Merge tag 'hardening-v5.18-rc1-fix1' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / fs / f2fs / segment.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/segment.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/sched/mm.h>
13 #include <linux/prefetch.h>
14 #include <linux/kthread.h>
15 #include <linux/swap.h>
16 #include <linux/timer.h>
17 #include <linux/freezer.h>
18 #include <linux/sched/signal.h>
19 #include <linux/random.h>
20
21 #include "f2fs.h"
22 #include "segment.h"
23 #include "node.h"
24 #include "gc.h"
25 #include "iostat.h"
26 #include <trace/events/f2fs.h>
27
28 #define __reverse_ffz(x) __reverse_ffs(~(x))
29
30 static struct kmem_cache *discard_entry_slab;
31 static struct kmem_cache *discard_cmd_slab;
32 static struct kmem_cache *sit_entry_set_slab;
33 static struct kmem_cache *inmem_entry_slab;
34
35 static unsigned long __reverse_ulong(unsigned char *str)
36 {
37         unsigned long tmp = 0;
38         int shift = 24, idx = 0;
39
40 #if BITS_PER_LONG == 64
41         shift = 56;
42 #endif
43         while (shift >= 0) {
44                 tmp |= (unsigned long)str[idx++] << shift;
45                 shift -= BITS_PER_BYTE;
46         }
47         return tmp;
48 }
49
50 /*
51  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
52  * MSB and LSB are reversed in a byte by f2fs_set_bit.
53  */
54 static inline unsigned long __reverse_ffs(unsigned long word)
55 {
56         int num = 0;
57
58 #if BITS_PER_LONG == 64
59         if ((word & 0xffffffff00000000UL) == 0)
60                 num += 32;
61         else
62                 word >>= 32;
63 #endif
64         if ((word & 0xffff0000) == 0)
65                 num += 16;
66         else
67                 word >>= 16;
68
69         if ((word & 0xff00) == 0)
70                 num += 8;
71         else
72                 word >>= 8;
73
74         if ((word & 0xf0) == 0)
75                 num += 4;
76         else
77                 word >>= 4;
78
79         if ((word & 0xc) == 0)
80                 num += 2;
81         else
82                 word >>= 2;
83
84         if ((word & 0x2) == 0)
85                 num += 1;
86         return num;
87 }
88
89 /*
90  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
91  * f2fs_set_bit makes MSB and LSB reversed in a byte.
92  * @size must be integral times of unsigned long.
93  * Example:
94  *                             MSB <--> LSB
95  *   f2fs_set_bit(0, bitmap) => 1000 0000
96  *   f2fs_set_bit(7, bitmap) => 0000 0001
97  */
98 static unsigned long __find_rev_next_bit(const unsigned long *addr,
99                         unsigned long size, unsigned long offset)
100 {
101         const unsigned long *p = addr + BIT_WORD(offset);
102         unsigned long result = size;
103         unsigned long tmp;
104
105         if (offset >= size)
106                 return size;
107
108         size -= (offset & ~(BITS_PER_LONG - 1));
109         offset %= BITS_PER_LONG;
110
111         while (1) {
112                 if (*p == 0)
113                         goto pass;
114
115                 tmp = __reverse_ulong((unsigned char *)p);
116
117                 tmp &= ~0UL >> offset;
118                 if (size < BITS_PER_LONG)
119                         tmp &= (~0UL << (BITS_PER_LONG - size));
120                 if (tmp)
121                         goto found;
122 pass:
123                 if (size <= BITS_PER_LONG)
124                         break;
125                 size -= BITS_PER_LONG;
126                 offset = 0;
127                 p++;
128         }
129         return result;
130 found:
131         return result - size + __reverse_ffs(tmp);
132 }
133
134 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
135                         unsigned long size, unsigned long offset)
136 {
137         const unsigned long *p = addr + BIT_WORD(offset);
138         unsigned long result = size;
139         unsigned long tmp;
140
141         if (offset >= size)
142                 return size;
143
144         size -= (offset & ~(BITS_PER_LONG - 1));
145         offset %= BITS_PER_LONG;
146
147         while (1) {
148                 if (*p == ~0UL)
149                         goto pass;
150
151                 tmp = __reverse_ulong((unsigned char *)p);
152
153                 if (offset)
154                         tmp |= ~0UL << (BITS_PER_LONG - offset);
155                 if (size < BITS_PER_LONG)
156                         tmp |= ~0UL >> size;
157                 if (tmp != ~0UL)
158                         goto found;
159 pass:
160                 if (size <= BITS_PER_LONG)
161                         break;
162                 size -= BITS_PER_LONG;
163                 offset = 0;
164                 p++;
165         }
166         return result;
167 found:
168         return result - size + __reverse_ffz(tmp);
169 }
170
171 bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
172 {
173         int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
174         int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
175         int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
176
177         if (f2fs_lfs_mode(sbi))
178                 return false;
179         if (sbi->gc_mode == GC_URGENT_HIGH)
180                 return true;
181         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
182                 return true;
183
184         return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
185                         SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
186 }
187
188 void f2fs_register_inmem_page(struct inode *inode, struct page *page)
189 {
190         struct inmem_pages *new;
191
192         set_page_private_atomic(page);
193
194         new = f2fs_kmem_cache_alloc(inmem_entry_slab,
195                                         GFP_NOFS, true, NULL);
196
197         /* add atomic page indices to the list */
198         new->page = page;
199         INIT_LIST_HEAD(&new->list);
200
201         /* increase reference count with clean state */
202         get_page(page);
203         mutex_lock(&F2FS_I(inode)->inmem_lock);
204         list_add_tail(&new->list, &F2FS_I(inode)->inmem_pages);
205         inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
206         mutex_unlock(&F2FS_I(inode)->inmem_lock);
207
208         trace_f2fs_register_inmem_page(page, INMEM);
209 }
210
211 static int __revoke_inmem_pages(struct inode *inode,
212                                 struct list_head *head, bool drop, bool recover,
213                                 bool trylock)
214 {
215         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
216         struct inmem_pages *cur, *tmp;
217         int err = 0;
218
219         list_for_each_entry_safe(cur, tmp, head, list) {
220                 struct page *page = cur->page;
221
222                 if (drop)
223                         trace_f2fs_commit_inmem_page(page, INMEM_DROP);
224
225                 if (trylock) {
226                         /*
227                          * to avoid deadlock in between page lock and
228                          * inmem_lock.
229                          */
230                         if (!trylock_page(page))
231                                 continue;
232                 } else {
233                         lock_page(page);
234                 }
235
236                 f2fs_wait_on_page_writeback(page, DATA, true, true);
237
238                 if (recover) {
239                         struct dnode_of_data dn;
240                         struct node_info ni;
241
242                         trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
243 retry:
244                         set_new_dnode(&dn, inode, NULL, NULL, 0);
245                         err = f2fs_get_dnode_of_data(&dn, page->index,
246                                                                 LOOKUP_NODE);
247                         if (err) {
248                                 if (err == -ENOMEM) {
249                                         memalloc_retry_wait(GFP_NOFS);
250                                         goto retry;
251                                 }
252                                 err = -EAGAIN;
253                                 goto next;
254                         }
255
256                         err = f2fs_get_node_info(sbi, dn.nid, &ni, false);
257                         if (err) {
258                                 f2fs_put_dnode(&dn);
259                                 return err;
260                         }
261
262                         if (cur->old_addr == NEW_ADDR) {
263                                 f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
264                                 f2fs_update_data_blkaddr(&dn, NEW_ADDR);
265                         } else
266                                 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
267                                         cur->old_addr, ni.version, true, true);
268                         f2fs_put_dnode(&dn);
269                 }
270 next:
271                 /* we don't need to invalidate this in the sccessful status */
272                 if (drop || recover) {
273                         ClearPageUptodate(page);
274                         clear_page_private_gcing(page);
275                 }
276                 detach_page_private(page);
277                 set_page_private(page, 0);
278                 f2fs_put_page(page, 1);
279
280                 list_del(&cur->list);
281                 kmem_cache_free(inmem_entry_slab, cur);
282                 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
283         }
284         return err;
285 }
286
287 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure)
288 {
289         struct list_head *head = &sbi->inode_list[ATOMIC_FILE];
290         struct inode *inode;
291         struct f2fs_inode_info *fi;
292         unsigned int count = sbi->atomic_files;
293         unsigned int looped = 0;
294 next:
295         spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
296         if (list_empty(head)) {
297                 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
298                 return;
299         }
300         fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist);
301         inode = igrab(&fi->vfs_inode);
302         if (inode)
303                 list_move_tail(&fi->inmem_ilist, head);
304         spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
305
306         if (inode) {
307                 if (gc_failure) {
308                         if (!fi->i_gc_failures[GC_FAILURE_ATOMIC])
309                                 goto skip;
310                 }
311                 set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
312                 f2fs_drop_inmem_pages(inode);
313 skip:
314                 iput(inode);
315         }
316         f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
317         if (gc_failure) {
318                 if (++looped >= count)
319                         return;
320         }
321         goto next;
322 }
323
324 void f2fs_drop_inmem_pages(struct inode *inode)
325 {
326         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
327         struct f2fs_inode_info *fi = F2FS_I(inode);
328
329         do {
330                 mutex_lock(&fi->inmem_lock);
331                 if (list_empty(&fi->inmem_pages)) {
332                         fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0;
333
334                         spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
335                         if (!list_empty(&fi->inmem_ilist))
336                                 list_del_init(&fi->inmem_ilist);
337                         if (f2fs_is_atomic_file(inode)) {
338                                 clear_inode_flag(inode, FI_ATOMIC_FILE);
339                                 sbi->atomic_files--;
340                         }
341                         spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
342
343                         mutex_unlock(&fi->inmem_lock);
344                         break;
345                 }
346                 __revoke_inmem_pages(inode, &fi->inmem_pages,
347                                                 true, false, true);
348                 mutex_unlock(&fi->inmem_lock);
349         } while (1);
350 }
351
352 void f2fs_drop_inmem_page(struct inode *inode, struct page *page)
353 {
354         struct f2fs_inode_info *fi = F2FS_I(inode);
355         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
356         struct list_head *head = &fi->inmem_pages;
357         struct inmem_pages *cur = NULL;
358
359         f2fs_bug_on(sbi, !page_private_atomic(page));
360
361         mutex_lock(&fi->inmem_lock);
362         list_for_each_entry(cur, head, list) {
363                 if (cur->page == page)
364                         break;
365         }
366
367         f2fs_bug_on(sbi, list_empty(head) || cur->page != page);
368         list_del(&cur->list);
369         mutex_unlock(&fi->inmem_lock);
370
371         dec_page_count(sbi, F2FS_INMEM_PAGES);
372         kmem_cache_free(inmem_entry_slab, cur);
373
374         ClearPageUptodate(page);
375         clear_page_private_atomic(page);
376         f2fs_put_page(page, 0);
377
378         detach_page_private(page);
379         set_page_private(page, 0);
380
381         trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
382 }
383
384 static int __f2fs_commit_inmem_pages(struct inode *inode)
385 {
386         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
387         struct f2fs_inode_info *fi = F2FS_I(inode);
388         struct inmem_pages *cur, *tmp;
389         struct f2fs_io_info fio = {
390                 .sbi = sbi,
391                 .ino = inode->i_ino,
392                 .type = DATA,
393                 .op = REQ_OP_WRITE,
394                 .op_flags = REQ_SYNC | REQ_PRIO,
395                 .io_type = FS_DATA_IO,
396         };
397         struct list_head revoke_list;
398         bool submit_bio = false;
399         int err = 0;
400
401         INIT_LIST_HEAD(&revoke_list);
402
403         list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
404                 struct page *page = cur->page;
405
406                 lock_page(page);
407                 if (page->mapping == inode->i_mapping) {
408                         trace_f2fs_commit_inmem_page(page, INMEM);
409
410                         f2fs_wait_on_page_writeback(page, DATA, true, true);
411
412                         set_page_dirty(page);
413                         if (clear_page_dirty_for_io(page)) {
414                                 inode_dec_dirty_pages(inode);
415                                 f2fs_remove_dirty_inode(inode);
416                         }
417 retry:
418                         fio.page = page;
419                         fio.old_blkaddr = NULL_ADDR;
420                         fio.encrypted_page = NULL;
421                         fio.need_lock = LOCK_DONE;
422                         err = f2fs_do_write_data_page(&fio);
423                         if (err) {
424                                 if (err == -ENOMEM) {
425                                         memalloc_retry_wait(GFP_NOFS);
426                                         goto retry;
427                                 }
428                                 unlock_page(page);
429                                 break;
430                         }
431                         /* record old blkaddr for revoking */
432                         cur->old_addr = fio.old_blkaddr;
433                         submit_bio = true;
434                 }
435                 unlock_page(page);
436                 list_move_tail(&cur->list, &revoke_list);
437         }
438
439         if (submit_bio)
440                 f2fs_submit_merged_write_cond(sbi, inode, NULL, 0, DATA);
441
442         if (err) {
443                 /*
444                  * try to revoke all committed pages, but still we could fail
445                  * due to no memory or other reason, if that happened, EAGAIN
446                  * will be returned, which means in such case, transaction is
447                  * already not integrity, caller should use journal to do the
448                  * recovery or rewrite & commit last transaction. For other
449                  * error number, revoking was done by filesystem itself.
450                  */
451                 err = __revoke_inmem_pages(inode, &revoke_list,
452                                                 false, true, false);
453
454                 /* drop all uncommitted pages */
455                 __revoke_inmem_pages(inode, &fi->inmem_pages,
456                                                 true, false, false);
457         } else {
458                 __revoke_inmem_pages(inode, &revoke_list,
459                                                 false, false, false);
460         }
461
462         return err;
463 }
464
465 int f2fs_commit_inmem_pages(struct inode *inode)
466 {
467         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
468         struct f2fs_inode_info *fi = F2FS_I(inode);
469         int err;
470
471         f2fs_balance_fs(sbi, true);
472
473         f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
474
475         f2fs_lock_op(sbi);
476         set_inode_flag(inode, FI_ATOMIC_COMMIT);
477
478         mutex_lock(&fi->inmem_lock);
479         err = __f2fs_commit_inmem_pages(inode);
480         mutex_unlock(&fi->inmem_lock);
481
482         clear_inode_flag(inode, FI_ATOMIC_COMMIT);
483
484         f2fs_unlock_op(sbi);
485         f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
486
487         return err;
488 }
489
490 /*
491  * This function balances dirty node and dentry pages.
492  * In addition, it controls garbage collection.
493  */
494 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
495 {
496         if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
497                 f2fs_show_injection_info(sbi, FAULT_CHECKPOINT);
498                 f2fs_stop_checkpoint(sbi, false);
499         }
500
501         /* balance_fs_bg is able to be pending */
502         if (need && excess_cached_nats(sbi))
503                 f2fs_balance_fs_bg(sbi, false);
504
505         if (!f2fs_is_checkpoint_ready(sbi))
506                 return;
507
508         /*
509          * We should do GC or end up with checkpoint, if there are so many dirty
510          * dir/node pages without enough free segments.
511          */
512         if (has_not_enough_free_secs(sbi, 0, 0)) {
513                 if (test_opt(sbi, GC_MERGE) && sbi->gc_thread &&
514                                         sbi->gc_thread->f2fs_gc_task) {
515                         DEFINE_WAIT(wait);
516
517                         prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait,
518                                                 TASK_UNINTERRUPTIBLE);
519                         wake_up(&sbi->gc_thread->gc_wait_queue_head);
520                         io_schedule();
521                         finish_wait(&sbi->gc_thread->fggc_wq, &wait);
522                 } else {
523                         f2fs_down_write(&sbi->gc_lock);
524                         f2fs_gc(sbi, false, false, false, NULL_SEGNO);
525                 }
526         }
527 }
528
529 static inline bool excess_dirty_threshold(struct f2fs_sb_info *sbi)
530 {
531         int factor = f2fs_rwsem_is_locked(&sbi->cp_rwsem) ? 3 : 2;
532         unsigned int dents = get_pages(sbi, F2FS_DIRTY_DENTS);
533         unsigned int qdata = get_pages(sbi, F2FS_DIRTY_QDATA);
534         unsigned int nodes = get_pages(sbi, F2FS_DIRTY_NODES);
535         unsigned int meta = get_pages(sbi, F2FS_DIRTY_META);
536         unsigned int imeta = get_pages(sbi, F2FS_DIRTY_IMETA);
537         unsigned int threshold = sbi->blocks_per_seg * factor *
538                                         DEFAULT_DIRTY_THRESHOLD;
539         unsigned int global_threshold = threshold * 3 / 2;
540
541         if (dents >= threshold || qdata >= threshold ||
542                 nodes >= threshold || meta >= threshold ||
543                 imeta >= threshold)
544                 return true;
545         return dents + qdata + nodes + meta + imeta >  global_threshold;
546 }
547
548 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg)
549 {
550         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
551                 return;
552
553         /* try to shrink extent cache when there is no enough memory */
554         if (!f2fs_available_free_memory(sbi, EXTENT_CACHE))
555                 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
556
557         /* check the # of cached NAT entries */
558         if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
559                 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
560
561         if (!f2fs_available_free_memory(sbi, FREE_NIDS))
562                 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
563         else
564                 f2fs_build_free_nids(sbi, false, false);
565
566         if (excess_dirty_nats(sbi) || excess_dirty_threshold(sbi) ||
567                 excess_prefree_segs(sbi) || !f2fs_space_for_roll_forward(sbi))
568                 goto do_sync;
569
570         /* there is background inflight IO or foreground operation recently */
571         if (is_inflight_io(sbi, REQ_TIME) ||
572                 (!f2fs_time_over(sbi, REQ_TIME) && f2fs_rwsem_is_locked(&sbi->cp_rwsem)))
573                 return;
574
575         /* exceed periodical checkpoint timeout threshold */
576         if (f2fs_time_over(sbi, CP_TIME))
577                 goto do_sync;
578
579         /* checkpoint is the only way to shrink partial cached entries */
580         if (f2fs_available_free_memory(sbi, NAT_ENTRIES) &&
581                 f2fs_available_free_memory(sbi, INO_ENTRIES))
582                 return;
583
584 do_sync:
585         if (test_opt(sbi, DATA_FLUSH) && from_bg) {
586                 struct blk_plug plug;
587
588                 mutex_lock(&sbi->flush_lock);
589
590                 blk_start_plug(&plug);
591                 f2fs_sync_dirty_inodes(sbi, FILE_INODE);
592                 blk_finish_plug(&plug);
593
594                 mutex_unlock(&sbi->flush_lock);
595         }
596         f2fs_sync_fs(sbi->sb, true);
597         stat_inc_bg_cp_count(sbi->stat_info);
598 }
599
600 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
601                                 struct block_device *bdev)
602 {
603         int ret = blkdev_issue_flush(bdev);
604
605         trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
606                                 test_opt(sbi, FLUSH_MERGE), ret);
607         return ret;
608 }
609
610 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
611 {
612         int ret = 0;
613         int i;
614
615         if (!f2fs_is_multi_device(sbi))
616                 return __submit_flush_wait(sbi, sbi->sb->s_bdev);
617
618         for (i = 0; i < sbi->s_ndevs; i++) {
619                 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
620                         continue;
621                 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
622                 if (ret)
623                         break;
624         }
625         return ret;
626 }
627
628 static int issue_flush_thread(void *data)
629 {
630         struct f2fs_sb_info *sbi = data;
631         struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
632         wait_queue_head_t *q = &fcc->flush_wait_queue;
633 repeat:
634         if (kthread_should_stop())
635                 return 0;
636
637         if (!llist_empty(&fcc->issue_list)) {
638                 struct flush_cmd *cmd, *next;
639                 int ret;
640
641                 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
642                 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
643
644                 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
645
646                 ret = submit_flush_wait(sbi, cmd->ino);
647                 atomic_inc(&fcc->issued_flush);
648
649                 llist_for_each_entry_safe(cmd, next,
650                                           fcc->dispatch_list, llnode) {
651                         cmd->ret = ret;
652                         complete(&cmd->wait);
653                 }
654                 fcc->dispatch_list = NULL;
655         }
656
657         wait_event_interruptible(*q,
658                 kthread_should_stop() || !llist_empty(&fcc->issue_list));
659         goto repeat;
660 }
661
662 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
663 {
664         struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
665         struct flush_cmd cmd;
666         int ret;
667
668         if (test_opt(sbi, NOBARRIER))
669                 return 0;
670
671         if (!test_opt(sbi, FLUSH_MERGE)) {
672                 atomic_inc(&fcc->queued_flush);
673                 ret = submit_flush_wait(sbi, ino);
674                 atomic_dec(&fcc->queued_flush);
675                 atomic_inc(&fcc->issued_flush);
676                 return ret;
677         }
678
679         if (atomic_inc_return(&fcc->queued_flush) == 1 ||
680             f2fs_is_multi_device(sbi)) {
681                 ret = submit_flush_wait(sbi, ino);
682                 atomic_dec(&fcc->queued_flush);
683
684                 atomic_inc(&fcc->issued_flush);
685                 return ret;
686         }
687
688         cmd.ino = ino;
689         init_completion(&cmd.wait);
690
691         llist_add(&cmd.llnode, &fcc->issue_list);
692
693         /*
694          * update issue_list before we wake up issue_flush thread, this
695          * smp_mb() pairs with another barrier in ___wait_event(), see
696          * more details in comments of waitqueue_active().
697          */
698         smp_mb();
699
700         if (waitqueue_active(&fcc->flush_wait_queue))
701                 wake_up(&fcc->flush_wait_queue);
702
703         if (fcc->f2fs_issue_flush) {
704                 wait_for_completion(&cmd.wait);
705                 atomic_dec(&fcc->queued_flush);
706         } else {
707                 struct llist_node *list;
708
709                 list = llist_del_all(&fcc->issue_list);
710                 if (!list) {
711                         wait_for_completion(&cmd.wait);
712                         atomic_dec(&fcc->queued_flush);
713                 } else {
714                         struct flush_cmd *tmp, *next;
715
716                         ret = submit_flush_wait(sbi, ino);
717
718                         llist_for_each_entry_safe(tmp, next, list, llnode) {
719                                 if (tmp == &cmd) {
720                                         cmd.ret = ret;
721                                         atomic_dec(&fcc->queued_flush);
722                                         continue;
723                                 }
724                                 tmp->ret = ret;
725                                 complete(&tmp->wait);
726                         }
727                 }
728         }
729
730         return cmd.ret;
731 }
732
733 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
734 {
735         dev_t dev = sbi->sb->s_bdev->bd_dev;
736         struct flush_cmd_control *fcc;
737         int err = 0;
738
739         if (SM_I(sbi)->fcc_info) {
740                 fcc = SM_I(sbi)->fcc_info;
741                 if (fcc->f2fs_issue_flush)
742                         return err;
743                 goto init_thread;
744         }
745
746         fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
747         if (!fcc)
748                 return -ENOMEM;
749         atomic_set(&fcc->issued_flush, 0);
750         atomic_set(&fcc->queued_flush, 0);
751         init_waitqueue_head(&fcc->flush_wait_queue);
752         init_llist_head(&fcc->issue_list);
753         SM_I(sbi)->fcc_info = fcc;
754         if (!test_opt(sbi, FLUSH_MERGE))
755                 return err;
756
757 init_thread:
758         fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
759                                 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
760         if (IS_ERR(fcc->f2fs_issue_flush)) {
761                 err = PTR_ERR(fcc->f2fs_issue_flush);
762                 kfree(fcc);
763                 SM_I(sbi)->fcc_info = NULL;
764                 return err;
765         }
766
767         return err;
768 }
769
770 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
771 {
772         struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
773
774         if (fcc && fcc->f2fs_issue_flush) {
775                 struct task_struct *flush_thread = fcc->f2fs_issue_flush;
776
777                 fcc->f2fs_issue_flush = NULL;
778                 kthread_stop(flush_thread);
779         }
780         if (free) {
781                 kfree(fcc);
782                 SM_I(sbi)->fcc_info = NULL;
783         }
784 }
785
786 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
787 {
788         int ret = 0, i;
789
790         if (!f2fs_is_multi_device(sbi))
791                 return 0;
792
793         if (test_opt(sbi, NOBARRIER))
794                 return 0;
795
796         for (i = 1; i < sbi->s_ndevs; i++) {
797                 int count = DEFAULT_RETRY_IO_COUNT;
798
799                 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
800                         continue;
801
802                 do {
803                         ret = __submit_flush_wait(sbi, FDEV(i).bdev);
804                         if (ret)
805                                 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
806                 } while (ret && --count);
807
808                 if (ret) {
809                         f2fs_stop_checkpoint(sbi, false);
810                         break;
811                 }
812
813                 spin_lock(&sbi->dev_lock);
814                 f2fs_clear_bit(i, (char *)&sbi->dirty_device);
815                 spin_unlock(&sbi->dev_lock);
816         }
817
818         return ret;
819 }
820
821 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
822                 enum dirty_type dirty_type)
823 {
824         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
825
826         /* need not be added */
827         if (IS_CURSEG(sbi, segno))
828                 return;
829
830         if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
831                 dirty_i->nr_dirty[dirty_type]++;
832
833         if (dirty_type == DIRTY) {
834                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
835                 enum dirty_type t = sentry->type;
836
837                 if (unlikely(t >= DIRTY)) {
838                         f2fs_bug_on(sbi, 1);
839                         return;
840                 }
841                 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
842                         dirty_i->nr_dirty[t]++;
843
844                 if (__is_large_section(sbi)) {
845                         unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
846                         block_t valid_blocks =
847                                 get_valid_blocks(sbi, segno, true);
848
849                         f2fs_bug_on(sbi, unlikely(!valid_blocks ||
850                                         valid_blocks == BLKS_PER_SEC(sbi)));
851
852                         if (!IS_CURSEC(sbi, secno))
853                                 set_bit(secno, dirty_i->dirty_secmap);
854                 }
855         }
856 }
857
858 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
859                 enum dirty_type dirty_type)
860 {
861         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
862         block_t valid_blocks;
863
864         if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
865                 dirty_i->nr_dirty[dirty_type]--;
866
867         if (dirty_type == DIRTY) {
868                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
869                 enum dirty_type t = sentry->type;
870
871                 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
872                         dirty_i->nr_dirty[t]--;
873
874                 valid_blocks = get_valid_blocks(sbi, segno, true);
875                 if (valid_blocks == 0) {
876                         clear_bit(GET_SEC_FROM_SEG(sbi, segno),
877                                                 dirty_i->victim_secmap);
878 #ifdef CONFIG_F2FS_CHECK_FS
879                         clear_bit(segno, SIT_I(sbi)->invalid_segmap);
880 #endif
881                 }
882                 if (__is_large_section(sbi)) {
883                         unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
884
885                         if (!valid_blocks ||
886                                         valid_blocks == BLKS_PER_SEC(sbi)) {
887                                 clear_bit(secno, dirty_i->dirty_secmap);
888                                 return;
889                         }
890
891                         if (!IS_CURSEC(sbi, secno))
892                                 set_bit(secno, dirty_i->dirty_secmap);
893                 }
894         }
895 }
896
897 /*
898  * Should not occur error such as -ENOMEM.
899  * Adding dirty entry into seglist is not critical operation.
900  * If a given segment is one of current working segments, it won't be added.
901  */
902 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
903 {
904         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
905         unsigned short valid_blocks, ckpt_valid_blocks;
906         unsigned int usable_blocks;
907
908         if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
909                 return;
910
911         usable_blocks = f2fs_usable_blks_in_seg(sbi, segno);
912         mutex_lock(&dirty_i->seglist_lock);
913
914         valid_blocks = get_valid_blocks(sbi, segno, false);
915         ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false);
916
917         if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
918                 ckpt_valid_blocks == usable_blocks)) {
919                 __locate_dirty_segment(sbi, segno, PRE);
920                 __remove_dirty_segment(sbi, segno, DIRTY);
921         } else if (valid_blocks < usable_blocks) {
922                 __locate_dirty_segment(sbi, segno, DIRTY);
923         } else {
924                 /* Recovery routine with SSR needs this */
925                 __remove_dirty_segment(sbi, segno, DIRTY);
926         }
927
928         mutex_unlock(&dirty_i->seglist_lock);
929 }
930
931 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
932 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
933 {
934         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
935         unsigned int segno;
936
937         mutex_lock(&dirty_i->seglist_lock);
938         for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
939                 if (get_valid_blocks(sbi, segno, false))
940                         continue;
941                 if (IS_CURSEG(sbi, segno))
942                         continue;
943                 __locate_dirty_segment(sbi, segno, PRE);
944                 __remove_dirty_segment(sbi, segno, DIRTY);
945         }
946         mutex_unlock(&dirty_i->seglist_lock);
947 }
948
949 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
950 {
951         int ovp_hole_segs =
952                 (overprovision_segments(sbi) - reserved_segments(sbi));
953         block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg;
954         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
955         block_t holes[2] = {0, 0};      /* DATA and NODE */
956         block_t unusable;
957         struct seg_entry *se;
958         unsigned int segno;
959
960         mutex_lock(&dirty_i->seglist_lock);
961         for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
962                 se = get_seg_entry(sbi, segno);
963                 if (IS_NODESEG(se->type))
964                         holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) -
965                                                         se->valid_blocks;
966                 else
967                         holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) -
968                                                         se->valid_blocks;
969         }
970         mutex_unlock(&dirty_i->seglist_lock);
971
972         unusable = holes[DATA] > holes[NODE] ? holes[DATA] : holes[NODE];
973         if (unusable > ovp_holes)
974                 return unusable - ovp_holes;
975         return 0;
976 }
977
978 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
979 {
980         int ovp_hole_segs =
981                 (overprovision_segments(sbi) - reserved_segments(sbi));
982         if (unusable > F2FS_OPTION(sbi).unusable_cap)
983                 return -EAGAIN;
984         if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
985                 dirty_segments(sbi) > ovp_hole_segs)
986                 return -EAGAIN;
987         return 0;
988 }
989
990 /* This is only used by SBI_CP_DISABLED */
991 static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
992 {
993         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
994         unsigned int segno = 0;
995
996         mutex_lock(&dirty_i->seglist_lock);
997         for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
998                 if (get_valid_blocks(sbi, segno, false))
999                         continue;
1000                 if (get_ckpt_valid_blocks(sbi, segno, false))
1001                         continue;
1002                 mutex_unlock(&dirty_i->seglist_lock);
1003                 return segno;
1004         }
1005         mutex_unlock(&dirty_i->seglist_lock);
1006         return NULL_SEGNO;
1007 }
1008
1009 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
1010                 struct block_device *bdev, block_t lstart,
1011                 block_t start, block_t len)
1012 {
1013         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1014         struct list_head *pend_list;
1015         struct discard_cmd *dc;
1016
1017         f2fs_bug_on(sbi, !len);
1018
1019         pend_list = &dcc->pend_list[plist_idx(len)];
1020
1021         dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS, true, NULL);
1022         INIT_LIST_HEAD(&dc->list);
1023         dc->bdev = bdev;
1024         dc->lstart = lstart;
1025         dc->start = start;
1026         dc->len = len;
1027         dc->ref = 0;
1028         dc->state = D_PREP;
1029         dc->queued = 0;
1030         dc->error = 0;
1031         init_completion(&dc->wait);
1032         list_add_tail(&dc->list, pend_list);
1033         spin_lock_init(&dc->lock);
1034         dc->bio_ref = 0;
1035         atomic_inc(&dcc->discard_cmd_cnt);
1036         dcc->undiscard_blks += len;
1037
1038         return dc;
1039 }
1040
1041 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
1042                                 struct block_device *bdev, block_t lstart,
1043                                 block_t start, block_t len,
1044                                 struct rb_node *parent, struct rb_node **p,
1045                                 bool leftmost)
1046 {
1047         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1048         struct discard_cmd *dc;
1049
1050         dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
1051
1052         rb_link_node(&dc->rb_node, parent, p);
1053         rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
1054
1055         return dc;
1056 }
1057
1058 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
1059                                                         struct discard_cmd *dc)
1060 {
1061         if (dc->state == D_DONE)
1062                 atomic_sub(dc->queued, &dcc->queued_discard);
1063
1064         list_del(&dc->list);
1065         rb_erase_cached(&dc->rb_node, &dcc->root);
1066         dcc->undiscard_blks -= dc->len;
1067
1068         kmem_cache_free(discard_cmd_slab, dc);
1069
1070         atomic_dec(&dcc->discard_cmd_cnt);
1071 }
1072
1073 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
1074                                                         struct discard_cmd *dc)
1075 {
1076         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1077         unsigned long flags;
1078
1079         trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
1080
1081         spin_lock_irqsave(&dc->lock, flags);
1082         if (dc->bio_ref) {
1083                 spin_unlock_irqrestore(&dc->lock, flags);
1084                 return;
1085         }
1086         spin_unlock_irqrestore(&dc->lock, flags);
1087
1088         f2fs_bug_on(sbi, dc->ref);
1089
1090         if (dc->error == -EOPNOTSUPP)
1091                 dc->error = 0;
1092
1093         if (dc->error)
1094                 printk_ratelimited(
1095                         "%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d",
1096                         KERN_INFO, sbi->sb->s_id,
1097                         dc->lstart, dc->start, dc->len, dc->error);
1098         __detach_discard_cmd(dcc, dc);
1099 }
1100
1101 static void f2fs_submit_discard_endio(struct bio *bio)
1102 {
1103         struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1104         unsigned long flags;
1105
1106         spin_lock_irqsave(&dc->lock, flags);
1107         if (!dc->error)
1108                 dc->error = blk_status_to_errno(bio->bi_status);
1109         dc->bio_ref--;
1110         if (!dc->bio_ref && dc->state == D_SUBMIT) {
1111                 dc->state = D_DONE;
1112                 complete_all(&dc->wait);
1113         }
1114         spin_unlock_irqrestore(&dc->lock, flags);
1115         bio_put(bio);
1116 }
1117
1118 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1119                                 block_t start, block_t end)
1120 {
1121 #ifdef CONFIG_F2FS_CHECK_FS
1122         struct seg_entry *sentry;
1123         unsigned int segno;
1124         block_t blk = start;
1125         unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
1126         unsigned long *map;
1127
1128         while (blk < end) {
1129                 segno = GET_SEGNO(sbi, blk);
1130                 sentry = get_seg_entry(sbi, segno);
1131                 offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1132
1133                 if (end < START_BLOCK(sbi, segno + 1))
1134                         size = GET_BLKOFF_FROM_SEG0(sbi, end);
1135                 else
1136                         size = max_blocks;
1137                 map = (unsigned long *)(sentry->cur_valid_map);
1138                 offset = __find_rev_next_bit(map, size, offset);
1139                 f2fs_bug_on(sbi, offset != size);
1140                 blk = START_BLOCK(sbi, segno + 1);
1141         }
1142 #endif
1143 }
1144
1145 static void __init_discard_policy(struct f2fs_sb_info *sbi,
1146                                 struct discard_policy *dpolicy,
1147                                 int discard_type, unsigned int granularity)
1148 {
1149         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1150
1151         /* common policy */
1152         dpolicy->type = discard_type;
1153         dpolicy->sync = true;
1154         dpolicy->ordered = false;
1155         dpolicy->granularity = granularity;
1156
1157         dpolicy->max_requests = dcc->max_discard_request;
1158         dpolicy->io_aware_gran = MAX_PLIST_NUM;
1159         dpolicy->timeout = false;
1160
1161         if (discard_type == DPOLICY_BG) {
1162                 dpolicy->min_interval = dcc->min_discard_issue_time;
1163                 dpolicy->mid_interval = dcc->mid_discard_issue_time;
1164                 dpolicy->max_interval = dcc->max_discard_issue_time;
1165                 dpolicy->io_aware = true;
1166                 dpolicy->sync = false;
1167                 dpolicy->ordered = true;
1168                 if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) {
1169                         dpolicy->granularity = 1;
1170                         if (atomic_read(&dcc->discard_cmd_cnt))
1171                                 dpolicy->max_interval =
1172                                         dcc->min_discard_issue_time;
1173                 }
1174         } else if (discard_type == DPOLICY_FORCE) {
1175                 dpolicy->min_interval = dcc->min_discard_issue_time;
1176                 dpolicy->mid_interval = dcc->mid_discard_issue_time;
1177                 dpolicy->max_interval = dcc->max_discard_issue_time;
1178                 dpolicy->io_aware = false;
1179         } else if (discard_type == DPOLICY_FSTRIM) {
1180                 dpolicy->io_aware = false;
1181         } else if (discard_type == DPOLICY_UMOUNT) {
1182                 dpolicy->io_aware = false;
1183                 /* we need to issue all to keep CP_TRIMMED_FLAG */
1184                 dpolicy->granularity = 1;
1185                 dpolicy->timeout = true;
1186         }
1187 }
1188
1189 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1190                                 struct block_device *bdev, block_t lstart,
1191                                 block_t start, block_t len);
1192 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
1193 static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1194                                                 struct discard_policy *dpolicy,
1195                                                 struct discard_cmd *dc,
1196                                                 unsigned int *issued)
1197 {
1198         struct block_device *bdev = dc->bdev;
1199         struct request_queue *q = bdev_get_queue(bdev);
1200         unsigned int max_discard_blocks =
1201                         SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1202         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1203         struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1204                                         &(dcc->fstrim_list) : &(dcc->wait_list);
1205         int flag = dpolicy->sync ? REQ_SYNC : 0;
1206         block_t lstart, start, len, total_len;
1207         int err = 0;
1208
1209         if (dc->state != D_PREP)
1210                 return 0;
1211
1212         if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1213                 return 0;
1214
1215         trace_f2fs_issue_discard(bdev, dc->start, dc->len);
1216
1217         lstart = dc->lstart;
1218         start = dc->start;
1219         len = dc->len;
1220         total_len = len;
1221
1222         dc->len = 0;
1223
1224         while (total_len && *issued < dpolicy->max_requests && !err) {
1225                 struct bio *bio = NULL;
1226                 unsigned long flags;
1227                 bool last = true;
1228
1229                 if (len > max_discard_blocks) {
1230                         len = max_discard_blocks;
1231                         last = false;
1232                 }
1233
1234                 (*issued)++;
1235                 if (*issued == dpolicy->max_requests)
1236                         last = true;
1237
1238                 dc->len += len;
1239
1240                 if (time_to_inject(sbi, FAULT_DISCARD)) {
1241                         f2fs_show_injection_info(sbi, FAULT_DISCARD);
1242                         err = -EIO;
1243                         goto submit;
1244                 }
1245                 err = __blkdev_issue_discard(bdev,
1246                                         SECTOR_FROM_BLOCK(start),
1247                                         SECTOR_FROM_BLOCK(len),
1248                                         GFP_NOFS, 0, &bio);
1249 submit:
1250                 if (err) {
1251                         spin_lock_irqsave(&dc->lock, flags);
1252                         if (dc->state == D_PARTIAL)
1253                                 dc->state = D_SUBMIT;
1254                         spin_unlock_irqrestore(&dc->lock, flags);
1255
1256                         break;
1257                 }
1258
1259                 f2fs_bug_on(sbi, !bio);
1260
1261                 /*
1262                  * should keep before submission to avoid D_DONE
1263                  * right away
1264                  */
1265                 spin_lock_irqsave(&dc->lock, flags);
1266                 if (last)
1267                         dc->state = D_SUBMIT;
1268                 else
1269                         dc->state = D_PARTIAL;
1270                 dc->bio_ref++;
1271                 spin_unlock_irqrestore(&dc->lock, flags);
1272
1273                 atomic_inc(&dcc->queued_discard);
1274                 dc->queued++;
1275                 list_move_tail(&dc->list, wait_list);
1276
1277                 /* sanity check on discard range */
1278                 __check_sit_bitmap(sbi, lstart, lstart + len);
1279
1280                 bio->bi_private = dc;
1281                 bio->bi_end_io = f2fs_submit_discard_endio;
1282                 bio->bi_opf |= flag;
1283                 submit_bio(bio);
1284
1285                 atomic_inc(&dcc->issued_discard);
1286
1287                 f2fs_update_iostat(sbi, FS_DISCARD, 1);
1288
1289                 lstart += len;
1290                 start += len;
1291                 total_len -= len;
1292                 len = total_len;
1293         }
1294
1295         if (!err && len) {
1296                 dcc->undiscard_blks -= len;
1297                 __update_discard_tree_range(sbi, bdev, lstart, start, len);
1298         }
1299         return err;
1300 }
1301
1302 static void __insert_discard_tree(struct f2fs_sb_info *sbi,
1303                                 struct block_device *bdev, block_t lstart,
1304                                 block_t start, block_t len,
1305                                 struct rb_node **insert_p,
1306                                 struct rb_node *insert_parent)
1307 {
1308         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1309         struct rb_node **p;
1310         struct rb_node *parent = NULL;
1311         bool leftmost = true;
1312
1313         if (insert_p && insert_parent) {
1314                 parent = insert_parent;
1315                 p = insert_p;
1316                 goto do_insert;
1317         }
1318
1319         p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent,
1320                                                         lstart, &leftmost);
1321 do_insert:
1322         __attach_discard_cmd(sbi, bdev, lstart, start, len, parent,
1323                                                                 p, leftmost);
1324 }
1325
1326 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1327                                                 struct discard_cmd *dc)
1328 {
1329         list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
1330 }
1331
1332 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1333                                 struct discard_cmd *dc, block_t blkaddr)
1334 {
1335         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1336         struct discard_info di = dc->di;
1337         bool modified = false;
1338
1339         if (dc->state == D_DONE || dc->len == 1) {
1340                 __remove_discard_cmd(sbi, dc);
1341                 return;
1342         }
1343
1344         dcc->undiscard_blks -= di.len;
1345
1346         if (blkaddr > di.lstart) {
1347                 dc->len = blkaddr - dc->lstart;
1348                 dcc->undiscard_blks += dc->len;
1349                 __relocate_discard_cmd(dcc, dc);
1350                 modified = true;
1351         }
1352
1353         if (blkaddr < di.lstart + di.len - 1) {
1354                 if (modified) {
1355                         __insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1356                                         di.start + blkaddr + 1 - di.lstart,
1357                                         di.lstart + di.len - 1 - blkaddr,
1358                                         NULL, NULL);
1359                 } else {
1360                         dc->lstart++;
1361                         dc->len--;
1362                         dc->start++;
1363                         dcc->undiscard_blks += dc->len;
1364                         __relocate_discard_cmd(dcc, dc);
1365                 }
1366         }
1367 }
1368
1369 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1370                                 struct block_device *bdev, block_t lstart,
1371                                 block_t start, block_t len)
1372 {
1373         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1374         struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1375         struct discard_cmd *dc;
1376         struct discard_info di = {0};
1377         struct rb_node **insert_p = NULL, *insert_parent = NULL;
1378         struct request_queue *q = bdev_get_queue(bdev);
1379         unsigned int max_discard_blocks =
1380                         SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1381         block_t end = lstart + len;
1382
1383         dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1384                                         NULL, lstart,
1385                                         (struct rb_entry **)&prev_dc,
1386                                         (struct rb_entry **)&next_dc,
1387                                         &insert_p, &insert_parent, true, NULL);
1388         if (dc)
1389                 prev_dc = dc;
1390
1391         if (!prev_dc) {
1392                 di.lstart = lstart;
1393                 di.len = next_dc ? next_dc->lstart - lstart : len;
1394                 di.len = min(di.len, len);
1395                 di.start = start;
1396         }
1397
1398         while (1) {
1399                 struct rb_node *node;
1400                 bool merged = false;
1401                 struct discard_cmd *tdc = NULL;
1402
1403                 if (prev_dc) {
1404                         di.lstart = prev_dc->lstart + prev_dc->len;
1405                         if (di.lstart < lstart)
1406                                 di.lstart = lstart;
1407                         if (di.lstart >= end)
1408                                 break;
1409
1410                         if (!next_dc || next_dc->lstart > end)
1411                                 di.len = end - di.lstart;
1412                         else
1413                                 di.len = next_dc->lstart - di.lstart;
1414                         di.start = start + di.lstart - lstart;
1415                 }
1416
1417                 if (!di.len)
1418                         goto next;
1419
1420                 if (prev_dc && prev_dc->state == D_PREP &&
1421                         prev_dc->bdev == bdev &&
1422                         __is_discard_back_mergeable(&di, &prev_dc->di,
1423                                                         max_discard_blocks)) {
1424                         prev_dc->di.len += di.len;
1425                         dcc->undiscard_blks += di.len;
1426                         __relocate_discard_cmd(dcc, prev_dc);
1427                         di = prev_dc->di;
1428                         tdc = prev_dc;
1429                         merged = true;
1430                 }
1431
1432                 if (next_dc && next_dc->state == D_PREP &&
1433                         next_dc->bdev == bdev &&
1434                         __is_discard_front_mergeable(&di, &next_dc->di,
1435                                                         max_discard_blocks)) {
1436                         next_dc->di.lstart = di.lstart;
1437                         next_dc->di.len += di.len;
1438                         next_dc->di.start = di.start;
1439                         dcc->undiscard_blks += di.len;
1440                         __relocate_discard_cmd(dcc, next_dc);
1441                         if (tdc)
1442                                 __remove_discard_cmd(sbi, tdc);
1443                         merged = true;
1444                 }
1445
1446                 if (!merged) {
1447                         __insert_discard_tree(sbi, bdev, di.lstart, di.start,
1448                                                         di.len, NULL, NULL);
1449                 }
1450  next:
1451                 prev_dc = next_dc;
1452                 if (!prev_dc)
1453                         break;
1454
1455                 node = rb_next(&prev_dc->rb_node);
1456                 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1457         }
1458 }
1459
1460 static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
1461                 struct block_device *bdev, block_t blkstart, block_t blklen)
1462 {
1463         block_t lblkstart = blkstart;
1464
1465         if (!f2fs_bdev_support_discard(bdev))
1466                 return 0;
1467
1468         trace_f2fs_queue_discard(bdev, blkstart, blklen);
1469
1470         if (f2fs_is_multi_device(sbi)) {
1471                 int devi = f2fs_target_device_index(sbi, blkstart);
1472
1473                 blkstart -= FDEV(devi).start_blk;
1474         }
1475         mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1476         __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1477         mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1478         return 0;
1479 }
1480
1481 static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1482                                         struct discard_policy *dpolicy)
1483 {
1484         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1485         struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1486         struct rb_node **insert_p = NULL, *insert_parent = NULL;
1487         struct discard_cmd *dc;
1488         struct blk_plug plug;
1489         unsigned int pos = dcc->next_pos;
1490         unsigned int issued = 0;
1491         bool io_interrupted = false;
1492
1493         mutex_lock(&dcc->cmd_lock);
1494         dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1495                                         NULL, pos,
1496                                         (struct rb_entry **)&prev_dc,
1497                                         (struct rb_entry **)&next_dc,
1498                                         &insert_p, &insert_parent, true, NULL);
1499         if (!dc)
1500                 dc = next_dc;
1501
1502         blk_start_plug(&plug);
1503
1504         while (dc) {
1505                 struct rb_node *node;
1506                 int err = 0;
1507
1508                 if (dc->state != D_PREP)
1509                         goto next;
1510
1511                 if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1512                         io_interrupted = true;
1513                         break;
1514                 }
1515
1516                 dcc->next_pos = dc->lstart + dc->len;
1517                 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1518
1519                 if (issued >= dpolicy->max_requests)
1520                         break;
1521 next:
1522                 node = rb_next(&dc->rb_node);
1523                 if (err)
1524                         __remove_discard_cmd(sbi, dc);
1525                 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1526         }
1527
1528         blk_finish_plug(&plug);
1529
1530         if (!dc)
1531                 dcc->next_pos = 0;
1532
1533         mutex_unlock(&dcc->cmd_lock);
1534
1535         if (!issued && io_interrupted)
1536                 issued = -1;
1537
1538         return issued;
1539 }
1540 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1541                                         struct discard_policy *dpolicy);
1542
1543 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1544                                         struct discard_policy *dpolicy)
1545 {
1546         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1547         struct list_head *pend_list;
1548         struct discard_cmd *dc, *tmp;
1549         struct blk_plug plug;
1550         int i, issued;
1551         bool io_interrupted = false;
1552
1553         if (dpolicy->timeout)
1554                 f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT);
1555
1556 retry:
1557         issued = 0;
1558         for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1559                 if (dpolicy->timeout &&
1560                                 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1561                         break;
1562
1563                 if (i + 1 < dpolicy->granularity)
1564                         break;
1565
1566                 if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered)
1567                         return __issue_discard_cmd_orderly(sbi, dpolicy);
1568
1569                 pend_list = &dcc->pend_list[i];
1570
1571                 mutex_lock(&dcc->cmd_lock);
1572                 if (list_empty(pend_list))
1573                         goto next;
1574                 if (unlikely(dcc->rbtree_check))
1575                         f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
1576                                                         &dcc->root, false));
1577                 blk_start_plug(&plug);
1578                 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1579                         f2fs_bug_on(sbi, dc->state != D_PREP);
1580
1581                         if (dpolicy->timeout &&
1582                                 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1583                                 break;
1584
1585                         if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1586                                                 !is_idle(sbi, DISCARD_TIME)) {
1587                                 io_interrupted = true;
1588                                 break;
1589                         }
1590
1591                         __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1592
1593                         if (issued >= dpolicy->max_requests)
1594                                 break;
1595                 }
1596                 blk_finish_plug(&plug);
1597 next:
1598                 mutex_unlock(&dcc->cmd_lock);
1599
1600                 if (issued >= dpolicy->max_requests || io_interrupted)
1601                         break;
1602         }
1603
1604         if (dpolicy->type == DPOLICY_UMOUNT && issued) {
1605                 __wait_all_discard_cmd(sbi, dpolicy);
1606                 goto retry;
1607         }
1608
1609         if (!issued && io_interrupted)
1610                 issued = -1;
1611
1612         return issued;
1613 }
1614
1615 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1616 {
1617         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1618         struct list_head *pend_list;
1619         struct discard_cmd *dc, *tmp;
1620         int i;
1621         bool dropped = false;
1622
1623         mutex_lock(&dcc->cmd_lock);
1624         for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1625                 pend_list = &dcc->pend_list[i];
1626                 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1627                         f2fs_bug_on(sbi, dc->state != D_PREP);
1628                         __remove_discard_cmd(sbi, dc);
1629                         dropped = true;
1630                 }
1631         }
1632         mutex_unlock(&dcc->cmd_lock);
1633
1634         return dropped;
1635 }
1636
1637 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1638 {
1639         __drop_discard_cmd(sbi);
1640 }
1641
1642 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1643                                                         struct discard_cmd *dc)
1644 {
1645         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1646         unsigned int len = 0;
1647
1648         wait_for_completion_io(&dc->wait);
1649         mutex_lock(&dcc->cmd_lock);
1650         f2fs_bug_on(sbi, dc->state != D_DONE);
1651         dc->ref--;
1652         if (!dc->ref) {
1653                 if (!dc->error)
1654                         len = dc->len;
1655                 __remove_discard_cmd(sbi, dc);
1656         }
1657         mutex_unlock(&dcc->cmd_lock);
1658
1659         return len;
1660 }
1661
1662 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1663                                                 struct discard_policy *dpolicy,
1664                                                 block_t start, block_t end)
1665 {
1666         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1667         struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1668                                         &(dcc->fstrim_list) : &(dcc->wait_list);
1669         struct discard_cmd *dc, *tmp;
1670         bool need_wait;
1671         unsigned int trimmed = 0;
1672
1673 next:
1674         need_wait = false;
1675
1676         mutex_lock(&dcc->cmd_lock);
1677         list_for_each_entry_safe(dc, tmp, wait_list, list) {
1678                 if (dc->lstart + dc->len <= start || end <= dc->lstart)
1679                         continue;
1680                 if (dc->len < dpolicy->granularity)
1681                         continue;
1682                 if (dc->state == D_DONE && !dc->ref) {
1683                         wait_for_completion_io(&dc->wait);
1684                         if (!dc->error)
1685                                 trimmed += dc->len;
1686                         __remove_discard_cmd(sbi, dc);
1687                 } else {
1688                         dc->ref++;
1689                         need_wait = true;
1690                         break;
1691                 }
1692         }
1693         mutex_unlock(&dcc->cmd_lock);
1694
1695         if (need_wait) {
1696                 trimmed += __wait_one_discard_bio(sbi, dc);
1697                 goto next;
1698         }
1699
1700         return trimmed;
1701 }
1702
1703 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1704                                                 struct discard_policy *dpolicy)
1705 {
1706         struct discard_policy dp;
1707         unsigned int discard_blks;
1708
1709         if (dpolicy)
1710                 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1711
1712         /* wait all */
1713         __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
1714         discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1715         __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
1716         discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1717
1718         return discard_blks;
1719 }
1720
1721 /* This should be covered by global mutex, &sit_i->sentry_lock */
1722 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1723 {
1724         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1725         struct discard_cmd *dc;
1726         bool need_wait = false;
1727
1728         mutex_lock(&dcc->cmd_lock);
1729         dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
1730                                                         NULL, blkaddr);
1731         if (dc) {
1732                 if (dc->state == D_PREP) {
1733                         __punch_discard_cmd(sbi, dc, blkaddr);
1734                 } else {
1735                         dc->ref++;
1736                         need_wait = true;
1737                 }
1738         }
1739         mutex_unlock(&dcc->cmd_lock);
1740
1741         if (need_wait)
1742                 __wait_one_discard_bio(sbi, dc);
1743 }
1744
1745 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1746 {
1747         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1748
1749         if (dcc && dcc->f2fs_issue_discard) {
1750                 struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1751
1752                 dcc->f2fs_issue_discard = NULL;
1753                 kthread_stop(discard_thread);
1754         }
1755 }
1756
1757 /* This comes from f2fs_put_super */
1758 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1759 {
1760         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1761         struct discard_policy dpolicy;
1762         bool dropped;
1763
1764         __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1765                                         dcc->discard_granularity);
1766         __issue_discard_cmd(sbi, &dpolicy);
1767         dropped = __drop_discard_cmd(sbi);
1768
1769         /* just to make sure there is no pending discard commands */
1770         __wait_all_discard_cmd(sbi, NULL);
1771
1772         f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1773         return dropped;
1774 }
1775
1776 static int issue_discard_thread(void *data)
1777 {
1778         struct f2fs_sb_info *sbi = data;
1779         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1780         wait_queue_head_t *q = &dcc->discard_wait_queue;
1781         struct discard_policy dpolicy;
1782         unsigned int wait_ms = dcc->min_discard_issue_time;
1783         int issued;
1784
1785         set_freezable();
1786
1787         do {
1788                 if (sbi->gc_mode == GC_URGENT_HIGH ||
1789                         !f2fs_available_free_memory(sbi, DISCARD_CACHE))
1790                         __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1);
1791                 else
1792                         __init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1793                                                 dcc->discard_granularity);
1794
1795                 if (!atomic_read(&dcc->discard_cmd_cnt))
1796                        wait_ms = dpolicy.max_interval;
1797
1798                 wait_event_interruptible_timeout(*q,
1799                                 kthread_should_stop() || freezing(current) ||
1800                                 dcc->discard_wake,
1801                                 msecs_to_jiffies(wait_ms));
1802
1803                 if (dcc->discard_wake)
1804                         dcc->discard_wake = 0;
1805
1806                 /* clean up pending candidates before going to sleep */
1807                 if (atomic_read(&dcc->queued_discard))
1808                         __wait_all_discard_cmd(sbi, NULL);
1809
1810                 if (try_to_freeze())
1811                         continue;
1812                 if (f2fs_readonly(sbi->sb))
1813                         continue;
1814                 if (kthread_should_stop())
1815                         return 0;
1816                 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1817                         wait_ms = dpolicy.max_interval;
1818                         continue;
1819                 }
1820                 if (!atomic_read(&dcc->discard_cmd_cnt))
1821                         continue;
1822
1823                 sb_start_intwrite(sbi->sb);
1824
1825                 issued = __issue_discard_cmd(sbi, &dpolicy);
1826                 if (issued > 0) {
1827                         __wait_all_discard_cmd(sbi, &dpolicy);
1828                         wait_ms = dpolicy.min_interval;
1829                 } else if (issued == -1) {
1830                         wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1831                         if (!wait_ms)
1832                                 wait_ms = dpolicy.mid_interval;
1833                 } else {
1834                         wait_ms = dpolicy.max_interval;
1835                 }
1836
1837                 sb_end_intwrite(sbi->sb);
1838
1839         } while (!kthread_should_stop());
1840         return 0;
1841 }
1842
1843 #ifdef CONFIG_BLK_DEV_ZONED
1844 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1845                 struct block_device *bdev, block_t blkstart, block_t blklen)
1846 {
1847         sector_t sector, nr_sects;
1848         block_t lblkstart = blkstart;
1849         int devi = 0;
1850
1851         if (f2fs_is_multi_device(sbi)) {
1852                 devi = f2fs_target_device_index(sbi, blkstart);
1853                 if (blkstart < FDEV(devi).start_blk ||
1854                     blkstart > FDEV(devi).end_blk) {
1855                         f2fs_err(sbi, "Invalid block %x", blkstart);
1856                         return -EIO;
1857                 }
1858                 blkstart -= FDEV(devi).start_blk;
1859         }
1860
1861         /* For sequential zones, reset the zone write pointer */
1862         if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1863                 sector = SECTOR_FROM_BLOCK(blkstart);
1864                 nr_sects = SECTOR_FROM_BLOCK(blklen);
1865
1866                 if (sector & (bdev_zone_sectors(bdev) - 1) ||
1867                                 nr_sects != bdev_zone_sectors(bdev)) {
1868                         f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1869                                  devi, sbi->s_ndevs ? FDEV(devi).path : "",
1870                                  blkstart, blklen);
1871                         return -EIO;
1872                 }
1873                 trace_f2fs_issue_reset_zone(bdev, blkstart);
1874                 return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1875                                         sector, nr_sects, GFP_NOFS);
1876         }
1877
1878         /* For conventional zones, use regular discard if supported */
1879         return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1880 }
1881 #endif
1882
1883 static int __issue_discard_async(struct f2fs_sb_info *sbi,
1884                 struct block_device *bdev, block_t blkstart, block_t blklen)
1885 {
1886 #ifdef CONFIG_BLK_DEV_ZONED
1887         if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
1888                 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1889 #endif
1890         return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1891 }
1892
1893 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1894                                 block_t blkstart, block_t blklen)
1895 {
1896         sector_t start = blkstart, len = 0;
1897         struct block_device *bdev;
1898         struct seg_entry *se;
1899         unsigned int offset;
1900         block_t i;
1901         int err = 0;
1902
1903         bdev = f2fs_target_device(sbi, blkstart, NULL);
1904
1905         for (i = blkstart; i < blkstart + blklen; i++, len++) {
1906                 if (i != start) {
1907                         struct block_device *bdev2 =
1908                                 f2fs_target_device(sbi, i, NULL);
1909
1910                         if (bdev2 != bdev) {
1911                                 err = __issue_discard_async(sbi, bdev,
1912                                                 start, len);
1913                                 if (err)
1914                                         return err;
1915                                 bdev = bdev2;
1916                                 start = i;
1917                                 len = 0;
1918                         }
1919                 }
1920
1921                 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1922                 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1923
1924                 if (f2fs_block_unit_discard(sbi) &&
1925                                 !f2fs_test_and_set_bit(offset, se->discard_map))
1926                         sbi->discard_blks--;
1927         }
1928
1929         if (len)
1930                 err = __issue_discard_async(sbi, bdev, start, len);
1931         return err;
1932 }
1933
1934 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1935                                                         bool check_only)
1936 {
1937         int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1938         int max_blocks = sbi->blocks_per_seg;
1939         struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1940         unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1941         unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1942         unsigned long *discard_map = (unsigned long *)se->discard_map;
1943         unsigned long *dmap = SIT_I(sbi)->tmp_map;
1944         unsigned int start = 0, end = -1;
1945         bool force = (cpc->reason & CP_DISCARD);
1946         struct discard_entry *de = NULL;
1947         struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1948         int i;
1949
1950         if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi) ||
1951                         !f2fs_block_unit_discard(sbi))
1952                 return false;
1953
1954         if (!force) {
1955                 if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
1956                         SM_I(sbi)->dcc_info->nr_discards >=
1957                                 SM_I(sbi)->dcc_info->max_discards)
1958                         return false;
1959         }
1960
1961         /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1962         for (i = 0; i < entries; i++)
1963                 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1964                                 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1965
1966         while (force || SM_I(sbi)->dcc_info->nr_discards <=
1967                                 SM_I(sbi)->dcc_info->max_discards) {
1968                 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1969                 if (start >= max_blocks)
1970                         break;
1971
1972                 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1973                 if (force && start && end != max_blocks
1974                                         && (end - start) < cpc->trim_minlen)
1975                         continue;
1976
1977                 if (check_only)
1978                         return true;
1979
1980                 if (!de) {
1981                         de = f2fs_kmem_cache_alloc(discard_entry_slab,
1982                                                 GFP_F2FS_ZERO, true, NULL);
1983                         de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1984                         list_add_tail(&de->list, head);
1985                 }
1986
1987                 for (i = start; i < end; i++)
1988                         __set_bit_le(i, (void *)de->discard_map);
1989
1990                 SM_I(sbi)->dcc_info->nr_discards += end - start;
1991         }
1992         return false;
1993 }
1994
1995 static void release_discard_addr(struct discard_entry *entry)
1996 {
1997         list_del(&entry->list);
1998         kmem_cache_free(discard_entry_slab, entry);
1999 }
2000
2001 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
2002 {
2003         struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
2004         struct discard_entry *entry, *this;
2005
2006         /* drop caches */
2007         list_for_each_entry_safe(entry, this, head, list)
2008                 release_discard_addr(entry);
2009 }
2010
2011 /*
2012  * Should call f2fs_clear_prefree_segments after checkpoint is done.
2013  */
2014 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
2015 {
2016         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2017         unsigned int segno;
2018
2019         mutex_lock(&dirty_i->seglist_lock);
2020         for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
2021                 __set_test_and_free(sbi, segno, false);
2022         mutex_unlock(&dirty_i->seglist_lock);
2023 }
2024
2025 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
2026                                                 struct cp_control *cpc)
2027 {
2028         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2029         struct list_head *head = &dcc->entry_list;
2030         struct discard_entry *entry, *this;
2031         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2032         unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
2033         unsigned int start = 0, end = -1;
2034         unsigned int secno, start_segno;
2035         bool force = (cpc->reason & CP_DISCARD);
2036         bool section_alignment = F2FS_OPTION(sbi).discard_unit ==
2037                                                 DISCARD_UNIT_SECTION;
2038
2039         if (f2fs_lfs_mode(sbi) && __is_large_section(sbi))
2040                 section_alignment = true;
2041
2042         mutex_lock(&dirty_i->seglist_lock);
2043
2044         while (1) {
2045                 int i;
2046
2047                 if (section_alignment && end != -1)
2048                         end--;
2049                 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
2050                 if (start >= MAIN_SEGS(sbi))
2051                         break;
2052                 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
2053                                                                 start + 1);
2054
2055                 if (section_alignment) {
2056                         start = rounddown(start, sbi->segs_per_sec);
2057                         end = roundup(end, sbi->segs_per_sec);
2058                 }
2059
2060                 for (i = start; i < end; i++) {
2061                         if (test_and_clear_bit(i, prefree_map))
2062                                 dirty_i->nr_dirty[PRE]--;
2063                 }
2064
2065                 if (!f2fs_realtime_discard_enable(sbi))
2066                         continue;
2067
2068                 if (force && start >= cpc->trim_start &&
2069                                         (end - 1) <= cpc->trim_end)
2070                                 continue;
2071
2072                 if (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi)) {
2073                         f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
2074                                 (end - start) << sbi->log_blocks_per_seg);
2075                         continue;
2076                 }
2077 next:
2078                 secno = GET_SEC_FROM_SEG(sbi, start);
2079                 start_segno = GET_SEG_FROM_SEC(sbi, secno);
2080                 if (!IS_CURSEC(sbi, secno) &&
2081                         !get_valid_blocks(sbi, start, true))
2082                         f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
2083                                 sbi->segs_per_sec << sbi->log_blocks_per_seg);
2084
2085                 start = start_segno + sbi->segs_per_sec;
2086                 if (start < end)
2087                         goto next;
2088                 else
2089                         end = start - 1;
2090         }
2091         mutex_unlock(&dirty_i->seglist_lock);
2092
2093         if (!f2fs_block_unit_discard(sbi))
2094                 goto wakeup;
2095
2096         /* send small discards */
2097         list_for_each_entry_safe(entry, this, head, list) {
2098                 unsigned int cur_pos = 0, next_pos, len, total_len = 0;
2099                 bool is_valid = test_bit_le(0, entry->discard_map);
2100
2101 find_next:
2102                 if (is_valid) {
2103                         next_pos = find_next_zero_bit_le(entry->discard_map,
2104                                         sbi->blocks_per_seg, cur_pos);
2105                         len = next_pos - cur_pos;
2106
2107                         if (f2fs_sb_has_blkzoned(sbi) ||
2108                             (force && len < cpc->trim_minlen))
2109                                 goto skip;
2110
2111                         f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2112                                                                         len);
2113                         total_len += len;
2114                 } else {
2115                         next_pos = find_next_bit_le(entry->discard_map,
2116                                         sbi->blocks_per_seg, cur_pos);
2117                 }
2118 skip:
2119                 cur_pos = next_pos;
2120                 is_valid = !is_valid;
2121
2122                 if (cur_pos < sbi->blocks_per_seg)
2123                         goto find_next;
2124
2125                 release_discard_addr(entry);
2126                 dcc->nr_discards -= total_len;
2127         }
2128
2129 wakeup:
2130         wake_up_discard_thread(sbi, false);
2131 }
2132
2133 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi)
2134 {
2135         dev_t dev = sbi->sb->s_bdev->bd_dev;
2136         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2137         int err = 0;
2138
2139         if (!f2fs_realtime_discard_enable(sbi))
2140                 return 0;
2141
2142         dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2143                                 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2144         if (IS_ERR(dcc->f2fs_issue_discard))
2145                 err = PTR_ERR(dcc->f2fs_issue_discard);
2146
2147         return err;
2148 }
2149
2150 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2151 {
2152         struct discard_cmd_control *dcc;
2153         int err = 0, i;
2154
2155         if (SM_I(sbi)->dcc_info) {
2156                 dcc = SM_I(sbi)->dcc_info;
2157                 goto init_thread;
2158         }
2159
2160         dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2161         if (!dcc)
2162                 return -ENOMEM;
2163
2164         dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2165         if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT)
2166                 dcc->discard_granularity = sbi->blocks_per_seg;
2167         else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION)
2168                 dcc->discard_granularity = BLKS_PER_SEC(sbi);
2169
2170         INIT_LIST_HEAD(&dcc->entry_list);
2171         for (i = 0; i < MAX_PLIST_NUM; i++)
2172                 INIT_LIST_HEAD(&dcc->pend_list[i]);
2173         INIT_LIST_HEAD(&dcc->wait_list);
2174         INIT_LIST_HEAD(&dcc->fstrim_list);
2175         mutex_init(&dcc->cmd_lock);
2176         atomic_set(&dcc->issued_discard, 0);
2177         atomic_set(&dcc->queued_discard, 0);
2178         atomic_set(&dcc->discard_cmd_cnt, 0);
2179         dcc->nr_discards = 0;
2180         dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
2181         dcc->max_discard_request = DEF_MAX_DISCARD_REQUEST;
2182         dcc->min_discard_issue_time = DEF_MIN_DISCARD_ISSUE_TIME;
2183         dcc->mid_discard_issue_time = DEF_MID_DISCARD_ISSUE_TIME;
2184         dcc->max_discard_issue_time = DEF_MAX_DISCARD_ISSUE_TIME;
2185         dcc->undiscard_blks = 0;
2186         dcc->next_pos = 0;
2187         dcc->root = RB_ROOT_CACHED;
2188         dcc->rbtree_check = false;
2189
2190         init_waitqueue_head(&dcc->discard_wait_queue);
2191         SM_I(sbi)->dcc_info = dcc;
2192 init_thread:
2193         err = f2fs_start_discard_thread(sbi);
2194         if (err) {
2195                 kfree(dcc);
2196                 SM_I(sbi)->dcc_info = NULL;
2197         }
2198
2199         return err;
2200 }
2201
2202 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2203 {
2204         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2205
2206         if (!dcc)
2207                 return;
2208
2209         f2fs_stop_discard_thread(sbi);
2210
2211         /*
2212          * Recovery can cache discard commands, so in error path of
2213          * fill_super(), it needs to give a chance to handle them.
2214          */
2215         if (unlikely(atomic_read(&dcc->discard_cmd_cnt)))
2216                 f2fs_issue_discard_timeout(sbi);
2217
2218         kfree(dcc);
2219         SM_I(sbi)->dcc_info = NULL;
2220 }
2221
2222 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2223 {
2224         struct sit_info *sit_i = SIT_I(sbi);
2225
2226         if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2227                 sit_i->dirty_sentries++;
2228                 return false;
2229         }
2230
2231         return true;
2232 }
2233
2234 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2235                                         unsigned int segno, int modified)
2236 {
2237         struct seg_entry *se = get_seg_entry(sbi, segno);
2238
2239         se->type = type;
2240         if (modified)
2241                 __mark_sit_entry_dirty(sbi, segno);
2242 }
2243
2244 static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi,
2245                                                                 block_t blkaddr)
2246 {
2247         unsigned int segno = GET_SEGNO(sbi, blkaddr);
2248
2249         if (segno == NULL_SEGNO)
2250                 return 0;
2251         return get_seg_entry(sbi, segno)->mtime;
2252 }
2253
2254 static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr,
2255                                                 unsigned long long old_mtime)
2256 {
2257         struct seg_entry *se;
2258         unsigned int segno = GET_SEGNO(sbi, blkaddr);
2259         unsigned long long ctime = get_mtime(sbi, false);
2260         unsigned long long mtime = old_mtime ? old_mtime : ctime;
2261
2262         if (segno == NULL_SEGNO)
2263                 return;
2264
2265         se = get_seg_entry(sbi, segno);
2266
2267         if (!se->mtime)
2268                 se->mtime = mtime;
2269         else
2270                 se->mtime = div_u64(se->mtime * se->valid_blocks + mtime,
2271                                                 se->valid_blocks + 1);
2272
2273         if (ctime > SIT_I(sbi)->max_mtime)
2274                 SIT_I(sbi)->max_mtime = ctime;
2275 }
2276
2277 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2278 {
2279         struct seg_entry *se;
2280         unsigned int segno, offset;
2281         long int new_vblocks;
2282         bool exist;
2283 #ifdef CONFIG_F2FS_CHECK_FS
2284         bool mir_exist;
2285 #endif
2286
2287         segno = GET_SEGNO(sbi, blkaddr);
2288
2289         se = get_seg_entry(sbi, segno);
2290         new_vblocks = se->valid_blocks + del;
2291         offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2292
2293         f2fs_bug_on(sbi, (new_vblocks < 0 ||
2294                         (new_vblocks > f2fs_usable_blks_in_seg(sbi, segno))));
2295
2296         se->valid_blocks = new_vblocks;
2297
2298         /* Update valid block bitmap */
2299         if (del > 0) {
2300                 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2301 #ifdef CONFIG_F2FS_CHECK_FS
2302                 mir_exist = f2fs_test_and_set_bit(offset,
2303                                                 se->cur_valid_map_mir);
2304                 if (unlikely(exist != mir_exist)) {
2305                         f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2306                                  blkaddr, exist);
2307                         f2fs_bug_on(sbi, 1);
2308                 }
2309 #endif
2310                 if (unlikely(exist)) {
2311                         f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
2312                                  blkaddr);
2313                         f2fs_bug_on(sbi, 1);
2314                         se->valid_blocks--;
2315                         del = 0;
2316                 }
2317
2318                 if (f2fs_block_unit_discard(sbi) &&
2319                                 !f2fs_test_and_set_bit(offset, se->discard_map))
2320                         sbi->discard_blks--;
2321
2322                 /*
2323                  * SSR should never reuse block which is checkpointed
2324                  * or newly invalidated.
2325                  */
2326                 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2327                         if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2328                                 se->ckpt_valid_blocks++;
2329                 }
2330         } else {
2331                 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2332 #ifdef CONFIG_F2FS_CHECK_FS
2333                 mir_exist = f2fs_test_and_clear_bit(offset,
2334                                                 se->cur_valid_map_mir);
2335                 if (unlikely(exist != mir_exist)) {
2336                         f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2337                                  blkaddr, exist);
2338                         f2fs_bug_on(sbi, 1);
2339                 }
2340 #endif
2341                 if (unlikely(!exist)) {
2342                         f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
2343                                  blkaddr);
2344                         f2fs_bug_on(sbi, 1);
2345                         se->valid_blocks++;
2346                         del = 0;
2347                 } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2348                         /*
2349                          * If checkpoints are off, we must not reuse data that
2350                          * was used in the previous checkpoint. If it was used
2351                          * before, we must track that to know how much space we
2352                          * really have.
2353                          */
2354                         if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
2355                                 spin_lock(&sbi->stat_lock);
2356                                 sbi->unusable_block_count++;
2357                                 spin_unlock(&sbi->stat_lock);
2358                         }
2359                 }
2360
2361                 if (f2fs_block_unit_discard(sbi) &&
2362                         f2fs_test_and_clear_bit(offset, se->discard_map))
2363                         sbi->discard_blks++;
2364         }
2365         if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2366                 se->ckpt_valid_blocks += del;
2367
2368         __mark_sit_entry_dirty(sbi, segno);
2369
2370         /* update total number of valid blocks to be written in ckpt area */
2371         SIT_I(sbi)->written_valid_blocks += del;
2372
2373         if (__is_large_section(sbi))
2374                 get_sec_entry(sbi, segno)->valid_blocks += del;
2375 }
2376
2377 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2378 {
2379         unsigned int segno = GET_SEGNO(sbi, addr);
2380         struct sit_info *sit_i = SIT_I(sbi);
2381
2382         f2fs_bug_on(sbi, addr == NULL_ADDR);
2383         if (addr == NEW_ADDR || addr == COMPRESS_ADDR)
2384                 return;
2385
2386         invalidate_mapping_pages(META_MAPPING(sbi), addr, addr);
2387         f2fs_invalidate_compress_page(sbi, addr);
2388
2389         /* add it into sit main buffer */
2390         down_write(&sit_i->sentry_lock);
2391
2392         update_segment_mtime(sbi, addr, 0);
2393         update_sit_entry(sbi, addr, -1);
2394
2395         /* add it into dirty seglist */
2396         locate_dirty_segment(sbi, segno);
2397
2398         up_write(&sit_i->sentry_lock);
2399 }
2400
2401 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2402 {
2403         struct sit_info *sit_i = SIT_I(sbi);
2404         unsigned int segno, offset;
2405         struct seg_entry *se;
2406         bool is_cp = false;
2407
2408         if (!__is_valid_data_blkaddr(blkaddr))
2409                 return true;
2410
2411         down_read(&sit_i->sentry_lock);
2412
2413         segno = GET_SEGNO(sbi, blkaddr);
2414         se = get_seg_entry(sbi, segno);
2415         offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2416
2417         if (f2fs_test_bit(offset, se->ckpt_valid_map))
2418                 is_cp = true;
2419
2420         up_read(&sit_i->sentry_lock);
2421
2422         return is_cp;
2423 }
2424
2425 /*
2426  * This function should be resided under the curseg_mutex lock
2427  */
2428 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
2429                                         struct f2fs_summary *sum)
2430 {
2431         struct curseg_info *curseg = CURSEG_I(sbi, type);
2432         void *addr = curseg->sum_blk;
2433
2434         addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
2435         memcpy(addr, sum, sizeof(struct f2fs_summary));
2436 }
2437
2438 /*
2439  * Calculate the number of current summary pages for writing
2440  */
2441 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2442 {
2443         int valid_sum_count = 0;
2444         int i, sum_in_page;
2445
2446         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2447                 if (sbi->ckpt->alloc_type[i] == SSR)
2448                         valid_sum_count += sbi->blocks_per_seg;
2449                 else {
2450                         if (for_ra)
2451                                 valid_sum_count += le16_to_cpu(
2452                                         F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2453                         else
2454                                 valid_sum_count += curseg_blkoff(sbi, i);
2455                 }
2456         }
2457
2458         sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2459                         SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2460         if (valid_sum_count <= sum_in_page)
2461                 return 1;
2462         else if ((valid_sum_count - sum_in_page) <=
2463                 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2464                 return 2;
2465         return 3;
2466 }
2467
2468 /*
2469  * Caller should put this summary page
2470  */
2471 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2472 {
2473         if (unlikely(f2fs_cp_error(sbi)))
2474                 return ERR_PTR(-EIO);
2475         return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno));
2476 }
2477
2478 void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2479                                         void *src, block_t blk_addr)
2480 {
2481         struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2482
2483         memcpy(page_address(page), src, PAGE_SIZE);
2484         set_page_dirty(page);
2485         f2fs_put_page(page, 1);
2486 }
2487
2488 static void write_sum_page(struct f2fs_sb_info *sbi,
2489                         struct f2fs_summary_block *sum_blk, block_t blk_addr)
2490 {
2491         f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2492 }
2493
2494 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2495                                                 int type, block_t blk_addr)
2496 {
2497         struct curseg_info *curseg = CURSEG_I(sbi, type);
2498         struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2499         struct f2fs_summary_block *src = curseg->sum_blk;
2500         struct f2fs_summary_block *dst;
2501
2502         dst = (struct f2fs_summary_block *)page_address(page);
2503         memset(dst, 0, PAGE_SIZE);
2504
2505         mutex_lock(&curseg->curseg_mutex);
2506
2507         down_read(&curseg->journal_rwsem);
2508         memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2509         up_read(&curseg->journal_rwsem);
2510
2511         memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2512         memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2513
2514         mutex_unlock(&curseg->curseg_mutex);
2515
2516         set_page_dirty(page);
2517         f2fs_put_page(page, 1);
2518 }
2519
2520 static int is_next_segment_free(struct f2fs_sb_info *sbi,
2521                                 struct curseg_info *curseg, int type)
2522 {
2523         unsigned int segno = curseg->segno + 1;
2524         struct free_segmap_info *free_i = FREE_I(sbi);
2525
2526         if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2527                 return !test_bit(segno, free_i->free_segmap);
2528         return 0;
2529 }
2530
2531 /*
2532  * Find a new segment from the free segments bitmap to right order
2533  * This function should be returned with success, otherwise BUG
2534  */
2535 static void get_new_segment(struct f2fs_sb_info *sbi,
2536                         unsigned int *newseg, bool new_sec, int dir)
2537 {
2538         struct free_segmap_info *free_i = FREE_I(sbi);
2539         unsigned int segno, secno, zoneno;
2540         unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2541         unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2542         unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2543         unsigned int left_start = hint;
2544         bool init = true;
2545         int go_left = 0;
2546         int i;
2547
2548         spin_lock(&free_i->segmap_lock);
2549
2550         if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2551                 segno = find_next_zero_bit(free_i->free_segmap,
2552                         GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2553                 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2554                         goto got_it;
2555         }
2556 find_other_zone:
2557         secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2558         if (secno >= MAIN_SECS(sbi)) {
2559                 if (dir == ALLOC_RIGHT) {
2560                         secno = find_first_zero_bit(free_i->free_secmap,
2561                                                         MAIN_SECS(sbi));
2562                         f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2563                 } else {
2564                         go_left = 1;
2565                         left_start = hint - 1;
2566                 }
2567         }
2568         if (go_left == 0)
2569                 goto skip_left;
2570
2571         while (test_bit(left_start, free_i->free_secmap)) {
2572                 if (left_start > 0) {
2573                         left_start--;
2574                         continue;
2575                 }
2576                 left_start = find_first_zero_bit(free_i->free_secmap,
2577                                                         MAIN_SECS(sbi));
2578                 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2579                 break;
2580         }
2581         secno = left_start;
2582 skip_left:
2583         segno = GET_SEG_FROM_SEC(sbi, secno);
2584         zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2585
2586         /* give up on finding another zone */
2587         if (!init)
2588                 goto got_it;
2589         if (sbi->secs_per_zone == 1)
2590                 goto got_it;
2591         if (zoneno == old_zoneno)
2592                 goto got_it;
2593         if (dir == ALLOC_LEFT) {
2594                 if (!go_left && zoneno + 1 >= total_zones)
2595                         goto got_it;
2596                 if (go_left && zoneno == 0)
2597                         goto got_it;
2598         }
2599         for (i = 0; i < NR_CURSEG_TYPE; i++)
2600                 if (CURSEG_I(sbi, i)->zone == zoneno)
2601                         break;
2602
2603         if (i < NR_CURSEG_TYPE) {
2604                 /* zone is in user, try another */
2605                 if (go_left)
2606                         hint = zoneno * sbi->secs_per_zone - 1;
2607                 else if (zoneno + 1 >= total_zones)
2608                         hint = 0;
2609                 else
2610                         hint = (zoneno + 1) * sbi->secs_per_zone;
2611                 init = false;
2612                 goto find_other_zone;
2613         }
2614 got_it:
2615         /* set it as dirty segment in free segmap */
2616         f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2617         __set_inuse(sbi, segno);
2618         *newseg = segno;
2619         spin_unlock(&free_i->segmap_lock);
2620 }
2621
2622 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2623 {
2624         struct curseg_info *curseg = CURSEG_I(sbi, type);
2625         struct summary_footer *sum_footer;
2626         unsigned short seg_type = curseg->seg_type;
2627
2628         curseg->inited = true;
2629         curseg->segno = curseg->next_segno;
2630         curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2631         curseg->next_blkoff = 0;
2632         curseg->next_segno = NULL_SEGNO;
2633
2634         sum_footer = &(curseg->sum_blk->footer);
2635         memset(sum_footer, 0, sizeof(struct summary_footer));
2636
2637         sanity_check_seg_type(sbi, seg_type);
2638
2639         if (IS_DATASEG(seg_type))
2640                 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2641         if (IS_NODESEG(seg_type))
2642                 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2643         __set_sit_entry_type(sbi, seg_type, curseg->segno, modified);
2644 }
2645
2646 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2647 {
2648         struct curseg_info *curseg = CURSEG_I(sbi, type);
2649         unsigned short seg_type = curseg->seg_type;
2650
2651         sanity_check_seg_type(sbi, seg_type);
2652         if (f2fs_need_rand_seg(sbi))
2653                 return prandom_u32() % (MAIN_SECS(sbi) * sbi->segs_per_sec);
2654
2655         /* if segs_per_sec is large than 1, we need to keep original policy. */
2656         if (__is_large_section(sbi))
2657                 return curseg->segno;
2658
2659         /* inmem log may not locate on any segment after mount */
2660         if (!curseg->inited)
2661                 return 0;
2662
2663         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2664                 return 0;
2665
2666         if (test_opt(sbi, NOHEAP) &&
2667                 (seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type)))
2668                 return 0;
2669
2670         if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2671                 return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2672
2673         /* find segments from 0 to reuse freed segments */
2674         if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2675                 return 0;
2676
2677         return curseg->segno;
2678 }
2679
2680 /*
2681  * Allocate a current working segment.
2682  * This function always allocates a free segment in LFS manner.
2683  */
2684 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2685 {
2686         struct curseg_info *curseg = CURSEG_I(sbi, type);
2687         unsigned short seg_type = curseg->seg_type;
2688         unsigned int segno = curseg->segno;
2689         int dir = ALLOC_LEFT;
2690
2691         if (curseg->inited)
2692                 write_sum_page(sbi, curseg->sum_blk,
2693                                 GET_SUM_BLOCK(sbi, segno));
2694         if (seg_type == CURSEG_WARM_DATA || seg_type == CURSEG_COLD_DATA)
2695                 dir = ALLOC_RIGHT;
2696
2697         if (test_opt(sbi, NOHEAP))
2698                 dir = ALLOC_RIGHT;
2699
2700         segno = __get_next_segno(sbi, type);
2701         get_new_segment(sbi, &segno, new_sec, dir);
2702         curseg->next_segno = segno;
2703         reset_curseg(sbi, type, 1);
2704         curseg->alloc_type = LFS;
2705         if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
2706                 curseg->fragment_remained_chunk =
2707                                 prandom_u32() % sbi->max_fragment_chunk + 1;
2708 }
2709
2710 static int __next_free_blkoff(struct f2fs_sb_info *sbi,
2711                                         int segno, block_t start)
2712 {
2713         struct seg_entry *se = get_seg_entry(sbi, segno);
2714         int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2715         unsigned long *target_map = SIT_I(sbi)->tmp_map;
2716         unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2717         unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2718         int i;
2719
2720         for (i = 0; i < entries; i++)
2721                 target_map[i] = ckpt_map[i] | cur_map[i];
2722
2723         return __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2724 }
2725
2726 /*
2727  * If a segment is written by LFS manner, next block offset is just obtained
2728  * by increasing the current block offset. However, if a segment is written by
2729  * SSR manner, next block offset obtained by calling __next_free_blkoff
2730  */
2731 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2732                                 struct curseg_info *seg)
2733 {
2734         if (seg->alloc_type == SSR) {
2735                 seg->next_blkoff =
2736                         __next_free_blkoff(sbi, seg->segno,
2737                                                 seg->next_blkoff + 1);
2738         } else {
2739                 seg->next_blkoff++;
2740                 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK) {
2741                         /* To allocate block chunks in different sizes, use random number */
2742                         if (--seg->fragment_remained_chunk <= 0) {
2743                                 seg->fragment_remained_chunk =
2744                                    prandom_u32() % sbi->max_fragment_chunk + 1;
2745                                 seg->next_blkoff +=
2746                                    prandom_u32() % sbi->max_fragment_hole + 1;
2747                         }
2748                 }
2749         }
2750 }
2751
2752 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno)
2753 {
2754         return __next_free_blkoff(sbi, segno, 0) < sbi->blocks_per_seg;
2755 }
2756
2757 /*
2758  * This function always allocates a used segment(from dirty seglist) by SSR
2759  * manner, so it should recover the existing segment information of valid blocks
2760  */
2761 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool flush)
2762 {
2763         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2764         struct curseg_info *curseg = CURSEG_I(sbi, type);
2765         unsigned int new_segno = curseg->next_segno;
2766         struct f2fs_summary_block *sum_node;
2767         struct page *sum_page;
2768
2769         if (flush)
2770                 write_sum_page(sbi, curseg->sum_blk,
2771                                         GET_SUM_BLOCK(sbi, curseg->segno));
2772
2773         __set_test_and_inuse(sbi, new_segno);
2774
2775         mutex_lock(&dirty_i->seglist_lock);
2776         __remove_dirty_segment(sbi, new_segno, PRE);
2777         __remove_dirty_segment(sbi, new_segno, DIRTY);
2778         mutex_unlock(&dirty_i->seglist_lock);
2779
2780         reset_curseg(sbi, type, 1);
2781         curseg->alloc_type = SSR;
2782         curseg->next_blkoff = __next_free_blkoff(sbi, curseg->segno, 0);
2783
2784         sum_page = f2fs_get_sum_page(sbi, new_segno);
2785         if (IS_ERR(sum_page)) {
2786                 /* GC won't be able to use stale summary pages by cp_error */
2787                 memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE);
2788                 return;
2789         }
2790         sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2791         memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2792         f2fs_put_page(sum_page, 1);
2793 }
2794
2795 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2796                                 int alloc_mode, unsigned long long age);
2797
2798 static void get_atssr_segment(struct f2fs_sb_info *sbi, int type,
2799                                         int target_type, int alloc_mode,
2800                                         unsigned long long age)
2801 {
2802         struct curseg_info *curseg = CURSEG_I(sbi, type);
2803
2804         curseg->seg_type = target_type;
2805
2806         if (get_ssr_segment(sbi, type, alloc_mode, age)) {
2807                 struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno);
2808
2809                 curseg->seg_type = se->type;
2810                 change_curseg(sbi, type, true);
2811         } else {
2812                 /* allocate cold segment by default */
2813                 curseg->seg_type = CURSEG_COLD_DATA;
2814                 new_curseg(sbi, type, true);
2815         }
2816         stat_inc_seg_type(sbi, curseg);
2817 }
2818
2819 static void __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi)
2820 {
2821         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC);
2822
2823         if (!sbi->am.atgc_enabled)
2824                 return;
2825
2826         f2fs_down_read(&SM_I(sbi)->curseg_lock);
2827
2828         mutex_lock(&curseg->curseg_mutex);
2829         down_write(&SIT_I(sbi)->sentry_lock);
2830
2831         get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC, CURSEG_COLD_DATA, SSR, 0);
2832
2833         up_write(&SIT_I(sbi)->sentry_lock);
2834         mutex_unlock(&curseg->curseg_mutex);
2835
2836         f2fs_up_read(&SM_I(sbi)->curseg_lock);
2837
2838 }
2839 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi)
2840 {
2841         __f2fs_init_atgc_curseg(sbi);
2842 }
2843
2844 static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2845 {
2846         struct curseg_info *curseg = CURSEG_I(sbi, type);
2847
2848         mutex_lock(&curseg->curseg_mutex);
2849         if (!curseg->inited)
2850                 goto out;
2851
2852         if (get_valid_blocks(sbi, curseg->segno, false)) {
2853                 write_sum_page(sbi, curseg->sum_blk,
2854                                 GET_SUM_BLOCK(sbi, curseg->segno));
2855         } else {
2856                 mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2857                 __set_test_and_free(sbi, curseg->segno, true);
2858                 mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2859         }
2860 out:
2861         mutex_unlock(&curseg->curseg_mutex);
2862 }
2863
2864 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi)
2865 {
2866         __f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2867
2868         if (sbi->am.atgc_enabled)
2869                 __f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2870 }
2871
2872 static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2873 {
2874         struct curseg_info *curseg = CURSEG_I(sbi, type);
2875
2876         mutex_lock(&curseg->curseg_mutex);
2877         if (!curseg->inited)
2878                 goto out;
2879         if (get_valid_blocks(sbi, curseg->segno, false))
2880                 goto out;
2881
2882         mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2883         __set_test_and_inuse(sbi, curseg->segno);
2884         mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2885 out:
2886         mutex_unlock(&curseg->curseg_mutex);
2887 }
2888
2889 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi)
2890 {
2891         __f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2892
2893         if (sbi->am.atgc_enabled)
2894                 __f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2895 }
2896
2897 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2898                                 int alloc_mode, unsigned long long age)
2899 {
2900         struct curseg_info *curseg = CURSEG_I(sbi, type);
2901         const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2902         unsigned segno = NULL_SEGNO;
2903         unsigned short seg_type = curseg->seg_type;
2904         int i, cnt;
2905         bool reversed = false;
2906
2907         sanity_check_seg_type(sbi, seg_type);
2908
2909         /* f2fs_need_SSR() already forces to do this */
2910         if (!v_ops->get_victim(sbi, &segno, BG_GC, seg_type, alloc_mode, age)) {
2911                 curseg->next_segno = segno;
2912                 return 1;
2913         }
2914
2915         /* For node segments, let's do SSR more intensively */
2916         if (IS_NODESEG(seg_type)) {
2917                 if (seg_type >= CURSEG_WARM_NODE) {
2918                         reversed = true;
2919                         i = CURSEG_COLD_NODE;
2920                 } else {
2921                         i = CURSEG_HOT_NODE;
2922                 }
2923                 cnt = NR_CURSEG_NODE_TYPE;
2924         } else {
2925                 if (seg_type >= CURSEG_WARM_DATA) {
2926                         reversed = true;
2927                         i = CURSEG_COLD_DATA;
2928                 } else {
2929                         i = CURSEG_HOT_DATA;
2930                 }
2931                 cnt = NR_CURSEG_DATA_TYPE;
2932         }
2933
2934         for (; cnt-- > 0; reversed ? i-- : i++) {
2935                 if (i == seg_type)
2936                         continue;
2937                 if (!v_ops->get_victim(sbi, &segno, BG_GC, i, alloc_mode, age)) {
2938                         curseg->next_segno = segno;
2939                         return 1;
2940                 }
2941         }
2942
2943         /* find valid_blocks=0 in dirty list */
2944         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2945                 segno = get_free_segment(sbi);
2946                 if (segno != NULL_SEGNO) {
2947                         curseg->next_segno = segno;
2948                         return 1;
2949                 }
2950         }
2951         return 0;
2952 }
2953
2954 /*
2955  * flush out current segment and replace it with new segment
2956  * This function should be returned with success, otherwise BUG
2957  */
2958 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
2959                                                 int type, bool force)
2960 {
2961         struct curseg_info *curseg = CURSEG_I(sbi, type);
2962
2963         if (force)
2964                 new_curseg(sbi, type, true);
2965         else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2966                                         curseg->seg_type == CURSEG_WARM_NODE)
2967                 new_curseg(sbi, type, false);
2968         else if (curseg->alloc_type == LFS &&
2969                         is_next_segment_free(sbi, curseg, type) &&
2970                         likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2971                 new_curseg(sbi, type, false);
2972         else if (f2fs_need_SSR(sbi) &&
2973                         get_ssr_segment(sbi, type, SSR, 0))
2974                 change_curseg(sbi, type, true);
2975         else
2976                 new_curseg(sbi, type, false);
2977
2978         stat_inc_seg_type(sbi, curseg);
2979 }
2980
2981 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
2982                                         unsigned int start, unsigned int end)
2983 {
2984         struct curseg_info *curseg = CURSEG_I(sbi, type);
2985         unsigned int segno;
2986
2987         f2fs_down_read(&SM_I(sbi)->curseg_lock);
2988         mutex_lock(&curseg->curseg_mutex);
2989         down_write(&SIT_I(sbi)->sentry_lock);
2990
2991         segno = CURSEG_I(sbi, type)->segno;
2992         if (segno < start || segno > end)
2993                 goto unlock;
2994
2995         if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0))
2996                 change_curseg(sbi, type, true);
2997         else
2998                 new_curseg(sbi, type, true);
2999
3000         stat_inc_seg_type(sbi, curseg);
3001
3002         locate_dirty_segment(sbi, segno);
3003 unlock:
3004         up_write(&SIT_I(sbi)->sentry_lock);
3005
3006         if (segno != curseg->segno)
3007                 f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
3008                             type, segno, curseg->segno);
3009
3010         mutex_unlock(&curseg->curseg_mutex);
3011         f2fs_up_read(&SM_I(sbi)->curseg_lock);
3012 }
3013
3014 static void __allocate_new_segment(struct f2fs_sb_info *sbi, int type,
3015                                                 bool new_sec, bool force)
3016 {
3017         struct curseg_info *curseg = CURSEG_I(sbi, type);
3018         unsigned int old_segno;
3019
3020         if (!curseg->inited)
3021                 goto alloc;
3022
3023         if (force || curseg->next_blkoff ||
3024                 get_valid_blocks(sbi, curseg->segno, new_sec))
3025                 goto alloc;
3026
3027         if (!get_ckpt_valid_blocks(sbi, curseg->segno, new_sec))
3028                 return;
3029 alloc:
3030         old_segno = curseg->segno;
3031         SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true);
3032         locate_dirty_segment(sbi, old_segno);
3033 }
3034
3035 static void __allocate_new_section(struct f2fs_sb_info *sbi,
3036                                                 int type, bool force)
3037 {
3038         __allocate_new_segment(sbi, type, true, force);
3039 }
3040
3041 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force)
3042 {
3043         f2fs_down_read(&SM_I(sbi)->curseg_lock);
3044         down_write(&SIT_I(sbi)->sentry_lock);
3045         __allocate_new_section(sbi, type, force);
3046         up_write(&SIT_I(sbi)->sentry_lock);
3047         f2fs_up_read(&SM_I(sbi)->curseg_lock);
3048 }
3049
3050 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
3051 {
3052         int i;
3053
3054         f2fs_down_read(&SM_I(sbi)->curseg_lock);
3055         down_write(&SIT_I(sbi)->sentry_lock);
3056         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
3057                 __allocate_new_segment(sbi, i, false, false);
3058         up_write(&SIT_I(sbi)->sentry_lock);
3059         f2fs_up_read(&SM_I(sbi)->curseg_lock);
3060 }
3061
3062 static const struct segment_allocation default_salloc_ops = {
3063         .allocate_segment = allocate_segment_by_default,
3064 };
3065
3066 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3067                                                 struct cp_control *cpc)
3068 {
3069         __u64 trim_start = cpc->trim_start;
3070         bool has_candidate = false;
3071
3072         down_write(&SIT_I(sbi)->sentry_lock);
3073         for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
3074                 if (add_discard_addrs(sbi, cpc, true)) {
3075                         has_candidate = true;
3076                         break;
3077                 }
3078         }
3079         up_write(&SIT_I(sbi)->sentry_lock);
3080
3081         cpc->trim_start = trim_start;
3082         return has_candidate;
3083 }
3084
3085 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
3086                                         struct discard_policy *dpolicy,
3087                                         unsigned int start, unsigned int end)
3088 {
3089         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
3090         struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
3091         struct rb_node **insert_p = NULL, *insert_parent = NULL;
3092         struct discard_cmd *dc;
3093         struct blk_plug plug;
3094         int issued;
3095         unsigned int trimmed = 0;
3096
3097 next:
3098         issued = 0;
3099
3100         mutex_lock(&dcc->cmd_lock);
3101         if (unlikely(dcc->rbtree_check))
3102                 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
3103                                                         &dcc->root, false));
3104
3105         dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
3106                                         NULL, start,
3107                                         (struct rb_entry **)&prev_dc,
3108                                         (struct rb_entry **)&next_dc,
3109                                         &insert_p, &insert_parent, true, NULL);
3110         if (!dc)
3111                 dc = next_dc;
3112
3113         blk_start_plug(&plug);
3114
3115         while (dc && dc->lstart <= end) {
3116                 struct rb_node *node;
3117                 int err = 0;
3118
3119                 if (dc->len < dpolicy->granularity)
3120                         goto skip;
3121
3122                 if (dc->state != D_PREP) {
3123                         list_move_tail(&dc->list, &dcc->fstrim_list);
3124                         goto skip;
3125                 }
3126
3127                 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
3128
3129                 if (issued >= dpolicy->max_requests) {
3130                         start = dc->lstart + dc->len;
3131
3132                         if (err)
3133                                 __remove_discard_cmd(sbi, dc);
3134
3135                         blk_finish_plug(&plug);
3136                         mutex_unlock(&dcc->cmd_lock);
3137                         trimmed += __wait_all_discard_cmd(sbi, NULL);
3138                         f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
3139                         goto next;
3140                 }
3141 skip:
3142                 node = rb_next(&dc->rb_node);
3143                 if (err)
3144                         __remove_discard_cmd(sbi, dc);
3145                 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
3146
3147                 if (fatal_signal_pending(current))
3148                         break;
3149         }
3150
3151         blk_finish_plug(&plug);
3152         mutex_unlock(&dcc->cmd_lock);
3153
3154         return trimmed;
3155 }
3156
3157 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
3158 {
3159         __u64 start = F2FS_BYTES_TO_BLK(range->start);
3160         __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
3161         unsigned int start_segno, end_segno;
3162         block_t start_block, end_block;
3163         struct cp_control cpc;
3164         struct discard_policy dpolicy;
3165         unsigned long long trimmed = 0;
3166         int err = 0;
3167         bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
3168
3169         if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
3170                 return -EINVAL;
3171
3172         if (end < MAIN_BLKADDR(sbi))
3173                 goto out;
3174
3175         if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
3176                 f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
3177                 return -EFSCORRUPTED;
3178         }
3179
3180         /* start/end segment number in main_area */
3181         start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
3182         end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
3183                                                 GET_SEGNO(sbi, end);
3184         if (need_align) {
3185                 start_segno = rounddown(start_segno, sbi->segs_per_sec);
3186                 end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
3187         }
3188
3189         cpc.reason = CP_DISCARD;
3190         cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
3191         cpc.trim_start = start_segno;
3192         cpc.trim_end = end_segno;
3193
3194         if (sbi->discard_blks == 0)
3195                 goto out;
3196
3197         f2fs_down_write(&sbi->gc_lock);
3198         err = f2fs_write_checkpoint(sbi, &cpc);
3199         f2fs_up_write(&sbi->gc_lock);
3200         if (err)
3201                 goto out;
3202
3203         /*
3204          * We filed discard candidates, but actually we don't need to wait for
3205          * all of them, since they'll be issued in idle time along with runtime
3206          * discard option. User configuration looks like using runtime discard
3207          * or periodic fstrim instead of it.
3208          */
3209         if (f2fs_realtime_discard_enable(sbi))
3210                 goto out;
3211
3212         start_block = START_BLOCK(sbi, start_segno);
3213         end_block = START_BLOCK(sbi, end_segno + 1);
3214
3215         __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
3216         trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
3217                                         start_block, end_block);
3218
3219         trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
3220                                         start_block, end_block);
3221 out:
3222         if (!err)
3223                 range->len = F2FS_BLK_TO_BYTES(trimmed);
3224         return err;
3225 }
3226
3227 static bool __has_curseg_space(struct f2fs_sb_info *sbi,
3228                                         struct curseg_info *curseg)
3229 {
3230         return curseg->next_blkoff < f2fs_usable_blks_in_seg(sbi,
3231                                                         curseg->segno);
3232 }
3233
3234 int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
3235 {
3236         switch (hint) {
3237         case WRITE_LIFE_SHORT:
3238                 return CURSEG_HOT_DATA;
3239         case WRITE_LIFE_EXTREME:
3240                 return CURSEG_COLD_DATA;
3241         default:
3242                 return CURSEG_WARM_DATA;
3243         }
3244 }
3245
3246 /* This returns write hints for each segment type. This hints will be
3247  * passed down to block layer. There are mapping tables which depend on
3248  * the mount option 'whint_mode'.
3249  *
3250  * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET.
3251  *
3252  * 2) whint_mode=user-based. F2FS tries to pass down hints given by users.
3253  *
3254  * User                  F2FS                     Block
3255  * ----                  ----                     -----
3256  *                       META                     WRITE_LIFE_NOT_SET
3257  *                       HOT_NODE                 "
3258  *                       WARM_NODE                "
3259  *                       COLD_NODE                "
3260  * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
3261  * extension list        "                        "
3262  *
3263  * -- buffered io
3264  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3265  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3266  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
3267  * WRITE_LIFE_NONE       "                        "
3268  * WRITE_LIFE_MEDIUM     "                        "
3269  * WRITE_LIFE_LONG       "                        "
3270  *
3271  * -- direct io
3272  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3273  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3274  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
3275  * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
3276  * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
3277  * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
3278  *
3279  * 3) whint_mode=fs-based. F2FS passes down hints with its policy.
3280  *
3281  * User                  F2FS                     Block
3282  * ----                  ----                     -----
3283  *                       META                     WRITE_LIFE_MEDIUM;
3284  *                       HOT_NODE                 WRITE_LIFE_NOT_SET
3285  *                       WARM_NODE                "
3286  *                       COLD_NODE                WRITE_LIFE_NONE
3287  * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
3288  * extension list        "                        "
3289  *
3290  * -- buffered io
3291  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3292  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3293  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_LONG
3294  * WRITE_LIFE_NONE       "                        "
3295  * WRITE_LIFE_MEDIUM     "                        "
3296  * WRITE_LIFE_LONG       "                        "
3297  *
3298  * -- direct io
3299  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3300  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3301  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
3302  * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
3303  * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
3304  * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
3305  */
3306
3307 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3308                                 enum page_type type, enum temp_type temp)
3309 {
3310         if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) {
3311                 if (type == DATA) {
3312                         if (temp == WARM)
3313                                 return WRITE_LIFE_NOT_SET;
3314                         else if (temp == HOT)
3315                                 return WRITE_LIFE_SHORT;
3316                         else if (temp == COLD)
3317                                 return WRITE_LIFE_EXTREME;
3318                 } else {
3319                         return WRITE_LIFE_NOT_SET;
3320                 }
3321         } else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) {
3322                 if (type == DATA) {
3323                         if (temp == WARM)
3324                                 return WRITE_LIFE_LONG;
3325                         else if (temp == HOT)
3326                                 return WRITE_LIFE_SHORT;
3327                         else if (temp == COLD)
3328                                 return WRITE_LIFE_EXTREME;
3329                 } else if (type == NODE) {
3330                         if (temp == WARM || temp == HOT)
3331                                 return WRITE_LIFE_NOT_SET;
3332                         else if (temp == COLD)
3333                                 return WRITE_LIFE_NONE;
3334                 } else if (type == META) {
3335                         return WRITE_LIFE_MEDIUM;
3336                 }
3337         }
3338         return WRITE_LIFE_NOT_SET;
3339 }
3340
3341 static int __get_segment_type_2(struct f2fs_io_info *fio)
3342 {
3343         if (fio->type == DATA)
3344                 return CURSEG_HOT_DATA;
3345         else
3346                 return CURSEG_HOT_NODE;
3347 }
3348
3349 static int __get_segment_type_4(struct f2fs_io_info *fio)
3350 {
3351         if (fio->type == DATA) {
3352                 struct inode *inode = fio->page->mapping->host;
3353
3354                 if (S_ISDIR(inode->i_mode))
3355                         return CURSEG_HOT_DATA;
3356                 else
3357                         return CURSEG_COLD_DATA;
3358         } else {
3359                 if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3360                         return CURSEG_WARM_NODE;
3361                 else
3362                         return CURSEG_COLD_NODE;
3363         }
3364 }
3365
3366 static int __get_segment_type_6(struct f2fs_io_info *fio)
3367 {
3368         if (fio->type == DATA) {
3369                 struct inode *inode = fio->page->mapping->host;
3370
3371                 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
3372                         return CURSEG_COLD_DATA_PINNED;
3373
3374                 if (page_private_gcing(fio->page)) {
3375                         if (fio->sbi->am.atgc_enabled &&
3376                                 (fio->io_type == FS_DATA_IO) &&
3377                                 (fio->sbi->gc_mode != GC_URGENT_HIGH))
3378                                 return CURSEG_ALL_DATA_ATGC;
3379                         else
3380                                 return CURSEG_COLD_DATA;
3381                 }
3382                 if (file_is_cold(inode) || f2fs_need_compress_data(inode))
3383                         return CURSEG_COLD_DATA;
3384                 if (file_is_hot(inode) ||
3385                                 is_inode_flag_set(inode, FI_HOT_DATA) ||
3386                                 f2fs_is_atomic_file(inode) ||
3387                                 f2fs_is_volatile_file(inode))
3388                         return CURSEG_HOT_DATA;
3389                 return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
3390         } else {
3391                 if (IS_DNODE(fio->page))
3392                         return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3393                                                 CURSEG_HOT_NODE;
3394                 return CURSEG_COLD_NODE;
3395         }
3396 }
3397
3398 static int __get_segment_type(struct f2fs_io_info *fio)
3399 {
3400         int type = 0;
3401
3402         switch (F2FS_OPTION(fio->sbi).active_logs) {
3403         case 2:
3404                 type = __get_segment_type_2(fio);
3405                 break;
3406         case 4:
3407                 type = __get_segment_type_4(fio);
3408                 break;
3409         case 6:
3410                 type = __get_segment_type_6(fio);
3411                 break;
3412         default:
3413                 f2fs_bug_on(fio->sbi, true);
3414         }
3415
3416         if (IS_HOT(type))
3417                 fio->temp = HOT;
3418         else if (IS_WARM(type))
3419                 fio->temp = WARM;
3420         else
3421                 fio->temp = COLD;
3422         return type;
3423 }
3424
3425 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3426                 block_t old_blkaddr, block_t *new_blkaddr,
3427                 struct f2fs_summary *sum, int type,
3428                 struct f2fs_io_info *fio)
3429 {
3430         struct sit_info *sit_i = SIT_I(sbi);
3431         struct curseg_info *curseg = CURSEG_I(sbi, type);
3432         unsigned long long old_mtime;
3433         bool from_gc = (type == CURSEG_ALL_DATA_ATGC);
3434         struct seg_entry *se = NULL;
3435
3436         f2fs_down_read(&SM_I(sbi)->curseg_lock);
3437
3438         mutex_lock(&curseg->curseg_mutex);
3439         down_write(&sit_i->sentry_lock);
3440
3441         if (from_gc) {
3442                 f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO);
3443                 se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr));
3444                 sanity_check_seg_type(sbi, se->type);
3445                 f2fs_bug_on(sbi, IS_NODESEG(se->type));
3446         }
3447         *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3448
3449         f2fs_bug_on(sbi, curseg->next_blkoff >= sbi->blocks_per_seg);
3450
3451         f2fs_wait_discard_bio(sbi, *new_blkaddr);
3452
3453         /*
3454          * __add_sum_entry should be resided under the curseg_mutex
3455          * because, this function updates a summary entry in the
3456          * current summary block.
3457          */
3458         __add_sum_entry(sbi, type, sum);
3459
3460         __refresh_next_blkoff(sbi, curseg);
3461
3462         stat_inc_block_count(sbi, curseg);
3463
3464         if (from_gc) {
3465                 old_mtime = get_segment_mtime(sbi, old_blkaddr);
3466         } else {
3467                 update_segment_mtime(sbi, old_blkaddr, 0);
3468                 old_mtime = 0;
3469         }
3470         update_segment_mtime(sbi, *new_blkaddr, old_mtime);
3471
3472         /*
3473          * SIT information should be updated before segment allocation,
3474          * since SSR needs latest valid block information.
3475          */
3476         update_sit_entry(sbi, *new_blkaddr, 1);
3477         if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
3478                 update_sit_entry(sbi, old_blkaddr, -1);
3479
3480         if (!__has_curseg_space(sbi, curseg)) {
3481                 if (from_gc)
3482                         get_atssr_segment(sbi, type, se->type,
3483                                                 AT_SSR, se->mtime);
3484                 else
3485                         sit_i->s_ops->allocate_segment(sbi, type, false);
3486         }
3487         /*
3488          * segment dirty status should be updated after segment allocation,
3489          * so we just need to update status only one time after previous
3490          * segment being closed.
3491          */
3492         locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3493         locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3494
3495         up_write(&sit_i->sentry_lock);
3496
3497         if (page && IS_NODESEG(type)) {
3498                 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3499
3500                 f2fs_inode_chksum_set(sbi, page);
3501         }
3502
3503         if (fio) {
3504                 struct f2fs_bio_info *io;
3505
3506                 if (F2FS_IO_ALIGNED(sbi))
3507                         fio->retry = false;
3508
3509                 INIT_LIST_HEAD(&fio->list);
3510                 fio->in_list = true;
3511                 io = sbi->write_io[fio->type] + fio->temp;
3512                 spin_lock(&io->io_lock);
3513                 list_add_tail(&fio->list, &io->io_list);
3514                 spin_unlock(&io->io_lock);
3515         }
3516
3517         mutex_unlock(&curseg->curseg_mutex);
3518
3519         f2fs_up_read(&SM_I(sbi)->curseg_lock);
3520 }
3521
3522 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3523                                         block_t blkaddr, unsigned int blkcnt)
3524 {
3525         if (!f2fs_is_multi_device(sbi))
3526                 return;
3527
3528         while (1) {
3529                 unsigned int devidx = f2fs_target_device_index(sbi, blkaddr);
3530                 unsigned int blks = FDEV(devidx).end_blk - blkaddr + 1;
3531
3532                 /* update device state for fsync */
3533                 f2fs_set_dirty_device(sbi, ino, devidx, FLUSH_INO);
3534
3535                 /* update device state for checkpoint */
3536                 if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3537                         spin_lock(&sbi->dev_lock);
3538                         f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3539                         spin_unlock(&sbi->dev_lock);
3540                 }
3541
3542                 if (blkcnt <= blks)
3543                         break;
3544                 blkcnt -= blks;
3545                 blkaddr += blks;
3546         }
3547 }
3548
3549 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3550 {
3551         int type = __get_segment_type(fio);
3552         bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA);
3553
3554         if (keep_order)
3555                 f2fs_down_read(&fio->sbi->io_order_lock);
3556 reallocate:
3557         f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3558                         &fio->new_blkaddr, sum, type, fio);
3559         if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO) {
3560                 invalidate_mapping_pages(META_MAPPING(fio->sbi),
3561                                         fio->old_blkaddr, fio->old_blkaddr);
3562                 f2fs_invalidate_compress_page(fio->sbi, fio->old_blkaddr);
3563         }
3564
3565         /* writeout dirty page into bdev */
3566         f2fs_submit_page_write(fio);
3567         if (fio->retry) {
3568                 fio->old_blkaddr = fio->new_blkaddr;
3569                 goto reallocate;
3570         }
3571
3572         f2fs_update_device_state(fio->sbi, fio->ino, fio->new_blkaddr, 1);
3573
3574         if (keep_order)
3575                 f2fs_up_read(&fio->sbi->io_order_lock);
3576 }
3577
3578 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3579                                         enum iostat_type io_type)
3580 {
3581         struct f2fs_io_info fio = {
3582                 .sbi = sbi,
3583                 .type = META,
3584                 .temp = HOT,
3585                 .op = REQ_OP_WRITE,
3586                 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3587                 .old_blkaddr = page->index,
3588                 .new_blkaddr = page->index,
3589                 .page = page,
3590                 .encrypted_page = NULL,
3591                 .in_list = false,
3592         };
3593
3594         if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3595                 fio.op_flags &= ~REQ_META;
3596
3597         set_page_writeback(page);
3598         ClearPageError(page);
3599         f2fs_submit_page_write(&fio);
3600
3601         stat_inc_meta_count(sbi, page->index);
3602         f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
3603 }
3604
3605 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3606 {
3607         struct f2fs_summary sum;
3608
3609         set_summary(&sum, nid, 0, 0);
3610         do_write_page(&sum, fio);
3611
3612         f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3613 }
3614
3615 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3616                                         struct f2fs_io_info *fio)
3617 {
3618         struct f2fs_sb_info *sbi = fio->sbi;
3619         struct f2fs_summary sum;
3620
3621         f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3622         set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3623         do_write_page(&sum, fio);
3624         f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3625
3626         f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
3627 }
3628
3629 int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3630 {
3631         int err;
3632         struct f2fs_sb_info *sbi = fio->sbi;
3633         unsigned int segno;
3634
3635         fio->new_blkaddr = fio->old_blkaddr;
3636         /* i/o temperature is needed for passing down write hints */
3637         __get_segment_type(fio);
3638
3639         segno = GET_SEGNO(sbi, fio->new_blkaddr);
3640
3641         if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3642                 set_sbi_flag(sbi, SBI_NEED_FSCK);
3643                 f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
3644                           __func__, segno);
3645                 err = -EFSCORRUPTED;
3646                 goto drop_bio;
3647         }
3648
3649         if (f2fs_cp_error(sbi)) {
3650                 err = -EIO;
3651                 goto drop_bio;
3652         }
3653
3654         invalidate_mapping_pages(META_MAPPING(sbi),
3655                                 fio->new_blkaddr, fio->new_blkaddr);
3656
3657         stat_inc_inplace_blocks(fio->sbi);
3658
3659         if (fio->bio && !(SM_I(sbi)->ipu_policy & (1 << F2FS_IPU_NOCACHE)))
3660                 err = f2fs_merge_page_bio(fio);
3661         else
3662                 err = f2fs_submit_page_bio(fio);
3663         if (!err) {
3664                 f2fs_update_device_state(fio->sbi, fio->ino,
3665                                                 fio->new_blkaddr, 1);
3666                 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3667         }
3668
3669         return err;
3670 drop_bio:
3671         if (fio->bio && *(fio->bio)) {
3672                 struct bio *bio = *(fio->bio);
3673
3674                 bio->bi_status = BLK_STS_IOERR;
3675                 bio_endio(bio);
3676                 *(fio->bio) = NULL;
3677         }
3678         return err;
3679 }
3680
3681 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3682                                                 unsigned int segno)
3683 {
3684         int i;
3685
3686         for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3687                 if (CURSEG_I(sbi, i)->segno == segno)
3688                         break;
3689         }
3690         return i;
3691 }
3692
3693 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3694                                 block_t old_blkaddr, block_t new_blkaddr,
3695                                 bool recover_curseg, bool recover_newaddr,
3696                                 bool from_gc)
3697 {
3698         struct sit_info *sit_i = SIT_I(sbi);
3699         struct curseg_info *curseg;
3700         unsigned int segno, old_cursegno;
3701         struct seg_entry *se;
3702         int type;
3703         unsigned short old_blkoff;
3704         unsigned char old_alloc_type;
3705
3706         segno = GET_SEGNO(sbi, new_blkaddr);
3707         se = get_seg_entry(sbi, segno);
3708         type = se->type;
3709
3710         f2fs_down_write(&SM_I(sbi)->curseg_lock);
3711
3712         if (!recover_curseg) {
3713                 /* for recovery flow */
3714                 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3715                         if (old_blkaddr == NULL_ADDR)
3716                                 type = CURSEG_COLD_DATA;
3717                         else
3718                                 type = CURSEG_WARM_DATA;
3719                 }
3720         } else {
3721                 if (IS_CURSEG(sbi, segno)) {
3722                         /* se->type is volatile as SSR allocation */
3723                         type = __f2fs_get_curseg(sbi, segno);
3724                         f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3725                 } else {
3726                         type = CURSEG_WARM_DATA;
3727                 }
3728         }
3729
3730         f2fs_bug_on(sbi, !IS_DATASEG(type));
3731         curseg = CURSEG_I(sbi, type);
3732
3733         mutex_lock(&curseg->curseg_mutex);
3734         down_write(&sit_i->sentry_lock);
3735
3736         old_cursegno = curseg->segno;
3737         old_blkoff = curseg->next_blkoff;
3738         old_alloc_type = curseg->alloc_type;
3739
3740         /* change the current segment */
3741         if (segno != curseg->segno) {
3742                 curseg->next_segno = segno;
3743                 change_curseg(sbi, type, true);
3744         }
3745
3746         curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3747         __add_sum_entry(sbi, type, sum);
3748
3749         if (!recover_curseg || recover_newaddr) {
3750                 if (!from_gc)
3751                         update_segment_mtime(sbi, new_blkaddr, 0);
3752                 update_sit_entry(sbi, new_blkaddr, 1);
3753         }
3754         if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3755                 invalidate_mapping_pages(META_MAPPING(sbi),
3756                                         old_blkaddr, old_blkaddr);
3757                 f2fs_invalidate_compress_page(sbi, old_blkaddr);
3758                 if (!from_gc)
3759                         update_segment_mtime(sbi, old_blkaddr, 0);
3760                 update_sit_entry(sbi, old_blkaddr, -1);
3761         }
3762
3763         locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3764         locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3765
3766         locate_dirty_segment(sbi, old_cursegno);
3767
3768         if (recover_curseg) {
3769                 if (old_cursegno != curseg->segno) {
3770                         curseg->next_segno = old_cursegno;
3771                         change_curseg(sbi, type, true);
3772                 }
3773                 curseg->next_blkoff = old_blkoff;
3774                 curseg->alloc_type = old_alloc_type;
3775         }
3776
3777         up_write(&sit_i->sentry_lock);
3778         mutex_unlock(&curseg->curseg_mutex);
3779         f2fs_up_write(&SM_I(sbi)->curseg_lock);
3780 }
3781
3782 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3783                                 block_t old_addr, block_t new_addr,
3784                                 unsigned char version, bool recover_curseg,
3785                                 bool recover_newaddr)
3786 {
3787         struct f2fs_summary sum;
3788
3789         set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3790
3791         f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3792                                         recover_curseg, recover_newaddr, false);
3793
3794         f2fs_update_data_blkaddr(dn, new_addr);
3795 }
3796
3797 void f2fs_wait_on_page_writeback(struct page *page,
3798                                 enum page_type type, bool ordered, bool locked)
3799 {
3800         if (PageWriteback(page)) {
3801                 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3802
3803                 /* submit cached LFS IO */
3804                 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3805                 /* sbumit cached IPU IO */
3806                 f2fs_submit_merged_ipu_write(sbi, NULL, page);
3807                 if (ordered) {
3808                         wait_on_page_writeback(page);
3809                         f2fs_bug_on(sbi, locked && PageWriteback(page));
3810                 } else {
3811                         wait_for_stable_page(page);
3812                 }
3813         }
3814 }
3815
3816 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
3817 {
3818         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3819         struct page *cpage;
3820
3821         if (!f2fs_post_read_required(inode))
3822                 return;
3823
3824         if (!__is_valid_data_blkaddr(blkaddr))
3825                 return;
3826
3827         cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3828         if (cpage) {
3829                 f2fs_wait_on_page_writeback(cpage, DATA, true, true);
3830                 f2fs_put_page(cpage, 1);
3831         }
3832 }
3833
3834 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3835                                                                 block_t len)
3836 {
3837         block_t i;
3838
3839         for (i = 0; i < len; i++)
3840                 f2fs_wait_on_block_writeback(inode, blkaddr + i);
3841 }
3842
3843 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3844 {
3845         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3846         struct curseg_info *seg_i;
3847         unsigned char *kaddr;
3848         struct page *page;
3849         block_t start;
3850         int i, j, offset;
3851
3852         start = start_sum_block(sbi);
3853
3854         page = f2fs_get_meta_page(sbi, start++);
3855         if (IS_ERR(page))
3856                 return PTR_ERR(page);
3857         kaddr = (unsigned char *)page_address(page);
3858
3859         /* Step 1: restore nat cache */
3860         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3861         memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3862
3863         /* Step 2: restore sit cache */
3864         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3865         memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3866         offset = 2 * SUM_JOURNAL_SIZE;
3867
3868         /* Step 3: restore summary entries */
3869         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3870                 unsigned short blk_off;
3871                 unsigned int segno;
3872
3873                 seg_i = CURSEG_I(sbi, i);
3874                 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3875                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3876                 seg_i->next_segno = segno;
3877                 reset_curseg(sbi, i, 0);
3878                 seg_i->alloc_type = ckpt->alloc_type[i];
3879                 seg_i->next_blkoff = blk_off;
3880
3881                 if (seg_i->alloc_type == SSR)
3882                         blk_off = sbi->blocks_per_seg;
3883
3884                 for (j = 0; j < blk_off; j++) {
3885                         struct f2fs_summary *s;
3886
3887                         s = (struct f2fs_summary *)(kaddr + offset);
3888                         seg_i->sum_blk->entries[j] = *s;
3889                         offset += SUMMARY_SIZE;
3890                         if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3891                                                 SUM_FOOTER_SIZE)
3892                                 continue;
3893
3894                         f2fs_put_page(page, 1);
3895                         page = NULL;
3896
3897                         page = f2fs_get_meta_page(sbi, start++);
3898                         if (IS_ERR(page))
3899                                 return PTR_ERR(page);
3900                         kaddr = (unsigned char *)page_address(page);
3901                         offset = 0;
3902                 }
3903         }
3904         f2fs_put_page(page, 1);
3905         return 0;
3906 }
3907
3908 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3909 {
3910         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3911         struct f2fs_summary_block *sum;
3912         struct curseg_info *curseg;
3913         struct page *new;
3914         unsigned short blk_off;
3915         unsigned int segno = 0;
3916         block_t blk_addr = 0;
3917         int err = 0;
3918
3919         /* get segment number and block addr */
3920         if (IS_DATASEG(type)) {
3921                 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3922                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3923                                                         CURSEG_HOT_DATA]);
3924                 if (__exist_node_summaries(sbi))
3925                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type);
3926                 else
3927                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3928         } else {
3929                 segno = le32_to_cpu(ckpt->cur_node_segno[type -
3930                                                         CURSEG_HOT_NODE]);
3931                 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3932                                                         CURSEG_HOT_NODE]);
3933                 if (__exist_node_summaries(sbi))
3934                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3935                                                         type - CURSEG_HOT_NODE);
3936                 else
3937                         blk_addr = GET_SUM_BLOCK(sbi, segno);
3938         }
3939
3940         new = f2fs_get_meta_page(sbi, blk_addr);
3941         if (IS_ERR(new))
3942                 return PTR_ERR(new);
3943         sum = (struct f2fs_summary_block *)page_address(new);
3944
3945         if (IS_NODESEG(type)) {
3946                 if (__exist_node_summaries(sbi)) {
3947                         struct f2fs_summary *ns = &sum->entries[0];
3948                         int i;
3949
3950                         for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3951                                 ns->version = 0;
3952                                 ns->ofs_in_node = 0;
3953                         }
3954                 } else {
3955                         err = f2fs_restore_node_summary(sbi, segno, sum);
3956                         if (err)
3957                                 goto out;
3958                 }
3959         }
3960
3961         /* set uncompleted segment to curseg */
3962         curseg = CURSEG_I(sbi, type);
3963         mutex_lock(&curseg->curseg_mutex);
3964
3965         /* update journal info */
3966         down_write(&curseg->journal_rwsem);
3967         memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3968         up_write(&curseg->journal_rwsem);
3969
3970         memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3971         memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3972         curseg->next_segno = segno;
3973         reset_curseg(sbi, type, 0);
3974         curseg->alloc_type = ckpt->alloc_type[type];
3975         curseg->next_blkoff = blk_off;
3976         mutex_unlock(&curseg->curseg_mutex);
3977 out:
3978         f2fs_put_page(new, 1);
3979         return err;
3980 }
3981
3982 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3983 {
3984         struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3985         struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3986         int type = CURSEG_HOT_DATA;
3987         int err;
3988
3989         if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
3990                 int npages = f2fs_npages_for_summary_flush(sbi, true);
3991
3992                 if (npages >= 2)
3993                         f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
3994                                                         META_CP, true);
3995
3996                 /* restore for compacted data summary */
3997                 err = read_compacted_summaries(sbi);
3998                 if (err)
3999                         return err;
4000                 type = CURSEG_HOT_NODE;
4001         }
4002
4003         if (__exist_node_summaries(sbi))
4004                 f2fs_ra_meta_pages(sbi,
4005                                 sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type),
4006                                 NR_CURSEG_PERSIST_TYPE - type, META_CP, true);
4007
4008         for (; type <= CURSEG_COLD_NODE; type++) {
4009                 err = read_normal_summaries(sbi, type);
4010                 if (err)
4011                         return err;
4012         }
4013
4014         /* sanity check for summary blocks */
4015         if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
4016                         sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
4017                 f2fs_err(sbi, "invalid journal entries nats %u sits %u",
4018                          nats_in_cursum(nat_j), sits_in_cursum(sit_j));
4019                 return -EINVAL;
4020         }
4021
4022         return 0;
4023 }
4024
4025 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
4026 {
4027         struct page *page;
4028         unsigned char *kaddr;
4029         struct f2fs_summary *summary;
4030         struct curseg_info *seg_i;
4031         int written_size = 0;
4032         int i, j;
4033
4034         page = f2fs_grab_meta_page(sbi, blkaddr++);
4035         kaddr = (unsigned char *)page_address(page);
4036         memset(kaddr, 0, PAGE_SIZE);
4037
4038         /* Step 1: write nat cache */
4039         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
4040         memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
4041         written_size += SUM_JOURNAL_SIZE;
4042
4043         /* Step 2: write sit cache */
4044         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
4045         memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
4046         written_size += SUM_JOURNAL_SIZE;
4047
4048         /* Step 3: write summary entries */
4049         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
4050                 unsigned short blkoff;
4051
4052                 seg_i = CURSEG_I(sbi, i);
4053                 if (sbi->ckpt->alloc_type[i] == SSR)
4054                         blkoff = sbi->blocks_per_seg;
4055                 else
4056                         blkoff = curseg_blkoff(sbi, i);
4057
4058                 for (j = 0; j < blkoff; j++) {
4059                         if (!page) {
4060                                 page = f2fs_grab_meta_page(sbi, blkaddr++);
4061                                 kaddr = (unsigned char *)page_address(page);
4062                                 memset(kaddr, 0, PAGE_SIZE);
4063                                 written_size = 0;
4064                         }
4065                         summary = (struct f2fs_summary *)(kaddr + written_size);
4066                         *summary = seg_i->sum_blk->entries[j];
4067                         written_size += SUMMARY_SIZE;
4068
4069                         if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
4070                                                         SUM_FOOTER_SIZE)
4071                                 continue;
4072
4073                         set_page_dirty(page);
4074                         f2fs_put_page(page, 1);
4075                         page = NULL;
4076                 }
4077         }
4078         if (page) {
4079                 set_page_dirty(page);
4080                 f2fs_put_page(page, 1);
4081         }
4082 }
4083
4084 static void write_normal_summaries(struct f2fs_sb_info *sbi,
4085                                         block_t blkaddr, int type)
4086 {
4087         int i, end;
4088
4089         if (IS_DATASEG(type))
4090                 end = type + NR_CURSEG_DATA_TYPE;
4091         else
4092                 end = type + NR_CURSEG_NODE_TYPE;
4093
4094         for (i = type; i < end; i++)
4095                 write_current_sum_page(sbi, i, blkaddr + (i - type));
4096 }
4097
4098 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4099 {
4100         if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
4101                 write_compacted_summaries(sbi, start_blk);
4102         else
4103                 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
4104 }
4105
4106 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4107 {
4108         write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
4109 }
4110
4111 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
4112                                         unsigned int val, int alloc)
4113 {
4114         int i;
4115
4116         if (type == NAT_JOURNAL) {
4117                 for (i = 0; i < nats_in_cursum(journal); i++) {
4118                         if (le32_to_cpu(nid_in_journal(journal, i)) == val)
4119                                 return i;
4120                 }
4121                 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
4122                         return update_nats_in_cursum(journal, 1);
4123         } else if (type == SIT_JOURNAL) {
4124                 for (i = 0; i < sits_in_cursum(journal); i++)
4125                         if (le32_to_cpu(segno_in_journal(journal, i)) == val)
4126                                 return i;
4127                 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
4128                         return update_sits_in_cursum(journal, 1);
4129         }
4130         return -1;
4131 }
4132
4133 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
4134                                         unsigned int segno)
4135 {
4136         return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno));
4137 }
4138
4139 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
4140                                         unsigned int start)
4141 {
4142         struct sit_info *sit_i = SIT_I(sbi);
4143         struct page *page;
4144         pgoff_t src_off, dst_off;
4145
4146         src_off = current_sit_addr(sbi, start);
4147         dst_off = next_sit_addr(sbi, src_off);
4148
4149         page = f2fs_grab_meta_page(sbi, dst_off);
4150         seg_info_to_sit_page(sbi, page, start);
4151
4152         set_page_dirty(page);
4153         set_to_next_sit(sit_i, start);
4154
4155         return page;
4156 }
4157
4158 static struct sit_entry_set *grab_sit_entry_set(void)
4159 {
4160         struct sit_entry_set *ses =
4161                         f2fs_kmem_cache_alloc(sit_entry_set_slab,
4162                                                 GFP_NOFS, true, NULL);
4163
4164         ses->entry_cnt = 0;
4165         INIT_LIST_HEAD(&ses->set_list);
4166         return ses;
4167 }
4168
4169 static void release_sit_entry_set(struct sit_entry_set *ses)
4170 {
4171         list_del(&ses->set_list);
4172         kmem_cache_free(sit_entry_set_slab, ses);
4173 }
4174
4175 static void adjust_sit_entry_set(struct sit_entry_set *ses,
4176                                                 struct list_head *head)
4177 {
4178         struct sit_entry_set *next = ses;
4179
4180         if (list_is_last(&ses->set_list, head))
4181                 return;
4182
4183         list_for_each_entry_continue(next, head, set_list)
4184                 if (ses->entry_cnt <= next->entry_cnt)
4185                         break;
4186
4187         list_move_tail(&ses->set_list, &next->set_list);
4188 }
4189
4190 static void add_sit_entry(unsigned int segno, struct list_head *head)
4191 {
4192         struct sit_entry_set *ses;
4193         unsigned int start_segno = START_SEGNO(segno);
4194
4195         list_for_each_entry(ses, head, set_list) {
4196                 if (ses->start_segno == start_segno) {
4197                         ses->entry_cnt++;
4198                         adjust_sit_entry_set(ses, head);
4199                         return;
4200                 }
4201         }
4202
4203         ses = grab_sit_entry_set();
4204
4205         ses->start_segno = start_segno;
4206         ses->entry_cnt++;
4207         list_add(&ses->set_list, head);
4208 }
4209
4210 static void add_sits_in_set(struct f2fs_sb_info *sbi)
4211 {
4212         struct f2fs_sm_info *sm_info = SM_I(sbi);
4213         struct list_head *set_list = &sm_info->sit_entry_set;
4214         unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
4215         unsigned int segno;
4216
4217         for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
4218                 add_sit_entry(segno, set_list);
4219 }
4220
4221 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
4222 {
4223         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4224         struct f2fs_journal *journal = curseg->journal;
4225         int i;
4226
4227         down_write(&curseg->journal_rwsem);
4228         for (i = 0; i < sits_in_cursum(journal); i++) {
4229                 unsigned int segno;
4230                 bool dirtied;
4231
4232                 segno = le32_to_cpu(segno_in_journal(journal, i));
4233                 dirtied = __mark_sit_entry_dirty(sbi, segno);
4234
4235                 if (!dirtied)
4236                         add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
4237         }
4238         update_sits_in_cursum(journal, -i);
4239         up_write(&curseg->journal_rwsem);
4240 }
4241
4242 /*
4243  * CP calls this function, which flushes SIT entries including sit_journal,
4244  * and moves prefree segs to free segs.
4245  */
4246 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
4247 {
4248         struct sit_info *sit_i = SIT_I(sbi);
4249         unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
4250         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4251         struct f2fs_journal *journal = curseg->journal;
4252         struct sit_entry_set *ses, *tmp;
4253         struct list_head *head = &SM_I(sbi)->sit_entry_set;
4254         bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
4255         struct seg_entry *se;
4256
4257         down_write(&sit_i->sentry_lock);
4258
4259         if (!sit_i->dirty_sentries)
4260                 goto out;
4261
4262         /*
4263          * add and account sit entries of dirty bitmap in sit entry
4264          * set temporarily
4265          */
4266         add_sits_in_set(sbi);
4267
4268         /*
4269          * if there are no enough space in journal to store dirty sit
4270          * entries, remove all entries from journal and add and account
4271          * them in sit entry set.
4272          */
4273         if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
4274                                                                 !to_journal)
4275                 remove_sits_in_journal(sbi);
4276
4277         /*
4278          * there are two steps to flush sit entries:
4279          * #1, flush sit entries to journal in current cold data summary block.
4280          * #2, flush sit entries to sit page.
4281          */
4282         list_for_each_entry_safe(ses, tmp, head, set_list) {
4283                 struct page *page = NULL;
4284                 struct f2fs_sit_block *raw_sit = NULL;
4285                 unsigned int start_segno = ses->start_segno;
4286                 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
4287                                                 (unsigned long)MAIN_SEGS(sbi));
4288                 unsigned int segno = start_segno;
4289
4290                 if (to_journal &&
4291                         !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
4292                         to_journal = false;
4293
4294                 if (to_journal) {
4295                         down_write(&curseg->journal_rwsem);
4296                 } else {
4297                         page = get_next_sit_page(sbi, start_segno);
4298                         raw_sit = page_address(page);
4299                 }
4300
4301                 /* flush dirty sit entries in region of current sit set */
4302                 for_each_set_bit_from(segno, bitmap, end) {
4303                         int offset, sit_offset;
4304
4305                         se = get_seg_entry(sbi, segno);
4306 #ifdef CONFIG_F2FS_CHECK_FS
4307                         if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
4308                                                 SIT_VBLOCK_MAP_SIZE))
4309                                 f2fs_bug_on(sbi, 1);
4310 #endif
4311
4312                         /* add discard candidates */
4313                         if (!(cpc->reason & CP_DISCARD)) {
4314                                 cpc->trim_start = segno;
4315                                 add_discard_addrs(sbi, cpc, false);
4316                         }
4317
4318                         if (to_journal) {
4319                                 offset = f2fs_lookup_journal_in_cursum(journal,
4320                                                         SIT_JOURNAL, segno, 1);
4321                                 f2fs_bug_on(sbi, offset < 0);
4322                                 segno_in_journal(journal, offset) =
4323                                                         cpu_to_le32(segno);
4324                                 seg_info_to_raw_sit(se,
4325                                         &sit_in_journal(journal, offset));
4326                                 check_block_count(sbi, segno,
4327                                         &sit_in_journal(journal, offset));
4328                         } else {
4329                                 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
4330                                 seg_info_to_raw_sit(se,
4331                                                 &raw_sit->entries[sit_offset]);
4332                                 check_block_count(sbi, segno,
4333                                                 &raw_sit->entries[sit_offset]);
4334                         }
4335
4336                         __clear_bit(segno, bitmap);
4337                         sit_i->dirty_sentries--;
4338                         ses->entry_cnt--;
4339                 }
4340
4341                 if (to_journal)
4342                         up_write(&curseg->journal_rwsem);
4343                 else
4344                         f2fs_put_page(page, 1);
4345
4346                 f2fs_bug_on(sbi, ses->entry_cnt);
4347                 release_sit_entry_set(ses);
4348         }
4349
4350         f2fs_bug_on(sbi, !list_empty(head));
4351         f2fs_bug_on(sbi, sit_i->dirty_sentries);
4352 out:
4353         if (cpc->reason & CP_DISCARD) {
4354                 __u64 trim_start = cpc->trim_start;
4355
4356                 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
4357                         add_discard_addrs(sbi, cpc, false);
4358
4359                 cpc->trim_start = trim_start;
4360         }
4361         up_write(&sit_i->sentry_lock);
4362
4363         set_prefree_as_free_segments(sbi);
4364 }
4365
4366 static int build_sit_info(struct f2fs_sb_info *sbi)
4367 {
4368         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4369         struct sit_info *sit_i;
4370         unsigned int sit_segs, start;
4371         char *src_bitmap, *bitmap;
4372         unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
4373         unsigned int discard_map = f2fs_block_unit_discard(sbi) ? 1 : 0;
4374
4375         /* allocate memory for SIT information */
4376         sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
4377         if (!sit_i)
4378                 return -ENOMEM;
4379
4380         SM_I(sbi)->sit_info = sit_i;
4381
4382         sit_i->sentries =
4383                 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
4384                                               MAIN_SEGS(sbi)),
4385                               GFP_KERNEL);
4386         if (!sit_i->sentries)
4387                 return -ENOMEM;
4388
4389         main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4390         sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
4391                                                                 GFP_KERNEL);
4392         if (!sit_i->dirty_sentries_bitmap)
4393                 return -ENOMEM;
4394
4395 #ifdef CONFIG_F2FS_CHECK_FS
4396         bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (3 + discard_map);
4397 #else
4398         bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (2 + discard_map);
4399 #endif
4400         sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4401         if (!sit_i->bitmap)
4402                 return -ENOMEM;
4403
4404         bitmap = sit_i->bitmap;
4405
4406         for (start = 0; start < MAIN_SEGS(sbi); start++) {
4407                 sit_i->sentries[start].cur_valid_map = bitmap;
4408                 bitmap += SIT_VBLOCK_MAP_SIZE;
4409
4410                 sit_i->sentries[start].ckpt_valid_map = bitmap;
4411                 bitmap += SIT_VBLOCK_MAP_SIZE;
4412
4413 #ifdef CONFIG_F2FS_CHECK_FS
4414                 sit_i->sentries[start].cur_valid_map_mir = bitmap;
4415                 bitmap += SIT_VBLOCK_MAP_SIZE;
4416 #endif
4417
4418                 if (discard_map) {
4419                         sit_i->sentries[start].discard_map = bitmap;
4420                         bitmap += SIT_VBLOCK_MAP_SIZE;
4421                 }
4422         }
4423
4424         sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
4425         if (!sit_i->tmp_map)
4426                 return -ENOMEM;
4427
4428         if (__is_large_section(sbi)) {
4429                 sit_i->sec_entries =
4430                         f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
4431                                                       MAIN_SECS(sbi)),
4432                                       GFP_KERNEL);
4433                 if (!sit_i->sec_entries)
4434                         return -ENOMEM;
4435         }
4436
4437         /* get information related with SIT */
4438         sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4439
4440         /* setup SIT bitmap from ckeckpoint pack */
4441         sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4442         src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4443
4444         sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4445         if (!sit_i->sit_bitmap)
4446                 return -ENOMEM;
4447
4448 #ifdef CONFIG_F2FS_CHECK_FS
4449         sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4450                                         sit_bitmap_size, GFP_KERNEL);
4451         if (!sit_i->sit_bitmap_mir)
4452                 return -ENOMEM;
4453
4454         sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4455                                         main_bitmap_size, GFP_KERNEL);
4456         if (!sit_i->invalid_segmap)
4457                 return -ENOMEM;
4458 #endif
4459
4460         /* init SIT information */
4461         sit_i->s_ops = &default_salloc_ops;
4462
4463         sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4464         sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
4465         sit_i->written_valid_blocks = 0;
4466         sit_i->bitmap_size = sit_bitmap_size;
4467         sit_i->dirty_sentries = 0;
4468         sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4469         sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4470         sit_i->mounted_time = ktime_get_boottime_seconds();
4471         init_rwsem(&sit_i->sentry_lock);
4472         return 0;
4473 }
4474
4475 static int build_free_segmap(struct f2fs_sb_info *sbi)
4476 {
4477         struct free_segmap_info *free_i;
4478         unsigned int bitmap_size, sec_bitmap_size;
4479
4480         /* allocate memory for free segmap information */
4481         free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4482         if (!free_i)
4483                 return -ENOMEM;
4484
4485         SM_I(sbi)->free_info = free_i;
4486
4487         bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4488         free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4489         if (!free_i->free_segmap)
4490                 return -ENOMEM;
4491
4492         sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4493         free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4494         if (!free_i->free_secmap)
4495                 return -ENOMEM;
4496
4497         /* set all segments as dirty temporarily */
4498         memset(free_i->free_segmap, 0xff, bitmap_size);
4499         memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4500
4501         /* init free segmap information */
4502         free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4503         free_i->free_segments = 0;
4504         free_i->free_sections = 0;
4505         spin_lock_init(&free_i->segmap_lock);
4506         return 0;
4507 }
4508
4509 static int build_curseg(struct f2fs_sb_info *sbi)
4510 {
4511         struct curseg_info *array;
4512         int i;
4513
4514         array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE,
4515                                         sizeof(*array)), GFP_KERNEL);
4516         if (!array)
4517                 return -ENOMEM;
4518
4519         SM_I(sbi)->curseg_array = array;
4520
4521         for (i = 0; i < NO_CHECK_TYPE; i++) {
4522                 mutex_init(&array[i].curseg_mutex);
4523                 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4524                 if (!array[i].sum_blk)
4525                         return -ENOMEM;
4526                 init_rwsem(&array[i].journal_rwsem);
4527                 array[i].journal = f2fs_kzalloc(sbi,
4528                                 sizeof(struct f2fs_journal), GFP_KERNEL);
4529                 if (!array[i].journal)
4530                         return -ENOMEM;
4531                 if (i < NR_PERSISTENT_LOG)
4532                         array[i].seg_type = CURSEG_HOT_DATA + i;
4533                 else if (i == CURSEG_COLD_DATA_PINNED)
4534                         array[i].seg_type = CURSEG_COLD_DATA;
4535                 else if (i == CURSEG_ALL_DATA_ATGC)
4536                         array[i].seg_type = CURSEG_COLD_DATA;
4537                 array[i].segno = NULL_SEGNO;
4538                 array[i].next_blkoff = 0;
4539                 array[i].inited = false;
4540         }
4541         return restore_curseg_summaries(sbi);
4542 }
4543
4544 static int build_sit_entries(struct f2fs_sb_info *sbi)
4545 {
4546         struct sit_info *sit_i = SIT_I(sbi);
4547         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4548         struct f2fs_journal *journal = curseg->journal;
4549         struct seg_entry *se;
4550         struct f2fs_sit_entry sit;
4551         int sit_blk_cnt = SIT_BLK_CNT(sbi);
4552         unsigned int i, start, end;
4553         unsigned int readed, start_blk = 0;
4554         int err = 0;
4555         block_t total_node_blocks = 0;
4556
4557         do {
4558                 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS,
4559                                                         META_SIT, true);
4560
4561                 start = start_blk * sit_i->sents_per_block;
4562                 end = (start_blk + readed) * sit_i->sents_per_block;
4563
4564                 for (; start < end && start < MAIN_SEGS(sbi); start++) {
4565                         struct f2fs_sit_block *sit_blk;
4566                         struct page *page;
4567
4568                         se = &sit_i->sentries[start];
4569                         page = get_current_sit_page(sbi, start);
4570                         if (IS_ERR(page))
4571                                 return PTR_ERR(page);
4572                         sit_blk = (struct f2fs_sit_block *)page_address(page);
4573                         sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4574                         f2fs_put_page(page, 1);
4575
4576                         err = check_block_count(sbi, start, &sit);
4577                         if (err)
4578                                 return err;
4579                         seg_info_from_raw_sit(se, &sit);
4580                         if (IS_NODESEG(se->type))
4581                                 total_node_blocks += se->valid_blocks;
4582
4583                         if (f2fs_block_unit_discard(sbi)) {
4584                                 /* build discard map only one time */
4585                                 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4586                                         memset(se->discard_map, 0xff,
4587                                                 SIT_VBLOCK_MAP_SIZE);
4588                                 } else {
4589                                         memcpy(se->discard_map,
4590                                                 se->cur_valid_map,
4591                                                 SIT_VBLOCK_MAP_SIZE);
4592                                         sbi->discard_blks +=
4593                                                 sbi->blocks_per_seg -
4594                                                 se->valid_blocks;
4595                                 }
4596                         }
4597
4598                         if (__is_large_section(sbi))
4599                                 get_sec_entry(sbi, start)->valid_blocks +=
4600                                                         se->valid_blocks;
4601                 }
4602                 start_blk += readed;
4603         } while (start_blk < sit_blk_cnt);
4604
4605         down_read(&curseg->journal_rwsem);
4606         for (i = 0; i < sits_in_cursum(journal); i++) {
4607                 unsigned int old_valid_blocks;
4608
4609                 start = le32_to_cpu(segno_in_journal(journal, i));
4610                 if (start >= MAIN_SEGS(sbi)) {
4611                         f2fs_err(sbi, "Wrong journal entry on segno %u",
4612                                  start);
4613                         err = -EFSCORRUPTED;
4614                         break;
4615                 }
4616
4617                 se = &sit_i->sentries[start];
4618                 sit = sit_in_journal(journal, i);
4619
4620                 old_valid_blocks = se->valid_blocks;
4621                 if (IS_NODESEG(se->type))
4622                         total_node_blocks -= old_valid_blocks;
4623
4624                 err = check_block_count(sbi, start, &sit);
4625                 if (err)
4626                         break;
4627                 seg_info_from_raw_sit(se, &sit);
4628                 if (IS_NODESEG(se->type))
4629                         total_node_blocks += se->valid_blocks;
4630
4631                 if (f2fs_block_unit_discard(sbi)) {
4632                         if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4633                                 memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4634                         } else {
4635                                 memcpy(se->discard_map, se->cur_valid_map,
4636                                                         SIT_VBLOCK_MAP_SIZE);
4637                                 sbi->discard_blks += old_valid_blocks;
4638                                 sbi->discard_blks -= se->valid_blocks;
4639                         }
4640                 }
4641
4642                 if (__is_large_section(sbi)) {
4643                         get_sec_entry(sbi, start)->valid_blocks +=
4644                                                         se->valid_blocks;
4645                         get_sec_entry(sbi, start)->valid_blocks -=
4646                                                         old_valid_blocks;
4647                 }
4648         }
4649         up_read(&curseg->journal_rwsem);
4650
4651         if (!err && total_node_blocks != valid_node_count(sbi)) {
4652                 f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
4653                          total_node_blocks, valid_node_count(sbi));
4654                 err = -EFSCORRUPTED;
4655         }
4656
4657         return err;
4658 }
4659
4660 static void init_free_segmap(struct f2fs_sb_info *sbi)
4661 {
4662         unsigned int start;
4663         int type;
4664         struct seg_entry *sentry;
4665
4666         for (start = 0; start < MAIN_SEGS(sbi); start++) {
4667                 if (f2fs_usable_blks_in_seg(sbi, start) == 0)
4668                         continue;
4669                 sentry = get_seg_entry(sbi, start);
4670                 if (!sentry->valid_blocks)
4671                         __set_free(sbi, start);
4672                 else
4673                         SIT_I(sbi)->written_valid_blocks +=
4674                                                 sentry->valid_blocks;
4675         }
4676
4677         /* set use the current segments */
4678         for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4679                 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4680
4681                 __set_test_and_inuse(sbi, curseg_t->segno);
4682         }
4683 }
4684
4685 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4686 {
4687         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4688         struct free_segmap_info *free_i = FREE_I(sbi);
4689         unsigned int segno = 0, offset = 0, secno;
4690         block_t valid_blocks, usable_blks_in_seg;
4691         block_t blks_per_sec = BLKS_PER_SEC(sbi);
4692
4693         while (1) {
4694                 /* find dirty segment based on free segmap */
4695                 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4696                 if (segno >= MAIN_SEGS(sbi))
4697                         break;
4698                 offset = segno + 1;
4699                 valid_blocks = get_valid_blocks(sbi, segno, false);
4700                 usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
4701                 if (valid_blocks == usable_blks_in_seg || !valid_blocks)
4702                         continue;
4703                 if (valid_blocks > usable_blks_in_seg) {
4704                         f2fs_bug_on(sbi, 1);
4705                         continue;
4706                 }
4707                 mutex_lock(&dirty_i->seglist_lock);
4708                 __locate_dirty_segment(sbi, segno, DIRTY);
4709                 mutex_unlock(&dirty_i->seglist_lock);
4710         }
4711
4712         if (!__is_large_section(sbi))
4713                 return;
4714
4715         mutex_lock(&dirty_i->seglist_lock);
4716         for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
4717                 valid_blocks = get_valid_blocks(sbi, segno, true);
4718                 secno = GET_SEC_FROM_SEG(sbi, segno);
4719
4720                 if (!valid_blocks || valid_blocks == blks_per_sec)
4721                         continue;
4722                 if (IS_CURSEC(sbi, secno))
4723                         continue;
4724                 set_bit(secno, dirty_i->dirty_secmap);
4725         }
4726         mutex_unlock(&dirty_i->seglist_lock);
4727 }
4728
4729 static int init_victim_secmap(struct f2fs_sb_info *sbi)
4730 {
4731         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4732         unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4733
4734         dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4735         if (!dirty_i->victim_secmap)
4736                 return -ENOMEM;
4737         return 0;
4738 }
4739
4740 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4741 {
4742         struct dirty_seglist_info *dirty_i;
4743         unsigned int bitmap_size, i;
4744
4745         /* allocate memory for dirty segments list information */
4746         dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4747                                                                 GFP_KERNEL);
4748         if (!dirty_i)
4749                 return -ENOMEM;
4750
4751         SM_I(sbi)->dirty_info = dirty_i;
4752         mutex_init(&dirty_i->seglist_lock);
4753
4754         bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4755
4756         for (i = 0; i < NR_DIRTY_TYPE; i++) {
4757                 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4758                                                                 GFP_KERNEL);
4759                 if (!dirty_i->dirty_segmap[i])
4760                         return -ENOMEM;
4761         }
4762
4763         if (__is_large_section(sbi)) {
4764                 bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4765                 dirty_i->dirty_secmap = f2fs_kvzalloc(sbi,
4766                                                 bitmap_size, GFP_KERNEL);
4767                 if (!dirty_i->dirty_secmap)
4768                         return -ENOMEM;
4769         }
4770
4771         init_dirty_segmap(sbi);
4772         return init_victim_secmap(sbi);
4773 }
4774
4775 static int sanity_check_curseg(struct f2fs_sb_info *sbi)
4776 {
4777         int i;
4778
4779         /*
4780          * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
4781          * In LFS curseg, all blkaddr after .next_blkoff should be unused.
4782          */
4783         for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4784                 struct curseg_info *curseg = CURSEG_I(sbi, i);
4785                 struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
4786                 unsigned int blkofs = curseg->next_blkoff;
4787
4788                 if (f2fs_sb_has_readonly(sbi) &&
4789                         i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE)
4790                         continue;
4791
4792                 sanity_check_seg_type(sbi, curseg->seg_type);
4793
4794                 if (curseg->alloc_type != LFS && curseg->alloc_type != SSR) {
4795                         f2fs_err(sbi,
4796                                  "Current segment has invalid alloc_type:%d",
4797                                  curseg->alloc_type);
4798                         return -EFSCORRUPTED;
4799                 }
4800
4801                 if (f2fs_test_bit(blkofs, se->cur_valid_map))
4802                         goto out;
4803
4804                 if (curseg->alloc_type == SSR)
4805                         continue;
4806
4807                 for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) {
4808                         if (!f2fs_test_bit(blkofs, se->cur_valid_map))
4809                                 continue;
4810 out:
4811                         f2fs_err(sbi,
4812                                  "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
4813                                  i, curseg->segno, curseg->alloc_type,
4814                                  curseg->next_blkoff, blkofs);
4815                         return -EFSCORRUPTED;
4816                 }
4817         }
4818         return 0;
4819 }
4820
4821 #ifdef CONFIG_BLK_DEV_ZONED
4822
4823 static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
4824                                     struct f2fs_dev_info *fdev,
4825                                     struct blk_zone *zone)
4826 {
4827         unsigned int wp_segno, wp_blkoff, zone_secno, zone_segno, segno;
4828         block_t zone_block, wp_block, last_valid_block;
4829         unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4830         int i, s, b, ret;
4831         struct seg_entry *se;
4832
4833         if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4834                 return 0;
4835
4836         wp_block = fdev->start_blk + (zone->wp >> log_sectors_per_block);
4837         wp_segno = GET_SEGNO(sbi, wp_block);
4838         wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4839         zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block);
4840         zone_segno = GET_SEGNO(sbi, zone_block);
4841         zone_secno = GET_SEC_FROM_SEG(sbi, zone_segno);
4842
4843         if (zone_segno >= MAIN_SEGS(sbi))
4844                 return 0;
4845
4846         /*
4847          * Skip check of zones cursegs point to, since
4848          * fix_curseg_write_pointer() checks them.
4849          */
4850         for (i = 0; i < NO_CHECK_TYPE; i++)
4851                 if (zone_secno == GET_SEC_FROM_SEG(sbi,
4852                                                    CURSEG_I(sbi, i)->segno))
4853                         return 0;
4854
4855         /*
4856          * Get last valid block of the zone.
4857          */
4858         last_valid_block = zone_block - 1;
4859         for (s = sbi->segs_per_sec - 1; s >= 0; s--) {
4860                 segno = zone_segno + s;
4861                 se = get_seg_entry(sbi, segno);
4862                 for (b = sbi->blocks_per_seg - 1; b >= 0; b--)
4863                         if (f2fs_test_bit(b, se->cur_valid_map)) {
4864                                 last_valid_block = START_BLOCK(sbi, segno) + b;
4865                                 break;
4866                         }
4867                 if (last_valid_block >= zone_block)
4868                         break;
4869         }
4870
4871         /*
4872          * If last valid block is beyond the write pointer, report the
4873          * inconsistency. This inconsistency does not cause write error
4874          * because the zone will not be selected for write operation until
4875          * it get discarded. Just report it.
4876          */
4877         if (last_valid_block >= wp_block) {
4878                 f2fs_notice(sbi, "Valid block beyond write pointer: "
4879                             "valid block[0x%x,0x%x] wp[0x%x,0x%x]",
4880                             GET_SEGNO(sbi, last_valid_block),
4881                             GET_BLKOFF_FROM_SEG0(sbi, last_valid_block),
4882                             wp_segno, wp_blkoff);
4883                 return 0;
4884         }
4885
4886         /*
4887          * If there is no valid block in the zone and if write pointer is
4888          * not at zone start, reset the write pointer.
4889          */
4890         if (last_valid_block + 1 == zone_block && zone->wp != zone->start) {
4891                 f2fs_notice(sbi,
4892                             "Zone without valid block has non-zero write "
4893                             "pointer. Reset the write pointer: wp[0x%x,0x%x]",
4894                             wp_segno, wp_blkoff);
4895                 ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
4896                                         zone->len >> log_sectors_per_block);
4897                 if (ret) {
4898                         f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4899                                  fdev->path, ret);
4900                         return ret;
4901                 }
4902         }
4903
4904         return 0;
4905 }
4906
4907 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
4908                                                   block_t zone_blkaddr)
4909 {
4910         int i;
4911
4912         for (i = 0; i < sbi->s_ndevs; i++) {
4913                 if (!bdev_is_zoned(FDEV(i).bdev))
4914                         continue;
4915                 if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
4916                                 zone_blkaddr <= FDEV(i).end_blk))
4917                         return &FDEV(i);
4918         }
4919
4920         return NULL;
4921 }
4922
4923 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
4924                               void *data)
4925 {
4926         memcpy(data, zone, sizeof(struct blk_zone));
4927         return 0;
4928 }
4929
4930 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
4931 {
4932         struct curseg_info *cs = CURSEG_I(sbi, type);
4933         struct f2fs_dev_info *zbd;
4934         struct blk_zone zone;
4935         unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
4936         block_t cs_zone_block, wp_block;
4937         unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4938         sector_t zone_sector;
4939         int err;
4940
4941         cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4942         cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4943
4944         zbd = get_target_zoned_dev(sbi, cs_zone_block);
4945         if (!zbd)
4946                 return 0;
4947
4948         /* report zone for the sector the curseg points to */
4949         zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4950                 << log_sectors_per_block;
4951         err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4952                                   report_one_zone_cb, &zone);
4953         if (err != 1) {
4954                 f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4955                          zbd->path, err);
4956                 return err;
4957         }
4958
4959         if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4960                 return 0;
4961
4962         wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block);
4963         wp_segno = GET_SEGNO(sbi, wp_block);
4964         wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4965         wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0);
4966
4967         if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
4968                 wp_sector_off == 0)
4969                 return 0;
4970
4971         f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
4972                     "curseg[0x%x,0x%x] wp[0x%x,0x%x]",
4973                     type, cs->segno, cs->next_blkoff, wp_segno, wp_blkoff);
4974
4975         f2fs_notice(sbi, "Assign new section to curseg[%d]: "
4976                     "curseg[0x%x,0x%x]", type, cs->segno, cs->next_blkoff);
4977
4978         f2fs_allocate_new_section(sbi, type, true);
4979
4980         /* check consistency of the zone curseg pointed to */
4981         if (check_zone_write_pointer(sbi, zbd, &zone))
4982                 return -EIO;
4983
4984         /* check newly assigned zone */
4985         cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4986         cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4987
4988         zbd = get_target_zoned_dev(sbi, cs_zone_block);
4989         if (!zbd)
4990                 return 0;
4991
4992         zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4993                 << log_sectors_per_block;
4994         err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4995                                   report_one_zone_cb, &zone);
4996         if (err != 1) {
4997                 f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4998                          zbd->path, err);
4999                 return err;
5000         }
5001
5002         if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
5003                 return 0;
5004
5005         if (zone.wp != zone.start) {
5006                 f2fs_notice(sbi,
5007                             "New zone for curseg[%d] is not yet discarded. "
5008                             "Reset the zone: curseg[0x%x,0x%x]",
5009                             type, cs->segno, cs->next_blkoff);
5010                 err = __f2fs_issue_discard_zone(sbi, zbd->bdev,
5011                                 zone_sector >> log_sectors_per_block,
5012                                 zone.len >> log_sectors_per_block);
5013                 if (err) {
5014                         f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
5015                                  zbd->path, err);
5016                         return err;
5017                 }
5018         }
5019
5020         return 0;
5021 }
5022
5023 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5024 {
5025         int i, ret;
5026
5027         for (i = 0; i < NR_PERSISTENT_LOG; i++) {
5028                 ret = fix_curseg_write_pointer(sbi, i);
5029                 if (ret)
5030                         return ret;
5031         }
5032
5033         return 0;
5034 }
5035
5036 struct check_zone_write_pointer_args {
5037         struct f2fs_sb_info *sbi;
5038         struct f2fs_dev_info *fdev;
5039 };
5040
5041 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
5042                                       void *data)
5043 {
5044         struct check_zone_write_pointer_args *args;
5045
5046         args = (struct check_zone_write_pointer_args *)data;
5047
5048         return check_zone_write_pointer(args->sbi, args->fdev, zone);
5049 }
5050
5051 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
5052 {
5053         int i, ret;
5054         struct check_zone_write_pointer_args args;
5055
5056         for (i = 0; i < sbi->s_ndevs; i++) {
5057                 if (!bdev_is_zoned(FDEV(i).bdev))
5058                         continue;
5059
5060                 args.sbi = sbi;
5061                 args.fdev = &FDEV(i);
5062                 ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
5063                                           check_zone_write_pointer_cb, &args);
5064                 if (ret < 0)
5065                         return ret;
5066         }
5067
5068         return 0;
5069 }
5070
5071 static bool is_conv_zone(struct f2fs_sb_info *sbi, unsigned int zone_idx,
5072                                                 unsigned int dev_idx)
5073 {
5074         if (!bdev_is_zoned(FDEV(dev_idx).bdev))
5075                 return true;
5076         return !test_bit(zone_idx, FDEV(dev_idx).blkz_seq);
5077 }
5078
5079 /* Return the zone index in the given device */
5080 static unsigned int get_zone_idx(struct f2fs_sb_info *sbi, unsigned int secno,
5081                                         int dev_idx)
5082 {
5083         block_t sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
5084
5085         return (sec_start_blkaddr - FDEV(dev_idx).start_blk) >>
5086                                                 sbi->log_blocks_per_blkz;
5087 }
5088
5089 /*
5090  * Return the usable segments in a section based on the zone's
5091  * corresponding zone capacity. Zone is equal to a section.
5092  */
5093 static inline unsigned int f2fs_usable_zone_segs_in_sec(
5094                 struct f2fs_sb_info *sbi, unsigned int segno)
5095 {
5096         unsigned int dev_idx, zone_idx, unusable_segs_in_sec;
5097
5098         dev_idx = f2fs_target_device_index(sbi, START_BLOCK(sbi, segno));
5099         zone_idx = get_zone_idx(sbi, GET_SEC_FROM_SEG(sbi, segno), dev_idx);
5100
5101         /* Conventional zone's capacity is always equal to zone size */
5102         if (is_conv_zone(sbi, zone_idx, dev_idx))
5103                 return sbi->segs_per_sec;
5104
5105         /*
5106          * If the zone_capacity_blocks array is NULL, then zone capacity
5107          * is equal to the zone size for all zones
5108          */
5109         if (!FDEV(dev_idx).zone_capacity_blocks)
5110                 return sbi->segs_per_sec;
5111
5112         /* Get the segment count beyond zone capacity block */
5113         unusable_segs_in_sec = (sbi->blocks_per_blkz -
5114                                 FDEV(dev_idx).zone_capacity_blocks[zone_idx]) >>
5115                                 sbi->log_blocks_per_seg;
5116         return sbi->segs_per_sec - unusable_segs_in_sec;
5117 }
5118
5119 /*
5120  * Return the number of usable blocks in a segment. The number of blocks
5121  * returned is always equal to the number of blocks in a segment for
5122  * segments fully contained within a sequential zone capacity or a
5123  * conventional zone. For segments partially contained in a sequential
5124  * zone capacity, the number of usable blocks up to the zone capacity
5125  * is returned. 0 is returned in all other cases.
5126  */
5127 static inline unsigned int f2fs_usable_zone_blks_in_seg(
5128                         struct f2fs_sb_info *sbi, unsigned int segno)
5129 {
5130         block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr;
5131         unsigned int zone_idx, dev_idx, secno;
5132
5133         secno = GET_SEC_FROM_SEG(sbi, segno);
5134         seg_start = START_BLOCK(sbi, segno);
5135         dev_idx = f2fs_target_device_index(sbi, seg_start);
5136         zone_idx = get_zone_idx(sbi, secno, dev_idx);
5137
5138         /*
5139          * Conventional zone's capacity is always equal to zone size,
5140          * so, blocks per segment is unchanged.
5141          */
5142         if (is_conv_zone(sbi, zone_idx, dev_idx))
5143                 return sbi->blocks_per_seg;
5144
5145         if (!FDEV(dev_idx).zone_capacity_blocks)
5146                 return sbi->blocks_per_seg;
5147
5148         sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
5149         sec_cap_blkaddr = sec_start_blkaddr +
5150                                 FDEV(dev_idx).zone_capacity_blocks[zone_idx];
5151
5152         /*
5153          * If segment starts before zone capacity and spans beyond
5154          * zone capacity, then usable blocks are from seg start to
5155          * zone capacity. If the segment starts after the zone capacity,
5156          * then there are no usable blocks.
5157          */
5158         if (seg_start >= sec_cap_blkaddr)
5159                 return 0;
5160         if (seg_start + sbi->blocks_per_seg > sec_cap_blkaddr)
5161                 return sec_cap_blkaddr - seg_start;
5162
5163         return sbi->blocks_per_seg;
5164 }
5165 #else
5166 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5167 {
5168         return 0;
5169 }
5170
5171 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
5172 {
5173         return 0;
5174 }
5175
5176 static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi,
5177                                                         unsigned int segno)
5178 {
5179         return 0;
5180 }
5181
5182 static inline unsigned int f2fs_usable_zone_segs_in_sec(struct f2fs_sb_info *sbi,
5183                                                         unsigned int segno)
5184 {
5185         return 0;
5186 }
5187 #endif
5188 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
5189                                         unsigned int segno)
5190 {
5191         if (f2fs_sb_has_blkzoned(sbi))
5192                 return f2fs_usable_zone_blks_in_seg(sbi, segno);
5193
5194         return sbi->blocks_per_seg;
5195 }
5196
5197 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
5198                                         unsigned int segno)
5199 {
5200         if (f2fs_sb_has_blkzoned(sbi))
5201                 return f2fs_usable_zone_segs_in_sec(sbi, segno);
5202
5203         return sbi->segs_per_sec;
5204 }
5205
5206 /*
5207  * Update min, max modified time for cost-benefit GC algorithm
5208  */
5209 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
5210 {
5211         struct sit_info *sit_i = SIT_I(sbi);
5212         unsigned int segno;
5213
5214         down_write(&sit_i->sentry_lock);
5215
5216         sit_i->min_mtime = ULLONG_MAX;
5217
5218         for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
5219                 unsigned int i;
5220                 unsigned long long mtime = 0;
5221
5222                 for (i = 0; i < sbi->segs_per_sec; i++)
5223                         mtime += get_seg_entry(sbi, segno + i)->mtime;
5224
5225                 mtime = div_u64(mtime, sbi->segs_per_sec);
5226
5227                 if (sit_i->min_mtime > mtime)
5228                         sit_i->min_mtime = mtime;
5229         }
5230         sit_i->max_mtime = get_mtime(sbi, false);
5231         sit_i->dirty_max_mtime = 0;
5232         up_write(&sit_i->sentry_lock);
5233 }
5234
5235 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
5236 {
5237         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
5238         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
5239         struct f2fs_sm_info *sm_info;
5240         int err;
5241
5242         sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
5243         if (!sm_info)
5244                 return -ENOMEM;
5245
5246         /* init sm info */
5247         sbi->sm_info = sm_info;
5248         sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
5249         sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
5250         sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
5251         sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
5252         sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
5253         sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
5254         sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
5255         sm_info->rec_prefree_segments = sm_info->main_segments *
5256                                         DEF_RECLAIM_PREFREE_SEGMENTS / 100;
5257         if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
5258                 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
5259
5260         if (!f2fs_lfs_mode(sbi))
5261                 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
5262         sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
5263         sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
5264         sm_info->min_seq_blocks = sbi->blocks_per_seg;
5265         sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
5266         sm_info->min_ssr_sections = reserved_sections(sbi);
5267
5268         INIT_LIST_HEAD(&sm_info->sit_entry_set);
5269
5270         init_f2fs_rwsem(&sm_info->curseg_lock);
5271
5272         if (!f2fs_readonly(sbi->sb)) {
5273                 err = f2fs_create_flush_cmd_control(sbi);
5274                 if (err)
5275                         return err;
5276         }
5277
5278         err = create_discard_cmd_control(sbi);
5279         if (err)
5280                 return err;
5281
5282         err = build_sit_info(sbi);
5283         if (err)
5284                 return err;
5285         err = build_free_segmap(sbi);
5286         if (err)
5287                 return err;
5288         err = build_curseg(sbi);
5289         if (err)
5290                 return err;
5291
5292         /* reinit free segmap based on SIT */
5293         err = build_sit_entries(sbi);
5294         if (err)
5295                 return err;
5296
5297         init_free_segmap(sbi);
5298         err = build_dirty_segmap(sbi);
5299         if (err)
5300                 return err;
5301
5302         err = sanity_check_curseg(sbi);
5303         if (err)
5304                 return err;
5305
5306         init_min_max_mtime(sbi);
5307         return 0;
5308 }
5309
5310 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
5311                 enum dirty_type dirty_type)
5312 {
5313         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5314
5315         mutex_lock(&dirty_i->seglist_lock);
5316         kvfree(dirty_i->dirty_segmap[dirty_type]);
5317         dirty_i->nr_dirty[dirty_type] = 0;
5318         mutex_unlock(&dirty_i->seglist_lock);
5319 }
5320
5321 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
5322 {
5323         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5324
5325         kvfree(dirty_i->victim_secmap);
5326 }
5327
5328 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
5329 {
5330         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5331         int i;
5332
5333         if (!dirty_i)
5334                 return;
5335
5336         /* discard pre-free/dirty segments list */
5337         for (i = 0; i < NR_DIRTY_TYPE; i++)
5338                 discard_dirty_segmap(sbi, i);
5339
5340         if (__is_large_section(sbi)) {
5341                 mutex_lock(&dirty_i->seglist_lock);
5342                 kvfree(dirty_i->dirty_secmap);
5343                 mutex_unlock(&dirty_i->seglist_lock);
5344         }
5345
5346         destroy_victim_secmap(sbi);
5347         SM_I(sbi)->dirty_info = NULL;
5348         kfree(dirty_i);
5349 }
5350
5351 static void destroy_curseg(struct f2fs_sb_info *sbi)
5352 {
5353         struct curseg_info *array = SM_I(sbi)->curseg_array;
5354         int i;
5355
5356         if (!array)
5357                 return;
5358         SM_I(sbi)->curseg_array = NULL;
5359         for (i = 0; i < NR_CURSEG_TYPE; i++) {
5360                 kfree(array[i].sum_blk);
5361                 kfree(array[i].journal);
5362         }
5363         kfree(array);
5364 }
5365
5366 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
5367 {
5368         struct free_segmap_info *free_i = SM_I(sbi)->free_info;
5369
5370         if (!free_i)
5371                 return;
5372         SM_I(sbi)->free_info = NULL;
5373         kvfree(free_i->free_segmap);
5374         kvfree(free_i->free_secmap);
5375         kfree(free_i);
5376 }
5377
5378 static void destroy_sit_info(struct f2fs_sb_info *sbi)
5379 {
5380         struct sit_info *sit_i = SIT_I(sbi);
5381
5382         if (!sit_i)
5383                 return;
5384
5385         if (sit_i->sentries)
5386                 kvfree(sit_i->bitmap);
5387         kfree(sit_i->tmp_map);
5388
5389         kvfree(sit_i->sentries);
5390         kvfree(sit_i->sec_entries);
5391         kvfree(sit_i->dirty_sentries_bitmap);
5392
5393         SM_I(sbi)->sit_info = NULL;
5394         kvfree(sit_i->sit_bitmap);
5395 #ifdef CONFIG_F2FS_CHECK_FS
5396         kvfree(sit_i->sit_bitmap_mir);
5397         kvfree(sit_i->invalid_segmap);
5398 #endif
5399         kfree(sit_i);
5400 }
5401
5402 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
5403 {
5404         struct f2fs_sm_info *sm_info = SM_I(sbi);
5405
5406         if (!sm_info)
5407                 return;
5408         f2fs_destroy_flush_cmd_control(sbi, true);
5409         destroy_discard_cmd_control(sbi);
5410         destroy_dirty_segmap(sbi);
5411         destroy_curseg(sbi);
5412         destroy_free_segmap(sbi);
5413         destroy_sit_info(sbi);
5414         sbi->sm_info = NULL;
5415         kfree(sm_info);
5416 }
5417
5418 int __init f2fs_create_segment_manager_caches(void)
5419 {
5420         discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry",
5421                         sizeof(struct discard_entry));
5422         if (!discard_entry_slab)
5423                 goto fail;
5424
5425         discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd",
5426                         sizeof(struct discard_cmd));
5427         if (!discard_cmd_slab)
5428                 goto destroy_discard_entry;
5429
5430         sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set",
5431                         sizeof(struct sit_entry_set));
5432         if (!sit_entry_set_slab)
5433                 goto destroy_discard_cmd;
5434
5435         inmem_entry_slab = f2fs_kmem_cache_create("f2fs_inmem_page_entry",
5436                         sizeof(struct inmem_pages));
5437         if (!inmem_entry_slab)
5438                 goto destroy_sit_entry_set;
5439         return 0;
5440
5441 destroy_sit_entry_set:
5442         kmem_cache_destroy(sit_entry_set_slab);
5443 destroy_discard_cmd:
5444         kmem_cache_destroy(discard_cmd_slab);
5445 destroy_discard_entry:
5446         kmem_cache_destroy(discard_entry_slab);
5447 fail:
5448         return -ENOMEM;
5449 }
5450
5451 void f2fs_destroy_segment_manager_caches(void)
5452 {
5453         kmem_cache_destroy(sit_entry_set_slab);
5454         kmem_cache_destroy(discard_cmd_slab);
5455         kmem_cache_destroy(discard_entry_slab);
5456         kmem_cache_destroy(inmem_entry_slab);
5457 }