soundwire: sysfs: add slave status and device number before probe
[linux-2.6-microblaze.git] / fs / f2fs / segment.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/segment.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/prefetch.h>
13 #include <linux/kthread.h>
14 #include <linux/swap.h>
15 #include <linux/timer.h>
16 #include <linux/freezer.h>
17 #include <linux/sched/signal.h>
18
19 #include "f2fs.h"
20 #include "segment.h"
21 #include "node.h"
22 #include "gc.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25
26 #define __reverse_ffz(x) __reverse_ffs(~(x))
27
28 static struct kmem_cache *discard_entry_slab;
29 static struct kmem_cache *discard_cmd_slab;
30 static struct kmem_cache *sit_entry_set_slab;
31 static struct kmem_cache *inmem_entry_slab;
32
33 static unsigned long __reverse_ulong(unsigned char *str)
34 {
35         unsigned long tmp = 0;
36         int shift = 24, idx = 0;
37
38 #if BITS_PER_LONG == 64
39         shift = 56;
40 #endif
41         while (shift >= 0) {
42                 tmp |= (unsigned long)str[idx++] << shift;
43                 shift -= BITS_PER_BYTE;
44         }
45         return tmp;
46 }
47
48 /*
49  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
50  * MSB and LSB are reversed in a byte by f2fs_set_bit.
51  */
52 static inline unsigned long __reverse_ffs(unsigned long word)
53 {
54         int num = 0;
55
56 #if BITS_PER_LONG == 64
57         if ((word & 0xffffffff00000000UL) == 0)
58                 num += 32;
59         else
60                 word >>= 32;
61 #endif
62         if ((word & 0xffff0000) == 0)
63                 num += 16;
64         else
65                 word >>= 16;
66
67         if ((word & 0xff00) == 0)
68                 num += 8;
69         else
70                 word >>= 8;
71
72         if ((word & 0xf0) == 0)
73                 num += 4;
74         else
75                 word >>= 4;
76
77         if ((word & 0xc) == 0)
78                 num += 2;
79         else
80                 word >>= 2;
81
82         if ((word & 0x2) == 0)
83                 num += 1;
84         return num;
85 }
86
87 /*
88  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
89  * f2fs_set_bit makes MSB and LSB reversed in a byte.
90  * @size must be integral times of unsigned long.
91  * Example:
92  *                             MSB <--> LSB
93  *   f2fs_set_bit(0, bitmap) => 1000 0000
94  *   f2fs_set_bit(7, bitmap) => 0000 0001
95  */
96 static unsigned long __find_rev_next_bit(const unsigned long *addr,
97                         unsigned long size, unsigned long offset)
98 {
99         const unsigned long *p = addr + BIT_WORD(offset);
100         unsigned long result = size;
101         unsigned long tmp;
102
103         if (offset >= size)
104                 return size;
105
106         size -= (offset & ~(BITS_PER_LONG - 1));
107         offset %= BITS_PER_LONG;
108
109         while (1) {
110                 if (*p == 0)
111                         goto pass;
112
113                 tmp = __reverse_ulong((unsigned char *)p);
114
115                 tmp &= ~0UL >> offset;
116                 if (size < BITS_PER_LONG)
117                         tmp &= (~0UL << (BITS_PER_LONG - size));
118                 if (tmp)
119                         goto found;
120 pass:
121                 if (size <= BITS_PER_LONG)
122                         break;
123                 size -= BITS_PER_LONG;
124                 offset = 0;
125                 p++;
126         }
127         return result;
128 found:
129         return result - size + __reverse_ffs(tmp);
130 }
131
132 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
133                         unsigned long size, unsigned long offset)
134 {
135         const unsigned long *p = addr + BIT_WORD(offset);
136         unsigned long result = size;
137         unsigned long tmp;
138
139         if (offset >= size)
140                 return size;
141
142         size -= (offset & ~(BITS_PER_LONG - 1));
143         offset %= BITS_PER_LONG;
144
145         while (1) {
146                 if (*p == ~0UL)
147                         goto pass;
148
149                 tmp = __reverse_ulong((unsigned char *)p);
150
151                 if (offset)
152                         tmp |= ~0UL << (BITS_PER_LONG - offset);
153                 if (size < BITS_PER_LONG)
154                         tmp |= ~0UL >> size;
155                 if (tmp != ~0UL)
156                         goto found;
157 pass:
158                 if (size <= BITS_PER_LONG)
159                         break;
160                 size -= BITS_PER_LONG;
161                 offset = 0;
162                 p++;
163         }
164         return result;
165 found:
166         return result - size + __reverse_ffz(tmp);
167 }
168
169 bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
170 {
171         int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
172         int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
173         int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
174
175         if (f2fs_lfs_mode(sbi))
176                 return false;
177         if (sbi->gc_mode == GC_URGENT_HIGH)
178                 return true;
179         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
180                 return true;
181
182         return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
183                         SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
184 }
185
186 void f2fs_register_inmem_page(struct inode *inode, struct page *page)
187 {
188         struct inmem_pages *new;
189
190         f2fs_trace_pid(page);
191
192         f2fs_set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
193
194         new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
195
196         /* add atomic page indices to the list */
197         new->page = page;
198         INIT_LIST_HEAD(&new->list);
199
200         /* increase reference count with clean state */
201         get_page(page);
202         mutex_lock(&F2FS_I(inode)->inmem_lock);
203         list_add_tail(&new->list, &F2FS_I(inode)->inmem_pages);
204         inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
205         mutex_unlock(&F2FS_I(inode)->inmem_lock);
206
207         trace_f2fs_register_inmem_page(page, INMEM);
208 }
209
210 static int __revoke_inmem_pages(struct inode *inode,
211                                 struct list_head *head, bool drop, bool recover,
212                                 bool trylock)
213 {
214         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
215         struct inmem_pages *cur, *tmp;
216         int err = 0;
217
218         list_for_each_entry_safe(cur, tmp, head, list) {
219                 struct page *page = cur->page;
220
221                 if (drop)
222                         trace_f2fs_commit_inmem_page(page, INMEM_DROP);
223
224                 if (trylock) {
225                         /*
226                          * to avoid deadlock in between page lock and
227                          * inmem_lock.
228                          */
229                         if (!trylock_page(page))
230                                 continue;
231                 } else {
232                         lock_page(page);
233                 }
234
235                 f2fs_wait_on_page_writeback(page, DATA, true, true);
236
237                 if (recover) {
238                         struct dnode_of_data dn;
239                         struct node_info ni;
240
241                         trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
242 retry:
243                         set_new_dnode(&dn, inode, NULL, NULL, 0);
244                         err = f2fs_get_dnode_of_data(&dn, page->index,
245                                                                 LOOKUP_NODE);
246                         if (err) {
247                                 if (err == -ENOMEM) {
248                                         congestion_wait(BLK_RW_ASYNC,
249                                                         DEFAULT_IO_TIMEOUT);
250                                         cond_resched();
251                                         goto retry;
252                                 }
253                                 err = -EAGAIN;
254                                 goto next;
255                         }
256
257                         err = f2fs_get_node_info(sbi, dn.nid, &ni);
258                         if (err) {
259                                 f2fs_put_dnode(&dn);
260                                 return err;
261                         }
262
263                         if (cur->old_addr == NEW_ADDR) {
264                                 f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
265                                 f2fs_update_data_blkaddr(&dn, NEW_ADDR);
266                         } else
267                                 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
268                                         cur->old_addr, ni.version, true, true);
269                         f2fs_put_dnode(&dn);
270                 }
271 next:
272                 /* we don't need to invalidate this in the sccessful status */
273                 if (drop || recover) {
274                         ClearPageUptodate(page);
275                         clear_cold_data(page);
276                 }
277                 f2fs_clear_page_private(page);
278                 f2fs_put_page(page, 1);
279
280                 list_del(&cur->list);
281                 kmem_cache_free(inmem_entry_slab, cur);
282                 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
283         }
284         return err;
285 }
286
287 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure)
288 {
289         struct list_head *head = &sbi->inode_list[ATOMIC_FILE];
290         struct inode *inode;
291         struct f2fs_inode_info *fi;
292         unsigned int count = sbi->atomic_files;
293         unsigned int looped = 0;
294 next:
295         spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
296         if (list_empty(head)) {
297                 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
298                 return;
299         }
300         fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist);
301         inode = igrab(&fi->vfs_inode);
302         if (inode)
303                 list_move_tail(&fi->inmem_ilist, head);
304         spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
305
306         if (inode) {
307                 if (gc_failure) {
308                         if (!fi->i_gc_failures[GC_FAILURE_ATOMIC])
309                                 goto skip;
310                 }
311                 set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
312                 f2fs_drop_inmem_pages(inode);
313 skip:
314                 iput(inode);
315         }
316         congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
317         cond_resched();
318         if (gc_failure) {
319                 if (++looped >= count)
320                         return;
321         }
322         goto next;
323 }
324
325 void f2fs_drop_inmem_pages(struct inode *inode)
326 {
327         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
328         struct f2fs_inode_info *fi = F2FS_I(inode);
329
330         while (!list_empty(&fi->inmem_pages)) {
331                 mutex_lock(&fi->inmem_lock);
332                 __revoke_inmem_pages(inode, &fi->inmem_pages,
333                                                 true, false, true);
334                 mutex_unlock(&fi->inmem_lock);
335         }
336
337         fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0;
338
339         spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
340         if (!list_empty(&fi->inmem_ilist))
341                 list_del_init(&fi->inmem_ilist);
342         if (f2fs_is_atomic_file(inode)) {
343                 clear_inode_flag(inode, FI_ATOMIC_FILE);
344                 sbi->atomic_files--;
345         }
346         spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
347 }
348
349 void f2fs_drop_inmem_page(struct inode *inode, struct page *page)
350 {
351         struct f2fs_inode_info *fi = F2FS_I(inode);
352         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
353         struct list_head *head = &fi->inmem_pages;
354         struct inmem_pages *cur = NULL;
355
356         f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page));
357
358         mutex_lock(&fi->inmem_lock);
359         list_for_each_entry(cur, head, list) {
360                 if (cur->page == page)
361                         break;
362         }
363
364         f2fs_bug_on(sbi, list_empty(head) || cur->page != page);
365         list_del(&cur->list);
366         mutex_unlock(&fi->inmem_lock);
367
368         dec_page_count(sbi, F2FS_INMEM_PAGES);
369         kmem_cache_free(inmem_entry_slab, cur);
370
371         ClearPageUptodate(page);
372         f2fs_clear_page_private(page);
373         f2fs_put_page(page, 0);
374
375         trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
376 }
377
378 static int __f2fs_commit_inmem_pages(struct inode *inode)
379 {
380         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
381         struct f2fs_inode_info *fi = F2FS_I(inode);
382         struct inmem_pages *cur, *tmp;
383         struct f2fs_io_info fio = {
384                 .sbi = sbi,
385                 .ino = inode->i_ino,
386                 .type = DATA,
387                 .op = REQ_OP_WRITE,
388                 .op_flags = REQ_SYNC | REQ_PRIO,
389                 .io_type = FS_DATA_IO,
390         };
391         struct list_head revoke_list;
392         bool submit_bio = false;
393         int err = 0;
394
395         INIT_LIST_HEAD(&revoke_list);
396
397         list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
398                 struct page *page = cur->page;
399
400                 lock_page(page);
401                 if (page->mapping == inode->i_mapping) {
402                         trace_f2fs_commit_inmem_page(page, INMEM);
403
404                         f2fs_wait_on_page_writeback(page, DATA, true, true);
405
406                         set_page_dirty(page);
407                         if (clear_page_dirty_for_io(page)) {
408                                 inode_dec_dirty_pages(inode);
409                                 f2fs_remove_dirty_inode(inode);
410                         }
411 retry:
412                         fio.page = page;
413                         fio.old_blkaddr = NULL_ADDR;
414                         fio.encrypted_page = NULL;
415                         fio.need_lock = LOCK_DONE;
416                         err = f2fs_do_write_data_page(&fio);
417                         if (err) {
418                                 if (err == -ENOMEM) {
419                                         congestion_wait(BLK_RW_ASYNC,
420                                                         DEFAULT_IO_TIMEOUT);
421                                         cond_resched();
422                                         goto retry;
423                                 }
424                                 unlock_page(page);
425                                 break;
426                         }
427                         /* record old blkaddr for revoking */
428                         cur->old_addr = fio.old_blkaddr;
429                         submit_bio = true;
430                 }
431                 unlock_page(page);
432                 list_move_tail(&cur->list, &revoke_list);
433         }
434
435         if (submit_bio)
436                 f2fs_submit_merged_write_cond(sbi, inode, NULL, 0, DATA);
437
438         if (err) {
439                 /*
440                  * try to revoke all committed pages, but still we could fail
441                  * due to no memory or other reason, if that happened, EAGAIN
442                  * will be returned, which means in such case, transaction is
443                  * already not integrity, caller should use journal to do the
444                  * recovery or rewrite & commit last transaction. For other
445                  * error number, revoking was done by filesystem itself.
446                  */
447                 err = __revoke_inmem_pages(inode, &revoke_list,
448                                                 false, true, false);
449
450                 /* drop all uncommitted pages */
451                 __revoke_inmem_pages(inode, &fi->inmem_pages,
452                                                 true, false, false);
453         } else {
454                 __revoke_inmem_pages(inode, &revoke_list,
455                                                 false, false, false);
456         }
457
458         return err;
459 }
460
461 int f2fs_commit_inmem_pages(struct inode *inode)
462 {
463         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
464         struct f2fs_inode_info *fi = F2FS_I(inode);
465         int err;
466
467         f2fs_balance_fs(sbi, true);
468
469         down_write(&fi->i_gc_rwsem[WRITE]);
470
471         f2fs_lock_op(sbi);
472         set_inode_flag(inode, FI_ATOMIC_COMMIT);
473
474         mutex_lock(&fi->inmem_lock);
475         err = __f2fs_commit_inmem_pages(inode);
476         mutex_unlock(&fi->inmem_lock);
477
478         clear_inode_flag(inode, FI_ATOMIC_COMMIT);
479
480         f2fs_unlock_op(sbi);
481         up_write(&fi->i_gc_rwsem[WRITE]);
482
483         return err;
484 }
485
486 /*
487  * This function balances dirty node and dentry pages.
488  * In addition, it controls garbage collection.
489  */
490 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
491 {
492         if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
493                 f2fs_show_injection_info(sbi, FAULT_CHECKPOINT);
494                 f2fs_stop_checkpoint(sbi, false);
495         }
496
497         /* balance_fs_bg is able to be pending */
498         if (need && excess_cached_nats(sbi))
499                 f2fs_balance_fs_bg(sbi, false);
500
501         if (!f2fs_is_checkpoint_ready(sbi))
502                 return;
503
504         /*
505          * We should do GC or end up with checkpoint, if there are so many dirty
506          * dir/node pages without enough free segments.
507          */
508         if (has_not_enough_free_secs(sbi, 0, 0)) {
509                 down_write(&sbi->gc_lock);
510                 f2fs_gc(sbi, false, false, NULL_SEGNO);
511         }
512 }
513
514 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg)
515 {
516         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
517                 return;
518
519         /* try to shrink extent cache when there is no enough memory */
520         if (!f2fs_available_free_memory(sbi, EXTENT_CACHE))
521                 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
522
523         /* check the # of cached NAT entries */
524         if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
525                 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
526
527         if (!f2fs_available_free_memory(sbi, FREE_NIDS))
528                 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
529         else
530                 f2fs_build_free_nids(sbi, false, false);
531
532         if (!is_idle(sbi, REQ_TIME) &&
533                 (!excess_dirty_nats(sbi) && !excess_dirty_nodes(sbi)))
534                 return;
535
536         /* checkpoint is the only way to shrink partial cached entries */
537         if (!f2fs_available_free_memory(sbi, NAT_ENTRIES) ||
538                         !f2fs_available_free_memory(sbi, INO_ENTRIES) ||
539                         excess_prefree_segs(sbi) ||
540                         excess_dirty_nats(sbi) ||
541                         excess_dirty_nodes(sbi) ||
542                         f2fs_time_over(sbi, CP_TIME)) {
543                 if (test_opt(sbi, DATA_FLUSH) && from_bg) {
544                         struct blk_plug plug;
545
546                         mutex_lock(&sbi->flush_lock);
547
548                         blk_start_plug(&plug);
549                         f2fs_sync_dirty_inodes(sbi, FILE_INODE);
550                         blk_finish_plug(&plug);
551
552                         mutex_unlock(&sbi->flush_lock);
553                 }
554                 f2fs_sync_fs(sbi->sb, true);
555                 stat_inc_bg_cp_count(sbi->stat_info);
556         }
557 }
558
559 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
560                                 struct block_device *bdev)
561 {
562         struct bio *bio;
563         int ret;
564
565         bio = f2fs_bio_alloc(sbi, 0, false);
566         if (!bio)
567                 return -ENOMEM;
568
569         bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
570         bio_set_dev(bio, bdev);
571         ret = submit_bio_wait(bio);
572         bio_put(bio);
573
574         trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
575                                 test_opt(sbi, FLUSH_MERGE), ret);
576         return ret;
577 }
578
579 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
580 {
581         int ret = 0;
582         int i;
583
584         if (!f2fs_is_multi_device(sbi))
585                 return __submit_flush_wait(sbi, sbi->sb->s_bdev);
586
587         for (i = 0; i < sbi->s_ndevs; i++) {
588                 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
589                         continue;
590                 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
591                 if (ret)
592                         break;
593         }
594         return ret;
595 }
596
597 static int issue_flush_thread(void *data)
598 {
599         struct f2fs_sb_info *sbi = data;
600         struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
601         wait_queue_head_t *q = &fcc->flush_wait_queue;
602 repeat:
603         if (kthread_should_stop())
604                 return 0;
605
606         sb_start_intwrite(sbi->sb);
607
608         if (!llist_empty(&fcc->issue_list)) {
609                 struct flush_cmd *cmd, *next;
610                 int ret;
611
612                 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
613                 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
614
615                 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
616
617                 ret = submit_flush_wait(sbi, cmd->ino);
618                 atomic_inc(&fcc->issued_flush);
619
620                 llist_for_each_entry_safe(cmd, next,
621                                           fcc->dispatch_list, llnode) {
622                         cmd->ret = ret;
623                         complete(&cmd->wait);
624                 }
625                 fcc->dispatch_list = NULL;
626         }
627
628         sb_end_intwrite(sbi->sb);
629
630         wait_event_interruptible(*q,
631                 kthread_should_stop() || !llist_empty(&fcc->issue_list));
632         goto repeat;
633 }
634
635 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
636 {
637         struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
638         struct flush_cmd cmd;
639         int ret;
640
641         if (test_opt(sbi, NOBARRIER))
642                 return 0;
643
644         if (!test_opt(sbi, FLUSH_MERGE)) {
645                 atomic_inc(&fcc->queued_flush);
646                 ret = submit_flush_wait(sbi, ino);
647                 atomic_dec(&fcc->queued_flush);
648                 atomic_inc(&fcc->issued_flush);
649                 return ret;
650         }
651
652         if (atomic_inc_return(&fcc->queued_flush) == 1 ||
653             f2fs_is_multi_device(sbi)) {
654                 ret = submit_flush_wait(sbi, ino);
655                 atomic_dec(&fcc->queued_flush);
656
657                 atomic_inc(&fcc->issued_flush);
658                 return ret;
659         }
660
661         cmd.ino = ino;
662         init_completion(&cmd.wait);
663
664         llist_add(&cmd.llnode, &fcc->issue_list);
665
666         /* update issue_list before we wake up issue_flush thread */
667         smp_mb();
668
669         if (waitqueue_active(&fcc->flush_wait_queue))
670                 wake_up(&fcc->flush_wait_queue);
671
672         if (fcc->f2fs_issue_flush) {
673                 wait_for_completion(&cmd.wait);
674                 atomic_dec(&fcc->queued_flush);
675         } else {
676                 struct llist_node *list;
677
678                 list = llist_del_all(&fcc->issue_list);
679                 if (!list) {
680                         wait_for_completion(&cmd.wait);
681                         atomic_dec(&fcc->queued_flush);
682                 } else {
683                         struct flush_cmd *tmp, *next;
684
685                         ret = submit_flush_wait(sbi, ino);
686
687                         llist_for_each_entry_safe(tmp, next, list, llnode) {
688                                 if (tmp == &cmd) {
689                                         cmd.ret = ret;
690                                         atomic_dec(&fcc->queued_flush);
691                                         continue;
692                                 }
693                                 tmp->ret = ret;
694                                 complete(&tmp->wait);
695                         }
696                 }
697         }
698
699         return cmd.ret;
700 }
701
702 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
703 {
704         dev_t dev = sbi->sb->s_bdev->bd_dev;
705         struct flush_cmd_control *fcc;
706         int err = 0;
707
708         if (SM_I(sbi)->fcc_info) {
709                 fcc = SM_I(sbi)->fcc_info;
710                 if (fcc->f2fs_issue_flush)
711                         return err;
712                 goto init_thread;
713         }
714
715         fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
716         if (!fcc)
717                 return -ENOMEM;
718         atomic_set(&fcc->issued_flush, 0);
719         atomic_set(&fcc->queued_flush, 0);
720         init_waitqueue_head(&fcc->flush_wait_queue);
721         init_llist_head(&fcc->issue_list);
722         SM_I(sbi)->fcc_info = fcc;
723         if (!test_opt(sbi, FLUSH_MERGE))
724                 return err;
725
726 init_thread:
727         fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
728                                 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
729         if (IS_ERR(fcc->f2fs_issue_flush)) {
730                 err = PTR_ERR(fcc->f2fs_issue_flush);
731                 kvfree(fcc);
732                 SM_I(sbi)->fcc_info = NULL;
733                 return err;
734         }
735
736         return err;
737 }
738
739 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
740 {
741         struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
742
743         if (fcc && fcc->f2fs_issue_flush) {
744                 struct task_struct *flush_thread = fcc->f2fs_issue_flush;
745
746                 fcc->f2fs_issue_flush = NULL;
747                 kthread_stop(flush_thread);
748         }
749         if (free) {
750                 kvfree(fcc);
751                 SM_I(sbi)->fcc_info = NULL;
752         }
753 }
754
755 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
756 {
757         int ret = 0, i;
758
759         if (!f2fs_is_multi_device(sbi))
760                 return 0;
761
762         for (i = 1; i < sbi->s_ndevs; i++) {
763                 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
764                         continue;
765                 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
766                 if (ret)
767                         break;
768
769                 spin_lock(&sbi->dev_lock);
770                 f2fs_clear_bit(i, (char *)&sbi->dirty_device);
771                 spin_unlock(&sbi->dev_lock);
772         }
773
774         return ret;
775 }
776
777 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
778                 enum dirty_type dirty_type)
779 {
780         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
781
782         /* need not be added */
783         if (IS_CURSEG(sbi, segno))
784                 return;
785
786         if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
787                 dirty_i->nr_dirty[dirty_type]++;
788
789         if (dirty_type == DIRTY) {
790                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
791                 enum dirty_type t = sentry->type;
792
793                 if (unlikely(t >= DIRTY)) {
794                         f2fs_bug_on(sbi, 1);
795                         return;
796                 }
797                 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
798                         dirty_i->nr_dirty[t]++;
799
800                 if (__is_large_section(sbi)) {
801                         unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
802                         unsigned short valid_blocks =
803                                 get_valid_blocks(sbi, segno, true);
804
805                         f2fs_bug_on(sbi, unlikely(!valid_blocks ||
806                                         valid_blocks == BLKS_PER_SEC(sbi)));
807
808                         if (!IS_CURSEC(sbi, secno))
809                                 set_bit(secno, dirty_i->dirty_secmap);
810                 }
811         }
812 }
813
814 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
815                 enum dirty_type dirty_type)
816 {
817         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
818         unsigned short valid_blocks;
819
820         if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
821                 dirty_i->nr_dirty[dirty_type]--;
822
823         if (dirty_type == DIRTY) {
824                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
825                 enum dirty_type t = sentry->type;
826
827                 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
828                         dirty_i->nr_dirty[t]--;
829
830                 valid_blocks = get_valid_blocks(sbi, segno, true);
831                 if (valid_blocks == 0) {
832                         clear_bit(GET_SEC_FROM_SEG(sbi, segno),
833                                                 dirty_i->victim_secmap);
834 #ifdef CONFIG_F2FS_CHECK_FS
835                         clear_bit(segno, SIT_I(sbi)->invalid_segmap);
836 #endif
837                 }
838                 if (__is_large_section(sbi)) {
839                         unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
840
841                         if (!valid_blocks ||
842                                         valid_blocks == BLKS_PER_SEC(sbi)) {
843                                 clear_bit(secno, dirty_i->dirty_secmap);
844                                 return;
845                         }
846
847                         if (!IS_CURSEC(sbi, secno))
848                                 set_bit(secno, dirty_i->dirty_secmap);
849                 }
850         }
851 }
852
853 /*
854  * Should not occur error such as -ENOMEM.
855  * Adding dirty entry into seglist is not critical operation.
856  * If a given segment is one of current working segments, it won't be added.
857  */
858 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
859 {
860         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
861         unsigned short valid_blocks, ckpt_valid_blocks;
862
863         if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
864                 return;
865
866         mutex_lock(&dirty_i->seglist_lock);
867
868         valid_blocks = get_valid_blocks(sbi, segno, false);
869         ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno);
870
871         if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
872                                 ckpt_valid_blocks == sbi->blocks_per_seg)) {
873                 __locate_dirty_segment(sbi, segno, PRE);
874                 __remove_dirty_segment(sbi, segno, DIRTY);
875         } else if (valid_blocks < sbi->blocks_per_seg) {
876                 __locate_dirty_segment(sbi, segno, DIRTY);
877         } else {
878                 /* Recovery routine with SSR needs this */
879                 __remove_dirty_segment(sbi, segno, DIRTY);
880         }
881
882         mutex_unlock(&dirty_i->seglist_lock);
883 }
884
885 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
886 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
887 {
888         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
889         unsigned int segno;
890
891         mutex_lock(&dirty_i->seglist_lock);
892         for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
893                 if (get_valid_blocks(sbi, segno, false))
894                         continue;
895                 if (IS_CURSEG(sbi, segno))
896                         continue;
897                 __locate_dirty_segment(sbi, segno, PRE);
898                 __remove_dirty_segment(sbi, segno, DIRTY);
899         }
900         mutex_unlock(&dirty_i->seglist_lock);
901 }
902
903 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
904 {
905         int ovp_hole_segs =
906                 (overprovision_segments(sbi) - reserved_segments(sbi));
907         block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg;
908         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
909         block_t holes[2] = {0, 0};      /* DATA and NODE */
910         block_t unusable;
911         struct seg_entry *se;
912         unsigned int segno;
913
914         mutex_lock(&dirty_i->seglist_lock);
915         for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
916                 se = get_seg_entry(sbi, segno);
917                 if (IS_NODESEG(se->type))
918                         holes[NODE] += sbi->blocks_per_seg - se->valid_blocks;
919                 else
920                         holes[DATA] += sbi->blocks_per_seg - se->valid_blocks;
921         }
922         mutex_unlock(&dirty_i->seglist_lock);
923
924         unusable = holes[DATA] > holes[NODE] ? holes[DATA] : holes[NODE];
925         if (unusable > ovp_holes)
926                 return unusable - ovp_holes;
927         return 0;
928 }
929
930 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
931 {
932         int ovp_hole_segs =
933                 (overprovision_segments(sbi) - reserved_segments(sbi));
934         if (unusable > F2FS_OPTION(sbi).unusable_cap)
935                 return -EAGAIN;
936         if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
937                 dirty_segments(sbi) > ovp_hole_segs)
938                 return -EAGAIN;
939         return 0;
940 }
941
942 /* This is only used by SBI_CP_DISABLED */
943 static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
944 {
945         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
946         unsigned int segno = 0;
947
948         mutex_lock(&dirty_i->seglist_lock);
949         for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
950                 if (get_valid_blocks(sbi, segno, false))
951                         continue;
952                 if (get_ckpt_valid_blocks(sbi, segno))
953                         continue;
954                 mutex_unlock(&dirty_i->seglist_lock);
955                 return segno;
956         }
957         mutex_unlock(&dirty_i->seglist_lock);
958         return NULL_SEGNO;
959 }
960
961 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
962                 struct block_device *bdev, block_t lstart,
963                 block_t start, block_t len)
964 {
965         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
966         struct list_head *pend_list;
967         struct discard_cmd *dc;
968
969         f2fs_bug_on(sbi, !len);
970
971         pend_list = &dcc->pend_list[plist_idx(len)];
972
973         dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
974         INIT_LIST_HEAD(&dc->list);
975         dc->bdev = bdev;
976         dc->lstart = lstart;
977         dc->start = start;
978         dc->len = len;
979         dc->ref = 0;
980         dc->state = D_PREP;
981         dc->queued = 0;
982         dc->error = 0;
983         init_completion(&dc->wait);
984         list_add_tail(&dc->list, pend_list);
985         spin_lock_init(&dc->lock);
986         dc->bio_ref = 0;
987         atomic_inc(&dcc->discard_cmd_cnt);
988         dcc->undiscard_blks += len;
989
990         return dc;
991 }
992
993 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
994                                 struct block_device *bdev, block_t lstart,
995                                 block_t start, block_t len,
996                                 struct rb_node *parent, struct rb_node **p,
997                                 bool leftmost)
998 {
999         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1000         struct discard_cmd *dc;
1001
1002         dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
1003
1004         rb_link_node(&dc->rb_node, parent, p);
1005         rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
1006
1007         return dc;
1008 }
1009
1010 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
1011                                                         struct discard_cmd *dc)
1012 {
1013         if (dc->state == D_DONE)
1014                 atomic_sub(dc->queued, &dcc->queued_discard);
1015
1016         list_del(&dc->list);
1017         rb_erase_cached(&dc->rb_node, &dcc->root);
1018         dcc->undiscard_blks -= dc->len;
1019
1020         kmem_cache_free(discard_cmd_slab, dc);
1021
1022         atomic_dec(&dcc->discard_cmd_cnt);
1023 }
1024
1025 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
1026                                                         struct discard_cmd *dc)
1027 {
1028         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1029         unsigned long flags;
1030
1031         trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
1032
1033         spin_lock_irqsave(&dc->lock, flags);
1034         if (dc->bio_ref) {
1035                 spin_unlock_irqrestore(&dc->lock, flags);
1036                 return;
1037         }
1038         spin_unlock_irqrestore(&dc->lock, flags);
1039
1040         f2fs_bug_on(sbi, dc->ref);
1041
1042         if (dc->error == -EOPNOTSUPP)
1043                 dc->error = 0;
1044
1045         if (dc->error)
1046                 printk_ratelimited(
1047                         "%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d",
1048                         KERN_INFO, sbi->sb->s_id,
1049                         dc->lstart, dc->start, dc->len, dc->error);
1050         __detach_discard_cmd(dcc, dc);
1051 }
1052
1053 static void f2fs_submit_discard_endio(struct bio *bio)
1054 {
1055         struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1056         unsigned long flags;
1057
1058         spin_lock_irqsave(&dc->lock, flags);
1059         if (!dc->error)
1060                 dc->error = blk_status_to_errno(bio->bi_status);
1061         dc->bio_ref--;
1062         if (!dc->bio_ref && dc->state == D_SUBMIT) {
1063                 dc->state = D_DONE;
1064                 complete_all(&dc->wait);
1065         }
1066         spin_unlock_irqrestore(&dc->lock, flags);
1067         bio_put(bio);
1068 }
1069
1070 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1071                                 block_t start, block_t end)
1072 {
1073 #ifdef CONFIG_F2FS_CHECK_FS
1074         struct seg_entry *sentry;
1075         unsigned int segno;
1076         block_t blk = start;
1077         unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
1078         unsigned long *map;
1079
1080         while (blk < end) {
1081                 segno = GET_SEGNO(sbi, blk);
1082                 sentry = get_seg_entry(sbi, segno);
1083                 offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1084
1085                 if (end < START_BLOCK(sbi, segno + 1))
1086                         size = GET_BLKOFF_FROM_SEG0(sbi, end);
1087                 else
1088                         size = max_blocks;
1089                 map = (unsigned long *)(sentry->cur_valid_map);
1090                 offset = __find_rev_next_bit(map, size, offset);
1091                 f2fs_bug_on(sbi, offset != size);
1092                 blk = START_BLOCK(sbi, segno + 1);
1093         }
1094 #endif
1095 }
1096
1097 static void __init_discard_policy(struct f2fs_sb_info *sbi,
1098                                 struct discard_policy *dpolicy,
1099                                 int discard_type, unsigned int granularity)
1100 {
1101         /* common policy */
1102         dpolicy->type = discard_type;
1103         dpolicy->sync = true;
1104         dpolicy->ordered = false;
1105         dpolicy->granularity = granularity;
1106
1107         dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
1108         dpolicy->io_aware_gran = MAX_PLIST_NUM;
1109         dpolicy->timeout = false;
1110
1111         if (discard_type == DPOLICY_BG) {
1112                 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1113                 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1114                 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1115                 dpolicy->io_aware = true;
1116                 dpolicy->sync = false;
1117                 dpolicy->ordered = true;
1118                 if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) {
1119                         dpolicy->granularity = 1;
1120                         dpolicy->max_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1121                 }
1122         } else if (discard_type == DPOLICY_FORCE) {
1123                 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1124                 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1125                 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1126                 dpolicy->io_aware = false;
1127         } else if (discard_type == DPOLICY_FSTRIM) {
1128                 dpolicy->io_aware = false;
1129         } else if (discard_type == DPOLICY_UMOUNT) {
1130                 dpolicy->io_aware = false;
1131                 /* we need to issue all to keep CP_TRIMMED_FLAG */
1132                 dpolicy->granularity = 1;
1133                 dpolicy->timeout = true;
1134         }
1135 }
1136
1137 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1138                                 struct block_device *bdev, block_t lstart,
1139                                 block_t start, block_t len);
1140 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
1141 static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1142                                                 struct discard_policy *dpolicy,
1143                                                 struct discard_cmd *dc,
1144                                                 unsigned int *issued)
1145 {
1146         struct block_device *bdev = dc->bdev;
1147         struct request_queue *q = bdev_get_queue(bdev);
1148         unsigned int max_discard_blocks =
1149                         SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1150         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1151         struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1152                                         &(dcc->fstrim_list) : &(dcc->wait_list);
1153         int flag = dpolicy->sync ? REQ_SYNC : 0;
1154         block_t lstart, start, len, total_len;
1155         int err = 0;
1156
1157         if (dc->state != D_PREP)
1158                 return 0;
1159
1160         if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1161                 return 0;
1162
1163         trace_f2fs_issue_discard(bdev, dc->start, dc->len);
1164
1165         lstart = dc->lstart;
1166         start = dc->start;
1167         len = dc->len;
1168         total_len = len;
1169
1170         dc->len = 0;
1171
1172         while (total_len && *issued < dpolicy->max_requests && !err) {
1173                 struct bio *bio = NULL;
1174                 unsigned long flags;
1175                 bool last = true;
1176
1177                 if (len > max_discard_blocks) {
1178                         len = max_discard_blocks;
1179                         last = false;
1180                 }
1181
1182                 (*issued)++;
1183                 if (*issued == dpolicy->max_requests)
1184                         last = true;
1185
1186                 dc->len += len;
1187
1188                 if (time_to_inject(sbi, FAULT_DISCARD)) {
1189                         f2fs_show_injection_info(sbi, FAULT_DISCARD);
1190                         err = -EIO;
1191                         goto submit;
1192                 }
1193                 err = __blkdev_issue_discard(bdev,
1194                                         SECTOR_FROM_BLOCK(start),
1195                                         SECTOR_FROM_BLOCK(len),
1196                                         GFP_NOFS, 0, &bio);
1197 submit:
1198                 if (err) {
1199                         spin_lock_irqsave(&dc->lock, flags);
1200                         if (dc->state == D_PARTIAL)
1201                                 dc->state = D_SUBMIT;
1202                         spin_unlock_irqrestore(&dc->lock, flags);
1203
1204                         break;
1205                 }
1206
1207                 f2fs_bug_on(sbi, !bio);
1208
1209                 /*
1210                  * should keep before submission to avoid D_DONE
1211                  * right away
1212                  */
1213                 spin_lock_irqsave(&dc->lock, flags);
1214                 if (last)
1215                         dc->state = D_SUBMIT;
1216                 else
1217                         dc->state = D_PARTIAL;
1218                 dc->bio_ref++;
1219                 spin_unlock_irqrestore(&dc->lock, flags);
1220
1221                 atomic_inc(&dcc->queued_discard);
1222                 dc->queued++;
1223                 list_move_tail(&dc->list, wait_list);
1224
1225                 /* sanity check on discard range */
1226                 __check_sit_bitmap(sbi, lstart, lstart + len);
1227
1228                 bio->bi_private = dc;
1229                 bio->bi_end_io = f2fs_submit_discard_endio;
1230                 bio->bi_opf |= flag;
1231                 submit_bio(bio);
1232
1233                 atomic_inc(&dcc->issued_discard);
1234
1235                 f2fs_update_iostat(sbi, FS_DISCARD, 1);
1236
1237                 lstart += len;
1238                 start += len;
1239                 total_len -= len;
1240                 len = total_len;
1241         }
1242
1243         if (!err && len) {
1244                 dcc->undiscard_blks -= len;
1245                 __update_discard_tree_range(sbi, bdev, lstart, start, len);
1246         }
1247         return err;
1248 }
1249
1250 static void __insert_discard_tree(struct f2fs_sb_info *sbi,
1251                                 struct block_device *bdev, block_t lstart,
1252                                 block_t start, block_t len,
1253                                 struct rb_node **insert_p,
1254                                 struct rb_node *insert_parent)
1255 {
1256         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1257         struct rb_node **p;
1258         struct rb_node *parent = NULL;
1259         bool leftmost = true;
1260
1261         if (insert_p && insert_parent) {
1262                 parent = insert_parent;
1263                 p = insert_p;
1264                 goto do_insert;
1265         }
1266
1267         p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent,
1268                                                         lstart, &leftmost);
1269 do_insert:
1270         __attach_discard_cmd(sbi, bdev, lstart, start, len, parent,
1271                                                                 p, leftmost);
1272 }
1273
1274 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1275                                                 struct discard_cmd *dc)
1276 {
1277         list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
1278 }
1279
1280 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1281                                 struct discard_cmd *dc, block_t blkaddr)
1282 {
1283         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1284         struct discard_info di = dc->di;
1285         bool modified = false;
1286
1287         if (dc->state == D_DONE || dc->len == 1) {
1288                 __remove_discard_cmd(sbi, dc);
1289                 return;
1290         }
1291
1292         dcc->undiscard_blks -= di.len;
1293
1294         if (blkaddr > di.lstart) {
1295                 dc->len = blkaddr - dc->lstart;
1296                 dcc->undiscard_blks += dc->len;
1297                 __relocate_discard_cmd(dcc, dc);
1298                 modified = true;
1299         }
1300
1301         if (blkaddr < di.lstart + di.len - 1) {
1302                 if (modified) {
1303                         __insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1304                                         di.start + blkaddr + 1 - di.lstart,
1305                                         di.lstart + di.len - 1 - blkaddr,
1306                                         NULL, NULL);
1307                 } else {
1308                         dc->lstart++;
1309                         dc->len--;
1310                         dc->start++;
1311                         dcc->undiscard_blks += dc->len;
1312                         __relocate_discard_cmd(dcc, dc);
1313                 }
1314         }
1315 }
1316
1317 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1318                                 struct block_device *bdev, block_t lstart,
1319                                 block_t start, block_t len)
1320 {
1321         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1322         struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1323         struct discard_cmd *dc;
1324         struct discard_info di = {0};
1325         struct rb_node **insert_p = NULL, *insert_parent = NULL;
1326         struct request_queue *q = bdev_get_queue(bdev);
1327         unsigned int max_discard_blocks =
1328                         SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1329         block_t end = lstart + len;
1330
1331         dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1332                                         NULL, lstart,
1333                                         (struct rb_entry **)&prev_dc,
1334                                         (struct rb_entry **)&next_dc,
1335                                         &insert_p, &insert_parent, true, NULL);
1336         if (dc)
1337                 prev_dc = dc;
1338
1339         if (!prev_dc) {
1340                 di.lstart = lstart;
1341                 di.len = next_dc ? next_dc->lstart - lstart : len;
1342                 di.len = min(di.len, len);
1343                 di.start = start;
1344         }
1345
1346         while (1) {
1347                 struct rb_node *node;
1348                 bool merged = false;
1349                 struct discard_cmd *tdc = NULL;
1350
1351                 if (prev_dc) {
1352                         di.lstart = prev_dc->lstart + prev_dc->len;
1353                         if (di.lstart < lstart)
1354                                 di.lstart = lstart;
1355                         if (di.lstart >= end)
1356                                 break;
1357
1358                         if (!next_dc || next_dc->lstart > end)
1359                                 di.len = end - di.lstart;
1360                         else
1361                                 di.len = next_dc->lstart - di.lstart;
1362                         di.start = start + di.lstart - lstart;
1363                 }
1364
1365                 if (!di.len)
1366                         goto next;
1367
1368                 if (prev_dc && prev_dc->state == D_PREP &&
1369                         prev_dc->bdev == bdev &&
1370                         __is_discard_back_mergeable(&di, &prev_dc->di,
1371                                                         max_discard_blocks)) {
1372                         prev_dc->di.len += di.len;
1373                         dcc->undiscard_blks += di.len;
1374                         __relocate_discard_cmd(dcc, prev_dc);
1375                         di = prev_dc->di;
1376                         tdc = prev_dc;
1377                         merged = true;
1378                 }
1379
1380                 if (next_dc && next_dc->state == D_PREP &&
1381                         next_dc->bdev == bdev &&
1382                         __is_discard_front_mergeable(&di, &next_dc->di,
1383                                                         max_discard_blocks)) {
1384                         next_dc->di.lstart = di.lstart;
1385                         next_dc->di.len += di.len;
1386                         next_dc->di.start = di.start;
1387                         dcc->undiscard_blks += di.len;
1388                         __relocate_discard_cmd(dcc, next_dc);
1389                         if (tdc)
1390                                 __remove_discard_cmd(sbi, tdc);
1391                         merged = true;
1392                 }
1393
1394                 if (!merged) {
1395                         __insert_discard_tree(sbi, bdev, di.lstart, di.start,
1396                                                         di.len, NULL, NULL);
1397                 }
1398  next:
1399                 prev_dc = next_dc;
1400                 if (!prev_dc)
1401                         break;
1402
1403                 node = rb_next(&prev_dc->rb_node);
1404                 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1405         }
1406 }
1407
1408 static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
1409                 struct block_device *bdev, block_t blkstart, block_t blklen)
1410 {
1411         block_t lblkstart = blkstart;
1412
1413         if (!f2fs_bdev_support_discard(bdev))
1414                 return 0;
1415
1416         trace_f2fs_queue_discard(bdev, blkstart, blklen);
1417
1418         if (f2fs_is_multi_device(sbi)) {
1419                 int devi = f2fs_target_device_index(sbi, blkstart);
1420
1421                 blkstart -= FDEV(devi).start_blk;
1422         }
1423         mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1424         __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1425         mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1426         return 0;
1427 }
1428
1429 static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1430                                         struct discard_policy *dpolicy)
1431 {
1432         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1433         struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1434         struct rb_node **insert_p = NULL, *insert_parent = NULL;
1435         struct discard_cmd *dc;
1436         struct blk_plug plug;
1437         unsigned int pos = dcc->next_pos;
1438         unsigned int issued = 0;
1439         bool io_interrupted = false;
1440
1441         mutex_lock(&dcc->cmd_lock);
1442         dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1443                                         NULL, pos,
1444                                         (struct rb_entry **)&prev_dc,
1445                                         (struct rb_entry **)&next_dc,
1446                                         &insert_p, &insert_parent, true, NULL);
1447         if (!dc)
1448                 dc = next_dc;
1449
1450         blk_start_plug(&plug);
1451
1452         while (dc) {
1453                 struct rb_node *node;
1454                 int err = 0;
1455
1456                 if (dc->state != D_PREP)
1457                         goto next;
1458
1459                 if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1460                         io_interrupted = true;
1461                         break;
1462                 }
1463
1464                 dcc->next_pos = dc->lstart + dc->len;
1465                 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1466
1467                 if (issued >= dpolicy->max_requests)
1468                         break;
1469 next:
1470                 node = rb_next(&dc->rb_node);
1471                 if (err)
1472                         __remove_discard_cmd(sbi, dc);
1473                 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1474         }
1475
1476         blk_finish_plug(&plug);
1477
1478         if (!dc)
1479                 dcc->next_pos = 0;
1480
1481         mutex_unlock(&dcc->cmd_lock);
1482
1483         if (!issued && io_interrupted)
1484                 issued = -1;
1485
1486         return issued;
1487 }
1488 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1489                                         struct discard_policy *dpolicy);
1490
1491 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1492                                         struct discard_policy *dpolicy)
1493 {
1494         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1495         struct list_head *pend_list;
1496         struct discard_cmd *dc, *tmp;
1497         struct blk_plug plug;
1498         int i, issued;
1499         bool io_interrupted = false;
1500
1501         if (dpolicy->timeout)
1502                 f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT);
1503
1504 retry:
1505         issued = 0;
1506         for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1507                 if (dpolicy->timeout &&
1508                                 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1509                         break;
1510
1511                 if (i + 1 < dpolicy->granularity)
1512                         break;
1513
1514                 if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered)
1515                         return __issue_discard_cmd_orderly(sbi, dpolicy);
1516
1517                 pend_list = &dcc->pend_list[i];
1518
1519                 mutex_lock(&dcc->cmd_lock);
1520                 if (list_empty(pend_list))
1521                         goto next;
1522                 if (unlikely(dcc->rbtree_check))
1523                         f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
1524                                                                 &dcc->root));
1525                 blk_start_plug(&plug);
1526                 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1527                         f2fs_bug_on(sbi, dc->state != D_PREP);
1528
1529                         if (dpolicy->timeout &&
1530                                 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1531                                 break;
1532
1533                         if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1534                                                 !is_idle(sbi, DISCARD_TIME)) {
1535                                 io_interrupted = true;
1536                                 break;
1537                         }
1538
1539                         __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1540
1541                         if (issued >= dpolicy->max_requests)
1542                                 break;
1543                 }
1544                 blk_finish_plug(&plug);
1545 next:
1546                 mutex_unlock(&dcc->cmd_lock);
1547
1548                 if (issued >= dpolicy->max_requests || io_interrupted)
1549                         break;
1550         }
1551
1552         if (dpolicy->type == DPOLICY_UMOUNT && issued) {
1553                 __wait_all_discard_cmd(sbi, dpolicy);
1554                 goto retry;
1555         }
1556
1557         if (!issued && io_interrupted)
1558                 issued = -1;
1559
1560         return issued;
1561 }
1562
1563 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1564 {
1565         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1566         struct list_head *pend_list;
1567         struct discard_cmd *dc, *tmp;
1568         int i;
1569         bool dropped = false;
1570
1571         mutex_lock(&dcc->cmd_lock);
1572         for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1573                 pend_list = &dcc->pend_list[i];
1574                 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1575                         f2fs_bug_on(sbi, dc->state != D_PREP);
1576                         __remove_discard_cmd(sbi, dc);
1577                         dropped = true;
1578                 }
1579         }
1580         mutex_unlock(&dcc->cmd_lock);
1581
1582         return dropped;
1583 }
1584
1585 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1586 {
1587         __drop_discard_cmd(sbi);
1588 }
1589
1590 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1591                                                         struct discard_cmd *dc)
1592 {
1593         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1594         unsigned int len = 0;
1595
1596         wait_for_completion_io(&dc->wait);
1597         mutex_lock(&dcc->cmd_lock);
1598         f2fs_bug_on(sbi, dc->state != D_DONE);
1599         dc->ref--;
1600         if (!dc->ref) {
1601                 if (!dc->error)
1602                         len = dc->len;
1603                 __remove_discard_cmd(sbi, dc);
1604         }
1605         mutex_unlock(&dcc->cmd_lock);
1606
1607         return len;
1608 }
1609
1610 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1611                                                 struct discard_policy *dpolicy,
1612                                                 block_t start, block_t end)
1613 {
1614         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1615         struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1616                                         &(dcc->fstrim_list) : &(dcc->wait_list);
1617         struct discard_cmd *dc, *tmp;
1618         bool need_wait;
1619         unsigned int trimmed = 0;
1620
1621 next:
1622         need_wait = false;
1623
1624         mutex_lock(&dcc->cmd_lock);
1625         list_for_each_entry_safe(dc, tmp, wait_list, list) {
1626                 if (dc->lstart + dc->len <= start || end <= dc->lstart)
1627                         continue;
1628                 if (dc->len < dpolicy->granularity)
1629                         continue;
1630                 if (dc->state == D_DONE && !dc->ref) {
1631                         wait_for_completion_io(&dc->wait);
1632                         if (!dc->error)
1633                                 trimmed += dc->len;
1634                         __remove_discard_cmd(sbi, dc);
1635                 } else {
1636                         dc->ref++;
1637                         need_wait = true;
1638                         break;
1639                 }
1640         }
1641         mutex_unlock(&dcc->cmd_lock);
1642
1643         if (need_wait) {
1644                 trimmed += __wait_one_discard_bio(sbi, dc);
1645                 goto next;
1646         }
1647
1648         return trimmed;
1649 }
1650
1651 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1652                                                 struct discard_policy *dpolicy)
1653 {
1654         struct discard_policy dp;
1655         unsigned int discard_blks;
1656
1657         if (dpolicy)
1658                 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1659
1660         /* wait all */
1661         __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
1662         discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1663         __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
1664         discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1665
1666         return discard_blks;
1667 }
1668
1669 /* This should be covered by global mutex, &sit_i->sentry_lock */
1670 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1671 {
1672         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1673         struct discard_cmd *dc;
1674         bool need_wait = false;
1675
1676         mutex_lock(&dcc->cmd_lock);
1677         dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
1678                                                         NULL, blkaddr);
1679         if (dc) {
1680                 if (dc->state == D_PREP) {
1681                         __punch_discard_cmd(sbi, dc, blkaddr);
1682                 } else {
1683                         dc->ref++;
1684                         need_wait = true;
1685                 }
1686         }
1687         mutex_unlock(&dcc->cmd_lock);
1688
1689         if (need_wait)
1690                 __wait_one_discard_bio(sbi, dc);
1691 }
1692
1693 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1694 {
1695         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1696
1697         if (dcc && dcc->f2fs_issue_discard) {
1698                 struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1699
1700                 dcc->f2fs_issue_discard = NULL;
1701                 kthread_stop(discard_thread);
1702         }
1703 }
1704
1705 /* This comes from f2fs_put_super */
1706 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1707 {
1708         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1709         struct discard_policy dpolicy;
1710         bool dropped;
1711
1712         __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1713                                         dcc->discard_granularity);
1714         __issue_discard_cmd(sbi, &dpolicy);
1715         dropped = __drop_discard_cmd(sbi);
1716
1717         /* just to make sure there is no pending discard commands */
1718         __wait_all_discard_cmd(sbi, NULL);
1719
1720         f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1721         return dropped;
1722 }
1723
1724 static int issue_discard_thread(void *data)
1725 {
1726         struct f2fs_sb_info *sbi = data;
1727         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1728         wait_queue_head_t *q = &dcc->discard_wait_queue;
1729         struct discard_policy dpolicy;
1730         unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
1731         int issued;
1732
1733         set_freezable();
1734
1735         do {
1736                 __init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1737                                         dcc->discard_granularity);
1738
1739                 wait_event_interruptible_timeout(*q,
1740                                 kthread_should_stop() || freezing(current) ||
1741                                 dcc->discard_wake,
1742                                 msecs_to_jiffies(wait_ms));
1743
1744                 if (dcc->discard_wake)
1745                         dcc->discard_wake = 0;
1746
1747                 /* clean up pending candidates before going to sleep */
1748                 if (atomic_read(&dcc->queued_discard))
1749                         __wait_all_discard_cmd(sbi, NULL);
1750
1751                 if (try_to_freeze())
1752                         continue;
1753                 if (f2fs_readonly(sbi->sb))
1754                         continue;
1755                 if (kthread_should_stop())
1756                         return 0;
1757                 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1758                         wait_ms = dpolicy.max_interval;
1759                         continue;
1760                 }
1761
1762                 if (sbi->gc_mode == GC_URGENT_HIGH)
1763                         __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1);
1764
1765                 sb_start_intwrite(sbi->sb);
1766
1767                 issued = __issue_discard_cmd(sbi, &dpolicy);
1768                 if (issued > 0) {
1769                         __wait_all_discard_cmd(sbi, &dpolicy);
1770                         wait_ms = dpolicy.min_interval;
1771                 } else if (issued == -1){
1772                         wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1773                         if (!wait_ms)
1774                                 wait_ms = dpolicy.mid_interval;
1775                 } else {
1776                         wait_ms = dpolicy.max_interval;
1777                 }
1778
1779                 sb_end_intwrite(sbi->sb);
1780
1781         } while (!kthread_should_stop());
1782         return 0;
1783 }
1784
1785 #ifdef CONFIG_BLK_DEV_ZONED
1786 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1787                 struct block_device *bdev, block_t blkstart, block_t blklen)
1788 {
1789         sector_t sector, nr_sects;
1790         block_t lblkstart = blkstart;
1791         int devi = 0;
1792
1793         if (f2fs_is_multi_device(sbi)) {
1794                 devi = f2fs_target_device_index(sbi, blkstart);
1795                 if (blkstart < FDEV(devi).start_blk ||
1796                     blkstart > FDEV(devi).end_blk) {
1797                         f2fs_err(sbi, "Invalid block %x", blkstart);
1798                         return -EIO;
1799                 }
1800                 blkstart -= FDEV(devi).start_blk;
1801         }
1802
1803         /* For sequential zones, reset the zone write pointer */
1804         if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1805                 sector = SECTOR_FROM_BLOCK(blkstart);
1806                 nr_sects = SECTOR_FROM_BLOCK(blklen);
1807
1808                 if (sector & (bdev_zone_sectors(bdev) - 1) ||
1809                                 nr_sects != bdev_zone_sectors(bdev)) {
1810                         f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1811                                  devi, sbi->s_ndevs ? FDEV(devi).path : "",
1812                                  blkstart, blklen);
1813                         return -EIO;
1814                 }
1815                 trace_f2fs_issue_reset_zone(bdev, blkstart);
1816                 return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1817                                         sector, nr_sects, GFP_NOFS);
1818         }
1819
1820         /* For conventional zones, use regular discard if supported */
1821         return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1822 }
1823 #endif
1824
1825 static int __issue_discard_async(struct f2fs_sb_info *sbi,
1826                 struct block_device *bdev, block_t blkstart, block_t blklen)
1827 {
1828 #ifdef CONFIG_BLK_DEV_ZONED
1829         if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
1830                 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1831 #endif
1832         return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1833 }
1834
1835 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1836                                 block_t blkstart, block_t blklen)
1837 {
1838         sector_t start = blkstart, len = 0;
1839         struct block_device *bdev;
1840         struct seg_entry *se;
1841         unsigned int offset;
1842         block_t i;
1843         int err = 0;
1844
1845         bdev = f2fs_target_device(sbi, blkstart, NULL);
1846
1847         for (i = blkstart; i < blkstart + blklen; i++, len++) {
1848                 if (i != start) {
1849                         struct block_device *bdev2 =
1850                                 f2fs_target_device(sbi, i, NULL);
1851
1852                         if (bdev2 != bdev) {
1853                                 err = __issue_discard_async(sbi, bdev,
1854                                                 start, len);
1855                                 if (err)
1856                                         return err;
1857                                 bdev = bdev2;
1858                                 start = i;
1859                                 len = 0;
1860                         }
1861                 }
1862
1863                 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1864                 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1865
1866                 if (!f2fs_test_and_set_bit(offset, se->discard_map))
1867                         sbi->discard_blks--;
1868         }
1869
1870         if (len)
1871                 err = __issue_discard_async(sbi, bdev, start, len);
1872         return err;
1873 }
1874
1875 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1876                                                         bool check_only)
1877 {
1878         int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1879         int max_blocks = sbi->blocks_per_seg;
1880         struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1881         unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1882         unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1883         unsigned long *discard_map = (unsigned long *)se->discard_map;
1884         unsigned long *dmap = SIT_I(sbi)->tmp_map;
1885         unsigned int start = 0, end = -1;
1886         bool force = (cpc->reason & CP_DISCARD);
1887         struct discard_entry *de = NULL;
1888         struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1889         int i;
1890
1891         if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi))
1892                 return false;
1893
1894         if (!force) {
1895                 if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
1896                         SM_I(sbi)->dcc_info->nr_discards >=
1897                                 SM_I(sbi)->dcc_info->max_discards)
1898                         return false;
1899         }
1900
1901         /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1902         for (i = 0; i < entries; i++)
1903                 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1904                                 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1905
1906         while (force || SM_I(sbi)->dcc_info->nr_discards <=
1907                                 SM_I(sbi)->dcc_info->max_discards) {
1908                 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1909                 if (start >= max_blocks)
1910                         break;
1911
1912                 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1913                 if (force && start && end != max_blocks
1914                                         && (end - start) < cpc->trim_minlen)
1915                         continue;
1916
1917                 if (check_only)
1918                         return true;
1919
1920                 if (!de) {
1921                         de = f2fs_kmem_cache_alloc(discard_entry_slab,
1922                                                                 GFP_F2FS_ZERO);
1923                         de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1924                         list_add_tail(&de->list, head);
1925                 }
1926
1927                 for (i = start; i < end; i++)
1928                         __set_bit_le(i, (void *)de->discard_map);
1929
1930                 SM_I(sbi)->dcc_info->nr_discards += end - start;
1931         }
1932         return false;
1933 }
1934
1935 static void release_discard_addr(struct discard_entry *entry)
1936 {
1937         list_del(&entry->list);
1938         kmem_cache_free(discard_entry_slab, entry);
1939 }
1940
1941 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
1942 {
1943         struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1944         struct discard_entry *entry, *this;
1945
1946         /* drop caches */
1947         list_for_each_entry_safe(entry, this, head, list)
1948                 release_discard_addr(entry);
1949 }
1950
1951 /*
1952  * Should call f2fs_clear_prefree_segments after checkpoint is done.
1953  */
1954 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
1955 {
1956         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1957         unsigned int segno;
1958
1959         mutex_lock(&dirty_i->seglist_lock);
1960         for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
1961                 __set_test_and_free(sbi, segno);
1962         mutex_unlock(&dirty_i->seglist_lock);
1963 }
1964
1965 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
1966                                                 struct cp_control *cpc)
1967 {
1968         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1969         struct list_head *head = &dcc->entry_list;
1970         struct discard_entry *entry, *this;
1971         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1972         unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
1973         unsigned int start = 0, end = -1;
1974         unsigned int secno, start_segno;
1975         bool force = (cpc->reason & CP_DISCARD);
1976         bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
1977
1978         mutex_lock(&dirty_i->seglist_lock);
1979
1980         while (1) {
1981                 int i;
1982
1983                 if (need_align && end != -1)
1984                         end--;
1985                 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
1986                 if (start >= MAIN_SEGS(sbi))
1987                         break;
1988                 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
1989                                                                 start + 1);
1990
1991                 if (need_align) {
1992                         start = rounddown(start, sbi->segs_per_sec);
1993                         end = roundup(end, sbi->segs_per_sec);
1994                 }
1995
1996                 for (i = start; i < end; i++) {
1997                         if (test_and_clear_bit(i, prefree_map))
1998                                 dirty_i->nr_dirty[PRE]--;
1999                 }
2000
2001                 if (!f2fs_realtime_discard_enable(sbi))
2002                         continue;
2003
2004                 if (force && start >= cpc->trim_start &&
2005                                         (end - 1) <= cpc->trim_end)
2006                                 continue;
2007
2008                 if (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi)) {
2009                         f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
2010                                 (end - start) << sbi->log_blocks_per_seg);
2011                         continue;
2012                 }
2013 next:
2014                 secno = GET_SEC_FROM_SEG(sbi, start);
2015                 start_segno = GET_SEG_FROM_SEC(sbi, secno);
2016                 if (!IS_CURSEC(sbi, secno) &&
2017                         !get_valid_blocks(sbi, start, true))
2018                         f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
2019                                 sbi->segs_per_sec << sbi->log_blocks_per_seg);
2020
2021                 start = start_segno + sbi->segs_per_sec;
2022                 if (start < end)
2023                         goto next;
2024                 else
2025                         end = start - 1;
2026         }
2027         mutex_unlock(&dirty_i->seglist_lock);
2028
2029         /* send small discards */
2030         list_for_each_entry_safe(entry, this, head, list) {
2031                 unsigned int cur_pos = 0, next_pos, len, total_len = 0;
2032                 bool is_valid = test_bit_le(0, entry->discard_map);
2033
2034 find_next:
2035                 if (is_valid) {
2036                         next_pos = find_next_zero_bit_le(entry->discard_map,
2037                                         sbi->blocks_per_seg, cur_pos);
2038                         len = next_pos - cur_pos;
2039
2040                         if (f2fs_sb_has_blkzoned(sbi) ||
2041                             (force && len < cpc->trim_minlen))
2042                                 goto skip;
2043
2044                         f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2045                                                                         len);
2046                         total_len += len;
2047                 } else {
2048                         next_pos = find_next_bit_le(entry->discard_map,
2049                                         sbi->blocks_per_seg, cur_pos);
2050                 }
2051 skip:
2052                 cur_pos = next_pos;
2053                 is_valid = !is_valid;
2054
2055                 if (cur_pos < sbi->blocks_per_seg)
2056                         goto find_next;
2057
2058                 release_discard_addr(entry);
2059                 dcc->nr_discards -= total_len;
2060         }
2061
2062         wake_up_discard_thread(sbi, false);
2063 }
2064
2065 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2066 {
2067         dev_t dev = sbi->sb->s_bdev->bd_dev;
2068         struct discard_cmd_control *dcc;
2069         int err = 0, i;
2070
2071         if (SM_I(sbi)->dcc_info) {
2072                 dcc = SM_I(sbi)->dcc_info;
2073                 goto init_thread;
2074         }
2075
2076         dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2077         if (!dcc)
2078                 return -ENOMEM;
2079
2080         dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2081         INIT_LIST_HEAD(&dcc->entry_list);
2082         for (i = 0; i < MAX_PLIST_NUM; i++)
2083                 INIT_LIST_HEAD(&dcc->pend_list[i]);
2084         INIT_LIST_HEAD(&dcc->wait_list);
2085         INIT_LIST_HEAD(&dcc->fstrim_list);
2086         mutex_init(&dcc->cmd_lock);
2087         atomic_set(&dcc->issued_discard, 0);
2088         atomic_set(&dcc->queued_discard, 0);
2089         atomic_set(&dcc->discard_cmd_cnt, 0);
2090         dcc->nr_discards = 0;
2091         dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
2092         dcc->undiscard_blks = 0;
2093         dcc->next_pos = 0;
2094         dcc->root = RB_ROOT_CACHED;
2095         dcc->rbtree_check = false;
2096
2097         init_waitqueue_head(&dcc->discard_wait_queue);
2098         SM_I(sbi)->dcc_info = dcc;
2099 init_thread:
2100         dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2101                                 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2102         if (IS_ERR(dcc->f2fs_issue_discard)) {
2103                 err = PTR_ERR(dcc->f2fs_issue_discard);
2104                 kvfree(dcc);
2105                 SM_I(sbi)->dcc_info = NULL;
2106                 return err;
2107         }
2108
2109         return err;
2110 }
2111
2112 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2113 {
2114         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2115
2116         if (!dcc)
2117                 return;
2118
2119         f2fs_stop_discard_thread(sbi);
2120
2121         /*
2122          * Recovery can cache discard commands, so in error path of
2123          * fill_super(), it needs to give a chance to handle them.
2124          */
2125         if (unlikely(atomic_read(&dcc->discard_cmd_cnt)))
2126                 f2fs_issue_discard_timeout(sbi);
2127
2128         kvfree(dcc);
2129         SM_I(sbi)->dcc_info = NULL;
2130 }
2131
2132 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2133 {
2134         struct sit_info *sit_i = SIT_I(sbi);
2135
2136         if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2137                 sit_i->dirty_sentries++;
2138                 return false;
2139         }
2140
2141         return true;
2142 }
2143
2144 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2145                                         unsigned int segno, int modified)
2146 {
2147         struct seg_entry *se = get_seg_entry(sbi, segno);
2148         se->type = type;
2149         if (modified)
2150                 __mark_sit_entry_dirty(sbi, segno);
2151 }
2152
2153 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2154 {
2155         struct seg_entry *se;
2156         unsigned int segno, offset;
2157         long int new_vblocks;
2158         bool exist;
2159 #ifdef CONFIG_F2FS_CHECK_FS
2160         bool mir_exist;
2161 #endif
2162
2163         segno = GET_SEGNO(sbi, blkaddr);
2164
2165         se = get_seg_entry(sbi, segno);
2166         new_vblocks = se->valid_blocks + del;
2167         offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2168
2169         f2fs_bug_on(sbi, (new_vblocks < 0 ||
2170                                 (new_vblocks > sbi->blocks_per_seg)));
2171
2172         se->valid_blocks = new_vblocks;
2173         se->mtime = get_mtime(sbi, false);
2174         if (se->mtime > SIT_I(sbi)->max_mtime)
2175                 SIT_I(sbi)->max_mtime = se->mtime;
2176
2177         /* Update valid block bitmap */
2178         if (del > 0) {
2179                 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2180 #ifdef CONFIG_F2FS_CHECK_FS
2181                 mir_exist = f2fs_test_and_set_bit(offset,
2182                                                 se->cur_valid_map_mir);
2183                 if (unlikely(exist != mir_exist)) {
2184                         f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2185                                  blkaddr, exist);
2186                         f2fs_bug_on(sbi, 1);
2187                 }
2188 #endif
2189                 if (unlikely(exist)) {
2190                         f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
2191                                  blkaddr);
2192                         f2fs_bug_on(sbi, 1);
2193                         se->valid_blocks--;
2194                         del = 0;
2195                 }
2196
2197                 if (!f2fs_test_and_set_bit(offset, se->discard_map))
2198                         sbi->discard_blks--;
2199
2200                 /*
2201                  * SSR should never reuse block which is checkpointed
2202                  * or newly invalidated.
2203                  */
2204                 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2205                         if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2206                                 se->ckpt_valid_blocks++;
2207                 }
2208         } else {
2209                 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2210 #ifdef CONFIG_F2FS_CHECK_FS
2211                 mir_exist = f2fs_test_and_clear_bit(offset,
2212                                                 se->cur_valid_map_mir);
2213                 if (unlikely(exist != mir_exist)) {
2214                         f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2215                                  blkaddr, exist);
2216                         f2fs_bug_on(sbi, 1);
2217                 }
2218 #endif
2219                 if (unlikely(!exist)) {
2220                         f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
2221                                  blkaddr);
2222                         f2fs_bug_on(sbi, 1);
2223                         se->valid_blocks++;
2224                         del = 0;
2225                 } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2226                         /*
2227                          * If checkpoints are off, we must not reuse data that
2228                          * was used in the previous checkpoint. If it was used
2229                          * before, we must track that to know how much space we
2230                          * really have.
2231                          */
2232                         if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
2233                                 spin_lock(&sbi->stat_lock);
2234                                 sbi->unusable_block_count++;
2235                                 spin_unlock(&sbi->stat_lock);
2236                         }
2237                 }
2238
2239                 if (f2fs_test_and_clear_bit(offset, se->discard_map))
2240                         sbi->discard_blks++;
2241         }
2242         if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2243                 se->ckpt_valid_blocks += del;
2244
2245         __mark_sit_entry_dirty(sbi, segno);
2246
2247         /* update total number of valid blocks to be written in ckpt area */
2248         SIT_I(sbi)->written_valid_blocks += del;
2249
2250         if (__is_large_section(sbi))
2251                 get_sec_entry(sbi, segno)->valid_blocks += del;
2252 }
2253
2254 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2255 {
2256         unsigned int segno = GET_SEGNO(sbi, addr);
2257         struct sit_info *sit_i = SIT_I(sbi);
2258
2259         f2fs_bug_on(sbi, addr == NULL_ADDR);
2260         if (addr == NEW_ADDR || addr == COMPRESS_ADDR)
2261                 return;
2262
2263         invalidate_mapping_pages(META_MAPPING(sbi), addr, addr);
2264
2265         /* add it into sit main buffer */
2266         down_write(&sit_i->sentry_lock);
2267
2268         update_sit_entry(sbi, addr, -1);
2269
2270         /* add it into dirty seglist */
2271         locate_dirty_segment(sbi, segno);
2272
2273         up_write(&sit_i->sentry_lock);
2274 }
2275
2276 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2277 {
2278         struct sit_info *sit_i = SIT_I(sbi);
2279         unsigned int segno, offset;
2280         struct seg_entry *se;
2281         bool is_cp = false;
2282
2283         if (!__is_valid_data_blkaddr(blkaddr))
2284                 return true;
2285
2286         down_read(&sit_i->sentry_lock);
2287
2288         segno = GET_SEGNO(sbi, blkaddr);
2289         se = get_seg_entry(sbi, segno);
2290         offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2291
2292         if (f2fs_test_bit(offset, se->ckpt_valid_map))
2293                 is_cp = true;
2294
2295         up_read(&sit_i->sentry_lock);
2296
2297         return is_cp;
2298 }
2299
2300 /*
2301  * This function should be resided under the curseg_mutex lock
2302  */
2303 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
2304                                         struct f2fs_summary *sum)
2305 {
2306         struct curseg_info *curseg = CURSEG_I(sbi, type);
2307         void *addr = curseg->sum_blk;
2308         addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
2309         memcpy(addr, sum, sizeof(struct f2fs_summary));
2310 }
2311
2312 /*
2313  * Calculate the number of current summary pages for writing
2314  */
2315 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2316 {
2317         int valid_sum_count = 0;
2318         int i, sum_in_page;
2319
2320         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2321                 if (sbi->ckpt->alloc_type[i] == SSR)
2322                         valid_sum_count += sbi->blocks_per_seg;
2323                 else {
2324                         if (for_ra)
2325                                 valid_sum_count += le16_to_cpu(
2326                                         F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2327                         else
2328                                 valid_sum_count += curseg_blkoff(sbi, i);
2329                 }
2330         }
2331
2332         sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2333                         SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2334         if (valid_sum_count <= sum_in_page)
2335                 return 1;
2336         else if ((valid_sum_count - sum_in_page) <=
2337                 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2338                 return 2;
2339         return 3;
2340 }
2341
2342 /*
2343  * Caller should put this summary page
2344  */
2345 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2346 {
2347         return f2fs_get_meta_page_nofail(sbi, GET_SUM_BLOCK(sbi, segno));
2348 }
2349
2350 void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2351                                         void *src, block_t blk_addr)
2352 {
2353         struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2354
2355         memcpy(page_address(page), src, PAGE_SIZE);
2356         set_page_dirty(page);
2357         f2fs_put_page(page, 1);
2358 }
2359
2360 static void write_sum_page(struct f2fs_sb_info *sbi,
2361                         struct f2fs_summary_block *sum_blk, block_t blk_addr)
2362 {
2363         f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2364 }
2365
2366 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2367                                                 int type, block_t blk_addr)
2368 {
2369         struct curseg_info *curseg = CURSEG_I(sbi, type);
2370         struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2371         struct f2fs_summary_block *src = curseg->sum_blk;
2372         struct f2fs_summary_block *dst;
2373
2374         dst = (struct f2fs_summary_block *)page_address(page);
2375         memset(dst, 0, PAGE_SIZE);
2376
2377         mutex_lock(&curseg->curseg_mutex);
2378
2379         down_read(&curseg->journal_rwsem);
2380         memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2381         up_read(&curseg->journal_rwsem);
2382
2383         memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2384         memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2385
2386         mutex_unlock(&curseg->curseg_mutex);
2387
2388         set_page_dirty(page);
2389         f2fs_put_page(page, 1);
2390 }
2391
2392 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
2393 {
2394         struct curseg_info *curseg = CURSEG_I(sbi, type);
2395         unsigned int segno = curseg->segno + 1;
2396         struct free_segmap_info *free_i = FREE_I(sbi);
2397
2398         if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2399                 return !test_bit(segno, free_i->free_segmap);
2400         return 0;
2401 }
2402
2403 /*
2404  * Find a new segment from the free segments bitmap to right order
2405  * This function should be returned with success, otherwise BUG
2406  */
2407 static void get_new_segment(struct f2fs_sb_info *sbi,
2408                         unsigned int *newseg, bool new_sec, int dir)
2409 {
2410         struct free_segmap_info *free_i = FREE_I(sbi);
2411         unsigned int segno, secno, zoneno;
2412         unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2413         unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2414         unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2415         unsigned int left_start = hint;
2416         bool init = true;
2417         int go_left = 0;
2418         int i;
2419
2420         spin_lock(&free_i->segmap_lock);
2421
2422         if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2423                 segno = find_next_zero_bit(free_i->free_segmap,
2424                         GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2425                 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2426                         goto got_it;
2427         }
2428 find_other_zone:
2429         secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2430         if (secno >= MAIN_SECS(sbi)) {
2431                 if (dir == ALLOC_RIGHT) {
2432                         secno = find_next_zero_bit(free_i->free_secmap,
2433                                                         MAIN_SECS(sbi), 0);
2434                         f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2435                 } else {
2436                         go_left = 1;
2437                         left_start = hint - 1;
2438                 }
2439         }
2440         if (go_left == 0)
2441                 goto skip_left;
2442
2443         while (test_bit(left_start, free_i->free_secmap)) {
2444                 if (left_start > 0) {
2445                         left_start--;
2446                         continue;
2447                 }
2448                 left_start = find_next_zero_bit(free_i->free_secmap,
2449                                                         MAIN_SECS(sbi), 0);
2450                 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2451                 break;
2452         }
2453         secno = left_start;
2454 skip_left:
2455         segno = GET_SEG_FROM_SEC(sbi, secno);
2456         zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2457
2458         /* give up on finding another zone */
2459         if (!init)
2460                 goto got_it;
2461         if (sbi->secs_per_zone == 1)
2462                 goto got_it;
2463         if (zoneno == old_zoneno)
2464                 goto got_it;
2465         if (dir == ALLOC_LEFT) {
2466                 if (!go_left && zoneno + 1 >= total_zones)
2467                         goto got_it;
2468                 if (go_left && zoneno == 0)
2469                         goto got_it;
2470         }
2471         for (i = 0; i < NR_CURSEG_TYPE; i++)
2472                 if (CURSEG_I(sbi, i)->zone == zoneno)
2473                         break;
2474
2475         if (i < NR_CURSEG_TYPE) {
2476                 /* zone is in user, try another */
2477                 if (go_left)
2478                         hint = zoneno * sbi->secs_per_zone - 1;
2479                 else if (zoneno + 1 >= total_zones)
2480                         hint = 0;
2481                 else
2482                         hint = (zoneno + 1) * sbi->secs_per_zone;
2483                 init = false;
2484                 goto find_other_zone;
2485         }
2486 got_it:
2487         /* set it as dirty segment in free segmap */
2488         f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2489         __set_inuse(sbi, segno);
2490         *newseg = segno;
2491         spin_unlock(&free_i->segmap_lock);
2492 }
2493
2494 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2495 {
2496         struct curseg_info *curseg = CURSEG_I(sbi, type);
2497         struct summary_footer *sum_footer;
2498
2499         curseg->segno = curseg->next_segno;
2500         curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2501         curseg->next_blkoff = 0;
2502         curseg->next_segno = NULL_SEGNO;
2503
2504         sum_footer = &(curseg->sum_blk->footer);
2505         memset(sum_footer, 0, sizeof(struct summary_footer));
2506         if (IS_DATASEG(type))
2507                 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2508         if (IS_NODESEG(type))
2509                 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2510         __set_sit_entry_type(sbi, type, curseg->segno, modified);
2511 }
2512
2513 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2514 {
2515         /* if segs_per_sec is large than 1, we need to keep original policy. */
2516         if (__is_large_section(sbi))
2517                 return CURSEG_I(sbi, type)->segno;
2518
2519         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2520                 return 0;
2521
2522         if (test_opt(sbi, NOHEAP) &&
2523                 (type == CURSEG_HOT_DATA || IS_NODESEG(type)))
2524                 return 0;
2525
2526         if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2527                 return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2528
2529         /* find segments from 0 to reuse freed segments */
2530         if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2531                 return 0;
2532
2533         return CURSEG_I(sbi, type)->segno;
2534 }
2535
2536 /*
2537  * Allocate a current working segment.
2538  * This function always allocates a free segment in LFS manner.
2539  */
2540 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2541 {
2542         struct curseg_info *curseg = CURSEG_I(sbi, type);
2543         unsigned int segno = curseg->segno;
2544         int dir = ALLOC_LEFT;
2545
2546         write_sum_page(sbi, curseg->sum_blk,
2547                                 GET_SUM_BLOCK(sbi, segno));
2548         if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
2549                 dir = ALLOC_RIGHT;
2550
2551         if (test_opt(sbi, NOHEAP))
2552                 dir = ALLOC_RIGHT;
2553
2554         segno = __get_next_segno(sbi, type);
2555         get_new_segment(sbi, &segno, new_sec, dir);
2556         curseg->next_segno = segno;
2557         reset_curseg(sbi, type, 1);
2558         curseg->alloc_type = LFS;
2559 }
2560
2561 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
2562                         struct curseg_info *seg, block_t start)
2563 {
2564         struct seg_entry *se = get_seg_entry(sbi, seg->segno);
2565         int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2566         unsigned long *target_map = SIT_I(sbi)->tmp_map;
2567         unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2568         unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2569         int i, pos;
2570
2571         for (i = 0; i < entries; i++)
2572                 target_map[i] = ckpt_map[i] | cur_map[i];
2573
2574         pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2575
2576         seg->next_blkoff = pos;
2577 }
2578
2579 /*
2580  * If a segment is written by LFS manner, next block offset is just obtained
2581  * by increasing the current block offset. However, if a segment is written by
2582  * SSR manner, next block offset obtained by calling __next_free_blkoff
2583  */
2584 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2585                                 struct curseg_info *seg)
2586 {
2587         if (seg->alloc_type == SSR)
2588                 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
2589         else
2590                 seg->next_blkoff++;
2591 }
2592
2593 /*
2594  * This function always allocates a used segment(from dirty seglist) by SSR
2595  * manner, so it should recover the existing segment information of valid blocks
2596  */
2597 static void change_curseg(struct f2fs_sb_info *sbi, int type)
2598 {
2599         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2600         struct curseg_info *curseg = CURSEG_I(sbi, type);
2601         unsigned int new_segno = curseg->next_segno;
2602         struct f2fs_summary_block *sum_node;
2603         struct page *sum_page;
2604
2605         write_sum_page(sbi, curseg->sum_blk,
2606                                 GET_SUM_BLOCK(sbi, curseg->segno));
2607         __set_test_and_inuse(sbi, new_segno);
2608
2609         mutex_lock(&dirty_i->seglist_lock);
2610         __remove_dirty_segment(sbi, new_segno, PRE);
2611         __remove_dirty_segment(sbi, new_segno, DIRTY);
2612         mutex_unlock(&dirty_i->seglist_lock);
2613
2614         reset_curseg(sbi, type, 1);
2615         curseg->alloc_type = SSR;
2616         __next_free_blkoff(sbi, curseg, 0);
2617
2618         sum_page = f2fs_get_sum_page(sbi, new_segno);
2619         f2fs_bug_on(sbi, IS_ERR(sum_page));
2620         sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2621         memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2622         f2fs_put_page(sum_page, 1);
2623 }
2624
2625 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
2626 {
2627         struct curseg_info *curseg = CURSEG_I(sbi, type);
2628         const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2629         unsigned segno = NULL_SEGNO;
2630         int i, cnt;
2631         bool reversed = false;
2632
2633         /* f2fs_need_SSR() already forces to do this */
2634         if (!v_ops->get_victim(sbi, &segno, BG_GC, type, SSR)) {
2635                 curseg->next_segno = segno;
2636                 return 1;
2637         }
2638
2639         /* For node segments, let's do SSR more intensively */
2640         if (IS_NODESEG(type)) {
2641                 if (type >= CURSEG_WARM_NODE) {
2642                         reversed = true;
2643                         i = CURSEG_COLD_NODE;
2644                 } else {
2645                         i = CURSEG_HOT_NODE;
2646                 }
2647                 cnt = NR_CURSEG_NODE_TYPE;
2648         } else {
2649                 if (type >= CURSEG_WARM_DATA) {
2650                         reversed = true;
2651                         i = CURSEG_COLD_DATA;
2652                 } else {
2653                         i = CURSEG_HOT_DATA;
2654                 }
2655                 cnt = NR_CURSEG_DATA_TYPE;
2656         }
2657
2658         for (; cnt-- > 0; reversed ? i-- : i++) {
2659                 if (i == type)
2660                         continue;
2661                 if (!v_ops->get_victim(sbi, &segno, BG_GC, i, SSR)) {
2662                         curseg->next_segno = segno;
2663                         return 1;
2664                 }
2665         }
2666
2667         /* find valid_blocks=0 in dirty list */
2668         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2669                 segno = get_free_segment(sbi);
2670                 if (segno != NULL_SEGNO) {
2671                         curseg->next_segno = segno;
2672                         return 1;
2673                 }
2674         }
2675         return 0;
2676 }
2677
2678 /*
2679  * flush out current segment and replace it with new segment
2680  * This function should be returned with success, otherwise BUG
2681  */
2682 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
2683                                                 int type, bool force)
2684 {
2685         struct curseg_info *curseg = CURSEG_I(sbi, type);
2686
2687         if (force)
2688                 new_curseg(sbi, type, true);
2689         else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2690                                         type == CURSEG_WARM_NODE)
2691                 new_curseg(sbi, type, false);
2692         else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type) &&
2693                         likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2694                 new_curseg(sbi, type, false);
2695         else if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type))
2696                 change_curseg(sbi, type);
2697         else
2698                 new_curseg(sbi, type, false);
2699
2700         stat_inc_seg_type(sbi, curseg);
2701 }
2702
2703 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
2704                                         unsigned int start, unsigned int end)
2705 {
2706         struct curseg_info *curseg = CURSEG_I(sbi, type);
2707         unsigned int segno;
2708
2709         down_read(&SM_I(sbi)->curseg_lock);
2710         mutex_lock(&curseg->curseg_mutex);
2711         down_write(&SIT_I(sbi)->sentry_lock);
2712
2713         segno = CURSEG_I(sbi, type)->segno;
2714         if (segno < start || segno > end)
2715                 goto unlock;
2716
2717         if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type))
2718                 change_curseg(sbi, type);
2719         else
2720                 new_curseg(sbi, type, true);
2721
2722         stat_inc_seg_type(sbi, curseg);
2723
2724         locate_dirty_segment(sbi, segno);
2725 unlock:
2726         up_write(&SIT_I(sbi)->sentry_lock);
2727
2728         if (segno != curseg->segno)
2729                 f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
2730                             type, segno, curseg->segno);
2731
2732         mutex_unlock(&curseg->curseg_mutex);
2733         up_read(&SM_I(sbi)->curseg_lock);
2734 }
2735
2736 static void __allocate_new_segment(struct f2fs_sb_info *sbi, int type)
2737 {
2738         struct curseg_info *curseg = CURSEG_I(sbi, type);
2739         unsigned int old_segno;
2740
2741         if (!curseg->next_blkoff &&
2742                 !get_valid_blocks(sbi, curseg->segno, false) &&
2743                 !get_ckpt_valid_blocks(sbi, curseg->segno))
2744                 return;
2745
2746         old_segno = curseg->segno;
2747         SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true);
2748         locate_dirty_segment(sbi, old_segno);
2749 }
2750
2751 void f2fs_allocate_new_segment(struct f2fs_sb_info *sbi, int type)
2752 {
2753         down_write(&SIT_I(sbi)->sentry_lock);
2754         __allocate_new_segment(sbi, type);
2755         up_write(&SIT_I(sbi)->sentry_lock);
2756 }
2757
2758 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
2759 {
2760         int i;
2761
2762         down_write(&SIT_I(sbi)->sentry_lock);
2763         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
2764                 __allocate_new_segment(sbi, i);
2765         up_write(&SIT_I(sbi)->sentry_lock);
2766 }
2767
2768 static const struct segment_allocation default_salloc_ops = {
2769         .allocate_segment = allocate_segment_by_default,
2770 };
2771
2772 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
2773                                                 struct cp_control *cpc)
2774 {
2775         __u64 trim_start = cpc->trim_start;
2776         bool has_candidate = false;
2777
2778         down_write(&SIT_I(sbi)->sentry_lock);
2779         for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
2780                 if (add_discard_addrs(sbi, cpc, true)) {
2781                         has_candidate = true;
2782                         break;
2783                 }
2784         }
2785         up_write(&SIT_I(sbi)->sentry_lock);
2786
2787         cpc->trim_start = trim_start;
2788         return has_candidate;
2789 }
2790
2791 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
2792                                         struct discard_policy *dpolicy,
2793                                         unsigned int start, unsigned int end)
2794 {
2795         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2796         struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
2797         struct rb_node **insert_p = NULL, *insert_parent = NULL;
2798         struct discard_cmd *dc;
2799         struct blk_plug plug;
2800         int issued;
2801         unsigned int trimmed = 0;
2802
2803 next:
2804         issued = 0;
2805
2806         mutex_lock(&dcc->cmd_lock);
2807         if (unlikely(dcc->rbtree_check))
2808                 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
2809                                                                 &dcc->root));
2810
2811         dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
2812                                         NULL, start,
2813                                         (struct rb_entry **)&prev_dc,
2814                                         (struct rb_entry **)&next_dc,
2815                                         &insert_p, &insert_parent, true, NULL);
2816         if (!dc)
2817                 dc = next_dc;
2818
2819         blk_start_plug(&plug);
2820
2821         while (dc && dc->lstart <= end) {
2822                 struct rb_node *node;
2823                 int err = 0;
2824
2825                 if (dc->len < dpolicy->granularity)
2826                         goto skip;
2827
2828                 if (dc->state != D_PREP) {
2829                         list_move_tail(&dc->list, &dcc->fstrim_list);
2830                         goto skip;
2831                 }
2832
2833                 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
2834
2835                 if (issued >= dpolicy->max_requests) {
2836                         start = dc->lstart + dc->len;
2837
2838                         if (err)
2839                                 __remove_discard_cmd(sbi, dc);
2840
2841                         blk_finish_plug(&plug);
2842                         mutex_unlock(&dcc->cmd_lock);
2843                         trimmed += __wait_all_discard_cmd(sbi, NULL);
2844                         congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
2845                         goto next;
2846                 }
2847 skip:
2848                 node = rb_next(&dc->rb_node);
2849                 if (err)
2850                         __remove_discard_cmd(sbi, dc);
2851                 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
2852
2853                 if (fatal_signal_pending(current))
2854                         break;
2855         }
2856
2857         blk_finish_plug(&plug);
2858         mutex_unlock(&dcc->cmd_lock);
2859
2860         return trimmed;
2861 }
2862
2863 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
2864 {
2865         __u64 start = F2FS_BYTES_TO_BLK(range->start);
2866         __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
2867         unsigned int start_segno, end_segno;
2868         block_t start_block, end_block;
2869         struct cp_control cpc;
2870         struct discard_policy dpolicy;
2871         unsigned long long trimmed = 0;
2872         int err = 0;
2873         bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
2874
2875         if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
2876                 return -EINVAL;
2877
2878         if (end < MAIN_BLKADDR(sbi))
2879                 goto out;
2880
2881         if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
2882                 f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
2883                 return -EFSCORRUPTED;
2884         }
2885
2886         /* start/end segment number in main_area */
2887         start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
2888         end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
2889                                                 GET_SEGNO(sbi, end);
2890         if (need_align) {
2891                 start_segno = rounddown(start_segno, sbi->segs_per_sec);
2892                 end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
2893         }
2894
2895         cpc.reason = CP_DISCARD;
2896         cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
2897         cpc.trim_start = start_segno;
2898         cpc.trim_end = end_segno;
2899
2900         if (sbi->discard_blks == 0)
2901                 goto out;
2902
2903         down_write(&sbi->gc_lock);
2904         err = f2fs_write_checkpoint(sbi, &cpc);
2905         up_write(&sbi->gc_lock);
2906         if (err)
2907                 goto out;
2908
2909         /*
2910          * We filed discard candidates, but actually we don't need to wait for
2911          * all of them, since they'll be issued in idle time along with runtime
2912          * discard option. User configuration looks like using runtime discard
2913          * or periodic fstrim instead of it.
2914          */
2915         if (f2fs_realtime_discard_enable(sbi))
2916                 goto out;
2917
2918         start_block = START_BLOCK(sbi, start_segno);
2919         end_block = START_BLOCK(sbi, end_segno + 1);
2920
2921         __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
2922         trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
2923                                         start_block, end_block);
2924
2925         trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
2926                                         start_block, end_block);
2927 out:
2928         if (!err)
2929                 range->len = F2FS_BLK_TO_BYTES(trimmed);
2930         return err;
2931 }
2932
2933 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
2934 {
2935         struct curseg_info *curseg = CURSEG_I(sbi, type);
2936         if (curseg->next_blkoff < sbi->blocks_per_seg)
2937                 return true;
2938         return false;
2939 }
2940
2941 int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
2942 {
2943         switch (hint) {
2944         case WRITE_LIFE_SHORT:
2945                 return CURSEG_HOT_DATA;
2946         case WRITE_LIFE_EXTREME:
2947                 return CURSEG_COLD_DATA;
2948         default:
2949                 return CURSEG_WARM_DATA;
2950         }
2951 }
2952
2953 /* This returns write hints for each segment type. This hints will be
2954  * passed down to block layer. There are mapping tables which depend on
2955  * the mount option 'whint_mode'.
2956  *
2957  * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET.
2958  *
2959  * 2) whint_mode=user-based. F2FS tries to pass down hints given by users.
2960  *
2961  * User                  F2FS                     Block
2962  * ----                  ----                     -----
2963  *                       META                     WRITE_LIFE_NOT_SET
2964  *                       HOT_NODE                 "
2965  *                       WARM_NODE                "
2966  *                       COLD_NODE                "
2967  * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
2968  * extension list        "                        "
2969  *
2970  * -- buffered io
2971  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2972  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2973  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
2974  * WRITE_LIFE_NONE       "                        "
2975  * WRITE_LIFE_MEDIUM     "                        "
2976  * WRITE_LIFE_LONG       "                        "
2977  *
2978  * -- direct io
2979  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2980  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2981  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
2982  * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
2983  * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
2984  * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
2985  *
2986  * 3) whint_mode=fs-based. F2FS passes down hints with its policy.
2987  *
2988  * User                  F2FS                     Block
2989  * ----                  ----                     -----
2990  *                       META                     WRITE_LIFE_MEDIUM;
2991  *                       HOT_NODE                 WRITE_LIFE_NOT_SET
2992  *                       WARM_NODE                "
2993  *                       COLD_NODE                WRITE_LIFE_NONE
2994  * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
2995  * extension list        "                        "
2996  *
2997  * -- buffered io
2998  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2999  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3000  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_LONG
3001  * WRITE_LIFE_NONE       "                        "
3002  * WRITE_LIFE_MEDIUM     "                        "
3003  * WRITE_LIFE_LONG       "                        "
3004  *
3005  * -- direct io
3006  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3007  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3008  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
3009  * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
3010  * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
3011  * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
3012  */
3013
3014 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3015                                 enum page_type type, enum temp_type temp)
3016 {
3017         if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) {
3018                 if (type == DATA) {
3019                         if (temp == WARM)
3020                                 return WRITE_LIFE_NOT_SET;
3021                         else if (temp == HOT)
3022                                 return WRITE_LIFE_SHORT;
3023                         else if (temp == COLD)
3024                                 return WRITE_LIFE_EXTREME;
3025                 } else {
3026                         return WRITE_LIFE_NOT_SET;
3027                 }
3028         } else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) {
3029                 if (type == DATA) {
3030                         if (temp == WARM)
3031                                 return WRITE_LIFE_LONG;
3032                         else if (temp == HOT)
3033                                 return WRITE_LIFE_SHORT;
3034                         else if (temp == COLD)
3035                                 return WRITE_LIFE_EXTREME;
3036                 } else if (type == NODE) {
3037                         if (temp == WARM || temp == HOT)
3038                                 return WRITE_LIFE_NOT_SET;
3039                         else if (temp == COLD)
3040                                 return WRITE_LIFE_NONE;
3041                 } else if (type == META) {
3042                         return WRITE_LIFE_MEDIUM;
3043                 }
3044         }
3045         return WRITE_LIFE_NOT_SET;
3046 }
3047
3048 static int __get_segment_type_2(struct f2fs_io_info *fio)
3049 {
3050         if (fio->type == DATA)
3051                 return CURSEG_HOT_DATA;
3052         else
3053                 return CURSEG_HOT_NODE;
3054 }
3055
3056 static int __get_segment_type_4(struct f2fs_io_info *fio)
3057 {
3058         if (fio->type == DATA) {
3059                 struct inode *inode = fio->page->mapping->host;
3060
3061                 if (S_ISDIR(inode->i_mode))
3062                         return CURSEG_HOT_DATA;
3063                 else
3064                         return CURSEG_COLD_DATA;
3065         } else {
3066                 if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3067                         return CURSEG_WARM_NODE;
3068                 else
3069                         return CURSEG_COLD_NODE;
3070         }
3071 }
3072
3073 static int __get_segment_type_6(struct f2fs_io_info *fio)
3074 {
3075         if (fio->type == DATA) {
3076                 struct inode *inode = fio->page->mapping->host;
3077
3078                 if (is_cold_data(fio->page) || file_is_cold(inode) ||
3079                                 f2fs_compressed_file(inode))
3080                         return CURSEG_COLD_DATA;
3081                 if (file_is_hot(inode) ||
3082                                 is_inode_flag_set(inode, FI_HOT_DATA) ||
3083                                 f2fs_is_atomic_file(inode) ||
3084                                 f2fs_is_volatile_file(inode))
3085                         return CURSEG_HOT_DATA;
3086                 return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
3087         } else {
3088                 if (IS_DNODE(fio->page))
3089                         return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3090                                                 CURSEG_HOT_NODE;
3091                 return CURSEG_COLD_NODE;
3092         }
3093 }
3094
3095 static int __get_segment_type(struct f2fs_io_info *fio)
3096 {
3097         int type = 0;
3098
3099         switch (F2FS_OPTION(fio->sbi).active_logs) {
3100         case 2:
3101                 type = __get_segment_type_2(fio);
3102                 break;
3103         case 4:
3104                 type = __get_segment_type_4(fio);
3105                 break;
3106         case 6:
3107                 type = __get_segment_type_6(fio);
3108                 break;
3109         default:
3110                 f2fs_bug_on(fio->sbi, true);
3111         }
3112
3113         if (IS_HOT(type))
3114                 fio->temp = HOT;
3115         else if (IS_WARM(type))
3116                 fio->temp = WARM;
3117         else
3118                 fio->temp = COLD;
3119         return type;
3120 }
3121
3122 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3123                 block_t old_blkaddr, block_t *new_blkaddr,
3124                 struct f2fs_summary *sum, int type,
3125                 struct f2fs_io_info *fio)
3126 {
3127         struct sit_info *sit_i = SIT_I(sbi);
3128         struct curseg_info *curseg = CURSEG_I(sbi, type);
3129         bool put_pin_sem = false;
3130
3131         if (type == CURSEG_COLD_DATA) {
3132                 /* GC during CURSEG_COLD_DATA_PINNED allocation */
3133                 if (down_read_trylock(&sbi->pin_sem)) {
3134                         put_pin_sem = true;
3135                 } else {
3136                         type = CURSEG_WARM_DATA;
3137                         curseg = CURSEG_I(sbi, type);
3138                 }
3139         } else if (type == CURSEG_COLD_DATA_PINNED) {
3140                 type = CURSEG_COLD_DATA;
3141         }
3142
3143         down_read(&SM_I(sbi)->curseg_lock);
3144
3145         mutex_lock(&curseg->curseg_mutex);
3146         down_write(&sit_i->sentry_lock);
3147
3148         *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3149
3150         f2fs_wait_discard_bio(sbi, *new_blkaddr);
3151
3152         /*
3153          * __add_sum_entry should be resided under the curseg_mutex
3154          * because, this function updates a summary entry in the
3155          * current summary block.
3156          */
3157         __add_sum_entry(sbi, type, sum);
3158
3159         __refresh_next_blkoff(sbi, curseg);
3160
3161         stat_inc_block_count(sbi, curseg);
3162
3163         /*
3164          * SIT information should be updated before segment allocation,
3165          * since SSR needs latest valid block information.
3166          */
3167         update_sit_entry(sbi, *new_blkaddr, 1);
3168         if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
3169                 update_sit_entry(sbi, old_blkaddr, -1);
3170
3171         if (!__has_curseg_space(sbi, type))
3172                 sit_i->s_ops->allocate_segment(sbi, type, false);
3173
3174         /*
3175          * segment dirty status should be updated after segment allocation,
3176          * so we just need to update status only one time after previous
3177          * segment being closed.
3178          */
3179         locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3180         locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3181
3182         up_write(&sit_i->sentry_lock);
3183
3184         if (page && IS_NODESEG(type)) {
3185                 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3186
3187                 f2fs_inode_chksum_set(sbi, page);
3188         }
3189
3190         if (F2FS_IO_ALIGNED(sbi))
3191                 fio->retry = false;
3192
3193         if (fio) {
3194                 struct f2fs_bio_info *io;
3195
3196                 INIT_LIST_HEAD(&fio->list);
3197                 fio->in_list = true;
3198                 io = sbi->write_io[fio->type] + fio->temp;
3199                 spin_lock(&io->io_lock);
3200                 list_add_tail(&fio->list, &io->io_list);
3201                 spin_unlock(&io->io_lock);
3202         }
3203
3204         mutex_unlock(&curseg->curseg_mutex);
3205
3206         up_read(&SM_I(sbi)->curseg_lock);
3207
3208         if (put_pin_sem)
3209                 up_read(&sbi->pin_sem);
3210 }
3211
3212 static void update_device_state(struct f2fs_io_info *fio)
3213 {
3214         struct f2fs_sb_info *sbi = fio->sbi;
3215         unsigned int devidx;
3216
3217         if (!f2fs_is_multi_device(sbi))
3218                 return;
3219
3220         devidx = f2fs_target_device_index(sbi, fio->new_blkaddr);
3221
3222         /* update device state for fsync */
3223         f2fs_set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO);
3224
3225         /* update device state for checkpoint */
3226         if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3227                 spin_lock(&sbi->dev_lock);
3228                 f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3229                 spin_unlock(&sbi->dev_lock);
3230         }
3231 }
3232
3233 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3234 {
3235         int type = __get_segment_type(fio);
3236         bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA);
3237
3238         if (keep_order)
3239                 down_read(&fio->sbi->io_order_lock);
3240 reallocate:
3241         f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3242                         &fio->new_blkaddr, sum, type, fio);
3243         if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO)
3244                 invalidate_mapping_pages(META_MAPPING(fio->sbi),
3245                                         fio->old_blkaddr, fio->old_blkaddr);
3246
3247         /* writeout dirty page into bdev */
3248         f2fs_submit_page_write(fio);
3249         if (fio->retry) {
3250                 fio->old_blkaddr = fio->new_blkaddr;
3251                 goto reallocate;
3252         }
3253
3254         update_device_state(fio);
3255
3256         if (keep_order)
3257                 up_read(&fio->sbi->io_order_lock);
3258 }
3259
3260 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3261                                         enum iostat_type io_type)
3262 {
3263         struct f2fs_io_info fio = {
3264                 .sbi = sbi,
3265                 .type = META,
3266                 .temp = HOT,
3267                 .op = REQ_OP_WRITE,
3268                 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3269                 .old_blkaddr = page->index,
3270                 .new_blkaddr = page->index,
3271                 .page = page,
3272                 .encrypted_page = NULL,
3273                 .in_list = false,
3274         };
3275
3276         if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3277                 fio.op_flags &= ~REQ_META;
3278
3279         set_page_writeback(page);
3280         ClearPageError(page);
3281         f2fs_submit_page_write(&fio);
3282
3283         stat_inc_meta_count(sbi, page->index);
3284         f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
3285 }
3286
3287 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3288 {
3289         struct f2fs_summary sum;
3290
3291         set_summary(&sum, nid, 0, 0);
3292         do_write_page(&sum, fio);
3293
3294         f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3295 }
3296
3297 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3298                                         struct f2fs_io_info *fio)
3299 {
3300         struct f2fs_sb_info *sbi = fio->sbi;
3301         struct f2fs_summary sum;
3302
3303         f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3304         set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3305         do_write_page(&sum, fio);
3306         f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3307
3308         f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
3309 }
3310
3311 int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3312 {
3313         int err;
3314         struct f2fs_sb_info *sbi = fio->sbi;
3315         unsigned int segno;
3316
3317         fio->new_blkaddr = fio->old_blkaddr;
3318         /* i/o temperature is needed for passing down write hints */
3319         __get_segment_type(fio);
3320
3321         segno = GET_SEGNO(sbi, fio->new_blkaddr);
3322
3323         if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3324                 set_sbi_flag(sbi, SBI_NEED_FSCK);
3325                 f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
3326                           __func__, segno);
3327                 return -EFSCORRUPTED;
3328         }
3329
3330         stat_inc_inplace_blocks(fio->sbi);
3331
3332         if (fio->bio && !(SM_I(sbi)->ipu_policy & (1 << F2FS_IPU_NOCACHE)))
3333                 err = f2fs_merge_page_bio(fio);
3334         else
3335                 err = f2fs_submit_page_bio(fio);
3336         if (!err) {
3337                 update_device_state(fio);
3338                 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3339         }
3340
3341         return err;
3342 }
3343
3344 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3345                                                 unsigned int segno)
3346 {
3347         int i;
3348
3349         for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3350                 if (CURSEG_I(sbi, i)->segno == segno)
3351                         break;
3352         }
3353         return i;
3354 }
3355
3356 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3357                                 block_t old_blkaddr, block_t new_blkaddr,
3358                                 bool recover_curseg, bool recover_newaddr)
3359 {
3360         struct sit_info *sit_i = SIT_I(sbi);
3361         struct curseg_info *curseg;
3362         unsigned int segno, old_cursegno;
3363         struct seg_entry *se;
3364         int type;
3365         unsigned short old_blkoff;
3366
3367         segno = GET_SEGNO(sbi, new_blkaddr);
3368         se = get_seg_entry(sbi, segno);
3369         type = se->type;
3370
3371         down_write(&SM_I(sbi)->curseg_lock);
3372
3373         if (!recover_curseg) {
3374                 /* for recovery flow */
3375                 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3376                         if (old_blkaddr == NULL_ADDR)
3377                                 type = CURSEG_COLD_DATA;
3378                         else
3379                                 type = CURSEG_WARM_DATA;
3380                 }
3381         } else {
3382                 if (IS_CURSEG(sbi, segno)) {
3383                         /* se->type is volatile as SSR allocation */
3384                         type = __f2fs_get_curseg(sbi, segno);
3385                         f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3386                 } else {
3387                         type = CURSEG_WARM_DATA;
3388                 }
3389         }
3390
3391         f2fs_bug_on(sbi, !IS_DATASEG(type));
3392         curseg = CURSEG_I(sbi, type);
3393
3394         mutex_lock(&curseg->curseg_mutex);
3395         down_write(&sit_i->sentry_lock);
3396
3397         old_cursegno = curseg->segno;
3398         old_blkoff = curseg->next_blkoff;
3399
3400         /* change the current segment */
3401         if (segno != curseg->segno) {
3402                 curseg->next_segno = segno;
3403                 change_curseg(sbi, type);
3404         }
3405
3406         curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3407         __add_sum_entry(sbi, type, sum);
3408
3409         if (!recover_curseg || recover_newaddr)
3410                 update_sit_entry(sbi, new_blkaddr, 1);
3411         if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3412                 invalidate_mapping_pages(META_MAPPING(sbi),
3413                                         old_blkaddr, old_blkaddr);
3414                 update_sit_entry(sbi, old_blkaddr, -1);
3415         }
3416
3417         locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3418         locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3419
3420         locate_dirty_segment(sbi, old_cursegno);
3421
3422         if (recover_curseg) {
3423                 if (old_cursegno != curseg->segno) {
3424                         curseg->next_segno = old_cursegno;
3425                         change_curseg(sbi, type);
3426                 }
3427                 curseg->next_blkoff = old_blkoff;
3428         }
3429
3430         up_write(&sit_i->sentry_lock);
3431         mutex_unlock(&curseg->curseg_mutex);
3432         up_write(&SM_I(sbi)->curseg_lock);
3433 }
3434
3435 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3436                                 block_t old_addr, block_t new_addr,
3437                                 unsigned char version, bool recover_curseg,
3438                                 bool recover_newaddr)
3439 {
3440         struct f2fs_summary sum;
3441
3442         set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3443
3444         f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3445                                         recover_curseg, recover_newaddr);
3446
3447         f2fs_update_data_blkaddr(dn, new_addr);
3448 }
3449
3450 void f2fs_wait_on_page_writeback(struct page *page,
3451                                 enum page_type type, bool ordered, bool locked)
3452 {
3453         if (PageWriteback(page)) {
3454                 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3455
3456                 /* submit cached LFS IO */
3457                 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3458                 /* sbumit cached IPU IO */
3459                 f2fs_submit_merged_ipu_write(sbi, NULL, page);
3460                 if (ordered) {
3461                         wait_on_page_writeback(page);
3462                         f2fs_bug_on(sbi, locked && PageWriteback(page));
3463                 } else {
3464                         wait_for_stable_page(page);
3465                 }
3466         }
3467 }
3468
3469 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
3470 {
3471         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3472         struct page *cpage;
3473
3474         if (!f2fs_post_read_required(inode))
3475                 return;
3476
3477         if (!__is_valid_data_blkaddr(blkaddr))
3478                 return;
3479
3480         cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3481         if (cpage) {
3482                 f2fs_wait_on_page_writeback(cpage, DATA, true, true);
3483                 f2fs_put_page(cpage, 1);
3484         }
3485 }
3486
3487 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3488                                                                 block_t len)
3489 {
3490         block_t i;
3491
3492         for (i = 0; i < len; i++)
3493                 f2fs_wait_on_block_writeback(inode, blkaddr + i);
3494 }
3495
3496 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3497 {
3498         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3499         struct curseg_info *seg_i;
3500         unsigned char *kaddr;
3501         struct page *page;
3502         block_t start;
3503         int i, j, offset;
3504
3505         start = start_sum_block(sbi);
3506
3507         page = f2fs_get_meta_page(sbi, start++);
3508         if (IS_ERR(page))
3509                 return PTR_ERR(page);
3510         kaddr = (unsigned char *)page_address(page);
3511
3512         /* Step 1: restore nat cache */
3513         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3514         memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3515
3516         /* Step 2: restore sit cache */
3517         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3518         memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3519         offset = 2 * SUM_JOURNAL_SIZE;
3520
3521         /* Step 3: restore summary entries */
3522         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3523                 unsigned short blk_off;
3524                 unsigned int segno;
3525
3526                 seg_i = CURSEG_I(sbi, i);
3527                 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3528                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3529                 seg_i->next_segno = segno;
3530                 reset_curseg(sbi, i, 0);
3531                 seg_i->alloc_type = ckpt->alloc_type[i];
3532                 seg_i->next_blkoff = blk_off;
3533
3534                 if (seg_i->alloc_type == SSR)
3535                         blk_off = sbi->blocks_per_seg;
3536
3537                 for (j = 0; j < blk_off; j++) {
3538                         struct f2fs_summary *s;
3539                         s = (struct f2fs_summary *)(kaddr + offset);
3540                         seg_i->sum_blk->entries[j] = *s;
3541                         offset += SUMMARY_SIZE;
3542                         if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3543                                                 SUM_FOOTER_SIZE)
3544                                 continue;
3545
3546                         f2fs_put_page(page, 1);
3547                         page = NULL;
3548
3549                         page = f2fs_get_meta_page(sbi, start++);
3550                         if (IS_ERR(page))
3551                                 return PTR_ERR(page);
3552                         kaddr = (unsigned char *)page_address(page);
3553                         offset = 0;
3554                 }
3555         }
3556         f2fs_put_page(page, 1);
3557         return 0;
3558 }
3559
3560 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3561 {
3562         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3563         struct f2fs_summary_block *sum;
3564         struct curseg_info *curseg;
3565         struct page *new;
3566         unsigned short blk_off;
3567         unsigned int segno = 0;
3568         block_t blk_addr = 0;
3569         int err = 0;
3570
3571         /* get segment number and block addr */
3572         if (IS_DATASEG(type)) {
3573                 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3574                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3575                                                         CURSEG_HOT_DATA]);
3576                 if (__exist_node_summaries(sbi))
3577                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
3578                 else
3579                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3580         } else {
3581                 segno = le32_to_cpu(ckpt->cur_node_segno[type -
3582                                                         CURSEG_HOT_NODE]);
3583                 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3584                                                         CURSEG_HOT_NODE]);
3585                 if (__exist_node_summaries(sbi))
3586                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3587                                                         type - CURSEG_HOT_NODE);
3588                 else
3589                         blk_addr = GET_SUM_BLOCK(sbi, segno);
3590         }
3591
3592         new = f2fs_get_meta_page(sbi, blk_addr);
3593         if (IS_ERR(new))
3594                 return PTR_ERR(new);
3595         sum = (struct f2fs_summary_block *)page_address(new);
3596
3597         if (IS_NODESEG(type)) {
3598                 if (__exist_node_summaries(sbi)) {
3599                         struct f2fs_summary *ns = &sum->entries[0];
3600                         int i;
3601                         for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3602                                 ns->version = 0;
3603                                 ns->ofs_in_node = 0;
3604                         }
3605                 } else {
3606                         err = f2fs_restore_node_summary(sbi, segno, sum);
3607                         if (err)
3608                                 goto out;
3609                 }
3610         }
3611
3612         /* set uncompleted segment to curseg */
3613         curseg = CURSEG_I(sbi, type);
3614         mutex_lock(&curseg->curseg_mutex);
3615
3616         /* update journal info */
3617         down_write(&curseg->journal_rwsem);
3618         memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3619         up_write(&curseg->journal_rwsem);
3620
3621         memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3622         memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3623         curseg->next_segno = segno;
3624         reset_curseg(sbi, type, 0);
3625         curseg->alloc_type = ckpt->alloc_type[type];
3626         curseg->next_blkoff = blk_off;
3627         mutex_unlock(&curseg->curseg_mutex);
3628 out:
3629         f2fs_put_page(new, 1);
3630         return err;
3631 }
3632
3633 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3634 {
3635         struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3636         struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3637         int type = CURSEG_HOT_DATA;
3638         int err;
3639
3640         if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
3641                 int npages = f2fs_npages_for_summary_flush(sbi, true);
3642
3643                 if (npages >= 2)
3644                         f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
3645                                                         META_CP, true);
3646
3647                 /* restore for compacted data summary */
3648                 err = read_compacted_summaries(sbi);
3649                 if (err)
3650                         return err;
3651                 type = CURSEG_HOT_NODE;
3652         }
3653
3654         if (__exist_node_summaries(sbi))
3655                 f2fs_ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
3656                                         NR_CURSEG_TYPE - type, META_CP, true);
3657
3658         for (; type <= CURSEG_COLD_NODE; type++) {
3659                 err = read_normal_summaries(sbi, type);
3660                 if (err)
3661                         return err;
3662         }
3663
3664         /* sanity check for summary blocks */
3665         if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
3666                         sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
3667                 f2fs_err(sbi, "invalid journal entries nats %u sits %u\n",
3668                          nats_in_cursum(nat_j), sits_in_cursum(sit_j));
3669                 return -EINVAL;
3670         }
3671
3672         return 0;
3673 }
3674
3675 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
3676 {
3677         struct page *page;
3678         unsigned char *kaddr;
3679         struct f2fs_summary *summary;
3680         struct curseg_info *seg_i;
3681         int written_size = 0;
3682         int i, j;
3683
3684         page = f2fs_grab_meta_page(sbi, blkaddr++);
3685         kaddr = (unsigned char *)page_address(page);
3686         memset(kaddr, 0, PAGE_SIZE);
3687
3688         /* Step 1: write nat cache */
3689         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3690         memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
3691         written_size += SUM_JOURNAL_SIZE;
3692
3693         /* Step 2: write sit cache */
3694         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3695         memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
3696         written_size += SUM_JOURNAL_SIZE;
3697
3698         /* Step 3: write summary entries */
3699         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3700                 unsigned short blkoff;
3701                 seg_i = CURSEG_I(sbi, i);
3702                 if (sbi->ckpt->alloc_type[i] == SSR)
3703                         blkoff = sbi->blocks_per_seg;
3704                 else
3705                         blkoff = curseg_blkoff(sbi, i);
3706
3707                 for (j = 0; j < blkoff; j++) {
3708                         if (!page) {
3709                                 page = f2fs_grab_meta_page(sbi, blkaddr++);
3710                                 kaddr = (unsigned char *)page_address(page);
3711                                 memset(kaddr, 0, PAGE_SIZE);
3712                                 written_size = 0;
3713                         }
3714                         summary = (struct f2fs_summary *)(kaddr + written_size);
3715                         *summary = seg_i->sum_blk->entries[j];
3716                         written_size += SUMMARY_SIZE;
3717
3718                         if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
3719                                                         SUM_FOOTER_SIZE)
3720                                 continue;
3721
3722                         set_page_dirty(page);
3723                         f2fs_put_page(page, 1);
3724                         page = NULL;
3725                 }
3726         }
3727         if (page) {
3728                 set_page_dirty(page);
3729                 f2fs_put_page(page, 1);
3730         }
3731 }
3732
3733 static void write_normal_summaries(struct f2fs_sb_info *sbi,
3734                                         block_t blkaddr, int type)
3735 {
3736         int i, end;
3737         if (IS_DATASEG(type))
3738                 end = type + NR_CURSEG_DATA_TYPE;
3739         else
3740                 end = type + NR_CURSEG_NODE_TYPE;
3741
3742         for (i = type; i < end; i++)
3743                 write_current_sum_page(sbi, i, blkaddr + (i - type));
3744 }
3745
3746 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3747 {
3748         if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
3749                 write_compacted_summaries(sbi, start_blk);
3750         else
3751                 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
3752 }
3753
3754 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3755 {
3756         write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
3757 }
3758
3759 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3760                                         unsigned int val, int alloc)
3761 {
3762         int i;
3763
3764         if (type == NAT_JOURNAL) {
3765                 for (i = 0; i < nats_in_cursum(journal); i++) {
3766                         if (le32_to_cpu(nid_in_journal(journal, i)) == val)
3767                                 return i;
3768                 }
3769                 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
3770                         return update_nats_in_cursum(journal, 1);
3771         } else if (type == SIT_JOURNAL) {
3772                 for (i = 0; i < sits_in_cursum(journal); i++)
3773                         if (le32_to_cpu(segno_in_journal(journal, i)) == val)
3774                                 return i;
3775                 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
3776                         return update_sits_in_cursum(journal, 1);
3777         }
3778         return -1;
3779 }
3780
3781 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
3782                                         unsigned int segno)
3783 {
3784         return f2fs_get_meta_page_nofail(sbi, current_sit_addr(sbi, segno));
3785 }
3786
3787 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
3788                                         unsigned int start)
3789 {
3790         struct sit_info *sit_i = SIT_I(sbi);
3791         struct page *page;
3792         pgoff_t src_off, dst_off;
3793
3794         src_off = current_sit_addr(sbi, start);
3795         dst_off = next_sit_addr(sbi, src_off);
3796
3797         page = f2fs_grab_meta_page(sbi, dst_off);
3798         seg_info_to_sit_page(sbi, page, start);
3799
3800         set_page_dirty(page);
3801         set_to_next_sit(sit_i, start);
3802
3803         return page;
3804 }
3805
3806 static struct sit_entry_set *grab_sit_entry_set(void)
3807 {
3808         struct sit_entry_set *ses =
3809                         f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
3810
3811         ses->entry_cnt = 0;
3812         INIT_LIST_HEAD(&ses->set_list);
3813         return ses;
3814 }
3815
3816 static void release_sit_entry_set(struct sit_entry_set *ses)
3817 {
3818         list_del(&ses->set_list);
3819         kmem_cache_free(sit_entry_set_slab, ses);
3820 }
3821
3822 static void adjust_sit_entry_set(struct sit_entry_set *ses,
3823                                                 struct list_head *head)
3824 {
3825         struct sit_entry_set *next = ses;
3826
3827         if (list_is_last(&ses->set_list, head))
3828                 return;
3829
3830         list_for_each_entry_continue(next, head, set_list)
3831                 if (ses->entry_cnt <= next->entry_cnt)
3832                         break;
3833
3834         list_move_tail(&ses->set_list, &next->set_list);
3835 }
3836
3837 static void add_sit_entry(unsigned int segno, struct list_head *head)
3838 {
3839         struct sit_entry_set *ses;
3840         unsigned int start_segno = START_SEGNO(segno);
3841
3842         list_for_each_entry(ses, head, set_list) {
3843                 if (ses->start_segno == start_segno) {
3844                         ses->entry_cnt++;
3845                         adjust_sit_entry_set(ses, head);
3846                         return;
3847                 }
3848         }
3849
3850         ses = grab_sit_entry_set();
3851
3852         ses->start_segno = start_segno;
3853         ses->entry_cnt++;
3854         list_add(&ses->set_list, head);
3855 }
3856
3857 static void add_sits_in_set(struct f2fs_sb_info *sbi)
3858 {
3859         struct f2fs_sm_info *sm_info = SM_I(sbi);
3860         struct list_head *set_list = &sm_info->sit_entry_set;
3861         unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
3862         unsigned int segno;
3863
3864         for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
3865                 add_sit_entry(segno, set_list);
3866 }
3867
3868 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
3869 {
3870         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3871         struct f2fs_journal *journal = curseg->journal;
3872         int i;
3873
3874         down_write(&curseg->journal_rwsem);
3875         for (i = 0; i < sits_in_cursum(journal); i++) {
3876                 unsigned int segno;
3877                 bool dirtied;
3878
3879                 segno = le32_to_cpu(segno_in_journal(journal, i));
3880                 dirtied = __mark_sit_entry_dirty(sbi, segno);
3881
3882                 if (!dirtied)
3883                         add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
3884         }
3885         update_sits_in_cursum(journal, -i);
3886         up_write(&curseg->journal_rwsem);
3887 }
3888
3889 /*
3890  * CP calls this function, which flushes SIT entries including sit_journal,
3891  * and moves prefree segs to free segs.
3892  */
3893 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3894 {
3895         struct sit_info *sit_i = SIT_I(sbi);
3896         unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
3897         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3898         struct f2fs_journal *journal = curseg->journal;
3899         struct sit_entry_set *ses, *tmp;
3900         struct list_head *head = &SM_I(sbi)->sit_entry_set;
3901         bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
3902         struct seg_entry *se;
3903
3904         down_write(&sit_i->sentry_lock);
3905
3906         if (!sit_i->dirty_sentries)
3907                 goto out;
3908
3909         /*
3910          * add and account sit entries of dirty bitmap in sit entry
3911          * set temporarily
3912          */
3913         add_sits_in_set(sbi);
3914
3915         /*
3916          * if there are no enough space in journal to store dirty sit
3917          * entries, remove all entries from journal and add and account
3918          * them in sit entry set.
3919          */
3920         if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
3921                                                                 !to_journal)
3922                 remove_sits_in_journal(sbi);
3923
3924         /*
3925          * there are two steps to flush sit entries:
3926          * #1, flush sit entries to journal in current cold data summary block.
3927          * #2, flush sit entries to sit page.
3928          */
3929         list_for_each_entry_safe(ses, tmp, head, set_list) {
3930                 struct page *page = NULL;
3931                 struct f2fs_sit_block *raw_sit = NULL;
3932                 unsigned int start_segno = ses->start_segno;
3933                 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
3934                                                 (unsigned long)MAIN_SEGS(sbi));
3935                 unsigned int segno = start_segno;
3936
3937                 if (to_journal &&
3938                         !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
3939                         to_journal = false;
3940
3941                 if (to_journal) {
3942                         down_write(&curseg->journal_rwsem);
3943                 } else {
3944                         page = get_next_sit_page(sbi, start_segno);
3945                         raw_sit = page_address(page);
3946                 }
3947
3948                 /* flush dirty sit entries in region of current sit set */
3949                 for_each_set_bit_from(segno, bitmap, end) {
3950                         int offset, sit_offset;
3951
3952                         se = get_seg_entry(sbi, segno);
3953 #ifdef CONFIG_F2FS_CHECK_FS
3954                         if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
3955                                                 SIT_VBLOCK_MAP_SIZE))
3956                                 f2fs_bug_on(sbi, 1);
3957 #endif
3958
3959                         /* add discard candidates */
3960                         if (!(cpc->reason & CP_DISCARD)) {
3961                                 cpc->trim_start = segno;
3962                                 add_discard_addrs(sbi, cpc, false);
3963                         }
3964
3965                         if (to_journal) {
3966                                 offset = f2fs_lookup_journal_in_cursum(journal,
3967                                                         SIT_JOURNAL, segno, 1);
3968                                 f2fs_bug_on(sbi, offset < 0);
3969                                 segno_in_journal(journal, offset) =
3970                                                         cpu_to_le32(segno);
3971                                 seg_info_to_raw_sit(se,
3972                                         &sit_in_journal(journal, offset));
3973                                 check_block_count(sbi, segno,
3974                                         &sit_in_journal(journal, offset));
3975                         } else {
3976                                 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
3977                                 seg_info_to_raw_sit(se,
3978                                                 &raw_sit->entries[sit_offset]);
3979                                 check_block_count(sbi, segno,
3980                                                 &raw_sit->entries[sit_offset]);
3981                         }
3982
3983                         __clear_bit(segno, bitmap);
3984                         sit_i->dirty_sentries--;
3985                         ses->entry_cnt--;
3986                 }
3987
3988                 if (to_journal)
3989                         up_write(&curseg->journal_rwsem);
3990                 else
3991                         f2fs_put_page(page, 1);
3992
3993                 f2fs_bug_on(sbi, ses->entry_cnt);
3994                 release_sit_entry_set(ses);
3995         }
3996
3997         f2fs_bug_on(sbi, !list_empty(head));
3998         f2fs_bug_on(sbi, sit_i->dirty_sentries);
3999 out:
4000         if (cpc->reason & CP_DISCARD) {
4001                 __u64 trim_start = cpc->trim_start;
4002
4003                 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
4004                         add_discard_addrs(sbi, cpc, false);
4005
4006                 cpc->trim_start = trim_start;
4007         }
4008         up_write(&sit_i->sentry_lock);
4009
4010         set_prefree_as_free_segments(sbi);
4011 }
4012
4013 static int build_sit_info(struct f2fs_sb_info *sbi)
4014 {
4015         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4016         struct sit_info *sit_i;
4017         unsigned int sit_segs, start;
4018         char *src_bitmap, *bitmap;
4019         unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
4020
4021         /* allocate memory for SIT information */
4022         sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
4023         if (!sit_i)
4024                 return -ENOMEM;
4025
4026         SM_I(sbi)->sit_info = sit_i;
4027
4028         sit_i->sentries =
4029                 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
4030                                               MAIN_SEGS(sbi)),
4031                               GFP_KERNEL);
4032         if (!sit_i->sentries)
4033                 return -ENOMEM;
4034
4035         main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4036         sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
4037                                                                 GFP_KERNEL);
4038         if (!sit_i->dirty_sentries_bitmap)
4039                 return -ENOMEM;
4040
4041 #ifdef CONFIG_F2FS_CHECK_FS
4042         bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 4;
4043 #else
4044         bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 3;
4045 #endif
4046         sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4047         if (!sit_i->bitmap)
4048                 return -ENOMEM;
4049
4050         bitmap = sit_i->bitmap;
4051
4052         for (start = 0; start < MAIN_SEGS(sbi); start++) {
4053                 sit_i->sentries[start].cur_valid_map = bitmap;
4054                 bitmap += SIT_VBLOCK_MAP_SIZE;
4055
4056                 sit_i->sentries[start].ckpt_valid_map = bitmap;
4057                 bitmap += SIT_VBLOCK_MAP_SIZE;
4058
4059 #ifdef CONFIG_F2FS_CHECK_FS
4060                 sit_i->sentries[start].cur_valid_map_mir = bitmap;
4061                 bitmap += SIT_VBLOCK_MAP_SIZE;
4062 #endif
4063
4064                 sit_i->sentries[start].discard_map = bitmap;
4065                 bitmap += SIT_VBLOCK_MAP_SIZE;
4066         }
4067
4068         sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
4069         if (!sit_i->tmp_map)
4070                 return -ENOMEM;
4071
4072         if (__is_large_section(sbi)) {
4073                 sit_i->sec_entries =
4074                         f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
4075                                                       MAIN_SECS(sbi)),
4076                                       GFP_KERNEL);
4077                 if (!sit_i->sec_entries)
4078                         return -ENOMEM;
4079         }
4080
4081         /* get information related with SIT */
4082         sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4083
4084         /* setup SIT bitmap from ckeckpoint pack */
4085         sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4086         src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4087
4088         sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4089         if (!sit_i->sit_bitmap)
4090                 return -ENOMEM;
4091
4092 #ifdef CONFIG_F2FS_CHECK_FS
4093         sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4094                                         sit_bitmap_size, GFP_KERNEL);
4095         if (!sit_i->sit_bitmap_mir)
4096                 return -ENOMEM;
4097
4098         sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4099                                         main_bitmap_size, GFP_KERNEL);
4100         if (!sit_i->invalid_segmap)
4101                 return -ENOMEM;
4102 #endif
4103
4104         /* init SIT information */
4105         sit_i->s_ops = &default_salloc_ops;
4106
4107         sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4108         sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
4109         sit_i->written_valid_blocks = 0;
4110         sit_i->bitmap_size = sit_bitmap_size;
4111         sit_i->dirty_sentries = 0;
4112         sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4113         sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4114         sit_i->mounted_time = ktime_get_boottime_seconds();
4115         init_rwsem(&sit_i->sentry_lock);
4116         return 0;
4117 }
4118
4119 static int build_free_segmap(struct f2fs_sb_info *sbi)
4120 {
4121         struct free_segmap_info *free_i;
4122         unsigned int bitmap_size, sec_bitmap_size;
4123
4124         /* allocate memory for free segmap information */
4125         free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4126         if (!free_i)
4127                 return -ENOMEM;
4128
4129         SM_I(sbi)->free_info = free_i;
4130
4131         bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4132         free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4133         if (!free_i->free_segmap)
4134                 return -ENOMEM;
4135
4136         sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4137         free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4138         if (!free_i->free_secmap)
4139                 return -ENOMEM;
4140
4141         /* set all segments as dirty temporarily */
4142         memset(free_i->free_segmap, 0xff, bitmap_size);
4143         memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4144
4145         /* init free segmap information */
4146         free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4147         free_i->free_segments = 0;
4148         free_i->free_sections = 0;
4149         spin_lock_init(&free_i->segmap_lock);
4150         return 0;
4151 }
4152
4153 static int build_curseg(struct f2fs_sb_info *sbi)
4154 {
4155         struct curseg_info *array;
4156         int i;
4157
4158         array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE, sizeof(*array)),
4159                              GFP_KERNEL);
4160         if (!array)
4161                 return -ENOMEM;
4162
4163         SM_I(sbi)->curseg_array = array;
4164
4165         for (i = 0; i < NR_CURSEG_TYPE; i++) {
4166                 mutex_init(&array[i].curseg_mutex);
4167                 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4168                 if (!array[i].sum_blk)
4169                         return -ENOMEM;
4170                 init_rwsem(&array[i].journal_rwsem);
4171                 array[i].journal = f2fs_kzalloc(sbi,
4172                                 sizeof(struct f2fs_journal), GFP_KERNEL);
4173                 if (!array[i].journal)
4174                         return -ENOMEM;
4175                 array[i].segno = NULL_SEGNO;
4176                 array[i].next_blkoff = 0;
4177         }
4178         return restore_curseg_summaries(sbi);
4179 }
4180
4181 static int build_sit_entries(struct f2fs_sb_info *sbi)
4182 {
4183         struct sit_info *sit_i = SIT_I(sbi);
4184         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4185         struct f2fs_journal *journal = curseg->journal;
4186         struct seg_entry *se;
4187         struct f2fs_sit_entry sit;
4188         int sit_blk_cnt = SIT_BLK_CNT(sbi);
4189         unsigned int i, start, end;
4190         unsigned int readed, start_blk = 0;
4191         int err = 0;
4192         block_t total_node_blocks = 0;
4193
4194         do {
4195                 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES,
4196                                                         META_SIT, true);
4197
4198                 start = start_blk * sit_i->sents_per_block;
4199                 end = (start_blk + readed) * sit_i->sents_per_block;
4200
4201                 for (; start < end && start < MAIN_SEGS(sbi); start++) {
4202                         struct f2fs_sit_block *sit_blk;
4203                         struct page *page;
4204
4205                         se = &sit_i->sentries[start];
4206                         page = get_current_sit_page(sbi, start);
4207                         if (IS_ERR(page))
4208                                 return PTR_ERR(page);
4209                         sit_blk = (struct f2fs_sit_block *)page_address(page);
4210                         sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4211                         f2fs_put_page(page, 1);
4212
4213                         err = check_block_count(sbi, start, &sit);
4214                         if (err)
4215                                 return err;
4216                         seg_info_from_raw_sit(se, &sit);
4217                         if (IS_NODESEG(se->type))
4218                                 total_node_blocks += se->valid_blocks;
4219
4220                         /* build discard map only one time */
4221                         if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4222                                 memset(se->discard_map, 0xff,
4223                                         SIT_VBLOCK_MAP_SIZE);
4224                         } else {
4225                                 memcpy(se->discard_map,
4226                                         se->cur_valid_map,
4227                                         SIT_VBLOCK_MAP_SIZE);
4228                                 sbi->discard_blks +=
4229                                         sbi->blocks_per_seg -
4230                                         se->valid_blocks;
4231                         }
4232
4233                         if (__is_large_section(sbi))
4234                                 get_sec_entry(sbi, start)->valid_blocks +=
4235                                                         se->valid_blocks;
4236                 }
4237                 start_blk += readed;
4238         } while (start_blk < sit_blk_cnt);
4239
4240         down_read(&curseg->journal_rwsem);
4241         for (i = 0; i < sits_in_cursum(journal); i++) {
4242                 unsigned int old_valid_blocks;
4243
4244                 start = le32_to_cpu(segno_in_journal(journal, i));
4245                 if (start >= MAIN_SEGS(sbi)) {
4246                         f2fs_err(sbi, "Wrong journal entry on segno %u",
4247                                  start);
4248                         err = -EFSCORRUPTED;
4249                         break;
4250                 }
4251
4252                 se = &sit_i->sentries[start];
4253                 sit = sit_in_journal(journal, i);
4254
4255                 old_valid_blocks = se->valid_blocks;
4256                 if (IS_NODESEG(se->type))
4257                         total_node_blocks -= old_valid_blocks;
4258
4259                 err = check_block_count(sbi, start, &sit);
4260                 if (err)
4261                         break;
4262                 seg_info_from_raw_sit(se, &sit);
4263                 if (IS_NODESEG(se->type))
4264                         total_node_blocks += se->valid_blocks;
4265
4266                 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4267                         memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4268                 } else {
4269                         memcpy(se->discard_map, se->cur_valid_map,
4270                                                 SIT_VBLOCK_MAP_SIZE);
4271                         sbi->discard_blks += old_valid_blocks;
4272                         sbi->discard_blks -= se->valid_blocks;
4273                 }
4274
4275                 if (__is_large_section(sbi)) {
4276                         get_sec_entry(sbi, start)->valid_blocks +=
4277                                                         se->valid_blocks;
4278                         get_sec_entry(sbi, start)->valid_blocks -=
4279                                                         old_valid_blocks;
4280                 }
4281         }
4282         up_read(&curseg->journal_rwsem);
4283
4284         if (!err && total_node_blocks != valid_node_count(sbi)) {
4285                 f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
4286                          total_node_blocks, valid_node_count(sbi));
4287                 err = -EFSCORRUPTED;
4288         }
4289
4290         return err;
4291 }
4292
4293 static void init_free_segmap(struct f2fs_sb_info *sbi)
4294 {
4295         unsigned int start;
4296         int type;
4297
4298         for (start = 0; start < MAIN_SEGS(sbi); start++) {
4299                 struct seg_entry *sentry = get_seg_entry(sbi, start);
4300                 if (!sentry->valid_blocks)
4301                         __set_free(sbi, start);
4302                 else
4303                         SIT_I(sbi)->written_valid_blocks +=
4304                                                 sentry->valid_blocks;
4305         }
4306
4307         /* set use the current segments */
4308         for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4309                 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4310                 __set_test_and_inuse(sbi, curseg_t->segno);
4311         }
4312 }
4313
4314 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4315 {
4316         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4317         struct free_segmap_info *free_i = FREE_I(sbi);
4318         unsigned int segno = 0, offset = 0, secno;
4319         unsigned short valid_blocks;
4320         unsigned short blks_per_sec = BLKS_PER_SEC(sbi);
4321
4322         while (1) {
4323                 /* find dirty segment based on free segmap */
4324                 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4325                 if (segno >= MAIN_SEGS(sbi))
4326                         break;
4327                 offset = segno + 1;
4328                 valid_blocks = get_valid_blocks(sbi, segno, false);
4329                 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
4330                         continue;
4331                 if (valid_blocks > sbi->blocks_per_seg) {
4332                         f2fs_bug_on(sbi, 1);
4333                         continue;
4334                 }
4335                 mutex_lock(&dirty_i->seglist_lock);
4336                 __locate_dirty_segment(sbi, segno, DIRTY);
4337                 mutex_unlock(&dirty_i->seglist_lock);
4338         }
4339
4340         if (!__is_large_section(sbi))
4341                 return;
4342
4343         mutex_lock(&dirty_i->seglist_lock);
4344         for (segno = 0; segno < MAIN_SECS(sbi); segno += blks_per_sec) {
4345                 valid_blocks = get_valid_blocks(sbi, segno, true);
4346                 secno = GET_SEC_FROM_SEG(sbi, segno);
4347
4348                 if (!valid_blocks || valid_blocks == blks_per_sec)
4349                         continue;
4350                 if (IS_CURSEC(sbi, secno))
4351                         continue;
4352                 set_bit(secno, dirty_i->dirty_secmap);
4353         }
4354         mutex_unlock(&dirty_i->seglist_lock);
4355 }
4356
4357 static int init_victim_secmap(struct f2fs_sb_info *sbi)
4358 {
4359         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4360         unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4361
4362         dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4363         if (!dirty_i->victim_secmap)
4364                 return -ENOMEM;
4365         return 0;
4366 }
4367
4368 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4369 {
4370         struct dirty_seglist_info *dirty_i;
4371         unsigned int bitmap_size, i;
4372
4373         /* allocate memory for dirty segments list information */
4374         dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4375                                                                 GFP_KERNEL);
4376         if (!dirty_i)
4377                 return -ENOMEM;
4378
4379         SM_I(sbi)->dirty_info = dirty_i;
4380         mutex_init(&dirty_i->seglist_lock);
4381
4382         bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4383
4384         for (i = 0; i < NR_DIRTY_TYPE; i++) {
4385                 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4386                                                                 GFP_KERNEL);
4387                 if (!dirty_i->dirty_segmap[i])
4388                         return -ENOMEM;
4389         }
4390
4391         if (__is_large_section(sbi)) {
4392                 bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4393                 dirty_i->dirty_secmap = f2fs_kvzalloc(sbi,
4394                                                 bitmap_size, GFP_KERNEL);
4395                 if (!dirty_i->dirty_secmap)
4396                         return -ENOMEM;
4397         }
4398
4399         init_dirty_segmap(sbi);
4400         return init_victim_secmap(sbi);
4401 }
4402
4403 static int sanity_check_curseg(struct f2fs_sb_info *sbi)
4404 {
4405         int i;
4406
4407         /*
4408          * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
4409          * In LFS curseg, all blkaddr after .next_blkoff should be unused.
4410          */
4411         for (i = 0; i < NO_CHECK_TYPE; i++) {
4412                 struct curseg_info *curseg = CURSEG_I(sbi, i);
4413                 struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
4414                 unsigned int blkofs = curseg->next_blkoff;
4415
4416                 if (f2fs_test_bit(blkofs, se->cur_valid_map))
4417                         goto out;
4418
4419                 if (curseg->alloc_type == SSR)
4420                         continue;
4421
4422                 for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) {
4423                         if (!f2fs_test_bit(blkofs, se->cur_valid_map))
4424                                 continue;
4425 out:
4426                         f2fs_err(sbi,
4427                                  "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
4428                                  i, curseg->segno, curseg->alloc_type,
4429                                  curseg->next_blkoff, blkofs);
4430                         return -EFSCORRUPTED;
4431                 }
4432         }
4433         return 0;
4434 }
4435
4436 #ifdef CONFIG_BLK_DEV_ZONED
4437
4438 static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
4439                                     struct f2fs_dev_info *fdev,
4440                                     struct blk_zone *zone)
4441 {
4442         unsigned int wp_segno, wp_blkoff, zone_secno, zone_segno, segno;
4443         block_t zone_block, wp_block, last_valid_block;
4444         unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4445         int i, s, b, ret;
4446         struct seg_entry *se;
4447
4448         if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4449                 return 0;
4450
4451         wp_block = fdev->start_blk + (zone->wp >> log_sectors_per_block);
4452         wp_segno = GET_SEGNO(sbi, wp_block);
4453         wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4454         zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block);
4455         zone_segno = GET_SEGNO(sbi, zone_block);
4456         zone_secno = GET_SEC_FROM_SEG(sbi, zone_segno);
4457
4458         if (zone_segno >= MAIN_SEGS(sbi))
4459                 return 0;
4460
4461         /*
4462          * Skip check of zones cursegs point to, since
4463          * fix_curseg_write_pointer() checks them.
4464          */
4465         for (i = 0; i < NO_CHECK_TYPE; i++)
4466                 if (zone_secno == GET_SEC_FROM_SEG(sbi,
4467                                                    CURSEG_I(sbi, i)->segno))
4468                         return 0;
4469
4470         /*
4471          * Get last valid block of the zone.
4472          */
4473         last_valid_block = zone_block - 1;
4474         for (s = sbi->segs_per_sec - 1; s >= 0; s--) {
4475                 segno = zone_segno + s;
4476                 se = get_seg_entry(sbi, segno);
4477                 for (b = sbi->blocks_per_seg - 1; b >= 0; b--)
4478                         if (f2fs_test_bit(b, se->cur_valid_map)) {
4479                                 last_valid_block = START_BLOCK(sbi, segno) + b;
4480                                 break;
4481                         }
4482                 if (last_valid_block >= zone_block)
4483                         break;
4484         }
4485
4486         /*
4487          * If last valid block is beyond the write pointer, report the
4488          * inconsistency. This inconsistency does not cause write error
4489          * because the zone will not be selected for write operation until
4490          * it get discarded. Just report it.
4491          */
4492         if (last_valid_block >= wp_block) {
4493                 f2fs_notice(sbi, "Valid block beyond write pointer: "
4494                             "valid block[0x%x,0x%x] wp[0x%x,0x%x]",
4495                             GET_SEGNO(sbi, last_valid_block),
4496                             GET_BLKOFF_FROM_SEG0(sbi, last_valid_block),
4497                             wp_segno, wp_blkoff);
4498                 return 0;
4499         }
4500
4501         /*
4502          * If there is no valid block in the zone and if write pointer is
4503          * not at zone start, reset the write pointer.
4504          */
4505         if (last_valid_block + 1 == zone_block && zone->wp != zone->start) {
4506                 f2fs_notice(sbi,
4507                             "Zone without valid block has non-zero write "
4508                             "pointer. Reset the write pointer: wp[0x%x,0x%x]",
4509                             wp_segno, wp_blkoff);
4510                 ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
4511                                         zone->len >> log_sectors_per_block);
4512                 if (ret) {
4513                         f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4514                                  fdev->path, ret);
4515                         return ret;
4516                 }
4517         }
4518
4519         return 0;
4520 }
4521
4522 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
4523                                                   block_t zone_blkaddr)
4524 {
4525         int i;
4526
4527         for (i = 0; i < sbi->s_ndevs; i++) {
4528                 if (!bdev_is_zoned(FDEV(i).bdev))
4529                         continue;
4530                 if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
4531                                 zone_blkaddr <= FDEV(i).end_blk))
4532                         return &FDEV(i);
4533         }
4534
4535         return NULL;
4536 }
4537
4538 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
4539                               void *data) {
4540         memcpy(data, zone, sizeof(struct blk_zone));
4541         return 0;
4542 }
4543
4544 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
4545 {
4546         struct curseg_info *cs = CURSEG_I(sbi, type);
4547         struct f2fs_dev_info *zbd;
4548         struct blk_zone zone;
4549         unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
4550         block_t cs_zone_block, wp_block;
4551         unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4552         sector_t zone_sector;
4553         int err;
4554
4555         cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4556         cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4557
4558         zbd = get_target_zoned_dev(sbi, cs_zone_block);
4559         if (!zbd)
4560                 return 0;
4561
4562         /* report zone for the sector the curseg points to */
4563         zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4564                 << log_sectors_per_block;
4565         err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4566                                   report_one_zone_cb, &zone);
4567         if (err != 1) {
4568                 f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4569                          zbd->path, err);
4570                 return err;
4571         }
4572
4573         if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4574                 return 0;
4575
4576         wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block);
4577         wp_segno = GET_SEGNO(sbi, wp_block);
4578         wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4579         wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0);
4580
4581         if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
4582                 wp_sector_off == 0)
4583                 return 0;
4584
4585         f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
4586                     "curseg[0x%x,0x%x] wp[0x%x,0x%x]",
4587                     type, cs->segno, cs->next_blkoff, wp_segno, wp_blkoff);
4588
4589         f2fs_notice(sbi, "Assign new section to curseg[%d]: "
4590                     "curseg[0x%x,0x%x]", type, cs->segno, cs->next_blkoff);
4591         allocate_segment_by_default(sbi, type, true);
4592
4593         /* check consistency of the zone curseg pointed to */
4594         if (check_zone_write_pointer(sbi, zbd, &zone))
4595                 return -EIO;
4596
4597         /* check newly assigned zone */
4598         cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4599         cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4600
4601         zbd = get_target_zoned_dev(sbi, cs_zone_block);
4602         if (!zbd)
4603                 return 0;
4604
4605         zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4606                 << log_sectors_per_block;
4607         err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4608                                   report_one_zone_cb, &zone);
4609         if (err != 1) {
4610                 f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4611                          zbd->path, err);
4612                 return err;
4613         }
4614
4615         if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4616                 return 0;
4617
4618         if (zone.wp != zone.start) {
4619                 f2fs_notice(sbi,
4620                             "New zone for curseg[%d] is not yet discarded. "
4621                             "Reset the zone: curseg[0x%x,0x%x]",
4622                             type, cs->segno, cs->next_blkoff);
4623                 err = __f2fs_issue_discard_zone(sbi, zbd->bdev,
4624                                 zone_sector >> log_sectors_per_block,
4625                                 zone.len >> log_sectors_per_block);
4626                 if (err) {
4627                         f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4628                                  zbd->path, err);
4629                         return err;
4630                 }
4631         }
4632
4633         return 0;
4634 }
4635
4636 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
4637 {
4638         int i, ret;
4639
4640         for (i = 0; i < NO_CHECK_TYPE; i++) {
4641                 ret = fix_curseg_write_pointer(sbi, i);
4642                 if (ret)
4643                         return ret;
4644         }
4645
4646         return 0;
4647 }
4648
4649 struct check_zone_write_pointer_args {
4650         struct f2fs_sb_info *sbi;
4651         struct f2fs_dev_info *fdev;
4652 };
4653
4654 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
4655                                       void *data) {
4656         struct check_zone_write_pointer_args *args;
4657         args = (struct check_zone_write_pointer_args *)data;
4658
4659         return check_zone_write_pointer(args->sbi, args->fdev, zone);
4660 }
4661
4662 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
4663 {
4664         int i, ret;
4665         struct check_zone_write_pointer_args args;
4666
4667         for (i = 0; i < sbi->s_ndevs; i++) {
4668                 if (!bdev_is_zoned(FDEV(i).bdev))
4669                         continue;
4670
4671                 args.sbi = sbi;
4672                 args.fdev = &FDEV(i);
4673                 ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
4674                                           check_zone_write_pointer_cb, &args);
4675                 if (ret < 0)
4676                         return ret;
4677         }
4678
4679         return 0;
4680 }
4681 #else
4682 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
4683 {
4684         return 0;
4685 }
4686
4687 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
4688 {
4689         return 0;
4690 }
4691 #endif
4692
4693 /*
4694  * Update min, max modified time for cost-benefit GC algorithm
4695  */
4696 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
4697 {
4698         struct sit_info *sit_i = SIT_I(sbi);
4699         unsigned int segno;
4700
4701         down_write(&sit_i->sentry_lock);
4702
4703         sit_i->min_mtime = ULLONG_MAX;
4704
4705         for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
4706                 unsigned int i;
4707                 unsigned long long mtime = 0;
4708
4709                 for (i = 0; i < sbi->segs_per_sec; i++)
4710                         mtime += get_seg_entry(sbi, segno + i)->mtime;
4711
4712                 mtime = div_u64(mtime, sbi->segs_per_sec);
4713
4714                 if (sit_i->min_mtime > mtime)
4715                         sit_i->min_mtime = mtime;
4716         }
4717         sit_i->max_mtime = get_mtime(sbi, false);
4718         up_write(&sit_i->sentry_lock);
4719 }
4720
4721 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
4722 {
4723         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4724         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
4725         struct f2fs_sm_info *sm_info;
4726         int err;
4727
4728         sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
4729         if (!sm_info)
4730                 return -ENOMEM;
4731
4732         /* init sm info */
4733         sbi->sm_info = sm_info;
4734         sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
4735         sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
4736         sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
4737         sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
4738         sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
4739         sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
4740         sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
4741         sm_info->rec_prefree_segments = sm_info->main_segments *
4742                                         DEF_RECLAIM_PREFREE_SEGMENTS / 100;
4743         if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
4744                 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
4745
4746         if (!f2fs_lfs_mode(sbi))
4747                 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
4748         sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
4749         sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
4750         sm_info->min_seq_blocks = sbi->blocks_per_seg * sbi->segs_per_sec;
4751         sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
4752         sm_info->min_ssr_sections = reserved_sections(sbi);
4753
4754         INIT_LIST_HEAD(&sm_info->sit_entry_set);
4755
4756         init_rwsem(&sm_info->curseg_lock);
4757
4758         if (!f2fs_readonly(sbi->sb)) {
4759                 err = f2fs_create_flush_cmd_control(sbi);
4760                 if (err)
4761                         return err;
4762         }
4763
4764         err = create_discard_cmd_control(sbi);
4765         if (err)
4766                 return err;
4767
4768         err = build_sit_info(sbi);
4769         if (err)
4770                 return err;
4771         err = build_free_segmap(sbi);
4772         if (err)
4773                 return err;
4774         err = build_curseg(sbi);
4775         if (err)
4776                 return err;
4777
4778         /* reinit free segmap based on SIT */
4779         err = build_sit_entries(sbi);
4780         if (err)
4781                 return err;
4782
4783         init_free_segmap(sbi);
4784         err = build_dirty_segmap(sbi);
4785         if (err)
4786                 return err;
4787
4788         err = sanity_check_curseg(sbi);
4789         if (err)
4790                 return err;
4791
4792         init_min_max_mtime(sbi);
4793         return 0;
4794 }
4795
4796 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
4797                 enum dirty_type dirty_type)
4798 {
4799         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4800
4801         mutex_lock(&dirty_i->seglist_lock);
4802         kvfree(dirty_i->dirty_segmap[dirty_type]);
4803         dirty_i->nr_dirty[dirty_type] = 0;
4804         mutex_unlock(&dirty_i->seglist_lock);
4805 }
4806
4807 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
4808 {
4809         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4810         kvfree(dirty_i->victim_secmap);
4811 }
4812
4813 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
4814 {
4815         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4816         int i;
4817
4818         if (!dirty_i)
4819                 return;
4820
4821         /* discard pre-free/dirty segments list */
4822         for (i = 0; i < NR_DIRTY_TYPE; i++)
4823                 discard_dirty_segmap(sbi, i);
4824
4825         if (__is_large_section(sbi)) {
4826                 mutex_lock(&dirty_i->seglist_lock);
4827                 kvfree(dirty_i->dirty_secmap);
4828                 mutex_unlock(&dirty_i->seglist_lock);
4829         }
4830
4831         destroy_victim_secmap(sbi);
4832         SM_I(sbi)->dirty_info = NULL;
4833         kvfree(dirty_i);
4834 }
4835
4836 static void destroy_curseg(struct f2fs_sb_info *sbi)
4837 {
4838         struct curseg_info *array = SM_I(sbi)->curseg_array;
4839         int i;
4840
4841         if (!array)
4842                 return;
4843         SM_I(sbi)->curseg_array = NULL;
4844         for (i = 0; i < NR_CURSEG_TYPE; i++) {
4845                 kvfree(array[i].sum_blk);
4846                 kvfree(array[i].journal);
4847         }
4848         kvfree(array);
4849 }
4850
4851 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
4852 {
4853         struct free_segmap_info *free_i = SM_I(sbi)->free_info;
4854         if (!free_i)
4855                 return;
4856         SM_I(sbi)->free_info = NULL;
4857         kvfree(free_i->free_segmap);
4858         kvfree(free_i->free_secmap);
4859         kvfree(free_i);
4860 }
4861
4862 static void destroy_sit_info(struct f2fs_sb_info *sbi)
4863 {
4864         struct sit_info *sit_i = SIT_I(sbi);
4865
4866         if (!sit_i)
4867                 return;
4868
4869         if (sit_i->sentries)
4870                 kvfree(sit_i->bitmap);
4871         kvfree(sit_i->tmp_map);
4872
4873         kvfree(sit_i->sentries);
4874         kvfree(sit_i->sec_entries);
4875         kvfree(sit_i->dirty_sentries_bitmap);
4876
4877         SM_I(sbi)->sit_info = NULL;
4878         kvfree(sit_i->sit_bitmap);
4879 #ifdef CONFIG_F2FS_CHECK_FS
4880         kvfree(sit_i->sit_bitmap_mir);
4881         kvfree(sit_i->invalid_segmap);
4882 #endif
4883         kvfree(sit_i);
4884 }
4885
4886 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
4887 {
4888         struct f2fs_sm_info *sm_info = SM_I(sbi);
4889
4890         if (!sm_info)
4891                 return;
4892         f2fs_destroy_flush_cmd_control(sbi, true);
4893         destroy_discard_cmd_control(sbi);
4894         destroy_dirty_segmap(sbi);
4895         destroy_curseg(sbi);
4896         destroy_free_segmap(sbi);
4897         destroy_sit_info(sbi);
4898         sbi->sm_info = NULL;
4899         kvfree(sm_info);
4900 }
4901
4902 int __init f2fs_create_segment_manager_caches(void)
4903 {
4904         discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry",
4905                         sizeof(struct discard_entry));
4906         if (!discard_entry_slab)
4907                 goto fail;
4908
4909         discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd",
4910                         sizeof(struct discard_cmd));
4911         if (!discard_cmd_slab)
4912                 goto destroy_discard_entry;
4913
4914         sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set",
4915                         sizeof(struct sit_entry_set));
4916         if (!sit_entry_set_slab)
4917                 goto destroy_discard_cmd;
4918
4919         inmem_entry_slab = f2fs_kmem_cache_create("f2fs_inmem_page_entry",
4920                         sizeof(struct inmem_pages));
4921         if (!inmem_entry_slab)
4922                 goto destroy_sit_entry_set;
4923         return 0;
4924
4925 destroy_sit_entry_set:
4926         kmem_cache_destroy(sit_entry_set_slab);
4927 destroy_discard_cmd:
4928         kmem_cache_destroy(discard_cmd_slab);
4929 destroy_discard_entry:
4930         kmem_cache_destroy(discard_entry_slab);
4931 fail:
4932         return -ENOMEM;
4933 }
4934
4935 void f2fs_destroy_segment_manager_caches(void)
4936 {
4937         kmem_cache_destroy(sit_entry_set_slab);
4938         kmem_cache_destroy(discard_cmd_slab);
4939         kmem_cache_destroy(discard_entry_slab);
4940         kmem_cache_destroy(inmem_entry_slab);
4941 }