Merge tag 'nfsd-4.17' of git://linux-nfs.org/~bfields/linux
[linux-2.6-microblaze.git] / fs / f2fs / node.c
1 /*
2  * fs/f2fs/node.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/mpage.h>
14 #include <linux/backing-dev.h>
15 #include <linux/blkdev.h>
16 #include <linux/pagevec.h>
17 #include <linux/swap.h>
18
19 #include "f2fs.h"
20 #include "node.h"
21 #include "segment.h"
22 #include "xattr.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25
26 #define on_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
27
28 static struct kmem_cache *nat_entry_slab;
29 static struct kmem_cache *free_nid_slab;
30 static struct kmem_cache *nat_entry_set_slab;
31
32 bool available_free_memory(struct f2fs_sb_info *sbi, int type)
33 {
34         struct f2fs_nm_info *nm_i = NM_I(sbi);
35         struct sysinfo val;
36         unsigned long avail_ram;
37         unsigned long mem_size = 0;
38         bool res = false;
39
40         si_meminfo(&val);
41
42         /* only uses low memory */
43         avail_ram = val.totalram - val.totalhigh;
44
45         /*
46          * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
47          */
48         if (type == FREE_NIDS) {
49                 mem_size = (nm_i->nid_cnt[FREE_NID] *
50                                 sizeof(struct free_nid)) >> PAGE_SHIFT;
51                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
52         } else if (type == NAT_ENTRIES) {
53                 mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
54                                                         PAGE_SHIFT;
55                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
56                 if (excess_cached_nats(sbi))
57                         res = false;
58         } else if (type == DIRTY_DENTS) {
59                 if (sbi->sb->s_bdi->wb.dirty_exceeded)
60                         return false;
61                 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
62                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
63         } else if (type == INO_ENTRIES) {
64                 int i;
65
66                 for (i = 0; i < MAX_INO_ENTRY; i++)
67                         mem_size += sbi->im[i].ino_num *
68                                                 sizeof(struct ino_entry);
69                 mem_size >>= PAGE_SHIFT;
70                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
71         } else if (type == EXTENT_CACHE) {
72                 mem_size = (atomic_read(&sbi->total_ext_tree) *
73                                 sizeof(struct extent_tree) +
74                                 atomic_read(&sbi->total_ext_node) *
75                                 sizeof(struct extent_node)) >> PAGE_SHIFT;
76                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
77         } else if (type == INMEM_PAGES) {
78                 /* it allows 20% / total_ram for inmemory pages */
79                 mem_size = get_pages(sbi, F2FS_INMEM_PAGES);
80                 res = mem_size < (val.totalram / 5);
81         } else {
82                 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
83                         return true;
84         }
85         return res;
86 }
87
88 static void clear_node_page_dirty(struct page *page)
89 {
90         struct address_space *mapping = page->mapping;
91         unsigned int long flags;
92
93         if (PageDirty(page)) {
94                 spin_lock_irqsave(&mapping->tree_lock, flags);
95                 radix_tree_tag_clear(&mapping->page_tree,
96                                 page_index(page),
97                                 PAGECACHE_TAG_DIRTY);
98                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
99
100                 clear_page_dirty_for_io(page);
101                 dec_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
102         }
103         ClearPageUptodate(page);
104 }
105
106 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
107 {
108         pgoff_t index = current_nat_addr(sbi, nid);
109         return get_meta_page(sbi, index);
110 }
111
112 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
113 {
114         struct page *src_page;
115         struct page *dst_page;
116         pgoff_t src_off;
117         pgoff_t dst_off;
118         void *src_addr;
119         void *dst_addr;
120         struct f2fs_nm_info *nm_i = NM_I(sbi);
121
122         src_off = current_nat_addr(sbi, nid);
123         dst_off = next_nat_addr(sbi, src_off);
124
125         /* get current nat block page with lock */
126         src_page = get_meta_page(sbi, src_off);
127         dst_page = grab_meta_page(sbi, dst_off);
128         f2fs_bug_on(sbi, PageDirty(src_page));
129
130         src_addr = page_address(src_page);
131         dst_addr = page_address(dst_page);
132         memcpy(dst_addr, src_addr, PAGE_SIZE);
133         set_page_dirty(dst_page);
134         f2fs_put_page(src_page, 1);
135
136         set_to_next_nat(nm_i, nid);
137
138         return dst_page;
139 }
140
141 static struct nat_entry *__alloc_nat_entry(nid_t nid, bool no_fail)
142 {
143         struct nat_entry *new;
144
145         if (no_fail)
146                 new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
147         else
148                 new = kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
149         if (new) {
150                 nat_set_nid(new, nid);
151                 nat_reset_flag(new);
152         }
153         return new;
154 }
155
156 static void __free_nat_entry(struct nat_entry *e)
157 {
158         kmem_cache_free(nat_entry_slab, e);
159 }
160
161 /* must be locked by nat_tree_lock */
162 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
163         struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
164 {
165         if (no_fail)
166                 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
167         else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
168                 return NULL;
169
170         if (raw_ne)
171                 node_info_from_raw_nat(&ne->ni, raw_ne);
172         list_add_tail(&ne->list, &nm_i->nat_entries);
173         nm_i->nat_cnt++;
174         return ne;
175 }
176
177 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
178 {
179         return radix_tree_lookup(&nm_i->nat_root, n);
180 }
181
182 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
183                 nid_t start, unsigned int nr, struct nat_entry **ep)
184 {
185         return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
186 }
187
188 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
189 {
190         list_del(&e->list);
191         radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
192         nm_i->nat_cnt--;
193         __free_nat_entry(e);
194 }
195
196 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
197                                                         struct nat_entry *ne)
198 {
199         nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
200         struct nat_entry_set *head;
201
202         head = radix_tree_lookup(&nm_i->nat_set_root, set);
203         if (!head) {
204                 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
205
206                 INIT_LIST_HEAD(&head->entry_list);
207                 INIT_LIST_HEAD(&head->set_list);
208                 head->set = set;
209                 head->entry_cnt = 0;
210                 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
211         }
212         return head;
213 }
214
215 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
216                                                 struct nat_entry *ne)
217 {
218         struct nat_entry_set *head;
219         bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
220
221         if (!new_ne)
222                 head = __grab_nat_entry_set(nm_i, ne);
223
224         /*
225          * update entry_cnt in below condition:
226          * 1. update NEW_ADDR to valid block address;
227          * 2. update old block address to new one;
228          */
229         if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
230                                 !get_nat_flag(ne, IS_DIRTY)))
231                 head->entry_cnt++;
232
233         set_nat_flag(ne, IS_PREALLOC, new_ne);
234
235         if (get_nat_flag(ne, IS_DIRTY))
236                 goto refresh_list;
237
238         nm_i->dirty_nat_cnt++;
239         set_nat_flag(ne, IS_DIRTY, true);
240 refresh_list:
241         if (new_ne)
242                 list_del_init(&ne->list);
243         else
244                 list_move_tail(&ne->list, &head->entry_list);
245 }
246
247 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
248                 struct nat_entry_set *set, struct nat_entry *ne)
249 {
250         list_move_tail(&ne->list, &nm_i->nat_entries);
251         set_nat_flag(ne, IS_DIRTY, false);
252         set->entry_cnt--;
253         nm_i->dirty_nat_cnt--;
254 }
255
256 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
257                 nid_t start, unsigned int nr, struct nat_entry_set **ep)
258 {
259         return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
260                                                         start, nr);
261 }
262
263 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
264 {
265         struct f2fs_nm_info *nm_i = NM_I(sbi);
266         struct nat_entry *e;
267         bool need = false;
268
269         down_read(&nm_i->nat_tree_lock);
270         e = __lookup_nat_cache(nm_i, nid);
271         if (e) {
272                 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
273                                 !get_nat_flag(e, HAS_FSYNCED_INODE))
274                         need = true;
275         }
276         up_read(&nm_i->nat_tree_lock);
277         return need;
278 }
279
280 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
281 {
282         struct f2fs_nm_info *nm_i = NM_I(sbi);
283         struct nat_entry *e;
284         bool is_cp = true;
285
286         down_read(&nm_i->nat_tree_lock);
287         e = __lookup_nat_cache(nm_i, nid);
288         if (e && !get_nat_flag(e, IS_CHECKPOINTED))
289                 is_cp = false;
290         up_read(&nm_i->nat_tree_lock);
291         return is_cp;
292 }
293
294 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
295 {
296         struct f2fs_nm_info *nm_i = NM_I(sbi);
297         struct nat_entry *e;
298         bool need_update = true;
299
300         down_read(&nm_i->nat_tree_lock);
301         e = __lookup_nat_cache(nm_i, ino);
302         if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
303                         (get_nat_flag(e, IS_CHECKPOINTED) ||
304                          get_nat_flag(e, HAS_FSYNCED_INODE)))
305                 need_update = false;
306         up_read(&nm_i->nat_tree_lock);
307         return need_update;
308 }
309
310 /* must be locked by nat_tree_lock */
311 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
312                                                 struct f2fs_nat_entry *ne)
313 {
314         struct f2fs_nm_info *nm_i = NM_I(sbi);
315         struct nat_entry *new, *e;
316
317         new = __alloc_nat_entry(nid, false);
318         if (!new)
319                 return;
320
321         down_write(&nm_i->nat_tree_lock);
322         e = __lookup_nat_cache(nm_i, nid);
323         if (!e)
324                 e = __init_nat_entry(nm_i, new, ne, false);
325         else
326                 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
327                                 nat_get_blkaddr(e) !=
328                                         le32_to_cpu(ne->block_addr) ||
329                                 nat_get_version(e) != ne->version);
330         up_write(&nm_i->nat_tree_lock);
331         if (e != new)
332                 __free_nat_entry(new);
333 }
334
335 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
336                         block_t new_blkaddr, bool fsync_done)
337 {
338         struct f2fs_nm_info *nm_i = NM_I(sbi);
339         struct nat_entry *e;
340         struct nat_entry *new = __alloc_nat_entry(ni->nid, true);
341
342         down_write(&nm_i->nat_tree_lock);
343         e = __lookup_nat_cache(nm_i, ni->nid);
344         if (!e) {
345                 e = __init_nat_entry(nm_i, new, NULL, true);
346                 copy_node_info(&e->ni, ni);
347                 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
348         } else if (new_blkaddr == NEW_ADDR) {
349                 /*
350                  * when nid is reallocated,
351                  * previous nat entry can be remained in nat cache.
352                  * So, reinitialize it with new information.
353                  */
354                 copy_node_info(&e->ni, ni);
355                 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
356         }
357         /* let's free early to reduce memory consumption */
358         if (e != new)
359                 __free_nat_entry(new);
360
361         /* sanity check */
362         f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
363         f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
364                         new_blkaddr == NULL_ADDR);
365         f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
366                         new_blkaddr == NEW_ADDR);
367         f2fs_bug_on(sbi, nat_get_blkaddr(e) != NEW_ADDR &&
368                         nat_get_blkaddr(e) != NULL_ADDR &&
369                         new_blkaddr == NEW_ADDR);
370
371         /* increment version no as node is removed */
372         if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
373                 unsigned char version = nat_get_version(e);
374                 nat_set_version(e, inc_node_version(version));
375         }
376
377         /* change address */
378         nat_set_blkaddr(e, new_blkaddr);
379         if (new_blkaddr == NEW_ADDR || new_blkaddr == NULL_ADDR)
380                 set_nat_flag(e, IS_CHECKPOINTED, false);
381         __set_nat_cache_dirty(nm_i, e);
382
383         /* update fsync_mark if its inode nat entry is still alive */
384         if (ni->nid != ni->ino)
385                 e = __lookup_nat_cache(nm_i, ni->ino);
386         if (e) {
387                 if (fsync_done && ni->nid == ni->ino)
388                         set_nat_flag(e, HAS_FSYNCED_INODE, true);
389                 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
390         }
391         up_write(&nm_i->nat_tree_lock);
392 }
393
394 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
395 {
396         struct f2fs_nm_info *nm_i = NM_I(sbi);
397         int nr = nr_shrink;
398
399         if (!down_write_trylock(&nm_i->nat_tree_lock))
400                 return 0;
401
402         while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
403                 struct nat_entry *ne;
404                 ne = list_first_entry(&nm_i->nat_entries,
405                                         struct nat_entry, list);
406                 __del_from_nat_cache(nm_i, ne);
407                 nr_shrink--;
408         }
409         up_write(&nm_i->nat_tree_lock);
410         return nr - nr_shrink;
411 }
412
413 /*
414  * This function always returns success
415  */
416 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
417 {
418         struct f2fs_nm_info *nm_i = NM_I(sbi);
419         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
420         struct f2fs_journal *journal = curseg->journal;
421         nid_t start_nid = START_NID(nid);
422         struct f2fs_nat_block *nat_blk;
423         struct page *page = NULL;
424         struct f2fs_nat_entry ne;
425         struct nat_entry *e;
426         pgoff_t index;
427         int i;
428
429         ni->nid = nid;
430
431         /* Check nat cache */
432         down_read(&nm_i->nat_tree_lock);
433         e = __lookup_nat_cache(nm_i, nid);
434         if (e) {
435                 ni->ino = nat_get_ino(e);
436                 ni->blk_addr = nat_get_blkaddr(e);
437                 ni->version = nat_get_version(e);
438                 up_read(&nm_i->nat_tree_lock);
439                 return;
440         }
441
442         memset(&ne, 0, sizeof(struct f2fs_nat_entry));
443
444         /* Check current segment summary */
445         down_read(&curseg->journal_rwsem);
446         i = lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
447         if (i >= 0) {
448                 ne = nat_in_journal(journal, i);
449                 node_info_from_raw_nat(ni, &ne);
450         }
451         up_read(&curseg->journal_rwsem);
452         if (i >= 0) {
453                 up_read(&nm_i->nat_tree_lock);
454                 goto cache;
455         }
456
457         /* Fill node_info from nat page */
458         index = current_nat_addr(sbi, nid);
459         up_read(&nm_i->nat_tree_lock);
460
461         page = get_meta_page(sbi, index);
462         nat_blk = (struct f2fs_nat_block *)page_address(page);
463         ne = nat_blk->entries[nid - start_nid];
464         node_info_from_raw_nat(ni, &ne);
465         f2fs_put_page(page, 1);
466 cache:
467         /* cache nat entry */
468         cache_nat_entry(sbi, nid, &ne);
469 }
470
471 /*
472  * readahead MAX_RA_NODE number of node pages.
473  */
474 static void ra_node_pages(struct page *parent, int start, int n)
475 {
476         struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
477         struct blk_plug plug;
478         int i, end;
479         nid_t nid;
480
481         blk_start_plug(&plug);
482
483         /* Then, try readahead for siblings of the desired node */
484         end = start + n;
485         end = min(end, NIDS_PER_BLOCK);
486         for (i = start; i < end; i++) {
487                 nid = get_nid(parent, i, false);
488                 ra_node_page(sbi, nid);
489         }
490
491         blk_finish_plug(&plug);
492 }
493
494 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
495 {
496         const long direct_index = ADDRS_PER_INODE(dn->inode);
497         const long direct_blks = ADDRS_PER_BLOCK;
498         const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
499         unsigned int skipped_unit = ADDRS_PER_BLOCK;
500         int cur_level = dn->cur_level;
501         int max_level = dn->max_level;
502         pgoff_t base = 0;
503
504         if (!dn->max_level)
505                 return pgofs + 1;
506
507         while (max_level-- > cur_level)
508                 skipped_unit *= NIDS_PER_BLOCK;
509
510         switch (dn->max_level) {
511         case 3:
512                 base += 2 * indirect_blks;
513         case 2:
514                 base += 2 * direct_blks;
515         case 1:
516                 base += direct_index;
517                 break;
518         default:
519                 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
520         }
521
522         return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
523 }
524
525 /*
526  * The maximum depth is four.
527  * Offset[0] will have raw inode offset.
528  */
529 static int get_node_path(struct inode *inode, long block,
530                                 int offset[4], unsigned int noffset[4])
531 {
532         const long direct_index = ADDRS_PER_INODE(inode);
533         const long direct_blks = ADDRS_PER_BLOCK;
534         const long dptrs_per_blk = NIDS_PER_BLOCK;
535         const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
536         const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
537         int n = 0;
538         int level = 0;
539
540         noffset[0] = 0;
541
542         if (block < direct_index) {
543                 offset[n] = block;
544                 goto got;
545         }
546         block -= direct_index;
547         if (block < direct_blks) {
548                 offset[n++] = NODE_DIR1_BLOCK;
549                 noffset[n] = 1;
550                 offset[n] = block;
551                 level = 1;
552                 goto got;
553         }
554         block -= direct_blks;
555         if (block < direct_blks) {
556                 offset[n++] = NODE_DIR2_BLOCK;
557                 noffset[n] = 2;
558                 offset[n] = block;
559                 level = 1;
560                 goto got;
561         }
562         block -= direct_blks;
563         if (block < indirect_blks) {
564                 offset[n++] = NODE_IND1_BLOCK;
565                 noffset[n] = 3;
566                 offset[n++] = block / direct_blks;
567                 noffset[n] = 4 + offset[n - 1];
568                 offset[n] = block % direct_blks;
569                 level = 2;
570                 goto got;
571         }
572         block -= indirect_blks;
573         if (block < indirect_blks) {
574                 offset[n++] = NODE_IND2_BLOCK;
575                 noffset[n] = 4 + dptrs_per_blk;
576                 offset[n++] = block / direct_blks;
577                 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
578                 offset[n] = block % direct_blks;
579                 level = 2;
580                 goto got;
581         }
582         block -= indirect_blks;
583         if (block < dindirect_blks) {
584                 offset[n++] = NODE_DIND_BLOCK;
585                 noffset[n] = 5 + (dptrs_per_blk * 2);
586                 offset[n++] = block / indirect_blks;
587                 noffset[n] = 6 + (dptrs_per_blk * 2) +
588                               offset[n - 1] * (dptrs_per_blk + 1);
589                 offset[n++] = (block / direct_blks) % dptrs_per_blk;
590                 noffset[n] = 7 + (dptrs_per_blk * 2) +
591                               offset[n - 2] * (dptrs_per_blk + 1) +
592                               offset[n - 1];
593                 offset[n] = block % direct_blks;
594                 level = 3;
595                 goto got;
596         } else {
597                 return -E2BIG;
598         }
599 got:
600         return level;
601 }
602
603 /*
604  * Caller should call f2fs_put_dnode(dn).
605  * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
606  * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
607  * In the case of RDONLY_NODE, we don't need to care about mutex.
608  */
609 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
610 {
611         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
612         struct page *npage[4];
613         struct page *parent = NULL;
614         int offset[4];
615         unsigned int noffset[4];
616         nid_t nids[4];
617         int level, i = 0;
618         int err = 0;
619
620         level = get_node_path(dn->inode, index, offset, noffset);
621         if (level < 0)
622                 return level;
623
624         nids[0] = dn->inode->i_ino;
625         npage[0] = dn->inode_page;
626
627         if (!npage[0]) {
628                 npage[0] = get_node_page(sbi, nids[0]);
629                 if (IS_ERR(npage[0]))
630                         return PTR_ERR(npage[0]);
631         }
632
633         /* if inline_data is set, should not report any block indices */
634         if (f2fs_has_inline_data(dn->inode) && index) {
635                 err = -ENOENT;
636                 f2fs_put_page(npage[0], 1);
637                 goto release_out;
638         }
639
640         parent = npage[0];
641         if (level != 0)
642                 nids[1] = get_nid(parent, offset[0], true);
643         dn->inode_page = npage[0];
644         dn->inode_page_locked = true;
645
646         /* get indirect or direct nodes */
647         for (i = 1; i <= level; i++) {
648                 bool done = false;
649
650                 if (!nids[i] && mode == ALLOC_NODE) {
651                         /* alloc new node */
652                         if (!alloc_nid(sbi, &(nids[i]))) {
653                                 err = -ENOSPC;
654                                 goto release_pages;
655                         }
656
657                         dn->nid = nids[i];
658                         npage[i] = new_node_page(dn, noffset[i]);
659                         if (IS_ERR(npage[i])) {
660                                 alloc_nid_failed(sbi, nids[i]);
661                                 err = PTR_ERR(npage[i]);
662                                 goto release_pages;
663                         }
664
665                         set_nid(parent, offset[i - 1], nids[i], i == 1);
666                         alloc_nid_done(sbi, nids[i]);
667                         done = true;
668                 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
669                         npage[i] = get_node_page_ra(parent, offset[i - 1]);
670                         if (IS_ERR(npage[i])) {
671                                 err = PTR_ERR(npage[i]);
672                                 goto release_pages;
673                         }
674                         done = true;
675                 }
676                 if (i == 1) {
677                         dn->inode_page_locked = false;
678                         unlock_page(parent);
679                 } else {
680                         f2fs_put_page(parent, 1);
681                 }
682
683                 if (!done) {
684                         npage[i] = get_node_page(sbi, nids[i]);
685                         if (IS_ERR(npage[i])) {
686                                 err = PTR_ERR(npage[i]);
687                                 f2fs_put_page(npage[0], 0);
688                                 goto release_out;
689                         }
690                 }
691                 if (i < level) {
692                         parent = npage[i];
693                         nids[i + 1] = get_nid(parent, offset[i], false);
694                 }
695         }
696         dn->nid = nids[level];
697         dn->ofs_in_node = offset[level];
698         dn->node_page = npage[level];
699         dn->data_blkaddr = datablock_addr(dn->inode,
700                                 dn->node_page, dn->ofs_in_node);
701         return 0;
702
703 release_pages:
704         f2fs_put_page(parent, 1);
705         if (i > 1)
706                 f2fs_put_page(npage[0], 0);
707 release_out:
708         dn->inode_page = NULL;
709         dn->node_page = NULL;
710         if (err == -ENOENT) {
711                 dn->cur_level = i;
712                 dn->max_level = level;
713                 dn->ofs_in_node = offset[level];
714         }
715         return err;
716 }
717
718 static void truncate_node(struct dnode_of_data *dn)
719 {
720         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
721         struct node_info ni;
722
723         get_node_info(sbi, dn->nid, &ni);
724
725         /* Deallocate node address */
726         invalidate_blocks(sbi, ni.blk_addr);
727         dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
728         set_node_addr(sbi, &ni, NULL_ADDR, false);
729
730         if (dn->nid == dn->inode->i_ino) {
731                 remove_orphan_inode(sbi, dn->nid);
732                 dec_valid_inode_count(sbi);
733                 f2fs_inode_synced(dn->inode);
734         }
735
736         clear_node_page_dirty(dn->node_page);
737         set_sbi_flag(sbi, SBI_IS_DIRTY);
738
739         f2fs_put_page(dn->node_page, 1);
740
741         invalidate_mapping_pages(NODE_MAPPING(sbi),
742                         dn->node_page->index, dn->node_page->index);
743
744         dn->node_page = NULL;
745         trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
746 }
747
748 static int truncate_dnode(struct dnode_of_data *dn)
749 {
750         struct page *page;
751
752         if (dn->nid == 0)
753                 return 1;
754
755         /* get direct node */
756         page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
757         if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
758                 return 1;
759         else if (IS_ERR(page))
760                 return PTR_ERR(page);
761
762         /* Make dnode_of_data for parameter */
763         dn->node_page = page;
764         dn->ofs_in_node = 0;
765         truncate_data_blocks(dn);
766         truncate_node(dn);
767         return 1;
768 }
769
770 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
771                                                 int ofs, int depth)
772 {
773         struct dnode_of_data rdn = *dn;
774         struct page *page;
775         struct f2fs_node *rn;
776         nid_t child_nid;
777         unsigned int child_nofs;
778         int freed = 0;
779         int i, ret;
780
781         if (dn->nid == 0)
782                 return NIDS_PER_BLOCK + 1;
783
784         trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
785
786         page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
787         if (IS_ERR(page)) {
788                 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
789                 return PTR_ERR(page);
790         }
791
792         ra_node_pages(page, ofs, NIDS_PER_BLOCK);
793
794         rn = F2FS_NODE(page);
795         if (depth < 3) {
796                 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
797                         child_nid = le32_to_cpu(rn->in.nid[i]);
798                         if (child_nid == 0)
799                                 continue;
800                         rdn.nid = child_nid;
801                         ret = truncate_dnode(&rdn);
802                         if (ret < 0)
803                                 goto out_err;
804                         if (set_nid(page, i, 0, false))
805                                 dn->node_changed = true;
806                 }
807         } else {
808                 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
809                 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
810                         child_nid = le32_to_cpu(rn->in.nid[i]);
811                         if (child_nid == 0) {
812                                 child_nofs += NIDS_PER_BLOCK + 1;
813                                 continue;
814                         }
815                         rdn.nid = child_nid;
816                         ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
817                         if (ret == (NIDS_PER_BLOCK + 1)) {
818                                 if (set_nid(page, i, 0, false))
819                                         dn->node_changed = true;
820                                 child_nofs += ret;
821                         } else if (ret < 0 && ret != -ENOENT) {
822                                 goto out_err;
823                         }
824                 }
825                 freed = child_nofs;
826         }
827
828         if (!ofs) {
829                 /* remove current indirect node */
830                 dn->node_page = page;
831                 truncate_node(dn);
832                 freed++;
833         } else {
834                 f2fs_put_page(page, 1);
835         }
836         trace_f2fs_truncate_nodes_exit(dn->inode, freed);
837         return freed;
838
839 out_err:
840         f2fs_put_page(page, 1);
841         trace_f2fs_truncate_nodes_exit(dn->inode, ret);
842         return ret;
843 }
844
845 static int truncate_partial_nodes(struct dnode_of_data *dn,
846                         struct f2fs_inode *ri, int *offset, int depth)
847 {
848         struct page *pages[2];
849         nid_t nid[3];
850         nid_t child_nid;
851         int err = 0;
852         int i;
853         int idx = depth - 2;
854
855         nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
856         if (!nid[0])
857                 return 0;
858
859         /* get indirect nodes in the path */
860         for (i = 0; i < idx + 1; i++) {
861                 /* reference count'll be increased */
862                 pages[i] = get_node_page(F2FS_I_SB(dn->inode), nid[i]);
863                 if (IS_ERR(pages[i])) {
864                         err = PTR_ERR(pages[i]);
865                         idx = i - 1;
866                         goto fail;
867                 }
868                 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
869         }
870
871         ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
872
873         /* free direct nodes linked to a partial indirect node */
874         for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
875                 child_nid = get_nid(pages[idx], i, false);
876                 if (!child_nid)
877                         continue;
878                 dn->nid = child_nid;
879                 err = truncate_dnode(dn);
880                 if (err < 0)
881                         goto fail;
882                 if (set_nid(pages[idx], i, 0, false))
883                         dn->node_changed = true;
884         }
885
886         if (offset[idx + 1] == 0) {
887                 dn->node_page = pages[idx];
888                 dn->nid = nid[idx];
889                 truncate_node(dn);
890         } else {
891                 f2fs_put_page(pages[idx], 1);
892         }
893         offset[idx]++;
894         offset[idx + 1] = 0;
895         idx--;
896 fail:
897         for (i = idx; i >= 0; i--)
898                 f2fs_put_page(pages[i], 1);
899
900         trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
901
902         return err;
903 }
904
905 /*
906  * All the block addresses of data and nodes should be nullified.
907  */
908 int truncate_inode_blocks(struct inode *inode, pgoff_t from)
909 {
910         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
911         int err = 0, cont = 1;
912         int level, offset[4], noffset[4];
913         unsigned int nofs = 0;
914         struct f2fs_inode *ri;
915         struct dnode_of_data dn;
916         struct page *page;
917
918         trace_f2fs_truncate_inode_blocks_enter(inode, from);
919
920         level = get_node_path(inode, from, offset, noffset);
921         if (level < 0)
922                 return level;
923
924         page = get_node_page(sbi, inode->i_ino);
925         if (IS_ERR(page)) {
926                 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
927                 return PTR_ERR(page);
928         }
929
930         set_new_dnode(&dn, inode, page, NULL, 0);
931         unlock_page(page);
932
933         ri = F2FS_INODE(page);
934         switch (level) {
935         case 0:
936         case 1:
937                 nofs = noffset[1];
938                 break;
939         case 2:
940                 nofs = noffset[1];
941                 if (!offset[level - 1])
942                         goto skip_partial;
943                 err = truncate_partial_nodes(&dn, ri, offset, level);
944                 if (err < 0 && err != -ENOENT)
945                         goto fail;
946                 nofs += 1 + NIDS_PER_BLOCK;
947                 break;
948         case 3:
949                 nofs = 5 + 2 * NIDS_PER_BLOCK;
950                 if (!offset[level - 1])
951                         goto skip_partial;
952                 err = truncate_partial_nodes(&dn, ri, offset, level);
953                 if (err < 0 && err != -ENOENT)
954                         goto fail;
955                 break;
956         default:
957                 BUG();
958         }
959
960 skip_partial:
961         while (cont) {
962                 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
963                 switch (offset[0]) {
964                 case NODE_DIR1_BLOCK:
965                 case NODE_DIR2_BLOCK:
966                         err = truncate_dnode(&dn);
967                         break;
968
969                 case NODE_IND1_BLOCK:
970                 case NODE_IND2_BLOCK:
971                         err = truncate_nodes(&dn, nofs, offset[1], 2);
972                         break;
973
974                 case NODE_DIND_BLOCK:
975                         err = truncate_nodes(&dn, nofs, offset[1], 3);
976                         cont = 0;
977                         break;
978
979                 default:
980                         BUG();
981                 }
982                 if (err < 0 && err != -ENOENT)
983                         goto fail;
984                 if (offset[1] == 0 &&
985                                 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
986                         lock_page(page);
987                         BUG_ON(page->mapping != NODE_MAPPING(sbi));
988                         f2fs_wait_on_page_writeback(page, NODE, true);
989                         ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
990                         set_page_dirty(page);
991                         unlock_page(page);
992                 }
993                 offset[1] = 0;
994                 offset[0]++;
995                 nofs += err;
996         }
997 fail:
998         f2fs_put_page(page, 0);
999         trace_f2fs_truncate_inode_blocks_exit(inode, err);
1000         return err > 0 ? 0 : err;
1001 }
1002
1003 /* caller must lock inode page */
1004 int truncate_xattr_node(struct inode *inode)
1005 {
1006         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1007         nid_t nid = F2FS_I(inode)->i_xattr_nid;
1008         struct dnode_of_data dn;
1009         struct page *npage;
1010
1011         if (!nid)
1012                 return 0;
1013
1014         npage = get_node_page(sbi, nid);
1015         if (IS_ERR(npage))
1016                 return PTR_ERR(npage);
1017
1018         f2fs_i_xnid_write(inode, 0);
1019
1020         set_new_dnode(&dn, inode, NULL, npage, nid);
1021         truncate_node(&dn);
1022         return 0;
1023 }
1024
1025 /*
1026  * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1027  * f2fs_unlock_op().
1028  */
1029 int remove_inode_page(struct inode *inode)
1030 {
1031         struct dnode_of_data dn;
1032         int err;
1033
1034         set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1035         err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1036         if (err)
1037                 return err;
1038
1039         err = truncate_xattr_node(inode);
1040         if (err) {
1041                 f2fs_put_dnode(&dn);
1042                 return err;
1043         }
1044
1045         /* remove potential inline_data blocks */
1046         if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1047                                 S_ISLNK(inode->i_mode))
1048                 truncate_data_blocks_range(&dn, 1);
1049
1050         /* 0 is possible, after f2fs_new_inode() has failed */
1051         f2fs_bug_on(F2FS_I_SB(inode),
1052                         inode->i_blocks != 0 && inode->i_blocks != 8);
1053
1054         /* will put inode & node pages */
1055         truncate_node(&dn);
1056         return 0;
1057 }
1058
1059 struct page *new_inode_page(struct inode *inode)
1060 {
1061         struct dnode_of_data dn;
1062
1063         /* allocate inode page for new inode */
1064         set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1065
1066         /* caller should f2fs_put_page(page, 1); */
1067         return new_node_page(&dn, 0);
1068 }
1069
1070 struct page *new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1071 {
1072         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1073         struct node_info new_ni;
1074         struct page *page;
1075         int err;
1076
1077         if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1078                 return ERR_PTR(-EPERM);
1079
1080         page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1081         if (!page)
1082                 return ERR_PTR(-ENOMEM);
1083
1084         if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1085                 goto fail;
1086
1087 #ifdef CONFIG_F2FS_CHECK_FS
1088         get_node_info(sbi, dn->nid, &new_ni);
1089         f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR);
1090 #endif
1091         new_ni.nid = dn->nid;
1092         new_ni.ino = dn->inode->i_ino;
1093         new_ni.blk_addr = NULL_ADDR;
1094         new_ni.flag = 0;
1095         new_ni.version = 0;
1096         set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1097
1098         f2fs_wait_on_page_writeback(page, NODE, true);
1099         fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1100         set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1101         if (!PageUptodate(page))
1102                 SetPageUptodate(page);
1103         if (set_page_dirty(page))
1104                 dn->node_changed = true;
1105
1106         if (f2fs_has_xattr_block(ofs))
1107                 f2fs_i_xnid_write(dn->inode, dn->nid);
1108
1109         if (ofs == 0)
1110                 inc_valid_inode_count(sbi);
1111         return page;
1112
1113 fail:
1114         clear_node_page_dirty(page);
1115         f2fs_put_page(page, 1);
1116         return ERR_PTR(err);
1117 }
1118
1119 /*
1120  * Caller should do after getting the following values.
1121  * 0: f2fs_put_page(page, 0)
1122  * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1123  */
1124 static int read_node_page(struct page *page, int op_flags)
1125 {
1126         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1127         struct node_info ni;
1128         struct f2fs_io_info fio = {
1129                 .sbi = sbi,
1130                 .type = NODE,
1131                 .op = REQ_OP_READ,
1132                 .op_flags = op_flags,
1133                 .page = page,
1134                 .encrypted_page = NULL,
1135         };
1136
1137         if (PageUptodate(page))
1138                 return LOCKED_PAGE;
1139
1140         get_node_info(sbi, page->index, &ni);
1141
1142         if (unlikely(ni.blk_addr == NULL_ADDR)) {
1143                 ClearPageUptodate(page);
1144                 return -ENOENT;
1145         }
1146
1147         fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1148         return f2fs_submit_page_bio(&fio);
1149 }
1150
1151 /*
1152  * Readahead a node page
1153  */
1154 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1155 {
1156         struct page *apage;
1157         int err;
1158
1159         if (!nid)
1160                 return;
1161         f2fs_bug_on(sbi, check_nid_range(sbi, nid));
1162
1163         rcu_read_lock();
1164         apage = radix_tree_lookup(&NODE_MAPPING(sbi)->page_tree, nid);
1165         rcu_read_unlock();
1166         if (apage)
1167                 return;
1168
1169         apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1170         if (!apage)
1171                 return;
1172
1173         err = read_node_page(apage, REQ_RAHEAD);
1174         f2fs_put_page(apage, err ? 1 : 0);
1175 }
1176
1177 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1178                                         struct page *parent, int start)
1179 {
1180         struct page *page;
1181         int err;
1182
1183         if (!nid)
1184                 return ERR_PTR(-ENOENT);
1185         f2fs_bug_on(sbi, check_nid_range(sbi, nid));
1186 repeat:
1187         page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1188         if (!page)
1189                 return ERR_PTR(-ENOMEM);
1190
1191         err = read_node_page(page, 0);
1192         if (err < 0) {
1193                 f2fs_put_page(page, 1);
1194                 return ERR_PTR(err);
1195         } else if (err == LOCKED_PAGE) {
1196                 err = 0;
1197                 goto page_hit;
1198         }
1199
1200         if (parent)
1201                 ra_node_pages(parent, start + 1, MAX_RA_NODE);
1202
1203         lock_page(page);
1204
1205         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1206                 f2fs_put_page(page, 1);
1207                 goto repeat;
1208         }
1209
1210         if (unlikely(!PageUptodate(page))) {
1211                 err = -EIO;
1212                 goto out_err;
1213         }
1214
1215         if (!f2fs_inode_chksum_verify(sbi, page)) {
1216                 err = -EBADMSG;
1217                 goto out_err;
1218         }
1219 page_hit:
1220         if(unlikely(nid != nid_of_node(page))) {
1221                 f2fs_msg(sbi->sb, KERN_WARNING, "inconsistent node block, "
1222                         "nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1223                         nid, nid_of_node(page), ino_of_node(page),
1224                         ofs_of_node(page), cpver_of_node(page),
1225                         next_blkaddr_of_node(page));
1226                 err = -EINVAL;
1227 out_err:
1228                 ClearPageUptodate(page);
1229                 f2fs_put_page(page, 1);
1230                 return ERR_PTR(err);
1231         }
1232         return page;
1233 }
1234
1235 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1236 {
1237         return __get_node_page(sbi, nid, NULL, 0);
1238 }
1239
1240 struct page *get_node_page_ra(struct page *parent, int start)
1241 {
1242         struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1243         nid_t nid = get_nid(parent, start, false);
1244
1245         return __get_node_page(sbi, nid, parent, start);
1246 }
1247
1248 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1249 {
1250         struct inode *inode;
1251         struct page *page;
1252         int ret;
1253
1254         /* should flush inline_data before evict_inode */
1255         inode = ilookup(sbi->sb, ino);
1256         if (!inode)
1257                 return;
1258
1259         page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1260                                         FGP_LOCK|FGP_NOWAIT, 0);
1261         if (!page)
1262                 goto iput_out;
1263
1264         if (!PageUptodate(page))
1265                 goto page_out;
1266
1267         if (!PageDirty(page))
1268                 goto page_out;
1269
1270         if (!clear_page_dirty_for_io(page))
1271                 goto page_out;
1272
1273         ret = f2fs_write_inline_data(inode, page);
1274         inode_dec_dirty_pages(inode);
1275         remove_dirty_inode(inode);
1276         if (ret)
1277                 set_page_dirty(page);
1278 page_out:
1279         f2fs_put_page(page, 1);
1280 iput_out:
1281         iput(inode);
1282 }
1283
1284 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1285 {
1286         pgoff_t index;
1287         struct pagevec pvec;
1288         struct page *last_page = NULL;
1289         int nr_pages;
1290
1291         pagevec_init(&pvec);
1292         index = 0;
1293
1294         while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1295                                 PAGECACHE_TAG_DIRTY))) {
1296                 int i;
1297
1298                 for (i = 0; i < nr_pages; i++) {
1299                         struct page *page = pvec.pages[i];
1300
1301                         if (unlikely(f2fs_cp_error(sbi))) {
1302                                 f2fs_put_page(last_page, 0);
1303                                 pagevec_release(&pvec);
1304                                 return ERR_PTR(-EIO);
1305                         }
1306
1307                         if (!IS_DNODE(page) || !is_cold_node(page))
1308                                 continue;
1309                         if (ino_of_node(page) != ino)
1310                                 continue;
1311
1312                         lock_page(page);
1313
1314                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1315 continue_unlock:
1316                                 unlock_page(page);
1317                                 continue;
1318                         }
1319                         if (ino_of_node(page) != ino)
1320                                 goto continue_unlock;
1321
1322                         if (!PageDirty(page)) {
1323                                 /* someone wrote it for us */
1324                                 goto continue_unlock;
1325                         }
1326
1327                         if (last_page)
1328                                 f2fs_put_page(last_page, 0);
1329
1330                         get_page(page);
1331                         last_page = page;
1332                         unlock_page(page);
1333                 }
1334                 pagevec_release(&pvec);
1335                 cond_resched();
1336         }
1337         return last_page;
1338 }
1339
1340 static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1341                                 struct writeback_control *wbc, bool do_balance,
1342                                 enum iostat_type io_type)
1343 {
1344         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1345         nid_t nid;
1346         struct node_info ni;
1347         struct f2fs_io_info fio = {
1348                 .sbi = sbi,
1349                 .ino = ino_of_node(page),
1350                 .type = NODE,
1351                 .op = REQ_OP_WRITE,
1352                 .op_flags = wbc_to_write_flags(wbc),
1353                 .page = page,
1354                 .encrypted_page = NULL,
1355                 .submitted = false,
1356                 .io_type = io_type,
1357                 .io_wbc = wbc,
1358         };
1359
1360         trace_f2fs_writepage(page, NODE);
1361
1362         if (unlikely(f2fs_cp_error(sbi))) {
1363                 dec_page_count(sbi, F2FS_DIRTY_NODES);
1364                 unlock_page(page);
1365                 return 0;
1366         }
1367
1368         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1369                 goto redirty_out;
1370
1371         /* get old block addr of this node page */
1372         nid = nid_of_node(page);
1373         f2fs_bug_on(sbi, page->index != nid);
1374
1375         if (wbc->for_reclaim) {
1376                 if (!down_read_trylock(&sbi->node_write))
1377                         goto redirty_out;
1378         } else {
1379                 down_read(&sbi->node_write);
1380         }
1381
1382         get_node_info(sbi, nid, &ni);
1383
1384         /* This page is already truncated */
1385         if (unlikely(ni.blk_addr == NULL_ADDR)) {
1386                 ClearPageUptodate(page);
1387                 dec_page_count(sbi, F2FS_DIRTY_NODES);
1388                 up_read(&sbi->node_write);
1389                 unlock_page(page);
1390                 return 0;
1391         }
1392
1393         if (atomic && !test_opt(sbi, NOBARRIER))
1394                 fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1395
1396         set_page_writeback(page);
1397         fio.old_blkaddr = ni.blk_addr;
1398         write_node_page(nid, &fio);
1399         set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1400         dec_page_count(sbi, F2FS_DIRTY_NODES);
1401         up_read(&sbi->node_write);
1402
1403         if (wbc->for_reclaim) {
1404                 f2fs_submit_merged_write_cond(sbi, page->mapping->host, 0,
1405                                                 page->index, NODE);
1406                 submitted = NULL;
1407         }
1408
1409         unlock_page(page);
1410
1411         if (unlikely(f2fs_cp_error(sbi))) {
1412                 f2fs_submit_merged_write(sbi, NODE);
1413                 submitted = NULL;
1414         }
1415         if (submitted)
1416                 *submitted = fio.submitted;
1417
1418         if (do_balance)
1419                 f2fs_balance_fs(sbi, false);
1420         return 0;
1421
1422 redirty_out:
1423         redirty_page_for_writepage(wbc, page);
1424         return AOP_WRITEPAGE_ACTIVATE;
1425 }
1426
1427 void move_node_page(struct page *node_page, int gc_type)
1428 {
1429         if (gc_type == FG_GC) {
1430                 struct writeback_control wbc = {
1431                         .sync_mode = WB_SYNC_ALL,
1432                         .nr_to_write = 1,
1433                         .for_reclaim = 0,
1434                 };
1435
1436                 set_page_dirty(node_page);
1437                 f2fs_wait_on_page_writeback(node_page, NODE, true);
1438
1439                 f2fs_bug_on(F2FS_P_SB(node_page), PageWriteback(node_page));
1440                 if (!clear_page_dirty_for_io(node_page))
1441                         goto out_page;
1442
1443                 if (__write_node_page(node_page, false, NULL,
1444                                         &wbc, false, FS_GC_NODE_IO))
1445                         unlock_page(node_page);
1446                 goto release_page;
1447         } else {
1448                 /* set page dirty and write it */
1449                 if (!PageWriteback(node_page))
1450                         set_page_dirty(node_page);
1451         }
1452 out_page:
1453         unlock_page(node_page);
1454 release_page:
1455         f2fs_put_page(node_page, 0);
1456 }
1457
1458 static int f2fs_write_node_page(struct page *page,
1459                                 struct writeback_control *wbc)
1460 {
1461         return __write_node_page(page, false, NULL, wbc, false, FS_NODE_IO);
1462 }
1463
1464 int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1465                         struct writeback_control *wbc, bool atomic)
1466 {
1467         pgoff_t index;
1468         pgoff_t last_idx = ULONG_MAX;
1469         struct pagevec pvec;
1470         int ret = 0;
1471         struct page *last_page = NULL;
1472         bool marked = false;
1473         nid_t ino = inode->i_ino;
1474         int nr_pages;
1475
1476         if (atomic) {
1477                 last_page = last_fsync_dnode(sbi, ino);
1478                 if (IS_ERR_OR_NULL(last_page))
1479                         return PTR_ERR_OR_ZERO(last_page);
1480         }
1481 retry:
1482         pagevec_init(&pvec);
1483         index = 0;
1484
1485         while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1486                                 PAGECACHE_TAG_DIRTY))) {
1487                 int i;
1488
1489                 for (i = 0; i < nr_pages; i++) {
1490                         struct page *page = pvec.pages[i];
1491                         bool submitted = false;
1492
1493                         if (unlikely(f2fs_cp_error(sbi))) {
1494                                 f2fs_put_page(last_page, 0);
1495                                 pagevec_release(&pvec);
1496                                 ret = -EIO;
1497                                 goto out;
1498                         }
1499
1500                         if (!IS_DNODE(page) || !is_cold_node(page))
1501                                 continue;
1502                         if (ino_of_node(page) != ino)
1503                                 continue;
1504
1505                         lock_page(page);
1506
1507                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1508 continue_unlock:
1509                                 unlock_page(page);
1510                                 continue;
1511                         }
1512                         if (ino_of_node(page) != ino)
1513                                 goto continue_unlock;
1514
1515                         if (!PageDirty(page) && page != last_page) {
1516                                 /* someone wrote it for us */
1517                                 goto continue_unlock;
1518                         }
1519
1520                         f2fs_wait_on_page_writeback(page, NODE, true);
1521                         BUG_ON(PageWriteback(page));
1522
1523                         set_fsync_mark(page, 0);
1524                         set_dentry_mark(page, 0);
1525
1526                         if (!atomic || page == last_page) {
1527                                 set_fsync_mark(page, 1);
1528                                 if (IS_INODE(page)) {
1529                                         if (is_inode_flag_set(inode,
1530                                                                 FI_DIRTY_INODE))
1531                                                 update_inode(inode, page);
1532                                         set_dentry_mark(page,
1533                                                 need_dentry_mark(sbi, ino));
1534                                 }
1535                                 /*  may be written by other thread */
1536                                 if (!PageDirty(page))
1537                                         set_page_dirty(page);
1538                         }
1539
1540                         if (!clear_page_dirty_for_io(page))
1541                                 goto continue_unlock;
1542
1543                         ret = __write_node_page(page, atomic &&
1544                                                 page == last_page,
1545                                                 &submitted, wbc, true,
1546                                                 FS_NODE_IO);
1547                         if (ret) {
1548                                 unlock_page(page);
1549                                 f2fs_put_page(last_page, 0);
1550                                 break;
1551                         } else if (submitted) {
1552                                 last_idx = page->index;
1553                         }
1554
1555                         if (page == last_page) {
1556                                 f2fs_put_page(page, 0);
1557                                 marked = true;
1558                                 break;
1559                         }
1560                 }
1561                 pagevec_release(&pvec);
1562                 cond_resched();
1563
1564                 if (ret || marked)
1565                         break;
1566         }
1567         if (!ret && atomic && !marked) {
1568                 f2fs_msg(sbi->sb, KERN_DEBUG,
1569                         "Retry to write fsync mark: ino=%u, idx=%lx",
1570                                         ino, last_page->index);
1571                 lock_page(last_page);
1572                 f2fs_wait_on_page_writeback(last_page, NODE, true);
1573                 set_page_dirty(last_page);
1574                 unlock_page(last_page);
1575                 goto retry;
1576         }
1577 out:
1578         if (last_idx != ULONG_MAX)
1579                 f2fs_submit_merged_write_cond(sbi, NULL, ino, last_idx, NODE);
1580         return ret ? -EIO: 0;
1581 }
1582
1583 int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc,
1584                                 bool do_balance, enum iostat_type io_type)
1585 {
1586         pgoff_t index;
1587         struct pagevec pvec;
1588         int step = 0;
1589         int nwritten = 0;
1590         int ret = 0;
1591         int nr_pages;
1592
1593         pagevec_init(&pvec);
1594
1595 next_step:
1596         index = 0;
1597
1598         while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1599                                 PAGECACHE_TAG_DIRTY))) {
1600                 int i;
1601
1602                 for (i = 0; i < nr_pages; i++) {
1603                         struct page *page = pvec.pages[i];
1604                         bool submitted = false;
1605
1606                         /*
1607                          * flushing sequence with step:
1608                          * 0. indirect nodes
1609                          * 1. dentry dnodes
1610                          * 2. file dnodes
1611                          */
1612                         if (step == 0 && IS_DNODE(page))
1613                                 continue;
1614                         if (step == 1 && (!IS_DNODE(page) ||
1615                                                 is_cold_node(page)))
1616                                 continue;
1617                         if (step == 2 && (!IS_DNODE(page) ||
1618                                                 !is_cold_node(page)))
1619                                 continue;
1620 lock_node:
1621                         if (!trylock_page(page))
1622                                 continue;
1623
1624                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1625 continue_unlock:
1626                                 unlock_page(page);
1627                                 continue;
1628                         }
1629
1630                         if (!PageDirty(page)) {
1631                                 /* someone wrote it for us */
1632                                 goto continue_unlock;
1633                         }
1634
1635                         /* flush inline_data */
1636                         if (is_inline_node(page)) {
1637                                 clear_inline_node(page);
1638                                 unlock_page(page);
1639                                 flush_inline_data(sbi, ino_of_node(page));
1640                                 goto lock_node;
1641                         }
1642
1643                         f2fs_wait_on_page_writeback(page, NODE, true);
1644
1645                         BUG_ON(PageWriteback(page));
1646                         if (!clear_page_dirty_for_io(page))
1647                                 goto continue_unlock;
1648
1649                         set_fsync_mark(page, 0);
1650                         set_dentry_mark(page, 0);
1651
1652                         ret = __write_node_page(page, false, &submitted,
1653                                                 wbc, do_balance, io_type);
1654                         if (ret)
1655                                 unlock_page(page);
1656                         else if (submitted)
1657                                 nwritten++;
1658
1659                         if (--wbc->nr_to_write == 0)
1660                                 break;
1661                 }
1662                 pagevec_release(&pvec);
1663                 cond_resched();
1664
1665                 if (wbc->nr_to_write == 0) {
1666                         step = 2;
1667                         break;
1668                 }
1669         }
1670
1671         if (step < 2) {
1672                 step++;
1673                 goto next_step;
1674         }
1675
1676         if (nwritten)
1677                 f2fs_submit_merged_write(sbi, NODE);
1678
1679         if (unlikely(f2fs_cp_error(sbi)))
1680                 return -EIO;
1681         return ret;
1682 }
1683
1684 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
1685 {
1686         pgoff_t index = 0;
1687         struct pagevec pvec;
1688         int ret2, ret = 0;
1689         int nr_pages;
1690
1691         pagevec_init(&pvec);
1692
1693         while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1694                                 PAGECACHE_TAG_WRITEBACK))) {
1695                 int i;
1696
1697                 for (i = 0; i < nr_pages; i++) {
1698                         struct page *page = pvec.pages[i];
1699
1700                         if (ino && ino_of_node(page) == ino) {
1701                                 f2fs_wait_on_page_writeback(page, NODE, true);
1702                                 if (TestClearPageError(page))
1703                                         ret = -EIO;
1704                         }
1705                 }
1706                 pagevec_release(&pvec);
1707                 cond_resched();
1708         }
1709
1710         ret2 = filemap_check_errors(NODE_MAPPING(sbi));
1711         if (!ret)
1712                 ret = ret2;
1713         return ret;
1714 }
1715
1716 static int f2fs_write_node_pages(struct address_space *mapping,
1717                             struct writeback_control *wbc)
1718 {
1719         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1720         struct blk_plug plug;
1721         long diff;
1722
1723         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1724                 goto skip_write;
1725
1726         /* balancing f2fs's metadata in background */
1727         f2fs_balance_fs_bg(sbi);
1728
1729         /* collect a number of dirty node pages and write together */
1730         if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
1731                 goto skip_write;
1732
1733         trace_f2fs_writepages(mapping->host, wbc, NODE);
1734
1735         diff = nr_pages_to_write(sbi, NODE, wbc);
1736         wbc->sync_mode = WB_SYNC_NONE;
1737         blk_start_plug(&plug);
1738         sync_node_pages(sbi, wbc, true, FS_NODE_IO);
1739         blk_finish_plug(&plug);
1740         wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1741         return 0;
1742
1743 skip_write:
1744         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
1745         trace_f2fs_writepages(mapping->host, wbc, NODE);
1746         return 0;
1747 }
1748
1749 static int f2fs_set_node_page_dirty(struct page *page)
1750 {
1751         trace_f2fs_set_page_dirty(page, NODE);
1752
1753         if (!PageUptodate(page))
1754                 SetPageUptodate(page);
1755         if (!PageDirty(page)) {
1756                 f2fs_set_page_dirty_nobuffers(page);
1757                 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
1758                 SetPagePrivate(page);
1759                 f2fs_trace_pid(page);
1760                 return 1;
1761         }
1762         return 0;
1763 }
1764
1765 /*
1766  * Structure of the f2fs node operations
1767  */
1768 const struct address_space_operations f2fs_node_aops = {
1769         .writepage      = f2fs_write_node_page,
1770         .writepages     = f2fs_write_node_pages,
1771         .set_page_dirty = f2fs_set_node_page_dirty,
1772         .invalidatepage = f2fs_invalidate_page,
1773         .releasepage    = f2fs_release_page,
1774 #ifdef CONFIG_MIGRATION
1775         .migratepage    = f2fs_migrate_page,
1776 #endif
1777 };
1778
1779 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1780                                                 nid_t n)
1781 {
1782         return radix_tree_lookup(&nm_i->free_nid_root, n);
1783 }
1784
1785 static int __insert_free_nid(struct f2fs_sb_info *sbi,
1786                         struct free_nid *i, enum nid_state state)
1787 {
1788         struct f2fs_nm_info *nm_i = NM_I(sbi);
1789
1790         int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
1791         if (err)
1792                 return err;
1793
1794         f2fs_bug_on(sbi, state != i->state);
1795         nm_i->nid_cnt[state]++;
1796         if (state == FREE_NID)
1797                 list_add_tail(&i->list, &nm_i->free_nid_list);
1798         return 0;
1799 }
1800
1801 static void __remove_free_nid(struct f2fs_sb_info *sbi,
1802                         struct free_nid *i, enum nid_state state)
1803 {
1804         struct f2fs_nm_info *nm_i = NM_I(sbi);
1805
1806         f2fs_bug_on(sbi, state != i->state);
1807         nm_i->nid_cnt[state]--;
1808         if (state == FREE_NID)
1809                 list_del(&i->list);
1810         radix_tree_delete(&nm_i->free_nid_root, i->nid);
1811 }
1812
1813 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
1814                         enum nid_state org_state, enum nid_state dst_state)
1815 {
1816         struct f2fs_nm_info *nm_i = NM_I(sbi);
1817
1818         f2fs_bug_on(sbi, org_state != i->state);
1819         i->state = dst_state;
1820         nm_i->nid_cnt[org_state]--;
1821         nm_i->nid_cnt[dst_state]++;
1822
1823         switch (dst_state) {
1824         case PREALLOC_NID:
1825                 list_del(&i->list);
1826                 break;
1827         case FREE_NID:
1828                 list_add_tail(&i->list, &nm_i->free_nid_list);
1829                 break;
1830         default:
1831                 BUG_ON(1);
1832         }
1833 }
1834
1835 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
1836                                                         bool set, bool build)
1837 {
1838         struct f2fs_nm_info *nm_i = NM_I(sbi);
1839         unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
1840         unsigned int nid_ofs = nid - START_NID(nid);
1841
1842         if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
1843                 return;
1844
1845         if (set) {
1846                 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
1847                         return;
1848                 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
1849                 nm_i->free_nid_count[nat_ofs]++;
1850         } else {
1851                 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
1852                         return;
1853                 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
1854                 if (!build)
1855                         nm_i->free_nid_count[nat_ofs]--;
1856         }
1857 }
1858
1859 /* return if the nid is recognized as free */
1860 static bool add_free_nid(struct f2fs_sb_info *sbi,
1861                                 nid_t nid, bool build, bool update)
1862 {
1863         struct f2fs_nm_info *nm_i = NM_I(sbi);
1864         struct free_nid *i, *e;
1865         struct nat_entry *ne;
1866         int err = -EINVAL;
1867         bool ret = false;
1868
1869         /* 0 nid should not be used */
1870         if (unlikely(nid == 0))
1871                 return false;
1872
1873         i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1874         i->nid = nid;
1875         i->state = FREE_NID;
1876
1877         radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
1878
1879         spin_lock(&nm_i->nid_list_lock);
1880
1881         if (build) {
1882                 /*
1883                  *   Thread A             Thread B
1884                  *  - f2fs_create
1885                  *   - f2fs_new_inode
1886                  *    - alloc_nid
1887                  *     - __insert_nid_to_list(PREALLOC_NID)
1888                  *                     - f2fs_balance_fs_bg
1889                  *                      - build_free_nids
1890                  *                       - __build_free_nids
1891                  *                        - scan_nat_page
1892                  *                         - add_free_nid
1893                  *                          - __lookup_nat_cache
1894                  *  - f2fs_add_link
1895                  *   - init_inode_metadata
1896                  *    - new_inode_page
1897                  *     - new_node_page
1898                  *      - set_node_addr
1899                  *  - alloc_nid_done
1900                  *   - __remove_nid_from_list(PREALLOC_NID)
1901                  *                         - __insert_nid_to_list(FREE_NID)
1902                  */
1903                 ne = __lookup_nat_cache(nm_i, nid);
1904                 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
1905                                 nat_get_blkaddr(ne) != NULL_ADDR))
1906                         goto err_out;
1907
1908                 e = __lookup_free_nid_list(nm_i, nid);
1909                 if (e) {
1910                         if (e->state == FREE_NID)
1911                                 ret = true;
1912                         goto err_out;
1913                 }
1914         }
1915         ret = true;
1916         err = __insert_free_nid(sbi, i, FREE_NID);
1917 err_out:
1918         if (update) {
1919                 update_free_nid_bitmap(sbi, nid, ret, build);
1920                 if (!build)
1921                         nm_i->available_nids++;
1922         }
1923         spin_unlock(&nm_i->nid_list_lock);
1924         radix_tree_preload_end();
1925
1926         if (err)
1927                 kmem_cache_free(free_nid_slab, i);
1928         return ret;
1929 }
1930
1931 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
1932 {
1933         struct f2fs_nm_info *nm_i = NM_I(sbi);
1934         struct free_nid *i;
1935         bool need_free = false;
1936
1937         spin_lock(&nm_i->nid_list_lock);
1938         i = __lookup_free_nid_list(nm_i, nid);
1939         if (i && i->state == FREE_NID) {
1940                 __remove_free_nid(sbi, i, FREE_NID);
1941                 need_free = true;
1942         }
1943         spin_unlock(&nm_i->nid_list_lock);
1944
1945         if (need_free)
1946                 kmem_cache_free(free_nid_slab, i);
1947 }
1948
1949 static void scan_nat_page(struct f2fs_sb_info *sbi,
1950                         struct page *nat_page, nid_t start_nid)
1951 {
1952         struct f2fs_nm_info *nm_i = NM_I(sbi);
1953         struct f2fs_nat_block *nat_blk = page_address(nat_page);
1954         block_t blk_addr;
1955         unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
1956         int i;
1957
1958         __set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
1959
1960         i = start_nid % NAT_ENTRY_PER_BLOCK;
1961
1962         for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1963                 if (unlikely(start_nid >= nm_i->max_nid))
1964                         break;
1965
1966                 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1967                 f2fs_bug_on(sbi, blk_addr == NEW_ADDR);
1968                 if (blk_addr == NULL_ADDR) {
1969                         add_free_nid(sbi, start_nid, true, true);
1970                 } else {
1971                         spin_lock(&NM_I(sbi)->nid_list_lock);
1972                         update_free_nid_bitmap(sbi, start_nid, false, true);
1973                         spin_unlock(&NM_I(sbi)->nid_list_lock);
1974                 }
1975         }
1976 }
1977
1978 static void scan_curseg_cache(struct f2fs_sb_info *sbi)
1979 {
1980         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1981         struct f2fs_journal *journal = curseg->journal;
1982         int i;
1983
1984         down_read(&curseg->journal_rwsem);
1985         for (i = 0; i < nats_in_cursum(journal); i++) {
1986                 block_t addr;
1987                 nid_t nid;
1988
1989                 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
1990                 nid = le32_to_cpu(nid_in_journal(journal, i));
1991                 if (addr == NULL_ADDR)
1992                         add_free_nid(sbi, nid, true, false);
1993                 else
1994                         remove_free_nid(sbi, nid);
1995         }
1996         up_read(&curseg->journal_rwsem);
1997 }
1998
1999 static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2000 {
2001         struct f2fs_nm_info *nm_i = NM_I(sbi);
2002         unsigned int i, idx;
2003         nid_t nid;
2004
2005         down_read(&nm_i->nat_tree_lock);
2006
2007         for (i = 0; i < nm_i->nat_blocks; i++) {
2008                 if (!test_bit_le(i, nm_i->nat_block_bitmap))
2009                         continue;
2010                 if (!nm_i->free_nid_count[i])
2011                         continue;
2012                 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2013                         idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2014                                                 NAT_ENTRY_PER_BLOCK, idx);
2015                         if (idx >= NAT_ENTRY_PER_BLOCK)
2016                                 break;
2017
2018                         nid = i * NAT_ENTRY_PER_BLOCK + idx;
2019                         add_free_nid(sbi, nid, true, false);
2020
2021                         if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2022                                 goto out;
2023                 }
2024         }
2025 out:
2026         scan_curseg_cache(sbi);
2027
2028         up_read(&nm_i->nat_tree_lock);
2029 }
2030
2031 static void __build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2032 {
2033         struct f2fs_nm_info *nm_i = NM_I(sbi);
2034         int i = 0;
2035         nid_t nid = nm_i->next_scan_nid;
2036
2037         if (unlikely(nid >= nm_i->max_nid))
2038                 nid = 0;
2039
2040         /* Enough entries */
2041         if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2042                 return;
2043
2044         if (!sync && !available_free_memory(sbi, FREE_NIDS))
2045                 return;
2046
2047         if (!mount) {
2048                 /* try to find free nids in free_nid_bitmap */
2049                 scan_free_nid_bits(sbi);
2050
2051                 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2052                         return;
2053         }
2054
2055         /* readahead nat pages to be scanned */
2056         ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2057                                                         META_NAT, true);
2058
2059         down_read(&nm_i->nat_tree_lock);
2060
2061         while (1) {
2062                 if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2063                                                 nm_i->nat_block_bitmap)) {
2064                         struct page *page = get_current_nat_page(sbi, nid);
2065
2066                         scan_nat_page(sbi, page, nid);
2067                         f2fs_put_page(page, 1);
2068                 }
2069
2070                 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2071                 if (unlikely(nid >= nm_i->max_nid))
2072                         nid = 0;
2073
2074                 if (++i >= FREE_NID_PAGES)
2075                         break;
2076         }
2077
2078         /* go to the next free nat pages to find free nids abundantly */
2079         nm_i->next_scan_nid = nid;
2080
2081         /* find free nids from current sum_pages */
2082         scan_curseg_cache(sbi);
2083
2084         up_read(&nm_i->nat_tree_lock);
2085
2086         ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2087                                         nm_i->ra_nid_pages, META_NAT, false);
2088 }
2089
2090 void build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2091 {
2092         mutex_lock(&NM_I(sbi)->build_lock);
2093         __build_free_nids(sbi, sync, mount);
2094         mutex_unlock(&NM_I(sbi)->build_lock);
2095 }
2096
2097 /*
2098  * If this function returns success, caller can obtain a new nid
2099  * from second parameter of this function.
2100  * The returned nid could be used ino as well as nid when inode is created.
2101  */
2102 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2103 {
2104         struct f2fs_nm_info *nm_i = NM_I(sbi);
2105         struct free_nid *i = NULL;
2106 retry:
2107 #ifdef CONFIG_F2FS_FAULT_INJECTION
2108         if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2109                 f2fs_show_injection_info(FAULT_ALLOC_NID);
2110                 return false;
2111         }
2112 #endif
2113         spin_lock(&nm_i->nid_list_lock);
2114
2115         if (unlikely(nm_i->available_nids == 0)) {
2116                 spin_unlock(&nm_i->nid_list_lock);
2117                 return false;
2118         }
2119
2120         /* We should not use stale free nids created by build_free_nids */
2121         if (nm_i->nid_cnt[FREE_NID] && !on_build_free_nids(nm_i)) {
2122                 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2123                 i = list_first_entry(&nm_i->free_nid_list,
2124                                         struct free_nid, list);
2125                 *nid = i->nid;
2126
2127                 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2128                 nm_i->available_nids--;
2129
2130                 update_free_nid_bitmap(sbi, *nid, false, false);
2131
2132                 spin_unlock(&nm_i->nid_list_lock);
2133                 return true;
2134         }
2135         spin_unlock(&nm_i->nid_list_lock);
2136
2137         /* Let's scan nat pages and its caches to get free nids */
2138         build_free_nids(sbi, true, false);
2139         goto retry;
2140 }
2141
2142 /*
2143  * alloc_nid() should be called prior to this function.
2144  */
2145 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2146 {
2147         struct f2fs_nm_info *nm_i = NM_I(sbi);
2148         struct free_nid *i;
2149
2150         spin_lock(&nm_i->nid_list_lock);
2151         i = __lookup_free_nid_list(nm_i, nid);
2152         f2fs_bug_on(sbi, !i);
2153         __remove_free_nid(sbi, i, PREALLOC_NID);
2154         spin_unlock(&nm_i->nid_list_lock);
2155
2156         kmem_cache_free(free_nid_slab, i);
2157 }
2158
2159 /*
2160  * alloc_nid() should be called prior to this function.
2161  */
2162 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2163 {
2164         struct f2fs_nm_info *nm_i = NM_I(sbi);
2165         struct free_nid *i;
2166         bool need_free = false;
2167
2168         if (!nid)
2169                 return;
2170
2171         spin_lock(&nm_i->nid_list_lock);
2172         i = __lookup_free_nid_list(nm_i, nid);
2173         f2fs_bug_on(sbi, !i);
2174
2175         if (!available_free_memory(sbi, FREE_NIDS)) {
2176                 __remove_free_nid(sbi, i, PREALLOC_NID);
2177                 need_free = true;
2178         } else {
2179                 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2180         }
2181
2182         nm_i->available_nids++;
2183
2184         update_free_nid_bitmap(sbi, nid, true, false);
2185
2186         spin_unlock(&nm_i->nid_list_lock);
2187
2188         if (need_free)
2189                 kmem_cache_free(free_nid_slab, i);
2190 }
2191
2192 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2193 {
2194         struct f2fs_nm_info *nm_i = NM_I(sbi);
2195         struct free_nid *i, *next;
2196         int nr = nr_shrink;
2197
2198         if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2199                 return 0;
2200
2201         if (!mutex_trylock(&nm_i->build_lock))
2202                 return 0;
2203
2204         spin_lock(&nm_i->nid_list_lock);
2205         list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2206                 if (nr_shrink <= 0 ||
2207                                 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2208                         break;
2209
2210                 __remove_free_nid(sbi, i, FREE_NID);
2211                 kmem_cache_free(free_nid_slab, i);
2212                 nr_shrink--;
2213         }
2214         spin_unlock(&nm_i->nid_list_lock);
2215         mutex_unlock(&nm_i->build_lock);
2216
2217         return nr - nr_shrink;
2218 }
2219
2220 void recover_inline_xattr(struct inode *inode, struct page *page)
2221 {
2222         void *src_addr, *dst_addr;
2223         size_t inline_size;
2224         struct page *ipage;
2225         struct f2fs_inode *ri;
2226
2227         ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
2228         f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
2229
2230         ri = F2FS_INODE(page);
2231         if (ri->i_inline & F2FS_INLINE_XATTR) {
2232                 set_inode_flag(inode, FI_INLINE_XATTR);
2233         } else {
2234                 clear_inode_flag(inode, FI_INLINE_XATTR);
2235                 goto update_inode;
2236         }
2237
2238         dst_addr = inline_xattr_addr(inode, ipage);
2239         src_addr = inline_xattr_addr(inode, page);
2240         inline_size = inline_xattr_size(inode);
2241
2242         f2fs_wait_on_page_writeback(ipage, NODE, true);
2243         memcpy(dst_addr, src_addr, inline_size);
2244 update_inode:
2245         update_inode(inode, ipage);
2246         f2fs_put_page(ipage, 1);
2247 }
2248
2249 int recover_xattr_data(struct inode *inode, struct page *page)
2250 {
2251         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2252         nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2253         nid_t new_xnid;
2254         struct dnode_of_data dn;
2255         struct node_info ni;
2256         struct page *xpage;
2257
2258         if (!prev_xnid)
2259                 goto recover_xnid;
2260
2261         /* 1: invalidate the previous xattr nid */
2262         get_node_info(sbi, prev_xnid, &ni);
2263         invalidate_blocks(sbi, ni.blk_addr);
2264         dec_valid_node_count(sbi, inode, false);
2265         set_node_addr(sbi, &ni, NULL_ADDR, false);
2266
2267 recover_xnid:
2268         /* 2: update xattr nid in inode */
2269         if (!alloc_nid(sbi, &new_xnid))
2270                 return -ENOSPC;
2271
2272         set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2273         xpage = new_node_page(&dn, XATTR_NODE_OFFSET);
2274         if (IS_ERR(xpage)) {
2275                 alloc_nid_failed(sbi, new_xnid);
2276                 return PTR_ERR(xpage);
2277         }
2278
2279         alloc_nid_done(sbi, new_xnid);
2280         update_inode_page(inode);
2281
2282         /* 3: update and set xattr node page dirty */
2283         memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
2284
2285         set_page_dirty(xpage);
2286         f2fs_put_page(xpage, 1);
2287
2288         return 0;
2289 }
2290
2291 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2292 {
2293         struct f2fs_inode *src, *dst;
2294         nid_t ino = ino_of_node(page);
2295         struct node_info old_ni, new_ni;
2296         struct page *ipage;
2297
2298         get_node_info(sbi, ino, &old_ni);
2299
2300         if (unlikely(old_ni.blk_addr != NULL_ADDR))
2301                 return -EINVAL;
2302 retry:
2303         ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2304         if (!ipage) {
2305                 congestion_wait(BLK_RW_ASYNC, HZ/50);
2306                 goto retry;
2307         }
2308
2309         /* Should not use this inode from free nid list */
2310         remove_free_nid(sbi, ino);
2311
2312         if (!PageUptodate(ipage))
2313                 SetPageUptodate(ipage);
2314         fill_node_footer(ipage, ino, ino, 0, true);
2315         set_cold_node(page, false);
2316
2317         src = F2FS_INODE(page);
2318         dst = F2FS_INODE(ipage);
2319
2320         memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
2321         dst->i_size = 0;
2322         dst->i_blocks = cpu_to_le64(1);
2323         dst->i_links = cpu_to_le32(1);
2324         dst->i_xattr_nid = 0;
2325         dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2326         if (dst->i_inline & F2FS_EXTRA_ATTR) {
2327                 dst->i_extra_isize = src->i_extra_isize;
2328
2329                 if (f2fs_sb_has_flexible_inline_xattr(sbi->sb) &&
2330                         F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2331                                                         i_inline_xattr_size))
2332                         dst->i_inline_xattr_size = src->i_inline_xattr_size;
2333
2334                 if (f2fs_sb_has_project_quota(sbi->sb) &&
2335                         F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2336                                                                 i_projid))
2337                         dst->i_projid = src->i_projid;
2338         }
2339
2340         new_ni = old_ni;
2341         new_ni.ino = ino;
2342
2343         if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2344                 WARN_ON(1);
2345         set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2346         inc_valid_inode_count(sbi);
2347         set_page_dirty(ipage);
2348         f2fs_put_page(ipage, 1);
2349         return 0;
2350 }
2351
2352 void restore_node_summary(struct f2fs_sb_info *sbi,
2353                         unsigned int segno, struct f2fs_summary_block *sum)
2354 {
2355         struct f2fs_node *rn;
2356         struct f2fs_summary *sum_entry;
2357         block_t addr;
2358         int i, idx, last_offset, nrpages;
2359
2360         /* scan the node segment */
2361         last_offset = sbi->blocks_per_seg;
2362         addr = START_BLOCK(sbi, segno);
2363         sum_entry = &sum->entries[0];
2364
2365         for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2366                 nrpages = min(last_offset - i, BIO_MAX_PAGES);
2367
2368                 /* readahead node pages */
2369                 ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2370
2371                 for (idx = addr; idx < addr + nrpages; idx++) {
2372                         struct page *page = get_tmp_page(sbi, idx);
2373
2374                         rn = F2FS_NODE(page);
2375                         sum_entry->nid = rn->footer.nid;
2376                         sum_entry->version = 0;
2377                         sum_entry->ofs_in_node = 0;
2378                         sum_entry++;
2379                         f2fs_put_page(page, 1);
2380                 }
2381
2382                 invalidate_mapping_pages(META_MAPPING(sbi), addr,
2383                                                         addr + nrpages);
2384         }
2385 }
2386
2387 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2388 {
2389         struct f2fs_nm_info *nm_i = NM_I(sbi);
2390         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2391         struct f2fs_journal *journal = curseg->journal;
2392         int i;
2393
2394         down_write(&curseg->journal_rwsem);
2395         for (i = 0; i < nats_in_cursum(journal); i++) {
2396                 struct nat_entry *ne;
2397                 struct f2fs_nat_entry raw_ne;
2398                 nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2399
2400                 raw_ne = nat_in_journal(journal, i);
2401
2402                 ne = __lookup_nat_cache(nm_i, nid);
2403                 if (!ne) {
2404                         ne = __alloc_nat_entry(nid, true);
2405                         __init_nat_entry(nm_i, ne, &raw_ne, true);
2406                 }
2407
2408                 /*
2409                  * if a free nat in journal has not been used after last
2410                  * checkpoint, we should remove it from available nids,
2411                  * since later we will add it again.
2412                  */
2413                 if (!get_nat_flag(ne, IS_DIRTY) &&
2414                                 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2415                         spin_lock(&nm_i->nid_list_lock);
2416                         nm_i->available_nids--;
2417                         spin_unlock(&nm_i->nid_list_lock);
2418                 }
2419
2420                 __set_nat_cache_dirty(nm_i, ne);
2421         }
2422         update_nats_in_cursum(journal, -i);
2423         up_write(&curseg->journal_rwsem);
2424 }
2425
2426 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2427                                                 struct list_head *head, int max)
2428 {
2429         struct nat_entry_set *cur;
2430
2431         if (nes->entry_cnt >= max)
2432                 goto add_out;
2433
2434         list_for_each_entry(cur, head, set_list) {
2435                 if (cur->entry_cnt >= nes->entry_cnt) {
2436                         list_add(&nes->set_list, cur->set_list.prev);
2437                         return;
2438                 }
2439         }
2440 add_out:
2441         list_add_tail(&nes->set_list, head);
2442 }
2443
2444 static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2445                                                 struct page *page)
2446 {
2447         struct f2fs_nm_info *nm_i = NM_I(sbi);
2448         unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2449         struct f2fs_nat_block *nat_blk = page_address(page);
2450         int valid = 0;
2451         int i = 0;
2452
2453         if (!enabled_nat_bits(sbi, NULL))
2454                 return;
2455
2456         if (nat_index == 0) {
2457                 valid = 1;
2458                 i = 1;
2459         }
2460         for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2461                 if (nat_blk->entries[i].block_addr != NULL_ADDR)
2462                         valid++;
2463         }
2464         if (valid == 0) {
2465                 __set_bit_le(nat_index, nm_i->empty_nat_bits);
2466                 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2467                 return;
2468         }
2469
2470         __clear_bit_le(nat_index, nm_i->empty_nat_bits);
2471         if (valid == NAT_ENTRY_PER_BLOCK)
2472                 __set_bit_le(nat_index, nm_i->full_nat_bits);
2473         else
2474                 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2475 }
2476
2477 static void __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2478                 struct nat_entry_set *set, struct cp_control *cpc)
2479 {
2480         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2481         struct f2fs_journal *journal = curseg->journal;
2482         nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2483         bool to_journal = true;
2484         struct f2fs_nat_block *nat_blk;
2485         struct nat_entry *ne, *cur;
2486         struct page *page = NULL;
2487
2488         /*
2489          * there are two steps to flush nat entries:
2490          * #1, flush nat entries to journal in current hot data summary block.
2491          * #2, flush nat entries to nat page.
2492          */
2493         if (enabled_nat_bits(sbi, cpc) ||
2494                 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2495                 to_journal = false;
2496
2497         if (to_journal) {
2498                 down_write(&curseg->journal_rwsem);
2499         } else {
2500                 page = get_next_nat_page(sbi, start_nid);
2501                 nat_blk = page_address(page);
2502                 f2fs_bug_on(sbi, !nat_blk);
2503         }
2504
2505         /* flush dirty nats in nat entry set */
2506         list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2507                 struct f2fs_nat_entry *raw_ne;
2508                 nid_t nid = nat_get_nid(ne);
2509                 int offset;
2510
2511                 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
2512
2513                 if (to_journal) {
2514                         offset = lookup_journal_in_cursum(journal,
2515                                                         NAT_JOURNAL, nid, 1);
2516                         f2fs_bug_on(sbi, offset < 0);
2517                         raw_ne = &nat_in_journal(journal, offset);
2518                         nid_in_journal(journal, offset) = cpu_to_le32(nid);
2519                 } else {
2520                         raw_ne = &nat_blk->entries[nid - start_nid];
2521                 }
2522                 raw_nat_from_node_info(raw_ne, &ne->ni);
2523                 nat_reset_flag(ne);
2524                 __clear_nat_cache_dirty(NM_I(sbi), set, ne);
2525                 if (nat_get_blkaddr(ne) == NULL_ADDR) {
2526                         add_free_nid(sbi, nid, false, true);
2527                 } else {
2528                         spin_lock(&NM_I(sbi)->nid_list_lock);
2529                         update_free_nid_bitmap(sbi, nid, false, false);
2530                         spin_unlock(&NM_I(sbi)->nid_list_lock);
2531                 }
2532         }
2533
2534         if (to_journal) {
2535                 up_write(&curseg->journal_rwsem);
2536         } else {
2537                 __update_nat_bits(sbi, start_nid, page);
2538                 f2fs_put_page(page, 1);
2539         }
2540
2541         /* Allow dirty nats by node block allocation in write_begin */
2542         if (!set->entry_cnt) {
2543                 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2544                 kmem_cache_free(nat_entry_set_slab, set);
2545         }
2546 }
2547
2548 /*
2549  * This function is called during the checkpointing process.
2550  */
2551 void flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2552 {
2553         struct f2fs_nm_info *nm_i = NM_I(sbi);
2554         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2555         struct f2fs_journal *journal = curseg->journal;
2556         struct nat_entry_set *setvec[SETVEC_SIZE];
2557         struct nat_entry_set *set, *tmp;
2558         unsigned int found;
2559         nid_t set_idx = 0;
2560         LIST_HEAD(sets);
2561
2562         if (!nm_i->dirty_nat_cnt)
2563                 return;
2564
2565         down_write(&nm_i->nat_tree_lock);
2566
2567         /*
2568          * if there are no enough space in journal to store dirty nat
2569          * entries, remove all entries from journal and merge them
2570          * into nat entry set.
2571          */
2572         if (enabled_nat_bits(sbi, cpc) ||
2573                 !__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL))
2574                 remove_nats_in_journal(sbi);
2575
2576         while ((found = __gang_lookup_nat_set(nm_i,
2577                                         set_idx, SETVEC_SIZE, setvec))) {
2578                 unsigned idx;
2579                 set_idx = setvec[found - 1]->set + 1;
2580                 for (idx = 0; idx < found; idx++)
2581                         __adjust_nat_entry_set(setvec[idx], &sets,
2582                                                 MAX_NAT_JENTRIES(journal));
2583         }
2584
2585         /* flush dirty nats in nat entry set */
2586         list_for_each_entry_safe(set, tmp, &sets, set_list)
2587                 __flush_nat_entry_set(sbi, set, cpc);
2588
2589         up_write(&nm_i->nat_tree_lock);
2590         /* Allow dirty nats by node block allocation in write_begin */
2591 }
2592
2593 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
2594 {
2595         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2596         struct f2fs_nm_info *nm_i = NM_I(sbi);
2597         unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
2598         unsigned int i;
2599         __u64 cp_ver = cur_cp_version(ckpt);
2600         block_t nat_bits_addr;
2601
2602         if (!enabled_nat_bits(sbi, NULL))
2603                 return 0;
2604
2605         nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
2606         nm_i->nat_bits = f2fs_kzalloc(sbi,
2607                         nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
2608         if (!nm_i->nat_bits)
2609                 return -ENOMEM;
2610
2611         nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
2612                                                 nm_i->nat_bits_blocks;
2613         for (i = 0; i < nm_i->nat_bits_blocks; i++) {
2614                 struct page *page = get_meta_page(sbi, nat_bits_addr++);
2615
2616                 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
2617                                         page_address(page), F2FS_BLKSIZE);
2618                 f2fs_put_page(page, 1);
2619         }
2620
2621         cp_ver |= (cur_cp_crc(ckpt) << 32);
2622         if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
2623                 disable_nat_bits(sbi, true);
2624                 return 0;
2625         }
2626
2627         nm_i->full_nat_bits = nm_i->nat_bits + 8;
2628         nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
2629
2630         f2fs_msg(sbi->sb, KERN_NOTICE, "Found nat_bits in checkpoint");
2631         return 0;
2632 }
2633
2634 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
2635 {
2636         struct f2fs_nm_info *nm_i = NM_I(sbi);
2637         unsigned int i = 0;
2638         nid_t nid, last_nid;
2639
2640         if (!enabled_nat_bits(sbi, NULL))
2641                 return;
2642
2643         for (i = 0; i < nm_i->nat_blocks; i++) {
2644                 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
2645                 if (i >= nm_i->nat_blocks)
2646                         break;
2647
2648                 __set_bit_le(i, nm_i->nat_block_bitmap);
2649
2650                 nid = i * NAT_ENTRY_PER_BLOCK;
2651                 last_nid = nid + NAT_ENTRY_PER_BLOCK;
2652
2653                 spin_lock(&NM_I(sbi)->nid_list_lock);
2654                 for (; nid < last_nid; nid++)
2655                         update_free_nid_bitmap(sbi, nid, true, true);
2656                 spin_unlock(&NM_I(sbi)->nid_list_lock);
2657         }
2658
2659         for (i = 0; i < nm_i->nat_blocks; i++) {
2660                 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
2661                 if (i >= nm_i->nat_blocks)
2662                         break;
2663
2664                 __set_bit_le(i, nm_i->nat_block_bitmap);
2665         }
2666 }
2667
2668 static int init_node_manager(struct f2fs_sb_info *sbi)
2669 {
2670         struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
2671         struct f2fs_nm_info *nm_i = NM_I(sbi);
2672         unsigned char *version_bitmap;
2673         unsigned int nat_segs;
2674         int err;
2675
2676         nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
2677
2678         /* segment_count_nat includes pair segment so divide to 2. */
2679         nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
2680         nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
2681         nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
2682
2683         /* not used nids: 0, node, meta, (and root counted as valid node) */
2684         nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
2685                                 sbi->nquota_files - F2FS_RESERVED_NODE_NUM;
2686         nm_i->nid_cnt[FREE_NID] = 0;
2687         nm_i->nid_cnt[PREALLOC_NID] = 0;
2688         nm_i->nat_cnt = 0;
2689         nm_i->ram_thresh = DEF_RAM_THRESHOLD;
2690         nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
2691         nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
2692
2693         INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
2694         INIT_LIST_HEAD(&nm_i->free_nid_list);
2695         INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
2696         INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
2697         INIT_LIST_HEAD(&nm_i->nat_entries);
2698
2699         mutex_init(&nm_i->build_lock);
2700         spin_lock_init(&nm_i->nid_list_lock);
2701         init_rwsem(&nm_i->nat_tree_lock);
2702
2703         nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
2704         nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
2705         version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
2706         if (!version_bitmap)
2707                 return -EFAULT;
2708
2709         nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
2710                                         GFP_KERNEL);
2711         if (!nm_i->nat_bitmap)
2712                 return -ENOMEM;
2713
2714         err = __get_nat_bitmaps(sbi);
2715         if (err)
2716                 return err;
2717
2718 #ifdef CONFIG_F2FS_CHECK_FS
2719         nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
2720                                         GFP_KERNEL);
2721         if (!nm_i->nat_bitmap_mir)
2722                 return -ENOMEM;
2723 #endif
2724
2725         return 0;
2726 }
2727
2728 static int init_free_nid_cache(struct f2fs_sb_info *sbi)
2729 {
2730         struct f2fs_nm_info *nm_i = NM_I(sbi);
2731         int i;
2732
2733         nm_i->free_nid_bitmap = f2fs_kzalloc(sbi, nm_i->nat_blocks *
2734                                 sizeof(unsigned char *), GFP_KERNEL);
2735         if (!nm_i->free_nid_bitmap)
2736                 return -ENOMEM;
2737
2738         for (i = 0; i < nm_i->nat_blocks; i++) {
2739                 nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
2740                                 NAT_ENTRY_BITMAP_SIZE_ALIGNED, GFP_KERNEL);
2741                 if (!nm_i->free_nid_bitmap)
2742                         return -ENOMEM;
2743         }
2744
2745         nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
2746                                                                 GFP_KERNEL);
2747         if (!nm_i->nat_block_bitmap)
2748                 return -ENOMEM;
2749
2750         nm_i->free_nid_count = f2fs_kvzalloc(sbi, nm_i->nat_blocks *
2751                                         sizeof(unsigned short), GFP_KERNEL);
2752         if (!nm_i->free_nid_count)
2753                 return -ENOMEM;
2754         return 0;
2755 }
2756
2757 int build_node_manager(struct f2fs_sb_info *sbi)
2758 {
2759         int err;
2760
2761         sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
2762                                                         GFP_KERNEL);
2763         if (!sbi->nm_info)
2764                 return -ENOMEM;
2765
2766         err = init_node_manager(sbi);
2767         if (err)
2768                 return err;
2769
2770         err = init_free_nid_cache(sbi);
2771         if (err)
2772                 return err;
2773
2774         /* load free nid status from nat_bits table */
2775         load_free_nid_bitmap(sbi);
2776
2777         build_free_nids(sbi, true, true);
2778         return 0;
2779 }
2780
2781 void destroy_node_manager(struct f2fs_sb_info *sbi)
2782 {
2783         struct f2fs_nm_info *nm_i = NM_I(sbi);
2784         struct free_nid *i, *next_i;
2785         struct nat_entry *natvec[NATVEC_SIZE];
2786         struct nat_entry_set *setvec[SETVEC_SIZE];
2787         nid_t nid = 0;
2788         unsigned int found;
2789
2790         if (!nm_i)
2791                 return;
2792
2793         /* destroy free nid list */
2794         spin_lock(&nm_i->nid_list_lock);
2795         list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
2796                 __remove_free_nid(sbi, i, FREE_NID);
2797                 spin_unlock(&nm_i->nid_list_lock);
2798                 kmem_cache_free(free_nid_slab, i);
2799                 spin_lock(&nm_i->nid_list_lock);
2800         }
2801         f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
2802         f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
2803         f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
2804         spin_unlock(&nm_i->nid_list_lock);
2805
2806         /* destroy nat cache */
2807         down_write(&nm_i->nat_tree_lock);
2808         while ((found = __gang_lookup_nat_cache(nm_i,
2809                                         nid, NATVEC_SIZE, natvec))) {
2810                 unsigned idx;
2811
2812                 nid = nat_get_nid(natvec[found - 1]) + 1;
2813                 for (idx = 0; idx < found; idx++)
2814                         __del_from_nat_cache(nm_i, natvec[idx]);
2815         }
2816         f2fs_bug_on(sbi, nm_i->nat_cnt);
2817
2818         /* destroy nat set cache */
2819         nid = 0;
2820         while ((found = __gang_lookup_nat_set(nm_i,
2821                                         nid, SETVEC_SIZE, setvec))) {
2822                 unsigned idx;
2823
2824                 nid = setvec[found - 1]->set + 1;
2825                 for (idx = 0; idx < found; idx++) {
2826                         /* entry_cnt is not zero, when cp_error was occurred */
2827                         f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
2828                         radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
2829                         kmem_cache_free(nat_entry_set_slab, setvec[idx]);
2830                 }
2831         }
2832         up_write(&nm_i->nat_tree_lock);
2833
2834         kvfree(nm_i->nat_block_bitmap);
2835         if (nm_i->free_nid_bitmap) {
2836                 int i;
2837
2838                 for (i = 0; i < nm_i->nat_blocks; i++)
2839                         kvfree(nm_i->free_nid_bitmap[i]);
2840                 kfree(nm_i->free_nid_bitmap);
2841         }
2842         kvfree(nm_i->free_nid_count);
2843
2844         kfree(nm_i->nat_bitmap);
2845         kfree(nm_i->nat_bits);
2846 #ifdef CONFIG_F2FS_CHECK_FS
2847         kfree(nm_i->nat_bitmap_mir);
2848 #endif
2849         sbi->nm_info = NULL;
2850         kfree(nm_i);
2851 }
2852
2853 int __init create_node_manager_caches(void)
2854 {
2855         nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
2856                         sizeof(struct nat_entry));
2857         if (!nat_entry_slab)
2858                 goto fail;
2859
2860         free_nid_slab = f2fs_kmem_cache_create("free_nid",
2861                         sizeof(struct free_nid));
2862         if (!free_nid_slab)
2863                 goto destroy_nat_entry;
2864
2865         nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
2866                         sizeof(struct nat_entry_set));
2867         if (!nat_entry_set_slab)
2868                 goto destroy_free_nid;
2869         return 0;
2870
2871 destroy_free_nid:
2872         kmem_cache_destroy(free_nid_slab);
2873 destroy_nat_entry:
2874         kmem_cache_destroy(nat_entry_slab);
2875 fail:
2876         return -ENOMEM;
2877 }
2878
2879 void destroy_node_manager_caches(void)
2880 {
2881         kmem_cache_destroy(nat_entry_set_slab);
2882         kmem_cache_destroy(free_nid_slab);
2883         kmem_cache_destroy(nat_entry_slab);
2884 }