Merge branch 'work.iov_iter' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[linux-2.6-microblaze.git] / fs / f2fs / segment.c
1 /*
2  * fs/f2fs/segment.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/prefetch.h>
16 #include <linux/kthread.h>
17 #include <linux/swap.h>
18 #include <linux/timer.h>
19 #include <linux/freezer.h>
20 #include <linux/sched/signal.h>
21
22 #include "f2fs.h"
23 #include "segment.h"
24 #include "node.h"
25 #include "gc.h"
26 #include "trace.h"
27 #include <trace/events/f2fs.h>
28
29 #define __reverse_ffz(x) __reverse_ffs(~(x))
30
31 static struct kmem_cache *discard_entry_slab;
32 static struct kmem_cache *discard_cmd_slab;
33 static struct kmem_cache *sit_entry_set_slab;
34 static struct kmem_cache *inmem_entry_slab;
35
36 static unsigned long __reverse_ulong(unsigned char *str)
37 {
38         unsigned long tmp = 0;
39         int shift = 24, idx = 0;
40
41 #if BITS_PER_LONG == 64
42         shift = 56;
43 #endif
44         while (shift >= 0) {
45                 tmp |= (unsigned long)str[idx++] << shift;
46                 shift -= BITS_PER_BYTE;
47         }
48         return tmp;
49 }
50
51 /*
52  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
53  * MSB and LSB are reversed in a byte by f2fs_set_bit.
54  */
55 static inline unsigned long __reverse_ffs(unsigned long word)
56 {
57         int num = 0;
58
59 #if BITS_PER_LONG == 64
60         if ((word & 0xffffffff00000000UL) == 0)
61                 num += 32;
62         else
63                 word >>= 32;
64 #endif
65         if ((word & 0xffff0000) == 0)
66                 num += 16;
67         else
68                 word >>= 16;
69
70         if ((word & 0xff00) == 0)
71                 num += 8;
72         else
73                 word >>= 8;
74
75         if ((word & 0xf0) == 0)
76                 num += 4;
77         else
78                 word >>= 4;
79
80         if ((word & 0xc) == 0)
81                 num += 2;
82         else
83                 word >>= 2;
84
85         if ((word & 0x2) == 0)
86                 num += 1;
87         return num;
88 }
89
90 /*
91  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
92  * f2fs_set_bit makes MSB and LSB reversed in a byte.
93  * @size must be integral times of unsigned long.
94  * Example:
95  *                             MSB <--> LSB
96  *   f2fs_set_bit(0, bitmap) => 1000 0000
97  *   f2fs_set_bit(7, bitmap) => 0000 0001
98  */
99 static unsigned long __find_rev_next_bit(const unsigned long *addr,
100                         unsigned long size, unsigned long offset)
101 {
102         const unsigned long *p = addr + BIT_WORD(offset);
103         unsigned long result = size;
104         unsigned long tmp;
105
106         if (offset >= size)
107                 return size;
108
109         size -= (offset & ~(BITS_PER_LONG - 1));
110         offset %= BITS_PER_LONG;
111
112         while (1) {
113                 if (*p == 0)
114                         goto pass;
115
116                 tmp = __reverse_ulong((unsigned char *)p);
117
118                 tmp &= ~0UL >> offset;
119                 if (size < BITS_PER_LONG)
120                         tmp &= (~0UL << (BITS_PER_LONG - size));
121                 if (tmp)
122                         goto found;
123 pass:
124                 if (size <= BITS_PER_LONG)
125                         break;
126                 size -= BITS_PER_LONG;
127                 offset = 0;
128                 p++;
129         }
130         return result;
131 found:
132         return result - size + __reverse_ffs(tmp);
133 }
134
135 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
136                         unsigned long size, unsigned long offset)
137 {
138         const unsigned long *p = addr + BIT_WORD(offset);
139         unsigned long result = size;
140         unsigned long tmp;
141
142         if (offset >= size)
143                 return size;
144
145         size -= (offset & ~(BITS_PER_LONG - 1));
146         offset %= BITS_PER_LONG;
147
148         while (1) {
149                 if (*p == ~0UL)
150                         goto pass;
151
152                 tmp = __reverse_ulong((unsigned char *)p);
153
154                 if (offset)
155                         tmp |= ~0UL << (BITS_PER_LONG - offset);
156                 if (size < BITS_PER_LONG)
157                         tmp |= ~0UL >> size;
158                 if (tmp != ~0UL)
159                         goto found;
160 pass:
161                 if (size <= BITS_PER_LONG)
162                         break;
163                 size -= BITS_PER_LONG;
164                 offset = 0;
165                 p++;
166         }
167         return result;
168 found:
169         return result - size + __reverse_ffz(tmp);
170 }
171
172 bool need_SSR(struct f2fs_sb_info *sbi)
173 {
174         int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
175         int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
176         int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
177
178         if (test_opt(sbi, LFS))
179                 return false;
180         if (sbi->gc_thread && sbi->gc_thread->gc_urgent)
181                 return true;
182
183         return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
184                         SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
185 }
186
187 void register_inmem_page(struct inode *inode, struct page *page)
188 {
189         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
190         struct f2fs_inode_info *fi = F2FS_I(inode);
191         struct inmem_pages *new;
192
193         f2fs_trace_pid(page);
194
195         set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
196         SetPagePrivate(page);
197
198         new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
199
200         /* add atomic page indices to the list */
201         new->page = page;
202         INIT_LIST_HEAD(&new->list);
203
204         /* increase reference count with clean state */
205         mutex_lock(&fi->inmem_lock);
206         get_page(page);
207         list_add_tail(&new->list, &fi->inmem_pages);
208         spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
209         if (list_empty(&fi->inmem_ilist))
210                 list_add_tail(&fi->inmem_ilist, &sbi->inode_list[ATOMIC_FILE]);
211         spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
212         inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
213         mutex_unlock(&fi->inmem_lock);
214
215         trace_f2fs_register_inmem_page(page, INMEM);
216 }
217
218 static int __revoke_inmem_pages(struct inode *inode,
219                                 struct list_head *head, bool drop, bool recover)
220 {
221         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
222         struct inmem_pages *cur, *tmp;
223         int err = 0;
224
225         list_for_each_entry_safe(cur, tmp, head, list) {
226                 struct page *page = cur->page;
227
228                 if (drop)
229                         trace_f2fs_commit_inmem_page(page, INMEM_DROP);
230
231                 lock_page(page);
232
233                 if (recover) {
234                         struct dnode_of_data dn;
235                         struct node_info ni;
236
237                         trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
238 retry:
239                         set_new_dnode(&dn, inode, NULL, NULL, 0);
240                         err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
241                         if (err) {
242                                 if (err == -ENOMEM) {
243                                         congestion_wait(BLK_RW_ASYNC, HZ/50);
244                                         cond_resched();
245                                         goto retry;
246                                 }
247                                 err = -EAGAIN;
248                                 goto next;
249                         }
250                         get_node_info(sbi, dn.nid, &ni);
251                         f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
252                                         cur->old_addr, ni.version, true, true);
253                         f2fs_put_dnode(&dn);
254                 }
255 next:
256                 /* we don't need to invalidate this in the sccessful status */
257                 if (drop || recover)
258                         ClearPageUptodate(page);
259                 set_page_private(page, 0);
260                 ClearPagePrivate(page);
261                 f2fs_put_page(page, 1);
262
263                 list_del(&cur->list);
264                 kmem_cache_free(inmem_entry_slab, cur);
265                 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
266         }
267         return err;
268 }
269
270 void drop_inmem_pages_all(struct f2fs_sb_info *sbi)
271 {
272         struct list_head *head = &sbi->inode_list[ATOMIC_FILE];
273         struct inode *inode;
274         struct f2fs_inode_info *fi;
275 next:
276         spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
277         if (list_empty(head)) {
278                 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
279                 return;
280         }
281         fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist);
282         inode = igrab(&fi->vfs_inode);
283         spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
284
285         if (inode) {
286                 drop_inmem_pages(inode);
287                 iput(inode);
288         }
289         congestion_wait(BLK_RW_ASYNC, HZ/50);
290         cond_resched();
291         goto next;
292 }
293
294 void drop_inmem_pages(struct inode *inode)
295 {
296         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
297         struct f2fs_inode_info *fi = F2FS_I(inode);
298
299         mutex_lock(&fi->inmem_lock);
300         __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
301         spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
302         if (!list_empty(&fi->inmem_ilist))
303                 list_del_init(&fi->inmem_ilist);
304         spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
305         mutex_unlock(&fi->inmem_lock);
306
307         clear_inode_flag(inode, FI_ATOMIC_FILE);
308         clear_inode_flag(inode, FI_HOT_DATA);
309         stat_dec_atomic_write(inode);
310 }
311
312 void drop_inmem_page(struct inode *inode, struct page *page)
313 {
314         struct f2fs_inode_info *fi = F2FS_I(inode);
315         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
316         struct list_head *head = &fi->inmem_pages;
317         struct inmem_pages *cur = NULL;
318
319         f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page));
320
321         mutex_lock(&fi->inmem_lock);
322         list_for_each_entry(cur, head, list) {
323                 if (cur->page == page)
324                         break;
325         }
326
327         f2fs_bug_on(sbi, !cur || cur->page != page);
328         list_del(&cur->list);
329         mutex_unlock(&fi->inmem_lock);
330
331         dec_page_count(sbi, F2FS_INMEM_PAGES);
332         kmem_cache_free(inmem_entry_slab, cur);
333
334         ClearPageUptodate(page);
335         set_page_private(page, 0);
336         ClearPagePrivate(page);
337         f2fs_put_page(page, 0);
338
339         trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
340 }
341
342 static int __commit_inmem_pages(struct inode *inode,
343                                         struct list_head *revoke_list)
344 {
345         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
346         struct f2fs_inode_info *fi = F2FS_I(inode);
347         struct inmem_pages *cur, *tmp;
348         struct f2fs_io_info fio = {
349                 .sbi = sbi,
350                 .ino = inode->i_ino,
351                 .type = DATA,
352                 .op = REQ_OP_WRITE,
353                 .op_flags = REQ_SYNC | REQ_PRIO,
354                 .io_type = FS_DATA_IO,
355         };
356         pgoff_t last_idx = ULONG_MAX;
357         int err = 0;
358
359         list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
360                 struct page *page = cur->page;
361
362                 lock_page(page);
363                 if (page->mapping == inode->i_mapping) {
364                         trace_f2fs_commit_inmem_page(page, INMEM);
365
366                         set_page_dirty(page);
367                         f2fs_wait_on_page_writeback(page, DATA, true);
368                         if (clear_page_dirty_for_io(page)) {
369                                 inode_dec_dirty_pages(inode);
370                                 remove_dirty_inode(inode);
371                         }
372 retry:
373                         fio.page = page;
374                         fio.old_blkaddr = NULL_ADDR;
375                         fio.encrypted_page = NULL;
376                         fio.need_lock = LOCK_DONE;
377                         err = do_write_data_page(&fio);
378                         if (err) {
379                                 if (err == -ENOMEM) {
380                                         congestion_wait(BLK_RW_ASYNC, HZ/50);
381                                         cond_resched();
382                                         goto retry;
383                                 }
384                                 unlock_page(page);
385                                 break;
386                         }
387                         /* record old blkaddr for revoking */
388                         cur->old_addr = fio.old_blkaddr;
389                         last_idx = page->index;
390                 }
391                 unlock_page(page);
392                 list_move_tail(&cur->list, revoke_list);
393         }
394
395         if (last_idx != ULONG_MAX)
396                 f2fs_submit_merged_write_cond(sbi, inode, 0, last_idx, DATA);
397
398         if (!err)
399                 __revoke_inmem_pages(inode, revoke_list, false, false);
400
401         return err;
402 }
403
404 int commit_inmem_pages(struct inode *inode)
405 {
406         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
407         struct f2fs_inode_info *fi = F2FS_I(inode);
408         struct list_head revoke_list;
409         int err;
410
411         INIT_LIST_HEAD(&revoke_list);
412         f2fs_balance_fs(sbi, true);
413         f2fs_lock_op(sbi);
414
415         set_inode_flag(inode, FI_ATOMIC_COMMIT);
416
417         mutex_lock(&fi->inmem_lock);
418         err = __commit_inmem_pages(inode, &revoke_list);
419         if (err) {
420                 int ret;
421                 /*
422                  * try to revoke all committed pages, but still we could fail
423                  * due to no memory or other reason, if that happened, EAGAIN
424                  * will be returned, which means in such case, transaction is
425                  * already not integrity, caller should use journal to do the
426                  * recovery or rewrite & commit last transaction. For other
427                  * error number, revoking was done by filesystem itself.
428                  */
429                 ret = __revoke_inmem_pages(inode, &revoke_list, false, true);
430                 if (ret)
431                         err = ret;
432
433                 /* drop all uncommitted pages */
434                 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
435         }
436         spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
437         if (!list_empty(&fi->inmem_ilist))
438                 list_del_init(&fi->inmem_ilist);
439         spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
440         mutex_unlock(&fi->inmem_lock);
441
442         clear_inode_flag(inode, FI_ATOMIC_COMMIT);
443
444         f2fs_unlock_op(sbi);
445         return err;
446 }
447
448 /*
449  * This function balances dirty node and dentry pages.
450  * In addition, it controls garbage collection.
451  */
452 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
453 {
454 #ifdef CONFIG_F2FS_FAULT_INJECTION
455         if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
456                 f2fs_show_injection_info(FAULT_CHECKPOINT);
457                 f2fs_stop_checkpoint(sbi, false);
458         }
459 #endif
460
461         /* balance_fs_bg is able to be pending */
462         if (need && excess_cached_nats(sbi))
463                 f2fs_balance_fs_bg(sbi);
464
465         /*
466          * We should do GC or end up with checkpoint, if there are so many dirty
467          * dir/node pages without enough free segments.
468          */
469         if (has_not_enough_free_secs(sbi, 0, 0)) {
470                 mutex_lock(&sbi->gc_mutex);
471                 f2fs_gc(sbi, false, false, NULL_SEGNO);
472         }
473 }
474
475 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
476 {
477         /* try to shrink extent cache when there is no enough memory */
478         if (!available_free_memory(sbi, EXTENT_CACHE))
479                 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
480
481         /* check the # of cached NAT entries */
482         if (!available_free_memory(sbi, NAT_ENTRIES))
483                 try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
484
485         if (!available_free_memory(sbi, FREE_NIDS))
486                 try_to_free_nids(sbi, MAX_FREE_NIDS);
487         else
488                 build_free_nids(sbi, false, false);
489
490         if (!is_idle(sbi) && !excess_dirty_nats(sbi))
491                 return;
492
493         /* checkpoint is the only way to shrink partial cached entries */
494         if (!available_free_memory(sbi, NAT_ENTRIES) ||
495                         !available_free_memory(sbi, INO_ENTRIES) ||
496                         excess_prefree_segs(sbi) ||
497                         excess_dirty_nats(sbi) ||
498                         f2fs_time_over(sbi, CP_TIME)) {
499                 if (test_opt(sbi, DATA_FLUSH)) {
500                         struct blk_plug plug;
501
502                         blk_start_plug(&plug);
503                         sync_dirty_inodes(sbi, FILE_INODE);
504                         blk_finish_plug(&plug);
505                 }
506                 f2fs_sync_fs(sbi->sb, true);
507                 stat_inc_bg_cp_count(sbi->stat_info);
508         }
509 }
510
511 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
512                                 struct block_device *bdev)
513 {
514         struct bio *bio = f2fs_bio_alloc(sbi, 0, true);
515         int ret;
516
517         bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
518         bio_set_dev(bio, bdev);
519         ret = submit_bio_wait(bio);
520         bio_put(bio);
521
522         trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
523                                 test_opt(sbi, FLUSH_MERGE), ret);
524         return ret;
525 }
526
527 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
528 {
529         int ret = 0;
530         int i;
531
532         if (!sbi->s_ndevs)
533                 return __submit_flush_wait(sbi, sbi->sb->s_bdev);
534
535         for (i = 0; i < sbi->s_ndevs; i++) {
536                 if (!is_dirty_device(sbi, ino, i, FLUSH_INO))
537                         continue;
538                 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
539                 if (ret)
540                         break;
541         }
542         return ret;
543 }
544
545 static int issue_flush_thread(void *data)
546 {
547         struct f2fs_sb_info *sbi = data;
548         struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
549         wait_queue_head_t *q = &fcc->flush_wait_queue;
550 repeat:
551         if (kthread_should_stop())
552                 return 0;
553
554         sb_start_intwrite(sbi->sb);
555
556         if (!llist_empty(&fcc->issue_list)) {
557                 struct flush_cmd *cmd, *next;
558                 int ret;
559
560                 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
561                 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
562
563                 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
564
565                 ret = submit_flush_wait(sbi, cmd->ino);
566                 atomic_inc(&fcc->issued_flush);
567
568                 llist_for_each_entry_safe(cmd, next,
569                                           fcc->dispatch_list, llnode) {
570                         cmd->ret = ret;
571                         complete(&cmd->wait);
572                 }
573                 fcc->dispatch_list = NULL;
574         }
575
576         sb_end_intwrite(sbi->sb);
577
578         wait_event_interruptible(*q,
579                 kthread_should_stop() || !llist_empty(&fcc->issue_list));
580         goto repeat;
581 }
582
583 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
584 {
585         struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
586         struct flush_cmd cmd;
587         int ret;
588
589         if (test_opt(sbi, NOBARRIER))
590                 return 0;
591
592         if (!test_opt(sbi, FLUSH_MERGE)) {
593                 ret = submit_flush_wait(sbi, ino);
594                 atomic_inc(&fcc->issued_flush);
595                 return ret;
596         }
597
598         if (atomic_inc_return(&fcc->issing_flush) == 1 || sbi->s_ndevs > 1) {
599                 ret = submit_flush_wait(sbi, ino);
600                 atomic_dec(&fcc->issing_flush);
601
602                 atomic_inc(&fcc->issued_flush);
603                 return ret;
604         }
605
606         cmd.ino = ino;
607         init_completion(&cmd.wait);
608
609         llist_add(&cmd.llnode, &fcc->issue_list);
610
611         /* update issue_list before we wake up issue_flush thread */
612         smp_mb();
613
614         if (waitqueue_active(&fcc->flush_wait_queue))
615                 wake_up(&fcc->flush_wait_queue);
616
617         if (fcc->f2fs_issue_flush) {
618                 wait_for_completion(&cmd.wait);
619                 atomic_dec(&fcc->issing_flush);
620         } else {
621                 struct llist_node *list;
622
623                 list = llist_del_all(&fcc->issue_list);
624                 if (!list) {
625                         wait_for_completion(&cmd.wait);
626                         atomic_dec(&fcc->issing_flush);
627                 } else {
628                         struct flush_cmd *tmp, *next;
629
630                         ret = submit_flush_wait(sbi, ino);
631
632                         llist_for_each_entry_safe(tmp, next, list, llnode) {
633                                 if (tmp == &cmd) {
634                                         cmd.ret = ret;
635                                         atomic_dec(&fcc->issing_flush);
636                                         continue;
637                                 }
638                                 tmp->ret = ret;
639                                 complete(&tmp->wait);
640                         }
641                 }
642         }
643
644         return cmd.ret;
645 }
646
647 int create_flush_cmd_control(struct f2fs_sb_info *sbi)
648 {
649         dev_t dev = sbi->sb->s_bdev->bd_dev;
650         struct flush_cmd_control *fcc;
651         int err = 0;
652
653         if (SM_I(sbi)->fcc_info) {
654                 fcc = SM_I(sbi)->fcc_info;
655                 if (fcc->f2fs_issue_flush)
656                         return err;
657                 goto init_thread;
658         }
659
660         fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL);
661         if (!fcc)
662                 return -ENOMEM;
663         atomic_set(&fcc->issued_flush, 0);
664         atomic_set(&fcc->issing_flush, 0);
665         init_waitqueue_head(&fcc->flush_wait_queue);
666         init_llist_head(&fcc->issue_list);
667         SM_I(sbi)->fcc_info = fcc;
668         if (!test_opt(sbi, FLUSH_MERGE))
669                 return err;
670
671 init_thread:
672         fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
673                                 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
674         if (IS_ERR(fcc->f2fs_issue_flush)) {
675                 err = PTR_ERR(fcc->f2fs_issue_flush);
676                 kfree(fcc);
677                 SM_I(sbi)->fcc_info = NULL;
678                 return err;
679         }
680
681         return err;
682 }
683
684 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
685 {
686         struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
687
688         if (fcc && fcc->f2fs_issue_flush) {
689                 struct task_struct *flush_thread = fcc->f2fs_issue_flush;
690
691                 fcc->f2fs_issue_flush = NULL;
692                 kthread_stop(flush_thread);
693         }
694         if (free) {
695                 kfree(fcc);
696                 SM_I(sbi)->fcc_info = NULL;
697         }
698 }
699
700 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
701 {
702         int ret = 0, i;
703
704         if (!sbi->s_ndevs)
705                 return 0;
706
707         for (i = 1; i < sbi->s_ndevs; i++) {
708                 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
709                         continue;
710                 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
711                 if (ret)
712                         break;
713
714                 spin_lock(&sbi->dev_lock);
715                 f2fs_clear_bit(i, (char *)&sbi->dirty_device);
716                 spin_unlock(&sbi->dev_lock);
717         }
718
719         return ret;
720 }
721
722 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
723                 enum dirty_type dirty_type)
724 {
725         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
726
727         /* need not be added */
728         if (IS_CURSEG(sbi, segno))
729                 return;
730
731         if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
732                 dirty_i->nr_dirty[dirty_type]++;
733
734         if (dirty_type == DIRTY) {
735                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
736                 enum dirty_type t = sentry->type;
737
738                 if (unlikely(t >= DIRTY)) {
739                         f2fs_bug_on(sbi, 1);
740                         return;
741                 }
742                 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
743                         dirty_i->nr_dirty[t]++;
744         }
745 }
746
747 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
748                 enum dirty_type dirty_type)
749 {
750         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
751
752         if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
753                 dirty_i->nr_dirty[dirty_type]--;
754
755         if (dirty_type == DIRTY) {
756                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
757                 enum dirty_type t = sentry->type;
758
759                 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
760                         dirty_i->nr_dirty[t]--;
761
762                 if (get_valid_blocks(sbi, segno, true) == 0)
763                         clear_bit(GET_SEC_FROM_SEG(sbi, segno),
764                                                 dirty_i->victim_secmap);
765         }
766 }
767
768 /*
769  * Should not occur error such as -ENOMEM.
770  * Adding dirty entry into seglist is not critical operation.
771  * If a given segment is one of current working segments, it won't be added.
772  */
773 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
774 {
775         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
776         unsigned short valid_blocks;
777
778         if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
779                 return;
780
781         mutex_lock(&dirty_i->seglist_lock);
782
783         valid_blocks = get_valid_blocks(sbi, segno, false);
784
785         if (valid_blocks == 0) {
786                 __locate_dirty_segment(sbi, segno, PRE);
787                 __remove_dirty_segment(sbi, segno, DIRTY);
788         } else if (valid_blocks < sbi->blocks_per_seg) {
789                 __locate_dirty_segment(sbi, segno, DIRTY);
790         } else {
791                 /* Recovery routine with SSR needs this */
792                 __remove_dirty_segment(sbi, segno, DIRTY);
793         }
794
795         mutex_unlock(&dirty_i->seglist_lock);
796 }
797
798 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
799                 struct block_device *bdev, block_t lstart,
800                 block_t start, block_t len)
801 {
802         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
803         struct list_head *pend_list;
804         struct discard_cmd *dc;
805
806         f2fs_bug_on(sbi, !len);
807
808         pend_list = &dcc->pend_list[plist_idx(len)];
809
810         dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
811         INIT_LIST_HEAD(&dc->list);
812         dc->bdev = bdev;
813         dc->lstart = lstart;
814         dc->start = start;
815         dc->len = len;
816         dc->ref = 0;
817         dc->state = D_PREP;
818         dc->error = 0;
819         init_completion(&dc->wait);
820         list_add_tail(&dc->list, pend_list);
821         atomic_inc(&dcc->discard_cmd_cnt);
822         dcc->undiscard_blks += len;
823
824         return dc;
825 }
826
827 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
828                                 struct block_device *bdev, block_t lstart,
829                                 block_t start, block_t len,
830                                 struct rb_node *parent, struct rb_node **p)
831 {
832         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
833         struct discard_cmd *dc;
834
835         dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
836
837         rb_link_node(&dc->rb_node, parent, p);
838         rb_insert_color(&dc->rb_node, &dcc->root);
839
840         return dc;
841 }
842
843 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
844                                                         struct discard_cmd *dc)
845 {
846         if (dc->state == D_DONE)
847                 atomic_dec(&dcc->issing_discard);
848
849         list_del(&dc->list);
850         rb_erase(&dc->rb_node, &dcc->root);
851         dcc->undiscard_blks -= dc->len;
852
853         kmem_cache_free(discard_cmd_slab, dc);
854
855         atomic_dec(&dcc->discard_cmd_cnt);
856 }
857
858 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
859                                                         struct discard_cmd *dc)
860 {
861         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
862
863         trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
864
865         f2fs_bug_on(sbi, dc->ref);
866
867         if (dc->error == -EOPNOTSUPP)
868                 dc->error = 0;
869
870         if (dc->error)
871                 f2fs_msg(sbi->sb, KERN_INFO,
872                         "Issue discard(%u, %u, %u) failed, ret: %d",
873                         dc->lstart, dc->start, dc->len, dc->error);
874         __detach_discard_cmd(dcc, dc);
875 }
876
877 static void f2fs_submit_discard_endio(struct bio *bio)
878 {
879         struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
880
881         dc->error = blk_status_to_errno(bio->bi_status);
882         dc->state = D_DONE;
883         complete_all(&dc->wait);
884         bio_put(bio);
885 }
886
887 void __check_sit_bitmap(struct f2fs_sb_info *sbi,
888                                 block_t start, block_t end)
889 {
890 #ifdef CONFIG_F2FS_CHECK_FS
891         struct seg_entry *sentry;
892         unsigned int segno;
893         block_t blk = start;
894         unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
895         unsigned long *map;
896
897         while (blk < end) {
898                 segno = GET_SEGNO(sbi, blk);
899                 sentry = get_seg_entry(sbi, segno);
900                 offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
901
902                 if (end < START_BLOCK(sbi, segno + 1))
903                         size = GET_BLKOFF_FROM_SEG0(sbi, end);
904                 else
905                         size = max_blocks;
906                 map = (unsigned long *)(sentry->cur_valid_map);
907                 offset = __find_rev_next_bit(map, size, offset);
908                 f2fs_bug_on(sbi, offset != size);
909                 blk = START_BLOCK(sbi, segno + 1);
910         }
911 #endif
912 }
913
914 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
915 static void __submit_discard_cmd(struct f2fs_sb_info *sbi,
916                                                 struct discard_policy *dpolicy,
917                                                 struct discard_cmd *dc)
918 {
919         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
920         struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
921                                         &(dcc->fstrim_list) : &(dcc->wait_list);
922         struct bio *bio = NULL;
923         int flag = dpolicy->sync ? REQ_SYNC : 0;
924
925         if (dc->state != D_PREP)
926                 return;
927
928         trace_f2fs_issue_discard(dc->bdev, dc->start, dc->len);
929
930         dc->error = __blkdev_issue_discard(dc->bdev,
931                                 SECTOR_FROM_BLOCK(dc->start),
932                                 SECTOR_FROM_BLOCK(dc->len),
933                                 GFP_NOFS, 0, &bio);
934         if (!dc->error) {
935                 /* should keep before submission to avoid D_DONE right away */
936                 dc->state = D_SUBMIT;
937                 atomic_inc(&dcc->issued_discard);
938                 atomic_inc(&dcc->issing_discard);
939                 if (bio) {
940                         bio->bi_private = dc;
941                         bio->bi_end_io = f2fs_submit_discard_endio;
942                         bio->bi_opf |= flag;
943                         submit_bio(bio);
944                         list_move_tail(&dc->list, wait_list);
945                         __check_sit_bitmap(sbi, dc->start, dc->start + dc->len);
946
947                         f2fs_update_iostat(sbi, FS_DISCARD, 1);
948                 }
949         } else {
950                 __remove_discard_cmd(sbi, dc);
951         }
952 }
953
954 static struct discard_cmd *__insert_discard_tree(struct f2fs_sb_info *sbi,
955                                 struct block_device *bdev, block_t lstart,
956                                 block_t start, block_t len,
957                                 struct rb_node **insert_p,
958                                 struct rb_node *insert_parent)
959 {
960         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
961         struct rb_node **p;
962         struct rb_node *parent = NULL;
963         struct discard_cmd *dc = NULL;
964
965         if (insert_p && insert_parent) {
966                 parent = insert_parent;
967                 p = insert_p;
968                 goto do_insert;
969         }
970
971         p = __lookup_rb_tree_for_insert(sbi, &dcc->root, &parent, lstart);
972 do_insert:
973         dc = __attach_discard_cmd(sbi, bdev, lstart, start, len, parent, p);
974         if (!dc)
975                 return NULL;
976
977         return dc;
978 }
979
980 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
981                                                 struct discard_cmd *dc)
982 {
983         list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
984 }
985
986 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
987                                 struct discard_cmd *dc, block_t blkaddr)
988 {
989         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
990         struct discard_info di = dc->di;
991         bool modified = false;
992
993         if (dc->state == D_DONE || dc->len == 1) {
994                 __remove_discard_cmd(sbi, dc);
995                 return;
996         }
997
998         dcc->undiscard_blks -= di.len;
999
1000         if (blkaddr > di.lstart) {
1001                 dc->len = blkaddr - dc->lstart;
1002                 dcc->undiscard_blks += dc->len;
1003                 __relocate_discard_cmd(dcc, dc);
1004                 modified = true;
1005         }
1006
1007         if (blkaddr < di.lstart + di.len - 1) {
1008                 if (modified) {
1009                         __insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1010                                         di.start + blkaddr + 1 - di.lstart,
1011                                         di.lstart + di.len - 1 - blkaddr,
1012                                         NULL, NULL);
1013                 } else {
1014                         dc->lstart++;
1015                         dc->len--;
1016                         dc->start++;
1017                         dcc->undiscard_blks += dc->len;
1018                         __relocate_discard_cmd(dcc, dc);
1019                 }
1020         }
1021 }
1022
1023 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1024                                 struct block_device *bdev, block_t lstart,
1025                                 block_t start, block_t len)
1026 {
1027         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1028         struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1029         struct discard_cmd *dc;
1030         struct discard_info di = {0};
1031         struct rb_node **insert_p = NULL, *insert_parent = NULL;
1032         block_t end = lstart + len;
1033
1034         mutex_lock(&dcc->cmd_lock);
1035
1036         dc = (struct discard_cmd *)__lookup_rb_tree_ret(&dcc->root,
1037                                         NULL, lstart,
1038                                         (struct rb_entry **)&prev_dc,
1039                                         (struct rb_entry **)&next_dc,
1040                                         &insert_p, &insert_parent, true);
1041         if (dc)
1042                 prev_dc = dc;
1043
1044         if (!prev_dc) {
1045                 di.lstart = lstart;
1046                 di.len = next_dc ? next_dc->lstart - lstart : len;
1047                 di.len = min(di.len, len);
1048                 di.start = start;
1049         }
1050
1051         while (1) {
1052                 struct rb_node *node;
1053                 bool merged = false;
1054                 struct discard_cmd *tdc = NULL;
1055
1056                 if (prev_dc) {
1057                         di.lstart = prev_dc->lstart + prev_dc->len;
1058                         if (di.lstart < lstart)
1059                                 di.lstart = lstart;
1060                         if (di.lstart >= end)
1061                                 break;
1062
1063                         if (!next_dc || next_dc->lstart > end)
1064                                 di.len = end - di.lstart;
1065                         else
1066                                 di.len = next_dc->lstart - di.lstart;
1067                         di.start = start + di.lstart - lstart;
1068                 }
1069
1070                 if (!di.len)
1071                         goto next;
1072
1073                 if (prev_dc && prev_dc->state == D_PREP &&
1074                         prev_dc->bdev == bdev &&
1075                         __is_discard_back_mergeable(&di, &prev_dc->di)) {
1076                         prev_dc->di.len += di.len;
1077                         dcc->undiscard_blks += di.len;
1078                         __relocate_discard_cmd(dcc, prev_dc);
1079                         di = prev_dc->di;
1080                         tdc = prev_dc;
1081                         merged = true;
1082                 }
1083
1084                 if (next_dc && next_dc->state == D_PREP &&
1085                         next_dc->bdev == bdev &&
1086                         __is_discard_front_mergeable(&di, &next_dc->di)) {
1087                         next_dc->di.lstart = di.lstart;
1088                         next_dc->di.len += di.len;
1089                         next_dc->di.start = di.start;
1090                         dcc->undiscard_blks += di.len;
1091                         __relocate_discard_cmd(dcc, next_dc);
1092                         if (tdc)
1093                                 __remove_discard_cmd(sbi, tdc);
1094                         merged = true;
1095                 }
1096
1097                 if (!merged) {
1098                         __insert_discard_tree(sbi, bdev, di.lstart, di.start,
1099                                                         di.len, NULL, NULL);
1100                 }
1101  next:
1102                 prev_dc = next_dc;
1103                 if (!prev_dc)
1104                         break;
1105
1106                 node = rb_next(&prev_dc->rb_node);
1107                 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1108         }
1109
1110         mutex_unlock(&dcc->cmd_lock);
1111 }
1112
1113 static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
1114                 struct block_device *bdev, block_t blkstart, block_t blklen)
1115 {
1116         block_t lblkstart = blkstart;
1117
1118         trace_f2fs_queue_discard(bdev, blkstart, blklen);
1119
1120         if (sbi->s_ndevs) {
1121                 int devi = f2fs_target_device_index(sbi, blkstart);
1122
1123                 blkstart -= FDEV(devi).start_blk;
1124         }
1125         __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1126         return 0;
1127 }
1128
1129 static void __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
1130                                         struct discard_policy *dpolicy,
1131                                         unsigned int start, unsigned int end)
1132 {
1133         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1134         struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1135         struct rb_node **insert_p = NULL, *insert_parent = NULL;
1136         struct discard_cmd *dc;
1137         struct blk_plug plug;
1138         int issued;
1139
1140 next:
1141         issued = 0;
1142
1143         mutex_lock(&dcc->cmd_lock);
1144         f2fs_bug_on(sbi, !__check_rb_tree_consistence(sbi, &dcc->root));
1145
1146         dc = (struct discard_cmd *)__lookup_rb_tree_ret(&dcc->root,
1147                                         NULL, start,
1148                                         (struct rb_entry **)&prev_dc,
1149                                         (struct rb_entry **)&next_dc,
1150                                         &insert_p, &insert_parent, true);
1151         if (!dc)
1152                 dc = next_dc;
1153
1154         blk_start_plug(&plug);
1155
1156         while (dc && dc->lstart <= end) {
1157                 struct rb_node *node;
1158
1159                 if (dc->len < dpolicy->granularity)
1160                         goto skip;
1161
1162                 if (dc->state != D_PREP) {
1163                         list_move_tail(&dc->list, &dcc->fstrim_list);
1164                         goto skip;
1165                 }
1166
1167                 __submit_discard_cmd(sbi, dpolicy, dc);
1168
1169                 if (++issued >= dpolicy->max_requests) {
1170                         start = dc->lstart + dc->len;
1171
1172                         blk_finish_plug(&plug);
1173                         mutex_unlock(&dcc->cmd_lock);
1174
1175                         schedule();
1176
1177                         goto next;
1178                 }
1179 skip:
1180                 node = rb_next(&dc->rb_node);
1181                 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1182
1183                 if (fatal_signal_pending(current))
1184                         break;
1185         }
1186
1187         blk_finish_plug(&plug);
1188         mutex_unlock(&dcc->cmd_lock);
1189 }
1190
1191 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1192                                         struct discard_policy *dpolicy)
1193 {
1194         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1195         struct list_head *pend_list;
1196         struct discard_cmd *dc, *tmp;
1197         struct blk_plug plug;
1198         int i, iter = 0, issued = 0;
1199         bool io_interrupted = false;
1200
1201         for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1202                 if (i + 1 < dpolicy->granularity)
1203                         break;
1204                 pend_list = &dcc->pend_list[i];
1205
1206                 mutex_lock(&dcc->cmd_lock);
1207                 f2fs_bug_on(sbi, !__check_rb_tree_consistence(sbi, &dcc->root));
1208                 blk_start_plug(&plug);
1209                 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1210                         f2fs_bug_on(sbi, dc->state != D_PREP);
1211
1212                         if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1213                                                                 !is_idle(sbi)) {
1214                                 io_interrupted = true;
1215                                 goto skip;
1216                         }
1217
1218                         __submit_discard_cmd(sbi, dpolicy, dc);
1219                         issued++;
1220 skip:
1221                         if (++iter >= dpolicy->max_requests)
1222                                 break;
1223                 }
1224                 blk_finish_plug(&plug);
1225                 mutex_unlock(&dcc->cmd_lock);
1226
1227                 if (iter >= dpolicy->max_requests)
1228                         break;
1229         }
1230
1231         if (!issued && io_interrupted)
1232                 issued = -1;
1233
1234         return issued;
1235 }
1236
1237 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1238 {
1239         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1240         struct list_head *pend_list;
1241         struct discard_cmd *dc, *tmp;
1242         int i;
1243         bool dropped = false;
1244
1245         mutex_lock(&dcc->cmd_lock);
1246         for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1247                 pend_list = &dcc->pend_list[i];
1248                 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1249                         f2fs_bug_on(sbi, dc->state != D_PREP);
1250                         __remove_discard_cmd(sbi, dc);
1251                         dropped = true;
1252                 }
1253         }
1254         mutex_unlock(&dcc->cmd_lock);
1255
1256         return dropped;
1257 }
1258
1259 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1260                                                         struct discard_cmd *dc)
1261 {
1262         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1263         unsigned int len = 0;
1264
1265         wait_for_completion_io(&dc->wait);
1266         mutex_lock(&dcc->cmd_lock);
1267         f2fs_bug_on(sbi, dc->state != D_DONE);
1268         dc->ref--;
1269         if (!dc->ref) {
1270                 if (!dc->error)
1271                         len = dc->len;
1272                 __remove_discard_cmd(sbi, dc);
1273         }
1274         mutex_unlock(&dcc->cmd_lock);
1275
1276         return len;
1277 }
1278
1279 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1280                                                 struct discard_policy *dpolicy,
1281                                                 block_t start, block_t end)
1282 {
1283         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1284         struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1285                                         &(dcc->fstrim_list) : &(dcc->wait_list);
1286         struct discard_cmd *dc, *tmp;
1287         bool need_wait;
1288         unsigned int trimmed = 0;
1289
1290 next:
1291         need_wait = false;
1292
1293         mutex_lock(&dcc->cmd_lock);
1294         list_for_each_entry_safe(dc, tmp, wait_list, list) {
1295                 if (dc->lstart + dc->len <= start || end <= dc->lstart)
1296                         continue;
1297                 if (dc->len < dpolicy->granularity)
1298                         continue;
1299                 if (dc->state == D_DONE && !dc->ref) {
1300                         wait_for_completion_io(&dc->wait);
1301                         if (!dc->error)
1302                                 trimmed += dc->len;
1303                         __remove_discard_cmd(sbi, dc);
1304                 } else {
1305                         dc->ref++;
1306                         need_wait = true;
1307                         break;
1308                 }
1309         }
1310         mutex_unlock(&dcc->cmd_lock);
1311
1312         if (need_wait) {
1313                 trimmed += __wait_one_discard_bio(sbi, dc);
1314                 goto next;
1315         }
1316
1317         return trimmed;
1318 }
1319
1320 static void __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1321                                                 struct discard_policy *dpolicy)
1322 {
1323         __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1324 }
1325
1326 /* This should be covered by global mutex, &sit_i->sentry_lock */
1327 void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1328 {
1329         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1330         struct discard_cmd *dc;
1331         bool need_wait = false;
1332
1333         mutex_lock(&dcc->cmd_lock);
1334         dc = (struct discard_cmd *)__lookup_rb_tree(&dcc->root, NULL, blkaddr);
1335         if (dc) {
1336                 if (dc->state == D_PREP) {
1337                         __punch_discard_cmd(sbi, dc, blkaddr);
1338                 } else {
1339                         dc->ref++;
1340                         need_wait = true;
1341                 }
1342         }
1343         mutex_unlock(&dcc->cmd_lock);
1344
1345         if (need_wait)
1346                 __wait_one_discard_bio(sbi, dc);
1347 }
1348
1349 void stop_discard_thread(struct f2fs_sb_info *sbi)
1350 {
1351         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1352
1353         if (dcc && dcc->f2fs_issue_discard) {
1354                 struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1355
1356                 dcc->f2fs_issue_discard = NULL;
1357                 kthread_stop(discard_thread);
1358         }
1359 }
1360
1361 /* This comes from f2fs_put_super */
1362 bool f2fs_wait_discard_bios(struct f2fs_sb_info *sbi)
1363 {
1364         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1365         struct discard_policy dpolicy;
1366         bool dropped;
1367
1368         init_discard_policy(&dpolicy, DPOLICY_UMOUNT, dcc->discard_granularity);
1369         __issue_discard_cmd(sbi, &dpolicy);
1370         dropped = __drop_discard_cmd(sbi);
1371         __wait_all_discard_cmd(sbi, &dpolicy);
1372
1373         return dropped;
1374 }
1375
1376 static int issue_discard_thread(void *data)
1377 {
1378         struct f2fs_sb_info *sbi = data;
1379         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1380         wait_queue_head_t *q = &dcc->discard_wait_queue;
1381         struct discard_policy dpolicy;
1382         unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
1383         int issued;
1384
1385         set_freezable();
1386
1387         do {
1388                 init_discard_policy(&dpolicy, DPOLICY_BG,
1389                                         dcc->discard_granularity);
1390
1391                 wait_event_interruptible_timeout(*q,
1392                                 kthread_should_stop() || freezing(current) ||
1393                                 dcc->discard_wake,
1394                                 msecs_to_jiffies(wait_ms));
1395                 if (try_to_freeze())
1396                         continue;
1397                 if (kthread_should_stop())
1398                         return 0;
1399
1400                 if (dcc->discard_wake) {
1401                         dcc->discard_wake = 0;
1402                         if (sbi->gc_thread && sbi->gc_thread->gc_urgent)
1403                                 init_discard_policy(&dpolicy,
1404                                                         DPOLICY_FORCE, 1);
1405                 }
1406
1407                 sb_start_intwrite(sbi->sb);
1408
1409                 issued = __issue_discard_cmd(sbi, &dpolicy);
1410                 if (issued) {
1411                         __wait_all_discard_cmd(sbi, &dpolicy);
1412                         wait_ms = dpolicy.min_interval;
1413                 } else {
1414                         wait_ms = dpolicy.max_interval;
1415                 }
1416
1417                 sb_end_intwrite(sbi->sb);
1418
1419         } while (!kthread_should_stop());
1420         return 0;
1421 }
1422
1423 #ifdef CONFIG_BLK_DEV_ZONED
1424 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1425                 struct block_device *bdev, block_t blkstart, block_t blklen)
1426 {
1427         sector_t sector, nr_sects;
1428         block_t lblkstart = blkstart;
1429         int devi = 0;
1430
1431         if (sbi->s_ndevs) {
1432                 devi = f2fs_target_device_index(sbi, blkstart);
1433                 blkstart -= FDEV(devi).start_blk;
1434         }
1435
1436         /*
1437          * We need to know the type of the zone: for conventional zones,
1438          * use regular discard if the drive supports it. For sequential
1439          * zones, reset the zone write pointer.
1440          */
1441         switch (get_blkz_type(sbi, bdev, blkstart)) {
1442
1443         case BLK_ZONE_TYPE_CONVENTIONAL:
1444                 if (!blk_queue_discard(bdev_get_queue(bdev)))
1445                         return 0;
1446                 return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1447         case BLK_ZONE_TYPE_SEQWRITE_REQ:
1448         case BLK_ZONE_TYPE_SEQWRITE_PREF:
1449                 sector = SECTOR_FROM_BLOCK(blkstart);
1450                 nr_sects = SECTOR_FROM_BLOCK(blklen);
1451
1452                 if (sector & (bdev_zone_sectors(bdev) - 1) ||
1453                                 nr_sects != bdev_zone_sectors(bdev)) {
1454                         f2fs_msg(sbi->sb, KERN_INFO,
1455                                 "(%d) %s: Unaligned discard attempted (block %x + %x)",
1456                                 devi, sbi->s_ndevs ? FDEV(devi).path: "",
1457                                 blkstart, blklen);
1458                         return -EIO;
1459                 }
1460                 trace_f2fs_issue_reset_zone(bdev, blkstart);
1461                 return blkdev_reset_zones(bdev, sector,
1462                                           nr_sects, GFP_NOFS);
1463         default:
1464                 /* Unknown zone type: broken device ? */
1465                 return -EIO;
1466         }
1467 }
1468 #endif
1469
1470 static int __issue_discard_async(struct f2fs_sb_info *sbi,
1471                 struct block_device *bdev, block_t blkstart, block_t blklen)
1472 {
1473 #ifdef CONFIG_BLK_DEV_ZONED
1474         if (f2fs_sb_mounted_blkzoned(sbi->sb) &&
1475                                 bdev_zoned_model(bdev) != BLK_ZONED_NONE)
1476                 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1477 #endif
1478         return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1479 }
1480
1481 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1482                                 block_t blkstart, block_t blklen)
1483 {
1484         sector_t start = blkstart, len = 0;
1485         struct block_device *bdev;
1486         struct seg_entry *se;
1487         unsigned int offset;
1488         block_t i;
1489         int err = 0;
1490
1491         bdev = f2fs_target_device(sbi, blkstart, NULL);
1492
1493         for (i = blkstart; i < blkstart + blklen; i++, len++) {
1494                 if (i != start) {
1495                         struct block_device *bdev2 =
1496                                 f2fs_target_device(sbi, i, NULL);
1497
1498                         if (bdev2 != bdev) {
1499                                 err = __issue_discard_async(sbi, bdev,
1500                                                 start, len);
1501                                 if (err)
1502                                         return err;
1503                                 bdev = bdev2;
1504                                 start = i;
1505                                 len = 0;
1506                         }
1507                 }
1508
1509                 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1510                 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1511
1512                 if (!f2fs_test_and_set_bit(offset, se->discard_map))
1513                         sbi->discard_blks--;
1514         }
1515
1516         if (len)
1517                 err = __issue_discard_async(sbi, bdev, start, len);
1518         return err;
1519 }
1520
1521 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1522                                                         bool check_only)
1523 {
1524         int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1525         int max_blocks = sbi->blocks_per_seg;
1526         struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1527         unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1528         unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1529         unsigned long *discard_map = (unsigned long *)se->discard_map;
1530         unsigned long *dmap = SIT_I(sbi)->tmp_map;
1531         unsigned int start = 0, end = -1;
1532         bool force = (cpc->reason & CP_DISCARD);
1533         struct discard_entry *de = NULL;
1534         struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1535         int i;
1536
1537         if (se->valid_blocks == max_blocks || !f2fs_discard_en(sbi))
1538                 return false;
1539
1540         if (!force) {
1541                 if (!test_opt(sbi, DISCARD) || !se->valid_blocks ||
1542                         SM_I(sbi)->dcc_info->nr_discards >=
1543                                 SM_I(sbi)->dcc_info->max_discards)
1544                         return false;
1545         }
1546
1547         /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1548         for (i = 0; i < entries; i++)
1549                 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1550                                 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1551
1552         while (force || SM_I(sbi)->dcc_info->nr_discards <=
1553                                 SM_I(sbi)->dcc_info->max_discards) {
1554                 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1555                 if (start >= max_blocks)
1556                         break;
1557
1558                 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1559                 if (force && start && end != max_blocks
1560                                         && (end - start) < cpc->trim_minlen)
1561                         continue;
1562
1563                 if (check_only)
1564                         return true;
1565
1566                 if (!de) {
1567                         de = f2fs_kmem_cache_alloc(discard_entry_slab,
1568                                                                 GFP_F2FS_ZERO);
1569                         de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1570                         list_add_tail(&de->list, head);
1571                 }
1572
1573                 for (i = start; i < end; i++)
1574                         __set_bit_le(i, (void *)de->discard_map);
1575
1576                 SM_I(sbi)->dcc_info->nr_discards += end - start;
1577         }
1578         return false;
1579 }
1580
1581 void release_discard_addrs(struct f2fs_sb_info *sbi)
1582 {
1583         struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1584         struct discard_entry *entry, *this;
1585
1586         /* drop caches */
1587         list_for_each_entry_safe(entry, this, head, list) {
1588                 list_del(&entry->list);
1589                 kmem_cache_free(discard_entry_slab, entry);
1590         }
1591 }
1592
1593 /*
1594  * Should call clear_prefree_segments after checkpoint is done.
1595  */
1596 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
1597 {
1598         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1599         unsigned int segno;
1600
1601         mutex_lock(&dirty_i->seglist_lock);
1602         for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
1603                 __set_test_and_free(sbi, segno);
1604         mutex_unlock(&dirty_i->seglist_lock);
1605 }
1606
1607 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1608 {
1609         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1610         struct list_head *head = &dcc->entry_list;
1611         struct discard_entry *entry, *this;
1612         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1613         unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
1614         unsigned int start = 0, end = -1;
1615         unsigned int secno, start_segno;
1616         bool force = (cpc->reason & CP_DISCARD);
1617
1618         mutex_lock(&dirty_i->seglist_lock);
1619
1620         while (1) {
1621                 int i;
1622                 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
1623                 if (start >= MAIN_SEGS(sbi))
1624                         break;
1625                 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
1626                                                                 start + 1);
1627
1628                 for (i = start; i < end; i++)
1629                         clear_bit(i, prefree_map);
1630
1631                 dirty_i->nr_dirty[PRE] -= end - start;
1632
1633                 if (!test_opt(sbi, DISCARD))
1634                         continue;
1635
1636                 if (force && start >= cpc->trim_start &&
1637                                         (end - 1) <= cpc->trim_end)
1638                                 continue;
1639
1640                 if (!test_opt(sbi, LFS) || sbi->segs_per_sec == 1) {
1641                         f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
1642                                 (end - start) << sbi->log_blocks_per_seg);
1643                         continue;
1644                 }
1645 next:
1646                 secno = GET_SEC_FROM_SEG(sbi, start);
1647                 start_segno = GET_SEG_FROM_SEC(sbi, secno);
1648                 if (!IS_CURSEC(sbi, secno) &&
1649                         !get_valid_blocks(sbi, start, true))
1650                         f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
1651                                 sbi->segs_per_sec << sbi->log_blocks_per_seg);
1652
1653                 start = start_segno + sbi->segs_per_sec;
1654                 if (start < end)
1655                         goto next;
1656                 else
1657                         end = start - 1;
1658         }
1659         mutex_unlock(&dirty_i->seglist_lock);
1660
1661         /* send small discards */
1662         list_for_each_entry_safe(entry, this, head, list) {
1663                 unsigned int cur_pos = 0, next_pos, len, total_len = 0;
1664                 bool is_valid = test_bit_le(0, entry->discard_map);
1665
1666 find_next:
1667                 if (is_valid) {
1668                         next_pos = find_next_zero_bit_le(entry->discard_map,
1669                                         sbi->blocks_per_seg, cur_pos);
1670                         len = next_pos - cur_pos;
1671
1672                         if (f2fs_sb_mounted_blkzoned(sbi->sb) ||
1673                             (force && len < cpc->trim_minlen))
1674                                 goto skip;
1675
1676                         f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
1677                                                                         len);
1678                         total_len += len;
1679                 } else {
1680                         next_pos = find_next_bit_le(entry->discard_map,
1681                                         sbi->blocks_per_seg, cur_pos);
1682                 }
1683 skip:
1684                 cur_pos = next_pos;
1685                 is_valid = !is_valid;
1686
1687                 if (cur_pos < sbi->blocks_per_seg)
1688                         goto find_next;
1689
1690                 list_del(&entry->list);
1691                 dcc->nr_discards -= total_len;
1692                 kmem_cache_free(discard_entry_slab, entry);
1693         }
1694
1695         wake_up_discard_thread(sbi, false);
1696 }
1697
1698 void init_discard_policy(struct discard_policy *dpolicy,
1699                                 int discard_type, unsigned int granularity)
1700 {
1701         /* common policy */
1702         dpolicy->type = discard_type;
1703         dpolicy->sync = true;
1704         dpolicy->granularity = granularity;
1705
1706         if (discard_type == DPOLICY_BG) {
1707                 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1708                 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1709                 dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
1710                 dpolicy->io_aware_gran = MAX_PLIST_NUM;
1711                 dpolicy->io_aware = true;
1712         } else if (discard_type == DPOLICY_FORCE) {
1713                 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1714                 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1715                 dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
1716                 dpolicy->io_aware_gran = MAX_PLIST_NUM;
1717                 dpolicy->io_aware = true;
1718         } else if (discard_type == DPOLICY_FSTRIM) {
1719                 dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
1720                 dpolicy->io_aware_gran = MAX_PLIST_NUM;
1721                 dpolicy->io_aware = false;
1722         } else if (discard_type == DPOLICY_UMOUNT) {
1723                 dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
1724                 dpolicy->io_aware_gran = MAX_PLIST_NUM;
1725                 dpolicy->io_aware = false;
1726         }
1727 }
1728
1729 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
1730 {
1731         dev_t dev = sbi->sb->s_bdev->bd_dev;
1732         struct discard_cmd_control *dcc;
1733         int err = 0, i;
1734
1735         if (SM_I(sbi)->dcc_info) {
1736                 dcc = SM_I(sbi)->dcc_info;
1737                 goto init_thread;
1738         }
1739
1740         dcc = kzalloc(sizeof(struct discard_cmd_control), GFP_KERNEL);
1741         if (!dcc)
1742                 return -ENOMEM;
1743
1744         dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
1745         INIT_LIST_HEAD(&dcc->entry_list);
1746         for (i = 0; i < MAX_PLIST_NUM; i++)
1747                 INIT_LIST_HEAD(&dcc->pend_list[i]);
1748         INIT_LIST_HEAD(&dcc->wait_list);
1749         INIT_LIST_HEAD(&dcc->fstrim_list);
1750         mutex_init(&dcc->cmd_lock);
1751         atomic_set(&dcc->issued_discard, 0);
1752         atomic_set(&dcc->issing_discard, 0);
1753         atomic_set(&dcc->discard_cmd_cnt, 0);
1754         dcc->nr_discards = 0;
1755         dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
1756         dcc->undiscard_blks = 0;
1757         dcc->root = RB_ROOT;
1758
1759         init_waitqueue_head(&dcc->discard_wait_queue);
1760         SM_I(sbi)->dcc_info = dcc;
1761 init_thread:
1762         dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
1763                                 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
1764         if (IS_ERR(dcc->f2fs_issue_discard)) {
1765                 err = PTR_ERR(dcc->f2fs_issue_discard);
1766                 kfree(dcc);
1767                 SM_I(sbi)->dcc_info = NULL;
1768                 return err;
1769         }
1770
1771         return err;
1772 }
1773
1774 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
1775 {
1776         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1777
1778         if (!dcc)
1779                 return;
1780
1781         stop_discard_thread(sbi);
1782
1783         kfree(dcc);
1784         SM_I(sbi)->dcc_info = NULL;
1785 }
1786
1787 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
1788 {
1789         struct sit_info *sit_i = SIT_I(sbi);
1790
1791         if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
1792                 sit_i->dirty_sentries++;
1793                 return false;
1794         }
1795
1796         return true;
1797 }
1798
1799 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
1800                                         unsigned int segno, int modified)
1801 {
1802         struct seg_entry *se = get_seg_entry(sbi, segno);
1803         se->type = type;
1804         if (modified)
1805                 __mark_sit_entry_dirty(sbi, segno);
1806 }
1807
1808 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
1809 {
1810         struct seg_entry *se;
1811         unsigned int segno, offset;
1812         long int new_vblocks;
1813         bool exist;
1814 #ifdef CONFIG_F2FS_CHECK_FS
1815         bool mir_exist;
1816 #endif
1817
1818         segno = GET_SEGNO(sbi, blkaddr);
1819
1820         se = get_seg_entry(sbi, segno);
1821         new_vblocks = se->valid_blocks + del;
1822         offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
1823
1824         f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
1825                                 (new_vblocks > sbi->blocks_per_seg)));
1826
1827         se->valid_blocks = new_vblocks;
1828         se->mtime = get_mtime(sbi);
1829         SIT_I(sbi)->max_mtime = se->mtime;
1830
1831         /* Update valid block bitmap */
1832         if (del > 0) {
1833                 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
1834 #ifdef CONFIG_F2FS_CHECK_FS
1835                 mir_exist = f2fs_test_and_set_bit(offset,
1836                                                 se->cur_valid_map_mir);
1837                 if (unlikely(exist != mir_exist)) {
1838                         f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error "
1839                                 "when setting bitmap, blk:%u, old bit:%d",
1840                                 blkaddr, exist);
1841                         f2fs_bug_on(sbi, 1);
1842                 }
1843 #endif
1844                 if (unlikely(exist)) {
1845                         f2fs_msg(sbi->sb, KERN_ERR,
1846                                 "Bitmap was wrongly set, blk:%u", blkaddr);
1847                         f2fs_bug_on(sbi, 1);
1848                         se->valid_blocks--;
1849                         del = 0;
1850                 }
1851
1852                 if (f2fs_discard_en(sbi) &&
1853                         !f2fs_test_and_set_bit(offset, se->discard_map))
1854                         sbi->discard_blks--;
1855
1856                 /* don't overwrite by SSR to keep node chain */
1857                 if (se->type == CURSEG_WARM_NODE) {
1858                         if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
1859                                 se->ckpt_valid_blocks++;
1860                 }
1861         } else {
1862                 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
1863 #ifdef CONFIG_F2FS_CHECK_FS
1864                 mir_exist = f2fs_test_and_clear_bit(offset,
1865                                                 se->cur_valid_map_mir);
1866                 if (unlikely(exist != mir_exist)) {
1867                         f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error "
1868                                 "when clearing bitmap, blk:%u, old bit:%d",
1869                                 blkaddr, exist);
1870                         f2fs_bug_on(sbi, 1);
1871                 }
1872 #endif
1873                 if (unlikely(!exist)) {
1874                         f2fs_msg(sbi->sb, KERN_ERR,
1875                                 "Bitmap was wrongly cleared, blk:%u", blkaddr);
1876                         f2fs_bug_on(sbi, 1);
1877                         se->valid_blocks++;
1878                         del = 0;
1879                 }
1880
1881                 if (f2fs_discard_en(sbi) &&
1882                         f2fs_test_and_clear_bit(offset, se->discard_map))
1883                         sbi->discard_blks++;
1884         }
1885         if (!f2fs_test_bit(offset, se->ckpt_valid_map))
1886                 se->ckpt_valid_blocks += del;
1887
1888         __mark_sit_entry_dirty(sbi, segno);
1889
1890         /* update total number of valid blocks to be written in ckpt area */
1891         SIT_I(sbi)->written_valid_blocks += del;
1892
1893         if (sbi->segs_per_sec > 1)
1894                 get_sec_entry(sbi, segno)->valid_blocks += del;
1895 }
1896
1897 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
1898 {
1899         unsigned int segno = GET_SEGNO(sbi, addr);
1900         struct sit_info *sit_i = SIT_I(sbi);
1901
1902         f2fs_bug_on(sbi, addr == NULL_ADDR);
1903         if (addr == NEW_ADDR)
1904                 return;
1905
1906         /* add it into sit main buffer */
1907         down_write(&sit_i->sentry_lock);
1908
1909         update_sit_entry(sbi, addr, -1);
1910
1911         /* add it into dirty seglist */
1912         locate_dirty_segment(sbi, segno);
1913
1914         up_write(&sit_i->sentry_lock);
1915 }
1916
1917 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
1918 {
1919         struct sit_info *sit_i = SIT_I(sbi);
1920         unsigned int segno, offset;
1921         struct seg_entry *se;
1922         bool is_cp = false;
1923
1924         if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
1925                 return true;
1926
1927         down_read(&sit_i->sentry_lock);
1928
1929         segno = GET_SEGNO(sbi, blkaddr);
1930         se = get_seg_entry(sbi, segno);
1931         offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
1932
1933         if (f2fs_test_bit(offset, se->ckpt_valid_map))
1934                 is_cp = true;
1935
1936         up_read(&sit_i->sentry_lock);
1937
1938         return is_cp;
1939 }
1940
1941 /*
1942  * This function should be resided under the curseg_mutex lock
1943  */
1944 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
1945                                         struct f2fs_summary *sum)
1946 {
1947         struct curseg_info *curseg = CURSEG_I(sbi, type);
1948         void *addr = curseg->sum_blk;
1949         addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
1950         memcpy(addr, sum, sizeof(struct f2fs_summary));
1951 }
1952
1953 /*
1954  * Calculate the number of current summary pages for writing
1955  */
1956 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
1957 {
1958         int valid_sum_count = 0;
1959         int i, sum_in_page;
1960
1961         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1962                 if (sbi->ckpt->alloc_type[i] == SSR)
1963                         valid_sum_count += sbi->blocks_per_seg;
1964                 else {
1965                         if (for_ra)
1966                                 valid_sum_count += le16_to_cpu(
1967                                         F2FS_CKPT(sbi)->cur_data_blkoff[i]);
1968                         else
1969                                 valid_sum_count += curseg_blkoff(sbi, i);
1970                 }
1971         }
1972
1973         sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
1974                         SUM_FOOTER_SIZE) / SUMMARY_SIZE;
1975         if (valid_sum_count <= sum_in_page)
1976                 return 1;
1977         else if ((valid_sum_count - sum_in_page) <=
1978                 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
1979                 return 2;
1980         return 3;
1981 }
1982
1983 /*
1984  * Caller should put this summary page
1985  */
1986 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
1987 {
1988         return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
1989 }
1990
1991 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr)
1992 {
1993         struct page *page = grab_meta_page(sbi, blk_addr);
1994
1995         memcpy(page_address(page), src, PAGE_SIZE);
1996         set_page_dirty(page);
1997         f2fs_put_page(page, 1);
1998 }
1999
2000 static void write_sum_page(struct f2fs_sb_info *sbi,
2001                         struct f2fs_summary_block *sum_blk, block_t blk_addr)
2002 {
2003         update_meta_page(sbi, (void *)sum_blk, blk_addr);
2004 }
2005
2006 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2007                                                 int type, block_t blk_addr)
2008 {
2009         struct curseg_info *curseg = CURSEG_I(sbi, type);
2010         struct page *page = grab_meta_page(sbi, blk_addr);
2011         struct f2fs_summary_block *src = curseg->sum_blk;
2012         struct f2fs_summary_block *dst;
2013
2014         dst = (struct f2fs_summary_block *)page_address(page);
2015
2016         mutex_lock(&curseg->curseg_mutex);
2017
2018         down_read(&curseg->journal_rwsem);
2019         memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2020         up_read(&curseg->journal_rwsem);
2021
2022         memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2023         memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2024
2025         mutex_unlock(&curseg->curseg_mutex);
2026
2027         set_page_dirty(page);
2028         f2fs_put_page(page, 1);
2029 }
2030
2031 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
2032 {
2033         struct curseg_info *curseg = CURSEG_I(sbi, type);
2034         unsigned int segno = curseg->segno + 1;
2035         struct free_segmap_info *free_i = FREE_I(sbi);
2036
2037         if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2038                 return !test_bit(segno, free_i->free_segmap);
2039         return 0;
2040 }
2041
2042 /*
2043  * Find a new segment from the free segments bitmap to right order
2044  * This function should be returned with success, otherwise BUG
2045  */
2046 static void get_new_segment(struct f2fs_sb_info *sbi,
2047                         unsigned int *newseg, bool new_sec, int dir)
2048 {
2049         struct free_segmap_info *free_i = FREE_I(sbi);
2050         unsigned int segno, secno, zoneno;
2051         unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2052         unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2053         unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2054         unsigned int left_start = hint;
2055         bool init = true;
2056         int go_left = 0;
2057         int i;
2058
2059         spin_lock(&free_i->segmap_lock);
2060
2061         if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2062                 segno = find_next_zero_bit(free_i->free_segmap,
2063                         GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2064                 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2065                         goto got_it;
2066         }
2067 find_other_zone:
2068         secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2069         if (secno >= MAIN_SECS(sbi)) {
2070                 if (dir == ALLOC_RIGHT) {
2071                         secno = find_next_zero_bit(free_i->free_secmap,
2072                                                         MAIN_SECS(sbi), 0);
2073                         f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2074                 } else {
2075                         go_left = 1;
2076                         left_start = hint - 1;
2077                 }
2078         }
2079         if (go_left == 0)
2080                 goto skip_left;
2081
2082         while (test_bit(left_start, free_i->free_secmap)) {
2083                 if (left_start > 0) {
2084                         left_start--;
2085                         continue;
2086                 }
2087                 left_start = find_next_zero_bit(free_i->free_secmap,
2088                                                         MAIN_SECS(sbi), 0);
2089                 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2090                 break;
2091         }
2092         secno = left_start;
2093 skip_left:
2094         segno = GET_SEG_FROM_SEC(sbi, secno);
2095         zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2096
2097         /* give up on finding another zone */
2098         if (!init)
2099                 goto got_it;
2100         if (sbi->secs_per_zone == 1)
2101                 goto got_it;
2102         if (zoneno == old_zoneno)
2103                 goto got_it;
2104         if (dir == ALLOC_LEFT) {
2105                 if (!go_left && zoneno + 1 >= total_zones)
2106                         goto got_it;
2107                 if (go_left && zoneno == 0)
2108                         goto got_it;
2109         }
2110         for (i = 0; i < NR_CURSEG_TYPE; i++)
2111                 if (CURSEG_I(sbi, i)->zone == zoneno)
2112                         break;
2113
2114         if (i < NR_CURSEG_TYPE) {
2115                 /* zone is in user, try another */
2116                 if (go_left)
2117                         hint = zoneno * sbi->secs_per_zone - 1;
2118                 else if (zoneno + 1 >= total_zones)
2119                         hint = 0;
2120                 else
2121                         hint = (zoneno + 1) * sbi->secs_per_zone;
2122                 init = false;
2123                 goto find_other_zone;
2124         }
2125 got_it:
2126         /* set it as dirty segment in free segmap */
2127         f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2128         __set_inuse(sbi, segno);
2129         *newseg = segno;
2130         spin_unlock(&free_i->segmap_lock);
2131 }
2132
2133 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2134 {
2135         struct curseg_info *curseg = CURSEG_I(sbi, type);
2136         struct summary_footer *sum_footer;
2137
2138         curseg->segno = curseg->next_segno;
2139         curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2140         curseg->next_blkoff = 0;
2141         curseg->next_segno = NULL_SEGNO;
2142
2143         sum_footer = &(curseg->sum_blk->footer);
2144         memset(sum_footer, 0, sizeof(struct summary_footer));
2145         if (IS_DATASEG(type))
2146                 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2147         if (IS_NODESEG(type))
2148                 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2149         __set_sit_entry_type(sbi, type, curseg->segno, modified);
2150 }
2151
2152 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2153 {
2154         /* if segs_per_sec is large than 1, we need to keep original policy. */
2155         if (sbi->segs_per_sec != 1)
2156                 return CURSEG_I(sbi, type)->segno;
2157
2158         if (type == CURSEG_HOT_DATA || IS_NODESEG(type))
2159                 return 0;
2160
2161         if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2162                 return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2163         return CURSEG_I(sbi, type)->segno;
2164 }
2165
2166 /*
2167  * Allocate a current working segment.
2168  * This function always allocates a free segment in LFS manner.
2169  */
2170 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2171 {
2172         struct curseg_info *curseg = CURSEG_I(sbi, type);
2173         unsigned int segno = curseg->segno;
2174         int dir = ALLOC_LEFT;
2175
2176         write_sum_page(sbi, curseg->sum_blk,
2177                                 GET_SUM_BLOCK(sbi, segno));
2178         if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
2179                 dir = ALLOC_RIGHT;
2180
2181         if (test_opt(sbi, NOHEAP))
2182                 dir = ALLOC_RIGHT;
2183
2184         segno = __get_next_segno(sbi, type);
2185         get_new_segment(sbi, &segno, new_sec, dir);
2186         curseg->next_segno = segno;
2187         reset_curseg(sbi, type, 1);
2188         curseg->alloc_type = LFS;
2189 }
2190
2191 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
2192                         struct curseg_info *seg, block_t start)
2193 {
2194         struct seg_entry *se = get_seg_entry(sbi, seg->segno);
2195         int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2196         unsigned long *target_map = SIT_I(sbi)->tmp_map;
2197         unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2198         unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2199         int i, pos;
2200
2201         for (i = 0; i < entries; i++)
2202                 target_map[i] = ckpt_map[i] | cur_map[i];
2203
2204         pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2205
2206         seg->next_blkoff = pos;
2207 }
2208
2209 /*
2210  * If a segment is written by LFS manner, next block offset is just obtained
2211  * by increasing the current block offset. However, if a segment is written by
2212  * SSR manner, next block offset obtained by calling __next_free_blkoff
2213  */
2214 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2215                                 struct curseg_info *seg)
2216 {
2217         if (seg->alloc_type == SSR)
2218                 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
2219         else
2220                 seg->next_blkoff++;
2221 }
2222
2223 /*
2224  * This function always allocates a used segment(from dirty seglist) by SSR
2225  * manner, so it should recover the existing segment information of valid blocks
2226  */
2227 static void change_curseg(struct f2fs_sb_info *sbi, int type)
2228 {
2229         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2230         struct curseg_info *curseg = CURSEG_I(sbi, type);
2231         unsigned int new_segno = curseg->next_segno;
2232         struct f2fs_summary_block *sum_node;
2233         struct page *sum_page;
2234
2235         write_sum_page(sbi, curseg->sum_blk,
2236                                 GET_SUM_BLOCK(sbi, curseg->segno));
2237         __set_test_and_inuse(sbi, new_segno);
2238
2239         mutex_lock(&dirty_i->seglist_lock);
2240         __remove_dirty_segment(sbi, new_segno, PRE);
2241         __remove_dirty_segment(sbi, new_segno, DIRTY);
2242         mutex_unlock(&dirty_i->seglist_lock);
2243
2244         reset_curseg(sbi, type, 1);
2245         curseg->alloc_type = SSR;
2246         __next_free_blkoff(sbi, curseg, 0);
2247
2248         sum_page = get_sum_page(sbi, new_segno);
2249         sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2250         memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2251         f2fs_put_page(sum_page, 1);
2252 }
2253
2254 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
2255 {
2256         struct curseg_info *curseg = CURSEG_I(sbi, type);
2257         const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2258         unsigned segno = NULL_SEGNO;
2259         int i, cnt;
2260         bool reversed = false;
2261
2262         /* need_SSR() already forces to do this */
2263         if (v_ops->get_victim(sbi, &segno, BG_GC, type, SSR)) {
2264                 curseg->next_segno = segno;
2265                 return 1;
2266         }
2267
2268         /* For node segments, let's do SSR more intensively */
2269         if (IS_NODESEG(type)) {
2270                 if (type >= CURSEG_WARM_NODE) {
2271                         reversed = true;
2272                         i = CURSEG_COLD_NODE;
2273                 } else {
2274                         i = CURSEG_HOT_NODE;
2275                 }
2276                 cnt = NR_CURSEG_NODE_TYPE;
2277         } else {
2278                 if (type >= CURSEG_WARM_DATA) {
2279                         reversed = true;
2280                         i = CURSEG_COLD_DATA;
2281                 } else {
2282                         i = CURSEG_HOT_DATA;
2283                 }
2284                 cnt = NR_CURSEG_DATA_TYPE;
2285         }
2286
2287         for (; cnt-- > 0; reversed ? i-- : i++) {
2288                 if (i == type)
2289                         continue;
2290                 if (v_ops->get_victim(sbi, &segno, BG_GC, i, SSR)) {
2291                         curseg->next_segno = segno;
2292                         return 1;
2293                 }
2294         }
2295         return 0;
2296 }
2297
2298 /*
2299  * flush out current segment and replace it with new segment
2300  * This function should be returned with success, otherwise BUG
2301  */
2302 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
2303                                                 int type, bool force)
2304 {
2305         struct curseg_info *curseg = CURSEG_I(sbi, type);
2306
2307         if (force)
2308                 new_curseg(sbi, type, true);
2309         else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2310                                         type == CURSEG_WARM_NODE)
2311                 new_curseg(sbi, type, false);
2312         else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
2313                 new_curseg(sbi, type, false);
2314         else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
2315                 change_curseg(sbi, type);
2316         else
2317                 new_curseg(sbi, type, false);
2318
2319         stat_inc_seg_type(sbi, curseg);
2320 }
2321
2322 void allocate_new_segments(struct f2fs_sb_info *sbi)
2323 {
2324         struct curseg_info *curseg;
2325         unsigned int old_segno;
2326         int i;
2327
2328         down_write(&SIT_I(sbi)->sentry_lock);
2329
2330         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2331                 curseg = CURSEG_I(sbi, i);
2332                 old_segno = curseg->segno;
2333                 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
2334                 locate_dirty_segment(sbi, old_segno);
2335         }
2336
2337         up_write(&SIT_I(sbi)->sentry_lock);
2338 }
2339
2340 static const struct segment_allocation default_salloc_ops = {
2341         .allocate_segment = allocate_segment_by_default,
2342 };
2343
2344 bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2345 {
2346         __u64 trim_start = cpc->trim_start;
2347         bool has_candidate = false;
2348
2349         down_write(&SIT_I(sbi)->sentry_lock);
2350         for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
2351                 if (add_discard_addrs(sbi, cpc, true)) {
2352                         has_candidate = true;
2353                         break;
2354                 }
2355         }
2356         up_write(&SIT_I(sbi)->sentry_lock);
2357
2358         cpc->trim_start = trim_start;
2359         return has_candidate;
2360 }
2361
2362 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
2363 {
2364         __u64 start = F2FS_BYTES_TO_BLK(range->start);
2365         __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
2366         unsigned int start_segno, end_segno, cur_segno;
2367         block_t start_block, end_block;
2368         struct cp_control cpc;
2369         struct discard_policy dpolicy;
2370         unsigned long long trimmed = 0;
2371         int err = 0;
2372
2373         if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
2374                 return -EINVAL;
2375
2376         if (end <= MAIN_BLKADDR(sbi))
2377                 goto out;
2378
2379         if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
2380                 f2fs_msg(sbi->sb, KERN_WARNING,
2381                         "Found FS corruption, run fsck to fix.");
2382                 goto out;
2383         }
2384
2385         /* start/end segment number in main_area */
2386         start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
2387         end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
2388                                                 GET_SEGNO(sbi, end);
2389
2390         cpc.reason = CP_DISCARD;
2391         cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
2392
2393         /* do checkpoint to issue discard commands safely */
2394         for (cur_segno = start_segno; cur_segno <= end_segno;
2395                                         cur_segno = cpc.trim_end + 1) {
2396                 cpc.trim_start = cur_segno;
2397
2398                 if (sbi->discard_blks == 0)
2399                         break;
2400                 else if (sbi->discard_blks < BATCHED_TRIM_BLOCKS(sbi))
2401                         cpc.trim_end = end_segno;
2402                 else
2403                         cpc.trim_end = min_t(unsigned int,
2404                                 rounddown(cur_segno +
2405                                 BATCHED_TRIM_SEGMENTS(sbi),
2406                                 sbi->segs_per_sec) - 1, end_segno);
2407
2408                 mutex_lock(&sbi->gc_mutex);
2409                 err = write_checkpoint(sbi, &cpc);
2410                 mutex_unlock(&sbi->gc_mutex);
2411                 if (err)
2412                         break;
2413
2414                 schedule();
2415         }
2416
2417         start_block = START_BLOCK(sbi, start_segno);
2418         end_block = START_BLOCK(sbi, min(cur_segno, end_segno) + 1);
2419
2420         init_discard_policy(&dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
2421         __issue_discard_cmd_range(sbi, &dpolicy, start_block, end_block);
2422         trimmed = __wait_discard_cmd_range(sbi, &dpolicy,
2423                                         start_block, end_block);
2424 out:
2425         range->len = F2FS_BLK_TO_BYTES(trimmed);
2426         return err;
2427 }
2428
2429 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
2430 {
2431         struct curseg_info *curseg = CURSEG_I(sbi, type);
2432         if (curseg->next_blkoff < sbi->blocks_per_seg)
2433                 return true;
2434         return false;
2435 }
2436
2437 int rw_hint_to_seg_type(enum rw_hint hint)
2438 {
2439         switch (hint) {
2440         case WRITE_LIFE_SHORT:
2441                 return CURSEG_HOT_DATA;
2442         case WRITE_LIFE_EXTREME:
2443                 return CURSEG_COLD_DATA;
2444         default:
2445                 return CURSEG_WARM_DATA;
2446         }
2447 }
2448
2449 static int __get_segment_type_2(struct f2fs_io_info *fio)
2450 {
2451         if (fio->type == DATA)
2452                 return CURSEG_HOT_DATA;
2453         else
2454                 return CURSEG_HOT_NODE;
2455 }
2456
2457 static int __get_segment_type_4(struct f2fs_io_info *fio)
2458 {
2459         if (fio->type == DATA) {
2460                 struct inode *inode = fio->page->mapping->host;
2461
2462                 if (S_ISDIR(inode->i_mode))
2463                         return CURSEG_HOT_DATA;
2464                 else
2465                         return CURSEG_COLD_DATA;
2466         } else {
2467                 if (IS_DNODE(fio->page) && is_cold_node(fio->page))
2468                         return CURSEG_WARM_NODE;
2469                 else
2470                         return CURSEG_COLD_NODE;
2471         }
2472 }
2473
2474 static int __get_segment_type_6(struct f2fs_io_info *fio)
2475 {
2476         if (fio->type == DATA) {
2477                 struct inode *inode = fio->page->mapping->host;
2478
2479                 if (is_cold_data(fio->page) || file_is_cold(inode))
2480                         return CURSEG_COLD_DATA;
2481                 if (is_inode_flag_set(inode, FI_HOT_DATA))
2482                         return CURSEG_HOT_DATA;
2483                 return rw_hint_to_seg_type(inode->i_write_hint);
2484         } else {
2485                 if (IS_DNODE(fio->page))
2486                         return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
2487                                                 CURSEG_HOT_NODE;
2488                 return CURSEG_COLD_NODE;
2489         }
2490 }
2491
2492 static int __get_segment_type(struct f2fs_io_info *fio)
2493 {
2494         int type = 0;
2495
2496         switch (fio->sbi->active_logs) {
2497         case 2:
2498                 type = __get_segment_type_2(fio);
2499                 break;
2500         case 4:
2501                 type = __get_segment_type_4(fio);
2502                 break;
2503         case 6:
2504                 type = __get_segment_type_6(fio);
2505                 break;
2506         default:
2507                 f2fs_bug_on(fio->sbi, true);
2508         }
2509
2510         if (IS_HOT(type))
2511                 fio->temp = HOT;
2512         else if (IS_WARM(type))
2513                 fio->temp = WARM;
2514         else
2515                 fio->temp = COLD;
2516         return type;
2517 }
2518
2519 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
2520                 block_t old_blkaddr, block_t *new_blkaddr,
2521                 struct f2fs_summary *sum, int type,
2522                 struct f2fs_io_info *fio, bool add_list)
2523 {
2524         struct sit_info *sit_i = SIT_I(sbi);
2525         struct curseg_info *curseg = CURSEG_I(sbi, type);
2526
2527         down_read(&SM_I(sbi)->curseg_lock);
2528
2529         mutex_lock(&curseg->curseg_mutex);
2530         down_write(&sit_i->sentry_lock);
2531
2532         *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
2533
2534         f2fs_wait_discard_bio(sbi, *new_blkaddr);
2535
2536         /*
2537          * __add_sum_entry should be resided under the curseg_mutex
2538          * because, this function updates a summary entry in the
2539          * current summary block.
2540          */
2541         __add_sum_entry(sbi, type, sum);
2542
2543         __refresh_next_blkoff(sbi, curseg);
2544
2545         stat_inc_block_count(sbi, curseg);
2546
2547         /*
2548          * SIT information should be updated before segment allocation,
2549          * since SSR needs latest valid block information.
2550          */
2551         update_sit_entry(sbi, *new_blkaddr, 1);
2552         if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
2553                 update_sit_entry(sbi, old_blkaddr, -1);
2554
2555         if (!__has_curseg_space(sbi, type))
2556                 sit_i->s_ops->allocate_segment(sbi, type, false);
2557
2558         /*
2559          * segment dirty status should be updated after segment allocation,
2560          * so we just need to update status only one time after previous
2561          * segment being closed.
2562          */
2563         locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
2564         locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
2565
2566         up_write(&sit_i->sentry_lock);
2567
2568         if (page && IS_NODESEG(type)) {
2569                 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
2570
2571                 f2fs_inode_chksum_set(sbi, page);
2572         }
2573
2574         if (add_list) {
2575                 struct f2fs_bio_info *io;
2576
2577                 INIT_LIST_HEAD(&fio->list);
2578                 fio->in_list = true;
2579                 io = sbi->write_io[fio->type] + fio->temp;
2580                 spin_lock(&io->io_lock);
2581                 list_add_tail(&fio->list, &io->io_list);
2582                 spin_unlock(&io->io_lock);
2583         }
2584
2585         mutex_unlock(&curseg->curseg_mutex);
2586
2587         up_read(&SM_I(sbi)->curseg_lock);
2588 }
2589
2590 static void update_device_state(struct f2fs_io_info *fio)
2591 {
2592         struct f2fs_sb_info *sbi = fio->sbi;
2593         unsigned int devidx;
2594
2595         if (!sbi->s_ndevs)
2596                 return;
2597
2598         devidx = f2fs_target_device_index(sbi, fio->new_blkaddr);
2599
2600         /* update device state for fsync */
2601         set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO);
2602
2603         /* update device state for checkpoint */
2604         if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
2605                 spin_lock(&sbi->dev_lock);
2606                 f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
2607                 spin_unlock(&sbi->dev_lock);
2608         }
2609 }
2610
2611 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
2612 {
2613         int type = __get_segment_type(fio);
2614         int err;
2615
2616 reallocate:
2617         allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
2618                         &fio->new_blkaddr, sum, type, fio, true);
2619
2620         /* writeout dirty page into bdev */
2621         err = f2fs_submit_page_write(fio);
2622         if (err == -EAGAIN) {
2623                 fio->old_blkaddr = fio->new_blkaddr;
2624                 goto reallocate;
2625         } else if (!err) {
2626                 update_device_state(fio);
2627         }
2628 }
2629
2630 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
2631                                         enum iostat_type io_type)
2632 {
2633         struct f2fs_io_info fio = {
2634                 .sbi = sbi,
2635                 .type = META,
2636                 .op = REQ_OP_WRITE,
2637                 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
2638                 .old_blkaddr = page->index,
2639                 .new_blkaddr = page->index,
2640                 .page = page,
2641                 .encrypted_page = NULL,
2642                 .in_list = false,
2643         };
2644
2645         if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
2646                 fio.op_flags &= ~REQ_META;
2647
2648         set_page_writeback(page);
2649         f2fs_submit_page_write(&fio);
2650
2651         f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
2652 }
2653
2654 void write_node_page(unsigned int nid, struct f2fs_io_info *fio)
2655 {
2656         struct f2fs_summary sum;
2657
2658         set_summary(&sum, nid, 0, 0);
2659         do_write_page(&sum, fio);
2660
2661         f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
2662 }
2663
2664 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio)
2665 {
2666         struct f2fs_sb_info *sbi = fio->sbi;
2667         struct f2fs_summary sum;
2668         struct node_info ni;
2669
2670         f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
2671         get_node_info(sbi, dn->nid, &ni);
2672         set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
2673         do_write_page(&sum, fio);
2674         f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
2675
2676         f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
2677 }
2678
2679 int rewrite_data_page(struct f2fs_io_info *fio)
2680 {
2681         int err;
2682
2683         fio->new_blkaddr = fio->old_blkaddr;
2684         stat_inc_inplace_blocks(fio->sbi);
2685
2686         err = f2fs_submit_page_bio(fio);
2687         if (!err)
2688                 update_device_state(fio);
2689
2690         f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
2691
2692         return err;
2693 }
2694
2695 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
2696                                                 unsigned int segno)
2697 {
2698         int i;
2699
2700         for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
2701                 if (CURSEG_I(sbi, i)->segno == segno)
2702                         break;
2703         }
2704         return i;
2705 }
2706
2707 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
2708                                 block_t old_blkaddr, block_t new_blkaddr,
2709                                 bool recover_curseg, bool recover_newaddr)
2710 {
2711         struct sit_info *sit_i = SIT_I(sbi);
2712         struct curseg_info *curseg;
2713         unsigned int segno, old_cursegno;
2714         struct seg_entry *se;
2715         int type;
2716         unsigned short old_blkoff;
2717
2718         segno = GET_SEGNO(sbi, new_blkaddr);
2719         se = get_seg_entry(sbi, segno);
2720         type = se->type;
2721
2722         down_write(&SM_I(sbi)->curseg_lock);
2723
2724         if (!recover_curseg) {
2725                 /* for recovery flow */
2726                 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
2727                         if (old_blkaddr == NULL_ADDR)
2728                                 type = CURSEG_COLD_DATA;
2729                         else
2730                                 type = CURSEG_WARM_DATA;
2731                 }
2732         } else {
2733                 if (IS_CURSEG(sbi, segno)) {
2734                         /* se->type is volatile as SSR allocation */
2735                         type = __f2fs_get_curseg(sbi, segno);
2736                         f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
2737                 } else {
2738                         type = CURSEG_WARM_DATA;
2739                 }
2740         }
2741
2742         curseg = CURSEG_I(sbi, type);
2743
2744         mutex_lock(&curseg->curseg_mutex);
2745         down_write(&sit_i->sentry_lock);
2746
2747         old_cursegno = curseg->segno;
2748         old_blkoff = curseg->next_blkoff;
2749
2750         /* change the current segment */
2751         if (segno != curseg->segno) {
2752                 curseg->next_segno = segno;
2753                 change_curseg(sbi, type);
2754         }
2755
2756         curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
2757         __add_sum_entry(sbi, type, sum);
2758
2759         if (!recover_curseg || recover_newaddr)
2760                 update_sit_entry(sbi, new_blkaddr, 1);
2761         if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
2762                 update_sit_entry(sbi, old_blkaddr, -1);
2763
2764         locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
2765         locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
2766
2767         locate_dirty_segment(sbi, old_cursegno);
2768
2769         if (recover_curseg) {
2770                 if (old_cursegno != curseg->segno) {
2771                         curseg->next_segno = old_cursegno;
2772                         change_curseg(sbi, type);
2773                 }
2774                 curseg->next_blkoff = old_blkoff;
2775         }
2776
2777         up_write(&sit_i->sentry_lock);
2778         mutex_unlock(&curseg->curseg_mutex);
2779         up_write(&SM_I(sbi)->curseg_lock);
2780 }
2781
2782 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
2783                                 block_t old_addr, block_t new_addr,
2784                                 unsigned char version, bool recover_curseg,
2785                                 bool recover_newaddr)
2786 {
2787         struct f2fs_summary sum;
2788
2789         set_summary(&sum, dn->nid, dn->ofs_in_node, version);
2790
2791         __f2fs_replace_block(sbi, &sum, old_addr, new_addr,
2792                                         recover_curseg, recover_newaddr);
2793
2794         f2fs_update_data_blkaddr(dn, new_addr);
2795 }
2796
2797 void f2fs_wait_on_page_writeback(struct page *page,
2798                                 enum page_type type, bool ordered)
2799 {
2800         if (PageWriteback(page)) {
2801                 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
2802
2803                 f2fs_submit_merged_write_cond(sbi, page->mapping->host,
2804                                                 0, page->index, type);
2805                 if (ordered)
2806                         wait_on_page_writeback(page);
2807                 else
2808                         wait_for_stable_page(page);
2809         }
2810 }
2811
2812 void f2fs_wait_on_block_writeback(struct f2fs_sb_info *sbi, block_t blkaddr)
2813 {
2814         struct page *cpage;
2815
2816         if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
2817                 return;
2818
2819         cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
2820         if (cpage) {
2821                 f2fs_wait_on_page_writeback(cpage, DATA, true);
2822                 f2fs_put_page(cpage, 1);
2823         }
2824 }
2825
2826 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
2827 {
2828         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2829         struct curseg_info *seg_i;
2830         unsigned char *kaddr;
2831         struct page *page;
2832         block_t start;
2833         int i, j, offset;
2834
2835         start = start_sum_block(sbi);
2836
2837         page = get_meta_page(sbi, start++);
2838         kaddr = (unsigned char *)page_address(page);
2839
2840         /* Step 1: restore nat cache */
2841         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
2842         memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
2843
2844         /* Step 2: restore sit cache */
2845         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
2846         memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
2847         offset = 2 * SUM_JOURNAL_SIZE;
2848
2849         /* Step 3: restore summary entries */
2850         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2851                 unsigned short blk_off;
2852                 unsigned int segno;
2853
2854                 seg_i = CURSEG_I(sbi, i);
2855                 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
2856                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
2857                 seg_i->next_segno = segno;
2858                 reset_curseg(sbi, i, 0);
2859                 seg_i->alloc_type = ckpt->alloc_type[i];
2860                 seg_i->next_blkoff = blk_off;
2861
2862                 if (seg_i->alloc_type == SSR)
2863                         blk_off = sbi->blocks_per_seg;
2864
2865                 for (j = 0; j < blk_off; j++) {
2866                         struct f2fs_summary *s;
2867                         s = (struct f2fs_summary *)(kaddr + offset);
2868                         seg_i->sum_blk->entries[j] = *s;
2869                         offset += SUMMARY_SIZE;
2870                         if (offset + SUMMARY_SIZE <= PAGE_SIZE -
2871                                                 SUM_FOOTER_SIZE)
2872                                 continue;
2873
2874                         f2fs_put_page(page, 1);
2875                         page = NULL;
2876
2877                         page = get_meta_page(sbi, start++);
2878                         kaddr = (unsigned char *)page_address(page);
2879                         offset = 0;
2880                 }
2881         }
2882         f2fs_put_page(page, 1);
2883         return 0;
2884 }
2885
2886 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
2887 {
2888         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2889         struct f2fs_summary_block *sum;
2890         struct curseg_info *curseg;
2891         struct page *new;
2892         unsigned short blk_off;
2893         unsigned int segno = 0;
2894         block_t blk_addr = 0;
2895
2896         /* get segment number and block addr */
2897         if (IS_DATASEG(type)) {
2898                 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
2899                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
2900                                                         CURSEG_HOT_DATA]);
2901                 if (__exist_node_summaries(sbi))
2902                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
2903                 else
2904                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
2905         } else {
2906                 segno = le32_to_cpu(ckpt->cur_node_segno[type -
2907                                                         CURSEG_HOT_NODE]);
2908                 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
2909                                                         CURSEG_HOT_NODE]);
2910                 if (__exist_node_summaries(sbi))
2911                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
2912                                                         type - CURSEG_HOT_NODE);
2913                 else
2914                         blk_addr = GET_SUM_BLOCK(sbi, segno);
2915         }
2916
2917         new = get_meta_page(sbi, blk_addr);
2918         sum = (struct f2fs_summary_block *)page_address(new);
2919
2920         if (IS_NODESEG(type)) {
2921                 if (__exist_node_summaries(sbi)) {
2922                         struct f2fs_summary *ns = &sum->entries[0];
2923                         int i;
2924                         for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
2925                                 ns->version = 0;
2926                                 ns->ofs_in_node = 0;
2927                         }
2928                 } else {
2929                         int err;
2930
2931                         err = restore_node_summary(sbi, segno, sum);
2932                         if (err) {
2933                                 f2fs_put_page(new, 1);
2934                                 return err;
2935                         }
2936                 }
2937         }
2938
2939         /* set uncompleted segment to curseg */
2940         curseg = CURSEG_I(sbi, type);
2941         mutex_lock(&curseg->curseg_mutex);
2942
2943         /* update journal info */
2944         down_write(&curseg->journal_rwsem);
2945         memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
2946         up_write(&curseg->journal_rwsem);
2947
2948         memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
2949         memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
2950         curseg->next_segno = segno;
2951         reset_curseg(sbi, type, 0);
2952         curseg->alloc_type = ckpt->alloc_type[type];
2953         curseg->next_blkoff = blk_off;
2954         mutex_unlock(&curseg->curseg_mutex);
2955         f2fs_put_page(new, 1);
2956         return 0;
2957 }
2958
2959 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
2960 {
2961         struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
2962         struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
2963         int type = CURSEG_HOT_DATA;
2964         int err;
2965
2966         if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
2967                 int npages = npages_for_summary_flush(sbi, true);
2968
2969                 if (npages >= 2)
2970                         ra_meta_pages(sbi, start_sum_block(sbi), npages,
2971                                                         META_CP, true);
2972
2973                 /* restore for compacted data summary */
2974                 if (read_compacted_summaries(sbi))
2975                         return -EINVAL;
2976                 type = CURSEG_HOT_NODE;
2977         }
2978
2979         if (__exist_node_summaries(sbi))
2980                 ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
2981                                         NR_CURSEG_TYPE - type, META_CP, true);
2982
2983         for (; type <= CURSEG_COLD_NODE; type++) {
2984                 err = read_normal_summaries(sbi, type);
2985                 if (err)
2986                         return err;
2987         }
2988
2989         /* sanity check for summary blocks */
2990         if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
2991                         sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES)
2992                 return -EINVAL;
2993
2994         return 0;
2995 }
2996
2997 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
2998 {
2999         struct page *page;
3000         unsigned char *kaddr;
3001         struct f2fs_summary *summary;
3002         struct curseg_info *seg_i;
3003         int written_size = 0;
3004         int i, j;
3005
3006         page = grab_meta_page(sbi, blkaddr++);
3007         kaddr = (unsigned char *)page_address(page);
3008
3009         /* Step 1: write nat cache */
3010         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3011         memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
3012         written_size += SUM_JOURNAL_SIZE;
3013
3014         /* Step 2: write sit cache */
3015         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3016         memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
3017         written_size += SUM_JOURNAL_SIZE;
3018
3019         /* Step 3: write summary entries */
3020         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3021                 unsigned short blkoff;
3022                 seg_i = CURSEG_I(sbi, i);
3023                 if (sbi->ckpt->alloc_type[i] == SSR)
3024                         blkoff = sbi->blocks_per_seg;
3025                 else
3026                         blkoff = curseg_blkoff(sbi, i);
3027
3028                 for (j = 0; j < blkoff; j++) {
3029                         if (!page) {
3030                                 page = grab_meta_page(sbi, blkaddr++);
3031                                 kaddr = (unsigned char *)page_address(page);
3032                                 written_size = 0;
3033                         }
3034                         summary = (struct f2fs_summary *)(kaddr + written_size);
3035                         *summary = seg_i->sum_blk->entries[j];
3036                         written_size += SUMMARY_SIZE;
3037
3038                         if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
3039                                                         SUM_FOOTER_SIZE)
3040                                 continue;
3041
3042                         set_page_dirty(page);
3043                         f2fs_put_page(page, 1);
3044                         page = NULL;
3045                 }
3046         }
3047         if (page) {
3048                 set_page_dirty(page);
3049                 f2fs_put_page(page, 1);
3050         }
3051 }
3052
3053 static void write_normal_summaries(struct f2fs_sb_info *sbi,
3054                                         block_t blkaddr, int type)
3055 {
3056         int i, end;
3057         if (IS_DATASEG(type))
3058                 end = type + NR_CURSEG_DATA_TYPE;
3059         else
3060                 end = type + NR_CURSEG_NODE_TYPE;
3061
3062         for (i = type; i < end; i++)
3063                 write_current_sum_page(sbi, i, blkaddr + (i - type));
3064 }
3065
3066 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3067 {
3068         if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
3069                 write_compacted_summaries(sbi, start_blk);
3070         else
3071                 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
3072 }
3073
3074 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3075 {
3076         write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
3077 }
3078
3079 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3080                                         unsigned int val, int alloc)
3081 {
3082         int i;
3083
3084         if (type == NAT_JOURNAL) {
3085                 for (i = 0; i < nats_in_cursum(journal); i++) {
3086                         if (le32_to_cpu(nid_in_journal(journal, i)) == val)
3087                                 return i;
3088                 }
3089                 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
3090                         return update_nats_in_cursum(journal, 1);
3091         } else if (type == SIT_JOURNAL) {
3092                 for (i = 0; i < sits_in_cursum(journal); i++)
3093                         if (le32_to_cpu(segno_in_journal(journal, i)) == val)
3094                                 return i;
3095                 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
3096                         return update_sits_in_cursum(journal, 1);
3097         }
3098         return -1;
3099 }
3100
3101 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
3102                                         unsigned int segno)
3103 {
3104         return get_meta_page(sbi, current_sit_addr(sbi, segno));
3105 }
3106
3107 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
3108                                         unsigned int start)
3109 {
3110         struct sit_info *sit_i = SIT_I(sbi);
3111         struct page *src_page, *dst_page;
3112         pgoff_t src_off, dst_off;
3113         void *src_addr, *dst_addr;
3114
3115         src_off = current_sit_addr(sbi, start);
3116         dst_off = next_sit_addr(sbi, src_off);
3117
3118         /* get current sit block page without lock */
3119         src_page = get_meta_page(sbi, src_off);
3120         dst_page = grab_meta_page(sbi, dst_off);
3121         f2fs_bug_on(sbi, PageDirty(src_page));
3122
3123         src_addr = page_address(src_page);
3124         dst_addr = page_address(dst_page);
3125         memcpy(dst_addr, src_addr, PAGE_SIZE);
3126
3127         set_page_dirty(dst_page);
3128         f2fs_put_page(src_page, 1);
3129
3130         set_to_next_sit(sit_i, start);
3131
3132         return dst_page;
3133 }
3134
3135 static struct sit_entry_set *grab_sit_entry_set(void)
3136 {
3137         struct sit_entry_set *ses =
3138                         f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
3139
3140         ses->entry_cnt = 0;
3141         INIT_LIST_HEAD(&ses->set_list);
3142         return ses;
3143 }
3144
3145 static void release_sit_entry_set(struct sit_entry_set *ses)
3146 {
3147         list_del(&ses->set_list);
3148         kmem_cache_free(sit_entry_set_slab, ses);
3149 }
3150
3151 static void adjust_sit_entry_set(struct sit_entry_set *ses,
3152                                                 struct list_head *head)
3153 {
3154         struct sit_entry_set *next = ses;
3155
3156         if (list_is_last(&ses->set_list, head))
3157                 return;
3158
3159         list_for_each_entry_continue(next, head, set_list)
3160                 if (ses->entry_cnt <= next->entry_cnt)
3161                         break;
3162
3163         list_move_tail(&ses->set_list, &next->set_list);
3164 }
3165
3166 static void add_sit_entry(unsigned int segno, struct list_head *head)
3167 {
3168         struct sit_entry_set *ses;
3169         unsigned int start_segno = START_SEGNO(segno);
3170
3171         list_for_each_entry(ses, head, set_list) {
3172                 if (ses->start_segno == start_segno) {
3173                         ses->entry_cnt++;
3174                         adjust_sit_entry_set(ses, head);
3175                         return;
3176                 }
3177         }
3178
3179         ses = grab_sit_entry_set();
3180
3181         ses->start_segno = start_segno;
3182         ses->entry_cnt++;
3183         list_add(&ses->set_list, head);
3184 }
3185
3186 static void add_sits_in_set(struct f2fs_sb_info *sbi)
3187 {
3188         struct f2fs_sm_info *sm_info = SM_I(sbi);
3189         struct list_head *set_list = &sm_info->sit_entry_set;
3190         unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
3191         unsigned int segno;
3192
3193         for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
3194                 add_sit_entry(segno, set_list);
3195 }
3196
3197 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
3198 {
3199         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3200         struct f2fs_journal *journal = curseg->journal;
3201         int i;
3202
3203         down_write(&curseg->journal_rwsem);
3204         for (i = 0; i < sits_in_cursum(journal); i++) {
3205                 unsigned int segno;
3206                 bool dirtied;
3207
3208                 segno = le32_to_cpu(segno_in_journal(journal, i));
3209                 dirtied = __mark_sit_entry_dirty(sbi, segno);
3210
3211                 if (!dirtied)
3212                         add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
3213         }
3214         update_sits_in_cursum(journal, -i);
3215         up_write(&curseg->journal_rwsem);
3216 }
3217
3218 /*
3219  * CP calls this function, which flushes SIT entries including sit_journal,
3220  * and moves prefree segs to free segs.
3221  */
3222 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3223 {
3224         struct sit_info *sit_i = SIT_I(sbi);
3225         unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
3226         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3227         struct f2fs_journal *journal = curseg->journal;
3228         struct sit_entry_set *ses, *tmp;
3229         struct list_head *head = &SM_I(sbi)->sit_entry_set;
3230         bool to_journal = true;
3231         struct seg_entry *se;
3232
3233         down_write(&sit_i->sentry_lock);
3234
3235         if (!sit_i->dirty_sentries)
3236                 goto out;
3237
3238         /*
3239          * add and account sit entries of dirty bitmap in sit entry
3240          * set temporarily
3241          */
3242         add_sits_in_set(sbi);
3243
3244         /*
3245          * if there are no enough space in journal to store dirty sit
3246          * entries, remove all entries from journal and add and account
3247          * them in sit entry set.
3248          */
3249         if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL))
3250                 remove_sits_in_journal(sbi);
3251
3252         /*
3253          * there are two steps to flush sit entries:
3254          * #1, flush sit entries to journal in current cold data summary block.
3255          * #2, flush sit entries to sit page.
3256          */
3257         list_for_each_entry_safe(ses, tmp, head, set_list) {
3258                 struct page *page = NULL;
3259                 struct f2fs_sit_block *raw_sit = NULL;
3260                 unsigned int start_segno = ses->start_segno;
3261                 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
3262                                                 (unsigned long)MAIN_SEGS(sbi));
3263                 unsigned int segno = start_segno;
3264
3265                 if (to_journal &&
3266                         !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
3267                         to_journal = false;
3268
3269                 if (to_journal) {
3270                         down_write(&curseg->journal_rwsem);
3271                 } else {
3272                         page = get_next_sit_page(sbi, start_segno);
3273                         raw_sit = page_address(page);
3274                 }
3275
3276                 /* flush dirty sit entries in region of current sit set */
3277                 for_each_set_bit_from(segno, bitmap, end) {
3278                         int offset, sit_offset;
3279
3280                         se = get_seg_entry(sbi, segno);
3281
3282                         /* add discard candidates */
3283                         if (!(cpc->reason & CP_DISCARD)) {
3284                                 cpc->trim_start = segno;
3285                                 add_discard_addrs(sbi, cpc, false);
3286                         }
3287
3288                         if (to_journal) {
3289                                 offset = lookup_journal_in_cursum(journal,
3290                                                         SIT_JOURNAL, segno, 1);
3291                                 f2fs_bug_on(sbi, offset < 0);
3292                                 segno_in_journal(journal, offset) =
3293                                                         cpu_to_le32(segno);
3294                                 seg_info_to_raw_sit(se,
3295                                         &sit_in_journal(journal, offset));
3296                         } else {
3297                                 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
3298                                 seg_info_to_raw_sit(se,
3299                                                 &raw_sit->entries[sit_offset]);
3300                         }
3301
3302                         __clear_bit(segno, bitmap);
3303                         sit_i->dirty_sentries--;
3304                         ses->entry_cnt--;
3305                 }
3306
3307                 if (to_journal)
3308                         up_write(&curseg->journal_rwsem);
3309                 else
3310                         f2fs_put_page(page, 1);
3311
3312                 f2fs_bug_on(sbi, ses->entry_cnt);
3313                 release_sit_entry_set(ses);
3314         }
3315
3316         f2fs_bug_on(sbi, !list_empty(head));
3317         f2fs_bug_on(sbi, sit_i->dirty_sentries);
3318 out:
3319         if (cpc->reason & CP_DISCARD) {
3320                 __u64 trim_start = cpc->trim_start;
3321
3322                 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
3323                         add_discard_addrs(sbi, cpc, false);
3324
3325                 cpc->trim_start = trim_start;
3326         }
3327         up_write(&sit_i->sentry_lock);
3328
3329         set_prefree_as_free_segments(sbi);
3330 }
3331
3332 static int build_sit_info(struct f2fs_sb_info *sbi)
3333 {
3334         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3335         struct sit_info *sit_i;
3336         unsigned int sit_segs, start;
3337         char *src_bitmap;
3338         unsigned int bitmap_size;
3339
3340         /* allocate memory for SIT information */
3341         sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
3342         if (!sit_i)
3343                 return -ENOMEM;
3344
3345         SM_I(sbi)->sit_info = sit_i;
3346
3347         sit_i->sentries = kvzalloc(MAIN_SEGS(sbi) *
3348                                         sizeof(struct seg_entry), GFP_KERNEL);
3349         if (!sit_i->sentries)
3350                 return -ENOMEM;
3351
3352         bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
3353         sit_i->dirty_sentries_bitmap = kvzalloc(bitmap_size, GFP_KERNEL);
3354         if (!sit_i->dirty_sentries_bitmap)
3355                 return -ENOMEM;
3356
3357         for (start = 0; start < MAIN_SEGS(sbi); start++) {
3358                 sit_i->sentries[start].cur_valid_map
3359                         = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3360                 sit_i->sentries[start].ckpt_valid_map
3361                         = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3362                 if (!sit_i->sentries[start].cur_valid_map ||
3363                                 !sit_i->sentries[start].ckpt_valid_map)
3364                         return -ENOMEM;
3365
3366 #ifdef CONFIG_F2FS_CHECK_FS
3367                 sit_i->sentries[start].cur_valid_map_mir
3368                         = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3369                 if (!sit_i->sentries[start].cur_valid_map_mir)
3370                         return -ENOMEM;
3371 #endif
3372
3373                 if (f2fs_discard_en(sbi)) {
3374                         sit_i->sentries[start].discard_map
3375                                 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3376                         if (!sit_i->sentries[start].discard_map)
3377                                 return -ENOMEM;
3378                 }
3379         }
3380
3381         sit_i->tmp_map = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3382         if (!sit_i->tmp_map)
3383                 return -ENOMEM;
3384
3385         if (sbi->segs_per_sec > 1) {
3386                 sit_i->sec_entries = kvzalloc(MAIN_SECS(sbi) *
3387                                         sizeof(struct sec_entry), GFP_KERNEL);
3388                 if (!sit_i->sec_entries)
3389                         return -ENOMEM;
3390         }
3391
3392         /* get information related with SIT */
3393         sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
3394
3395         /* setup SIT bitmap from ckeckpoint pack */
3396         bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
3397         src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
3398
3399         sit_i->sit_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
3400         if (!sit_i->sit_bitmap)
3401                 return -ENOMEM;
3402
3403 #ifdef CONFIG_F2FS_CHECK_FS
3404         sit_i->sit_bitmap_mir = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
3405         if (!sit_i->sit_bitmap_mir)
3406                 return -ENOMEM;
3407 #endif
3408
3409         /* init SIT information */
3410         sit_i->s_ops = &default_salloc_ops;
3411
3412         sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
3413         sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
3414         sit_i->written_valid_blocks = 0;
3415         sit_i->bitmap_size = bitmap_size;
3416         sit_i->dirty_sentries = 0;
3417         sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
3418         sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
3419         sit_i->mounted_time = ktime_get_real_seconds();
3420         init_rwsem(&sit_i->sentry_lock);
3421         return 0;
3422 }
3423
3424 static int build_free_segmap(struct f2fs_sb_info *sbi)
3425 {
3426         struct free_segmap_info *free_i;
3427         unsigned int bitmap_size, sec_bitmap_size;
3428
3429         /* allocate memory for free segmap information */
3430         free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
3431         if (!free_i)
3432                 return -ENOMEM;
3433
3434         SM_I(sbi)->free_info = free_i;
3435
3436         bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
3437         free_i->free_segmap = kvmalloc(bitmap_size, GFP_KERNEL);
3438         if (!free_i->free_segmap)
3439                 return -ENOMEM;
3440
3441         sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
3442         free_i->free_secmap = kvmalloc(sec_bitmap_size, GFP_KERNEL);
3443         if (!free_i->free_secmap)
3444                 return -ENOMEM;
3445
3446         /* set all segments as dirty temporarily */
3447         memset(free_i->free_segmap, 0xff, bitmap_size);
3448         memset(free_i->free_secmap, 0xff, sec_bitmap_size);
3449
3450         /* init free segmap information */
3451         free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
3452         free_i->free_segments = 0;
3453         free_i->free_sections = 0;
3454         spin_lock_init(&free_i->segmap_lock);
3455         return 0;
3456 }
3457
3458 static int build_curseg(struct f2fs_sb_info *sbi)
3459 {
3460         struct curseg_info *array;
3461         int i;
3462
3463         array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL);
3464         if (!array)
3465                 return -ENOMEM;
3466
3467         SM_I(sbi)->curseg_array = array;
3468
3469         for (i = 0; i < NR_CURSEG_TYPE; i++) {
3470                 mutex_init(&array[i].curseg_mutex);
3471                 array[i].sum_blk = kzalloc(PAGE_SIZE, GFP_KERNEL);
3472                 if (!array[i].sum_blk)
3473                         return -ENOMEM;
3474                 init_rwsem(&array[i].journal_rwsem);
3475                 array[i].journal = kzalloc(sizeof(struct f2fs_journal),
3476                                                         GFP_KERNEL);
3477                 if (!array[i].journal)
3478                         return -ENOMEM;
3479                 array[i].segno = NULL_SEGNO;
3480                 array[i].next_blkoff = 0;
3481         }
3482         return restore_curseg_summaries(sbi);
3483 }
3484
3485 static void build_sit_entries(struct f2fs_sb_info *sbi)
3486 {
3487         struct sit_info *sit_i = SIT_I(sbi);
3488         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3489         struct f2fs_journal *journal = curseg->journal;
3490         struct seg_entry *se;
3491         struct f2fs_sit_entry sit;
3492         int sit_blk_cnt = SIT_BLK_CNT(sbi);
3493         unsigned int i, start, end;
3494         unsigned int readed, start_blk = 0;
3495
3496         do {
3497                 readed = ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES,
3498                                                         META_SIT, true);
3499
3500                 start = start_blk * sit_i->sents_per_block;
3501                 end = (start_blk + readed) * sit_i->sents_per_block;
3502
3503                 for (; start < end && start < MAIN_SEGS(sbi); start++) {
3504                         struct f2fs_sit_block *sit_blk;
3505                         struct page *page;
3506
3507                         se = &sit_i->sentries[start];
3508                         page = get_current_sit_page(sbi, start);
3509                         sit_blk = (struct f2fs_sit_block *)page_address(page);
3510                         sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
3511                         f2fs_put_page(page, 1);
3512
3513                         check_block_count(sbi, start, &sit);
3514                         seg_info_from_raw_sit(se, &sit);
3515
3516                         /* build discard map only one time */
3517                         if (f2fs_discard_en(sbi)) {
3518                                 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
3519                                         memset(se->discard_map, 0xff,
3520                                                 SIT_VBLOCK_MAP_SIZE);
3521                                 } else {
3522                                         memcpy(se->discard_map,
3523                                                 se->cur_valid_map,
3524                                                 SIT_VBLOCK_MAP_SIZE);
3525                                         sbi->discard_blks +=
3526                                                 sbi->blocks_per_seg -
3527                                                 se->valid_blocks;
3528                                 }
3529                         }
3530
3531                         if (sbi->segs_per_sec > 1)
3532                                 get_sec_entry(sbi, start)->valid_blocks +=
3533                                                         se->valid_blocks;
3534                 }
3535                 start_blk += readed;
3536         } while (start_blk < sit_blk_cnt);
3537
3538         down_read(&curseg->journal_rwsem);
3539         for (i = 0; i < sits_in_cursum(journal); i++) {
3540                 unsigned int old_valid_blocks;
3541
3542                 start = le32_to_cpu(segno_in_journal(journal, i));
3543                 se = &sit_i->sentries[start];
3544                 sit = sit_in_journal(journal, i);
3545
3546                 old_valid_blocks = se->valid_blocks;
3547
3548                 check_block_count(sbi, start, &sit);
3549                 seg_info_from_raw_sit(se, &sit);
3550
3551                 if (f2fs_discard_en(sbi)) {
3552                         if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
3553                                 memset(se->discard_map, 0xff,
3554                                                         SIT_VBLOCK_MAP_SIZE);
3555                         } else {
3556                                 memcpy(se->discard_map, se->cur_valid_map,
3557                                                         SIT_VBLOCK_MAP_SIZE);
3558                                 sbi->discard_blks += old_valid_blocks -
3559                                                         se->valid_blocks;
3560                         }
3561                 }
3562
3563                 if (sbi->segs_per_sec > 1)
3564                         get_sec_entry(sbi, start)->valid_blocks +=
3565                                 se->valid_blocks - old_valid_blocks;
3566         }
3567         up_read(&curseg->journal_rwsem);
3568 }
3569
3570 static void init_free_segmap(struct f2fs_sb_info *sbi)
3571 {
3572         unsigned int start;
3573         int type;
3574
3575         for (start = 0; start < MAIN_SEGS(sbi); start++) {
3576                 struct seg_entry *sentry = get_seg_entry(sbi, start);
3577                 if (!sentry->valid_blocks)
3578                         __set_free(sbi, start);
3579                 else
3580                         SIT_I(sbi)->written_valid_blocks +=
3581                                                 sentry->valid_blocks;
3582         }
3583
3584         /* set use the current segments */
3585         for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
3586                 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
3587                 __set_test_and_inuse(sbi, curseg_t->segno);
3588         }
3589 }
3590
3591 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
3592 {
3593         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3594         struct free_segmap_info *free_i = FREE_I(sbi);
3595         unsigned int segno = 0, offset = 0;
3596         unsigned short valid_blocks;
3597
3598         while (1) {
3599                 /* find dirty segment based on free segmap */
3600                 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
3601                 if (segno >= MAIN_SEGS(sbi))
3602                         break;
3603                 offset = segno + 1;
3604                 valid_blocks = get_valid_blocks(sbi, segno, false);
3605                 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
3606                         continue;
3607                 if (valid_blocks > sbi->blocks_per_seg) {
3608                         f2fs_bug_on(sbi, 1);
3609                         continue;
3610                 }
3611                 mutex_lock(&dirty_i->seglist_lock);
3612                 __locate_dirty_segment(sbi, segno, DIRTY);
3613                 mutex_unlock(&dirty_i->seglist_lock);
3614         }
3615 }
3616
3617 static int init_victim_secmap(struct f2fs_sb_info *sbi)
3618 {
3619         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3620         unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
3621
3622         dirty_i->victim_secmap = kvzalloc(bitmap_size, GFP_KERNEL);
3623         if (!dirty_i->victim_secmap)
3624                 return -ENOMEM;
3625         return 0;
3626 }
3627
3628 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
3629 {
3630         struct dirty_seglist_info *dirty_i;
3631         unsigned int bitmap_size, i;
3632
3633         /* allocate memory for dirty segments list information */
3634         dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
3635         if (!dirty_i)
3636                 return -ENOMEM;
3637
3638         SM_I(sbi)->dirty_info = dirty_i;
3639         mutex_init(&dirty_i->seglist_lock);
3640
3641         bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
3642
3643         for (i = 0; i < NR_DIRTY_TYPE; i++) {
3644                 dirty_i->dirty_segmap[i] = kvzalloc(bitmap_size, GFP_KERNEL);
3645                 if (!dirty_i->dirty_segmap[i])
3646                         return -ENOMEM;
3647         }
3648
3649         init_dirty_segmap(sbi);
3650         return init_victim_secmap(sbi);
3651 }
3652
3653 /*
3654  * Update min, max modified time for cost-benefit GC algorithm
3655  */
3656 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
3657 {
3658         struct sit_info *sit_i = SIT_I(sbi);
3659         unsigned int segno;
3660
3661         down_write(&sit_i->sentry_lock);
3662
3663         sit_i->min_mtime = LLONG_MAX;
3664
3665         for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
3666                 unsigned int i;
3667                 unsigned long long mtime = 0;
3668
3669                 for (i = 0; i < sbi->segs_per_sec; i++)
3670                         mtime += get_seg_entry(sbi, segno + i)->mtime;
3671
3672                 mtime = div_u64(mtime, sbi->segs_per_sec);
3673
3674                 if (sit_i->min_mtime > mtime)
3675                         sit_i->min_mtime = mtime;
3676         }
3677         sit_i->max_mtime = get_mtime(sbi);
3678         up_write(&sit_i->sentry_lock);
3679 }
3680
3681 int build_segment_manager(struct f2fs_sb_info *sbi)
3682 {
3683         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3684         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3685         struct f2fs_sm_info *sm_info;
3686         int err;
3687
3688         sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
3689         if (!sm_info)
3690                 return -ENOMEM;
3691
3692         /* init sm info */
3693         sbi->sm_info = sm_info;
3694         sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
3695         sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
3696         sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
3697         sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
3698         sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
3699         sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
3700         sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
3701         sm_info->rec_prefree_segments = sm_info->main_segments *
3702                                         DEF_RECLAIM_PREFREE_SEGMENTS / 100;
3703         if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
3704                 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
3705
3706         if (!test_opt(sbi, LFS))
3707                 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
3708         sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
3709         sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
3710         sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
3711         sm_info->min_ssr_sections = reserved_sections(sbi);
3712
3713         sm_info->trim_sections = DEF_BATCHED_TRIM_SECTIONS;
3714
3715         INIT_LIST_HEAD(&sm_info->sit_entry_set);
3716
3717         init_rwsem(&sm_info->curseg_lock);
3718
3719         if (!f2fs_readonly(sbi->sb)) {
3720                 err = create_flush_cmd_control(sbi);
3721                 if (err)
3722                         return err;
3723         }
3724
3725         err = create_discard_cmd_control(sbi);
3726         if (err)
3727                 return err;
3728
3729         err = build_sit_info(sbi);
3730         if (err)
3731                 return err;
3732         err = build_free_segmap(sbi);
3733         if (err)
3734                 return err;
3735         err = build_curseg(sbi);
3736         if (err)
3737                 return err;
3738
3739         /* reinit free segmap based on SIT */
3740         build_sit_entries(sbi);
3741
3742         init_free_segmap(sbi);
3743         err = build_dirty_segmap(sbi);
3744         if (err)
3745                 return err;
3746
3747         init_min_max_mtime(sbi);
3748         return 0;
3749 }
3750
3751 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
3752                 enum dirty_type dirty_type)
3753 {
3754         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3755
3756         mutex_lock(&dirty_i->seglist_lock);
3757         kvfree(dirty_i->dirty_segmap[dirty_type]);
3758         dirty_i->nr_dirty[dirty_type] = 0;
3759         mutex_unlock(&dirty_i->seglist_lock);
3760 }
3761
3762 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
3763 {
3764         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3765         kvfree(dirty_i->victim_secmap);
3766 }
3767
3768 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
3769 {
3770         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3771         int i;
3772
3773         if (!dirty_i)
3774                 return;
3775
3776         /* discard pre-free/dirty segments list */
3777         for (i = 0; i < NR_DIRTY_TYPE; i++)
3778                 discard_dirty_segmap(sbi, i);
3779
3780         destroy_victim_secmap(sbi);
3781         SM_I(sbi)->dirty_info = NULL;
3782         kfree(dirty_i);
3783 }
3784
3785 static void destroy_curseg(struct f2fs_sb_info *sbi)
3786 {
3787         struct curseg_info *array = SM_I(sbi)->curseg_array;
3788         int i;
3789
3790         if (!array)
3791                 return;
3792         SM_I(sbi)->curseg_array = NULL;
3793         for (i = 0; i < NR_CURSEG_TYPE; i++) {
3794                 kfree(array[i].sum_blk);
3795                 kfree(array[i].journal);
3796         }
3797         kfree(array);
3798 }
3799
3800 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
3801 {
3802         struct free_segmap_info *free_i = SM_I(sbi)->free_info;
3803         if (!free_i)
3804                 return;
3805         SM_I(sbi)->free_info = NULL;
3806         kvfree(free_i->free_segmap);
3807         kvfree(free_i->free_secmap);
3808         kfree(free_i);
3809 }
3810
3811 static void destroy_sit_info(struct f2fs_sb_info *sbi)
3812 {
3813         struct sit_info *sit_i = SIT_I(sbi);
3814         unsigned int start;
3815
3816         if (!sit_i)
3817                 return;
3818
3819         if (sit_i->sentries) {
3820                 for (start = 0; start < MAIN_SEGS(sbi); start++) {
3821                         kfree(sit_i->sentries[start].cur_valid_map);
3822 #ifdef CONFIG_F2FS_CHECK_FS
3823                         kfree(sit_i->sentries[start].cur_valid_map_mir);
3824 #endif
3825                         kfree(sit_i->sentries[start].ckpt_valid_map);
3826                         kfree(sit_i->sentries[start].discard_map);
3827                 }
3828         }
3829         kfree(sit_i->tmp_map);
3830
3831         kvfree(sit_i->sentries);
3832         kvfree(sit_i->sec_entries);
3833         kvfree(sit_i->dirty_sentries_bitmap);
3834
3835         SM_I(sbi)->sit_info = NULL;
3836         kfree(sit_i->sit_bitmap);
3837 #ifdef CONFIG_F2FS_CHECK_FS
3838         kfree(sit_i->sit_bitmap_mir);
3839 #endif
3840         kfree(sit_i);
3841 }
3842
3843 void destroy_segment_manager(struct f2fs_sb_info *sbi)
3844 {
3845         struct f2fs_sm_info *sm_info = SM_I(sbi);
3846
3847         if (!sm_info)
3848                 return;
3849         destroy_flush_cmd_control(sbi, true);
3850         destroy_discard_cmd_control(sbi);
3851         destroy_dirty_segmap(sbi);
3852         destroy_curseg(sbi);
3853         destroy_free_segmap(sbi);
3854         destroy_sit_info(sbi);
3855         sbi->sm_info = NULL;
3856         kfree(sm_info);
3857 }
3858
3859 int __init create_segment_manager_caches(void)
3860 {
3861         discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
3862                         sizeof(struct discard_entry));
3863         if (!discard_entry_slab)
3864                 goto fail;
3865
3866         discard_cmd_slab = f2fs_kmem_cache_create("discard_cmd",
3867                         sizeof(struct discard_cmd));
3868         if (!discard_cmd_slab)
3869                 goto destroy_discard_entry;
3870
3871         sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
3872                         sizeof(struct sit_entry_set));
3873         if (!sit_entry_set_slab)
3874                 goto destroy_discard_cmd;
3875
3876         inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
3877                         sizeof(struct inmem_pages));
3878         if (!inmem_entry_slab)
3879                 goto destroy_sit_entry_set;
3880         return 0;
3881
3882 destroy_sit_entry_set:
3883         kmem_cache_destroy(sit_entry_set_slab);
3884 destroy_discard_cmd:
3885         kmem_cache_destroy(discard_cmd_slab);
3886 destroy_discard_entry:
3887         kmem_cache_destroy(discard_entry_slab);
3888 fail:
3889         return -ENOMEM;
3890 }
3891
3892 void destroy_segment_manager_caches(void)
3893 {
3894         kmem_cache_destroy(sit_entry_set_slab);
3895         kmem_cache_destroy(discard_cmd_slab);
3896         kmem_cache_destroy(discard_entry_slab);
3897         kmem_cache_destroy(inmem_entry_slab);
3898 }