SIT bitmap from ckeckpoint pack */
4045         sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4046         src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4047
4048         sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4049         if (!sit_i->sit_bitmap)
4050                 return -ENOMEM;
4051
4052 #ifdef CONFIG_F2FS_CHECK_FS
4053         sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4054                                         sit_bitmap_size, GFP_KERNEL);
4055         if (!sit_i->sit_bitmap_mir)
4056                 return -ENOMEM;
4057
4058         sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4059                                         main_bitmap_size, GFP_KERNEL);
4060         if (!sit_i->invalid_segmap)
4061                 return -ENOMEM;
4062 #endif
4063
4064         /* init SIT information */
4065         sit_i->s_ops = &default_salloc_ops;
4066
4067         sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4068         sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
4069         sit_i->written_valid_blocks = 0;
4070         sit_i->bitmap_size = sit_bitmap_size;
4071         sit_i->dirty_sentries = 0;
4072         sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4073         sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4074         sit_i->mounted_time = ktime_get_real_seconds();
4075         init_rwsem(&sit_i->sentry_lock);
4076         return 0;
4077 }
4078
4079 static int build_free_segmap(struct f2fs_sb_info *sbi)
4080 {
4081         struct free_segmap_info *free_i;
4082         unsigned int bitmap_size, sec_bitmap_size;
4083
4084         /* allocate memory for free segmap information */
4085         free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4086         if (!free_i)
4087                 return -ENOMEM;
4088
4089         SM_I(sbi)->free_info = free_i;
4090
4091         bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4092         free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4093         if (!free_i->free_segmap)
4094                 return -ENOMEM;
4095
4096         sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4097         free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4098         if (!free_i->free_secmap)
4099                 return -ENOMEM;
4100
4101         /* set all segments as dirty temporarily */
4102         memset(free_i->free_segmap, 0xff, bitmap_size);
4103         memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4104
4105         /* init free segmap information */
4106         free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4107         free_i->free_segments = 0;
4108         free_i->free_sections = 0;
4109         spin_lock_init(&free_i->segmap_lock);
4110         return 0;
4111 }
4112
4113 static int build_curseg(struct f2fs_sb_info *sbi)
4114 {
4115         struct curseg_info *array;
4116         int i;
4117
4118         array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE, sizeof(*array)),
4119                              GFP_KERNEL);
4120         if (!array)
4121                 return -ENOMEM;
4122
4123         SM_I(sbi)->curseg_array = array;
4124
4125         for (i = 0; i < NR_CURSEG_TYPE; i++) {
4126                 mutex_init(&array[i].curseg_mutex);
4127                 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4128                 if (!array[i].sum_blk)
4129                         return -ENOMEM;
4130                 init_rwsem(&array[i].journal_rwsem);
4131                 array[i].journal = f2fs_kzalloc(sbi,
4132                                 sizeof(struct f2fs_journal), GFP_KERNEL);
4133                 if (!array[i].journal)
4134                         return -ENOMEM;
4135                 array[i].segno = NULL_SEGNO;
4136                 array[i].next_blkoff = 0;
4137         }
4138         return restore_curseg_summaries(sbi);
4139 }
4140
4141 static int build_sit_entries(struct f2fs_sb_info *sbi)
4142 {
4143         struct sit_info *sit_i = SIT_I(sbi);
4144         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4145         struct f2fs_journal *journal = curseg->journal;
4146         struct seg_entry *se;
4147         struct f2fs_sit_entry sit;
4148         int sit_blk_cnt = SIT_BLK_CNT(sbi);
4149         unsigned int i, start, end;
4150         unsigned int readed, start_blk = 0;
4151         int err = 0;
4152         block_t total_node_blocks = 0;
4153
4154         do {
4155                 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES,
4156                                                         META_SIT, true);
4157
4158                 start = start_blk * sit_i->sents_per_block;
4159                 end = (start_blk + readed) * sit_i->sents_per_block;
4160
4161                 for (; start < end && start < MAIN_SEGS(sbi); start++) {
4162                         struct f2fs_sit_block *sit_blk;
4163                         struct page *page;
4164
4165                         se = &sit_i->sentries[start];
4166                         page = get_current_sit_page(sbi, start);
4167                         if (IS_ERR(page))
4168                                 return PTR_ERR(page);
4169                         sit_blk = (struct f2fs_sit_block *)page_address(page);
4170                         sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4171                         f2fs_put_page(page, 1);
4172
4173                         err = check_block_count(sbi, start, &sit);
4174                         if (err)
4175                                 return err;
4176                         seg_info_from_raw_sit(se, &sit);
4177                         if (IS_NODESEG(se->type))
4178                                 total_node_blocks += se->valid_blocks;
4179
4180                         /* build discard map only one time */
4181                         if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4182                                 memset(se->discard_map, 0xff,
4183                                         SIT_VBLOCK_MAP_SIZE);
4184                         } else {
4185                                 memcpy(se->discard_map,
4186                                         se->cur_valid_map,
4187                                         SIT_VBLOCK_MAP_SIZE);
4188                                 sbi->discard_blks +=
4189                                         sbi->blocks_per_seg -
4190                                         se->valid_blocks;
4191                         }
4192
4193                         if (__is_large_section(sbi))
4194                                 get_sec_entry(sbi, start)->valid_blocks +=
4195                                                         se->valid_blocks;
4196                 }
4197                 start_blk += readed;
4198         } while (start_blk < sit_blk_cnt);
4199
4200         down_read(&curseg->journal_rwsem);
4201         for (i = 0; i < sits_in_cursum(journal); i++) {
4202                 unsigned int old_valid_blocks;
4203
4204                 start = le32_to_cpu(segno_in_journal(journal, i));
4205                 if (start >= MAIN_SEGS(sbi)) {
4206                         f2fs_err(sbi, "Wrong journal entry on segno %u",
4207                                  start);
4208                         err = -EFSCORRUPTED;
4209                         break;
4210                 }
4211
4212                 se = &sit_i->sentries[start];
4213                 sit = sit_in_journal(journal, i);
4214
4215                 old_valid_blocks = se->valid_blocks;
4216                 if (IS_NODESEG(se->type))
4217                         total_node_blocks -= old_valid_blocks;
4218
4219                 err = check_block_count(sbi, start, &sit);
4220                 if (err)
4221                         break;
4222                 seg_info_from_raw_sit(se, &sit);
4223                 if (IS_NODESEG(se->type))
4224                         total_node_blocks += se->valid_blocks;
4225
4226                 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4227                         memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4228                 } else {
4229                         memcpy(se->discard_map, se->cur_valid_map,
4230                                                 SIT_VBLOCK_MAP_SIZE);
4231                         sbi->discard_blks += old_valid_blocks;
4232                         sbi->discard_blks -= se->valid_blocks;
4233                 }
4234
4235                 if (__is_large_section(sbi)) {
4236                         get_sec_entry(sbi, start)->valid_blocks +=
4237                                                         se->valid_blocks;
4238                         get_sec_entry(sbi, start)->valid_blocks -=
4239                                                         old_valid_blocks;
4240                 }
4241         }
4242         up_read(&curseg->journal_rwsem);
4243
4244         if (!err && total_node_blocks != valid_node_count(sbi)) {
4245                 f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
4246                          total_node_blocks, valid_node_count(sbi));
4247                 err = -EFSCORRUPTED;
4248         }
4249
4250         return err;
4251 }
4252
4253 static void init_free_segmap(struct f2fs_sb_info *sbi)
4254 {
4255         unsigned int start;
4256         int type;
4257
4258         for (start = 0; start < MAIN_SEGS(sbi); start++) {
4259                 struct seg_entry *sentry = get_seg_entry(sbi, start);
4260                 if (!sentry->valid_blocks)
4261                         __set_free(sbi, start);
4262                 else
4263                         SIT_I(sbi)->written_valid_blocks +=
4264                                                 sentry->valid_blocks;
4265         }
4266
4267         /* set use the current segments */
4268         for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4269                 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4270                 __set_test_and_inuse(sbi, curseg_t->segno);
4271         }
4272 }
4273
4274 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4275 {
4276         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4277         struct free_segmap_info *free_i = FREE_I(sbi);
4278         unsigned int segno = 0, offset = 0;
4279         unsigned short valid_blocks;
4280
4281         while (1) {
4282                 /* find dirty segment based on free segmap */
4283                 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4284                 if (segno >= MAIN_SEGS(sbi))
4285                         break;
4286                 offset = segno + 1;
4287                 valid_blocks = get_valid_blocks(sbi, segno, false);
4288                 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
4289                         continue;
4290                 if (valid_blocks > sbi->blocks_per_seg) {
4291                         f2fs_bug_on(sbi, 1);
4292                         continue;
4293                 }
4294                 mutex_lock(&dirty_i->seglist_lock);
4295                 __locate_dirty_segment(sbi, segno, DIRTY);
4296                 mutex_unlock(&dirty_i->seglist_lock);
4297         }
4298 }
4299
4300 static int init_victim_secmap(struct f2fs_sb_info *sbi)
4301 {
4302         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4303         unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4304
4305         dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4306         if (!dirty_i->victim_secmap)
4307                 return -ENOMEM;
4308         return 0;
4309 }
4310
4311 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4312 {
4313         struct dirty_seglist_info *dirty_i;
4314         unsigned int bitmap_size, i;
4315
4316         /* allocate memory for dirty segments list information */
4317         dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4318                                                                 GFP_KERNEL);
4319         if (!dirty_i)
4320                 return -ENOMEM;
4321
4322         SM_I(sbi)->dirty_info = dirty_i;
4323         mutex_init(&dirty_i->seglist_lock);
4324
4325         bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4326
4327         for (i = 0; i < NR_DIRTY_TYPE; i++) {
4328                 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4329                                                                 GFP_KERNEL);
4330                 if (!dirty_i->dirty_segmap[i])
4331                         return -ENOMEM;
4332         }
4333
4334         init_dirty_segmap(sbi);
4335         return init_victim_secmap(sbi);
4336 }
4337
4338 static int sanity_check_curseg(struct f2fs_sb_info *sbi)
4339 {
4340         int i;
4341
4342         /*
4343          * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
4344          * In LFS curseg, all blkaddr after .next_blkoff should be unused.
4345          */
4346         for (i = 0; i < NO_CHECK_TYPE; i++) {
4347                 struct curseg_info *curseg = CURSEG_I(sbi, i);
4348                 struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
4349                 unsigned int blkofs = curseg->next_blkoff;
4350
4351                 if (f2fs_test_bit(blkofs, se->cur_valid_map))
4352                         goto out;
4353
4354                 if (curseg->alloc_type == SSR)
4355                         continue;
4356
4357                 for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) {
4358                         if (!f2fs_test_bit(blkofs, se->cur_valid_map))
4359                                 continue;
4360 out:
4361                         f2fs_err(sbi,
4362                                  "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
4363                                  i, curseg->segno, curseg->alloc_type,
4364                                  curseg->next_blkoff, blkofs);
4365                         return -EFSCORRUPTED;
4366                 }
4367         }
4368         return 0;
4369 }
4370
4371 #ifdef CONFIG_BLK_DEV_ZONED
4372
4373 static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
4374                                     struct f2fs_dev_info *fdev,
4375                                     struct blk_zone *zone)
4376 {
4377         unsigned int wp_segno, wp_blkoff, zone_secno, zone_segno, segno;
4378         block_t zone_block, wp_block, last_valid_block;
4379         unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4380         int i, s, b, ret;
4381         struct seg_entry *se;
4382
4383         if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4384                 return 0;
4385
4386         wp_block = fdev->start_blk + (zone->wp >> log_sectors_per_block);
4387         wp_segno = GET_SEGNO(sbi, wp_block);
4388         wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4389         zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block);
4390         zone_segno = GET_SEGNO(sbi, zone_block);
4391         zone_secno = GET_SEC_FROM_SEG(sbi, zone_segno);
4392
4393         if (zone_segno >= MAIN_SEGS(sbi))
4394                 return 0;
4395
4396         /*
4397          * Skip check of zones cursegs point to, since
4398          * fix_curseg_write_pointer() checks them.
4399          */
4400         for (i = 0; i < NO_CHECK_TYPE; i++)
4401                 if (zone_secno == GET_SEC_FROM_SEG(sbi,
4402                                                    CURSEG_I(sbi, i)->segno))
4403                         return 0;
4404
4405         /*
4406          * Get last valid block of the zone.
4407          */
4408         last_valid_block = zone_block - 1;
4409         for (s = sbi->segs_per_sec - 1; s >= 0; s--) {
4410                 segno = zone_segno + s;
4411                 se = get_seg_entry(sbi, segno);
4412                 for (b = sbi->blocks_per_seg - 1; b >= 0; b--)
4413                         if (f2fs_test_bit(b, se->cur_valid_map)) {
4414                                 last_valid_block = START_BLOCK(sbi, segno) + b;
4415                                 break;
4416                         }
4417                 if (last_valid_block >= zone_block)
4418                         break;
4419         }
4420
4421         /*
4422          * If last valid block is beyond the write pointer, report the
4423          * inconsistency. This inconsistency does not cause write error
4424          * because the zone will not be selected for write operation until
4425          * it get discarded. Just report it.
4426          */
4427         if (last_valid_block >= wp_block) {
4428                 f2fs_notice(sbi, "Valid block beyond write pointer: "
4429                             "valid block[0x%x,0x%x] wp[0x%x,0x%x]",
4430                             GET_SEGNO(sbi, last_valid_block),
4431                             GET_BLKOFF_FROM_SEG0(sbi, last_valid_block),
4432                             wp_segno, wp_blkoff);
4433                 return 0;
4434         }
4435
4436         /*
4437          * If there is no valid block in the zone and if write pointer is
4438          * not at zone start, reset the write pointer.
4439          */
4440         if (last_valid_block + 1 == zone_block && zone->wp != zone->start) {
4441                 f2fs_notice(sbi,
4442                             "Zone without valid block has non-zero write "
4443                             "pointer. Reset the write pointer: wp[0x%x,0x%x]",
4444                             wp_segno, wp_blkoff);
4445                 ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
4446                                         zone->len >> log_sectors_per_block);
4447                 if (ret) {
4448                         f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4449                                  fdev->path, ret);
4450                         return ret;
4451                 }
4452         }
4453
4454         return 0;
4455 }
4456
4457 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
4458                                                   block_t zone_blkaddr)
4459 {
4460         int i;
4461
4462         for (i = 0; i < sbi->s_ndevs; i++) {
4463                 if (!bdev_is_zoned(FDEV(i).bdev))
4464                         continue;
4465                 if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
4466                                 zone_blkaddr <= FDEV(i).end_blk))
4467                         return &FDEV(i);
4468         }
4469
4470         return NULL;
4471 }
4472
4473 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
4474                               void *data) {
4475         memcpy(data, zone, sizeof(struct blk_zone));
4476         return 0;
4477 }
4478
4479 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
4480 {
4481         struct curseg_info *cs = CURSEG_I(sbi, type);
4482         struct f2fs_dev_info *zbd;
4483         struct blk_zone zone;
4484         unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
4485         block_t cs_zone_block, wp_block;
4486         unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4487         sector_t zone_sector;
4488         int err;
4489
4490         cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4491         cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4492
4493         zbd = get_target_zoned_dev(sbi, cs_zone_block);
4494         if (!zbd)
4495                 return 0;
4496
4497         /* report zone for the sector the curseg points to */
4498         zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4499                 << log_sectors_per_block;
4500         err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4501                                   report_one_zone_cb, &zone);
4502         if (err != 1) {
4503                 f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4504                          zbd->path, err);
4505                 return err;
4506         }
4507
4508         if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4509                 return 0;
4510
4511         wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block);
4512         wp_segno = GET_SEGNO(sbi, wp_block);
4513         wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4514         wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0);
4515
4516         if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
4517                 wp_sector_off == 0)
4518                 return 0;
4519
4520         f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
4521                     "curseg[0x%x,0x%x] wp[0x%x,0x%x]",
4522                     type, cs->segno, cs->next_blkoff, wp_segno, wp_blkoff);
4523
4524         f2fs_notice(sbi, "Assign new section to curseg[%d]: "
4525                     "curseg[0x%x,0x%x]", type, cs->segno, cs->next_blkoff);
4526         allocate_segment_by_default(sbi, type, true);
4527
4528         /* check consistency of the zone curseg pointed to */
4529         if (check_zone_write_pointer(sbi, zbd, &zone))
4530                 return -EIO;
4531
4532         /* check newly assigned zone */
4533         cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4534         cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4535
4536         zbd = get_target_zoned_dev(sbi, cs_zone_block);
4537         if (!zbd)
4538                 return 0;
4539
4540         zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4541                 << log_sectors_per_block;
4542         err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4543                                   report_one_zone_cb, &zone);
4544         if (err != 1) {
4545                 f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4546                          zbd->path, err);
4547                 return err;
4548         }
4549
4550         if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4551                 return 0;
4552
4553         if (zone.wp != zone.start) {
4554                 f2fs_notice(sbi,
4555                             "New zone for curseg[%d] is not yet discarded. "
4556                             "Reset the zone: curseg[0x%x,0x%x]",
4557                             type, cs->segno, cs->next_blkoff);
4558                 err = __f2fs_issue_discard_zone(sbi, zbd->bdev,
4559                                 zone_sector >> log_sectors_per_block,
4560                                 zone.len >> log_sectors_per_block);
4561                 if (err) {
4562                         f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4563                                  zbd->path, err);
4564                         return err;
4565                 }
4566         }
4567
4568         return 0;
4569 }
4570
4571 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
4572 {
4573         int i, ret;
4574
4575         for (i = 0; i < NO_CHECK_TYPE; i++) {
4576                 ret = fix_curseg_write_pointer(sbi, i);
4577                 if (ret)
4578                         return ret;
4579         }
4580
4581         return 0;
4582 }
4583
4584 struct check_zone_write_pointer_args {
4585         struct f2fs_sb_info *sbi;
4586         struct f2fs_dev_info *fdev;
4587 };
4588
4589 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
4590                                       void *data) {
4591         struct check_zone_write_pointer_args *args;
4592         args = (struct check_zone_write_pointer_args *)data;
4593
4594         return check_zone_write_pointer(args->sbi, args->fdev, zone);
4595 }
4596
4597 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
4598 {
4599         int i, ret;
4600         struct check_zone_write_pointer_args args;
4601
4602         for (i = 0; i < sbi->s_ndevs; i++) {
4603                 if (!bdev_is_zoned(FDEV(i).bdev))
4604                         continue;
4605
4606                 args.sbi = sbi;
4607                 args.fdev = &FDEV(i);
4608                 ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
4609                                           check_zone_write_pointer_cb, &args);
4610                 if (ret < 0)
4611                         return ret;
4612         }
4613
4614         return 0;
4615 }
4616 #else
4617 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
4618 {
4619         return 0;
4620 }
4621
4622 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
4623 {
4624         return 0;
4625 }
4626 #endif
4627
4628 /*
4629  * Update min, max modified time for cost-benefit GC algorithm
4630  */
4631 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
4632 {
4633         struct sit_info *sit_i = SIT_I(sbi);
4634         unsigned int segno;
4635
4636         down_write(&sit_i->sentry_lock);
4637
4638         sit_i->min_mtime = ULLONG_MAX;
4639
4640         for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
4641                 unsigned int i;
4642                 unsigned long long mtime = 0;
4643
4644                 for (i = 0; i < sbi->segs_per_sec; i++)
4645                         mtime += get_seg_entry(sbi, segno + i)->mtime;
4646
4647                 mtime = div_u64(mtime, sbi->segs_per_sec);
4648
4649                 if (sit_i->min_mtime > mtime)
4650                         sit_i->min_mtime = mtime;
4651         }
4652         sit_i->max_mtime = get_mtime(sbi, false);
4653         up_write(&sit_i->sentry_lock);
4654 }
4655
4656 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
4657 {
4658         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4659         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
4660         struct f2fs_sm_info *sm_info;
4661         int err;
4662
4663         sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
4664         if (!sm_info)
4665                 return -ENOMEM;
4666
4667         /* init sm info */
4668         sbi->sm_info = sm_info;
4669         sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
4670         sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
4671         sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
4672         sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
4673         sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
4674         sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
4675         sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
4676         sm_info->rec_prefree_segments = sm_info->main_segments *
4677                                         DEF_RECLAIM_PREFREE_SEGMENTS / 100;
4678         if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
4679                 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
4680
4681         if (!test_opt(sbi, LFS))
4682                 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
4683         sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
4684         sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
4685         sm_info->min_seq_blocks = sbi->blocks_per_seg * sbi->segs_per_sec;
4686         sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
4687         sm_info->min_ssr_sections = reserved_sections(sbi);
4688
4689         INIT_LIST_HEAD(&sm_info->sit_entry_set);
4690
4691         init_rwsem(&sm_info->curseg_lock);
4692
4693         if (!f2fs_readonly(sbi->sb)) {
4694                 err = f2fs_create_flush_cmd_control(sbi);
4695                 if (err)
4696                         return err;
4697         }
4698
4699         err = create_discard_cmd_control(sbi);
4700         if (err)
4701                 return err;
4702
4703         err = build_sit_info(sbi);
4704         if (err)
4705                 return err;
4706         err = build_free_segmap(sbi);
4707         if (err)
4708                 return err;
4709         err = build_curseg(sbi);
4710         if (err)
4711                 return err;
4712
4713         /* reinit free segmap based on SIT */
4714         err = build_sit_entries(sbi);
4715         if (err)
4716                 return err;
4717
4718         init_free_segmap(sbi);
4719         err = build_dirty_segmap(sbi);
4720         if (err)
4721                 return err;
4722
4723         err = sanity_check_curseg(sbi);
4724         if (err)
4725                 return err;
4726
4727         init_min_max_mtime(sbi);
4728         return 0;
4729 }
4730
4731 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
4732                 enum dirty_type dirty_type)
4733 {
4734         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4735
4736         mutex_lock(&dirty_i->seglist_lock);
4737         kvfree(dirty_i->dirty_segmap[dirty_type]);
4738         dirty_i->nr_dirty[dirty_type] = 0;
4739         mutex_unlock(&dirty_i->seglist_lock);
4740 }
4741
4742 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
4743 {
4744         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4745         kvfree(dirty_i->victim_secmap);
4746 }
4747
4748 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
4749 {
4750         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4751         int i;
4752
4753         if (!dirty_i)
4754                 return;
4755
4756         /* discard pre-free/dirty segments list */
4757         for (i = 0; i < NR_DIRTY_TYPE; i++)
4758                 discard_dirty_segmap(sbi, i);
4759
4760         destroy_victim_secmap(sbi);
4761         SM_I(sbi)->dirty_info = NULL;
4762         kvfree(dirty_i);
4763 }
4764
4765 static void destroy_curseg(struct f2fs_sb_info *sbi)
4766 {
4767         struct curseg_info *array = SM_I(sbi)->curseg_array;
4768         int i;
4769
4770         if (!array)
4771                 return;
4772         SM_I(sbi)->curseg_array = NULL;
4773         for (i = 0; i < NR_CURSEG_TYPE; i++) {
4774                 kvfree(array[i].sum_blk);
4775                 kvfree(array[i].journal);
4776         }
4777         kvfree(array);
4778 }
4779
4780 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
4781 {
4782         struct free_segmap_info *free_i = SM_I(sbi)->free_info;
4783         if (!free_i)
4784                 return;
4785         SM_I(sbi)->free_info = NULL;
4786         kvfree(free_i->free_segmap);
4787         kvfree(free_i->free_secmap);
4788         kvfree(free_i);
4789 }
4790
4791 static void destroy_sit_info(struct f2fs_sb_info *sbi)
4792 {
4793         struct sit_info *sit_i = SIT_I(sbi);
4794
4795         if (!sit_i)
4796                 return;
4797
4798         if (sit_i->sentries)
4799                 kvfree(sit_i->bitmap);
4800         kvfree(sit_i->tmp_map);
4801
4802         kvfree(sit_i->sentries);
4803         kvfree(sit_i->sec_entries);
4804         kvfree(sit_i->dirty_sentries_bitmap);
4805
4806         SM_I(sbi)->sit_info = NULL;
4807         kvfree(sit_i->sit_bitmap);
4808 #ifdef CONFIG_F2FS_CHECK_FS
4809         kvfree(sit_i->sit_bitmap_mir);
4810         kvfree(sit_i->invalid_segmap);
4811 #endif
4812         kvfree(sit_i);
4813 }
4814
4815 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
4816 {
4817         struct f2fs_sm_info *sm_info = SM_I(sbi);
4818
4819         if (!sm_info)
4820                 return;
4821         f2fs_destroy_flush_cmd_control(sbi, true);
4822         destroy_discard_cmd_control(sbi);
4823         destroy_dirty_segmap(sbi);
4824         destroy_curseg(sbi);
4825         destroy_free_segmap(sbi);
4826         destroy_sit_info(sbi);
4827         sbi->sm_info = NULL;
4828         kvfree(sm_info);
4829 }
4830
4831 int __init f2fs_create_segment_manager_caches(void)
4832 {
4833         discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
4834                         sizeof(struct discard_entry));
4835         if (!discard_entry_slab)
4836                 goto fail;
4837
4838         discard_cmd_slab = f2fs_kmem_cache_create("discard_cmd",
4839                         sizeof(struct discard_cmd));
4840         if (!discard_cmd_slab)
4841                 goto destroy_discard_entry;
4842
4843         sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
4844                         sizeof(struct sit_entry_set));
4845         if (!sit_entry_set_slab)
4846                 goto destroy_discard_cmd;
4847
4848         inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
4849                         sizeof(struct inmem_pages));
4850         if (!inmem_entry_slab)
4851                 goto destroy_sit_entry_set;
4852         return 0;
4853
4854 destroy_sit_entry_set:
4855         kmem_cache_destroy(sit_entry_set_slab);
4856 destroy_discard_cmd:
4857         kmem_cache_destroy(discard_cmd_slab);
4858 destroy_discard_entry:
4859         kmem_cache_destroy(discard_entry_slab);
4860 fail:
4861         return -ENOMEM;
4862 }
4863
4864 void f2fs_destroy_segment_manager_caches(void)
4865 {
4866         kmem_cache_destroy(sit_entry_set_slab);
4867         kmem_cache_destroy(discard_cmd_slab);
4868         kmem_cache_destroy(discard_entry_slab);
4869         kmem_cache_destroy(inmem_entry_slab);
4870 }