Merge tag 'timers-v5.9' of https://git.linaro.org/people/daniel.lezcano/linux into...
[linux-2.6-microblaze.git] / fs / f2fs / segment.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/segment.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/prefetch.h>
13 #include <linux/kthread.h>
14 #include <linux/swap.h>
15 #include <linux/timer.h>
16 #include <linux/freezer.h>
17 #include <linux/sched/signal.h>
18
19 #include "f2fs.h"
20 #include "segment.h"
21 #include "node.h"
22 #include "gc.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25
26 #define __reverse_ffz(x) __reverse_ffs(~(x))
27
28 static struct kmem_cache *discard_entry_slab;
29 static struct kmem_cache *discard_cmd_slab;
30 static struct kmem_cache *sit_entry_set_slab;
31 static struct kmem_cache *inmem_entry_slab;
32
33 static unsigned long __reverse_ulong(unsigned char *str)
34 {
35         unsigned long tmp = 0;
36         int shift = 24, idx = 0;
37
38 #if BITS_PER_LONG == 64
39         shift = 56;
40 #endif
41         while (shift >= 0) {
42                 tmp |= (unsigned long)str[idx++] << shift;
43                 shift -= BITS_PER_BYTE;
44         }
45         return tmp;
46 }
47
48 /*
49  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
50  * MSB and LSB are reversed in a byte by f2fs_set_bit.
51  */
52 static inline unsigned long __reverse_ffs(unsigned long word)
53 {
54         int num = 0;
55
56 #if BITS_PER_LONG == 64
57         if ((word & 0xffffffff00000000UL) == 0)
58                 num += 32;
59         else
60                 word >>= 32;
61 #endif
62         if ((word & 0xffff0000) == 0)
63                 num += 16;
64         else
65                 word >>= 16;
66
67         if ((word & 0xff00) == 0)
68                 num += 8;
69         else
70                 word >>= 8;
71
72         if ((word & 0xf0) == 0)
73                 num += 4;
74         else
75                 word >>= 4;
76
77         if ((word & 0xc) == 0)
78                 num += 2;
79         else
80                 word >>= 2;
81
82         if ((word & 0x2) == 0)
83                 num += 1;
84         return num;
85 }
86
87 /*
88  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
89  * f2fs_set_bit makes MSB and LSB reversed in a byte.
90  * @size must be integral times of unsigned long.
91  * Example:
92  *                             MSB <--> LSB
93  *   f2fs_set_bit(0, bitmap) => 1000 0000
94  *   f2fs_set_bit(7, bitmap) => 0000 0001
95  */
96 static unsigned long __find_rev_next_bit(const unsigned long *addr,
97                         unsigned long size, unsigned long offset)
98 {
99         const unsigned long *p = addr + BIT_WORD(offset);
100         unsigned long result = size;
101         unsigned long tmp;
102
103         if (offset >= size)
104                 return size;
105
106         size -= (offset & ~(BITS_PER_LONG - 1));
107         offset %= BITS_PER_LONG;
108
109         while (1) {
110                 if (*p == 0)
111                         goto pass;
112
113                 tmp = __reverse_ulong((unsigned char *)p);
114
115                 tmp &= ~0UL >> offset;
116                 if (size < BITS_PER_LONG)
117                         tmp &= (~0UL << (BITS_PER_LONG - size));
118                 if (tmp)
119                         goto found;
120 pass:
121                 if (size <= BITS_PER_LONG)
122                         break;
123                 size -= BITS_PER_LONG;
124                 offset = 0;
125                 p++;
126         }
127         return result;
128 found:
129         return result - size + __reverse_ffs(tmp);
130 }
131
132 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
133                         unsigned long size, unsigned long offset)
134 {
135         const unsigned long *p = addr + BIT_WORD(offset);
136         unsigned long result = size;
137         unsigned long tmp;
138
139         if (offset >= size)
140                 return size;
141
142         size -= (offset & ~(BITS_PER_LONG - 1));
143         offset %= BITS_PER_LONG;
144
145         while (1) {
146                 if (*p == ~0UL)
147                         goto pass;
148
149                 tmp = __reverse_ulong((unsigned char *)p);
150
151                 if (offset)
152                         tmp |= ~0UL << (BITS_PER_LONG - offset);
153                 if (size < BITS_PER_LONG)
154                         tmp |= ~0UL >> size;
155                 if (tmp != ~0UL)
156                         goto found;
157 pass:
158                 if (size <= BITS_PER_LONG)
159                         break;
160                 size -= BITS_PER_LONG;
161                 offset = 0;
162                 p++;
163         }
164         return result;
165 found:
166         return result - size + __reverse_ffz(tmp);
167 }
168
169 bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
170 {
171         int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
172         int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
173         int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
174
175         if (f2fs_lfs_mode(sbi))
176                 return false;
177         if (sbi->gc_mode == GC_URGENT)
178                 return true;
179         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
180                 return true;
181
182         return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
183                         SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
184 }
185
186 void f2fs_register_inmem_page(struct inode *inode, struct page *page)
187 {
188         struct inmem_pages *new;
189
190         f2fs_trace_pid(page);
191
192         f2fs_set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
193
194         new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
195
196         /* add atomic page indices to the list */
197         new->page = page;
198         INIT_LIST_HEAD(&new->list);
199
200         /* increase reference count with clean state */
201         get_page(page);
202         mutex_lock(&F2FS_I(inode)->inmem_lock);
203         list_add_tail(&new->list, &F2FS_I(inode)->inmem_pages);
204         inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
205         mutex_unlock(&F2FS_I(inode)->inmem_lock);
206
207         trace_f2fs_register_inmem_page(page, INMEM);
208 }
209
210 static int __revoke_inmem_pages(struct inode *inode,
211                                 struct list_head *head, bool drop, bool recover,
212                                 bool trylock)
213 {
214         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
215         struct inmem_pages *cur, *tmp;
216         int err = 0;
217
218         list_for_each_entry_safe(cur, tmp, head, list) {
219                 struct page *page = cur->page;
220
221                 if (drop)
222                         trace_f2fs_commit_inmem_page(page, INMEM_DROP);
223
224                 if (trylock) {
225                         /*
226                          * to avoid deadlock in between page lock and
227                          * inmem_lock.
228                          */
229                         if (!trylock_page(page))
230                                 continue;
231                 } else {
232                         lock_page(page);
233                 }
234
235                 f2fs_wait_on_page_writeback(page, DATA, true, true);
236
237                 if (recover) {
238                         struct dnode_of_data dn;
239                         struct node_info ni;
240
241                         trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
242 retry:
243                         set_new_dnode(&dn, inode, NULL, NULL, 0);
244                         err = f2fs_get_dnode_of_data(&dn, page->index,
245                                                                 LOOKUP_NODE);
246                         if (err) {
247                                 if (err == -ENOMEM) {
248                                         congestion_wait(BLK_RW_ASYNC,
249                                                         DEFAULT_IO_TIMEOUT);
250                                         cond_resched();
251                                         goto retry;
252                                 }
253                                 err = -EAGAIN;
254                                 goto next;
255                         }
256
257                         err = f2fs_get_node_info(sbi, dn.nid, &ni);
258                         if (err) {
259                                 f2fs_put_dnode(&dn);
260                                 return err;
261                         }
262
263                         if (cur->old_addr == NEW_ADDR) {
264                                 f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
265                                 f2fs_update_data_blkaddr(&dn, NEW_ADDR);
266                         } else
267                                 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
268                                         cur->old_addr, ni.version, true, true);
269                         f2fs_put_dnode(&dn);
270                 }
271 next:
272                 /* we don't need to invalidate this in the sccessful status */
273                 if (drop || recover) {
274                         ClearPageUptodate(page);
275                         clear_cold_data(page);
276                 }
277                 f2fs_clear_page_private(page);
278                 f2fs_put_page(page, 1);
279
280                 list_del(&cur->list);
281                 kmem_cache_free(inmem_entry_slab, cur);
282                 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
283         }
284         return err;
285 }
286
287 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure)
288 {
289         struct list_head *head = &sbi->inode_list[ATOMIC_FILE];
290         struct inode *inode;
291         struct f2fs_inode_info *fi;
292         unsigned int count = sbi->atomic_files;
293         unsigned int looped = 0;
294 next:
295         spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
296         if (list_empty(head)) {
297                 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
298                 return;
299         }
300         fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist);
301         inode = igrab(&fi->vfs_inode);
302         if (inode)
303                 list_move_tail(&fi->inmem_ilist, head);
304         spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
305
306         if (inode) {
307                 if (gc_failure) {
308                         if (!fi->i_gc_failures[GC_FAILURE_ATOMIC])
309                                 goto skip;
310                 }
311                 set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
312                 f2fs_drop_inmem_pages(inode);
313 skip:
314                 iput(inode);
315         }
316         congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
317         cond_resched();
318         if (gc_failure) {
319                 if (++looped >= count)
320                         return;
321         }
322         goto next;
323 }
324
325 void f2fs_drop_inmem_pages(struct inode *inode)
326 {
327         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
328         struct f2fs_inode_info *fi = F2FS_I(inode);
329
330         while (!list_empty(&fi->inmem_pages)) {
331                 mutex_lock(&fi->inmem_lock);
332                 __revoke_inmem_pages(inode, &fi->inmem_pages,
333                                                 true, false, true);
334                 mutex_unlock(&fi->inmem_lock);
335         }
336
337         fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0;
338
339         spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
340         if (!list_empty(&fi->inmem_ilist))
341                 list_del_init(&fi->inmem_ilist);
342         if (f2fs_is_atomic_file(inode)) {
343                 clear_inode_flag(inode, FI_ATOMIC_FILE);
344                 sbi->atomic_files--;
345         }
346         spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
347 }
348
349 void f2fs_drop_inmem_page(struct inode *inode, struct page *page)
350 {
351         struct f2fs_inode_info *fi = F2FS_I(inode);
352         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
353         struct list_head *head = &fi->inmem_pages;
354         struct inmem_pages *cur = NULL;
355
356         f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page));
357
358         mutex_lock(&fi->inmem_lock);
359         list_for_each_entry(cur, head, list) {
360                 if (cur->page == page)
361                         break;
362         }
363
364         f2fs_bug_on(sbi, list_empty(head) || cur->page != page);
365         list_del(&cur->list);
366         mutex_unlock(&fi->inmem_lock);
367
368         dec_page_count(sbi, F2FS_INMEM_PAGES);
369         kmem_cache_free(inmem_entry_slab, cur);
370
371         ClearPageUptodate(page);
372         f2fs_clear_page_private(page);
373         f2fs_put_page(page, 0);
374
375         trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
376 }
377
378 static int __f2fs_commit_inmem_pages(struct inode *inode)
379 {
380         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
381         struct f2fs_inode_info *fi = F2FS_I(inode);
382         struct inmem_pages *cur, *tmp;
383         struct f2fs_io_info fio = {
384                 .sbi = sbi,
385                 .ino = inode->i_ino,
386                 .type = DATA,
387                 .op = REQ_OP_WRITE,
388                 .op_flags = REQ_SYNC | REQ_PRIO,
389                 .io_type = FS_DATA_IO,
390         };
391         struct list_head revoke_list;
392         bool submit_bio = false;
393         int err = 0;
394
395         INIT_LIST_HEAD(&revoke_list);
396
397         list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
398                 struct page *page = cur->page;
399
400                 lock_page(page);
401                 if (page->mapping == inode->i_mapping) {
402                         trace_f2fs_commit_inmem_page(page, INMEM);
403
404                         f2fs_wait_on_page_writeback(page, DATA, true, true);
405
406                         set_page_dirty(page);
407                         if (clear_page_dirty_for_io(page)) {
408                                 inode_dec_dirty_pages(inode);
409                                 f2fs_remove_dirty_inode(inode);
410                         }
411 retry:
412                         fio.page = page;
413                         fio.old_blkaddr = NULL_ADDR;
414                         fio.encrypted_page = NULL;
415                         fio.need_lock = LOCK_DONE;
416                         err = f2fs_do_write_data_page(&fio);
417                         if (err) {
418                                 if (err == -ENOMEM) {
419                                         congestion_wait(BLK_RW_ASYNC,
420                                                         DEFAULT_IO_TIMEOUT);
421                                         cond_resched();
422                                         goto retry;
423                                 }
424                                 unlock_page(page);
425                                 break;
426                         }
427                         /* record old blkaddr for revoking */
428                         cur->old_addr = fio.old_blkaddr;
429                         submit_bio = true;
430                 }
431                 unlock_page(page);
432                 list_move_tail(&cur->list, &revoke_list);
433         }
434
435         if (submit_bio)
436                 f2fs_submit_merged_write_cond(sbi, inode, NULL, 0, DATA);
437
438         if (err) {
439                 /*
440                  * try to revoke all committed pages, but still we could fail
441                  * due to no memory or other reason, if that happened, EAGAIN
442                  * will be returned, which means in such case, transaction is
443                  * already not integrity, caller should use journal to do the
444                  * recovery or rewrite & commit last transaction. For other
445                  * error number, revoking was done by filesystem itself.
446                  */
447                 err = __revoke_inmem_pages(inode, &revoke_list,
448                                                 false, true, false);
449
450                 /* drop all uncommitted pages */
451                 __revoke_inmem_pages(inode, &fi->inmem_pages,
452                                                 true, false, false);
453         } else {
454                 __revoke_inmem_pages(inode, &revoke_list,
455                                                 false, false, false);
456         }
457
458         return err;
459 }
460
461 int f2fs_commit_inmem_pages(struct inode *inode)
462 {
463         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
464         struct f2fs_inode_info *fi = F2FS_I(inode);
465         int err;
466
467         f2fs_balance_fs(sbi, true);
468
469         down_write(&fi->i_gc_rwsem[WRITE]);
470
471         f2fs_lock_op(sbi);
472         set_inode_flag(inode, FI_ATOMIC_COMMIT);
473
474         mutex_lock(&fi->inmem_lock);
475         err = __f2fs_commit_inmem_pages(inode);
476         mutex_unlock(&fi->inmem_lock);
477
478         clear_inode_flag(inode, FI_ATOMIC_COMMIT);
479
480         f2fs_unlock_op(sbi);
481         up_write(&fi->i_gc_rwsem[WRITE]);
482
483         return err;
484 }
485
486 /*
487  * This function balances dirty node and dentry pages.
488  * In addition, it controls garbage collection.
489  */
490 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
491 {
492         if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
493                 f2fs_show_injection_info(sbi, FAULT_CHECKPOINT);
494                 f2fs_stop_checkpoint(sbi, false);
495         }
496
497         /* balance_fs_bg is able to be pending */
498         if (need && excess_cached_nats(sbi))
499                 f2fs_balance_fs_bg(sbi, false);
500
501         if (!f2fs_is_checkpoint_ready(sbi))
502                 return;
503
504         /*
505          * We should do GC or end up with checkpoint, if there are so many dirty
506          * dir/node pages without enough free segments.
507          */
508         if (has_not_enough_free_secs(sbi, 0, 0)) {
509                 down_write(&sbi->gc_lock);
510                 f2fs_gc(sbi, false, false, NULL_SEGNO);
511         }
512 }
513
514 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg)
515 {
516         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
517                 return;
518
519         /* try to shrink extent cache when there is no enough memory */
520         if (!f2fs_available_free_memory(sbi, EXTENT_CACHE))
521                 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
522
523         /* check the # of cached NAT entries */
524         if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
525                 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
526
527         if (!f2fs_available_free_memory(sbi, FREE_NIDS))
528                 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
529         else
530                 f2fs_build_free_nids(sbi, false, false);
531
532         if (!is_idle(sbi, REQ_TIME) &&
533                 (!excess_dirty_nats(sbi) && !excess_dirty_nodes(sbi)))
534                 return;
535
536         /* checkpoint is the only way to shrink partial cached entries */
537         if (!f2fs_available_free_memory(sbi, NAT_ENTRIES) ||
538                         !f2fs_available_free_memory(sbi, INO_ENTRIES) ||
539                         excess_prefree_segs(sbi) ||
540                         excess_dirty_nats(sbi) ||
541                         excess_dirty_nodes(sbi) ||
542                         f2fs_time_over(sbi, CP_TIME)) {
543                 if (test_opt(sbi, DATA_FLUSH) && from_bg) {
544                         struct blk_plug plug;
545
546                         mutex_lock(&sbi->flush_lock);
547
548                         blk_start_plug(&plug);
549                         f2fs_sync_dirty_inodes(sbi, FILE_INODE);
550                         blk_finish_plug(&plug);
551
552                         mutex_unlock(&sbi->flush_lock);
553                 }
554                 f2fs_sync_fs(sbi->sb, true);
555                 stat_inc_bg_cp_count(sbi->stat_info);
556         }
557 }
558
559 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
560                                 struct block_device *bdev)
561 {
562         struct bio *bio;
563         int ret;
564
565         bio = f2fs_bio_alloc(sbi, 0, false);
566         if (!bio)
567                 return -ENOMEM;
568
569         bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
570         bio_set_dev(bio, bdev);
571         ret = submit_bio_wait(bio);
572         bio_put(bio);
573
574         trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
575                                 test_opt(sbi, FLUSH_MERGE), ret);
576         return ret;
577 }
578
579 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
580 {
581         int ret = 0;
582         int i;
583
584         if (!f2fs_is_multi_device(sbi))
585                 return __submit_flush_wait(sbi, sbi->sb->s_bdev);
586
587         for (i = 0; i < sbi->s_ndevs; i++) {
588                 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
589                         continue;
590                 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
591                 if (ret)
592                         break;
593         }
594         return ret;
595 }
596
597 static int issue_flush_thread(void *data)
598 {
599         struct f2fs_sb_info *sbi = data;
600         struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
601         wait_queue_head_t *q = &fcc->flush_wait_queue;
602 repeat:
603         if (kthread_should_stop())
604                 return 0;
605
606         sb_start_intwrite(sbi->sb);
607
608         if (!llist_empty(&fcc->issue_list)) {
609                 struct flush_cmd *cmd, *next;
610                 int ret;
611
612                 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
613                 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
614
615                 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
616
617                 ret = submit_flush_wait(sbi, cmd->ino);
618                 atomic_inc(&fcc->issued_flush);
619
620                 llist_for_each_entry_safe(cmd, next,
621                                           fcc->dispatch_list, llnode) {
622                         cmd->ret = ret;
623                         complete(&cmd->wait);
624                 }
625                 fcc->dispatch_list = NULL;
626         }
627
628         sb_end_intwrite(sbi->sb);
629
630         wait_event_interruptible(*q,
631                 kthread_should_stop() || !llist_empty(&fcc->issue_list));
632         goto repeat;
633 }
634
635 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
636 {
637         struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
638         struct flush_cmd cmd;
639         int ret;
640
641         if (test_opt(sbi, NOBARRIER))
642                 return 0;
643
644         if (!test_opt(sbi, FLUSH_MERGE)) {
645                 atomic_inc(&fcc->queued_flush);
646                 ret = submit_flush_wait(sbi, ino);
647                 atomic_dec(&fcc->queued_flush);
648                 atomic_inc(&fcc->issued_flush);
649                 return ret;
650         }
651
652         if (atomic_inc_return(&fcc->queued_flush) == 1 ||
653             f2fs_is_multi_device(sbi)) {
654                 ret = submit_flush_wait(sbi, ino);
655                 atomic_dec(&fcc->queued_flush);
656
657                 atomic_inc(&fcc->issued_flush);
658                 return ret;
659         }
660
661         cmd.ino = ino;
662         init_completion(&cmd.wait);
663
664         llist_add(&cmd.llnode, &fcc->issue_list);
665
666         /* update issue_list before we wake up issue_flush thread */
667         smp_mb();
668
669         if (waitqueue_active(&fcc->flush_wait_queue))
670                 wake_up(&fcc->flush_wait_queue);
671
672         if (fcc->f2fs_issue_flush) {
673                 wait_for_completion(&cmd.wait);
674                 atomic_dec(&fcc->queued_flush);
675         } else {
676                 struct llist_node *list;
677
678                 list = llist_del_all(&fcc->issue_list);
679                 if (!list) {
680                         wait_for_completion(&cmd.wait);
681                         atomic_dec(&fcc->queued_flush);
682                 } else {
683                         struct flush_cmd *tmp, *next;
684
685                         ret = submit_flush_wait(sbi, ino);
686
687                         llist_for_each_entry_safe(tmp, next, list, llnode) {
688                                 if (tmp == &cmd) {
689                                         cmd.ret = ret;
690                                         atomic_dec(&fcc->queued_flush);
691                                         continue;
692                                 }
693                                 tmp->ret = ret;
694                                 complete(&tmp->wait);
695                         }
696                 }
697         }
698
699         return cmd.ret;
700 }
701
702 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
703 {
704         dev_t dev = sbi->sb->s_bdev->bd_dev;
705         struct flush_cmd_control *fcc;
706         int err = 0;
707
708         if (SM_I(sbi)->fcc_info) {
709                 fcc = SM_I(sbi)->fcc_info;
710                 if (fcc->f2fs_issue_flush)
711                         return err;
712                 goto init_thread;
713         }
714
715         fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
716         if (!fcc)
717                 return -ENOMEM;
718         atomic_set(&fcc->issued_flush, 0);
719         atomic_set(&fcc->queued_flush, 0);
720         init_waitqueue_head(&fcc->flush_wait_queue);
721         init_llist_head(&fcc->issue_list);
722         SM_I(sbi)->fcc_info = fcc;
723         if (!test_opt(sbi, FLUSH_MERGE))
724                 return err;
725
726 init_thread:
727         fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
728                                 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
729         if (IS_ERR(fcc->f2fs_issue_flush)) {
730                 err = PTR_ERR(fcc->f2fs_issue_flush);
731                 kvfree(fcc);
732                 SM_I(sbi)->fcc_info = NULL;
733                 return err;
734         }
735
736         return err;
737 }
738
739 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
740 {
741         struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
742
743         if (fcc && fcc->f2fs_issue_flush) {
744                 struct task_struct *flush_thread = fcc->f2fs_issue_flush;
745
746                 fcc->f2fs_issue_flush = NULL;
747                 kthread_stop(flush_thread);
748         }
749         if (free) {
750                 kvfree(fcc);
751                 SM_I(sbi)->fcc_info = NULL;
752         }
753 }
754
755 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
756 {
757         int ret = 0, i;
758
759         if (!f2fs_is_multi_device(sbi))
760                 return 0;
761
762         for (i = 1; i < sbi->s_ndevs; i++) {
763                 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
764                         continue;
765                 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
766                 if (ret)
767                         break;
768
769                 spin_lock(&sbi->dev_lock);
770                 f2fs_clear_bit(i, (char *)&sbi->dirty_device);
771                 spin_unlock(&sbi->dev_lock);
772         }
773
774         return ret;
775 }
776
777 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
778                 enum dirty_type dirty_type)
779 {
780         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
781
782         /* need not be added */
783         if (IS_CURSEG(sbi, segno))
784                 return;
785
786         if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
787                 dirty_i->nr_dirty[dirty_type]++;
788
789         if (dirty_type == DIRTY) {
790                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
791                 enum dirty_type t = sentry->type;
792
793                 if (unlikely(t >= DIRTY)) {
794                         f2fs_bug_on(sbi, 1);
795                         return;
796                 }
797                 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
798                         dirty_i->nr_dirty[t]++;
799         }
800 }
801
802 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
803                 enum dirty_type dirty_type)
804 {
805         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
806
807         if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
808                 dirty_i->nr_dirty[dirty_type]--;
809
810         if (dirty_type == DIRTY) {
811                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
812                 enum dirty_type t = sentry->type;
813
814                 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
815                         dirty_i->nr_dirty[t]--;
816
817                 if (get_valid_blocks(sbi, segno, true) == 0) {
818                         clear_bit(GET_SEC_FROM_SEG(sbi, segno),
819                                                 dirty_i->victim_secmap);
820 #ifdef CONFIG_F2FS_CHECK_FS
821                         clear_bit(segno, SIT_I(sbi)->invalid_segmap);
822 #endif
823                 }
824         }
825 }
826
827 /*
828  * Should not occur error such as -ENOMEM.
829  * Adding dirty entry into seglist is not critical operation.
830  * If a given segment is one of current working segments, it won't be added.
831  */
832 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
833 {
834         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
835         unsigned short valid_blocks, ckpt_valid_blocks;
836
837         if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
838                 return;
839
840         mutex_lock(&dirty_i->seglist_lock);
841
842         valid_blocks = get_valid_blocks(sbi, segno, false);
843         ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno);
844
845         if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
846                                 ckpt_valid_blocks == sbi->blocks_per_seg)) {
847                 __locate_dirty_segment(sbi, segno, PRE);
848                 __remove_dirty_segment(sbi, segno, DIRTY);
849         } else if (valid_blocks < sbi->blocks_per_seg) {
850                 __locate_dirty_segment(sbi, segno, DIRTY);
851         } else {
852                 /* Recovery routine with SSR needs this */
853                 __remove_dirty_segment(sbi, segno, DIRTY);
854         }
855
856         mutex_unlock(&dirty_i->seglist_lock);
857 }
858
859 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
860 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
861 {
862         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
863         unsigned int segno;
864
865         mutex_lock(&dirty_i->seglist_lock);
866         for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
867                 if (get_valid_blocks(sbi, segno, false))
868                         continue;
869                 if (IS_CURSEG(sbi, segno))
870                         continue;
871                 __locate_dirty_segment(sbi, segno, PRE);
872                 __remove_dirty_segment(sbi, segno, DIRTY);
873         }
874         mutex_unlock(&dirty_i->seglist_lock);
875 }
876
877 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
878 {
879         int ovp_hole_segs =
880                 (overprovision_segments(sbi) - reserved_segments(sbi));
881         block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg;
882         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
883         block_t holes[2] = {0, 0};      /* DATA and NODE */
884         block_t unusable;
885         struct seg_entry *se;
886         unsigned int segno;
887
888         mutex_lock(&dirty_i->seglist_lock);
889         for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
890                 se = get_seg_entry(sbi, segno);
891                 if (IS_NODESEG(se->type))
892                         holes[NODE] += sbi->blocks_per_seg - se->valid_blocks;
893                 else
894                         holes[DATA] += sbi->blocks_per_seg - se->valid_blocks;
895         }
896         mutex_unlock(&dirty_i->seglist_lock);
897
898         unusable = holes[DATA] > holes[NODE] ? holes[DATA] : holes[NODE];
899         if (unusable > ovp_holes)
900                 return unusable - ovp_holes;
901         return 0;
902 }
903
904 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
905 {
906         int ovp_hole_segs =
907                 (overprovision_segments(sbi) - reserved_segments(sbi));
908         if (unusable > F2FS_OPTION(sbi).unusable_cap)
909                 return -EAGAIN;
910         if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
911                 dirty_segments(sbi) > ovp_hole_segs)
912                 return -EAGAIN;
913         return 0;
914 }
915
916 /* This is only used by SBI_CP_DISABLED */
917 static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
918 {
919         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
920         unsigned int segno = 0;
921
922         mutex_lock(&dirty_i->seglist_lock);
923         for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
924                 if (get_valid_blocks(sbi, segno, false))
925                         continue;
926                 if (get_ckpt_valid_blocks(sbi, segno))
927                         continue;
928                 mutex_unlock(&dirty_i->seglist_lock);
929                 return segno;
930         }
931         mutex_unlock(&dirty_i->seglist_lock);
932         return NULL_SEGNO;
933 }
934
935 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
936                 struct block_device *bdev, block_t lstart,
937                 block_t start, block_t len)
938 {
939         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
940         struct list_head *pend_list;
941         struct discard_cmd *dc;
942
943         f2fs_bug_on(sbi, !len);
944
945         pend_list = &dcc->pend_list[plist_idx(len)];
946
947         dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
948         INIT_LIST_HEAD(&dc->list);
949         dc->bdev = bdev;
950         dc->lstart = lstart;
951         dc->start = start;
952         dc->len = len;
953         dc->ref = 0;
954         dc->state = D_PREP;
955         dc->queued = 0;
956         dc->error = 0;
957         init_completion(&dc->wait);
958         list_add_tail(&dc->list, pend_list);
959         spin_lock_init(&dc->lock);
960         dc->bio_ref = 0;
961         atomic_inc(&dcc->discard_cmd_cnt);
962         dcc->undiscard_blks += len;
963
964         return dc;
965 }
966
967 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
968                                 struct block_device *bdev, block_t lstart,
969                                 block_t start, block_t len,
970                                 struct rb_node *parent, struct rb_node **p,
971                                 bool leftmost)
972 {
973         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
974         struct discard_cmd *dc;
975
976         dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
977
978         rb_link_node(&dc->rb_node, parent, p);
979         rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
980
981         return dc;
982 }
983
984 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
985                                                         struct discard_cmd *dc)
986 {
987         if (dc->state == D_DONE)
988                 atomic_sub(dc->queued, &dcc->queued_discard);
989
990         list_del(&dc->list);
991         rb_erase_cached(&dc->rb_node, &dcc->root);
992         dcc->undiscard_blks -= dc->len;
993
994         kmem_cache_free(discard_cmd_slab, dc);
995
996         atomic_dec(&dcc->discard_cmd_cnt);
997 }
998
999 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
1000                                                         struct discard_cmd *dc)
1001 {
1002         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1003         unsigned long flags;
1004
1005         trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
1006
1007         spin_lock_irqsave(&dc->lock, flags);
1008         if (dc->bio_ref) {
1009                 spin_unlock_irqrestore(&dc->lock, flags);
1010                 return;
1011         }
1012         spin_unlock_irqrestore(&dc->lock, flags);
1013
1014         f2fs_bug_on(sbi, dc->ref);
1015
1016         if (dc->error == -EOPNOTSUPP)
1017                 dc->error = 0;
1018
1019         if (dc->error)
1020                 printk_ratelimited(
1021                         "%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d",
1022                         KERN_INFO, sbi->sb->s_id,
1023                         dc->lstart, dc->start, dc->len, dc->error);
1024         __detach_discard_cmd(dcc, dc);
1025 }
1026
1027 static void f2fs_submit_discard_endio(struct bio *bio)
1028 {
1029         struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1030         unsigned long flags;
1031
1032         spin_lock_irqsave(&dc->lock, flags);
1033         if (!dc->error)
1034                 dc->error = blk_status_to_errno(bio->bi_status);
1035         dc->bio_ref--;
1036         if (!dc->bio_ref && dc->state == D_SUBMIT) {
1037                 dc->state = D_DONE;
1038                 complete_all(&dc->wait);
1039         }
1040         spin_unlock_irqrestore(&dc->lock, flags);
1041         bio_put(bio);
1042 }
1043
1044 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1045                                 block_t start, block_t end)
1046 {
1047 #ifdef CONFIG_F2FS_CHECK_FS
1048         struct seg_entry *sentry;
1049         unsigned int segno;
1050         block_t blk = start;
1051         unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
1052         unsigned long *map;
1053
1054         while (blk < end) {
1055                 segno = GET_SEGNO(sbi, blk);
1056                 sentry = get_seg_entry(sbi, segno);
1057                 offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1058
1059                 if (end < START_BLOCK(sbi, segno + 1))
1060                         size = GET_BLKOFF_FROM_SEG0(sbi, end);
1061                 else
1062                         size = max_blocks;
1063                 map = (unsigned long *)(sentry->cur_valid_map);
1064                 offset = __find_rev_next_bit(map, size, offset);
1065                 f2fs_bug_on(sbi, offset != size);
1066                 blk = START_BLOCK(sbi, segno + 1);
1067         }
1068 #endif
1069 }
1070
1071 static void __init_discard_policy(struct f2fs_sb_info *sbi,
1072                                 struct discard_policy *dpolicy,
1073                                 int discard_type, unsigned int granularity)
1074 {
1075         /* common policy */
1076         dpolicy->type = discard_type;
1077         dpolicy->sync = true;
1078         dpolicy->ordered = false;
1079         dpolicy->granularity = granularity;
1080
1081         dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
1082         dpolicy->io_aware_gran = MAX_PLIST_NUM;
1083         dpolicy->timeout = false;
1084
1085         if (discard_type == DPOLICY_BG) {
1086                 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1087                 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1088                 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1089                 dpolicy->io_aware = true;
1090                 dpolicy->sync = false;
1091                 dpolicy->ordered = true;
1092                 if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) {
1093                         dpolicy->granularity = 1;
1094                         dpolicy->max_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1095                 }
1096         } else if (discard_type == DPOLICY_FORCE) {
1097                 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1098                 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1099                 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1100                 dpolicy->io_aware = false;
1101         } else if (discard_type == DPOLICY_FSTRIM) {
1102                 dpolicy->io_aware = false;
1103         } else if (discard_type == DPOLICY_UMOUNT) {
1104                 dpolicy->io_aware = false;
1105                 /* we need to issue all to keep CP_TRIMMED_FLAG */
1106                 dpolicy->granularity = 1;
1107                 dpolicy->timeout = true;
1108         }
1109 }
1110
1111 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1112                                 struct block_device *bdev, block_t lstart,
1113                                 block_t start, block_t len);
1114 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
1115 static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1116                                                 struct discard_policy *dpolicy,
1117                                                 struct discard_cmd *dc,
1118                                                 unsigned int *issued)
1119 {
1120         struct block_device *bdev = dc->bdev;
1121         struct request_queue *q = bdev_get_queue(bdev);
1122         unsigned int max_discard_blocks =
1123                         SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1124         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1125         struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1126                                         &(dcc->fstrim_list) : &(dcc->wait_list);
1127         int flag = dpolicy->sync ? REQ_SYNC : 0;
1128         block_t lstart, start, len, total_len;
1129         int err = 0;
1130
1131         if (dc->state != D_PREP)
1132                 return 0;
1133
1134         if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1135                 return 0;
1136
1137         trace_f2fs_issue_discard(bdev, dc->start, dc->len);
1138
1139         lstart = dc->lstart;
1140         start = dc->start;
1141         len = dc->len;
1142         total_len = len;
1143
1144         dc->len = 0;
1145
1146         while (total_len && *issued < dpolicy->max_requests && !err) {
1147                 struct bio *bio = NULL;
1148                 unsigned long flags;
1149                 bool last = true;
1150
1151                 if (len > max_discard_blocks) {
1152                         len = max_discard_blocks;
1153                         last = false;
1154                 }
1155
1156                 (*issued)++;
1157                 if (*issued == dpolicy->max_requests)
1158                         last = true;
1159
1160                 dc->len += len;
1161
1162                 if (time_to_inject(sbi, FAULT_DISCARD)) {
1163                         f2fs_show_injection_info(sbi, FAULT_DISCARD);
1164                         err = -EIO;
1165                         goto submit;
1166                 }
1167                 err = __blkdev_issue_discard(bdev,
1168                                         SECTOR_FROM_BLOCK(start),
1169                                         SECTOR_FROM_BLOCK(len),
1170                                         GFP_NOFS, 0, &bio);
1171 submit:
1172                 if (err) {
1173                         spin_lock_irqsave(&dc->lock, flags);
1174                         if (dc->state == D_PARTIAL)
1175                                 dc->state = D_SUBMIT;
1176                         spin_unlock_irqrestore(&dc->lock, flags);
1177
1178                         break;
1179                 }
1180
1181                 f2fs_bug_on(sbi, !bio);
1182
1183                 /*
1184                  * should keep before submission to avoid D_DONE
1185                  * right away
1186                  */
1187                 spin_lock_irqsave(&dc->lock, flags);
1188                 if (last)
1189                         dc->state = D_SUBMIT;
1190                 else
1191                         dc->state = D_PARTIAL;
1192                 dc->bio_ref++;
1193                 spin_unlock_irqrestore(&dc->lock, flags);
1194
1195                 atomic_inc(&dcc->queued_discard);
1196                 dc->queued++;
1197                 list_move_tail(&dc->list, wait_list);
1198
1199                 /* sanity check on discard range */
1200                 __check_sit_bitmap(sbi, lstart, lstart + len);
1201
1202                 bio->bi_private = dc;
1203                 bio->bi_end_io = f2fs_submit_discard_endio;
1204                 bio->bi_opf |= flag;
1205                 submit_bio(bio);
1206
1207                 atomic_inc(&dcc->issued_discard);
1208
1209                 f2fs_update_iostat(sbi, FS_DISCARD, 1);
1210
1211                 lstart += len;
1212                 start += len;
1213                 total_len -= len;
1214                 len = total_len;
1215         }
1216
1217         if (!err && len) {
1218                 dcc->undiscard_blks -= len;
1219                 __update_discard_tree_range(sbi, bdev, lstart, start, len);
1220         }
1221         return err;
1222 }
1223
1224 static void __insert_discard_tree(struct f2fs_sb_info *sbi,
1225                                 struct block_device *bdev, block_t lstart,
1226                                 block_t start, block_t len,
1227                                 struct rb_node **insert_p,
1228                                 struct rb_node *insert_parent)
1229 {
1230         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1231         struct rb_node **p;
1232         struct rb_node *parent = NULL;
1233         bool leftmost = true;
1234
1235         if (insert_p && insert_parent) {
1236                 parent = insert_parent;
1237                 p = insert_p;
1238                 goto do_insert;
1239         }
1240
1241         p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent,
1242                                                         lstart, &leftmost);
1243 do_insert:
1244         __attach_discard_cmd(sbi, bdev, lstart, start, len, parent,
1245                                                                 p, leftmost);
1246 }
1247
1248 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1249                                                 struct discard_cmd *dc)
1250 {
1251         list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
1252 }
1253
1254 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1255                                 struct discard_cmd *dc, block_t blkaddr)
1256 {
1257         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1258         struct discard_info di = dc->di;
1259         bool modified = false;
1260
1261         if (dc->state == D_DONE || dc->len == 1) {
1262                 __remove_discard_cmd(sbi, dc);
1263                 return;
1264         }
1265
1266         dcc->undiscard_blks -= di.len;
1267
1268         if (blkaddr > di.lstart) {
1269                 dc->len = blkaddr - dc->lstart;
1270                 dcc->undiscard_blks += dc->len;
1271                 __relocate_discard_cmd(dcc, dc);
1272                 modified = true;
1273         }
1274
1275         if (blkaddr < di.lstart + di.len - 1) {
1276                 if (modified) {
1277                         __insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1278                                         di.start + blkaddr + 1 - di.lstart,
1279                                         di.lstart + di.len - 1 - blkaddr,
1280                                         NULL, NULL);
1281                 } else {
1282                         dc->lstart++;
1283                         dc->len--;
1284                         dc->start++;
1285                         dcc->undiscard_blks += dc->len;
1286                         __relocate_discard_cmd(dcc, dc);
1287                 }
1288         }
1289 }
1290
1291 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1292                                 struct block_device *bdev, block_t lstart,
1293                                 block_t start, block_t len)
1294 {
1295         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1296         struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1297         struct discard_cmd *dc;
1298         struct discard_info di = {0};
1299         struct rb_node **insert_p = NULL, *insert_parent = NULL;
1300         struct request_queue *q = bdev_get_queue(bdev);
1301         unsigned int max_discard_blocks =
1302                         SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1303         block_t end = lstart + len;
1304
1305         dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1306                                         NULL, lstart,
1307                                         (struct rb_entry **)&prev_dc,
1308                                         (struct rb_entry **)&next_dc,
1309                                         &insert_p, &insert_parent, true, NULL);
1310         if (dc)
1311                 prev_dc = dc;
1312
1313         if (!prev_dc) {
1314                 di.lstart = lstart;
1315                 di.len = next_dc ? next_dc->lstart - lstart : len;
1316                 di.len = min(di.len, len);
1317                 di.start = start;
1318         }
1319
1320         while (1) {
1321                 struct rb_node *node;
1322                 bool merged = false;
1323                 struct discard_cmd *tdc = NULL;
1324
1325                 if (prev_dc) {
1326                         di.lstart = prev_dc->lstart + prev_dc->len;
1327                         if (di.lstart < lstart)
1328                                 di.lstart = lstart;
1329                         if (di.lstart >= end)
1330                                 break;
1331
1332                         if (!next_dc || next_dc->lstart > end)
1333                                 di.len = end - di.lstart;
1334                         else
1335                                 di.len = next_dc->lstart - di.lstart;
1336                         di.start = start + di.lstart - lstart;
1337                 }
1338
1339                 if (!di.len)
1340                         goto next;
1341
1342                 if (prev_dc && prev_dc->state == D_PREP &&
1343                         prev_dc->bdev == bdev &&
1344                         __is_discard_back_mergeable(&di, &prev_dc->di,
1345                                                         max_discard_blocks)) {
1346                         prev_dc->di.len += di.len;
1347                         dcc->undiscard_blks += di.len;
1348                         __relocate_discard_cmd(dcc, prev_dc);
1349                         di = prev_dc->di;
1350                         tdc = prev_dc;
1351                         merged = true;
1352                 }
1353
1354                 if (next_dc && next_dc->state == D_PREP &&
1355                         next_dc->bdev == bdev &&
1356                         __is_discard_front_mergeable(&di, &next_dc->di,
1357                                                         max_discard_blocks)) {
1358                         next_dc->di.lstart = di.lstart;
1359                         next_dc->di.len += di.len;
1360                         next_dc->di.start = di.start;
1361                         dcc->undiscard_blks += di.len;
1362                         __relocate_discard_cmd(dcc, next_dc);
1363                         if (tdc)
1364                                 __remove_discard_cmd(sbi, tdc);
1365                         merged = true;
1366                 }
1367
1368                 if (!merged) {
1369                         __insert_discard_tree(sbi, bdev, di.lstart, di.start,
1370                                                         di.len, NULL, NULL);
1371                 }
1372  next:
1373                 prev_dc = next_dc;
1374                 if (!prev_dc)
1375                         break;
1376
1377                 node = rb_next(&prev_dc->rb_node);
1378                 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1379         }
1380 }
1381
1382 static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
1383                 struct block_device *bdev, block_t blkstart, block_t blklen)
1384 {
1385         block_t lblkstart = blkstart;
1386
1387         if (!f2fs_bdev_support_discard(bdev))
1388                 return 0;
1389
1390         trace_f2fs_queue_discard(bdev, blkstart, blklen);
1391
1392         if (f2fs_is_multi_device(sbi)) {
1393                 int devi = f2fs_target_device_index(sbi, blkstart);
1394
1395                 blkstart -= FDEV(devi).start_blk;
1396         }
1397         mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1398         __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1399         mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1400         return 0;
1401 }
1402
1403 static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1404                                         struct discard_policy *dpolicy)
1405 {
1406         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1407         struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1408         struct rb_node **insert_p = NULL, *insert_parent = NULL;
1409         struct discard_cmd *dc;
1410         struct blk_plug plug;
1411         unsigned int pos = dcc->next_pos;
1412         unsigned int issued = 0;
1413         bool io_interrupted = false;
1414
1415         mutex_lock(&dcc->cmd_lock);
1416         dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1417                                         NULL, pos,
1418                                         (struct rb_entry **)&prev_dc,
1419                                         (struct rb_entry **)&next_dc,
1420                                         &insert_p, &insert_parent, true, NULL);
1421         if (!dc)
1422                 dc = next_dc;
1423
1424         blk_start_plug(&plug);
1425
1426         while (dc) {
1427                 struct rb_node *node;
1428                 int err = 0;
1429
1430                 if (dc->state != D_PREP)
1431                         goto next;
1432
1433                 if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1434                         io_interrupted = true;
1435                         break;
1436                 }
1437
1438                 dcc->next_pos = dc->lstart + dc->len;
1439                 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1440
1441                 if (issued >= dpolicy->max_requests)
1442                         break;
1443 next:
1444                 node = rb_next(&dc->rb_node);
1445                 if (err)
1446                         __remove_discard_cmd(sbi, dc);
1447                 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1448         }
1449
1450         blk_finish_plug(&plug);
1451
1452         if (!dc)
1453                 dcc->next_pos = 0;
1454
1455         mutex_unlock(&dcc->cmd_lock);
1456
1457         if (!issued && io_interrupted)
1458                 issued = -1;
1459
1460         return issued;
1461 }
1462 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1463                                         struct discard_policy *dpolicy);
1464
1465 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1466                                         struct discard_policy *dpolicy)
1467 {
1468         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1469         struct list_head *pend_list;
1470         struct discard_cmd *dc, *tmp;
1471         struct blk_plug plug;
1472         int i, issued;
1473         bool io_interrupted = false;
1474
1475         if (dpolicy->timeout)
1476                 f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT);
1477
1478 retry:
1479         issued = 0;
1480         for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1481                 if (dpolicy->timeout &&
1482                                 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1483                         break;
1484
1485                 if (i + 1 < dpolicy->granularity)
1486                         break;
1487
1488                 if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered)
1489                         return __issue_discard_cmd_orderly(sbi, dpolicy);
1490
1491                 pend_list = &dcc->pend_list[i];
1492
1493                 mutex_lock(&dcc->cmd_lock);
1494                 if (list_empty(pend_list))
1495                         goto next;
1496                 if (unlikely(dcc->rbtree_check))
1497                         f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
1498                                                                 &dcc->root));
1499                 blk_start_plug(&plug);
1500                 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1501                         f2fs_bug_on(sbi, dc->state != D_PREP);
1502
1503                         if (dpolicy->timeout &&
1504                                 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1505                                 break;
1506
1507                         if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1508                                                 !is_idle(sbi, DISCARD_TIME)) {
1509                                 io_interrupted = true;
1510                                 break;
1511                         }
1512
1513                         __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1514
1515                         if (issued >= dpolicy->max_requests)
1516                                 break;
1517                 }
1518                 blk_finish_plug(&plug);
1519 next:
1520                 mutex_unlock(&dcc->cmd_lock);
1521
1522                 if (issued >= dpolicy->max_requests || io_interrupted)
1523                         break;
1524         }
1525
1526         if (dpolicy->type == DPOLICY_UMOUNT && issued) {
1527                 __wait_all_discard_cmd(sbi, dpolicy);
1528                 goto retry;
1529         }
1530
1531         if (!issued && io_interrupted)
1532                 issued = -1;
1533
1534         return issued;
1535 }
1536
1537 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1538 {
1539         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1540         struct list_head *pend_list;
1541         struct discard_cmd *dc, *tmp;
1542         int i;
1543         bool dropped = false;
1544
1545         mutex_lock(&dcc->cmd_lock);
1546         for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1547                 pend_list = &dcc->pend_list[i];
1548                 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1549                         f2fs_bug_on(sbi, dc->state != D_PREP);
1550                         __remove_discard_cmd(sbi, dc);
1551                         dropped = true;
1552                 }
1553         }
1554         mutex_unlock(&dcc->cmd_lock);
1555
1556         return dropped;
1557 }
1558
1559 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1560 {
1561         __drop_discard_cmd(sbi);
1562 }
1563
1564 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1565                                                         struct discard_cmd *dc)
1566 {
1567         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1568         unsigned int len = 0;
1569
1570         wait_for_completion_io(&dc->wait);
1571         mutex_lock(&dcc->cmd_lock);
1572         f2fs_bug_on(sbi, dc->state != D_DONE);
1573         dc->ref--;
1574         if (!dc->ref) {
1575                 if (!dc->error)
1576                         len = dc->len;
1577                 __remove_discard_cmd(sbi, dc);
1578         }
1579         mutex_unlock(&dcc->cmd_lock);
1580
1581         return len;
1582 }
1583
1584 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1585                                                 struct discard_policy *dpolicy,
1586                                                 block_t start, block_t end)
1587 {
1588         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1589         struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1590                                         &(dcc->fstrim_list) : &(dcc->wait_list);
1591         struct discard_cmd *dc, *tmp;
1592         bool need_wait;
1593         unsigned int trimmed = 0;
1594
1595 next:
1596         need_wait = false;
1597
1598         mutex_lock(&dcc->cmd_lock);
1599         list_for_each_entry_safe(dc, tmp, wait_list, list) {
1600                 if (dc->lstart + dc->len <= start || end <= dc->lstart)
1601                         continue;
1602                 if (dc->len < dpolicy->granularity)
1603                         continue;
1604                 if (dc->state == D_DONE && !dc->ref) {
1605                         wait_for_completion_io(&dc->wait);
1606                         if (!dc->error)
1607                                 trimmed += dc->len;
1608                         __remove_discard_cmd(sbi, dc);
1609                 } else {
1610                         dc->ref++;
1611                         need_wait = true;
1612                         break;
1613                 }
1614         }
1615         mutex_unlock(&dcc->cmd_lock);
1616
1617         if (need_wait) {
1618                 trimmed += __wait_one_discard_bio(sbi, dc);
1619                 goto next;
1620         }
1621
1622         return trimmed;
1623 }
1624
1625 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1626                                                 struct discard_policy *dpolicy)
1627 {
1628         struct discard_policy dp;
1629         unsigned int discard_blks;
1630
1631         if (dpolicy)
1632                 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1633
1634         /* wait all */
1635         __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
1636         discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1637         __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
1638         discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1639
1640         return discard_blks;
1641 }
1642
1643 /* This should be covered by global mutex, &sit_i->sentry_lock */
1644 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1645 {
1646         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1647         struct discard_cmd *dc;
1648         bool need_wait = false;
1649
1650         mutex_lock(&dcc->cmd_lock);
1651         dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
1652                                                         NULL, blkaddr);
1653         if (dc) {
1654                 if (dc->state == D_PREP) {
1655                         __punch_discard_cmd(sbi, dc, blkaddr);
1656                 } else {
1657                         dc->ref++;
1658                         need_wait = true;
1659                 }
1660         }
1661         mutex_unlock(&dcc->cmd_lock);
1662
1663         if (need_wait)
1664                 __wait_one_discard_bio(sbi, dc);
1665 }
1666
1667 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1668 {
1669         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1670
1671         if (dcc && dcc->f2fs_issue_discard) {
1672                 struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1673
1674                 dcc->f2fs_issue_discard = NULL;
1675                 kthread_stop(discard_thread);
1676         }
1677 }
1678
1679 /* This comes from f2fs_put_super */
1680 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1681 {
1682         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1683         struct discard_policy dpolicy;
1684         bool dropped;
1685
1686         __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1687                                         dcc->discard_granularity);
1688         __issue_discard_cmd(sbi, &dpolicy);
1689         dropped = __drop_discard_cmd(sbi);
1690
1691         /* just to make sure there is no pending discard commands */
1692         __wait_all_discard_cmd(sbi, NULL);
1693
1694         f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1695         return dropped;
1696 }
1697
1698 static int issue_discard_thread(void *data)
1699 {
1700         struct f2fs_sb_info *sbi = data;
1701         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1702         wait_queue_head_t *q = &dcc->discard_wait_queue;
1703         struct discard_policy dpolicy;
1704         unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
1705         int issued;
1706
1707         set_freezable();
1708
1709         do {
1710                 __init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1711                                         dcc->discard_granularity);
1712
1713                 wait_event_interruptible_timeout(*q,
1714                                 kthread_should_stop() || freezing(current) ||
1715                                 dcc->discard_wake,
1716                                 msecs_to_jiffies(wait_ms));
1717
1718                 if (dcc->discard_wake)
1719                         dcc->discard_wake = 0;
1720
1721                 /* clean up pending candidates before going to sleep */
1722                 if (atomic_read(&dcc->queued_discard))
1723                         __wait_all_discard_cmd(sbi, NULL);
1724
1725                 if (try_to_freeze())
1726                         continue;
1727                 if (f2fs_readonly(sbi->sb))
1728                         continue;
1729                 if (kthread_should_stop())
1730                         return 0;
1731                 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1732                         wait_ms = dpolicy.max_interval;
1733                         continue;
1734                 }
1735
1736                 if (sbi->gc_mode == GC_URGENT)
1737                         __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1);
1738
1739                 sb_start_intwrite(sbi->sb);
1740
1741                 issued = __issue_discard_cmd(sbi, &dpolicy);
1742                 if (issued > 0) {
1743                         __wait_all_discard_cmd(sbi, &dpolicy);
1744                         wait_ms = dpolicy.min_interval;
1745                 } else if (issued == -1){
1746                         wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1747                         if (!wait_ms)
1748                                 wait_ms = dpolicy.mid_interval;
1749                 } else {
1750                         wait_ms = dpolicy.max_interval;
1751                 }
1752
1753                 sb_end_intwrite(sbi->sb);
1754
1755         } while (!kthread_should_stop());
1756         return 0;
1757 }
1758
1759 #ifdef CONFIG_BLK_DEV_ZONED
1760 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1761                 struct block_device *bdev, block_t blkstart, block_t blklen)
1762 {
1763         sector_t sector, nr_sects;
1764         block_t lblkstart = blkstart;
1765         int devi = 0;
1766
1767         if (f2fs_is_multi_device(sbi)) {
1768                 devi = f2fs_target_device_index(sbi, blkstart);
1769                 if (blkstart < FDEV(devi).start_blk ||
1770                     blkstart > FDEV(devi).end_blk) {
1771                         f2fs_err(sbi, "Invalid block %x", blkstart);
1772                         return -EIO;
1773                 }
1774                 blkstart -= FDEV(devi).start_blk;
1775         }
1776
1777         /* For sequential zones, reset the zone write pointer */
1778         if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1779                 sector = SECTOR_FROM_BLOCK(blkstart);
1780                 nr_sects = SECTOR_FROM_BLOCK(blklen);
1781
1782                 if (sector & (bdev_zone_sectors(bdev) - 1) ||
1783                                 nr_sects != bdev_zone_sectors(bdev)) {
1784                         f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1785                                  devi, sbi->s_ndevs ? FDEV(devi).path : "",
1786                                  blkstart, blklen);
1787                         return -EIO;
1788                 }
1789                 trace_f2fs_issue_reset_zone(bdev, blkstart);
1790                 return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1791                                         sector, nr_sects, GFP_NOFS);
1792         }
1793
1794         /* For conventional zones, use regular discard if supported */
1795         return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1796 }
1797 #endif
1798
1799 static int __issue_discard_async(struct f2fs_sb_info *sbi,
1800                 struct block_device *bdev, block_t blkstart, block_t blklen)
1801 {
1802 #ifdef CONFIG_BLK_DEV_ZONED
1803         if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
1804                 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1805 #endif
1806         return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1807 }
1808
1809 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1810                                 block_t blkstart, block_t blklen)
1811 {
1812         sector_t start = blkstart, len = 0;
1813         struct block_device *bdev;
1814         struct seg_entry *se;
1815         unsigned int offset;
1816         block_t i;
1817         int err = 0;
1818
1819         bdev = f2fs_target_device(sbi, blkstart, NULL);
1820
1821         for (i = blkstart; i < blkstart + blklen; i++, len++) {
1822                 if (i != start) {
1823                         struct block_device *bdev2 =
1824                                 f2fs_target_device(sbi, i, NULL);
1825
1826                         if (bdev2 != bdev) {
1827                                 err = __issue_discard_async(sbi, bdev,
1828                                                 start, len);
1829                                 if (err)
1830                                         return err;
1831                                 bdev = bdev2;
1832                                 start = i;
1833                                 len = 0;
1834                         }
1835                 }
1836
1837                 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1838                 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1839
1840                 if (!f2fs_test_and_set_bit(offset, se->discard_map))
1841                         sbi->discard_blks--;
1842         }
1843
1844         if (len)
1845                 err = __issue_discard_async(sbi, bdev, start, len);
1846         return err;
1847 }
1848
1849 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1850                                                         bool check_only)
1851 {
1852         int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1853         int max_blocks = sbi->blocks_per_seg;
1854         struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1855         unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1856         unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1857         unsigned long *discard_map = (unsigned long *)se->discard_map;
1858         unsigned long *dmap = SIT_I(sbi)->tmp_map;
1859         unsigned int start = 0, end = -1;
1860         bool force = (cpc->reason & CP_DISCARD);
1861         struct discard_entry *de = NULL;
1862         struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1863         int i;
1864
1865         if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi))
1866                 return false;
1867
1868         if (!force) {
1869                 if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
1870                         SM_I(sbi)->dcc_info->nr_discards >=
1871                                 SM_I(sbi)->dcc_info->max_discards)
1872                         return false;
1873         }
1874
1875         /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1876         for (i = 0; i < entries; i++)
1877                 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1878                                 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1879
1880         while (force || SM_I(sbi)->dcc_info->nr_discards <=
1881                                 SM_I(sbi)->dcc_info->max_discards) {
1882                 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1883                 if (start >= max_blocks)
1884                         break;
1885
1886                 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1887                 if (force && start && end != max_blocks
1888                                         && (end - start) < cpc->trim_minlen)
1889                         continue;
1890
1891                 if (check_only)
1892                         return true;
1893
1894                 if (!de) {
1895                         de = f2fs_kmem_cache_alloc(discard_entry_slab,
1896                                                                 GFP_F2FS_ZERO);
1897                         de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1898                         list_add_tail(&de->list, head);
1899                 }
1900
1901                 for (i = start; i < end; i++)
1902                         __set_bit_le(i, (void *)de->discard_map);
1903
1904                 SM_I(sbi)->dcc_info->nr_discards += end - start;
1905         }
1906         return false;
1907 }
1908
1909 static void release_discard_addr(struct discard_entry *entry)
1910 {
1911         list_del(&entry->list);
1912         kmem_cache_free(discard_entry_slab, entry);
1913 }
1914
1915 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
1916 {
1917         struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1918         struct discard_entry *entry, *this;
1919
1920         /* drop caches */
1921         list_for_each_entry_safe(entry, this, head, list)
1922                 release_discard_addr(entry);
1923 }
1924
1925 /*
1926  * Should call f2fs_clear_prefree_segments after checkpoint is done.
1927  */
1928 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
1929 {
1930         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1931         unsigned int segno;
1932
1933         mutex_lock(&dirty_i->seglist_lock);
1934         for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
1935                 __set_test_and_free(sbi, segno);
1936         mutex_unlock(&dirty_i->seglist_lock);
1937 }
1938
1939 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
1940                                                 struct cp_control *cpc)
1941 {
1942         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1943         struct list_head *head = &dcc->entry_list;
1944         struct discard_entry *entry, *this;
1945         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1946         unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
1947         unsigned int start = 0, end = -1;
1948         unsigned int secno, start_segno;
1949         bool force = (cpc->reason & CP_DISCARD);
1950         bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
1951
1952         mutex_lock(&dirty_i->seglist_lock);
1953
1954         while (1) {
1955                 int i;
1956
1957                 if (need_align && end != -1)
1958                         end--;
1959                 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
1960                 if (start >= MAIN_SEGS(sbi))
1961                         break;
1962                 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
1963                                                                 start + 1);
1964
1965                 if (need_align) {
1966                         start = rounddown(start, sbi->segs_per_sec);
1967                         end = roundup(end, sbi->segs_per_sec);
1968                 }
1969
1970                 for (i = start; i < end; i++) {
1971                         if (test_and_clear_bit(i, prefree_map))
1972                                 dirty_i->nr_dirty[PRE]--;
1973                 }
1974
1975                 if (!f2fs_realtime_discard_enable(sbi))
1976                         continue;
1977
1978                 if (force && start >= cpc->trim_start &&
1979                                         (end - 1) <= cpc->trim_end)
1980                                 continue;
1981
1982                 if (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi)) {
1983                         f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
1984                                 (end - start) << sbi->log_blocks_per_seg);
1985                         continue;
1986                 }
1987 next:
1988                 secno = GET_SEC_FROM_SEG(sbi, start);
1989                 start_segno = GET_SEG_FROM_SEC(sbi, secno);
1990                 if (!IS_CURSEC(sbi, secno) &&
1991                         !get_valid_blocks(sbi, start, true))
1992                         f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
1993                                 sbi->segs_per_sec << sbi->log_blocks_per_seg);
1994
1995                 start = start_segno + sbi->segs_per_sec;
1996                 if (start < end)
1997                         goto next;
1998                 else
1999                         end = start - 1;
2000         }
2001         mutex_unlock(&dirty_i->seglist_lock);
2002
2003         /* send small discards */
2004         list_for_each_entry_safe(entry, this, head, list) {
2005                 unsigned int cur_pos = 0, next_pos, len, total_len = 0;
2006                 bool is_valid = test_bit_le(0, entry->discard_map);
2007
2008 find_next:
2009                 if (is_valid) {
2010                         next_pos = find_next_zero_bit_le(entry->discard_map,
2011                                         sbi->blocks_per_seg, cur_pos);
2012                         len = next_pos - cur_pos;
2013
2014                         if (f2fs_sb_has_blkzoned(sbi) ||
2015                             (force && len < cpc->trim_minlen))
2016                                 goto skip;
2017
2018                         f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2019                                                                         len);
2020                         total_len += len;
2021                 } else {
2022                         next_pos = find_next_bit_le(entry->discard_map,
2023                                         sbi->blocks_per_seg, cur_pos);
2024                 }
2025 skip:
2026                 cur_pos = next_pos;
2027                 is_valid = !is_valid;
2028
2029                 if (cur_pos < sbi->blocks_per_seg)
2030                         goto find_next;
2031
2032                 release_discard_addr(entry);
2033                 dcc->nr_discards -= total_len;
2034         }
2035
2036         wake_up_discard_thread(sbi, false);
2037 }
2038
2039 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2040 {
2041         dev_t dev = sbi->sb->s_bdev->bd_dev;
2042         struct discard_cmd_control *dcc;
2043         int err = 0, i;
2044
2045         if (SM_I(sbi)->dcc_info) {
2046                 dcc = SM_I(sbi)->dcc_info;
2047                 goto init_thread;
2048         }
2049
2050         dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2051         if (!dcc)
2052                 return -ENOMEM;
2053
2054         dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2055         INIT_LIST_HEAD(&dcc->entry_list);
2056         for (i = 0; i < MAX_PLIST_NUM; i++)
2057                 INIT_LIST_HEAD(&dcc->pend_list[i]);
2058         INIT_LIST_HEAD(&dcc->wait_list);
2059         INIT_LIST_HEAD(&dcc->fstrim_list);
2060         mutex_init(&dcc->cmd_lock);
2061         atomic_set(&dcc->issued_discard, 0);
2062         atomic_set(&dcc->queued_discard, 0);
2063         atomic_set(&dcc->discard_cmd_cnt, 0);
2064         dcc->nr_discards = 0;
2065         dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
2066         dcc->undiscard_blks = 0;
2067         dcc->next_pos = 0;
2068         dcc->root = RB_ROOT_CACHED;
2069         dcc->rbtree_check = false;
2070
2071         init_waitqueue_head(&dcc->discard_wait_queue);
2072         SM_I(sbi)->dcc_info = dcc;
2073 init_thread:
2074         dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2075                                 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2076         if (IS_ERR(dcc->f2fs_issue_discard)) {
2077                 err = PTR_ERR(dcc->f2fs_issue_discard);
2078                 kvfree(dcc);
2079                 SM_I(sbi)->dcc_info = NULL;
2080                 return err;
2081         }
2082
2083         return err;
2084 }
2085
2086 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2087 {
2088         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2089
2090         if (!dcc)
2091                 return;
2092
2093         f2fs_stop_discard_thread(sbi);
2094
2095         /*
2096          * Recovery can cache discard commands, so in error path of
2097          * fill_super(), it needs to give a chance to handle them.
2098          */
2099         if (unlikely(atomic_read(&dcc->discard_cmd_cnt)))
2100                 f2fs_issue_discard_timeout(sbi);
2101
2102         kvfree(dcc);
2103         SM_I(sbi)->dcc_info = NULL;
2104 }
2105
2106 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2107 {
2108         struct sit_info *sit_i = SIT_I(sbi);
2109
2110         if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2111                 sit_i->dirty_sentries++;
2112                 return false;
2113         }
2114
2115         return true;
2116 }
2117
2118 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2119                                         unsigned int segno, int modified)
2120 {
2121         struct seg_entry *se = get_seg_entry(sbi, segno);
2122         se->type = type;
2123         if (modified)
2124                 __mark_sit_entry_dirty(sbi, segno);
2125 }
2126
2127 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2128 {
2129         struct seg_entry *se;
2130         unsigned int segno, offset;
2131         long int new_vblocks;
2132         bool exist;
2133 #ifdef CONFIG_F2FS_CHECK_FS
2134         bool mir_exist;
2135 #endif
2136
2137         segno = GET_SEGNO(sbi, blkaddr);
2138
2139         se = get_seg_entry(sbi, segno);
2140         new_vblocks = se->valid_blocks + del;
2141         offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2142
2143         f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
2144                                 (new_vblocks > sbi->blocks_per_seg)));
2145
2146         se->valid_blocks = new_vblocks;
2147         se->mtime = get_mtime(sbi, false);
2148         if (se->mtime > SIT_I(sbi)->max_mtime)
2149                 SIT_I(sbi)->max_mtime = se->mtime;
2150
2151         /* Update valid block bitmap */
2152         if (del > 0) {
2153                 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2154 #ifdef CONFIG_F2FS_CHECK_FS
2155                 mir_exist = f2fs_test_and_set_bit(offset,
2156                                                 se->cur_valid_map_mir);
2157                 if (unlikely(exist != mir_exist)) {
2158                         f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2159                                  blkaddr, exist);
2160                         f2fs_bug_on(sbi, 1);
2161                 }
2162 #endif
2163                 if (unlikely(exist)) {
2164                         f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
2165                                  blkaddr);
2166                         f2fs_bug_on(sbi, 1);
2167                         se->valid_blocks--;
2168                         del = 0;
2169                 }
2170
2171                 if (!f2fs_test_and_set_bit(offset, se->discard_map))
2172                         sbi->discard_blks--;
2173
2174                 /*
2175                  * SSR should never reuse block which is checkpointed
2176                  * or newly invalidated.
2177                  */
2178                 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2179                         if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2180                                 se->ckpt_valid_blocks++;
2181                 }
2182         } else {
2183                 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2184 #ifdef CONFIG_F2FS_CHECK_FS
2185                 mir_exist = f2fs_test_and_clear_bit(offset,
2186                                                 se->cur_valid_map_mir);
2187                 if (unlikely(exist != mir_exist)) {
2188                         f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2189                                  blkaddr, exist);
2190                         f2fs_bug_on(sbi, 1);
2191                 }
2192 #endif
2193                 if (unlikely(!exist)) {
2194                         f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
2195                                  blkaddr);
2196                         f2fs_bug_on(sbi, 1);
2197                         se->valid_blocks++;
2198                         del = 0;
2199                 } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2200                         /*
2201                          * If checkpoints are off, we must not reuse data that
2202                          * was used in the previous checkpoint. If it was used
2203                          * before, we must track that to know how much space we
2204                          * really have.
2205                          */
2206                         if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
2207                                 spin_lock(&sbi->stat_lock);
2208                                 sbi->unusable_block_count++;
2209                                 spin_unlock(&sbi->stat_lock);
2210                         }
2211                 }
2212
2213                 if (f2fs_test_and_clear_bit(offset, se->discard_map))
2214                         sbi->discard_blks++;
2215         }
2216         if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2217                 se->ckpt_valid_blocks += del;
2218
2219         __mark_sit_entry_dirty(sbi, segno);
2220
2221         /* update total number of valid blocks to be written in ckpt area */
2222         SIT_I(sbi)->written_valid_blocks += del;
2223
2224         if (__is_large_section(sbi))
2225                 get_sec_entry(sbi, segno)->valid_blocks += del;
2226 }
2227
2228 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2229 {
2230         unsigned int segno = GET_SEGNO(sbi, addr);
2231         struct sit_info *sit_i = SIT_I(sbi);
2232
2233         f2fs_bug_on(sbi, addr == NULL_ADDR);
2234         if (addr == NEW_ADDR || addr == COMPRESS_ADDR)
2235                 return;
2236
2237         invalidate_mapping_pages(META_MAPPING(sbi), addr, addr);
2238
2239         /* add it into sit main buffer */
2240         down_write(&sit_i->sentry_lock);
2241
2242         update_sit_entry(sbi, addr, -1);
2243
2244         /* add it into dirty seglist */
2245         locate_dirty_segment(sbi, segno);
2246
2247         up_write(&sit_i->sentry_lock);
2248 }
2249
2250 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2251 {
2252         struct sit_info *sit_i = SIT_I(sbi);
2253         unsigned int segno, offset;
2254         struct seg_entry *se;
2255         bool is_cp = false;
2256
2257         if (!__is_valid_data_blkaddr(blkaddr))
2258                 return true;
2259
2260         down_read(&sit_i->sentry_lock);
2261
2262         segno = GET_SEGNO(sbi, blkaddr);
2263         se = get_seg_entry(sbi, segno);
2264         offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2265
2266         if (f2fs_test_bit(offset, se->ckpt_valid_map))
2267                 is_cp = true;
2268
2269         up_read(&sit_i->sentry_lock);
2270
2271         return is_cp;
2272 }
2273
2274 /*
2275  * This function should be resided under the curseg_mutex lock
2276  */
2277 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
2278                                         struct f2fs_summary *sum)
2279 {
2280         struct curseg_info *curseg = CURSEG_I(sbi, type);
2281         void *addr = curseg->sum_blk;
2282         addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
2283         memcpy(addr, sum, sizeof(struct f2fs_summary));
2284 }
2285
2286 /*
2287  * Calculate the number of current summary pages for writing
2288  */
2289 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2290 {
2291         int valid_sum_count = 0;
2292         int i, sum_in_page;
2293
2294         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2295                 if (sbi->ckpt->alloc_type[i] == SSR)
2296                         valid_sum_count += sbi->blocks_per_seg;
2297                 else {
2298                         if (for_ra)
2299                                 valid_sum_count += le16_to_cpu(
2300                                         F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2301                         else
2302                                 valid_sum_count += curseg_blkoff(sbi, i);
2303                 }
2304         }
2305
2306         sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2307                         SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2308         if (valid_sum_count <= sum_in_page)
2309                 return 1;
2310         else if ((valid_sum_count - sum_in_page) <=
2311                 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2312                 return 2;
2313         return 3;
2314 }
2315
2316 /*
2317  * Caller should put this summary page
2318  */
2319 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2320 {
2321         return f2fs_get_meta_page_nofail(sbi, GET_SUM_BLOCK(sbi, segno));
2322 }
2323
2324 void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2325                                         void *src, block_t blk_addr)
2326 {
2327         struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2328
2329         memcpy(page_address(page), src, PAGE_SIZE);
2330         set_page_dirty(page);
2331         f2fs_put_page(page, 1);
2332 }
2333
2334 static void write_sum_page(struct f2fs_sb_info *sbi,
2335                         struct f2fs_summary_block *sum_blk, block_t blk_addr)
2336 {
2337         f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2338 }
2339
2340 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2341                                                 int type, block_t blk_addr)
2342 {
2343         struct curseg_info *curseg = CURSEG_I(sbi, type);
2344         struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2345         struct f2fs_summary_block *src = curseg->sum_blk;
2346         struct f2fs_summary_block *dst;
2347
2348         dst = (struct f2fs_summary_block *)page_address(page);
2349         memset(dst, 0, PAGE_SIZE);
2350
2351         mutex_lock(&curseg->curseg_mutex);
2352
2353         down_read(&curseg->journal_rwsem);
2354         memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2355         up_read(&curseg->journal_rwsem);
2356
2357         memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2358         memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2359
2360         mutex_unlock(&curseg->curseg_mutex);
2361
2362         set_page_dirty(page);
2363         f2fs_put_page(page, 1);
2364 }
2365
2366 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
2367 {
2368         struct curseg_info *curseg = CURSEG_I(sbi, type);
2369         unsigned int segno = curseg->segno + 1;
2370         struct free_segmap_info *free_i = FREE_I(sbi);
2371
2372         if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2373                 return !test_bit(segno, free_i->free_segmap);
2374         return 0;
2375 }
2376
2377 /*
2378  * Find a new segment from the free segments bitmap to right order
2379  * This function should be returned with success, otherwise BUG
2380  */
2381 static void get_new_segment(struct f2fs_sb_info *sbi,
2382                         unsigned int *newseg, bool new_sec, int dir)
2383 {
2384         struct free_segmap_info *free_i = FREE_I(sbi);
2385         unsigned int segno, secno, zoneno;
2386         unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2387         unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2388         unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2389         unsigned int left_start = hint;
2390         bool init = true;
2391         int go_left = 0;
2392         int i;
2393
2394         spin_lock(&free_i->segmap_lock);
2395
2396         if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2397                 segno = find_next_zero_bit(free_i->free_segmap,
2398                         GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2399                 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2400                         goto got_it;
2401         }
2402 find_other_zone:
2403         secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2404         if (secno >= MAIN_SECS(sbi)) {
2405                 if (dir == ALLOC_RIGHT) {
2406                         secno = find_next_zero_bit(free_i->free_secmap,
2407                                                         MAIN_SECS(sbi), 0);
2408                         f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2409                 } else {
2410                         go_left = 1;
2411                         left_start = hint - 1;
2412                 }
2413         }
2414         if (go_left == 0)
2415                 goto skip_left;
2416
2417         while (test_bit(left_start, free_i->free_secmap)) {
2418                 if (left_start > 0) {
2419                         left_start--;
2420                         continue;
2421                 }
2422                 left_start = find_next_zero_bit(free_i->free_secmap,
2423                                                         MAIN_SECS(sbi), 0);
2424                 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2425                 break;
2426         }
2427         secno = left_start;
2428 skip_left:
2429         segno = GET_SEG_FROM_SEC(sbi, secno);
2430         zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2431
2432         /* give up on finding another zone */
2433         if (!init)
2434                 goto got_it;
2435         if (sbi->secs_per_zone == 1)
2436                 goto got_it;
2437         if (zoneno == old_zoneno)
2438                 goto got_it;
2439         if (dir == ALLOC_LEFT) {
2440                 if (!go_left && zoneno + 1 >= total_zones)
2441                         goto got_it;
2442                 if (go_left && zoneno == 0)
2443                         goto got_it;
2444         }
2445         for (i = 0; i < NR_CURSEG_TYPE; i++)
2446                 if (CURSEG_I(sbi, i)->zone == zoneno)
2447                         break;
2448
2449         if (i < NR_CURSEG_TYPE) {
2450                 /* zone is in user, try another */
2451                 if (go_left)
2452                         hint = zoneno * sbi->secs_per_zone - 1;
2453                 else if (zoneno + 1 >= total_zones)
2454                         hint = 0;
2455                 else
2456                         hint = (zoneno + 1) * sbi->secs_per_zone;
2457                 init = false;
2458                 goto find_other_zone;
2459         }
2460 got_it:
2461         /* set it as dirty segment in free segmap */
2462         f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2463         __set_inuse(sbi, segno);
2464         *newseg = segno;
2465         spin_unlock(&free_i->segmap_lock);
2466 }
2467
2468 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2469 {
2470         struct curseg_info *curseg = CURSEG_I(sbi, type);
2471         struct summary_footer *sum_footer;
2472
2473         curseg->segno = curseg->next_segno;
2474         curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2475         curseg->next_blkoff = 0;
2476         curseg->next_segno = NULL_SEGNO;
2477
2478         sum_footer = &(curseg->sum_blk->footer);
2479         memset(sum_footer, 0, sizeof(struct summary_footer));
2480         if (IS_DATASEG(type))
2481                 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2482         if (IS_NODESEG(type))
2483                 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2484         __set_sit_entry_type(sbi, type, curseg->segno, modified);
2485 }
2486
2487 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2488 {
2489         /* if segs_per_sec is large than 1, we need to keep original policy. */
2490         if (__is_large_section(sbi))
2491                 return CURSEG_I(sbi, type)->segno;
2492
2493         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2494                 return 0;
2495
2496         if (test_opt(sbi, NOHEAP) &&
2497                 (type == CURSEG_HOT_DATA || IS_NODESEG(type)))
2498                 return 0;
2499
2500         if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2501                 return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2502
2503         /* find segments from 0 to reuse freed segments */
2504         if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2505                 return 0;
2506
2507         return CURSEG_I(sbi, type)->segno;
2508 }
2509
2510 /*
2511  * Allocate a current working segment.
2512  * This function always allocates a free segment in LFS manner.
2513  */
2514 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2515 {
2516         struct curseg_info *curseg = CURSEG_I(sbi, type);
2517         unsigned int segno = curseg->segno;
2518         int dir = ALLOC_LEFT;
2519
2520         write_sum_page(sbi, curseg->sum_blk,
2521                                 GET_SUM_BLOCK(sbi, segno));
2522         if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
2523                 dir = ALLOC_RIGHT;
2524
2525         if (test_opt(sbi, NOHEAP))
2526                 dir = ALLOC_RIGHT;
2527
2528         segno = __get_next_segno(sbi, type);
2529         get_new_segment(sbi, &segno, new_sec, dir);
2530         curseg->next_segno = segno;
2531         reset_curseg(sbi, type, 1);
2532         curseg->alloc_type = LFS;
2533 }
2534
2535 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
2536                         struct curseg_info *seg, block_t start)
2537 {
2538         struct seg_entry *se = get_seg_entry(sbi, seg->segno);
2539         int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2540         unsigned long *target_map = SIT_I(sbi)->tmp_map;
2541         unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2542         unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2543         int i, pos;
2544
2545         for (i = 0; i < entries; i++)
2546                 target_map[i] = ckpt_map[i] | cur_map[i];
2547
2548         pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2549
2550         seg->next_blkoff = pos;
2551 }
2552
2553 /*
2554  * If a segment is written by LFS manner, next block offset is just obtained
2555  * by increasing the current block offset. However, if a segment is written by
2556  * SSR manner, next block offset obtained by calling __next_free_blkoff
2557  */
2558 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2559                                 struct curseg_info *seg)
2560 {
2561         if (seg->alloc_type == SSR)
2562                 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
2563         else
2564                 seg->next_blkoff++;
2565 }
2566
2567 /*
2568  * This function always allocates a used segment(from dirty seglist) by SSR
2569  * manner, so it should recover the existing segment information of valid blocks
2570  */
2571 static void change_curseg(struct f2fs_sb_info *sbi, int type)
2572 {
2573         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2574         struct curseg_info *curseg = CURSEG_I(sbi, type);
2575         unsigned int new_segno = curseg->next_segno;
2576         struct f2fs_summary_block *sum_node;
2577         struct page *sum_page;
2578
2579         write_sum_page(sbi, curseg->sum_blk,
2580                                 GET_SUM_BLOCK(sbi, curseg->segno));
2581         __set_test_and_inuse(sbi, new_segno);
2582
2583         mutex_lock(&dirty_i->seglist_lock);
2584         __remove_dirty_segment(sbi, new_segno, PRE);
2585         __remove_dirty_segment(sbi, new_segno, DIRTY);
2586         mutex_unlock(&dirty_i->seglist_lock);
2587
2588         reset_curseg(sbi, type, 1);
2589         curseg->alloc_type = SSR;
2590         __next_free_blkoff(sbi, curseg, 0);
2591
2592         sum_page = f2fs_get_sum_page(sbi, new_segno);
2593         f2fs_bug_on(sbi, IS_ERR(sum_page));
2594         sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2595         memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2596         f2fs_put_page(sum_page, 1);
2597 }
2598
2599 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
2600 {
2601         struct curseg_info *curseg = CURSEG_I(sbi, type);
2602         const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2603         unsigned segno = NULL_SEGNO;
2604         int i, cnt;
2605         bool reversed = false;
2606
2607         /* f2fs_need_SSR() already forces to do this */
2608         if (v_ops->get_victim(sbi, &segno, BG_GC, type, SSR)) {
2609                 curseg->next_segno = segno;
2610                 return 1;
2611         }
2612
2613         /* For node segments, let's do SSR more intensively */
2614         if (IS_NODESEG(type)) {
2615                 if (type >= CURSEG_WARM_NODE) {
2616                         reversed = true;
2617                         i = CURSEG_COLD_NODE;
2618                 } else {
2619                         i = CURSEG_HOT_NODE;
2620                 }
2621                 cnt = NR_CURSEG_NODE_TYPE;
2622         } else {
2623                 if (type >= CURSEG_WARM_DATA) {
2624                         reversed = true;
2625                         i = CURSEG_COLD_DATA;
2626                 } else {
2627                         i = CURSEG_HOT_DATA;
2628                 }
2629                 cnt = NR_CURSEG_DATA_TYPE;
2630         }
2631
2632         for (; cnt-- > 0; reversed ? i-- : i++) {
2633                 if (i == type)
2634                         continue;
2635                 if (v_ops->get_victim(sbi, &segno, BG_GC, i, SSR)) {
2636                         curseg->next_segno = segno;
2637                         return 1;
2638                 }
2639         }
2640
2641         /* find valid_blocks=0 in dirty list */
2642         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2643                 segno = get_free_segment(sbi);
2644                 if (segno != NULL_SEGNO) {
2645                         curseg->next_segno = segno;
2646                         return 1;
2647                 }
2648         }
2649         return 0;
2650 }
2651
2652 /*
2653  * flush out current segment and replace it with new segment
2654  * This function should be returned with success, otherwise BUG
2655  */
2656 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
2657                                                 int type, bool force)
2658 {
2659         struct curseg_info *curseg = CURSEG_I(sbi, type);
2660
2661         if (force)
2662                 new_curseg(sbi, type, true);
2663         else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2664                                         type == CURSEG_WARM_NODE)
2665                 new_curseg(sbi, type, false);
2666         else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type) &&
2667                         likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2668                 new_curseg(sbi, type, false);
2669         else if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type))
2670                 change_curseg(sbi, type);
2671         else
2672                 new_curseg(sbi, type, false);
2673
2674         stat_inc_seg_type(sbi, curseg);
2675 }
2676
2677 void allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
2678                                         unsigned int start, unsigned int end)
2679 {
2680         struct curseg_info *curseg = CURSEG_I(sbi, type);
2681         unsigned int segno;
2682
2683         down_read(&SM_I(sbi)->curseg_lock);
2684         mutex_lock(&curseg->curseg_mutex);
2685         down_write(&SIT_I(sbi)->sentry_lock);
2686
2687         segno = CURSEG_I(sbi, type)->segno;
2688         if (segno < start || segno > end)
2689                 goto unlock;
2690
2691         if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type))
2692                 change_curseg(sbi, type);
2693         else
2694                 new_curseg(sbi, type, true);
2695
2696         stat_inc_seg_type(sbi, curseg);
2697
2698         locate_dirty_segment(sbi, segno);
2699 unlock:
2700         up_write(&SIT_I(sbi)->sentry_lock);
2701
2702         if (segno != curseg->segno)
2703                 f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
2704                             type, segno, curseg->segno);
2705
2706         mutex_unlock(&curseg->curseg_mutex);
2707         up_read(&SM_I(sbi)->curseg_lock);
2708 }
2709
2710 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi, int type)
2711 {
2712         struct curseg_info *curseg;
2713         unsigned int old_segno;
2714         int i;
2715
2716         down_write(&SIT_I(sbi)->sentry_lock);
2717
2718         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2719                 if (type != NO_CHECK_TYPE && i != type)
2720                         continue;
2721
2722                 curseg = CURSEG_I(sbi, i);
2723                 if (type == NO_CHECK_TYPE || curseg->next_blkoff ||
2724                                 get_valid_blocks(sbi, curseg->segno, false) ||
2725                                 get_ckpt_valid_blocks(sbi, curseg->segno)) {
2726                         old_segno = curseg->segno;
2727                         SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
2728                         locate_dirty_segment(sbi, old_segno);
2729                 }
2730         }
2731
2732         up_write(&SIT_I(sbi)->sentry_lock);
2733 }
2734
2735 static const struct segment_allocation default_salloc_ops = {
2736         .allocate_segment = allocate_segment_by_default,
2737 };
2738
2739 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
2740                                                 struct cp_control *cpc)
2741 {
2742         __u64 trim_start = cpc->trim_start;
2743         bool has_candidate = false;
2744
2745         down_write(&SIT_I(sbi)->sentry_lock);
2746         for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
2747                 if (add_discard_addrs(sbi, cpc, true)) {
2748                         has_candidate = true;
2749                         break;
2750                 }
2751         }
2752         up_write(&SIT_I(sbi)->sentry_lock);
2753
2754         cpc->trim_start = trim_start;
2755         return has_candidate;
2756 }
2757
2758 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
2759                                         struct discard_policy *dpolicy,
2760                                         unsigned int start, unsigned int end)
2761 {
2762         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2763         struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
2764         struct rb_node **insert_p = NULL, *insert_parent = NULL;
2765         struct discard_cmd *dc;
2766         struct blk_plug plug;
2767         int issued;
2768         unsigned int trimmed = 0;
2769
2770 next:
2771         issued = 0;
2772
2773         mutex_lock(&dcc->cmd_lock);
2774         if (unlikely(dcc->rbtree_check))
2775                 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
2776                                                                 &dcc->root));
2777
2778         dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
2779                                         NULL, start,
2780                                         (struct rb_entry **)&prev_dc,
2781                                         (struct rb_entry **)&next_dc,
2782                                         &insert_p, &insert_parent, true, NULL);
2783         if (!dc)
2784                 dc = next_dc;
2785
2786         blk_start_plug(&plug);
2787
2788         while (dc && dc->lstart <= end) {
2789                 struct rb_node *node;
2790                 int err = 0;
2791
2792                 if (dc->len < dpolicy->granularity)
2793                         goto skip;
2794
2795                 if (dc->state != D_PREP) {
2796                         list_move_tail(&dc->list, &dcc->fstrim_list);
2797                         goto skip;
2798                 }
2799
2800                 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
2801
2802                 if (issued >= dpolicy->max_requests) {
2803                         start = dc->lstart + dc->len;
2804
2805                         if (err)
2806                                 __remove_discard_cmd(sbi, dc);
2807
2808                         blk_finish_plug(&plug);
2809                         mutex_unlock(&dcc->cmd_lock);
2810                         trimmed += __wait_all_discard_cmd(sbi, NULL);
2811                         congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
2812                         goto next;
2813                 }
2814 skip:
2815                 node = rb_next(&dc->rb_node);
2816                 if (err)
2817                         __remove_discard_cmd(sbi, dc);
2818                 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
2819
2820                 if (fatal_signal_pending(current))
2821                         break;
2822         }
2823
2824         blk_finish_plug(&plug);
2825         mutex_unlock(&dcc->cmd_lock);
2826
2827         return trimmed;
2828 }
2829
2830 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
2831 {
2832         __u64 start = F2FS_BYTES_TO_BLK(range->start);
2833         __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
2834         unsigned int start_segno, end_segno;
2835         block_t start_block, end_block;
2836         struct cp_control cpc;
2837         struct discard_policy dpolicy;
2838         unsigned long long trimmed = 0;
2839         int err = 0;
2840         bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
2841
2842         if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
2843                 return -EINVAL;
2844
2845         if (end < MAIN_BLKADDR(sbi))
2846                 goto out;
2847
2848         if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
2849                 f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
2850                 return -EFSCORRUPTED;
2851         }
2852
2853         /* start/end segment number in main_area */
2854         start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
2855         end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
2856                                                 GET_SEGNO(sbi, end);
2857         if (need_align) {
2858                 start_segno = rounddown(start_segno, sbi->segs_per_sec);
2859                 end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
2860         }
2861
2862         cpc.reason = CP_DISCARD;
2863         cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
2864         cpc.trim_start = start_segno;
2865         cpc.trim_end = end_segno;
2866
2867         if (sbi->discard_blks == 0)
2868                 goto out;
2869
2870         down_write(&sbi->gc_lock);
2871         err = f2fs_write_checkpoint(sbi, &cpc);
2872         up_write(&sbi->gc_lock);
2873         if (err)
2874                 goto out;
2875
2876         /*
2877          * We filed discard candidates, but actually we don't need to wait for
2878          * all of them, since they'll be issued in idle time along with runtime
2879          * discard option. User configuration looks like using runtime discard
2880          * or periodic fstrim instead of it.
2881          */
2882         if (f2fs_realtime_discard_enable(sbi))
2883                 goto out;
2884
2885         start_block = START_BLOCK(sbi, start_segno);
2886         end_block = START_BLOCK(sbi, end_segno + 1);
2887
2888         __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
2889         trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
2890                                         start_block, end_block);
2891
2892         trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
2893                                         start_block, end_block);
2894 out:
2895         if (!err)
2896                 range->len = F2FS_BLK_TO_BYTES(trimmed);
2897         return err;
2898 }
2899
2900 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
2901 {
2902         struct curseg_info *curseg = CURSEG_I(sbi, type);
2903         if (curseg->next_blkoff < sbi->blocks_per_seg)
2904                 return true;
2905         return false;
2906 }
2907
2908 int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
2909 {
2910         switch (hint) {
2911         case WRITE_LIFE_SHORT:
2912                 return CURSEG_HOT_DATA;
2913         case WRITE_LIFE_EXTREME:
2914                 return CURSEG_COLD_DATA;
2915         default:
2916                 return CURSEG_WARM_DATA;
2917         }
2918 }
2919
2920 /* This returns write hints for each segment type. This hints will be
2921  * passed down to block layer. There are mapping tables which depend on
2922  * the mount option 'whint_mode'.
2923  *
2924  * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET.
2925  *
2926  * 2) whint_mode=user-based. F2FS tries to pass down hints given by users.
2927  *
2928  * User                  F2FS                     Block
2929  * ----                  ----                     -----
2930  *                       META                     WRITE_LIFE_NOT_SET
2931  *                       HOT_NODE                 "
2932  *                       WARM_NODE                "
2933  *                       COLD_NODE                "
2934  * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
2935  * extension list        "                        "
2936  *
2937  * -- buffered io
2938  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2939  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2940  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
2941  * WRITE_LIFE_NONE       "                        "
2942  * WRITE_LIFE_MEDIUM     "                        "
2943  * WRITE_LIFE_LONG       "                        "
2944  *
2945  * -- direct io
2946  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2947  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2948  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
2949  * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
2950  * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
2951  * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
2952  *
2953  * 3) whint_mode=fs-based. F2FS passes down hints with its policy.
2954  *
2955  * User                  F2FS                     Block
2956  * ----                  ----                     -----
2957  *                       META                     WRITE_LIFE_MEDIUM;
2958  *                       HOT_NODE                 WRITE_LIFE_NOT_SET
2959  *                       WARM_NODE                "
2960  *                       COLD_NODE                WRITE_LIFE_NONE
2961  * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
2962  * extension list        "                        "
2963  *
2964  * -- buffered io
2965  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2966  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2967  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_LONG
2968  * WRITE_LIFE_NONE       "                        "
2969  * WRITE_LIFE_MEDIUM     "                        "
2970  * WRITE_LIFE_LONG       "                        "
2971  *
2972  * -- direct io
2973  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2974  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2975  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
2976  * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
2977  * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
2978  * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
2979  */
2980
2981 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
2982                                 enum page_type type, enum temp_type temp)
2983 {
2984         if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) {
2985                 if (type == DATA) {
2986                         if (temp == WARM)
2987                                 return WRITE_LIFE_NOT_SET;
2988                         else if (temp == HOT)
2989                                 return WRITE_LIFE_SHORT;
2990                         else if (temp == COLD)
2991                                 return WRITE_LIFE_EXTREME;
2992                 } else {
2993                         return WRITE_LIFE_NOT_SET;
2994                 }
2995         } else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) {
2996                 if (type == DATA) {
2997                         if (temp == WARM)
2998                                 return WRITE_LIFE_LONG;
2999                         else if (temp == HOT)
3000                                 return WRITE_LIFE_SHORT;
3001                         else if (temp == COLD)
3002                                 return WRITE_LIFE_EXTREME;
3003                 } else if (type == NODE) {
3004                         if (temp == WARM || temp == HOT)
3005                                 return WRITE_LIFE_NOT_SET;
3006                         else if (temp == COLD)
3007                                 return WRITE_LIFE_NONE;
3008                 } else if (type == META) {
3009                         return WRITE_LIFE_MEDIUM;
3010                 }
3011         }
3012         return WRITE_LIFE_NOT_SET;
3013 }
3014
3015 static int __get_segment_type_2(struct f2fs_io_info *fio)
3016 {
3017         if (fio->type == DATA)
3018                 return CURSEG_HOT_DATA;
3019         else
3020                 return CURSEG_HOT_NODE;
3021 }
3022
3023 static int __get_segment_type_4(struct f2fs_io_info *fio)
3024 {
3025         if (fio->type == DATA) {
3026                 struct inode *inode = fio->page->mapping->host;
3027
3028                 if (S_ISDIR(inode->i_mode))
3029                         return CURSEG_HOT_DATA;
3030                 else
3031                         return CURSEG_COLD_DATA;
3032         } else {
3033                 if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3034                         return CURSEG_WARM_NODE;
3035                 else
3036                         return CURSEG_COLD_NODE;
3037         }
3038 }
3039
3040 static int __get_segment_type_6(struct f2fs_io_info *fio)
3041 {
3042         if (fio->type == DATA) {
3043                 struct inode *inode = fio->page->mapping->host;
3044
3045                 if (is_cold_data(fio->page) || file_is_cold(inode) ||
3046                                 f2fs_compressed_file(inode))
3047                         return CURSEG_COLD_DATA;
3048                 if (file_is_hot(inode) ||
3049                                 is_inode_flag_set(inode, FI_HOT_DATA) ||
3050                                 f2fs_is_atomic_file(inode) ||
3051                                 f2fs_is_volatile_file(inode))
3052                         return CURSEG_HOT_DATA;
3053                 return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
3054         } else {
3055                 if (IS_DNODE(fio->page))
3056                         return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3057                                                 CURSEG_HOT_NODE;
3058                 return CURSEG_COLD_NODE;
3059         }
3060 }
3061
3062 static int __get_segment_type(struct f2fs_io_info *fio)
3063 {
3064         int type = 0;
3065
3066         switch (F2FS_OPTION(fio->sbi).active_logs) {
3067         case 2:
3068                 type = __get_segment_type_2(fio);
3069                 break;
3070         case 4:
3071                 type = __get_segment_type_4(fio);
3072                 break;
3073         case 6:
3074                 type = __get_segment_type_6(fio);
3075                 break;
3076         default:
3077                 f2fs_bug_on(fio->sbi, true);
3078         }
3079
3080         if (IS_HOT(type))
3081                 fio->temp = HOT;
3082         else if (IS_WARM(type))
3083                 fio->temp = WARM;
3084         else
3085                 fio->temp = COLD;
3086         return type;
3087 }
3088
3089 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3090                 block_t old_blkaddr, block_t *new_blkaddr,
3091                 struct f2fs_summary *sum, int type,
3092                 struct f2fs_io_info *fio, bool add_list)
3093 {
3094         struct sit_info *sit_i = SIT_I(sbi);
3095         struct curseg_info *curseg = CURSEG_I(sbi, type);
3096         bool put_pin_sem = false;
3097
3098         if (type == CURSEG_COLD_DATA) {
3099                 /* GC during CURSEG_COLD_DATA_PINNED allocation */
3100                 if (down_read_trylock(&sbi->pin_sem)) {
3101                         put_pin_sem = true;
3102                 } else {
3103                         type = CURSEG_WARM_DATA;
3104                         curseg = CURSEG_I(sbi, type);
3105                 }
3106         } else if (type == CURSEG_COLD_DATA_PINNED) {
3107                 type = CURSEG_COLD_DATA;
3108         }
3109
3110         /*
3111          * We need to wait for node_write to avoid block allocation during
3112          * checkpoint. This can only happen to quota writes which can cause
3113          * the below discard race condition.
3114          */
3115         if (IS_DATASEG(type))
3116                 down_write(&sbi->node_write);
3117
3118         down_read(&SM_I(sbi)->curseg_lock);
3119
3120         mutex_lock(&curseg->curseg_mutex);
3121         down_write(&sit_i->sentry_lock);
3122
3123         *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3124
3125         f2fs_wait_discard_bio(sbi, *new_blkaddr);
3126
3127         /*
3128          * __add_sum_entry should be resided under the curseg_mutex
3129          * because, this function updates a summary entry in the
3130          * current summary block.
3131          */
3132         __add_sum_entry(sbi, type, sum);
3133
3134         __refresh_next_blkoff(sbi, curseg);
3135
3136         stat_inc_block_count(sbi, curseg);
3137
3138         /*
3139          * SIT information should be updated before segment allocation,
3140          * since SSR needs latest valid block information.
3141          */
3142         update_sit_entry(sbi, *new_blkaddr, 1);
3143         if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
3144                 update_sit_entry(sbi, old_blkaddr, -1);
3145
3146         if (!__has_curseg_space(sbi, type))
3147                 sit_i->s_ops->allocate_segment(sbi, type, false);
3148
3149         /*
3150          * segment dirty status should be updated after segment allocation,
3151          * so we just need to update status only one time after previous
3152          * segment being closed.
3153          */
3154         locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3155         locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3156
3157         up_write(&sit_i->sentry_lock);
3158
3159         if (page && IS_NODESEG(type)) {
3160                 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3161
3162                 f2fs_inode_chksum_set(sbi, page);
3163         }
3164
3165         if (F2FS_IO_ALIGNED(sbi))
3166                 fio->retry = false;
3167
3168         if (add_list) {
3169                 struct f2fs_bio_info *io;
3170
3171                 INIT_LIST_HEAD(&fio->list);
3172                 fio->in_list = true;
3173                 io = sbi->write_io[fio->type] + fio->temp;
3174                 spin_lock(&io->io_lock);
3175                 list_add_tail(&fio->list, &io->io_list);
3176                 spin_unlock(&io->io_lock);
3177         }
3178
3179         mutex_unlock(&curseg->curseg_mutex);
3180
3181         up_read(&SM_I(sbi)->curseg_lock);
3182
3183         if (IS_DATASEG(type))
3184                 up_write(&sbi->node_write);
3185
3186         if (put_pin_sem)
3187                 up_read(&sbi->pin_sem);
3188 }
3189
3190 static void update_device_state(struct f2fs_io_info *fio)
3191 {
3192         struct f2fs_sb_info *sbi = fio->sbi;
3193         unsigned int devidx;
3194
3195         if (!f2fs_is_multi_device(sbi))
3196                 return;
3197
3198         devidx = f2fs_target_device_index(sbi, fio->new_blkaddr);
3199
3200         /* update device state for fsync */
3201         f2fs_set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO);
3202
3203         /* update device state for checkpoint */
3204         if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3205                 spin_lock(&sbi->dev_lock);
3206                 f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3207                 spin_unlock(&sbi->dev_lock);
3208         }
3209 }
3210
3211 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3212 {
3213         int type = __get_segment_type(fio);
3214         bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA);
3215
3216         if (keep_order)
3217                 down_read(&fio->sbi->io_order_lock);
3218 reallocate:
3219         f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3220                         &fio->new_blkaddr, sum, type, fio, true);
3221         if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO)
3222                 invalidate_mapping_pages(META_MAPPING(fio->sbi),
3223                                         fio->old_blkaddr, fio->old_blkaddr);
3224
3225         /* writeout dirty page into bdev */
3226         f2fs_submit_page_write(fio);
3227         if (fio->retry) {
3228                 fio->old_blkaddr = fio->new_blkaddr;
3229                 goto reallocate;
3230         }
3231
3232         update_device_state(fio);
3233
3234         if (keep_order)
3235                 up_read(&fio->sbi->io_order_lock);
3236 }
3237
3238 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3239                                         enum iostat_type io_type)
3240 {
3241         struct f2fs_io_info fio = {
3242                 .sbi = sbi,
3243                 .type = META,
3244                 .temp = HOT,
3245                 .op = REQ_OP_WRITE,
3246                 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3247                 .old_blkaddr = page->index,
3248                 .new_blkaddr = page->index,
3249                 .page = page,
3250                 .encrypted_page = NULL,
3251                 .in_list = false,
3252         };
3253
3254         if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3255                 fio.op_flags &= ~REQ_META;
3256
3257         set_page_writeback(page);
3258         ClearPageError(page);
3259         f2fs_submit_page_write(&fio);
3260
3261         stat_inc_meta_count(sbi, page->index);
3262         f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
3263 }
3264
3265 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3266 {
3267         struct f2fs_summary sum;
3268
3269         set_summary(&sum, nid, 0, 0);
3270         do_write_page(&sum, fio);
3271
3272         f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3273 }
3274
3275 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3276                                         struct f2fs_io_info *fio)
3277 {
3278         struct f2fs_sb_info *sbi = fio->sbi;
3279         struct f2fs_summary sum;
3280
3281         f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3282         set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3283         do_write_page(&sum, fio);
3284         f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3285
3286         f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
3287 }
3288
3289 int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3290 {
3291         int err;
3292         struct f2fs_sb_info *sbi = fio->sbi;
3293         unsigned int segno;
3294
3295         fio->new_blkaddr = fio->old_blkaddr;
3296         /* i/o temperature is needed for passing down write hints */
3297         __get_segment_type(fio);
3298
3299         segno = GET_SEGNO(sbi, fio->new_blkaddr);
3300
3301         if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3302                 set_sbi_flag(sbi, SBI_NEED_FSCK);
3303                 f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
3304                           __func__, segno);
3305                 return -EFSCORRUPTED;
3306         }
3307
3308         stat_inc_inplace_blocks(fio->sbi);
3309
3310         if (fio->bio && !(SM_I(sbi)->ipu_policy & (1 << F2FS_IPU_NOCACHE)))
3311                 err = f2fs_merge_page_bio(fio);
3312         else
3313                 err = f2fs_submit_page_bio(fio);
3314         if (!err) {
3315                 update_device_state(fio);
3316                 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3317         }
3318
3319         return err;
3320 }
3321
3322 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3323                                                 unsigned int segno)
3324 {
3325         int i;
3326
3327         for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3328                 if (CURSEG_I(sbi, i)->segno == segno)
3329                         break;
3330         }
3331         return i;
3332 }
3333
3334 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3335                                 block_t old_blkaddr, block_t new_blkaddr,
3336                                 bool recover_curseg, bool recover_newaddr)
3337 {
3338         struct sit_info *sit_i = SIT_I(sbi);
3339         struct curseg_info *curseg;
3340         unsigned int segno, old_cursegno;
3341         struct seg_entry *se;
3342         int type;
3343         unsigned short old_blkoff;
3344
3345         segno = GET_SEGNO(sbi, new_blkaddr);
3346         se = get_seg_entry(sbi, segno);
3347         type = se->type;
3348
3349         down_write(&SM_I(sbi)->curseg_lock);
3350
3351         if (!recover_curseg) {
3352                 /* for recovery flow */
3353                 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3354                         if (old_blkaddr == NULL_ADDR)
3355                                 type = CURSEG_COLD_DATA;
3356                         else
3357                                 type = CURSEG_WARM_DATA;
3358                 }
3359         } else {
3360                 if (IS_CURSEG(sbi, segno)) {
3361                         /* se->type is volatile as SSR allocation */
3362                         type = __f2fs_get_curseg(sbi, segno);
3363                         f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3364                 } else {
3365                         type = CURSEG_WARM_DATA;
3366                 }
3367         }
3368
3369         f2fs_bug_on(sbi, !IS_DATASEG(type));
3370         curseg = CURSEG_I(sbi, type);
3371
3372         mutex_lock(&curseg->curseg_mutex);
3373         down_write(&sit_i->sentry_lock);
3374
3375         old_cursegno = curseg->segno;
3376         old_blkoff = curseg->next_blkoff;
3377
3378         /* change the current segment */
3379         if (segno != curseg->segno) {
3380                 curseg->next_segno = segno;
3381                 change_curseg(sbi, type);
3382         }
3383
3384         curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3385         __add_sum_entry(sbi, type, sum);
3386
3387         if (!recover_curseg || recover_newaddr)
3388                 update_sit_entry(sbi, new_blkaddr, 1);
3389         if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3390                 invalidate_mapping_pages(META_MAPPING(sbi),
3391                                         old_blkaddr, old_blkaddr);
3392                 update_sit_entry(sbi, old_blkaddr, -1);
3393         }
3394
3395         locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3396         locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3397
3398         locate_dirty_segment(sbi, old_cursegno);
3399
3400         if (recover_curseg) {
3401                 if (old_cursegno != curseg->segno) {
3402                         curseg->next_segno = old_cursegno;
3403                         change_curseg(sbi, type);
3404                 }
3405                 curseg->next_blkoff = old_blkoff;
3406         }
3407
3408         up_write(&sit_i->sentry_lock);
3409         mutex_unlock(&curseg->curseg_mutex);
3410         up_write(&SM_I(sbi)->curseg_lock);
3411 }
3412
3413 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3414                                 block_t old_addr, block_t new_addr,
3415                                 unsigned char version, bool recover_curseg,
3416                                 bool recover_newaddr)
3417 {
3418         struct f2fs_summary sum;
3419
3420         set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3421
3422         f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3423                                         recover_curseg, recover_newaddr);
3424
3425         f2fs_update_data_blkaddr(dn, new_addr);
3426 }
3427
3428 void f2fs_wait_on_page_writeback(struct page *page,
3429                                 enum page_type type, bool ordered, bool locked)
3430 {
3431         if (PageWriteback(page)) {
3432                 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3433
3434                 /* submit cached LFS IO */
3435                 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3436                 /* sbumit cached IPU IO */
3437                 f2fs_submit_merged_ipu_write(sbi, NULL, page);
3438                 if (ordered) {
3439                         wait_on_page_writeback(page);
3440                         f2fs_bug_on(sbi, locked && PageWriteback(page));
3441                 } else {
3442                         wait_for_stable_page(page);
3443                 }
3444         }
3445 }
3446
3447 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
3448 {
3449         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3450         struct page *cpage;
3451
3452         if (!f2fs_post_read_required(inode))
3453                 return;
3454
3455         if (!__is_valid_data_blkaddr(blkaddr))
3456                 return;
3457
3458         cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3459         if (cpage) {
3460                 f2fs_wait_on_page_writeback(cpage, DATA, true, true);
3461                 f2fs_put_page(cpage, 1);
3462         }
3463 }
3464
3465 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3466                                                                 block_t len)
3467 {
3468         block_t i;
3469
3470         for (i = 0; i < len; i++)
3471                 f2fs_wait_on_block_writeback(inode, blkaddr + i);
3472 }
3473
3474 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3475 {
3476         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3477         struct curseg_info *seg_i;
3478         unsigned char *kaddr;
3479         struct page *page;
3480         block_t start;
3481         int i, j, offset;
3482
3483         start = start_sum_block(sbi);
3484
3485         page = f2fs_get_meta_page(sbi, start++);
3486         if (IS_ERR(page))
3487                 return PTR_ERR(page);
3488         kaddr = (unsigned char *)page_address(page);
3489
3490         /* Step 1: restore nat cache */
3491         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3492         memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3493
3494         /* Step 2: restore sit cache */
3495         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3496         memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3497         offset = 2 * SUM_JOURNAL_SIZE;
3498
3499         /* Step 3: restore summary entries */
3500         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3501                 unsigned short blk_off;
3502                 unsigned int segno;
3503
3504                 seg_i = CURSEG_I(sbi, i);
3505                 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3506                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3507                 seg_i->next_segno = segno;
3508                 reset_curseg(sbi, i, 0);
3509                 seg_i->alloc_type = ckpt->alloc_type[i];
3510                 seg_i->next_blkoff = blk_off;
3511
3512                 if (seg_i->alloc_type == SSR)
3513                         blk_off = sbi->blocks_per_seg;
3514
3515                 for (j = 0; j < blk_off; j++) {
3516                         struct f2fs_summary *s;
3517                         s = (struct f2fs_summary *)(kaddr + offset);
3518                         seg_i->sum_blk->entries[j] = *s;
3519                         offset += SUMMARY_SIZE;
3520                         if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3521                                                 SUM_FOOTER_SIZE)
3522                                 continue;
3523
3524                         f2fs_put_page(page, 1);
3525                         page = NULL;
3526
3527                         page = f2fs_get_meta_page(sbi, start++);
3528                         if (IS_ERR(page))
3529                                 return PTR_ERR(page);
3530                         kaddr = (unsigned char *)page_address(page);
3531                         offset = 0;
3532                 }
3533         }
3534         f2fs_put_page(page, 1);
3535         return 0;
3536 }
3537
3538 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3539 {
3540         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3541         struct f2fs_summary_block *sum;
3542         struct curseg_info *curseg;
3543         struct page *new;
3544         unsigned short blk_off;
3545         unsigned int segno = 0;
3546         block_t blk_addr = 0;
3547         int err = 0;
3548
3549         /* get segment number and block addr */
3550         if (IS_DATASEG(type)) {
3551                 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3552                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3553                                                         CURSEG_HOT_DATA]);
3554                 if (__exist_node_summaries(sbi))
3555                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
3556                 else
3557                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3558         } else {
3559                 segno = le32_to_cpu(ckpt->cur_node_segno[type -
3560                                                         CURSEG_HOT_NODE]);
3561                 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3562                                                         CURSEG_HOT_NODE]);
3563                 if (__exist_node_summaries(sbi))
3564                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3565                                                         type - CURSEG_HOT_NODE);
3566                 else
3567                         blk_addr = GET_SUM_BLOCK(sbi, segno);
3568         }
3569
3570         new = f2fs_get_meta_page(sbi, blk_addr);
3571         if (IS_ERR(new))
3572                 return PTR_ERR(new);
3573         sum = (struct f2fs_summary_block *)page_address(new);
3574
3575         if (IS_NODESEG(type)) {
3576                 if (__exist_node_summaries(sbi)) {
3577                         struct f2fs_summary *ns = &sum->entries[0];
3578                         int i;
3579                         for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3580                                 ns->version = 0;
3581                                 ns->ofs_in_node = 0;
3582                         }
3583                 } else {
3584                         err = f2fs_restore_node_summary(sbi, segno, sum);
3585                         if (err)
3586                                 goto out;
3587                 }
3588         }
3589
3590         /* set uncompleted segment to curseg */
3591         curseg = CURSEG_I(sbi, type);
3592         mutex_lock(&curseg->curseg_mutex);
3593
3594         /* update journal info */
3595         down_write(&curseg->journal_rwsem);
3596         memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3597         up_write(&curseg->journal_rwsem);
3598
3599         memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3600         memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3601         curseg->next_segno = segno;
3602         reset_curseg(sbi, type, 0);
3603         curseg->alloc_type = ckpt->alloc_type[type];
3604         curseg->next_blkoff = blk_off;
3605         mutex_unlock(&curseg->curseg_mutex);
3606 out:
3607         f2fs_put_page(new, 1);
3608         return err;
3609 }
3610
3611 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3612 {
3613         struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3614         struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3615         int type = CURSEG_HOT_DATA;
3616         int err;
3617
3618         if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
3619                 int npages = f2fs_npages_for_summary_flush(sbi, true);
3620
3621                 if (npages >= 2)
3622                         f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
3623                                                         META_CP, true);
3624
3625                 /* restore for compacted data summary */
3626                 err = read_compacted_summaries(sbi);
3627                 if (err)
3628                         return err;
3629                 type = CURSEG_HOT_NODE;
3630         }
3631
3632         if (__exist_node_summaries(sbi))
3633                 f2fs_ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
3634                                         NR_CURSEG_TYPE - type, META_CP, true);
3635
3636         for (; type <= CURSEG_COLD_NODE; type++) {
3637                 err = read_normal_summaries(sbi, type);
3638                 if (err)
3639                         return err;
3640         }
3641
3642         /* sanity check for summary blocks */
3643         if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
3644                         sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
3645                 f2fs_err(sbi, "invalid journal entries nats %u sits %u\n",
3646                          nats_in_cursum(nat_j), sits_in_cursum(sit_j));
3647                 return -EINVAL;
3648         }
3649
3650         return 0;
3651 }
3652
3653 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
3654 {
3655         struct page *page;
3656         unsigned char *kaddr;
3657         struct f2fs_summary *summary;
3658         struct curseg_info *seg_i;
3659         int written_size = 0;
3660         int i, j;
3661
3662         page = f2fs_grab_meta_page(sbi, blkaddr++);
3663         kaddr = (unsigned char *)page_address(page);
3664         memset(kaddr, 0, PAGE_SIZE);
3665
3666         /* Step 1: write nat cache */
3667         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3668         memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
3669         written_size += SUM_JOURNAL_SIZE;
3670
3671         /* Step 2: write sit cache */
3672         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3673         memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
3674         written_size += SUM_JOURNAL_SIZE;
3675
3676         /* Step 3: write summary entries */
3677         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3678                 unsigned short blkoff;
3679                 seg_i = CURSEG_I(sbi, i);
3680                 if (sbi->ckpt->alloc_type[i] == SSR)
3681                         blkoff = sbi->blocks_per_seg;
3682                 else
3683                         blkoff = curseg_blkoff(sbi, i);
3684
3685                 for (j = 0; j < blkoff; j++) {
3686                         if (!page) {
3687                                 page = f2fs_grab_meta_page(sbi, blkaddr++);
3688                                 kaddr = (unsigned char *)page_address(page);
3689                                 memset(kaddr, 0, PAGE_SIZE);
3690                                 written_size = 0;
3691                         }
3692                         summary = (struct f2fs_summary *)(kaddr + written_size);
3693                         *summary = seg_i->sum_blk->entries[j];
3694                         written_size += SUMMARY_SIZE;
3695
3696                         if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
3697                                                         SUM_FOOTER_SIZE)
3698                                 continue;
3699
3700                         set_page_dirty(page);
3701                         f2fs_put_page(page, 1);
3702                         page = NULL;
3703                 }
3704         }
3705         if (page) {
3706                 set_page_dirty(page);
3707                 f2fs_put_page(page, 1);
3708         }
3709 }
3710
3711 static void write_normal_summaries(struct f2fs_sb_info *sbi,
3712                                         block_t blkaddr, int type)
3713 {
3714         int i, end;
3715         if (IS_DATASEG(type))
3716                 end = type + NR_CURSEG_DATA_TYPE;
3717         else
3718                 end = type + NR_CURSEG_NODE_TYPE;
3719
3720         for (i = type; i < end; i++)
3721                 write_current_sum_page(sbi, i, blkaddr + (i - type));
3722 }
3723
3724 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3725 {
3726         if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
3727                 write_compacted_summaries(sbi, start_blk);
3728         else
3729                 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
3730 }
3731
3732 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3733 {
3734         write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
3735 }
3736
3737 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3738                                         unsigned int val, int alloc)
3739 {
3740         int i;
3741
3742         if (type == NAT_JOURNAL) {
3743                 for (i = 0; i < nats_in_cursum(journal); i++) {
3744                         if (le32_to_cpu(nid_in_journal(journal, i)) == val)
3745                                 return i;
3746                 }
3747                 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
3748                         return update_nats_in_cursum(journal, 1);
3749         } else if (type == SIT_JOURNAL) {
3750                 for (i = 0; i < sits_in_cursum(journal); i++)
3751                         if (le32_to_cpu(segno_in_journal(journal, i)) == val)
3752                                 return i;
3753                 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
3754                         return update_sits_in_cursum(journal, 1);
3755         }
3756         return -1;
3757 }
3758
3759 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
3760                                         unsigned int segno)
3761 {
3762         return f2fs_get_meta_page_nofail(sbi, current_sit_addr(sbi, segno));
3763 }
3764
3765 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
3766                                         unsigned int start)
3767 {
3768         struct sit_info *sit_i = SIT_I(sbi);
3769         struct page *page;
3770         pgoff_t src_off, dst_off;
3771
3772         src_off = current_sit_addr(sbi, start);
3773         dst_off = next_sit_addr(sbi, src_off);
3774
3775         page = f2fs_grab_meta_page(sbi, dst_off);
3776         seg_info_to_sit_page(sbi, page, start);
3777
3778         set_page_dirty(page);
3779         set_to_next_sit(sit_i, start);
3780
3781         return page;
3782 }
3783
3784 static struct sit_entry_set *grab_sit_entry_set(void)
3785 {
3786         struct sit_entry_set *ses =
3787                         f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
3788
3789         ses->entry_cnt = 0;
3790         INIT_LIST_HEAD(&ses->set_list);
3791         return ses;
3792 }
3793
3794 static void release_sit_entry_set(struct sit_entry_set *ses)
3795 {
3796         list_del(&ses->set_list);
3797         kmem_cache_free(sit_entry_set_slab, ses);
3798 }
3799
3800 static void adjust_sit_entry_set(struct sit_entry_set *ses,
3801                                                 struct list_head *head)
3802 {
3803         struct sit_entry_set *next = ses;
3804
3805         if (list_is_last(&ses->set_list, head))
3806                 return;
3807
3808         list_for_each_entry_continue(next, head, set_list)
3809                 if (ses->entry_cnt <= next->entry_cnt)
3810                         break;
3811
3812         list_move_tail(&ses->set_list, &next->set_list);
3813 }
3814
3815 static void add_sit_entry(unsigned int segno, struct list_head *head)
3816 {
3817         struct sit_entry_set *ses;
3818         unsigned int start_segno = START_SEGNO(segno);
3819
3820         list_for_each_entry(ses, head, set_list) {
3821                 if (ses->start_segno == start_segno) {
3822                         ses->entry_cnt++;
3823                         adjust_sit_entry_set(ses, head);
3824                         return;
3825                 }
3826         }
3827
3828         ses = grab_sit_entry_set();
3829
3830         ses->start_segno = start_segno;
3831         ses->entry_cnt++;
3832         list_add(&ses->set_list, head);
3833 }
3834
3835 static void add_sits_in_set(struct f2fs_sb_info *sbi)
3836 {
3837         struct f2fs_sm_info *sm_info = SM_I(sbi);
3838         struct list_head *set_list = &sm_info->sit_entry_set;
3839         unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
3840         unsigned int segno;
3841
3842         for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
3843                 add_sit_entry(segno, set_list);
3844 }
3845
3846 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
3847 {
3848         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3849         struct f2fs_journal *journal = curseg->journal;
3850         int i;
3851
3852         down_write(&curseg->journal_rwsem);
3853         for (i = 0; i < sits_in_cursum(journal); i++) {
3854                 unsigned int segno;
3855                 bool dirtied;
3856
3857                 segno = le32_to_cpu(segno_in_journal(journal, i));
3858                 dirtied = __mark_sit_entry_dirty(sbi, segno);
3859
3860                 if (!dirtied)
3861                         add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
3862         }
3863         update_sits_in_cursum(journal, -i);
3864         up_write(&curseg->journal_rwsem);
3865 }
3866
3867 /*
3868  * CP calls this function, which flushes SIT entries including sit_journal,
3869  * and moves prefree segs to free segs.
3870  */
3871 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3872 {
3873         struct sit_info *sit_i = SIT_I(sbi);
3874         unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
3875         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3876         struct f2fs_journal *journal = curseg->journal;
3877         struct sit_entry_set *ses, *tmp;
3878         struct list_head *head = &SM_I(sbi)->sit_entry_set;
3879         bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
3880         struct seg_entry *se;
3881
3882         down_write(&sit_i->sentry_lock);
3883
3884         if (!sit_i->dirty_sentries)
3885                 goto out;
3886
3887         /*
3888          * add and account sit entries of dirty bitmap in sit entry
3889          * set temporarily
3890          */
3891         add_sits_in_set(sbi);
3892
3893         /*
3894          * if there are no enough space in journal to store dirty sit
3895          * entries, remove all entries from journal and add and account
3896          * them in sit entry set.
3897          */
3898         if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
3899                                                                 !to_journal)
3900                 remove_sits_in_journal(sbi);
3901
3902         /*
3903          * there are two steps to flush sit entries:
3904          * #1, flush sit entries to journal in current cold data summary block.
3905          * #2, flush sit entries to sit page.
3906          */
3907         list_for_each_entry_safe(ses, tmp, head, set_list) {
3908                 struct page *page = NULL;
3909                 struct f2fs_sit_block *raw_sit = NULL;
3910                 unsigned int start_segno = ses->start_segno;
3911                 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
3912                                                 (unsigned long)MAIN_SEGS(sbi));
3913                 unsigned int segno = start_segno;
3914
3915                 if (to_journal &&
3916                         !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
3917                         to_journal = false;
3918
3919                 if (to_journal) {
3920                         down_write(&curseg->journal_rwsem);
3921                 } else {
3922                         page = get_next_sit_page(sbi, start_segno);
3923                         raw_sit = page_address(page);
3924                 }
3925
3926                 /* flush dirty sit entries in region of current sit set */
3927                 for_each_set_bit_from(segno, bitmap, end) {
3928                         int offset, sit_offset;
3929
3930                         se = get_seg_entry(sbi, segno);
3931 #ifdef CONFIG_F2FS_CHECK_FS
3932                         if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
3933                                                 SIT_VBLOCK_MAP_SIZE))
3934                                 f2fs_bug_on(sbi, 1);
3935 #endif
3936
3937                         /* add discard candidates */
3938                         if (!(cpc->reason & CP_DISCARD)) {
3939                                 cpc->trim_start = segno;
3940                                 add_discard_addrs(sbi, cpc, false);
3941                         }
3942
3943                         if (to_journal) {
3944                                 offset = f2fs_lookup_journal_in_cursum(journal,
3945                                                         SIT_JOURNAL, segno, 1);
3946                                 f2fs_bug_on(sbi, offset < 0);
3947                                 segno_in_journal(journal, offset) =
3948                                                         cpu_to_le32(segno);
3949                                 seg_info_to_raw_sit(se,
3950                                         &sit_in_journal(journal, offset));
3951                                 check_block_count(sbi, segno,
3952                                         &sit_in_journal(journal, offset));
3953                         } else {
3954                                 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
3955                                 seg_info_to_raw_sit(se,
3956                                                 &raw_sit->entries[sit_offset]);
3957                                 check_block_count(sbi, segno,
3958                                                 &raw_sit->entries[sit_offset]);
3959                         }
3960
3961                         __clear_bit(segno, bitmap);
3962                         sit_i->dirty_sentries--;
3963                         ses->entry_cnt--;
3964                 }
3965
3966                 if (to_journal)
3967                         up_write(&curseg->journal_rwsem);
3968                 else
3969                         f2fs_put_page(page, 1);
3970
3971                 f2fs_bug_on(sbi, ses->entry_cnt);
3972                 release_sit_entry_set(ses);
3973         }
3974
3975         f2fs_bug_on(sbi, !list_empty(head));
3976         f2fs_bug_on(sbi, sit_i->dirty_sentries);
3977 out:
3978         if (cpc->reason & CP_DISCARD) {
3979                 __u64 trim_start = cpc->trim_start;
3980
3981                 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
3982                         add_discard_addrs(sbi, cpc, false);
3983
3984                 cpc->trim_start = trim_start;
3985         }
3986         up_write(&sit_i->sentry_lock);
3987
3988         set_prefree_as_free_segments(sbi);
3989 }
3990
3991 static int build_sit_info(struct f2fs_sb_info *sbi)
3992 {
3993         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3994         struct sit_info *sit_i;
3995         unsigned int sit_segs, start;
3996         char *src_bitmap, *bitmap;
3997         unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
3998
3999         /* allocate memory for SIT information */
4000         sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
4001         if (!sit_i)
4002                 return -ENOMEM;
4003
4004         SM_I(sbi)->sit_info = sit_i;
4005
4006         sit_i->sentries =
4007                 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
4008                                               MAIN_SEGS(sbi)),
4009                               GFP_KERNEL);
4010         if (!sit_i->sentries)
4011                 return -ENOMEM;
4012
4013         main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4014         sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
4015                                                                 GFP_KERNEL);
4016         if (!sit_i->dirty_sentries_bitmap)
4017                 return -ENOMEM;
4018
4019 #ifdef CONFIG_F2FS_CHECK_FS
4020         bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 4;
4021 #else
4022         bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 3;
4023 #endif
4024         sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4025         if (!sit_i->bitmap)
4026                 return -ENOMEM;
4027
4028         bitmap = sit_i->bitmap;
4029
4030         for (start = 0; start < MAIN_SEGS(sbi); start++) {
4031                 sit_i->sentries[start].cur_valid_map = bitmap;
4032                 bitmap += SIT_VBLOCK_MAP_SIZE;
4033
4034                 sit_i->sentries[start].ckpt_valid_map = bitmap;
4035                 bitmap += SIT_VBLOCK_MAP_SIZE;
4036
4037 #ifdef CONFIG_F2FS_CHECK_FS
4038                 sit_i->sentries[start].cur_valid_map_mir = bitmap;
4039                 bitmap += SIT_VBLOCK_MAP_SIZE;
4040 #endif
4041
4042                 sit_i->sentries[start].discard_map = bitmap;
4043                 bitmap += SIT_VBLOCK_MAP_SIZE;
4044         }
4045
4046         sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
4047         if (!sit_i->tmp_map)
4048                 return -ENOMEM;
4049
4050         if (__is_large_section(sbi)) {
4051                 sit_i->sec_entries =
4052                         f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
4053                                                       MAIN_SECS(sbi)),
4054                                       GFP_KERNEL);
4055                 if (!sit_i->sec_entries)
4056                         return -ENOMEM;
4057         }
4058
4059         /* get information related with SIT */
4060         sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4061
4062         /* setup SIT bitmap from ckeckpoint pack */
4063         sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4064         src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4065
4066         sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4067         if (!sit_i->sit_bitmap)
4068                 return -ENOMEM;
4069
4070 #ifdef CONFIG_F2FS_CHECK_FS
4071         sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4072                                         sit_bitmap_size, GFP_KERNEL);
4073         if (!sit_i->sit_bitmap_mir)
4074                 return -ENOMEM;
4075
4076         sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4077                                         main_bitmap_size, GFP_KERNEL);
4078         if (!sit_i->invalid_segmap)
4079                 return -ENOMEM;
4080 #endif
4081
4082         /* init SIT information */
4083         sit_i->s_ops = &default_salloc_ops;
4084
4085         sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4086         sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
4087         sit_i->written_valid_blocks = 0;
4088         sit_i->bitmap_size = sit_bitmap_size;
4089         sit_i->dirty_sentries = 0;
4090         sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4091         sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4092         sit_i->mounted_time = ktime_get_boottime_seconds();
4093         init_rwsem(&sit_i->sentry_lock);
4094         return 0;
4095 }
4096
4097 static int build_free_segmap(struct f2fs_sb_info *sbi)
4098 {
4099         struct free_segmap_info *free_i;
4100         unsigned int bitmap_size, sec_bitmap_size;
4101
4102         /* allocate memory for free segmap information */
4103         free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4104         if (!free_i)
4105                 return -ENOMEM;
4106
4107         SM_I(sbi)->free_info = free_i;
4108
4109         bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4110         free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4111         if (!free_i->free_segmap)
4112                 return -ENOMEM;
4113
4114         sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4115         free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4116         if (!free_i->free_secmap)
4117                 return -ENOMEM;
4118
4119         /* set all segments as dirty temporarily */
4120         memset(free_i->free_segmap, 0xff, bitmap_size);
4121         memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4122
4123         /* init free segmap information */
4124         free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4125         free_i->free_segments = 0;
4126         free_i->free_sections = 0;
4127         spin_lock_init(&free_i->segmap_lock);
4128         return 0;
4129 }
4130
4131 static int build_curseg(struct f2fs_sb_info *sbi)
4132 {
4133         struct curseg_info *array;
4134         int i;
4135
4136         array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE, sizeof(*array)),
4137                              GFP_KERNEL);
4138         if (!array)
4139                 return -ENOMEM;
4140
4141         SM_I(sbi)->curseg_array = array;
4142
4143         for (i = 0; i < NR_CURSEG_TYPE; i++) {
4144                 mutex_init(&array[i].curseg_mutex);
4145                 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4146                 if (!array[i].sum_blk)
4147                         return -ENOMEM;
4148                 init_rwsem(&array[i].journal_rwsem);
4149                 array[i].journal = f2fs_kzalloc(sbi,
4150                                 sizeof(struct f2fs_journal), GFP_KERNEL);
4151                 if (!array[i].journal)
4152                         return -ENOMEM;
4153                 array[i].segno = NULL_SEGNO;
4154                 array[i].next_blkoff = 0;
4155         }
4156         return restore_curseg_summaries(sbi);
4157 }
4158
4159 static int build_sit_entries(struct f2fs_sb_info *sbi)
4160 {
4161         struct sit_info *sit_i = SIT_I(sbi);
4162         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4163         struct f2fs_journal *journal = curseg->journal;
4164         struct seg_entry *se;
4165         struct f2fs_sit_entry sit;
4166         int sit_blk_cnt = SIT_BLK_CNT(sbi);
4167         unsigned int i, start, end;
4168         unsigned int readed, start_blk = 0;
4169         int err = 0;
4170         block_t total_node_blocks = 0;
4171
4172         do {
4173                 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES,
4174                                                         META_SIT, true);
4175
4176                 start = start_blk * sit_i->sents_per_block;
4177                 end = (start_blk + readed) * sit_i->sents_per_block;
4178
4179                 for (; start < end && start < MAIN_SEGS(sbi); start++) {
4180                         struct f2fs_sit_block *sit_blk;
4181                         struct page *page;
4182
4183                         se = &sit_i->sentries[start];
4184                         page = get_current_sit_page(sbi, start);
4185                         if (IS_ERR(page))
4186                                 return PTR_ERR(page);
4187                         sit_blk = (struct f2fs_sit_block *)page_address(page);
4188                         sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4189                         f2fs_put_page(page, 1);
4190
4191                         err = check_block_count(sbi, start, &sit);
4192                         if (err)
4193                                 return err;
4194                         seg_info_from_raw_sit(se, &sit);
4195                         if (IS_NODESEG(se->type))
4196                                 total_node_blocks += se->valid_blocks;
4197
4198                         /* build discard map only one time */
4199                         if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4200                                 memset(se->discard_map, 0xff,
4201                                         SIT_VBLOCK_MAP_SIZE);
4202                         } else {
4203                                 memcpy(se->discard_map,
4204                                         se->cur_valid_map,
4205                                         SIT_VBLOCK_MAP_SIZE);
4206                                 sbi->discard_blks +=
4207                                         sbi->blocks_per_seg -
4208                                         se->valid_blocks;
4209                         }
4210
4211                         if (__is_large_section(sbi))
4212                                 get_sec_entry(sbi, start)->valid_blocks +=
4213                                                         se->valid_blocks;
4214                 }
4215                 start_blk += readed;
4216         } while (start_blk < sit_blk_cnt);
4217
4218         down_read(&curseg->journal_rwsem);
4219         for (i = 0; i < sits_in_cursum(journal); i++) {
4220                 unsigned int old_valid_blocks;
4221
4222                 start = le32_to_cpu(segno_in_journal(journal, i));
4223                 if (start >= MAIN_SEGS(sbi)) {
4224                         f2fs_err(sbi, "Wrong journal entry on segno %u",
4225                                  start);
4226                         err = -EFSCORRUPTED;
4227                         break;
4228                 }
4229
4230                 se = &sit_i->sentries[start];
4231                 sit = sit_in_journal(journal, i);
4232
4233                 old_valid_blocks = se->valid_blocks;
4234                 if (IS_NODESEG(se->type))
4235                         total_node_blocks -= old_valid_blocks;
4236
4237                 err = check_block_count(sbi, start, &sit);
4238                 if (err)
4239                         break;
4240                 seg_info_from_raw_sit(se, &sit);
4241                 if (IS_NODESEG(se->type))
4242                         total_node_blocks += se->valid_blocks;
4243
4244                 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4245                         memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4246                 } else {
4247                         memcpy(se->discard_map, se->cur_valid_map,
4248                                                 SIT_VBLOCK_MAP_SIZE);
4249                         sbi->discard_blks += old_valid_blocks;
4250                         sbi->discard_blks -= se->valid_blocks;
4251                 }
4252
4253                 if (__is_large_section(sbi)) {
4254                         get_sec_entry(sbi, start)->valid_blocks +=
4255                                                         se->valid_blocks;
4256                         get_sec_entry(sbi, start)->valid_blocks -=
4257                                                         old_valid_blocks;
4258                 }
4259         }
4260         up_read(&curseg->journal_rwsem);
4261
4262         if (!err && total_node_blocks != valid_node_count(sbi)) {
4263                 f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
4264                          total_node_blocks, valid_node_count(sbi));
4265                 err = -EFSCORRUPTED;
4266         }
4267
4268         return err;
4269 }
4270
4271 static void init_free_segmap(struct f2fs_sb_info *sbi)
4272 {
4273         unsigned int start;
4274         int type;
4275
4276         for (start = 0; start < MAIN_SEGS(sbi); start++) {
4277                 struct seg_entry *sentry = get_seg_entry(sbi, start);
4278                 if (!sentry->valid_blocks)
4279                         __set_free(sbi, start);
4280                 else
4281                         SIT_I(sbi)->written_valid_blocks +=
4282                                                 sentry->valid_blocks;
4283         }
4284
4285         /* set use the current segments */
4286         for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4287                 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4288                 __set_test_and_inuse(sbi, curseg_t->segno);
4289         }
4290 }
4291
4292 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4293 {
4294         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4295         struct free_segmap_info *free_i = FREE_I(sbi);
4296         unsigned int segno = 0, offset = 0;
4297         unsigned short valid_blocks;
4298
4299         while (1) {
4300                 /* find dirty segment based on free segmap */
4301                 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4302                 if (segno >= MAIN_SEGS(sbi))
4303                         break;
4304                 offset = segno + 1;
4305                 valid_blocks = get_valid_blocks(sbi, segno, false);
4306                 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
4307                         continue;
4308                 if (valid_blocks > sbi->blocks_per_seg) {
4309                         f2fs_bug_on(sbi, 1);
4310                         continue;
4311                 }
4312                 mutex_lock(&dirty_i->seglist_lock);
4313                 __locate_dirty_segment(sbi, segno, DIRTY);
4314                 mutex_unlock(&dirty_i->seglist_lock);
4315         }
4316 }
4317
4318 static int init_victim_secmap(struct f2fs_sb_info *sbi)
4319 {
4320         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4321         unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4322
4323         dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4324         if (!dirty_i->victim_secmap)
4325                 return -ENOMEM;
4326         return 0;
4327 }
4328
4329 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4330 {
4331         struct dirty_seglist_info *dirty_i;
4332         unsigned int bitmap_size, i;
4333
4334         /* allocate memory for dirty segments list information */
4335         dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4336                                                                 GFP_KERNEL);
4337         if (!dirty_i)
4338                 return -ENOMEM;
4339
4340         SM_I(sbi)->dirty_info = dirty_i;
4341         mutex_init(&dirty_i->seglist_lock);
4342
4343         bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4344
4345         for (i = 0; i < NR_DIRTY_TYPE; i++) {
4346                 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4347                                                                 GFP_KERNEL);
4348                 if (!dirty_i->dirty_segmap[i])
4349                         return -ENOMEM;
4350         }
4351
4352         init_dirty_segmap(sbi);
4353         return init_victim_secmap(sbi);
4354 }
4355
4356 static int sanity_check_curseg(struct f2fs_sb_info *sbi)
4357 {
4358         int i;
4359
4360         /*
4361          * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
4362          * In LFS curseg, all blkaddr after .next_blkoff should be unused.
4363          */
4364         for (i = 0; i < NO_CHECK_TYPE; i++) {
4365                 struct curseg_info *curseg = CURSEG_I(sbi, i);
4366                 struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
4367                 unsigned int blkofs = curseg->next_blkoff;
4368
4369                 if (f2fs_test_bit(blkofs, se->cur_valid_map))
4370                         goto out;
4371
4372                 if (curseg->alloc_type == SSR)
4373                         continue;
4374
4375                 for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) {
4376                         if (!f2fs_test_bit(blkofs, se->cur_valid_map))
4377                                 continue;
4378 out:
4379                         f2fs_err(sbi,
4380                                  "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
4381                                  i, curseg->segno, curseg->alloc_type,
4382                                  curseg->next_blkoff, blkofs);
4383                         return -EFSCORRUPTED;
4384                 }
4385         }
4386         return 0;
4387 }
4388
4389 #ifdef CONFIG_BLK_DEV_ZONED
4390
4391 static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
4392                                     struct f2fs_dev_info *fdev,
4393                                     struct blk_zone *zone)
4394 {
4395         unsigned int wp_segno, wp_blkoff, zone_secno, zone_segno, segno;
4396         block_t zone_block, wp_block, last_valid_block;
4397         unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4398         int i, s, b, ret;
4399         struct seg_entry *se;
4400
4401         if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4402                 return 0;
4403
4404         wp_block = fdev->start_blk + (zone->wp >> log_sectors_per_block);
4405         wp_segno = GET_SEGNO(sbi, wp_block);
4406         wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4407         zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block);
4408         zone_segno = GET_SEGNO(sbi, zone_block);
4409         zone_secno = GET_SEC_FROM_SEG(sbi, zone_segno);
4410
4411         if (zone_segno >= MAIN_SEGS(sbi))
4412                 return 0;
4413
4414         /*
4415          * Skip check of zones cursegs point to, since
4416          * fix_curseg_write_pointer() checks them.
4417          */
4418         for (i = 0; i < NO_CHECK_TYPE; i++)
4419                 if (zone_secno == GET_SEC_FROM_SEG(sbi,
4420                                                    CURSEG_I(sbi, i)->segno))
4421                         return 0;
4422
4423         /*
4424          * Get last valid block of the zone.
4425          */
4426         last_valid_block = zone_block - 1;
4427         for (s = sbi->segs_per_sec - 1; s >= 0; s--) {
4428                 segno = zone_segno + s;
4429                 se = get_seg_entry(sbi, segno);
4430                 for (b = sbi->blocks_per_seg - 1; b >= 0; b--)
4431                         if (f2fs_test_bit(b, se->cur_valid_map)) {
4432                                 last_valid_block = START_BLOCK(sbi, segno) + b;
4433                                 break;
4434                         }
4435                 if (last_valid_block >= zone_block)
4436                         break;
4437         }
4438
4439         /*
4440          * If last valid block is beyond the write pointer, report the
4441          * inconsistency. This inconsistency does not cause write error
4442          * because the zone will not be selected for write operation until
4443          * it get discarded. Just report it.
4444          */
4445         if (last_valid_block >= wp_block) {
4446                 f2fs_notice(sbi, "Valid block beyond write pointer: "
4447                             "valid block[0x%x,0x%x] wp[0x%x,0x%x]",
4448                             GET_SEGNO(sbi, last_valid_block),
4449                             GET_BLKOFF_FROM_SEG0(sbi, last_valid_block),
4450                             wp_segno, wp_blkoff);
4451                 return 0;
4452         }
4453
4454         /*
4455          * If there is no valid block in the zone and if write pointer is
4456          * not at zone start, reset the write pointer.
4457          */
4458         if (last_valid_block + 1 == zone_block && zone->wp != zone->start) {
4459                 f2fs_notice(sbi,
4460                             "Zone without valid block has non-zero write "
4461                             "pointer. Reset the write pointer: wp[0x%x,0x%x]",
4462                             wp_segno, wp_blkoff);
4463                 ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
4464                                         zone->len >> log_sectors_per_block);
4465                 if (ret) {
4466                         f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4467                                  fdev->path, ret);
4468                         return ret;
4469                 }
4470         }
4471
4472         return 0;
4473 }
4474
4475 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
4476                                                   block_t zone_blkaddr)
4477 {
4478         int i;
4479
4480         for (i = 0; i < sbi->s_ndevs; i++) {
4481                 if (!bdev_is_zoned(FDEV(i).bdev))
4482                         continue;
4483                 if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
4484                                 zone_blkaddr <= FDEV(i).end_blk))
4485                         return &FDEV(i);
4486         }
4487
4488         return NULL;
4489 }
4490
4491 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
4492                               void *data) {
4493         memcpy(data, zone, sizeof(struct blk_zone));
4494         return 0;
4495 }
4496
4497 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
4498 {
4499         struct curseg_info *cs = CURSEG_I(sbi, type);
4500         struct f2fs_dev_info *zbd;
4501         struct blk_zone zone;
4502         unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
4503         block_t cs_zone_block, wp_block;
4504         unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4505         sector_t zone_sector;
4506         int err;
4507
4508         cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4509         cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4510
4511         zbd = get_target_zoned_dev(sbi, cs_zone_block);
4512         if (!zbd)
4513                 return 0;
4514
4515         /* report zone for the sector the curseg points to */
4516         zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4517                 << log_sectors_per_block;
4518         err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4519                                   report_one_zone_cb, &zone);
4520         if (err != 1) {
4521                 f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4522                          zbd->path, err);
4523                 return err;
4524         }
4525
4526         if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4527                 return 0;
4528
4529         wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block);
4530         wp_segno = GET_SEGNO(sbi, wp_block);
4531         wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4532         wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0);
4533
4534         if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
4535                 wp_sector_off == 0)
4536                 return 0;
4537
4538         f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
4539                     "curseg[0x%x,0x%x] wp[0x%x,0x%x]",
4540                     type, cs->segno, cs->next_blkoff, wp_segno, wp_blkoff);
4541
4542         f2fs_notice(sbi, "Assign new section to curseg[%d]: "
4543                     "curseg[0x%x,0x%x]", type, cs->segno, cs->next_blkoff);
4544         allocate_segment_by_default(sbi, type, true);
4545
4546         /* check consistency of the zone curseg pointed to */
4547         if (check_zone_write_pointer(sbi, zbd, &zone))
4548                 return -EIO;
4549
4550         /* check newly assigned zone */
4551         cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4552         cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4553
4554         zbd = get_target_zoned_dev(sbi, cs_zone_block);
4555         if (!zbd)
4556                 return 0;
4557
4558         zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4559                 << log_sectors_per_block;
4560         err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4561                                   report_one_zone_cb, &zone);
4562         if (err != 1) {
4563                 f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4564                          zbd->path, err);
4565                 return err;
4566         }
4567
4568         if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4569                 return 0;
4570
4571         if (zone.wp != zone.start) {
4572                 f2fs_notice(sbi,
4573                             "New zone for curseg[%d] is not yet discarded. "
4574                             "Reset the zone: curseg[0x%x,0x%x]",
4575                             type, cs->segno, cs->next_blkoff);
4576                 err = __f2fs_issue_discard_zone(sbi, zbd->bdev,
4577                                 zone_sector >> log_sectors_per_block,
4578                                 zone.len >> log_sectors_per_block);
4579                 if (err) {
4580                         f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4581                                  zbd->path, err);
4582                         return err;
4583                 }
4584         }
4585
4586         return 0;
4587 }
4588
4589 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
4590 {
4591         int i, ret;
4592
4593         for (i = 0; i < NO_CHECK_TYPE; i++) {
4594                 ret = fix_curseg_write_pointer(sbi, i);
4595                 if (ret)
4596                         return ret;
4597         }
4598
4599         return 0;
4600 }
4601
4602 struct check_zone_write_pointer_args {
4603         struct f2fs_sb_info *sbi;
4604         struct f2fs_dev_info *fdev;
4605 };
4606
4607 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
4608                                       void *data) {
4609         struct check_zone_write_pointer_args *args;
4610         args = (struct check_zone_write_pointer_args *)data;
4611
4612         return check_zone_write_pointer(args->sbi, args->fdev, zone);
4613 }
4614
4615 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
4616 {
4617         int i, ret;
4618         struct check_zone_write_pointer_args args;
4619
4620         for (i = 0; i < sbi->s_ndevs; i++) {
4621                 if (!bdev_is_zoned(FDEV(i).bdev))
4622                         continue;
4623
4624                 args.sbi = sbi;
4625                 args.fdev = &FDEV(i);
4626                 ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
4627                                           check_zone_write_pointer_cb, &args);
4628                 if (ret < 0)
4629                         return ret;
4630         }
4631
4632         return 0;
4633 }
4634 #else
4635 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
4636 {
4637         return 0;
4638 }
4639
4640 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
4641 {
4642         return 0;
4643 }
4644 #endif
4645
4646 /*
4647  * Update min, max modified time for cost-benefit GC algorithm
4648  */
4649 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
4650 {
4651         struct sit_info *sit_i = SIT_I(sbi);
4652         unsigned int segno;
4653
4654         down_write(&sit_i->sentry_lock);
4655
4656         sit_i->min_mtime = ULLONG_MAX;
4657
4658         for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
4659                 unsigned int i;
4660                 unsigned long long mtime = 0;
4661
4662                 for (i = 0; i < sbi->segs_per_sec; i++)
4663                         mtime += get_seg_entry(sbi, segno + i)->mtime;
4664
4665                 mtime = div_u64(mtime, sbi->segs_per_sec);
4666
4667                 if (sit_i->min_mtime > mtime)
4668                         sit_i->min_mtime = mtime;
4669         }
4670         sit_i->max_mtime = get_mtime(sbi, false);
4671         up_write(&sit_i->sentry_lock);
4672 }
4673
4674 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
4675 {
4676         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4677         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
4678         struct f2fs_sm_info *sm_info;
4679         int err;
4680
4681         sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
4682         if (!sm_info)
4683                 return -ENOMEM;
4684
4685         /* init sm info */
4686         sbi->sm_info = sm_info;
4687         sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
4688         sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
4689         sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
4690         sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
4691         sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
4692         sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
4693         sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
4694         sm_info->rec_prefree_segments = sm_info->main_segments *
4695                                         DEF_RECLAIM_PREFREE_SEGMENTS / 100;
4696         if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
4697                 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
4698
4699         if (!f2fs_lfs_mode(sbi))
4700                 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
4701         sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
4702         sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
4703         sm_info->min_seq_blocks = sbi->blocks_per_seg * sbi->segs_per_sec;
4704         sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
4705         sm_info->min_ssr_sections = reserved_sections(sbi);
4706
4707         INIT_LIST_HEAD(&sm_info->sit_entry_set);
4708
4709         init_rwsem(&sm_info->curseg_lock);
4710
4711         if (!f2fs_readonly(sbi->sb)) {
4712                 err = f2fs_create_flush_cmd_control(sbi);
4713                 if (err)
4714                         return err;
4715         }
4716
4717         err = create_discard_cmd_control(sbi);
4718         if (err)
4719                 return err;
4720
4721         err = build_sit_info(sbi);
4722         if (err)
4723                 return err;
4724         err = build_free_segmap(sbi);
4725         if (err)
4726                 return err;
4727         err = build_curseg(sbi);
4728         if (err)
4729                 return err;
4730
4731         /* reinit free segmap based on SIT */
4732         err = build_sit_entries(sbi);
4733         if (err)
4734                 return err;
4735
4736         init_free_segmap(sbi);
4737         err = build_dirty_segmap(sbi);
4738         if (err)
4739                 return err;
4740
4741         err = sanity_check_curseg(sbi);
4742         if (err)
4743                 return err;
4744
4745         init_min_max_mtime(sbi);
4746         return 0;
4747 }
4748
4749 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
4750                 enum dirty_type dirty_type)
4751 {
4752         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4753
4754         mutex_lock(&dirty_i->seglist_lock);
4755         kvfree(dirty_i->dirty_segmap[dirty_type]);
4756         dirty_i->nr_dirty[dirty_type] = 0;
4757         mutex_unlock(&dirty_i->seglist_lock);
4758 }
4759
4760 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
4761 {
4762         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4763         kvfree(dirty_i->victim_secmap);
4764 }
4765
4766 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
4767 {
4768         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4769         int i;
4770
4771         if (!dirty_i)
4772                 return;
4773
4774         /* discard pre-free/dirty segments list */
4775         for (i = 0; i < NR_DIRTY_TYPE; i++)
4776                 discard_dirty_segmap(sbi, i);
4777
4778         destroy_victim_secmap(sbi);
4779         SM_I(sbi)->dirty_info = NULL;
4780         kvfree(dirty_i);
4781 }
4782
4783 static void destroy_curseg(struct f2fs_sb_info *sbi)
4784 {
4785         struct curseg_info *array = SM_I(sbi)->curseg_array;
4786         int i;
4787
4788         if (!array)
4789                 return;
4790         SM_I(sbi)->curseg_array = NULL;
4791         for (i = 0; i < NR_CURSEG_TYPE; i++) {
4792                 kvfree(array[i].sum_blk);
4793                 kvfree(array[i].journal);
4794         }
4795         kvfree(array);
4796 }
4797
4798 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
4799 {
4800         struct free_segmap_info *free_i = SM_I(sbi)->free_info;
4801         if (!free_i)
4802                 return;
4803         SM_I(sbi)->free_info = NULL;
4804         kvfree(free_i->free_segmap);
4805         kvfree(free_i->free_secmap);
4806         kvfree(free_i);
4807 }
4808
4809 static void destroy_sit_info(struct f2fs_sb_info *sbi)
4810 {
4811         struct sit_info *sit_i = SIT_I(sbi);
4812
4813         if (!sit_i)
4814                 return;
4815
4816         if (sit_i->sentries)
4817                 kvfree(sit_i->bitmap);
4818         kvfree(sit_i->tmp_map);
4819
4820         kvfree(sit_i->sentries);
4821         kvfree(sit_i->sec_entries);
4822         kvfree(sit_i->dirty_sentries_bitmap);
4823
4824         SM_I(sbi)->sit_info = NULL;
4825         kvfree(sit_i->sit_bitmap);
4826 #ifdef CONFIG_F2FS_CHECK_FS
4827         kvfree(sit_i->sit_bitmap_mir);
4828         kvfree(sit_i->invalid_segmap);
4829 #endif
4830         kvfree(sit_i);
4831 }
4832
4833 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
4834 {
4835         struct f2fs_sm_info *sm_info = SM_I(sbi);
4836
4837         if (!sm_info)
4838                 return;
4839         f2fs_destroy_flush_cmd_control(sbi, true);
4840         destroy_discard_cmd_control(sbi);
4841         destroy_dirty_segmap(sbi);
4842         destroy_curseg(sbi);
4843         destroy_free_segmap(sbi);
4844         destroy_sit_info(sbi);
4845         sbi->sm_info = NULL;
4846         kvfree(sm_info);
4847 }
4848
4849 int __init f2fs_create_segment_manager_caches(void)
4850 {
4851         discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry",
4852                         sizeof(struct discard_entry));
4853         if (!discard_entry_slab)
4854                 goto fail;
4855
4856         discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd",
4857                         sizeof(struct discard_cmd));
4858         if (!discard_cmd_slab)
4859                 goto destroy_discard_entry;
4860
4861         sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set",
4862                         sizeof(struct sit_entry_set));
4863         if (!sit_entry_set_slab)
4864                 goto destroy_discard_cmd;
4865
4866         inmem_entry_slab = f2fs_kmem_cache_create("f2fs_inmem_page_entry",
4867                         sizeof(struct inmem_pages));
4868         if (!inmem_entry_slab)
4869                 goto destroy_sit_entry_set;
4870         return 0;
4871
4872 destroy_sit_entry_set:
4873         kmem_cache_destroy(sit_entry_set_slab);
4874 destroy_discard_cmd:
4875         kmem_cache_destroy(discard_cmd_slab);
4876 destroy_discard_entry:
4877         kmem_cache_destroy(discard_entry_slab);
4878 fail:
4879         return -ENOMEM;
4880 }
4881
4882 void f2fs_destroy_segment_manager_caches(void)
4883 {
4884         kmem_cache_destroy(sit_entry_set_slab);
4885         kmem_cache_destroy(discard_cmd_slab);
4886         kmem_cache_destroy(discard_entry_slab);
4887         kmem_cache_destroy(inmem_entry_slab);
4888 }