epoll: add syscall epoll_pwait2
[linux-2.6-microblaze.git] / fs / f2fs / segment.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/segment.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/prefetch.h>
13 #include <linux/kthread.h>
14 #include <linux/swap.h>
15 #include <linux/timer.h>
16 #include <linux/freezer.h>
17 #include <linux/sched/signal.h>
18
19 #include "f2fs.h"
20 #include "segment.h"
21 #include "node.h"
22 #include "gc.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25
26 #define __reverse_ffz(x) __reverse_ffs(~(x))
27
28 static struct kmem_cache *discard_entry_slab;
29 static struct kmem_cache *discard_cmd_slab;
30 static struct kmem_cache *sit_entry_set_slab;
31 static struct kmem_cache *inmem_entry_slab;
32
33 static unsigned long __reverse_ulong(unsigned char *str)
34 {
35         unsigned long tmp = 0;
36         int shift = 24, idx = 0;
37
38 #if BITS_PER_LONG == 64
39         shift = 56;
40 #endif
41         while (shift >= 0) {
42                 tmp |= (unsigned long)str[idx++] << shift;
43                 shift -= BITS_PER_BYTE;
44         }
45         return tmp;
46 }
47
48 /*
49  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
50  * MSB and LSB are reversed in a byte by f2fs_set_bit.
51  */
52 static inline unsigned long __reverse_ffs(unsigned long word)
53 {
54         int num = 0;
55
56 #if BITS_PER_LONG == 64
57         if ((word & 0xffffffff00000000UL) == 0)
58                 num += 32;
59         else
60                 word >>= 32;
61 #endif
62         if ((word & 0xffff0000) == 0)
63                 num += 16;
64         else
65                 word >>= 16;
66
67         if ((word & 0xff00) == 0)
68                 num += 8;
69         else
70                 word >>= 8;
71
72         if ((word & 0xf0) == 0)
73                 num += 4;
74         else
75                 word >>= 4;
76
77         if ((word & 0xc) == 0)
78                 num += 2;
79         else
80                 word >>= 2;
81
82         if ((word & 0x2) == 0)
83                 num += 1;
84         return num;
85 }
86
87 /*
88  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
89  * f2fs_set_bit makes MSB and LSB reversed in a byte.
90  * @size must be integral times of unsigned long.
91  * Example:
92  *                             MSB <--> LSB
93  *   f2fs_set_bit(0, bitmap) => 1000 0000
94  *   f2fs_set_bit(7, bitmap) => 0000 0001
95  */
96 static unsigned long __find_rev_next_bit(const unsigned long *addr,
97                         unsigned long size, unsigned long offset)
98 {
99         const unsigned long *p = addr + BIT_WORD(offset);
100         unsigned long result = size;
101         unsigned long tmp;
102
103         if (offset >= size)
104                 return size;
105
106         size -= (offset & ~(BITS_PER_LONG - 1));
107         offset %= BITS_PER_LONG;
108
109         while (1) {
110                 if (*p == 0)
111                         goto pass;
112
113                 tmp = __reverse_ulong((unsigned char *)p);
114
115                 tmp &= ~0UL >> offset;
116                 if (size < BITS_PER_LONG)
117                         tmp &= (~0UL << (BITS_PER_LONG - size));
118                 if (tmp)
119                         goto found;
120 pass:
121                 if (size <= BITS_PER_LONG)
122                         break;
123                 size -= BITS_PER_LONG;
124                 offset = 0;
125                 p++;
126         }
127         return result;
128 found:
129         return result - size + __reverse_ffs(tmp);
130 }
131
132 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
133                         unsigned long size, unsigned long offset)
134 {
135         const unsigned long *p = addr + BIT_WORD(offset);
136         unsigned long result = size;
137         unsigned long tmp;
138
139         if (offset >= size)
140                 return size;
141
142         size -= (offset & ~(BITS_PER_LONG - 1));
143         offset %= BITS_PER_LONG;
144
145         while (1) {
146                 if (*p == ~0UL)
147                         goto pass;
148
149                 tmp = __reverse_ulong((unsigned char *)p);
150
151                 if (offset)
152                         tmp |= ~0UL << (BITS_PER_LONG - offset);
153                 if (size < BITS_PER_LONG)
154                         tmp |= ~0UL >> size;
155                 if (tmp != ~0UL)
156                         goto found;
157 pass:
158                 if (size <= BITS_PER_LONG)
159                         break;
160                 size -= BITS_PER_LONG;
161                 offset = 0;
162                 p++;
163         }
164         return result;
165 found:
166         return result - size + __reverse_ffz(tmp);
167 }
168
169 bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
170 {
171         int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
172         int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
173         int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
174
175         if (f2fs_lfs_mode(sbi))
176                 return false;
177         if (sbi->gc_mode == GC_URGENT_HIGH)
178                 return true;
179         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
180                 return true;
181
182         return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
183                         SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
184 }
185
186 void f2fs_register_inmem_page(struct inode *inode, struct page *page)
187 {
188         struct inmem_pages *new;
189
190         f2fs_trace_pid(page);
191
192         f2fs_set_page_private(page, ATOMIC_WRITTEN_PAGE);
193
194         new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
195
196         /* add atomic page indices to the list */
197         new->page = page;
198         INIT_LIST_HEAD(&new->list);
199
200         /* increase reference count with clean state */
201         get_page(page);
202         mutex_lock(&F2FS_I(inode)->inmem_lock);
203         list_add_tail(&new->list, &F2FS_I(inode)->inmem_pages);
204         inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
205         mutex_unlock(&F2FS_I(inode)->inmem_lock);
206
207         trace_f2fs_register_inmem_page(page, INMEM);
208 }
209
210 static int __revoke_inmem_pages(struct inode *inode,
211                                 struct list_head *head, bool drop, bool recover,
212                                 bool trylock)
213 {
214         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
215         struct inmem_pages *cur, *tmp;
216         int err = 0;
217
218         list_for_each_entry_safe(cur, tmp, head, list) {
219                 struct page *page = cur->page;
220
221                 if (drop)
222                         trace_f2fs_commit_inmem_page(page, INMEM_DROP);
223
224                 if (trylock) {
225                         /*
226                          * to avoid deadlock in between page lock and
227                          * inmem_lock.
228                          */
229                         if (!trylock_page(page))
230                                 continue;
231                 } else {
232                         lock_page(page);
233                 }
234
235                 f2fs_wait_on_page_writeback(page, DATA, true, true);
236
237                 if (recover) {
238                         struct dnode_of_data dn;
239                         struct node_info ni;
240
241                         trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
242 retry:
243                         set_new_dnode(&dn, inode, NULL, NULL, 0);
244                         err = f2fs_get_dnode_of_data(&dn, page->index,
245                                                                 LOOKUP_NODE);
246                         if (err) {
247                                 if (err == -ENOMEM) {
248                                         congestion_wait(BLK_RW_ASYNC,
249                                                         DEFAULT_IO_TIMEOUT);
250                                         cond_resched();
251                                         goto retry;
252                                 }
253                                 err = -EAGAIN;
254                                 goto next;
255                         }
256
257                         err = f2fs_get_node_info(sbi, dn.nid, &ni);
258                         if (err) {
259                                 f2fs_put_dnode(&dn);
260                                 return err;
261                         }
262
263                         if (cur->old_addr == NEW_ADDR) {
264                                 f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
265                                 f2fs_update_data_blkaddr(&dn, NEW_ADDR);
266                         } else
267                                 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
268                                         cur->old_addr, ni.version, true, true);
269                         f2fs_put_dnode(&dn);
270                 }
271 next:
272                 /* we don't need to invalidate this in the sccessful status */
273                 if (drop || recover) {
274                         ClearPageUptodate(page);
275                         clear_cold_data(page);
276                 }
277                 f2fs_clear_page_private(page);
278                 f2fs_put_page(page, 1);
279
280                 list_del(&cur->list);
281                 kmem_cache_free(inmem_entry_slab, cur);
282                 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
283         }
284         return err;
285 }
286
287 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure)
288 {
289         struct list_head *head = &sbi->inode_list[ATOMIC_FILE];
290         struct inode *inode;
291         struct f2fs_inode_info *fi;
292         unsigned int count = sbi->atomic_files;
293         unsigned int looped = 0;
294 next:
295         spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
296         if (list_empty(head)) {
297                 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
298                 return;
299         }
300         fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist);
301         inode = igrab(&fi->vfs_inode);
302         if (inode)
303                 list_move_tail(&fi->inmem_ilist, head);
304         spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
305
306         if (inode) {
307                 if (gc_failure) {
308                         if (!fi->i_gc_failures[GC_FAILURE_ATOMIC])
309                                 goto skip;
310                 }
311                 set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
312                 f2fs_drop_inmem_pages(inode);
313 skip:
314                 iput(inode);
315         }
316         congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
317         cond_resched();
318         if (gc_failure) {
319                 if (++looped >= count)
320                         return;
321         }
322         goto next;
323 }
324
325 void f2fs_drop_inmem_pages(struct inode *inode)
326 {
327         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
328         struct f2fs_inode_info *fi = F2FS_I(inode);
329
330         while (!list_empty(&fi->inmem_pages)) {
331                 mutex_lock(&fi->inmem_lock);
332                 __revoke_inmem_pages(inode, &fi->inmem_pages,
333                                                 true, false, true);
334                 mutex_unlock(&fi->inmem_lock);
335         }
336
337         fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0;
338
339         spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
340         if (!list_empty(&fi->inmem_ilist))
341                 list_del_init(&fi->inmem_ilist);
342         if (f2fs_is_atomic_file(inode)) {
343                 clear_inode_flag(inode, FI_ATOMIC_FILE);
344                 sbi->atomic_files--;
345         }
346         spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
347 }
348
349 void f2fs_drop_inmem_page(struct inode *inode, struct page *page)
350 {
351         struct f2fs_inode_info *fi = F2FS_I(inode);
352         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
353         struct list_head *head = &fi->inmem_pages;
354         struct inmem_pages *cur = NULL;
355
356         f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page));
357
358         mutex_lock(&fi->inmem_lock);
359         list_for_each_entry(cur, head, list) {
360                 if (cur->page == page)
361                         break;
362         }
363
364         f2fs_bug_on(sbi, list_empty(head) || cur->page != page);
365         list_del(&cur->list);
366         mutex_unlock(&fi->inmem_lock);
367
368         dec_page_count(sbi, F2FS_INMEM_PAGES);
369         kmem_cache_free(inmem_entry_slab, cur);
370
371         ClearPageUptodate(page);
372         f2fs_clear_page_private(page);
373         f2fs_put_page(page, 0);
374
375         trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
376 }
377
378 static int __f2fs_commit_inmem_pages(struct inode *inode)
379 {
380         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
381         struct f2fs_inode_info *fi = F2FS_I(inode);
382         struct inmem_pages *cur, *tmp;
383         struct f2fs_io_info fio = {
384                 .sbi = sbi,
385                 .ino = inode->i_ino,
386                 .type = DATA,
387                 .op = REQ_OP_WRITE,
388                 .op_flags = REQ_SYNC | REQ_PRIO,
389                 .io_type = FS_DATA_IO,
390         };
391         struct list_head revoke_list;
392         bool submit_bio = false;
393         int err = 0;
394
395         INIT_LIST_HEAD(&revoke_list);
396
397         list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
398                 struct page *page = cur->page;
399
400                 lock_page(page);
401                 if (page->mapping == inode->i_mapping) {
402                         trace_f2fs_commit_inmem_page(page, INMEM);
403
404                         f2fs_wait_on_page_writeback(page, DATA, true, true);
405
406                         set_page_dirty(page);
407                         if (clear_page_dirty_for_io(page)) {
408                                 inode_dec_dirty_pages(inode);
409                                 f2fs_remove_dirty_inode(inode);
410                         }
411 retry:
412                         fio.page = page;
413                         fio.old_blkaddr = NULL_ADDR;
414                         fio.encrypted_page = NULL;
415                         fio.need_lock = LOCK_DONE;
416                         err = f2fs_do_write_data_page(&fio);
417                         if (err) {
418                                 if (err == -ENOMEM) {
419                                         congestion_wait(BLK_RW_ASYNC,
420                                                         DEFAULT_IO_TIMEOUT);
421                                         cond_resched();
422                                         goto retry;
423                                 }
424                                 unlock_page(page);
425                                 break;
426                         }
427                         /* record old blkaddr for revoking */
428                         cur->old_addr = fio.old_blkaddr;
429                         submit_bio = true;
430                 }
431                 unlock_page(page);
432                 list_move_tail(&cur->list, &revoke_list);
433         }
434
435         if (submit_bio)
436                 f2fs_submit_merged_write_cond(sbi, inode, NULL, 0, DATA);
437
438         if (err) {
439                 /*
440                  * try to revoke all committed pages, but still we could fail
441                  * due to no memory or other reason, if that happened, EAGAIN
442                  * will be returned, which means in such case, transaction is
443                  * already not integrity, caller should use journal to do the
444                  * recovery or rewrite & commit last transaction. For other
445                  * error number, revoking was done by filesystem itself.
446                  */
447                 err = __revoke_inmem_pages(inode, &revoke_list,
448                                                 false, true, false);
449
450                 /* drop all uncommitted pages */
451                 __revoke_inmem_pages(inode, &fi->inmem_pages,
452                                                 true, false, false);
453         } else {
454                 __revoke_inmem_pages(inode, &revoke_list,
455                                                 false, false, false);
456         }
457
458         return err;
459 }
460
461 int f2fs_commit_inmem_pages(struct inode *inode)
462 {
463         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
464         struct f2fs_inode_info *fi = F2FS_I(inode);
465         int err;
466
467         f2fs_balance_fs(sbi, true);
468
469         down_write(&fi->i_gc_rwsem[WRITE]);
470
471         f2fs_lock_op(sbi);
472         set_inode_flag(inode, FI_ATOMIC_COMMIT);
473
474         mutex_lock(&fi->inmem_lock);
475         err = __f2fs_commit_inmem_pages(inode);
476         mutex_unlock(&fi->inmem_lock);
477
478         clear_inode_flag(inode, FI_ATOMIC_COMMIT);
479
480         f2fs_unlock_op(sbi);
481         up_write(&fi->i_gc_rwsem[WRITE]);
482
483         return err;
484 }
485
486 /*
487  * This function balances dirty node and dentry pages.
488  * In addition, it controls garbage collection.
489  */
490 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
491 {
492         if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
493                 f2fs_show_injection_info(sbi, FAULT_CHECKPOINT);
494                 f2fs_stop_checkpoint(sbi, false);
495         }
496
497         /* balance_fs_bg is able to be pending */
498         if (need && excess_cached_nats(sbi))
499                 f2fs_balance_fs_bg(sbi, false);
500
501         if (!f2fs_is_checkpoint_ready(sbi))
502                 return;
503
504         /*
505          * We should do GC or end up with checkpoint, if there are so many dirty
506          * dir/node pages without enough free segments.
507          */
508         if (has_not_enough_free_secs(sbi, 0, 0)) {
509                 down_write(&sbi->gc_lock);
510                 f2fs_gc(sbi, false, false, NULL_SEGNO);
511         }
512 }
513
514 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg)
515 {
516         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
517                 return;
518
519         /* try to shrink extent cache when there is no enough memory */
520         if (!f2fs_available_free_memory(sbi, EXTENT_CACHE))
521                 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
522
523         /* check the # of cached NAT entries */
524         if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
525                 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
526
527         if (!f2fs_available_free_memory(sbi, FREE_NIDS))
528                 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
529         else
530                 f2fs_build_free_nids(sbi, false, false);
531
532         if (excess_dirty_nats(sbi) || excess_dirty_nodes(sbi) ||
533                 excess_prefree_segs(sbi))
534                 goto do_sync;
535
536         /* there is background inflight IO or foreground operation recently */
537         if (is_inflight_io(sbi, REQ_TIME) ||
538                 (!f2fs_time_over(sbi, REQ_TIME) && rwsem_is_locked(&sbi->cp_rwsem)))
539                 return;
540
541         /* exceed periodical checkpoint timeout threshold */
542         if (f2fs_time_over(sbi, CP_TIME))
543                 goto do_sync;
544
545         /* checkpoint is the only way to shrink partial cached entries */
546         if (f2fs_available_free_memory(sbi, NAT_ENTRIES) ||
547                 f2fs_available_free_memory(sbi, INO_ENTRIES))
548                 return;
549
550 do_sync:
551         if (test_opt(sbi, DATA_FLUSH) && from_bg) {
552                 struct blk_plug plug;
553
554                 mutex_lock(&sbi->flush_lock);
555
556                 blk_start_plug(&plug);
557                 f2fs_sync_dirty_inodes(sbi, FILE_INODE);
558                 blk_finish_plug(&plug);
559
560                 mutex_unlock(&sbi->flush_lock);
561         }
562         f2fs_sync_fs(sbi->sb, true);
563         stat_inc_bg_cp_count(sbi->stat_info);
564 }
565
566 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
567                                 struct block_device *bdev)
568 {
569         struct bio *bio;
570         int ret;
571
572         bio = f2fs_bio_alloc(sbi, 0, false);
573         if (!bio)
574                 return -ENOMEM;
575
576         bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
577         bio_set_dev(bio, bdev);
578         ret = submit_bio_wait(bio);
579         bio_put(bio);
580
581         trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
582                                 test_opt(sbi, FLUSH_MERGE), ret);
583         return ret;
584 }
585
586 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
587 {
588         int ret = 0;
589         int i;
590
591         if (!f2fs_is_multi_device(sbi))
592                 return __submit_flush_wait(sbi, sbi->sb->s_bdev);
593
594         for (i = 0; i < sbi->s_ndevs; i++) {
595                 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
596                         continue;
597                 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
598                 if (ret)
599                         break;
600         }
601         return ret;
602 }
603
604 static int issue_flush_thread(void *data)
605 {
606         struct f2fs_sb_info *sbi = data;
607         struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
608         wait_queue_head_t *q = &fcc->flush_wait_queue;
609 repeat:
610         if (kthread_should_stop())
611                 return 0;
612
613         sb_start_intwrite(sbi->sb);
614
615         if (!llist_empty(&fcc->issue_list)) {
616                 struct flush_cmd *cmd, *next;
617                 int ret;
618
619                 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
620                 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
621
622                 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
623
624                 ret = submit_flush_wait(sbi, cmd->ino);
625                 atomic_inc(&fcc->issued_flush);
626
627                 llist_for_each_entry_safe(cmd, next,
628                                           fcc->dispatch_list, llnode) {
629                         cmd->ret = ret;
630                         complete(&cmd->wait);
631                 }
632                 fcc->dispatch_list = NULL;
633         }
634
635         sb_end_intwrite(sbi->sb);
636
637         wait_event_interruptible(*q,
638                 kthread_should_stop() || !llist_empty(&fcc->issue_list));
639         goto repeat;
640 }
641
642 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
643 {
644         struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
645         struct flush_cmd cmd;
646         int ret;
647
648         if (test_opt(sbi, NOBARRIER))
649                 return 0;
650
651         if (!test_opt(sbi, FLUSH_MERGE)) {
652                 atomic_inc(&fcc->queued_flush);
653                 ret = submit_flush_wait(sbi, ino);
654                 atomic_dec(&fcc->queued_flush);
655                 atomic_inc(&fcc->issued_flush);
656                 return ret;
657         }
658
659         if (atomic_inc_return(&fcc->queued_flush) == 1 ||
660             f2fs_is_multi_device(sbi)) {
661                 ret = submit_flush_wait(sbi, ino);
662                 atomic_dec(&fcc->queued_flush);
663
664                 atomic_inc(&fcc->issued_flush);
665                 return ret;
666         }
667
668         cmd.ino = ino;
669         init_completion(&cmd.wait);
670
671         llist_add(&cmd.llnode, &fcc->issue_list);
672
673         /* update issue_list before we wake up issue_flush thread */
674         smp_mb();
675
676         if (waitqueue_active(&fcc->flush_wait_queue))
677                 wake_up(&fcc->flush_wait_queue);
678
679         if (fcc->f2fs_issue_flush) {
680                 wait_for_completion(&cmd.wait);
681                 atomic_dec(&fcc->queued_flush);
682         } else {
683                 struct llist_node *list;
684
685                 list = llist_del_all(&fcc->issue_list);
686                 if (!list) {
687                         wait_for_completion(&cmd.wait);
688                         atomic_dec(&fcc->queued_flush);
689                 } else {
690                         struct flush_cmd *tmp, *next;
691
692                         ret = submit_flush_wait(sbi, ino);
693
694                         llist_for_each_entry_safe(tmp, next, list, llnode) {
695                                 if (tmp == &cmd) {
696                                         cmd.ret = ret;
697                                         atomic_dec(&fcc->queued_flush);
698                                         continue;
699                                 }
700                                 tmp->ret = ret;
701                                 complete(&tmp->wait);
702                         }
703                 }
704         }
705
706         return cmd.ret;
707 }
708
709 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
710 {
711         dev_t dev = sbi->sb->s_bdev->bd_dev;
712         struct flush_cmd_control *fcc;
713         int err = 0;
714
715         if (SM_I(sbi)->fcc_info) {
716                 fcc = SM_I(sbi)->fcc_info;
717                 if (fcc->f2fs_issue_flush)
718                         return err;
719                 goto init_thread;
720         }
721
722         fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
723         if (!fcc)
724                 return -ENOMEM;
725         atomic_set(&fcc->issued_flush, 0);
726         atomic_set(&fcc->queued_flush, 0);
727         init_waitqueue_head(&fcc->flush_wait_queue);
728         init_llist_head(&fcc->issue_list);
729         SM_I(sbi)->fcc_info = fcc;
730         if (!test_opt(sbi, FLUSH_MERGE))
731                 return err;
732
733 init_thread:
734         fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
735                                 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
736         if (IS_ERR(fcc->f2fs_issue_flush)) {
737                 err = PTR_ERR(fcc->f2fs_issue_flush);
738                 kfree(fcc);
739                 SM_I(sbi)->fcc_info = NULL;
740                 return err;
741         }
742
743         return err;
744 }
745
746 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
747 {
748         struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
749
750         if (fcc && fcc->f2fs_issue_flush) {
751                 struct task_struct *flush_thread = fcc->f2fs_issue_flush;
752
753                 fcc->f2fs_issue_flush = NULL;
754                 kthread_stop(flush_thread);
755         }
756         if (free) {
757                 kfree(fcc);
758                 SM_I(sbi)->fcc_info = NULL;
759         }
760 }
761
762 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
763 {
764         int ret = 0, i;
765
766         if (!f2fs_is_multi_device(sbi))
767                 return 0;
768
769         if (test_opt(sbi, NOBARRIER))
770                 return 0;
771
772         for (i = 1; i < sbi->s_ndevs; i++) {
773                 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
774                         continue;
775                 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
776                 if (ret)
777                         break;
778
779                 spin_lock(&sbi->dev_lock);
780                 f2fs_clear_bit(i, (char *)&sbi->dirty_device);
781                 spin_unlock(&sbi->dev_lock);
782         }
783
784         return ret;
785 }
786
787 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
788                 enum dirty_type dirty_type)
789 {
790         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
791
792         /* need not be added */
793         if (IS_CURSEG(sbi, segno))
794                 return;
795
796         if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
797                 dirty_i->nr_dirty[dirty_type]++;
798
799         if (dirty_type == DIRTY) {
800                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
801                 enum dirty_type t = sentry->type;
802
803                 if (unlikely(t >= DIRTY)) {
804                         f2fs_bug_on(sbi, 1);
805                         return;
806                 }
807                 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
808                         dirty_i->nr_dirty[t]++;
809
810                 if (__is_large_section(sbi)) {
811                         unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
812                         block_t valid_blocks =
813                                 get_valid_blocks(sbi, segno, true);
814
815                         f2fs_bug_on(sbi, unlikely(!valid_blocks ||
816                                         valid_blocks == BLKS_PER_SEC(sbi)));
817
818                         if (!IS_CURSEC(sbi, secno))
819                                 set_bit(secno, dirty_i->dirty_secmap);
820                 }
821         }
822 }
823
824 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
825                 enum dirty_type dirty_type)
826 {
827         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
828         block_t valid_blocks;
829
830         if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
831                 dirty_i->nr_dirty[dirty_type]--;
832
833         if (dirty_type == DIRTY) {
834                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
835                 enum dirty_type t = sentry->type;
836
837                 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
838                         dirty_i->nr_dirty[t]--;
839
840                 valid_blocks = get_valid_blocks(sbi, segno, true);
841                 if (valid_blocks == 0) {
842                         clear_bit(GET_SEC_FROM_SEG(sbi, segno),
843                                                 dirty_i->victim_secmap);
844 #ifdef CONFIG_F2FS_CHECK_FS
845                         clear_bit(segno, SIT_I(sbi)->invalid_segmap);
846 #endif
847                 }
848                 if (__is_large_section(sbi)) {
849                         unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
850
851                         if (!valid_blocks ||
852                                         valid_blocks == BLKS_PER_SEC(sbi)) {
853                                 clear_bit(secno, dirty_i->dirty_secmap);
854                                 return;
855                         }
856
857                         if (!IS_CURSEC(sbi, secno))
858                                 set_bit(secno, dirty_i->dirty_secmap);
859                 }
860         }
861 }
862
863 /*
864  * Should not occur error such as -ENOMEM.
865  * Adding dirty entry into seglist is not critical operation.
866  * If a given segment is one of current working segments, it won't be added.
867  */
868 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
869 {
870         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
871         unsigned short valid_blocks, ckpt_valid_blocks;
872         unsigned int usable_blocks;
873
874         if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
875                 return;
876
877         usable_blocks = f2fs_usable_blks_in_seg(sbi, segno);
878         mutex_lock(&dirty_i->seglist_lock);
879
880         valid_blocks = get_valid_blocks(sbi, segno, false);
881         ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno);
882
883         if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
884                 ckpt_valid_blocks == usable_blocks)) {
885                 __locate_dirty_segment(sbi, segno, PRE);
886                 __remove_dirty_segment(sbi, segno, DIRTY);
887         } else if (valid_blocks < usable_blocks) {
888                 __locate_dirty_segment(sbi, segno, DIRTY);
889         } else {
890                 /* Recovery routine with SSR needs this */
891                 __remove_dirty_segment(sbi, segno, DIRTY);
892         }
893
894         mutex_unlock(&dirty_i->seglist_lock);
895 }
896
897 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
898 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
899 {
900         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
901         unsigned int segno;
902
903         mutex_lock(&dirty_i->seglist_lock);
904         for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
905                 if (get_valid_blocks(sbi, segno, false))
906                         continue;
907                 if (IS_CURSEG(sbi, segno))
908                         continue;
909                 __locate_dirty_segment(sbi, segno, PRE);
910                 __remove_dirty_segment(sbi, segno, DIRTY);
911         }
912         mutex_unlock(&dirty_i->seglist_lock);
913 }
914
915 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
916 {
917         int ovp_hole_segs =
918                 (overprovision_segments(sbi) - reserved_segments(sbi));
919         block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg;
920         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
921         block_t holes[2] = {0, 0};      /* DATA and NODE */
922         block_t unusable;
923         struct seg_entry *se;
924         unsigned int segno;
925
926         mutex_lock(&dirty_i->seglist_lock);
927         for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
928                 se = get_seg_entry(sbi, segno);
929                 if (IS_NODESEG(se->type))
930                         holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) -
931                                                         se->valid_blocks;
932                 else
933                         holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) -
934                                                         se->valid_blocks;
935         }
936         mutex_unlock(&dirty_i->seglist_lock);
937
938         unusable = holes[DATA] > holes[NODE] ? holes[DATA] : holes[NODE];
939         if (unusable > ovp_holes)
940                 return unusable - ovp_holes;
941         return 0;
942 }
943
944 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
945 {
946         int ovp_hole_segs =
947                 (overprovision_segments(sbi) - reserved_segments(sbi));
948         if (unusable > F2FS_OPTION(sbi).unusable_cap)
949                 return -EAGAIN;
950         if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
951                 dirty_segments(sbi) > ovp_hole_segs)
952                 return -EAGAIN;
953         return 0;
954 }
955
956 /* This is only used by SBI_CP_DISABLED */
957 static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
958 {
959         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
960         unsigned int segno = 0;
961
962         mutex_lock(&dirty_i->seglist_lock);
963         for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
964                 if (get_valid_blocks(sbi, segno, false))
965                         continue;
966                 if (get_ckpt_valid_blocks(sbi, segno))
967                         continue;
968                 mutex_unlock(&dirty_i->seglist_lock);
969                 return segno;
970         }
971         mutex_unlock(&dirty_i->seglist_lock);
972         return NULL_SEGNO;
973 }
974
975 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
976                 struct block_device *bdev, block_t lstart,
977                 block_t start, block_t len)
978 {
979         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
980         struct list_head *pend_list;
981         struct discard_cmd *dc;
982
983         f2fs_bug_on(sbi, !len);
984
985         pend_list = &dcc->pend_list[plist_idx(len)];
986
987         dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
988         INIT_LIST_HEAD(&dc->list);
989         dc->bdev = bdev;
990         dc->lstart = lstart;
991         dc->start = start;
992         dc->len = len;
993         dc->ref = 0;
994         dc->state = D_PREP;
995         dc->queued = 0;
996         dc->error = 0;
997         init_completion(&dc->wait);
998         list_add_tail(&dc->list, pend_list);
999         spin_lock_init(&dc->lock);
1000         dc->bio_ref = 0;
1001         atomic_inc(&dcc->discard_cmd_cnt);
1002         dcc->undiscard_blks += len;
1003
1004         return dc;
1005 }
1006
1007 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
1008                                 struct block_device *bdev, block_t lstart,
1009                                 block_t start, block_t len,
1010                                 struct rb_node *parent, struct rb_node **p,
1011                                 bool leftmost)
1012 {
1013         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1014         struct discard_cmd *dc;
1015
1016         dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
1017
1018         rb_link_node(&dc->rb_node, parent, p);
1019         rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
1020
1021         return dc;
1022 }
1023
1024 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
1025                                                         struct discard_cmd *dc)
1026 {
1027         if (dc->state == D_DONE)
1028                 atomic_sub(dc->queued, &dcc->queued_discard);
1029
1030         list_del(&dc->list);
1031         rb_erase_cached(&dc->rb_node, &dcc->root);
1032         dcc->undiscard_blks -= dc->len;
1033
1034         kmem_cache_free(discard_cmd_slab, dc);
1035
1036         atomic_dec(&dcc->discard_cmd_cnt);
1037 }
1038
1039 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
1040                                                         struct discard_cmd *dc)
1041 {
1042         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1043         unsigned long flags;
1044
1045         trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
1046
1047         spin_lock_irqsave(&dc->lock, flags);
1048         if (dc->bio_ref) {
1049                 spin_unlock_irqrestore(&dc->lock, flags);
1050                 return;
1051         }
1052         spin_unlock_irqrestore(&dc->lock, flags);
1053
1054         f2fs_bug_on(sbi, dc->ref);
1055
1056         if (dc->error == -EOPNOTSUPP)
1057                 dc->error = 0;
1058
1059         if (dc->error)
1060                 printk_ratelimited(
1061                         "%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d",
1062                         KERN_INFO, sbi->sb->s_id,
1063                         dc->lstart, dc->start, dc->len, dc->error);
1064         __detach_discard_cmd(dcc, dc);
1065 }
1066
1067 static void f2fs_submit_discard_endio(struct bio *bio)
1068 {
1069         struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1070         unsigned long flags;
1071
1072         spin_lock_irqsave(&dc->lock, flags);
1073         if (!dc->error)
1074                 dc->error = blk_status_to_errno(bio->bi_status);
1075         dc->bio_ref--;
1076         if (!dc->bio_ref && dc->state == D_SUBMIT) {
1077                 dc->state = D_DONE;
1078                 complete_all(&dc->wait);
1079         }
1080         spin_unlock_irqrestore(&dc->lock, flags);
1081         bio_put(bio);
1082 }
1083
1084 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1085                                 block_t start, block_t end)
1086 {
1087 #ifdef CONFIG_F2FS_CHECK_FS
1088         struct seg_entry *sentry;
1089         unsigned int segno;
1090         block_t blk = start;
1091         unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
1092         unsigned long *map;
1093
1094         while (blk < end) {
1095                 segno = GET_SEGNO(sbi, blk);
1096                 sentry = get_seg_entry(sbi, segno);
1097                 offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1098
1099                 if (end < START_BLOCK(sbi, segno + 1))
1100                         size = GET_BLKOFF_FROM_SEG0(sbi, end);
1101                 else
1102                         size = max_blocks;
1103                 map = (unsigned long *)(sentry->cur_valid_map);
1104                 offset = __find_rev_next_bit(map, size, offset);
1105                 f2fs_bug_on(sbi, offset != size);
1106                 blk = START_BLOCK(sbi, segno + 1);
1107         }
1108 #endif
1109 }
1110
1111 static void __init_discard_policy(struct f2fs_sb_info *sbi,
1112                                 struct discard_policy *dpolicy,
1113                                 int discard_type, unsigned int granularity)
1114 {
1115         /* common policy */
1116         dpolicy->type = discard_type;
1117         dpolicy->sync = true;
1118         dpolicy->ordered = false;
1119         dpolicy->granularity = granularity;
1120
1121         dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
1122         dpolicy->io_aware_gran = MAX_PLIST_NUM;
1123         dpolicy->timeout = false;
1124
1125         if (discard_type == DPOLICY_BG) {
1126                 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1127                 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1128                 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1129                 dpolicy->io_aware = true;
1130                 dpolicy->sync = false;
1131                 dpolicy->ordered = true;
1132                 if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) {
1133                         dpolicy->granularity = 1;
1134                         dpolicy->max_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1135                 }
1136         } else if (discard_type == DPOLICY_FORCE) {
1137                 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1138                 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1139                 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1140                 dpolicy->io_aware = false;
1141         } else if (discard_type == DPOLICY_FSTRIM) {
1142                 dpolicy->io_aware = false;
1143         } else if (discard_type == DPOLICY_UMOUNT) {
1144                 dpolicy->io_aware = false;
1145                 /* we need to issue all to keep CP_TRIMMED_FLAG */
1146                 dpolicy->granularity = 1;
1147                 dpolicy->timeout = true;
1148         }
1149 }
1150
1151 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1152                                 struct block_device *bdev, block_t lstart,
1153                                 block_t start, block_t len);
1154 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
1155 static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1156                                                 struct discard_policy *dpolicy,
1157                                                 struct discard_cmd *dc,
1158                                                 unsigned int *issued)
1159 {
1160         struct block_device *bdev = dc->bdev;
1161         struct request_queue *q = bdev_get_queue(bdev);
1162         unsigned int max_discard_blocks =
1163                         SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1164         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1165         struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1166                                         &(dcc->fstrim_list) : &(dcc->wait_list);
1167         int flag = dpolicy->sync ? REQ_SYNC : 0;
1168         block_t lstart, start, len, total_len;
1169         int err = 0;
1170
1171         if (dc->state != D_PREP)
1172                 return 0;
1173
1174         if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1175                 return 0;
1176
1177         trace_f2fs_issue_discard(bdev, dc->start, dc->len);
1178
1179         lstart = dc->lstart;
1180         start = dc->start;
1181         len = dc->len;
1182         total_len = len;
1183
1184         dc->len = 0;
1185
1186         while (total_len && *issued < dpolicy->max_requests && !err) {
1187                 struct bio *bio = NULL;
1188                 unsigned long flags;
1189                 bool last = true;
1190
1191                 if (len > max_discard_blocks) {
1192                         len = max_discard_blocks;
1193                         last = false;
1194                 }
1195
1196                 (*issued)++;
1197                 if (*issued == dpolicy->max_requests)
1198                         last = true;
1199
1200                 dc->len += len;
1201
1202                 if (time_to_inject(sbi, FAULT_DISCARD)) {
1203                         f2fs_show_injection_info(sbi, FAULT_DISCARD);
1204                         err = -EIO;
1205                         goto submit;
1206                 }
1207                 err = __blkdev_issue_discard(bdev,
1208                                         SECTOR_FROM_BLOCK(start),
1209                                         SECTOR_FROM_BLOCK(len),
1210                                         GFP_NOFS, 0, &bio);
1211 submit:
1212                 if (err) {
1213                         spin_lock_irqsave(&dc->lock, flags);
1214                         if (dc->state == D_PARTIAL)
1215                                 dc->state = D_SUBMIT;
1216                         spin_unlock_irqrestore(&dc->lock, flags);
1217
1218                         break;
1219                 }
1220
1221                 f2fs_bug_on(sbi, !bio);
1222
1223                 /*
1224                  * should keep before submission to avoid D_DONE
1225                  * right away
1226                  */
1227                 spin_lock_irqsave(&dc->lock, flags);
1228                 if (last)
1229                         dc->state = D_SUBMIT;
1230                 else
1231                         dc->state = D_PARTIAL;
1232                 dc->bio_ref++;
1233                 spin_unlock_irqrestore(&dc->lock, flags);
1234
1235                 atomic_inc(&dcc->queued_discard);
1236                 dc->queued++;
1237                 list_move_tail(&dc->list, wait_list);
1238
1239                 /* sanity check on discard range */
1240                 __check_sit_bitmap(sbi, lstart, lstart + len);
1241
1242                 bio->bi_private = dc;
1243                 bio->bi_end_io = f2fs_submit_discard_endio;
1244                 bio->bi_opf |= flag;
1245                 submit_bio(bio);
1246
1247                 atomic_inc(&dcc->issued_discard);
1248
1249                 f2fs_update_iostat(sbi, FS_DISCARD, 1);
1250
1251                 lstart += len;
1252                 start += len;
1253                 total_len -= len;
1254                 len = total_len;
1255         }
1256
1257         if (!err && len) {
1258                 dcc->undiscard_blks -= len;
1259                 __update_discard_tree_range(sbi, bdev, lstart, start, len);
1260         }
1261         return err;
1262 }
1263
1264 static void __insert_discard_tree(struct f2fs_sb_info *sbi,
1265                                 struct block_device *bdev, block_t lstart,
1266                                 block_t start, block_t len,
1267                                 struct rb_node **insert_p,
1268                                 struct rb_node *insert_parent)
1269 {
1270         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1271         struct rb_node **p;
1272         struct rb_node *parent = NULL;
1273         bool leftmost = true;
1274
1275         if (insert_p && insert_parent) {
1276                 parent = insert_parent;
1277                 p = insert_p;
1278                 goto do_insert;
1279         }
1280
1281         p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent,
1282                                                         lstart, &leftmost);
1283 do_insert:
1284         __attach_discard_cmd(sbi, bdev, lstart, start, len, parent,
1285                                                                 p, leftmost);
1286 }
1287
1288 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1289                                                 struct discard_cmd *dc)
1290 {
1291         list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
1292 }
1293
1294 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1295                                 struct discard_cmd *dc, block_t blkaddr)
1296 {
1297         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1298         struct discard_info di = dc->di;
1299         bool modified = false;
1300
1301         if (dc->state == D_DONE || dc->len == 1) {
1302                 __remove_discard_cmd(sbi, dc);
1303                 return;
1304         }
1305
1306         dcc->undiscard_blks -= di.len;
1307
1308         if (blkaddr > di.lstart) {
1309                 dc->len = blkaddr - dc->lstart;
1310                 dcc->undiscard_blks += dc->len;
1311                 __relocate_discard_cmd(dcc, dc);
1312                 modified = true;
1313         }
1314
1315         if (blkaddr < di.lstart + di.len - 1) {
1316                 if (modified) {
1317                         __insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1318                                         di.start + blkaddr + 1 - di.lstart,
1319                                         di.lstart + di.len - 1 - blkaddr,
1320                                         NULL, NULL);
1321                 } else {
1322                         dc->lstart++;
1323                         dc->len--;
1324                         dc->start++;
1325                         dcc->undiscard_blks += dc->len;
1326                         __relocate_discard_cmd(dcc, dc);
1327                 }
1328         }
1329 }
1330
1331 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1332                                 struct block_device *bdev, block_t lstart,
1333                                 block_t start, block_t len)
1334 {
1335         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1336         struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1337         struct discard_cmd *dc;
1338         struct discard_info di = {0};
1339         struct rb_node **insert_p = NULL, *insert_parent = NULL;
1340         struct request_queue *q = bdev_get_queue(bdev);
1341         unsigned int max_discard_blocks =
1342                         SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1343         block_t end = lstart + len;
1344
1345         dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1346                                         NULL, lstart,
1347                                         (struct rb_entry **)&prev_dc,
1348                                         (struct rb_entry **)&next_dc,
1349                                         &insert_p, &insert_parent, true, NULL);
1350         if (dc)
1351                 prev_dc = dc;
1352
1353         if (!prev_dc) {
1354                 di.lstart = lstart;
1355                 di.len = next_dc ? next_dc->lstart - lstart : len;
1356                 di.len = min(di.len, len);
1357                 di.start = start;
1358         }
1359
1360         while (1) {
1361                 struct rb_node *node;
1362                 bool merged = false;
1363                 struct discard_cmd *tdc = NULL;
1364
1365                 if (prev_dc) {
1366                         di.lstart = prev_dc->lstart + prev_dc->len;
1367                         if (di.lstart < lstart)
1368                                 di.lstart = lstart;
1369                         if (di.lstart >= end)
1370                                 break;
1371
1372                         if (!next_dc || next_dc->lstart > end)
1373                                 di.len = end - di.lstart;
1374                         else
1375                                 di.len = next_dc->lstart - di.lstart;
1376                         di.start = start + di.lstart - lstart;
1377                 }
1378
1379                 if (!di.len)
1380                         goto next;
1381
1382                 if (prev_dc && prev_dc->state == D_PREP &&
1383                         prev_dc->bdev == bdev &&
1384                         __is_discard_back_mergeable(&di, &prev_dc->di,
1385                                                         max_discard_blocks)) {
1386                         prev_dc->di.len += di.len;
1387                         dcc->undiscard_blks += di.len;
1388                         __relocate_discard_cmd(dcc, prev_dc);
1389                         di = prev_dc->di;
1390                         tdc = prev_dc;
1391                         merged = true;
1392                 }
1393
1394                 if (next_dc && next_dc->state == D_PREP &&
1395                         next_dc->bdev == bdev &&
1396                         __is_discard_front_mergeable(&di, &next_dc->di,
1397                                                         max_discard_blocks)) {
1398                         next_dc->di.lstart = di.lstart;
1399                         next_dc->di.len += di.len;
1400                         next_dc->di.start = di.start;
1401                         dcc->undiscard_blks += di.len;
1402                         __relocate_discard_cmd(dcc, next_dc);
1403                         if (tdc)
1404                                 __remove_discard_cmd(sbi, tdc);
1405                         merged = true;
1406                 }
1407
1408                 if (!merged) {
1409                         __insert_discard_tree(sbi, bdev, di.lstart, di.start,
1410                                                         di.len, NULL, NULL);
1411                 }
1412  next:
1413                 prev_dc = next_dc;
1414                 if (!prev_dc)
1415                         break;
1416
1417                 node = rb_next(&prev_dc->rb_node);
1418                 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1419         }
1420 }
1421
1422 static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
1423                 struct block_device *bdev, block_t blkstart, block_t blklen)
1424 {
1425         block_t lblkstart = blkstart;
1426
1427         if (!f2fs_bdev_support_discard(bdev))
1428                 return 0;
1429
1430         trace_f2fs_queue_discard(bdev, blkstart, blklen);
1431
1432         if (f2fs_is_multi_device(sbi)) {
1433                 int devi = f2fs_target_device_index(sbi, blkstart);
1434
1435                 blkstart -= FDEV(devi).start_blk;
1436         }
1437         mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1438         __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1439         mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1440         return 0;
1441 }
1442
1443 static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1444                                         struct discard_policy *dpolicy)
1445 {
1446         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1447         struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1448         struct rb_node **insert_p = NULL, *insert_parent = NULL;
1449         struct discard_cmd *dc;
1450         struct blk_plug plug;
1451         unsigned int pos = dcc->next_pos;
1452         unsigned int issued = 0;
1453         bool io_interrupted = false;
1454
1455         mutex_lock(&dcc->cmd_lock);
1456         dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1457                                         NULL, pos,
1458                                         (struct rb_entry **)&prev_dc,
1459                                         (struct rb_entry **)&next_dc,
1460                                         &insert_p, &insert_parent, true, NULL);
1461         if (!dc)
1462                 dc = next_dc;
1463
1464         blk_start_plug(&plug);
1465
1466         while (dc) {
1467                 struct rb_node *node;
1468                 int err = 0;
1469
1470                 if (dc->state != D_PREP)
1471                         goto next;
1472
1473                 if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1474                         io_interrupted = true;
1475                         break;
1476                 }
1477
1478                 dcc->next_pos = dc->lstart + dc->len;
1479                 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1480
1481                 if (issued >= dpolicy->max_requests)
1482                         break;
1483 next:
1484                 node = rb_next(&dc->rb_node);
1485                 if (err)
1486                         __remove_discard_cmd(sbi, dc);
1487                 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1488         }
1489
1490         blk_finish_plug(&plug);
1491
1492         if (!dc)
1493                 dcc->next_pos = 0;
1494
1495         mutex_unlock(&dcc->cmd_lock);
1496
1497         if (!issued && io_interrupted)
1498                 issued = -1;
1499
1500         return issued;
1501 }
1502 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1503                                         struct discard_policy *dpolicy);
1504
1505 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1506                                         struct discard_policy *dpolicy)
1507 {
1508         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1509         struct list_head *pend_list;
1510         struct discard_cmd *dc, *tmp;
1511         struct blk_plug plug;
1512         int i, issued;
1513         bool io_interrupted = false;
1514
1515         if (dpolicy->timeout)
1516                 f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT);
1517
1518 retry:
1519         issued = 0;
1520         for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1521                 if (dpolicy->timeout &&
1522                                 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1523                         break;
1524
1525                 if (i + 1 < dpolicy->granularity)
1526                         break;
1527
1528                 if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered)
1529                         return __issue_discard_cmd_orderly(sbi, dpolicy);
1530
1531                 pend_list = &dcc->pend_list[i];
1532
1533                 mutex_lock(&dcc->cmd_lock);
1534                 if (list_empty(pend_list))
1535                         goto next;
1536                 if (unlikely(dcc->rbtree_check))
1537                         f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
1538                                                         &dcc->root, false));
1539                 blk_start_plug(&plug);
1540                 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1541                         f2fs_bug_on(sbi, dc->state != D_PREP);
1542
1543                         if (dpolicy->timeout &&
1544                                 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1545                                 break;
1546
1547                         if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1548                                                 !is_idle(sbi, DISCARD_TIME)) {
1549                                 io_interrupted = true;
1550                                 break;
1551                         }
1552
1553                         __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1554
1555                         if (issued >= dpolicy->max_requests)
1556                                 break;
1557                 }
1558                 blk_finish_plug(&plug);
1559 next:
1560                 mutex_unlock(&dcc->cmd_lock);
1561
1562                 if (issued >= dpolicy->max_requests || io_interrupted)
1563                         break;
1564         }
1565
1566         if (dpolicy->type == DPOLICY_UMOUNT && issued) {
1567                 __wait_all_discard_cmd(sbi, dpolicy);
1568                 goto retry;
1569         }
1570
1571         if (!issued && io_interrupted)
1572                 issued = -1;
1573
1574         return issued;
1575 }
1576
1577 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1578 {
1579         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1580         struct list_head *pend_list;
1581         struct discard_cmd *dc, *tmp;
1582         int i;
1583         bool dropped = false;
1584
1585         mutex_lock(&dcc->cmd_lock);
1586         for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1587                 pend_list = &dcc->pend_list[i];
1588                 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1589                         f2fs_bug_on(sbi, dc->state != D_PREP);
1590                         __remove_discard_cmd(sbi, dc);
1591                         dropped = true;
1592                 }
1593         }
1594         mutex_unlock(&dcc->cmd_lock);
1595
1596         return dropped;
1597 }
1598
1599 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1600 {
1601         __drop_discard_cmd(sbi);
1602 }
1603
1604 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1605                                                         struct discard_cmd *dc)
1606 {
1607         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1608         unsigned int len = 0;
1609
1610         wait_for_completion_io(&dc->wait);
1611         mutex_lock(&dcc->cmd_lock);
1612         f2fs_bug_on(sbi, dc->state != D_DONE);
1613         dc->ref--;
1614         if (!dc->ref) {
1615                 if (!dc->error)
1616                         len = dc->len;
1617                 __remove_discard_cmd(sbi, dc);
1618         }
1619         mutex_unlock(&dcc->cmd_lock);
1620
1621         return len;
1622 }
1623
1624 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1625                                                 struct discard_policy *dpolicy,
1626                                                 block_t start, block_t end)
1627 {
1628         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1629         struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1630                                         &(dcc->fstrim_list) : &(dcc->wait_list);
1631         struct discard_cmd *dc, *tmp;
1632         bool need_wait;
1633         unsigned int trimmed = 0;
1634
1635 next:
1636         need_wait = false;
1637
1638         mutex_lock(&dcc->cmd_lock);
1639         list_for_each_entry_safe(dc, tmp, wait_list, list) {
1640                 if (dc->lstart + dc->len <= start || end <= dc->lstart)
1641                         continue;
1642                 if (dc->len < dpolicy->granularity)
1643                         continue;
1644                 if (dc->state == D_DONE && !dc->ref) {
1645                         wait_for_completion_io(&dc->wait);
1646                         if (!dc->error)
1647                                 trimmed += dc->len;
1648                         __remove_discard_cmd(sbi, dc);
1649                 } else {
1650                         dc->ref++;
1651                         need_wait = true;
1652                         break;
1653                 }
1654         }
1655         mutex_unlock(&dcc->cmd_lock);
1656
1657         if (need_wait) {
1658                 trimmed += __wait_one_discard_bio(sbi, dc);
1659                 goto next;
1660         }
1661
1662         return trimmed;
1663 }
1664
1665 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1666                                                 struct discard_policy *dpolicy)
1667 {
1668         struct discard_policy dp;
1669         unsigned int discard_blks;
1670
1671         if (dpolicy)
1672                 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1673
1674         /* wait all */
1675         __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
1676         discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1677         __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
1678         discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1679
1680         return discard_blks;
1681 }
1682
1683 /* This should be covered by global mutex, &sit_i->sentry_lock */
1684 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1685 {
1686         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1687         struct discard_cmd *dc;
1688         bool need_wait = false;
1689
1690         mutex_lock(&dcc->cmd_lock);
1691         dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
1692                                                         NULL, blkaddr);
1693         if (dc) {
1694                 if (dc->state == D_PREP) {
1695                         __punch_discard_cmd(sbi, dc, blkaddr);
1696                 } else {
1697                         dc->ref++;
1698                         need_wait = true;
1699                 }
1700         }
1701         mutex_unlock(&dcc->cmd_lock);
1702
1703         if (need_wait)
1704                 __wait_one_discard_bio(sbi, dc);
1705 }
1706
1707 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1708 {
1709         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1710
1711         if (dcc && dcc->f2fs_issue_discard) {
1712                 struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1713
1714                 dcc->f2fs_issue_discard = NULL;
1715                 kthread_stop(discard_thread);
1716         }
1717 }
1718
1719 /* This comes from f2fs_put_super */
1720 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1721 {
1722         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1723         struct discard_policy dpolicy;
1724         bool dropped;
1725
1726         __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1727                                         dcc->discard_granularity);
1728         __issue_discard_cmd(sbi, &dpolicy);
1729         dropped = __drop_discard_cmd(sbi);
1730
1731         /* just to make sure there is no pending discard commands */
1732         __wait_all_discard_cmd(sbi, NULL);
1733
1734         f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1735         return dropped;
1736 }
1737
1738 static int issue_discard_thread(void *data)
1739 {
1740         struct f2fs_sb_info *sbi = data;
1741         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1742         wait_queue_head_t *q = &dcc->discard_wait_queue;
1743         struct discard_policy dpolicy;
1744         unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
1745         int issued;
1746
1747         set_freezable();
1748
1749         do {
1750                 __init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1751                                         dcc->discard_granularity);
1752
1753                 wait_event_interruptible_timeout(*q,
1754                                 kthread_should_stop() || freezing(current) ||
1755                                 dcc->discard_wake,
1756                                 msecs_to_jiffies(wait_ms));
1757
1758                 if (dcc->discard_wake)
1759                         dcc->discard_wake = 0;
1760
1761                 /* clean up pending candidates before going to sleep */
1762                 if (atomic_read(&dcc->queued_discard))
1763                         __wait_all_discard_cmd(sbi, NULL);
1764
1765                 if (try_to_freeze())
1766                         continue;
1767                 if (f2fs_readonly(sbi->sb))
1768                         continue;
1769                 if (kthread_should_stop())
1770                         return 0;
1771                 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1772                         wait_ms = dpolicy.max_interval;
1773                         continue;
1774                 }
1775
1776                 if (sbi->gc_mode == GC_URGENT_HIGH)
1777                         __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1);
1778
1779                 sb_start_intwrite(sbi->sb);
1780
1781                 issued = __issue_discard_cmd(sbi, &dpolicy);
1782                 if (issued > 0) {
1783                         __wait_all_discard_cmd(sbi, &dpolicy);
1784                         wait_ms = dpolicy.min_interval;
1785                 } else if (issued == -1){
1786                         wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1787                         if (!wait_ms)
1788                                 wait_ms = dpolicy.mid_interval;
1789                 } else {
1790                         wait_ms = dpolicy.max_interval;
1791                 }
1792
1793                 sb_end_intwrite(sbi->sb);
1794
1795         } while (!kthread_should_stop());
1796         return 0;
1797 }
1798
1799 #ifdef CONFIG_BLK_DEV_ZONED
1800 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1801                 struct block_device *bdev, block_t blkstart, block_t blklen)
1802 {
1803         sector_t sector, nr_sects;
1804         block_t lblkstart = blkstart;
1805         int devi = 0;
1806
1807         if (f2fs_is_multi_device(sbi)) {
1808                 devi = f2fs_target_device_index(sbi, blkstart);
1809                 if (blkstart < FDEV(devi).start_blk ||
1810                     blkstart > FDEV(devi).end_blk) {
1811                         f2fs_err(sbi, "Invalid block %x", blkstart);
1812                         return -EIO;
1813                 }
1814                 blkstart -= FDEV(devi).start_blk;
1815         }
1816
1817         /* For sequential zones, reset the zone write pointer */
1818         if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1819                 sector = SECTOR_FROM_BLOCK(blkstart);
1820                 nr_sects = SECTOR_FROM_BLOCK(blklen);
1821
1822                 if (sector & (bdev_zone_sectors(bdev) - 1) ||
1823                                 nr_sects != bdev_zone_sectors(bdev)) {
1824                         f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1825                                  devi, sbi->s_ndevs ? FDEV(devi).path : "",
1826                                  blkstart, blklen);
1827                         return -EIO;
1828                 }
1829                 trace_f2fs_issue_reset_zone(bdev, blkstart);
1830                 return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1831                                         sector, nr_sects, GFP_NOFS);
1832         }
1833
1834         /* For conventional zones, use regular discard if supported */
1835         return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1836 }
1837 #endif
1838
1839 static int __issue_discard_async(struct f2fs_sb_info *sbi,
1840                 struct block_device *bdev, block_t blkstart, block_t blklen)
1841 {
1842 #ifdef CONFIG_BLK_DEV_ZONED
1843         if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
1844                 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1845 #endif
1846         return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1847 }
1848
1849 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1850                                 block_t blkstart, block_t blklen)
1851 {
1852         sector_t start = blkstart, len = 0;
1853         struct block_device *bdev;
1854         struct seg_entry *se;
1855         unsigned int offset;
1856         block_t i;
1857         int err = 0;
1858
1859         bdev = f2fs_target_device(sbi, blkstart, NULL);
1860
1861         for (i = blkstart; i < blkstart + blklen; i++, len++) {
1862                 if (i != start) {
1863                         struct block_device *bdev2 =
1864                                 f2fs_target_device(sbi, i, NULL);
1865
1866                         if (bdev2 != bdev) {
1867                                 err = __issue_discard_async(sbi, bdev,
1868                                                 start, len);
1869                                 if (err)
1870                                         return err;
1871                                 bdev = bdev2;
1872                                 start = i;
1873                                 len = 0;
1874                         }
1875                 }
1876
1877                 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1878                 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1879
1880                 if (!f2fs_test_and_set_bit(offset, se->discard_map))
1881                         sbi->discard_blks--;
1882         }
1883
1884         if (len)
1885                 err = __issue_discard_async(sbi, bdev, start, len);
1886         return err;
1887 }
1888
1889 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1890                                                         bool check_only)
1891 {
1892         int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1893         int max_blocks = sbi->blocks_per_seg;
1894         struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1895         unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1896         unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1897         unsigned long *discard_map = (unsigned long *)se->discard_map;
1898         unsigned long *dmap = SIT_I(sbi)->tmp_map;
1899         unsigned int start = 0, end = -1;
1900         bool force = (cpc->reason & CP_DISCARD);
1901         struct discard_entry *de = NULL;
1902         struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1903         int i;
1904
1905         if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi))
1906                 return false;
1907
1908         if (!force) {
1909                 if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
1910                         SM_I(sbi)->dcc_info->nr_discards >=
1911                                 SM_I(sbi)->dcc_info->max_discards)
1912                         return false;
1913         }
1914
1915         /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1916         for (i = 0; i < entries; i++)
1917                 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1918                                 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1919
1920         while (force || SM_I(sbi)->dcc_info->nr_discards <=
1921                                 SM_I(sbi)->dcc_info->max_discards) {
1922                 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1923                 if (start >= max_blocks)
1924                         break;
1925
1926                 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1927                 if (force && start && end != max_blocks
1928                                         && (end - start) < cpc->trim_minlen)
1929                         continue;
1930
1931                 if (check_only)
1932                         return true;
1933
1934                 if (!de) {
1935                         de = f2fs_kmem_cache_alloc(discard_entry_slab,
1936                                                                 GFP_F2FS_ZERO);
1937                         de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1938                         list_add_tail(&de->list, head);
1939                 }
1940
1941                 for (i = start; i < end; i++)
1942                         __set_bit_le(i, (void *)de->discard_map);
1943
1944                 SM_I(sbi)->dcc_info->nr_discards += end - start;
1945         }
1946         return false;
1947 }
1948
1949 static void release_discard_addr(struct discard_entry *entry)
1950 {
1951         list_del(&entry->list);
1952         kmem_cache_free(discard_entry_slab, entry);
1953 }
1954
1955 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
1956 {
1957         struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1958         struct discard_entry *entry, *this;
1959
1960         /* drop caches */
1961         list_for_each_entry_safe(entry, this, head, list)
1962                 release_discard_addr(entry);
1963 }
1964
1965 /*
1966  * Should call f2fs_clear_prefree_segments after checkpoint is done.
1967  */
1968 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
1969 {
1970         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1971         unsigned int segno;
1972
1973         mutex_lock(&dirty_i->seglist_lock);
1974         for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
1975                 __set_test_and_free(sbi, segno, false);
1976         mutex_unlock(&dirty_i->seglist_lock);
1977 }
1978
1979 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
1980                                                 struct cp_control *cpc)
1981 {
1982         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1983         struct list_head *head = &dcc->entry_list;
1984         struct discard_entry *entry, *this;
1985         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1986         unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
1987         unsigned int start = 0, end = -1;
1988         unsigned int secno, start_segno;
1989         bool force = (cpc->reason & CP_DISCARD);
1990         bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
1991
1992         mutex_lock(&dirty_i->seglist_lock);
1993
1994         while (1) {
1995                 int i;
1996
1997                 if (need_align && end != -1)
1998                         end--;
1999                 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
2000                 if (start >= MAIN_SEGS(sbi))
2001                         break;
2002                 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
2003                                                                 start + 1);
2004
2005                 if (need_align) {
2006                         start = rounddown(start, sbi->segs_per_sec);
2007                         end = roundup(end, sbi->segs_per_sec);
2008                 }
2009
2010                 for (i = start; i < end; i++) {
2011                         if (test_and_clear_bit(i, prefree_map))
2012                                 dirty_i->nr_dirty[PRE]--;
2013                 }
2014
2015                 if (!f2fs_realtime_discard_enable(sbi))
2016                         continue;
2017
2018                 if (force && start >= cpc->trim_start &&
2019                                         (end - 1) <= cpc->trim_end)
2020                                 continue;
2021
2022                 if (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi)) {
2023                         f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
2024                                 (end - start) << sbi->log_blocks_per_seg);
2025                         continue;
2026                 }
2027 next:
2028                 secno = GET_SEC_FROM_SEG(sbi, start);
2029                 start_segno = GET_SEG_FROM_SEC(sbi, secno);
2030                 if (!IS_CURSEC(sbi, secno) &&
2031                         !get_valid_blocks(sbi, start, true))
2032                         f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
2033                                 sbi->segs_per_sec << sbi->log_blocks_per_seg);
2034
2035                 start = start_segno + sbi->segs_per_sec;
2036                 if (start < end)
2037                         goto next;
2038                 else
2039                         end = start - 1;
2040         }
2041         mutex_unlock(&dirty_i->seglist_lock);
2042
2043         /* send small discards */
2044         list_for_each_entry_safe(entry, this, head, list) {
2045                 unsigned int cur_pos = 0, next_pos, len, total_len = 0;
2046                 bool is_valid = test_bit_le(0, entry->discard_map);
2047
2048 find_next:
2049                 if (is_valid) {
2050                         next_pos = find_next_zero_bit_le(entry->discard_map,
2051                                         sbi->blocks_per_seg, cur_pos);
2052                         len = next_pos - cur_pos;
2053
2054                         if (f2fs_sb_has_blkzoned(sbi) ||
2055                             (force && len < cpc->trim_minlen))
2056                                 goto skip;
2057
2058                         f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2059                                                                         len);
2060                         total_len += len;
2061                 } else {
2062                         next_pos = find_next_bit_le(entry->discard_map,
2063                                         sbi->blocks_per_seg, cur_pos);
2064                 }
2065 skip:
2066                 cur_pos = next_pos;
2067                 is_valid = !is_valid;
2068
2069                 if (cur_pos < sbi->blocks_per_seg)
2070                         goto find_next;
2071
2072                 release_discard_addr(entry);
2073                 dcc->nr_discards -= total_len;
2074         }
2075
2076         wake_up_discard_thread(sbi, false);
2077 }
2078
2079 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2080 {
2081         dev_t dev = sbi->sb->s_bdev->bd_dev;
2082         struct discard_cmd_control *dcc;
2083         int err = 0, i;
2084
2085         if (SM_I(sbi)->dcc_info) {
2086                 dcc = SM_I(sbi)->dcc_info;
2087                 goto init_thread;
2088         }
2089
2090         dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2091         if (!dcc)
2092                 return -ENOMEM;
2093
2094         dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2095         INIT_LIST_HEAD(&dcc->entry_list);
2096         for (i = 0; i < MAX_PLIST_NUM; i++)
2097                 INIT_LIST_HEAD(&dcc->pend_list[i]);
2098         INIT_LIST_HEAD(&dcc->wait_list);
2099         INIT_LIST_HEAD(&dcc->fstrim_list);
2100         mutex_init(&dcc->cmd_lock);
2101         atomic_set(&dcc->issued_discard, 0);
2102         atomic_set(&dcc->queued_discard, 0);
2103         atomic_set(&dcc->discard_cmd_cnt, 0);
2104         dcc->nr_discards = 0;
2105         dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
2106         dcc->undiscard_blks = 0;
2107         dcc->next_pos = 0;
2108         dcc->root = RB_ROOT_CACHED;
2109         dcc->rbtree_check = false;
2110
2111         init_waitqueue_head(&dcc->discard_wait_queue);
2112         SM_I(sbi)->dcc_info = dcc;
2113 init_thread:
2114         dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2115                                 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2116         if (IS_ERR(dcc->f2fs_issue_discard)) {
2117                 err = PTR_ERR(dcc->f2fs_issue_discard);
2118                 kfree(dcc);
2119                 SM_I(sbi)->dcc_info = NULL;
2120                 return err;
2121         }
2122
2123         return err;
2124 }
2125
2126 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2127 {
2128         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2129
2130         if (!dcc)
2131                 return;
2132
2133         f2fs_stop_discard_thread(sbi);
2134
2135         /*
2136          * Recovery can cache discard commands, so in error path of
2137          * fill_super(), it needs to give a chance to handle them.
2138          */
2139         if (unlikely(atomic_read(&dcc->discard_cmd_cnt)))
2140                 f2fs_issue_discard_timeout(sbi);
2141
2142         kfree(dcc);
2143         SM_I(sbi)->dcc_info = NULL;
2144 }
2145
2146 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2147 {
2148         struct sit_info *sit_i = SIT_I(sbi);
2149
2150         if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2151                 sit_i->dirty_sentries++;
2152                 return false;
2153         }
2154
2155         return true;
2156 }
2157
2158 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2159                                         unsigned int segno, int modified)
2160 {
2161         struct seg_entry *se = get_seg_entry(sbi, segno);
2162         se->type = type;
2163         if (modified)
2164                 __mark_sit_entry_dirty(sbi, segno);
2165 }
2166
2167 static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi,
2168                                                                 block_t blkaddr)
2169 {
2170         unsigned int segno = GET_SEGNO(sbi, blkaddr);
2171
2172         if (segno == NULL_SEGNO)
2173                 return 0;
2174         return get_seg_entry(sbi, segno)->mtime;
2175 }
2176
2177 static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr,
2178                                                 unsigned long long old_mtime)
2179 {
2180         struct seg_entry *se;
2181         unsigned int segno = GET_SEGNO(sbi, blkaddr);
2182         unsigned long long ctime = get_mtime(sbi, false);
2183         unsigned long long mtime = old_mtime ? old_mtime : ctime;
2184
2185         if (segno == NULL_SEGNO)
2186                 return;
2187
2188         se = get_seg_entry(sbi, segno);
2189
2190         if (!se->mtime)
2191                 se->mtime = mtime;
2192         else
2193                 se->mtime = div_u64(se->mtime * se->valid_blocks + mtime,
2194                                                 se->valid_blocks + 1);
2195
2196         if (ctime > SIT_I(sbi)->max_mtime)
2197                 SIT_I(sbi)->max_mtime = ctime;
2198 }
2199
2200 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2201 {
2202         struct seg_entry *se;
2203         unsigned int segno, offset;
2204         long int new_vblocks;
2205         bool exist;
2206 #ifdef CONFIG_F2FS_CHECK_FS
2207         bool mir_exist;
2208 #endif
2209
2210         segno = GET_SEGNO(sbi, blkaddr);
2211
2212         se = get_seg_entry(sbi, segno);
2213         new_vblocks = se->valid_blocks + del;
2214         offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2215
2216         f2fs_bug_on(sbi, (new_vblocks < 0 ||
2217                         (new_vblocks > f2fs_usable_blks_in_seg(sbi, segno))));
2218
2219         se->valid_blocks = new_vblocks;
2220
2221         /* Update valid block bitmap */
2222         if (del > 0) {
2223                 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2224 #ifdef CONFIG_F2FS_CHECK_FS
2225                 mir_exist = f2fs_test_and_set_bit(offset,
2226                                                 se->cur_valid_map_mir);
2227                 if (unlikely(exist != mir_exist)) {
2228                         f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2229                                  blkaddr, exist);
2230                         f2fs_bug_on(sbi, 1);
2231                 }
2232 #endif
2233                 if (unlikely(exist)) {
2234                         f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
2235                                  blkaddr);
2236                         f2fs_bug_on(sbi, 1);
2237                         se->valid_blocks--;
2238                         del = 0;
2239                 }
2240
2241                 if (!f2fs_test_and_set_bit(offset, se->discard_map))
2242                         sbi->discard_blks--;
2243
2244                 /*
2245                  * SSR should never reuse block which is checkpointed
2246                  * or newly invalidated.
2247                  */
2248                 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2249                         if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2250                                 se->ckpt_valid_blocks++;
2251                 }
2252         } else {
2253                 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2254 #ifdef CONFIG_F2FS_CHECK_FS
2255                 mir_exist = f2fs_test_and_clear_bit(offset,
2256                                                 se->cur_valid_map_mir);
2257                 if (unlikely(exist != mir_exist)) {
2258                         f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2259                                  blkaddr, exist);
2260                         f2fs_bug_on(sbi, 1);
2261                 }
2262 #endif
2263                 if (unlikely(!exist)) {
2264                         f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
2265                                  blkaddr);
2266                         f2fs_bug_on(sbi, 1);
2267                         se->valid_blocks++;
2268                         del = 0;
2269                 } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2270                         /*
2271                          * If checkpoints are off, we must not reuse data that
2272                          * was used in the previous checkpoint. If it was used
2273                          * before, we must track that to know how much space we
2274                          * really have.
2275                          */
2276                         if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
2277                                 spin_lock(&sbi->stat_lock);
2278                                 sbi->unusable_block_count++;
2279                                 spin_unlock(&sbi->stat_lock);
2280                         }
2281                 }
2282
2283                 if (f2fs_test_and_clear_bit(offset, se->discard_map))
2284                         sbi->discard_blks++;
2285         }
2286         if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2287                 se->ckpt_valid_blocks += del;
2288
2289         __mark_sit_entry_dirty(sbi, segno);
2290
2291         /* update total number of valid blocks to be written in ckpt area */
2292         SIT_I(sbi)->written_valid_blocks += del;
2293
2294         if (__is_large_section(sbi))
2295                 get_sec_entry(sbi, segno)->valid_blocks += del;
2296 }
2297
2298 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2299 {
2300         unsigned int segno = GET_SEGNO(sbi, addr);
2301         struct sit_info *sit_i = SIT_I(sbi);
2302
2303         f2fs_bug_on(sbi, addr == NULL_ADDR);
2304         if (addr == NEW_ADDR || addr == COMPRESS_ADDR)
2305                 return;
2306
2307         invalidate_mapping_pages(META_MAPPING(sbi), addr, addr);
2308
2309         /* add it into sit main buffer */
2310         down_write(&sit_i->sentry_lock);
2311
2312         update_segment_mtime(sbi, addr, 0);
2313         update_sit_entry(sbi, addr, -1);
2314
2315         /* add it into dirty seglist */
2316         locate_dirty_segment(sbi, segno);
2317
2318         up_write(&sit_i->sentry_lock);
2319 }
2320
2321 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2322 {
2323         struct sit_info *sit_i = SIT_I(sbi);
2324         unsigned int segno, offset;
2325         struct seg_entry *se;
2326         bool is_cp = false;
2327
2328         if (!__is_valid_data_blkaddr(blkaddr))
2329                 return true;
2330
2331         down_read(&sit_i->sentry_lock);
2332
2333         segno = GET_SEGNO(sbi, blkaddr);
2334         se = get_seg_entry(sbi, segno);
2335         offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2336
2337         if (f2fs_test_bit(offset, se->ckpt_valid_map))
2338                 is_cp = true;
2339
2340         up_read(&sit_i->sentry_lock);
2341
2342         return is_cp;
2343 }
2344
2345 /*
2346  * This function should be resided under the curseg_mutex lock
2347  */
2348 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
2349                                         struct f2fs_summary *sum)
2350 {
2351         struct curseg_info *curseg = CURSEG_I(sbi, type);
2352         void *addr = curseg->sum_blk;
2353         addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
2354         memcpy(addr, sum, sizeof(struct f2fs_summary));
2355 }
2356
2357 /*
2358  * Calculate the number of current summary pages for writing
2359  */
2360 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2361 {
2362         int valid_sum_count = 0;
2363         int i, sum_in_page;
2364
2365         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2366                 if (sbi->ckpt->alloc_type[i] == SSR)
2367                         valid_sum_count += sbi->blocks_per_seg;
2368                 else {
2369                         if (for_ra)
2370                                 valid_sum_count += le16_to_cpu(
2371                                         F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2372                         else
2373                                 valid_sum_count += curseg_blkoff(sbi, i);
2374                 }
2375         }
2376
2377         sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2378                         SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2379         if (valid_sum_count <= sum_in_page)
2380                 return 1;
2381         else if ((valid_sum_count - sum_in_page) <=
2382                 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2383                 return 2;
2384         return 3;
2385 }
2386
2387 /*
2388  * Caller should put this summary page
2389  */
2390 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2391 {
2392         if (unlikely(f2fs_cp_error(sbi)))
2393                 return ERR_PTR(-EIO);
2394         return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno));
2395 }
2396
2397 void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2398                                         void *src, block_t blk_addr)
2399 {
2400         struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2401
2402         memcpy(page_address(page), src, PAGE_SIZE);
2403         set_page_dirty(page);
2404         f2fs_put_page(page, 1);
2405 }
2406
2407 static void write_sum_page(struct f2fs_sb_info *sbi,
2408                         struct f2fs_summary_block *sum_blk, block_t blk_addr)
2409 {
2410         f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2411 }
2412
2413 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2414                                                 int type, block_t blk_addr)
2415 {
2416         struct curseg_info *curseg = CURSEG_I(sbi, type);
2417         struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2418         struct f2fs_summary_block *src = curseg->sum_blk;
2419         struct f2fs_summary_block *dst;
2420
2421         dst = (struct f2fs_summary_block *)page_address(page);
2422         memset(dst, 0, PAGE_SIZE);
2423
2424         mutex_lock(&curseg->curseg_mutex);
2425
2426         down_read(&curseg->journal_rwsem);
2427         memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2428         up_read(&curseg->journal_rwsem);
2429
2430         memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2431         memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2432
2433         mutex_unlock(&curseg->curseg_mutex);
2434
2435         set_page_dirty(page);
2436         f2fs_put_page(page, 1);
2437 }
2438
2439 static int is_next_segment_free(struct f2fs_sb_info *sbi,
2440                                 struct curseg_info *curseg, int type)
2441 {
2442         unsigned int segno = curseg->segno + 1;
2443         struct free_segmap_info *free_i = FREE_I(sbi);
2444
2445         if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2446                 return !test_bit(segno, free_i->free_segmap);
2447         return 0;
2448 }
2449
2450 /*
2451  * Find a new segment from the free segments bitmap to right order
2452  * This function should be returned with success, otherwise BUG
2453  */
2454 static void get_new_segment(struct f2fs_sb_info *sbi,
2455                         unsigned int *newseg, bool new_sec, int dir)
2456 {
2457         struct free_segmap_info *free_i = FREE_I(sbi);
2458         unsigned int segno, secno, zoneno;
2459         unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2460         unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2461         unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2462         unsigned int left_start = hint;
2463         bool init = true;
2464         int go_left = 0;
2465         int i;
2466
2467         spin_lock(&free_i->segmap_lock);
2468
2469         if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2470                 segno = find_next_zero_bit(free_i->free_segmap,
2471                         GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2472                 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2473                         goto got_it;
2474         }
2475 find_other_zone:
2476         secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2477         if (secno >= MAIN_SECS(sbi)) {
2478                 if (dir == ALLOC_RIGHT) {
2479                         secno = find_next_zero_bit(free_i->free_secmap,
2480                                                         MAIN_SECS(sbi), 0);
2481                         f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2482                 } else {
2483                         go_left = 1;
2484                         left_start = hint - 1;
2485                 }
2486         }
2487         if (go_left == 0)
2488                 goto skip_left;
2489
2490         while (test_bit(left_start, free_i->free_secmap)) {
2491                 if (left_start > 0) {
2492                         left_start--;
2493                         continue;
2494                 }
2495                 left_start = find_next_zero_bit(free_i->free_secmap,
2496                                                         MAIN_SECS(sbi), 0);
2497                 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2498                 break;
2499         }
2500         secno = left_start;
2501 skip_left:
2502         segno = GET_SEG_FROM_SEC(sbi, secno);
2503         zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2504
2505         /* give up on finding another zone */
2506         if (!init)
2507                 goto got_it;
2508         if (sbi->secs_per_zone == 1)
2509                 goto got_it;
2510         if (zoneno == old_zoneno)
2511                 goto got_it;
2512         if (dir == ALLOC_LEFT) {
2513                 if (!go_left && zoneno + 1 >= total_zones)
2514                         goto got_it;
2515                 if (go_left && zoneno == 0)
2516                         goto got_it;
2517         }
2518         for (i = 0; i < NR_CURSEG_TYPE; i++)
2519                 if (CURSEG_I(sbi, i)->zone == zoneno)
2520                         break;
2521
2522         if (i < NR_CURSEG_TYPE) {
2523                 /* zone is in user, try another */
2524                 if (go_left)
2525                         hint = zoneno * sbi->secs_per_zone - 1;
2526                 else if (zoneno + 1 >= total_zones)
2527                         hint = 0;
2528                 else
2529                         hint = (zoneno + 1) * sbi->secs_per_zone;
2530                 init = false;
2531                 goto find_other_zone;
2532         }
2533 got_it:
2534         /* set it as dirty segment in free segmap */
2535         f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2536         __set_inuse(sbi, segno);
2537         *newseg = segno;
2538         spin_unlock(&free_i->segmap_lock);
2539 }
2540
2541 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2542 {
2543         struct curseg_info *curseg = CURSEG_I(sbi, type);
2544         struct summary_footer *sum_footer;
2545         unsigned short seg_type = curseg->seg_type;
2546
2547         curseg->inited = true;
2548         curseg->segno = curseg->next_segno;
2549         curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2550         curseg->next_blkoff = 0;
2551         curseg->next_segno = NULL_SEGNO;
2552
2553         sum_footer = &(curseg->sum_blk->footer);
2554         memset(sum_footer, 0, sizeof(struct summary_footer));
2555
2556         sanity_check_seg_type(sbi, seg_type);
2557
2558         if (IS_DATASEG(seg_type))
2559                 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2560         if (IS_NODESEG(seg_type))
2561                 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2562         __set_sit_entry_type(sbi, seg_type, curseg->segno, modified);
2563 }
2564
2565 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2566 {
2567         struct curseg_info *curseg = CURSEG_I(sbi, type);
2568         unsigned short seg_type = curseg->seg_type;
2569
2570         sanity_check_seg_type(sbi, seg_type);
2571
2572         /* if segs_per_sec is large than 1, we need to keep original policy. */
2573         if (__is_large_section(sbi))
2574                 return curseg->segno;
2575
2576         /* inmem log may not locate on any segment after mount */
2577         if (!curseg->inited)
2578                 return 0;
2579
2580         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2581                 return 0;
2582
2583         if (test_opt(sbi, NOHEAP) &&
2584                 (seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type)))
2585                 return 0;
2586
2587         if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2588                 return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2589
2590         /* find segments from 0 to reuse freed segments */
2591         if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2592                 return 0;
2593
2594         return curseg->segno;
2595 }
2596
2597 /*
2598  * Allocate a current working segment.
2599  * This function always allocates a free segment in LFS manner.
2600  */
2601 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2602 {
2603         struct curseg_info *curseg = CURSEG_I(sbi, type);
2604         unsigned short seg_type = curseg->seg_type;
2605         unsigned int segno = curseg->segno;
2606         int dir = ALLOC_LEFT;
2607
2608         if (curseg->inited)
2609                 write_sum_page(sbi, curseg->sum_blk,
2610                                 GET_SUM_BLOCK(sbi, segno));
2611         if (seg_type == CURSEG_WARM_DATA || seg_type == CURSEG_COLD_DATA)
2612                 dir = ALLOC_RIGHT;
2613
2614         if (test_opt(sbi, NOHEAP))
2615                 dir = ALLOC_RIGHT;
2616
2617         segno = __get_next_segno(sbi, type);
2618         get_new_segment(sbi, &segno, new_sec, dir);
2619         curseg->next_segno = segno;
2620         reset_curseg(sbi, type, 1);
2621         curseg->alloc_type = LFS;
2622 }
2623
2624 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
2625                         struct curseg_info *seg, block_t start)
2626 {
2627         struct seg_entry *se = get_seg_entry(sbi, seg->segno);
2628         int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2629         unsigned long *target_map = SIT_I(sbi)->tmp_map;
2630         unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2631         unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2632         int i, pos;
2633
2634         for (i = 0; i < entries; i++)
2635                 target_map[i] = ckpt_map[i] | cur_map[i];
2636
2637         pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2638
2639         seg->next_blkoff = pos;
2640 }
2641
2642 /*
2643  * If a segment is written by LFS manner, next block offset is just obtained
2644  * by increasing the current block offset. However, if a segment is written by
2645  * SSR manner, next block offset obtained by calling __next_free_blkoff
2646  */
2647 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2648                                 struct curseg_info *seg)
2649 {
2650         if (seg->alloc_type == SSR)
2651                 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
2652         else
2653                 seg->next_blkoff++;
2654 }
2655
2656 /*
2657  * This function always allocates a used segment(from dirty seglist) by SSR
2658  * manner, so it should recover the existing segment information of valid blocks
2659  */
2660 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool flush)
2661 {
2662         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2663         struct curseg_info *curseg = CURSEG_I(sbi, type);
2664         unsigned int new_segno = curseg->next_segno;
2665         struct f2fs_summary_block *sum_node;
2666         struct page *sum_page;
2667
2668         if (flush)
2669                 write_sum_page(sbi, curseg->sum_blk,
2670                                         GET_SUM_BLOCK(sbi, curseg->segno));
2671
2672         __set_test_and_inuse(sbi, new_segno);
2673
2674         mutex_lock(&dirty_i->seglist_lock);
2675         __remove_dirty_segment(sbi, new_segno, PRE);
2676         __remove_dirty_segment(sbi, new_segno, DIRTY);
2677         mutex_unlock(&dirty_i->seglist_lock);
2678
2679         reset_curseg(sbi, type, 1);
2680         curseg->alloc_type = SSR;
2681         __next_free_blkoff(sbi, curseg, 0);
2682
2683         sum_page = f2fs_get_sum_page(sbi, new_segno);
2684         if (IS_ERR(sum_page)) {
2685                 /* GC won't be able to use stale summary pages by cp_error */
2686                 memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE);
2687                 return;
2688         }
2689         sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2690         memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2691         f2fs_put_page(sum_page, 1);
2692 }
2693
2694 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2695                                 int alloc_mode, unsigned long long age);
2696
2697 static void get_atssr_segment(struct f2fs_sb_info *sbi, int type,
2698                                         int target_type, int alloc_mode,
2699                                         unsigned long long age)
2700 {
2701         struct curseg_info *curseg = CURSEG_I(sbi, type);
2702
2703         curseg->seg_type = target_type;
2704
2705         if (get_ssr_segment(sbi, type, alloc_mode, age)) {
2706                 struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno);
2707
2708                 curseg->seg_type = se->type;
2709                 change_curseg(sbi, type, true);
2710         } else {
2711                 /* allocate cold segment by default */
2712                 curseg->seg_type = CURSEG_COLD_DATA;
2713                 new_curseg(sbi, type, true);
2714         }
2715         stat_inc_seg_type(sbi, curseg);
2716 }
2717
2718 static void __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi)
2719 {
2720         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC);
2721
2722         if (!sbi->am.atgc_enabled)
2723                 return;
2724
2725         down_read(&SM_I(sbi)->curseg_lock);
2726
2727         mutex_lock(&curseg->curseg_mutex);
2728         down_write(&SIT_I(sbi)->sentry_lock);
2729
2730         get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC, CURSEG_COLD_DATA, SSR, 0);
2731
2732         up_write(&SIT_I(sbi)->sentry_lock);
2733         mutex_unlock(&curseg->curseg_mutex);
2734
2735         up_read(&SM_I(sbi)->curseg_lock);
2736
2737 }
2738 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi)
2739 {
2740         __f2fs_init_atgc_curseg(sbi);
2741 }
2742
2743 static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2744 {
2745         struct curseg_info *curseg = CURSEG_I(sbi, type);
2746
2747         mutex_lock(&curseg->curseg_mutex);
2748         if (!curseg->inited)
2749                 goto out;
2750
2751         if (get_valid_blocks(sbi, curseg->segno, false)) {
2752                 write_sum_page(sbi, curseg->sum_blk,
2753                                 GET_SUM_BLOCK(sbi, curseg->segno));
2754         } else {
2755                 mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2756                 __set_test_and_free(sbi, curseg->segno, true);
2757                 mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2758         }
2759 out:
2760         mutex_unlock(&curseg->curseg_mutex);
2761 }
2762
2763 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi)
2764 {
2765         __f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2766
2767         if (sbi->am.atgc_enabled)
2768                 __f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2769 }
2770
2771 static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2772 {
2773         struct curseg_info *curseg = CURSEG_I(sbi, type);
2774
2775         mutex_lock(&curseg->curseg_mutex);
2776         if (!curseg->inited)
2777                 goto out;
2778         if (get_valid_blocks(sbi, curseg->segno, false))
2779                 goto out;
2780
2781         mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2782         __set_test_and_inuse(sbi, curseg->segno);
2783         mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2784 out:
2785         mutex_unlock(&curseg->curseg_mutex);
2786 }
2787
2788 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi)
2789 {
2790         __f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2791
2792         if (sbi->am.atgc_enabled)
2793                 __f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2794 }
2795
2796 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2797                                 int alloc_mode, unsigned long long age)
2798 {
2799         struct curseg_info *curseg = CURSEG_I(sbi, type);
2800         const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2801         unsigned segno = NULL_SEGNO;
2802         unsigned short seg_type = curseg->seg_type;
2803         int i, cnt;
2804         bool reversed = false;
2805
2806         sanity_check_seg_type(sbi, seg_type);
2807
2808         /* f2fs_need_SSR() already forces to do this */
2809         if (!v_ops->get_victim(sbi, &segno, BG_GC, seg_type, alloc_mode, age)) {
2810                 curseg->next_segno = segno;
2811                 return 1;
2812         }
2813
2814         /* For node segments, let's do SSR more intensively */
2815         if (IS_NODESEG(seg_type)) {
2816                 if (seg_type >= CURSEG_WARM_NODE) {
2817                         reversed = true;
2818                         i = CURSEG_COLD_NODE;
2819                 } else {
2820                         i = CURSEG_HOT_NODE;
2821                 }
2822                 cnt = NR_CURSEG_NODE_TYPE;
2823         } else {
2824                 if (seg_type >= CURSEG_WARM_DATA) {
2825                         reversed = true;
2826                         i = CURSEG_COLD_DATA;
2827                 } else {
2828                         i = CURSEG_HOT_DATA;
2829                 }
2830                 cnt = NR_CURSEG_DATA_TYPE;
2831         }
2832
2833         for (; cnt-- > 0; reversed ? i-- : i++) {
2834                 if (i == seg_type)
2835                         continue;
2836                 if (!v_ops->get_victim(sbi, &segno, BG_GC, i, alloc_mode, age)) {
2837                         curseg->next_segno = segno;
2838                         return 1;
2839                 }
2840         }
2841
2842         /* find valid_blocks=0 in dirty list */
2843         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2844                 segno = get_free_segment(sbi);
2845                 if (segno != NULL_SEGNO) {
2846                         curseg->next_segno = segno;
2847                         return 1;
2848                 }
2849         }
2850         return 0;
2851 }
2852
2853 /*
2854  * flush out current segment and replace it with new segment
2855  * This function should be returned with success, otherwise BUG
2856  */
2857 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
2858                                                 int type, bool force)
2859 {
2860         struct curseg_info *curseg = CURSEG_I(sbi, type);
2861
2862         if (force)
2863                 new_curseg(sbi, type, true);
2864         else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2865                                         curseg->seg_type == CURSEG_WARM_NODE)
2866                 new_curseg(sbi, type, false);
2867         else if (curseg->alloc_type == LFS &&
2868                         is_next_segment_free(sbi, curseg, type) &&
2869                         likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2870                 new_curseg(sbi, type, false);
2871         else if (f2fs_need_SSR(sbi) &&
2872                         get_ssr_segment(sbi, type, SSR, 0))
2873                 change_curseg(sbi, type, true);
2874         else
2875                 new_curseg(sbi, type, false);
2876
2877         stat_inc_seg_type(sbi, curseg);
2878 }
2879
2880 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
2881                                         unsigned int start, unsigned int end)
2882 {
2883         struct curseg_info *curseg = CURSEG_I(sbi, type);
2884         unsigned int segno;
2885
2886         down_read(&SM_I(sbi)->curseg_lock);
2887         mutex_lock(&curseg->curseg_mutex);
2888         down_write(&SIT_I(sbi)->sentry_lock);
2889
2890         segno = CURSEG_I(sbi, type)->segno;
2891         if (segno < start || segno > end)
2892                 goto unlock;
2893
2894         if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0))
2895                 change_curseg(sbi, type, true);
2896         else
2897                 new_curseg(sbi, type, true);
2898
2899         stat_inc_seg_type(sbi, curseg);
2900
2901         locate_dirty_segment(sbi, segno);
2902 unlock:
2903         up_write(&SIT_I(sbi)->sentry_lock);
2904
2905         if (segno != curseg->segno)
2906                 f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
2907                             type, segno, curseg->segno);
2908
2909         mutex_unlock(&curseg->curseg_mutex);
2910         up_read(&SM_I(sbi)->curseg_lock);
2911 }
2912
2913 static void __allocate_new_segment(struct f2fs_sb_info *sbi, int type)
2914 {
2915         struct curseg_info *curseg = CURSEG_I(sbi, type);
2916         unsigned int old_segno;
2917
2918         if (!curseg->inited)
2919                 goto alloc;
2920
2921         if (!curseg->next_blkoff &&
2922                 !get_valid_blocks(sbi, curseg->segno, false) &&
2923                 !get_ckpt_valid_blocks(sbi, curseg->segno))
2924                 return;
2925
2926 alloc:
2927         old_segno = curseg->segno;
2928         SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true);
2929         locate_dirty_segment(sbi, old_segno);
2930 }
2931
2932 void f2fs_allocate_new_segment(struct f2fs_sb_info *sbi, int type)
2933 {
2934         down_write(&SIT_I(sbi)->sentry_lock);
2935         __allocate_new_segment(sbi, type);
2936         up_write(&SIT_I(sbi)->sentry_lock);
2937 }
2938
2939 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
2940 {
2941         int i;
2942
2943         down_write(&SIT_I(sbi)->sentry_lock);
2944         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
2945                 __allocate_new_segment(sbi, i);
2946         up_write(&SIT_I(sbi)->sentry_lock);
2947 }
2948
2949 static const struct segment_allocation default_salloc_ops = {
2950         .allocate_segment = allocate_segment_by_default,
2951 };
2952
2953 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
2954                                                 struct cp_control *cpc)
2955 {
2956         __u64 trim_start = cpc->trim_start;
2957         bool has_candidate = false;
2958
2959         down_write(&SIT_I(sbi)->sentry_lock);
2960         for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
2961                 if (add_discard_addrs(sbi, cpc, true)) {
2962                         has_candidate = true;
2963                         break;
2964                 }
2965         }
2966         up_write(&SIT_I(sbi)->sentry_lock);
2967
2968         cpc->trim_start = trim_start;
2969         return has_candidate;
2970 }
2971
2972 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
2973                                         struct discard_policy *dpolicy,
2974                                         unsigned int start, unsigned int end)
2975 {
2976         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2977         struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
2978         struct rb_node **insert_p = NULL, *insert_parent = NULL;
2979         struct discard_cmd *dc;
2980         struct blk_plug plug;
2981         int issued;
2982         unsigned int trimmed = 0;
2983
2984 next:
2985         issued = 0;
2986
2987         mutex_lock(&dcc->cmd_lock);
2988         if (unlikely(dcc->rbtree_check))
2989                 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
2990                                                         &dcc->root, false));
2991
2992         dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
2993                                         NULL, start,
2994                                         (struct rb_entry **)&prev_dc,
2995                                         (struct rb_entry **)&next_dc,
2996                                         &insert_p, &insert_parent, true, NULL);
2997         if (!dc)
2998                 dc = next_dc;
2999
3000         blk_start_plug(&plug);
3001
3002         while (dc && dc->lstart <= end) {
3003                 struct rb_node *node;
3004                 int err = 0;
3005
3006                 if (dc->len < dpolicy->granularity)
3007                         goto skip;
3008
3009                 if (dc->state != D_PREP) {
3010                         list_move_tail(&dc->list, &dcc->fstrim_list);
3011                         goto skip;
3012                 }
3013
3014                 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
3015
3016                 if (issued >= dpolicy->max_requests) {
3017                         start = dc->lstart + dc->len;
3018
3019                         if (err)
3020                                 __remove_discard_cmd(sbi, dc);
3021
3022                         blk_finish_plug(&plug);
3023                         mutex_unlock(&dcc->cmd_lock);
3024                         trimmed += __wait_all_discard_cmd(sbi, NULL);
3025                         congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
3026                         goto next;
3027                 }
3028 skip:
3029                 node = rb_next(&dc->rb_node);
3030                 if (err)
3031                         __remove_discard_cmd(sbi, dc);
3032                 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
3033
3034                 if (fatal_signal_pending(current))
3035                         break;
3036         }
3037
3038         blk_finish_plug(&plug);
3039         mutex_unlock(&dcc->cmd_lock);
3040
3041         return trimmed;
3042 }
3043
3044 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
3045 {
3046         __u64 start = F2FS_BYTES_TO_BLK(range->start);
3047         __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
3048         unsigned int start_segno, end_segno;
3049         block_t start_block, end_block;
3050         struct cp_control cpc;
3051         struct discard_policy dpolicy;
3052         unsigned long long trimmed = 0;
3053         int err = 0;
3054         bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
3055
3056         if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
3057                 return -EINVAL;
3058
3059         if (end < MAIN_BLKADDR(sbi))
3060                 goto out;
3061
3062         if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
3063                 f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
3064                 return -EFSCORRUPTED;
3065         }
3066
3067         /* start/end segment number in main_area */
3068         start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
3069         end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
3070                                                 GET_SEGNO(sbi, end);
3071         if (need_align) {
3072                 start_segno = rounddown(start_segno, sbi->segs_per_sec);
3073                 end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
3074         }
3075
3076         cpc.reason = CP_DISCARD;
3077         cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
3078         cpc.trim_start = start_segno;
3079         cpc.trim_end = end_segno;
3080
3081         if (sbi->discard_blks == 0)
3082                 goto out;
3083
3084         down_write(&sbi->gc_lock);
3085         err = f2fs_write_checkpoint(sbi, &cpc);
3086         up_write(&sbi->gc_lock);
3087         if (err)
3088                 goto out;
3089
3090         /*
3091          * We filed discard candidates, but actually we don't need to wait for
3092          * all of them, since they'll be issued in idle time along with runtime
3093          * discard option. User configuration looks like using runtime discard
3094          * or periodic fstrim instead of it.
3095          */
3096         if (f2fs_realtime_discard_enable(sbi))
3097                 goto out;
3098
3099         start_block = START_BLOCK(sbi, start_segno);
3100         end_block = START_BLOCK(sbi, end_segno + 1);
3101
3102         __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
3103         trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
3104                                         start_block, end_block);
3105
3106         trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
3107                                         start_block, end_block);
3108 out:
3109         if (!err)
3110                 range->len = F2FS_BLK_TO_BYTES(trimmed);
3111         return err;
3112 }
3113
3114 static bool __has_curseg_space(struct f2fs_sb_info *sbi,
3115                                         struct curseg_info *curseg)
3116 {
3117         return curseg->next_blkoff < f2fs_usable_blks_in_seg(sbi,
3118                                                         curseg->segno);
3119 }
3120
3121 int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
3122 {
3123         switch (hint) {
3124         case WRITE_LIFE_SHORT:
3125                 return CURSEG_HOT_DATA;
3126         case WRITE_LIFE_EXTREME:
3127                 return CURSEG_COLD_DATA;
3128         default:
3129                 return CURSEG_WARM_DATA;
3130         }
3131 }
3132
3133 /* This returns write hints for each segment type. This hints will be
3134  * passed down to block layer. There are mapping tables which depend on
3135  * the mount option 'whint_mode'.
3136  *
3137  * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET.
3138  *
3139  * 2) whint_mode=user-based. F2FS tries to pass down hints given by users.
3140  *
3141  * User                  F2FS                     Block
3142  * ----                  ----                     -----
3143  *                       META                     WRITE_LIFE_NOT_SET
3144  *                       HOT_NODE                 "
3145  *                       WARM_NODE                "
3146  *                       COLD_NODE                "
3147  * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
3148  * extension list        "                        "
3149  *
3150  * -- buffered io
3151  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3152  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3153  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
3154  * WRITE_LIFE_NONE       "                        "
3155  * WRITE_LIFE_MEDIUM     "                        "
3156  * WRITE_LIFE_LONG       "                        "
3157  *
3158  * -- direct io
3159  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3160  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3161  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
3162  * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
3163  * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
3164  * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
3165  *
3166  * 3) whint_mode=fs-based. F2FS passes down hints with its policy.
3167  *
3168  * User                  F2FS                     Block
3169  * ----                  ----                     -----
3170  *                       META                     WRITE_LIFE_MEDIUM;
3171  *                       HOT_NODE                 WRITE_LIFE_NOT_SET
3172  *                       WARM_NODE                "
3173  *                       COLD_NODE                WRITE_LIFE_NONE
3174  * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
3175  * extension list        "                        "
3176  *
3177  * -- buffered io
3178  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3179  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3180  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_LONG
3181  * WRITE_LIFE_NONE       "                        "
3182  * WRITE_LIFE_MEDIUM     "                        "
3183  * WRITE_LIFE_LONG       "                        "
3184  *
3185  * -- direct io
3186  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3187  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3188  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
3189  * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
3190  * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
3191  * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
3192  */
3193
3194 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3195                                 enum page_type type, enum temp_type temp)
3196 {
3197         if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) {
3198                 if (type == DATA) {
3199                         if (temp == WARM)
3200                                 return WRITE_LIFE_NOT_SET;
3201                         else if (temp == HOT)
3202                                 return WRITE_LIFE_SHORT;
3203                         else if (temp == COLD)
3204                                 return WRITE_LIFE_EXTREME;
3205                 } else {
3206                         return WRITE_LIFE_NOT_SET;
3207                 }
3208         } else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) {
3209                 if (type == DATA) {
3210                         if (temp == WARM)
3211                                 return WRITE_LIFE_LONG;
3212                         else if (temp == HOT)
3213                                 return WRITE_LIFE_SHORT;
3214                         else if (temp == COLD)
3215                                 return WRITE_LIFE_EXTREME;
3216                 } else if (type == NODE) {
3217                         if (temp == WARM || temp == HOT)
3218                                 return WRITE_LIFE_NOT_SET;
3219                         else if (temp == COLD)
3220                                 return WRITE_LIFE_NONE;
3221                 } else if (type == META) {
3222                         return WRITE_LIFE_MEDIUM;
3223                 }
3224         }
3225         return WRITE_LIFE_NOT_SET;
3226 }
3227
3228 static int __get_segment_type_2(struct f2fs_io_info *fio)
3229 {
3230         if (fio->type == DATA)
3231                 return CURSEG_HOT_DATA;
3232         else
3233                 return CURSEG_HOT_NODE;
3234 }
3235
3236 static int __get_segment_type_4(struct f2fs_io_info *fio)
3237 {
3238         if (fio->type == DATA) {
3239                 struct inode *inode = fio->page->mapping->host;
3240
3241                 if (S_ISDIR(inode->i_mode))
3242                         return CURSEG_HOT_DATA;
3243                 else
3244                         return CURSEG_COLD_DATA;
3245         } else {
3246                 if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3247                         return CURSEG_WARM_NODE;
3248                 else
3249                         return CURSEG_COLD_NODE;
3250         }
3251 }
3252
3253 static int __get_segment_type_6(struct f2fs_io_info *fio)
3254 {
3255         if (fio->type == DATA) {
3256                 struct inode *inode = fio->page->mapping->host;
3257
3258                 if (is_cold_data(fio->page)) {
3259                         if (fio->sbi->am.atgc_enabled)
3260                                 return CURSEG_ALL_DATA_ATGC;
3261                         else
3262                                 return CURSEG_COLD_DATA;
3263                 }
3264                 if (file_is_cold(inode) || f2fs_need_compress_data(inode))
3265                         return CURSEG_COLD_DATA;
3266                 if (file_is_hot(inode) ||
3267                                 is_inode_flag_set(inode, FI_HOT_DATA) ||
3268                                 f2fs_is_atomic_file(inode) ||
3269                                 f2fs_is_volatile_file(inode))
3270                         return CURSEG_HOT_DATA;
3271                 return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
3272         } else {
3273                 if (IS_DNODE(fio->page))
3274                         return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3275                                                 CURSEG_HOT_NODE;
3276                 return CURSEG_COLD_NODE;
3277         }
3278 }
3279
3280 static int __get_segment_type(struct f2fs_io_info *fio)
3281 {
3282         int type = 0;
3283
3284         switch (F2FS_OPTION(fio->sbi).active_logs) {
3285         case 2:
3286                 type = __get_segment_type_2(fio);
3287                 break;
3288         case 4:
3289                 type = __get_segment_type_4(fio);
3290                 break;
3291         case 6:
3292                 type = __get_segment_type_6(fio);
3293                 break;
3294         default:
3295                 f2fs_bug_on(fio->sbi, true);
3296         }
3297
3298         if (IS_HOT(type))
3299                 fio->temp = HOT;
3300         else if (IS_WARM(type))
3301                 fio->temp = WARM;
3302         else
3303                 fio->temp = COLD;
3304         return type;
3305 }
3306
3307 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3308                 block_t old_blkaddr, block_t *new_blkaddr,
3309                 struct f2fs_summary *sum, int type,
3310                 struct f2fs_io_info *fio)
3311 {
3312         struct sit_info *sit_i = SIT_I(sbi);
3313         struct curseg_info *curseg = CURSEG_I(sbi, type);
3314         unsigned long long old_mtime;
3315         bool from_gc = (type == CURSEG_ALL_DATA_ATGC);
3316         struct seg_entry *se = NULL;
3317
3318         down_read(&SM_I(sbi)->curseg_lock);
3319
3320         mutex_lock(&curseg->curseg_mutex);
3321         down_write(&sit_i->sentry_lock);
3322
3323         if (from_gc) {
3324                 f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO);
3325                 se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr));
3326                 sanity_check_seg_type(sbi, se->type);
3327                 f2fs_bug_on(sbi, IS_NODESEG(se->type));
3328         }
3329         *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3330
3331         f2fs_bug_on(sbi, curseg->next_blkoff >= sbi->blocks_per_seg);
3332
3333         f2fs_wait_discard_bio(sbi, *new_blkaddr);
3334
3335         /*
3336          * __add_sum_entry should be resided under the curseg_mutex
3337          * because, this function updates a summary entry in the
3338          * current summary block.
3339          */
3340         __add_sum_entry(sbi, type, sum);
3341
3342         __refresh_next_blkoff(sbi, curseg);
3343
3344         stat_inc_block_count(sbi, curseg);
3345
3346         if (from_gc) {
3347                 old_mtime = get_segment_mtime(sbi, old_blkaddr);
3348         } else {
3349                 update_segment_mtime(sbi, old_blkaddr, 0);
3350                 old_mtime = 0;
3351         }
3352         update_segment_mtime(sbi, *new_blkaddr, old_mtime);
3353
3354         /*
3355          * SIT information should be updated before segment allocation,
3356          * since SSR needs latest valid block information.
3357          */
3358         update_sit_entry(sbi, *new_blkaddr, 1);
3359         if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
3360                 update_sit_entry(sbi, old_blkaddr, -1);
3361
3362         if (!__has_curseg_space(sbi, curseg)) {
3363                 if (from_gc)
3364                         get_atssr_segment(sbi, type, se->type,
3365                                                 AT_SSR, se->mtime);
3366                 else
3367                         sit_i->s_ops->allocate_segment(sbi, type, false);
3368         }
3369         /*
3370          * segment dirty status should be updated after segment allocation,
3371          * so we just need to update status only one time after previous
3372          * segment being closed.
3373          */
3374         locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3375         locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3376
3377         up_write(&sit_i->sentry_lock);
3378
3379         if (page && IS_NODESEG(type)) {
3380                 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3381
3382                 f2fs_inode_chksum_set(sbi, page);
3383         }
3384
3385         if (F2FS_IO_ALIGNED(sbi))
3386                 fio->retry = false;
3387
3388         if (fio) {
3389                 struct f2fs_bio_info *io;
3390
3391                 INIT_LIST_HEAD(&fio->list);
3392                 fio->in_list = true;
3393                 io = sbi->write_io[fio->type] + fio->temp;
3394                 spin_lock(&io->io_lock);
3395                 list_add_tail(&fio->list, &io->io_list);
3396                 spin_unlock(&io->io_lock);
3397         }
3398
3399         mutex_unlock(&curseg->curseg_mutex);
3400
3401         up_read(&SM_I(sbi)->curseg_lock);
3402 }
3403
3404 static void update_device_state(struct f2fs_io_info *fio)
3405 {
3406         struct f2fs_sb_info *sbi = fio->sbi;
3407         unsigned int devidx;
3408
3409         if (!f2fs_is_multi_device(sbi))
3410                 return;
3411
3412         devidx = f2fs_target_device_index(sbi, fio->new_blkaddr);
3413
3414         /* update device state for fsync */
3415         f2fs_set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO);
3416
3417         /* update device state for checkpoint */
3418         if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3419                 spin_lock(&sbi->dev_lock);
3420                 f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3421                 spin_unlock(&sbi->dev_lock);
3422         }
3423 }
3424
3425 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3426 {
3427         int type = __get_segment_type(fio);
3428         bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA);
3429
3430         if (keep_order)
3431                 down_read(&fio->sbi->io_order_lock);
3432 reallocate:
3433         f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3434                         &fio->new_blkaddr, sum, type, fio);
3435         if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO)
3436                 invalidate_mapping_pages(META_MAPPING(fio->sbi),
3437                                         fio->old_blkaddr, fio->old_blkaddr);
3438
3439         /* writeout dirty page into bdev */
3440         f2fs_submit_page_write(fio);
3441         if (fio->retry) {
3442                 fio->old_blkaddr = fio->new_blkaddr;
3443                 goto reallocate;
3444         }
3445
3446         update_device_state(fio);
3447
3448         if (keep_order)
3449                 up_read(&fio->sbi->io_order_lock);
3450 }
3451
3452 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3453                                         enum iostat_type io_type)
3454 {
3455         struct f2fs_io_info fio = {
3456                 .sbi = sbi,
3457                 .type = META,
3458                 .temp = HOT,
3459                 .op = REQ_OP_WRITE,
3460                 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3461                 .old_blkaddr = page->index,
3462                 .new_blkaddr = page->index,
3463                 .page = page,
3464                 .encrypted_page = NULL,
3465                 .in_list = false,
3466         };
3467
3468         if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3469                 fio.op_flags &= ~REQ_META;
3470
3471         set_page_writeback(page);
3472         ClearPageError(page);
3473         f2fs_submit_page_write(&fio);
3474
3475         stat_inc_meta_count(sbi, page->index);
3476         f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
3477 }
3478
3479 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3480 {
3481         struct f2fs_summary sum;
3482
3483         set_summary(&sum, nid, 0, 0);
3484         do_write_page(&sum, fio);
3485
3486         f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3487 }
3488
3489 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3490                                         struct f2fs_io_info *fio)
3491 {
3492         struct f2fs_sb_info *sbi = fio->sbi;
3493         struct f2fs_summary sum;
3494
3495         f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3496         set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3497         do_write_page(&sum, fio);
3498         f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3499
3500         f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
3501 }
3502
3503 int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3504 {
3505         int err;
3506         struct f2fs_sb_info *sbi = fio->sbi;
3507         unsigned int segno;
3508
3509         fio->new_blkaddr = fio->old_blkaddr;
3510         /* i/o temperature is needed for passing down write hints */
3511         __get_segment_type(fio);
3512
3513         segno = GET_SEGNO(sbi, fio->new_blkaddr);
3514
3515         if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3516                 set_sbi_flag(sbi, SBI_NEED_FSCK);
3517                 f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
3518                           __func__, segno);
3519                 return -EFSCORRUPTED;
3520         }
3521
3522         stat_inc_inplace_blocks(fio->sbi);
3523
3524         if (fio->bio && !(SM_I(sbi)->ipu_policy & (1 << F2FS_IPU_NOCACHE)))
3525                 err = f2fs_merge_page_bio(fio);
3526         else
3527                 err = f2fs_submit_page_bio(fio);
3528         if (!err) {
3529                 update_device_state(fio);
3530                 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3531         }
3532
3533         return err;
3534 }
3535
3536 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3537                                                 unsigned int segno)
3538 {
3539         int i;
3540
3541         for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3542                 if (CURSEG_I(sbi, i)->segno == segno)
3543                         break;
3544         }
3545         return i;
3546 }
3547
3548 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3549                                 block_t old_blkaddr, block_t new_blkaddr,
3550                                 bool recover_curseg, bool recover_newaddr,
3551                                 bool from_gc)
3552 {
3553         struct sit_info *sit_i = SIT_I(sbi);
3554         struct curseg_info *curseg;
3555         unsigned int segno, old_cursegno;
3556         struct seg_entry *se;
3557         int type;
3558         unsigned short old_blkoff;
3559
3560         segno = GET_SEGNO(sbi, new_blkaddr);
3561         se = get_seg_entry(sbi, segno);
3562         type = se->type;
3563
3564         down_write(&SM_I(sbi)->curseg_lock);
3565
3566         if (!recover_curseg) {
3567                 /* for recovery flow */
3568                 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3569                         if (old_blkaddr == NULL_ADDR)
3570                                 type = CURSEG_COLD_DATA;
3571                         else
3572                                 type = CURSEG_WARM_DATA;
3573                 }
3574         } else {
3575                 if (IS_CURSEG(sbi, segno)) {
3576                         /* se->type is volatile as SSR allocation */
3577                         type = __f2fs_get_curseg(sbi, segno);
3578                         f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3579                 } else {
3580                         type = CURSEG_WARM_DATA;
3581                 }
3582         }
3583
3584         f2fs_bug_on(sbi, !IS_DATASEG(type));
3585         curseg = CURSEG_I(sbi, type);
3586
3587         mutex_lock(&curseg->curseg_mutex);
3588         down_write(&sit_i->sentry_lock);
3589
3590         old_cursegno = curseg->segno;
3591         old_blkoff = curseg->next_blkoff;
3592
3593         /* change the current segment */
3594         if (segno != curseg->segno) {
3595                 curseg->next_segno = segno;
3596                 change_curseg(sbi, type, true);
3597         }
3598
3599         curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3600         __add_sum_entry(sbi, type, sum);
3601
3602         if (!recover_curseg || recover_newaddr) {
3603                 if (!from_gc)
3604                         update_segment_mtime(sbi, new_blkaddr, 0);
3605                 update_sit_entry(sbi, new_blkaddr, 1);
3606         }
3607         if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3608                 invalidate_mapping_pages(META_MAPPING(sbi),
3609                                         old_blkaddr, old_blkaddr);
3610                 if (!from_gc)
3611                         update_segment_mtime(sbi, old_blkaddr, 0);
3612                 update_sit_entry(sbi, old_blkaddr, -1);
3613         }
3614
3615         locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3616         locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3617
3618         locate_dirty_segment(sbi, old_cursegno);
3619
3620         if (recover_curseg) {
3621                 if (old_cursegno != curseg->segno) {
3622                         curseg->next_segno = old_cursegno;
3623                         change_curseg(sbi, type, true);
3624                 }
3625                 curseg->next_blkoff = old_blkoff;
3626         }
3627
3628         up_write(&sit_i->sentry_lock);
3629         mutex_unlock(&curseg->curseg_mutex);
3630         up_write(&SM_I(sbi)->curseg_lock);
3631 }
3632
3633 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3634                                 block_t old_addr, block_t new_addr,
3635                                 unsigned char version, bool recover_curseg,
3636                                 bool recover_newaddr)
3637 {
3638         struct f2fs_summary sum;
3639
3640         set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3641
3642         f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3643                                         recover_curseg, recover_newaddr, false);
3644
3645         f2fs_update_data_blkaddr(dn, new_addr);
3646 }
3647
3648 void f2fs_wait_on_page_writeback(struct page *page,
3649                                 enum page_type type, bool ordered, bool locked)
3650 {
3651         if (PageWriteback(page)) {
3652                 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3653
3654                 /* submit cached LFS IO */
3655                 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3656                 /* sbumit cached IPU IO */
3657                 f2fs_submit_merged_ipu_write(sbi, NULL, page);
3658                 if (ordered) {
3659                         wait_on_page_writeback(page);
3660                         f2fs_bug_on(sbi, locked && PageWriteback(page));
3661                 } else {
3662                         wait_for_stable_page(page);
3663                 }
3664         }
3665 }
3666
3667 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
3668 {
3669         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3670         struct page *cpage;
3671
3672         if (!f2fs_post_read_required(inode))
3673                 return;
3674
3675         if (!__is_valid_data_blkaddr(blkaddr))
3676                 return;
3677
3678         cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3679         if (cpage) {
3680                 f2fs_wait_on_page_writeback(cpage, DATA, true, true);
3681                 f2fs_put_page(cpage, 1);
3682         }
3683 }
3684
3685 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3686                                                                 block_t len)
3687 {
3688         block_t i;
3689
3690         for (i = 0; i < len; i++)
3691                 f2fs_wait_on_block_writeback(inode, blkaddr + i);
3692 }
3693
3694 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3695 {
3696         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3697         struct curseg_info *seg_i;
3698         unsigned char *kaddr;
3699         struct page *page;
3700         block_t start;
3701         int i, j, offset;
3702
3703         start = start_sum_block(sbi);
3704
3705         page = f2fs_get_meta_page(sbi, start++);
3706         if (IS_ERR(page))
3707                 return PTR_ERR(page);
3708         kaddr = (unsigned char *)page_address(page);
3709
3710         /* Step 1: restore nat cache */
3711         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3712         memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3713
3714         /* Step 2: restore sit cache */
3715         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3716         memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3717         offset = 2 * SUM_JOURNAL_SIZE;
3718
3719         /* Step 3: restore summary entries */
3720         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3721                 unsigned short blk_off;
3722                 unsigned int segno;
3723
3724                 seg_i = CURSEG_I(sbi, i);
3725                 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3726                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3727                 seg_i->next_segno = segno;
3728                 reset_curseg(sbi, i, 0);
3729                 seg_i->alloc_type = ckpt->alloc_type[i];
3730                 seg_i->next_blkoff = blk_off;
3731
3732                 if (seg_i->alloc_type == SSR)
3733                         blk_off = sbi->blocks_per_seg;
3734
3735                 for (j = 0; j < blk_off; j++) {
3736                         struct f2fs_summary *s;
3737                         s = (struct f2fs_summary *)(kaddr + offset);
3738                         seg_i->sum_blk->entries[j] = *s;
3739                         offset += SUMMARY_SIZE;
3740                         if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3741                                                 SUM_FOOTER_SIZE)
3742                                 continue;
3743
3744                         f2fs_put_page(page, 1);
3745                         page = NULL;
3746
3747                         page = f2fs_get_meta_page(sbi, start++);
3748                         if (IS_ERR(page))
3749                                 return PTR_ERR(page);
3750                         kaddr = (unsigned char *)page_address(page);
3751                         offset = 0;
3752                 }
3753         }
3754         f2fs_put_page(page, 1);
3755         return 0;
3756 }
3757
3758 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3759 {
3760         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3761         struct f2fs_summary_block *sum;
3762         struct curseg_info *curseg;
3763         struct page *new;
3764         unsigned short blk_off;
3765         unsigned int segno = 0;
3766         block_t blk_addr = 0;
3767         int err = 0;
3768
3769         /* get segment number and block addr */
3770         if (IS_DATASEG(type)) {
3771                 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3772                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3773                                                         CURSEG_HOT_DATA]);
3774                 if (__exist_node_summaries(sbi))
3775                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type);
3776                 else
3777                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3778         } else {
3779                 segno = le32_to_cpu(ckpt->cur_node_segno[type -
3780                                                         CURSEG_HOT_NODE]);
3781                 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3782                                                         CURSEG_HOT_NODE]);
3783                 if (__exist_node_summaries(sbi))
3784                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3785                                                         type - CURSEG_HOT_NODE);
3786                 else
3787                         blk_addr = GET_SUM_BLOCK(sbi, segno);
3788         }
3789
3790         new = f2fs_get_meta_page(sbi, blk_addr);
3791         if (IS_ERR(new))
3792                 return PTR_ERR(new);
3793         sum = (struct f2fs_summary_block *)page_address(new);
3794
3795         if (IS_NODESEG(type)) {
3796                 if (__exist_node_summaries(sbi)) {
3797                         struct f2fs_summary *ns = &sum->entries[0];
3798                         int i;
3799                         for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3800                                 ns->version = 0;
3801                                 ns->ofs_in_node = 0;
3802                         }
3803                 } else {
3804                         err = f2fs_restore_node_summary(sbi, segno, sum);
3805                         if (err)
3806                                 goto out;
3807                 }
3808         }
3809
3810         /* set uncompleted segment to curseg */
3811         curseg = CURSEG_I(sbi, type);
3812         mutex_lock(&curseg->curseg_mutex);
3813
3814         /* update journal info */
3815         down_write(&curseg->journal_rwsem);
3816         memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3817         up_write(&curseg->journal_rwsem);
3818
3819         memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3820         memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3821         curseg->next_segno = segno;
3822         reset_curseg(sbi, type, 0);
3823         curseg->alloc_type = ckpt->alloc_type[type];
3824         curseg->next_blkoff = blk_off;
3825         mutex_unlock(&curseg->curseg_mutex);
3826 out:
3827         f2fs_put_page(new, 1);
3828         return err;
3829 }
3830
3831 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3832 {
3833         struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3834         struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3835         int type = CURSEG_HOT_DATA;
3836         int err;
3837
3838         if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
3839                 int npages = f2fs_npages_for_summary_flush(sbi, true);
3840
3841                 if (npages >= 2)
3842                         f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
3843                                                         META_CP, true);
3844
3845                 /* restore for compacted data summary */
3846                 err = read_compacted_summaries(sbi);
3847                 if (err)
3848                         return err;
3849                 type = CURSEG_HOT_NODE;
3850         }
3851
3852         if (__exist_node_summaries(sbi))
3853                 f2fs_ra_meta_pages(sbi,
3854                                 sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type),
3855                                 NR_CURSEG_PERSIST_TYPE - type, META_CP, true);
3856
3857         for (; type <= CURSEG_COLD_NODE; type++) {
3858                 err = read_normal_summaries(sbi, type);
3859                 if (err)
3860                         return err;
3861         }
3862
3863         /* sanity check for summary blocks */
3864         if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
3865                         sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
3866                 f2fs_err(sbi, "invalid journal entries nats %u sits %u\n",
3867                          nats_in_cursum(nat_j), sits_in_cursum(sit_j));
3868                 return -EINVAL;
3869         }
3870
3871         return 0;
3872 }
3873
3874 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
3875 {
3876         struct page *page;
3877         unsigned char *kaddr;
3878         struct f2fs_summary *summary;
3879         struct curseg_info *seg_i;
3880         int written_size = 0;
3881         int i, j;
3882
3883         page = f2fs_grab_meta_page(sbi, blkaddr++);
3884         kaddr = (unsigned char *)page_address(page);
3885         memset(kaddr, 0, PAGE_SIZE);
3886
3887         /* Step 1: write nat cache */
3888         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3889         memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
3890         written_size += SUM_JOURNAL_SIZE;
3891
3892         /* Step 2: write sit cache */
3893         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3894         memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
3895         written_size += SUM_JOURNAL_SIZE;
3896
3897         /* Step 3: write summary entries */
3898         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3899                 unsigned short blkoff;
3900                 seg_i = CURSEG_I(sbi, i);
3901                 if (sbi->ckpt->alloc_type[i] == SSR)
3902                         blkoff = sbi->blocks_per_seg;
3903                 else
3904                         blkoff = curseg_blkoff(sbi, i);
3905
3906                 for (j = 0; j < blkoff; j++) {
3907                         if (!page) {
3908                                 page = f2fs_grab_meta_page(sbi, blkaddr++);
3909                                 kaddr = (unsigned char *)page_address(page);
3910                                 memset(kaddr, 0, PAGE_SIZE);
3911                                 written_size = 0;
3912                         }
3913                         summary = (struct f2fs_summary *)(kaddr + written_size);
3914                         *summary = seg_i->sum_blk->entries[j];
3915                         written_size += SUMMARY_SIZE;
3916
3917                         if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
3918                                                         SUM_FOOTER_SIZE)
3919                                 continue;
3920
3921                         set_page_dirty(page);
3922                         f2fs_put_page(page, 1);
3923                         page = NULL;
3924                 }
3925         }
3926         if (page) {
3927                 set_page_dirty(page);
3928                 f2fs_put_page(page, 1);
3929         }
3930 }
3931
3932 static void write_normal_summaries(struct f2fs_sb_info *sbi,
3933                                         block_t blkaddr, int type)
3934 {
3935         int i, end;
3936         if (IS_DATASEG(type))
3937                 end = type + NR_CURSEG_DATA_TYPE;
3938         else
3939                 end = type + NR_CURSEG_NODE_TYPE;
3940
3941         for (i = type; i < end; i++)
3942                 write_current_sum_page(sbi, i, blkaddr + (i - type));
3943 }
3944
3945 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3946 {
3947         if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
3948                 write_compacted_summaries(sbi, start_blk);
3949         else
3950                 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
3951 }
3952
3953 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3954 {
3955         write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
3956 }
3957
3958 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3959                                         unsigned int val, int alloc)
3960 {
3961         int i;
3962
3963         if (type == NAT_JOURNAL) {
3964                 for (i = 0; i < nats_in_cursum(journal); i++) {
3965                         if (le32_to_cpu(nid_in_journal(journal, i)) == val)
3966                                 return i;
3967                 }
3968                 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
3969                         return update_nats_in_cursum(journal, 1);
3970         } else if (type == SIT_JOURNAL) {
3971                 for (i = 0; i < sits_in_cursum(journal); i++)
3972                         if (le32_to_cpu(segno_in_journal(journal, i)) == val)
3973                                 return i;
3974                 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
3975                         return update_sits_in_cursum(journal, 1);
3976         }
3977         return -1;
3978 }
3979
3980 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
3981                                         unsigned int segno)
3982 {
3983         return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno));
3984 }
3985
3986 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
3987                                         unsigned int start)
3988 {
3989         struct sit_info *sit_i = SIT_I(sbi);
3990         struct page *page;
3991         pgoff_t src_off, dst_off;
3992
3993         src_off = current_sit_addr(sbi, start);
3994         dst_off = next_sit_addr(sbi, src_off);
3995
3996         page = f2fs_grab_meta_page(sbi, dst_off);
3997         seg_info_to_sit_page(sbi, page, start);
3998
3999         set_page_dirty(page);
4000         set_to_next_sit(sit_i, start);
4001
4002         return page;
4003 }
4004
4005 static struct sit_entry_set *grab_sit_entry_set(void)
4006 {
4007         struct sit_entry_set *ses =
4008                         f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
4009
4010         ses->entry_cnt = 0;
4011         INIT_LIST_HEAD(&ses->set_list);
4012         return ses;
4013 }
4014
4015 static void release_sit_entry_set(struct sit_entry_set *ses)
4016 {
4017         list_del(&ses->set_list);
4018         kmem_cache_free(sit_entry_set_slab, ses);
4019 }
4020
4021 static void adjust_sit_entry_set(struct sit_entry_set *ses,
4022                                                 struct list_head *head)
4023 {
4024         struct sit_entry_set *next = ses;
4025
4026         if (list_is_last(&ses->set_list, head))
4027                 return;
4028
4029         list_for_each_entry_continue(next, head, set_list)
4030                 if (ses->entry_cnt <= next->entry_cnt)
4031                         break;
4032
4033         list_move_tail(&ses->set_list, &next->set_list);
4034 }
4035
4036 static void add_sit_entry(unsigned int segno, struct list_head *head)
4037 {
4038         struct sit_entry_set *ses;
4039         unsigned int start_segno = START_SEGNO(segno);
4040
4041         list_for_each_entry(ses, head, set_list) {
4042                 if (ses->start_segno == start_segno) {
4043                         ses->entry_cnt++;
4044                         adjust_sit_entry_set(ses, head);
4045                         return;
4046                 }
4047         }
4048
4049         ses = grab_sit_entry_set();
4050
4051         ses->start_segno = start_segno;
4052         ses->entry_cnt++;
4053         list_add(&ses->set_list, head);
4054 }
4055
4056 static void add_sits_in_set(struct f2fs_sb_info *sbi)
4057 {
4058         struct f2fs_sm_info *sm_info = SM_I(sbi);
4059         struct list_head *set_list = &sm_info->sit_entry_set;
4060         unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
4061         unsigned int segno;
4062
4063         for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
4064                 add_sit_entry(segno, set_list);
4065 }
4066
4067 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
4068 {
4069         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4070         struct f2fs_journal *journal = curseg->journal;
4071         int i;
4072
4073         down_write(&curseg->journal_rwsem);
4074         for (i = 0; i < sits_in_cursum(journal); i++) {
4075                 unsigned int segno;
4076                 bool dirtied;
4077
4078                 segno = le32_to_cpu(segno_in_journal(journal, i));
4079                 dirtied = __mark_sit_entry_dirty(sbi, segno);
4080
4081                 if (!dirtied)
4082                         add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
4083         }
4084         update_sits_in_cursum(journal, -i);
4085         up_write(&curseg->journal_rwsem);
4086 }
4087
4088 /*
4089  * CP calls this function, which flushes SIT entries including sit_journal,
4090  * and moves prefree segs to free segs.
4091  */
4092 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
4093 {
4094         struct sit_info *sit_i = SIT_I(sbi);
4095         unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
4096         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4097         struct f2fs_journal *journal = curseg->journal;
4098         struct sit_entry_set *ses, *tmp;
4099         struct list_head *head = &SM_I(sbi)->sit_entry_set;
4100         bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
4101         struct seg_entry *se;
4102
4103         down_write(&sit_i->sentry_lock);
4104
4105         if (!sit_i->dirty_sentries)
4106                 goto out;
4107
4108         /*
4109          * add and account sit entries of dirty bitmap in sit entry
4110          * set temporarily
4111          */
4112         add_sits_in_set(sbi);
4113
4114         /*
4115          * if there are no enough space in journal to store dirty sit
4116          * entries, remove all entries from journal and add and account
4117          * them in sit entry set.
4118          */
4119         if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
4120                                                                 !to_journal)
4121                 remove_sits_in_journal(sbi);
4122
4123         /*
4124          * there are two steps to flush sit entries:
4125          * #1, flush sit entries to journal in current cold data summary block.
4126          * #2, flush sit entries to sit page.
4127          */
4128         list_for_each_entry_safe(ses, tmp, head, set_list) {
4129                 struct page *page = NULL;
4130                 struct f2fs_sit_block *raw_sit = NULL;
4131                 unsigned int start_segno = ses->start_segno;
4132                 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
4133                                                 (unsigned long)MAIN_SEGS(sbi));
4134                 unsigned int segno = start_segno;
4135
4136                 if (to_journal &&
4137                         !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
4138                         to_journal = false;
4139
4140                 if (to_journal) {
4141                         down_write(&curseg->journal_rwsem);
4142                 } else {
4143                         page = get_next_sit_page(sbi, start_segno);
4144                         raw_sit = page_address(page);
4145                 }
4146
4147                 /* flush dirty sit entries in region of current sit set */
4148                 for_each_set_bit_from(segno, bitmap, end) {
4149                         int offset, sit_offset;
4150
4151                         se = get_seg_entry(sbi, segno);
4152 #ifdef CONFIG_F2FS_CHECK_FS
4153                         if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
4154                                                 SIT_VBLOCK_MAP_SIZE))
4155                                 f2fs_bug_on(sbi, 1);
4156 #endif
4157
4158                         /* add discard candidates */
4159                         if (!(cpc->reason & CP_DISCARD)) {
4160                                 cpc->trim_start = segno;
4161                                 add_discard_addrs(sbi, cpc, false);
4162                         }
4163
4164                         if (to_journal) {
4165                                 offset = f2fs_lookup_journal_in_cursum(journal,
4166                                                         SIT_JOURNAL, segno, 1);
4167                                 f2fs_bug_on(sbi, offset < 0);
4168                                 segno_in_journal(journal, offset) =
4169                                                         cpu_to_le32(segno);
4170                                 seg_info_to_raw_sit(se,
4171                                         &sit_in_journal(journal, offset));
4172                                 check_block_count(sbi, segno,
4173                                         &sit_in_journal(journal, offset));
4174                         } else {
4175                                 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
4176                                 seg_info_to_raw_sit(se,
4177                                                 &raw_sit->entries[sit_offset]);
4178                                 check_block_count(sbi, segno,
4179                                                 &raw_sit->entries[sit_offset]);
4180                         }
4181
4182                         __clear_bit(segno, bitmap);
4183                         sit_i->dirty_sentries--;
4184                         ses->entry_cnt--;
4185                 }
4186
4187                 if (to_journal)
4188                         up_write(&curseg->journal_rwsem);
4189                 else
4190                         f2fs_put_page(page, 1);
4191
4192                 f2fs_bug_on(sbi, ses->entry_cnt);
4193                 release_sit_entry_set(ses);
4194         }
4195
4196         f2fs_bug_on(sbi, !list_empty(head));
4197         f2fs_bug_on(sbi, sit_i->dirty_sentries);
4198 out:
4199         if (cpc->reason & CP_DISCARD) {
4200                 __u64 trim_start = cpc->trim_start;
4201
4202                 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
4203                         add_discard_addrs(sbi, cpc, false);
4204
4205                 cpc->trim_start = trim_start;
4206         }
4207         up_write(&sit_i->sentry_lock);
4208
4209         set_prefree_as_free_segments(sbi);
4210 }
4211
4212 static int build_sit_info(struct f2fs_sb_info *sbi)
4213 {
4214         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4215         struct sit_info *sit_i;
4216         unsigned int sit_segs, start;
4217         char *src_bitmap, *bitmap;
4218         unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
4219
4220         /* allocate memory for SIT information */
4221         sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
4222         if (!sit_i)
4223                 return -ENOMEM;
4224
4225         SM_I(sbi)->sit_info = sit_i;
4226
4227         sit_i->sentries =
4228                 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
4229                                               MAIN_SEGS(sbi)),
4230                               GFP_KERNEL);
4231         if (!sit_i->sentries)
4232                 return -ENOMEM;
4233
4234         main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4235         sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
4236                                                                 GFP_KERNEL);
4237         if (!sit_i->dirty_sentries_bitmap)
4238                 return -ENOMEM;
4239
4240 #ifdef CONFIG_F2FS_CHECK_FS
4241         bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 4;
4242 #else
4243         bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 3;
4244 #endif
4245         sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4246         if (!sit_i->bitmap)
4247                 return -ENOMEM;
4248
4249         bitmap = sit_i->bitmap;
4250
4251         for (start = 0; start < MAIN_SEGS(sbi); start++) {
4252                 sit_i->sentries[start].cur_valid_map = bitmap;
4253                 bitmap += SIT_VBLOCK_MAP_SIZE;
4254
4255                 sit_i->sentries[start].ckpt_valid_map = bitmap;
4256                 bitmap += SIT_VBLOCK_MAP_SIZE;
4257
4258 #ifdef CONFIG_F2FS_CHECK_FS
4259                 sit_i->sentries[start].cur_valid_map_mir = bitmap;
4260                 bitmap += SIT_VBLOCK_MAP_SIZE;
4261 #endif
4262
4263                 sit_i->sentries[start].discard_map = bitmap;
4264                 bitmap += SIT_VBLOCK_MAP_SIZE;
4265         }
4266
4267         sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
4268         if (!sit_i->tmp_map)
4269                 return -ENOMEM;
4270
4271         if (__is_large_section(sbi)) {
4272                 sit_i->sec_entries =
4273                         f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
4274                                                       MAIN_SECS(sbi)),
4275                                       GFP_KERNEL);
4276                 if (!sit_i->sec_entries)
4277                         return -ENOMEM;
4278         }
4279
4280         /* get information related with SIT */
4281         sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4282
4283         /* setup SIT bitmap from ckeckpoint pack */
4284         sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4285         src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4286
4287         sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4288         if (!sit_i->sit_bitmap)
4289                 return -ENOMEM;
4290
4291 #ifdef CONFIG_F2FS_CHECK_FS
4292         sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4293                                         sit_bitmap_size, GFP_KERNEL);
4294         if (!sit_i->sit_bitmap_mir)
4295                 return -ENOMEM;
4296
4297         sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4298                                         main_bitmap_size, GFP_KERNEL);
4299         if (!sit_i->invalid_segmap)
4300                 return -ENOMEM;
4301 #endif
4302
4303         /* init SIT information */
4304         sit_i->s_ops = &default_salloc_ops;
4305
4306         sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4307         sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
4308         sit_i->written_valid_blocks = 0;
4309         sit_i->bitmap_size = sit_bitmap_size;
4310         sit_i->dirty_sentries = 0;
4311         sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4312         sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4313         sit_i->mounted_time = ktime_get_boottime_seconds();
4314         init_rwsem(&sit_i->sentry_lock);
4315         return 0;
4316 }
4317
4318 static int build_free_segmap(struct f2fs_sb_info *sbi)
4319 {
4320         struct free_segmap_info *free_i;
4321         unsigned int bitmap_size, sec_bitmap_size;
4322
4323         /* allocate memory for free segmap information */
4324         free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4325         if (!free_i)
4326                 return -ENOMEM;
4327
4328         SM_I(sbi)->free_info = free_i;
4329
4330         bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4331         free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4332         if (!free_i->free_segmap)
4333                 return -ENOMEM;
4334
4335         sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4336         free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4337         if (!free_i->free_secmap)
4338                 return -ENOMEM;
4339
4340         /* set all segments as dirty temporarily */
4341         memset(free_i->free_segmap, 0xff, bitmap_size);
4342         memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4343
4344         /* init free segmap information */
4345         free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4346         free_i->free_segments = 0;
4347         free_i->free_sections = 0;
4348         spin_lock_init(&free_i->segmap_lock);
4349         return 0;
4350 }
4351
4352 static int build_curseg(struct f2fs_sb_info *sbi)
4353 {
4354         struct curseg_info *array;
4355         int i;
4356
4357         array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE,
4358                                         sizeof(*array)), GFP_KERNEL);
4359         if (!array)
4360                 return -ENOMEM;
4361
4362         SM_I(sbi)->curseg_array = array;
4363
4364         for (i = 0; i < NO_CHECK_TYPE; i++) {
4365                 mutex_init(&array[i].curseg_mutex);
4366                 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4367                 if (!array[i].sum_blk)
4368                         return -ENOMEM;
4369                 init_rwsem(&array[i].journal_rwsem);
4370                 array[i].journal = f2fs_kzalloc(sbi,
4371                                 sizeof(struct f2fs_journal), GFP_KERNEL);
4372                 if (!array[i].journal)
4373                         return -ENOMEM;
4374                 if (i < NR_PERSISTENT_LOG)
4375                         array[i].seg_type = CURSEG_HOT_DATA + i;
4376                 else if (i == CURSEG_COLD_DATA_PINNED)
4377                         array[i].seg_type = CURSEG_COLD_DATA;
4378                 else if (i == CURSEG_ALL_DATA_ATGC)
4379                         array[i].seg_type = CURSEG_COLD_DATA;
4380                 array[i].segno = NULL_SEGNO;
4381                 array[i].next_blkoff = 0;
4382                 array[i].inited = false;
4383         }
4384         return restore_curseg_summaries(sbi);
4385 }
4386
4387 static int build_sit_entries(struct f2fs_sb_info *sbi)
4388 {
4389         struct sit_info *sit_i = SIT_I(sbi);
4390         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4391         struct f2fs_journal *journal = curseg->journal;
4392         struct seg_entry *se;
4393         struct f2fs_sit_entry sit;
4394         int sit_blk_cnt = SIT_BLK_CNT(sbi);
4395         unsigned int i, start, end;
4396         unsigned int readed, start_blk = 0;
4397         int err = 0;
4398         block_t total_node_blocks = 0;
4399
4400         do {
4401                 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES,
4402                                                         META_SIT, true);
4403
4404                 start = start_blk * sit_i->sents_per_block;
4405                 end = (start_blk + readed) * sit_i->sents_per_block;
4406
4407                 for (; start < end && start < MAIN_SEGS(sbi); start++) {
4408                         struct f2fs_sit_block *sit_blk;
4409                         struct page *page;
4410
4411                         se = &sit_i->sentries[start];
4412                         page = get_current_sit_page(sbi, start);
4413                         if (IS_ERR(page))
4414                                 return PTR_ERR(page);
4415                         sit_blk = (struct f2fs_sit_block *)page_address(page);
4416                         sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4417                         f2fs_put_page(page, 1);
4418
4419                         err = check_block_count(sbi, start, &sit);
4420                         if (err)
4421                                 return err;
4422                         seg_info_from_raw_sit(se, &sit);
4423                         if (IS_NODESEG(se->type))
4424                                 total_node_blocks += se->valid_blocks;
4425
4426                         /* build discard map only one time */
4427                         if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4428                                 memset(se->discard_map, 0xff,
4429                                         SIT_VBLOCK_MAP_SIZE);
4430                         } else {
4431                                 memcpy(se->discard_map,
4432                                         se->cur_valid_map,
4433                                         SIT_VBLOCK_MAP_SIZE);
4434                                 sbi->discard_blks +=
4435                                         sbi->blocks_per_seg -
4436                                         se->valid_blocks;
4437                         }
4438
4439                         if (__is_large_section(sbi))
4440                                 get_sec_entry(sbi, start)->valid_blocks +=
4441                                                         se->valid_blocks;
4442                 }
4443                 start_blk += readed;
4444         } while (start_blk < sit_blk_cnt);
4445
4446         down_read(&curseg->journal_rwsem);
4447         for (i = 0; i < sits_in_cursum(journal); i++) {
4448                 unsigned int old_valid_blocks;
4449
4450                 start = le32_to_cpu(segno_in_journal(journal, i));
4451                 if (start >= MAIN_SEGS(sbi)) {
4452                         f2fs_err(sbi, "Wrong journal entry on segno %u",
4453                                  start);
4454                         err = -EFSCORRUPTED;
4455                         break;
4456                 }
4457
4458                 se = &sit_i->sentries[start];
4459                 sit = sit_in_journal(journal, i);
4460
4461                 old_valid_blocks = se->valid_blocks;
4462                 if (IS_NODESEG(se->type))
4463                         total_node_blocks -= old_valid_blocks;
4464
4465                 err = check_block_count(sbi, start, &sit);
4466                 if (err)
4467                         break;
4468                 seg_info_from_raw_sit(se, &sit);
4469                 if (IS_NODESEG(se->type))
4470                         total_node_blocks += se->valid_blocks;
4471
4472                 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4473                         memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4474                 } else {
4475                         memcpy(se->discard_map, se->cur_valid_map,
4476                                                 SIT_VBLOCK_MAP_SIZE);
4477                         sbi->discard_blks += old_valid_blocks;
4478                         sbi->discard_blks -= se->valid_blocks;
4479                 }
4480
4481                 if (__is_large_section(sbi)) {
4482                         get_sec_entry(sbi, start)->valid_blocks +=
4483                                                         se->valid_blocks;
4484                         get_sec_entry(sbi, start)->valid_blocks -=
4485                                                         old_valid_blocks;
4486                 }
4487         }
4488         up_read(&curseg->journal_rwsem);
4489
4490         if (!err && total_node_blocks != valid_node_count(sbi)) {
4491                 f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
4492                          total_node_blocks, valid_node_count(sbi));
4493                 err = -EFSCORRUPTED;
4494         }
4495
4496         return err;
4497 }
4498
4499 static void init_free_segmap(struct f2fs_sb_info *sbi)
4500 {
4501         unsigned int start;
4502         int type;
4503         struct seg_entry *sentry;
4504
4505         for (start = 0; start < MAIN_SEGS(sbi); start++) {
4506                 if (f2fs_usable_blks_in_seg(sbi, start) == 0)
4507                         continue;
4508                 sentry = get_seg_entry(sbi, start);
4509                 if (!sentry->valid_blocks)
4510                         __set_free(sbi, start);
4511                 else
4512                         SIT_I(sbi)->written_valid_blocks +=
4513                                                 sentry->valid_blocks;
4514         }
4515
4516         /* set use the current segments */
4517         for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4518                 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4519                 __set_test_and_inuse(sbi, curseg_t->segno);
4520         }
4521 }
4522
4523 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4524 {
4525         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4526         struct free_segmap_info *free_i = FREE_I(sbi);
4527         unsigned int segno = 0, offset = 0, secno;
4528         block_t valid_blocks, usable_blks_in_seg;
4529         block_t blks_per_sec = BLKS_PER_SEC(sbi);
4530
4531         while (1) {
4532                 /* find dirty segment based on free segmap */
4533                 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4534                 if (segno >= MAIN_SEGS(sbi))
4535                         break;
4536                 offset = segno + 1;
4537                 valid_blocks = get_valid_blocks(sbi, segno, false);
4538                 usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
4539                 if (valid_blocks == usable_blks_in_seg || !valid_blocks)
4540                         continue;
4541                 if (valid_blocks > usable_blks_in_seg) {
4542                         f2fs_bug_on(sbi, 1);
4543                         continue;
4544                 }
4545                 mutex_lock(&dirty_i->seglist_lock);
4546                 __locate_dirty_segment(sbi, segno, DIRTY);
4547                 mutex_unlock(&dirty_i->seglist_lock);
4548         }
4549
4550         if (!__is_large_section(sbi))
4551                 return;
4552
4553         mutex_lock(&dirty_i->seglist_lock);
4554         for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
4555                 valid_blocks = get_valid_blocks(sbi, segno, true);
4556                 secno = GET_SEC_FROM_SEG(sbi, segno);
4557
4558                 if (!valid_blocks || valid_blocks == blks_per_sec)
4559                         continue;
4560                 if (IS_CURSEC(sbi, secno))
4561                         continue;
4562                 set_bit(secno, dirty_i->dirty_secmap);
4563         }
4564         mutex_unlock(&dirty_i->seglist_lock);
4565 }
4566
4567 static int init_victim_secmap(struct f2fs_sb_info *sbi)
4568 {
4569         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4570         unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4571
4572         dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4573         if (!dirty_i->victim_secmap)
4574                 return -ENOMEM;
4575         return 0;
4576 }
4577
4578 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4579 {
4580         struct dirty_seglist_info *dirty_i;
4581         unsigned int bitmap_size, i;
4582
4583         /* allocate memory for dirty segments list information */
4584         dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4585                                                                 GFP_KERNEL);
4586         if (!dirty_i)
4587                 return -ENOMEM;
4588
4589         SM_I(sbi)->dirty_info = dirty_i;
4590         mutex_init(&dirty_i->seglist_lock);
4591
4592         bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4593
4594         for (i = 0; i < NR_DIRTY_TYPE; i++) {
4595                 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4596                                                                 GFP_KERNEL);
4597                 if (!dirty_i->dirty_segmap[i])
4598                         return -ENOMEM;
4599         }
4600
4601         if (__is_large_section(sbi)) {
4602                 bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4603                 dirty_i->dirty_secmap = f2fs_kvzalloc(sbi,
4604                                                 bitmap_size, GFP_KERNEL);
4605                 if (!dirty_i->dirty_secmap)
4606                         return -ENOMEM;
4607         }
4608
4609         init_dirty_segmap(sbi);
4610         return init_victim_secmap(sbi);
4611 }
4612
4613 static int sanity_check_curseg(struct f2fs_sb_info *sbi)
4614 {
4615         int i;
4616
4617         /*
4618          * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
4619          * In LFS curseg, all blkaddr after .next_blkoff should be unused.
4620          */
4621         for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4622                 struct curseg_info *curseg = CURSEG_I(sbi, i);
4623                 struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
4624                 unsigned int blkofs = curseg->next_blkoff;
4625
4626                 sanity_check_seg_type(sbi, curseg->seg_type);
4627
4628                 if (f2fs_test_bit(blkofs, se->cur_valid_map))
4629                         goto out;
4630
4631                 if (curseg->alloc_type == SSR)
4632                         continue;
4633
4634                 for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) {
4635                         if (!f2fs_test_bit(blkofs, se->cur_valid_map))
4636                                 continue;
4637 out:
4638                         f2fs_err(sbi,
4639                                  "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
4640                                  i, curseg->segno, curseg->alloc_type,
4641                                  curseg->next_blkoff, blkofs);
4642                         return -EFSCORRUPTED;
4643                 }
4644         }
4645         return 0;
4646 }
4647
4648 #ifdef CONFIG_BLK_DEV_ZONED
4649
4650 static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
4651                                     struct f2fs_dev_info *fdev,
4652                                     struct blk_zone *zone)
4653 {
4654         unsigned int wp_segno, wp_blkoff, zone_secno, zone_segno, segno;
4655         block_t zone_block, wp_block, last_valid_block;
4656         unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4657         int i, s, b, ret;
4658         struct seg_entry *se;
4659
4660         if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4661                 return 0;
4662
4663         wp_block = fdev->start_blk + (zone->wp >> log_sectors_per_block);
4664         wp_segno = GET_SEGNO(sbi, wp_block);
4665         wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4666         zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block);
4667         zone_segno = GET_SEGNO(sbi, zone_block);
4668         zone_secno = GET_SEC_FROM_SEG(sbi, zone_segno);
4669
4670         if (zone_segno >= MAIN_SEGS(sbi))
4671                 return 0;
4672
4673         /*
4674          * Skip check of zones cursegs point to, since
4675          * fix_curseg_write_pointer() checks them.
4676          */
4677         for (i = 0; i < NO_CHECK_TYPE; i++)
4678                 if (zone_secno == GET_SEC_FROM_SEG(sbi,
4679                                                    CURSEG_I(sbi, i)->segno))
4680                         return 0;
4681
4682         /*
4683          * Get last valid block of the zone.
4684          */
4685         last_valid_block = zone_block - 1;
4686         for (s = sbi->segs_per_sec - 1; s >= 0; s--) {
4687                 segno = zone_segno + s;
4688                 se = get_seg_entry(sbi, segno);
4689                 for (b = sbi->blocks_per_seg - 1; b >= 0; b--)
4690                         if (f2fs_test_bit(b, se->cur_valid_map)) {
4691                                 last_valid_block = START_BLOCK(sbi, segno) + b;
4692                                 break;
4693                         }
4694                 if (last_valid_block >= zone_block)
4695                         break;
4696         }
4697
4698         /*
4699          * If last valid block is beyond the write pointer, report the
4700          * inconsistency. This inconsistency does not cause write error
4701          * because the zone will not be selected for write operation until
4702          * it get discarded. Just report it.
4703          */
4704         if (last_valid_block >= wp_block) {
4705                 f2fs_notice(sbi, "Valid block beyond write pointer: "
4706                             "valid block[0x%x,0x%x] wp[0x%x,0x%x]",
4707                             GET_SEGNO(sbi, last_valid_block),
4708                             GET_BLKOFF_FROM_SEG0(sbi, last_valid_block),
4709                             wp_segno, wp_blkoff);
4710                 return 0;
4711         }
4712
4713         /*
4714          * If there is no valid block in the zone and if write pointer is
4715          * not at zone start, reset the write pointer.
4716          */
4717         if (last_valid_block + 1 == zone_block && zone->wp != zone->start) {
4718                 f2fs_notice(sbi,
4719                             "Zone without valid block has non-zero write "
4720                             "pointer. Reset the write pointer: wp[0x%x,0x%x]",
4721                             wp_segno, wp_blkoff);
4722                 ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
4723                                         zone->len >> log_sectors_per_block);
4724                 if (ret) {
4725                         f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4726                                  fdev->path, ret);
4727                         return ret;
4728                 }
4729         }
4730
4731         return 0;
4732 }
4733
4734 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
4735                                                   block_t zone_blkaddr)
4736 {
4737         int i;
4738
4739         for (i = 0; i < sbi->s_ndevs; i++) {
4740                 if (!bdev_is_zoned(FDEV(i).bdev))
4741                         continue;
4742                 if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
4743                                 zone_blkaddr <= FDEV(i).end_blk))
4744                         return &FDEV(i);
4745         }
4746
4747         return NULL;
4748 }
4749
4750 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
4751                               void *data) {
4752         memcpy(data, zone, sizeof(struct blk_zone));
4753         return 0;
4754 }
4755
4756 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
4757 {
4758         struct curseg_info *cs = CURSEG_I(sbi, type);
4759         struct f2fs_dev_info *zbd;
4760         struct blk_zone zone;
4761         unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
4762         block_t cs_zone_block, wp_block;
4763         unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4764         sector_t zone_sector;
4765         int err;
4766
4767         cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4768         cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4769
4770         zbd = get_target_zoned_dev(sbi, cs_zone_block);
4771         if (!zbd)
4772                 return 0;
4773
4774         /* report zone for the sector the curseg points to */
4775         zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4776                 << log_sectors_per_block;
4777         err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4778                                   report_one_zone_cb, &zone);
4779         if (err != 1) {
4780                 f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4781                          zbd->path, err);
4782                 return err;
4783         }
4784
4785         if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4786                 return 0;
4787
4788         wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block);
4789         wp_segno = GET_SEGNO(sbi, wp_block);
4790         wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4791         wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0);
4792
4793         if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
4794                 wp_sector_off == 0)
4795                 return 0;
4796
4797         f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
4798                     "curseg[0x%x,0x%x] wp[0x%x,0x%x]",
4799                     type, cs->segno, cs->next_blkoff, wp_segno, wp_blkoff);
4800
4801         f2fs_notice(sbi, "Assign new section to curseg[%d]: "
4802                     "curseg[0x%x,0x%x]", type, cs->segno, cs->next_blkoff);
4803         allocate_segment_by_default(sbi, type, true);
4804
4805         /* check consistency of the zone curseg pointed to */
4806         if (check_zone_write_pointer(sbi, zbd, &zone))
4807                 return -EIO;
4808
4809         /* check newly assigned zone */
4810         cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4811         cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4812
4813         zbd = get_target_zoned_dev(sbi, cs_zone_block);
4814         if (!zbd)
4815                 return 0;
4816
4817         zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4818                 << log_sectors_per_block;
4819         err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4820                                   report_one_zone_cb, &zone);
4821         if (err != 1) {
4822                 f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4823                          zbd->path, err);
4824                 return err;
4825         }
4826
4827         if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4828                 return 0;
4829
4830         if (zone.wp != zone.start) {
4831                 f2fs_notice(sbi,
4832                             "New zone for curseg[%d] is not yet discarded. "
4833                             "Reset the zone: curseg[0x%x,0x%x]",
4834                             type, cs->segno, cs->next_blkoff);
4835                 err = __f2fs_issue_discard_zone(sbi, zbd->bdev,
4836                                 zone_sector >> log_sectors_per_block,
4837                                 zone.len >> log_sectors_per_block);
4838                 if (err) {
4839                         f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4840                                  zbd->path, err);
4841                         return err;
4842                 }
4843         }
4844
4845         return 0;
4846 }
4847
4848 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
4849 {
4850         int i, ret;
4851
4852         for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4853                 ret = fix_curseg_write_pointer(sbi, i);
4854                 if (ret)
4855                         return ret;
4856         }
4857
4858         return 0;
4859 }
4860
4861 struct check_zone_write_pointer_args {
4862         struct f2fs_sb_info *sbi;
4863         struct f2fs_dev_info *fdev;
4864 };
4865
4866 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
4867                                       void *data) {
4868         struct check_zone_write_pointer_args *args;
4869         args = (struct check_zone_write_pointer_args *)data;
4870
4871         return check_zone_write_pointer(args->sbi, args->fdev, zone);
4872 }
4873
4874 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
4875 {
4876         int i, ret;
4877         struct check_zone_write_pointer_args args;
4878
4879         for (i = 0; i < sbi->s_ndevs; i++) {
4880                 if (!bdev_is_zoned(FDEV(i).bdev))
4881                         continue;
4882
4883                 args.sbi = sbi;
4884                 args.fdev = &FDEV(i);
4885                 ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
4886                                           check_zone_write_pointer_cb, &args);
4887                 if (ret < 0)
4888                         return ret;
4889         }
4890
4891         return 0;
4892 }
4893
4894 static bool is_conv_zone(struct f2fs_sb_info *sbi, unsigned int zone_idx,
4895                                                 unsigned int dev_idx)
4896 {
4897         if (!bdev_is_zoned(FDEV(dev_idx).bdev))
4898                 return true;
4899         return !test_bit(zone_idx, FDEV(dev_idx).blkz_seq);
4900 }
4901
4902 /* Return the zone index in the given device */
4903 static unsigned int get_zone_idx(struct f2fs_sb_info *sbi, unsigned int secno,
4904                                         int dev_idx)
4905 {
4906         block_t sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
4907
4908         return (sec_start_blkaddr - FDEV(dev_idx).start_blk) >>
4909                                                 sbi->log_blocks_per_blkz;
4910 }
4911
4912 /*
4913  * Return the usable segments in a section based on the zone's
4914  * corresponding zone capacity. Zone is equal to a section.
4915  */
4916 static inline unsigned int f2fs_usable_zone_segs_in_sec(
4917                 struct f2fs_sb_info *sbi, unsigned int segno)
4918 {
4919         unsigned int dev_idx, zone_idx, unusable_segs_in_sec;
4920
4921         dev_idx = f2fs_target_device_index(sbi, START_BLOCK(sbi, segno));
4922         zone_idx = get_zone_idx(sbi, GET_SEC_FROM_SEG(sbi, segno), dev_idx);
4923
4924         /* Conventional zone's capacity is always equal to zone size */
4925         if (is_conv_zone(sbi, zone_idx, dev_idx))
4926                 return sbi->segs_per_sec;
4927
4928         /*
4929          * If the zone_capacity_blocks array is NULL, then zone capacity
4930          * is equal to the zone size for all zones
4931          */
4932         if (!FDEV(dev_idx).zone_capacity_blocks)
4933                 return sbi->segs_per_sec;
4934
4935         /* Get the segment count beyond zone capacity block */
4936         unusable_segs_in_sec = (sbi->blocks_per_blkz -
4937                                 FDEV(dev_idx).zone_capacity_blocks[zone_idx]) >>
4938                                 sbi->log_blocks_per_seg;
4939         return sbi->segs_per_sec - unusable_segs_in_sec;
4940 }
4941
4942 /*
4943  * Return the number of usable blocks in a segment. The number of blocks
4944  * returned is always equal to the number of blocks in a segment for
4945  * segments fully contained within a sequential zone capacity or a
4946  * conventional zone. For segments partially contained in a sequential
4947  * zone capacity, the number of usable blocks up to the zone capacity
4948  * is returned. 0 is returned in all other cases.
4949  */
4950 static inline unsigned int f2fs_usable_zone_blks_in_seg(
4951                         struct f2fs_sb_info *sbi, unsigned int segno)
4952 {
4953         block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr;
4954         unsigned int zone_idx, dev_idx, secno;
4955
4956         secno = GET_SEC_FROM_SEG(sbi, segno);
4957         seg_start = START_BLOCK(sbi, segno);
4958         dev_idx = f2fs_target_device_index(sbi, seg_start);
4959         zone_idx = get_zone_idx(sbi, secno, dev_idx);
4960
4961         /*
4962          * Conventional zone's capacity is always equal to zone size,
4963          * so, blocks per segment is unchanged.
4964          */
4965         if (is_conv_zone(sbi, zone_idx, dev_idx))
4966                 return sbi->blocks_per_seg;
4967
4968         if (!FDEV(dev_idx).zone_capacity_blocks)
4969                 return sbi->blocks_per_seg;
4970
4971         sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
4972         sec_cap_blkaddr = sec_start_blkaddr +
4973                                 FDEV(dev_idx).zone_capacity_blocks[zone_idx];
4974
4975         /*
4976          * If segment starts before zone capacity and spans beyond
4977          * zone capacity, then usable blocks are from seg start to
4978          * zone capacity. If the segment starts after the zone capacity,
4979          * then there are no usable blocks.
4980          */
4981         if (seg_start >= sec_cap_blkaddr)
4982                 return 0;
4983         if (seg_start + sbi->blocks_per_seg > sec_cap_blkaddr)
4984                 return sec_cap_blkaddr - seg_start;
4985
4986         return sbi->blocks_per_seg;
4987 }
4988 #else
4989 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
4990 {
4991         return 0;
4992 }
4993
4994 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
4995 {
4996         return 0;
4997 }
4998
4999 static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi,
5000                                                         unsigned int segno)
5001 {
5002         return 0;
5003 }
5004
5005 static inline unsigned int f2fs_usable_zone_segs_in_sec(struct f2fs_sb_info *sbi,
5006                                                         unsigned int segno)
5007 {
5008         return 0;
5009 }
5010 #endif
5011 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
5012                                         unsigned int segno)
5013 {
5014         if (f2fs_sb_has_blkzoned(sbi))
5015                 return f2fs_usable_zone_blks_in_seg(sbi, segno);
5016
5017         return sbi->blocks_per_seg;
5018 }
5019
5020 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
5021                                         unsigned int segno)
5022 {
5023         if (f2fs_sb_has_blkzoned(sbi))
5024                 return f2fs_usable_zone_segs_in_sec(sbi, segno);
5025
5026         return sbi->segs_per_sec;
5027 }
5028
5029 /*
5030  * Update min, max modified time for cost-benefit GC algorithm
5031  */
5032 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
5033 {
5034         struct sit_info *sit_i = SIT_I(sbi);
5035         unsigned int segno;
5036
5037         down_write(&sit_i->sentry_lock);
5038
5039         sit_i->min_mtime = ULLONG_MAX;
5040
5041         for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
5042                 unsigned int i;
5043                 unsigned long long mtime = 0;
5044
5045                 for (i = 0; i < sbi->segs_per_sec; i++)
5046                         mtime += get_seg_entry(sbi, segno + i)->mtime;
5047
5048                 mtime = div_u64(mtime, sbi->segs_per_sec);
5049
5050                 if (sit_i->min_mtime > mtime)
5051                         sit_i->min_mtime = mtime;
5052         }
5053         sit_i->max_mtime = get_mtime(sbi, false);
5054         sit_i->dirty_max_mtime = 0;
5055         up_write(&sit_i->sentry_lock);
5056 }
5057
5058 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
5059 {
5060         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
5061         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
5062         struct f2fs_sm_info *sm_info;
5063         int err;
5064
5065         sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
5066         if (!sm_info)
5067                 return -ENOMEM;
5068
5069         /* init sm info */
5070         sbi->sm_info = sm_info;
5071         sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
5072         sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
5073         sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
5074         sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
5075         sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
5076         sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
5077         sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
5078         sm_info->rec_prefree_segments = sm_info->main_segments *
5079                                         DEF_RECLAIM_PREFREE_SEGMENTS / 100;
5080         if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
5081                 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
5082
5083         if (!f2fs_lfs_mode(sbi))
5084                 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
5085         sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
5086         sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
5087         sm_info->min_seq_blocks = sbi->blocks_per_seg * sbi->segs_per_sec;
5088         sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
5089         sm_info->min_ssr_sections = reserved_sections(sbi);
5090
5091         INIT_LIST_HEAD(&sm_info->sit_entry_set);
5092
5093         init_rwsem(&sm_info->curseg_lock);
5094
5095         if (!f2fs_readonly(sbi->sb)) {
5096                 err = f2fs_create_flush_cmd_control(sbi);
5097                 if (err)
5098                         return err;
5099         }
5100
5101         err = create_discard_cmd_control(sbi);
5102         if (err)
5103                 return err;
5104
5105         err = build_sit_info(sbi);
5106         if (err)
5107                 return err;
5108         err = build_free_segmap(sbi);
5109         if (err)
5110                 return err;
5111         err = build_curseg(sbi);
5112         if (err)
5113                 return err;
5114
5115         /* reinit free segmap based on SIT */
5116         err = build_sit_entries(sbi);
5117         if (err)
5118                 return err;
5119
5120         init_free_segmap(sbi);
5121         err = build_dirty_segmap(sbi);
5122         if (err)
5123                 return err;
5124
5125         err = sanity_check_curseg(sbi);
5126         if (err)
5127                 return err;
5128
5129         init_min_max_mtime(sbi);
5130         return 0;
5131 }
5132
5133 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
5134                 enum dirty_type dirty_type)
5135 {
5136         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5137
5138         mutex_lock(&dirty_i->seglist_lock);
5139         kvfree(dirty_i->dirty_segmap[dirty_type]);
5140         dirty_i->nr_dirty[dirty_type] = 0;
5141         mutex_unlock(&dirty_i->seglist_lock);
5142 }
5143
5144 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
5145 {
5146         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5147         kvfree(dirty_i->victim_secmap);
5148 }
5149
5150 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
5151 {
5152         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5153         int i;
5154
5155         if (!dirty_i)
5156                 return;
5157
5158         /* discard pre-free/dirty segments list */
5159         for (i = 0; i < NR_DIRTY_TYPE; i++)
5160                 discard_dirty_segmap(sbi, i);
5161
5162         if (__is_large_section(sbi)) {
5163                 mutex_lock(&dirty_i->seglist_lock);
5164                 kvfree(dirty_i->dirty_secmap);
5165                 mutex_unlock(&dirty_i->seglist_lock);
5166         }
5167
5168         destroy_victim_secmap(sbi);
5169         SM_I(sbi)->dirty_info = NULL;
5170         kfree(dirty_i);
5171 }
5172
5173 static void destroy_curseg(struct f2fs_sb_info *sbi)
5174 {
5175         struct curseg_info *array = SM_I(sbi)->curseg_array;
5176         int i;
5177
5178         if (!array)
5179                 return;
5180         SM_I(sbi)->curseg_array = NULL;
5181         for (i = 0; i < NR_CURSEG_TYPE; i++) {
5182                 kfree(array[i].sum_blk);
5183                 kfree(array[i].journal);
5184         }
5185         kfree(array);
5186 }
5187
5188 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
5189 {
5190         struct free_segmap_info *free_i = SM_I(sbi)->free_info;
5191         if (!free_i)
5192                 return;
5193         SM_I(sbi)->free_info = NULL;
5194         kvfree(free_i->free_segmap);
5195         kvfree(free_i->free_secmap);
5196         kfree(free_i);
5197 }
5198
5199 static void destroy_sit_info(struct f2fs_sb_info *sbi)
5200 {
5201         struct sit_info *sit_i = SIT_I(sbi);
5202
5203         if (!sit_i)
5204                 return;
5205
5206         if (sit_i->sentries)
5207                 kvfree(sit_i->bitmap);
5208         kfree(sit_i->tmp_map);
5209
5210         kvfree(sit_i->sentries);
5211         kvfree(sit_i->sec_entries);
5212         kvfree(sit_i->dirty_sentries_bitmap);
5213
5214         SM_I(sbi)->sit_info = NULL;
5215         kvfree(sit_i->sit_bitmap);
5216 #ifdef CONFIG_F2FS_CHECK_FS
5217         kvfree(sit_i->sit_bitmap_mir);
5218         kvfree(sit_i->invalid_segmap);
5219 #endif
5220         kfree(sit_i);
5221 }
5222
5223 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
5224 {
5225         struct f2fs_sm_info *sm_info = SM_I(sbi);
5226
5227         if (!sm_info)
5228                 return;
5229         f2fs_destroy_flush_cmd_control(sbi, true);
5230         destroy_discard_cmd_control(sbi);
5231         destroy_dirty_segmap(sbi);
5232         destroy_curseg(sbi);
5233         destroy_free_segmap(sbi);
5234         destroy_sit_info(sbi);
5235         sbi->sm_info = NULL;
5236         kfree(sm_info);
5237 }
5238
5239 int __init f2fs_create_segment_manager_caches(void)
5240 {
5241         discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry",
5242                         sizeof(struct discard_entry));
5243         if (!discard_entry_slab)
5244                 goto fail;
5245
5246         discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd",
5247                         sizeof(struct discard_cmd));
5248         if (!discard_cmd_slab)
5249                 goto destroy_discard_entry;
5250
5251         sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set",
5252                         sizeof(struct sit_entry_set));
5253         if (!sit_entry_set_slab)
5254                 goto destroy_discard_cmd;
5255
5256         inmem_entry_slab = f2fs_kmem_cache_create("f2fs_inmem_page_entry",
5257                         sizeof(struct inmem_pages));
5258         if (!inmem_entry_slab)
5259                 goto destroy_sit_entry_set;
5260         return 0;
5261
5262 destroy_sit_entry_set:
5263         kmem_cache_destroy(sit_entry_set_slab);
5264 destroy_discard_cmd:
5265         kmem_cache_destroy(discard_cmd_slab);
5266 destroy_discard_entry:
5267         kmem_cache_destroy(discard_entry_slab);
5268 fail:
5269         return -ENOMEM;
5270 }
5271
5272 void f2fs_destroy_segment_manager_caches(void)
5273 {
5274         kmem_cache_destroy(sit_entry_set_slab);
5275         kmem_cache_destroy(discard_cmd_slab);
5276         kmem_cache_destroy(discard_entry_slab);
5277         kmem_cache_destroy(inmem_entry_slab);
5278 }