Merge tag 'Smack-for-5.11-io_uring-fix' of git://github.com/cschaufler/smack-next
[linux-2.6-microblaze.git] / fs / f2fs / node.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/node.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/mpage.h>
11 #include <linux/backing-dev.h>
12 #include <linux/blkdev.h>
13 #include <linux/pagevec.h>
14 #include <linux/swap.h>
15
16 #include "f2fs.h"
17 #include "node.h"
18 #include "segment.h"
19 #include "xattr.h"
20 #include "trace.h"
21 #include <trace/events/f2fs.h>
22
23 #define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
24
25 static struct kmem_cache *nat_entry_slab;
26 static struct kmem_cache *free_nid_slab;
27 static struct kmem_cache *nat_entry_set_slab;
28 static struct kmem_cache *fsync_node_entry_slab;
29
30 /*
31  * Check whether the given nid is within node id range.
32  */
33 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
34 {
35         if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
36                 set_sbi_flag(sbi, SBI_NEED_FSCK);
37                 f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
38                           __func__, nid);
39                 return -EFSCORRUPTED;
40         }
41         return 0;
42 }
43
44 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
45 {
46         struct f2fs_nm_info *nm_i = NM_I(sbi);
47         struct sysinfo val;
48         unsigned long avail_ram;
49         unsigned long mem_size = 0;
50         bool res = false;
51
52         si_meminfo(&val);
53
54         /* only uses low memory */
55         avail_ram = val.totalram - val.totalhigh;
56
57         /*
58          * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
59          */
60         if (type == FREE_NIDS) {
61                 mem_size = (nm_i->nid_cnt[FREE_NID] *
62                                 sizeof(struct free_nid)) >> PAGE_SHIFT;
63                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
64         } else if (type == NAT_ENTRIES) {
65                 mem_size = (nm_i->nat_cnt[TOTAL_NAT] *
66                                 sizeof(struct nat_entry)) >> PAGE_SHIFT;
67                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
68                 if (excess_cached_nats(sbi))
69                         res = false;
70         } else if (type == DIRTY_DENTS) {
71                 if (sbi->sb->s_bdi->wb.dirty_exceeded)
72                         return false;
73                 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
74                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
75         } else if (type == INO_ENTRIES) {
76                 int i;
77
78                 for (i = 0; i < MAX_INO_ENTRY; i++)
79                         mem_size += sbi->im[i].ino_num *
80                                                 sizeof(struct ino_entry);
81                 mem_size >>= PAGE_SHIFT;
82                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
83         } else if (type == EXTENT_CACHE) {
84                 mem_size = (atomic_read(&sbi->total_ext_tree) *
85                                 sizeof(struct extent_tree) +
86                                 atomic_read(&sbi->total_ext_node) *
87                                 sizeof(struct extent_node)) >> PAGE_SHIFT;
88                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
89         } else if (type == INMEM_PAGES) {
90                 /* it allows 20% / total_ram for inmemory pages */
91                 mem_size = get_pages(sbi, F2FS_INMEM_PAGES);
92                 res = mem_size < (val.totalram / 5);
93         } else {
94                 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
95                         return true;
96         }
97         return res;
98 }
99
100 static void clear_node_page_dirty(struct page *page)
101 {
102         if (PageDirty(page)) {
103                 f2fs_clear_page_cache_dirty_tag(page);
104                 clear_page_dirty_for_io(page);
105                 dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
106         }
107         ClearPageUptodate(page);
108 }
109
110 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
111 {
112         return f2fs_get_meta_page_retry(sbi, current_nat_addr(sbi, nid));
113 }
114
115 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
116 {
117         struct page *src_page;
118         struct page *dst_page;
119         pgoff_t dst_off;
120         void *src_addr;
121         void *dst_addr;
122         struct f2fs_nm_info *nm_i = NM_I(sbi);
123
124         dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
125
126         /* get current nat block page with lock */
127         src_page = get_current_nat_page(sbi, nid);
128         if (IS_ERR(src_page))
129                 return src_page;
130         dst_page = f2fs_grab_meta_page(sbi, dst_off);
131         f2fs_bug_on(sbi, PageDirty(src_page));
132
133         src_addr = page_address(src_page);
134         dst_addr = page_address(dst_page);
135         memcpy(dst_addr, src_addr, PAGE_SIZE);
136         set_page_dirty(dst_page);
137         f2fs_put_page(src_page, 1);
138
139         set_to_next_nat(nm_i, nid);
140
141         return dst_page;
142 }
143
144 static struct nat_entry *__alloc_nat_entry(nid_t nid, bool no_fail)
145 {
146         struct nat_entry *new;
147
148         if (no_fail)
149                 new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
150         else
151                 new = kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
152         if (new) {
153                 nat_set_nid(new, nid);
154                 nat_reset_flag(new);
155         }
156         return new;
157 }
158
159 static void __free_nat_entry(struct nat_entry *e)
160 {
161         kmem_cache_free(nat_entry_slab, e);
162 }
163
164 /* must be locked by nat_tree_lock */
165 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
166         struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
167 {
168         if (no_fail)
169                 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
170         else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
171                 return NULL;
172
173         if (raw_ne)
174                 node_info_from_raw_nat(&ne->ni, raw_ne);
175
176         spin_lock(&nm_i->nat_list_lock);
177         list_add_tail(&ne->list, &nm_i->nat_entries);
178         spin_unlock(&nm_i->nat_list_lock);
179
180         nm_i->nat_cnt[TOTAL_NAT]++;
181         nm_i->nat_cnt[RECLAIMABLE_NAT]++;
182         return ne;
183 }
184
185 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
186 {
187         struct nat_entry *ne;
188
189         ne = radix_tree_lookup(&nm_i->nat_root, n);
190
191         /* for recent accessed nat entry, move it to tail of lru list */
192         if (ne && !get_nat_flag(ne, IS_DIRTY)) {
193                 spin_lock(&nm_i->nat_list_lock);
194                 if (!list_empty(&ne->list))
195                         list_move_tail(&ne->list, &nm_i->nat_entries);
196                 spin_unlock(&nm_i->nat_list_lock);
197         }
198
199         return ne;
200 }
201
202 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
203                 nid_t start, unsigned int nr, struct nat_entry **ep)
204 {
205         return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
206 }
207
208 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
209 {
210         radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
211         nm_i->nat_cnt[TOTAL_NAT]--;
212         nm_i->nat_cnt[RECLAIMABLE_NAT]--;
213         __free_nat_entry(e);
214 }
215
216 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
217                                                         struct nat_entry *ne)
218 {
219         nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
220         struct nat_entry_set *head;
221
222         head = radix_tree_lookup(&nm_i->nat_set_root, set);
223         if (!head) {
224                 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
225
226                 INIT_LIST_HEAD(&head->entry_list);
227                 INIT_LIST_HEAD(&head->set_list);
228                 head->set = set;
229                 head->entry_cnt = 0;
230                 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
231         }
232         return head;
233 }
234
235 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
236                                                 struct nat_entry *ne)
237 {
238         struct nat_entry_set *head;
239         bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
240
241         if (!new_ne)
242                 head = __grab_nat_entry_set(nm_i, ne);
243
244         /*
245          * update entry_cnt in below condition:
246          * 1. update NEW_ADDR to valid block address;
247          * 2. update old block address to new one;
248          */
249         if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
250                                 !get_nat_flag(ne, IS_DIRTY)))
251                 head->entry_cnt++;
252
253         set_nat_flag(ne, IS_PREALLOC, new_ne);
254
255         if (get_nat_flag(ne, IS_DIRTY))
256                 goto refresh_list;
257
258         nm_i->nat_cnt[DIRTY_NAT]++;
259         nm_i->nat_cnt[RECLAIMABLE_NAT]--;
260         set_nat_flag(ne, IS_DIRTY, true);
261 refresh_list:
262         spin_lock(&nm_i->nat_list_lock);
263         if (new_ne)
264                 list_del_init(&ne->list);
265         else
266                 list_move_tail(&ne->list, &head->entry_list);
267         spin_unlock(&nm_i->nat_list_lock);
268 }
269
270 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
271                 struct nat_entry_set *set, struct nat_entry *ne)
272 {
273         spin_lock(&nm_i->nat_list_lock);
274         list_move_tail(&ne->list, &nm_i->nat_entries);
275         spin_unlock(&nm_i->nat_list_lock);
276
277         set_nat_flag(ne, IS_DIRTY, false);
278         set->entry_cnt--;
279         nm_i->nat_cnt[DIRTY_NAT]--;
280         nm_i->nat_cnt[RECLAIMABLE_NAT]++;
281 }
282
283 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
284                 nid_t start, unsigned int nr, struct nat_entry_set **ep)
285 {
286         return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
287                                                         start, nr);
288 }
289
290 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
291 {
292         return NODE_MAPPING(sbi) == page->mapping &&
293                         IS_DNODE(page) && is_cold_node(page);
294 }
295
296 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
297 {
298         spin_lock_init(&sbi->fsync_node_lock);
299         INIT_LIST_HEAD(&sbi->fsync_node_list);
300         sbi->fsync_seg_id = 0;
301         sbi->fsync_node_num = 0;
302 }
303
304 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
305                                                         struct page *page)
306 {
307         struct fsync_node_entry *fn;
308         unsigned long flags;
309         unsigned int seq_id;
310
311         fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab, GFP_NOFS);
312
313         get_page(page);
314         fn->page = page;
315         INIT_LIST_HEAD(&fn->list);
316
317         spin_lock_irqsave(&sbi->fsync_node_lock, flags);
318         list_add_tail(&fn->list, &sbi->fsync_node_list);
319         fn->seq_id = sbi->fsync_seg_id++;
320         seq_id = fn->seq_id;
321         sbi->fsync_node_num++;
322         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
323
324         return seq_id;
325 }
326
327 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
328 {
329         struct fsync_node_entry *fn;
330         unsigned long flags;
331
332         spin_lock_irqsave(&sbi->fsync_node_lock, flags);
333         list_for_each_entry(fn, &sbi->fsync_node_list, list) {
334                 if (fn->page == page) {
335                         list_del(&fn->list);
336                         sbi->fsync_node_num--;
337                         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
338                         kmem_cache_free(fsync_node_entry_slab, fn);
339                         put_page(page);
340                         return;
341                 }
342         }
343         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
344         f2fs_bug_on(sbi, 1);
345 }
346
347 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
348 {
349         unsigned long flags;
350
351         spin_lock_irqsave(&sbi->fsync_node_lock, flags);
352         sbi->fsync_seg_id = 0;
353         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
354 }
355
356 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
357 {
358         struct f2fs_nm_info *nm_i = NM_I(sbi);
359         struct nat_entry *e;
360         bool need = false;
361
362         down_read(&nm_i->nat_tree_lock);
363         e = __lookup_nat_cache(nm_i, nid);
364         if (e) {
365                 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
366                                 !get_nat_flag(e, HAS_FSYNCED_INODE))
367                         need = true;
368         }
369         up_read(&nm_i->nat_tree_lock);
370         return need;
371 }
372
373 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
374 {
375         struct f2fs_nm_info *nm_i = NM_I(sbi);
376         struct nat_entry *e;
377         bool is_cp = true;
378
379         down_read(&nm_i->nat_tree_lock);
380         e = __lookup_nat_cache(nm_i, nid);
381         if (e && !get_nat_flag(e, IS_CHECKPOINTED))
382                 is_cp = false;
383         up_read(&nm_i->nat_tree_lock);
384         return is_cp;
385 }
386
387 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
388 {
389         struct f2fs_nm_info *nm_i = NM_I(sbi);
390         struct nat_entry *e;
391         bool need_update = true;
392
393         down_read(&nm_i->nat_tree_lock);
394         e = __lookup_nat_cache(nm_i, ino);
395         if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
396                         (get_nat_flag(e, IS_CHECKPOINTED) ||
397                          get_nat_flag(e, HAS_FSYNCED_INODE)))
398                 need_update = false;
399         up_read(&nm_i->nat_tree_lock);
400         return need_update;
401 }
402
403 /* must be locked by nat_tree_lock */
404 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
405                                                 struct f2fs_nat_entry *ne)
406 {
407         struct f2fs_nm_info *nm_i = NM_I(sbi);
408         struct nat_entry *new, *e;
409
410         new = __alloc_nat_entry(nid, false);
411         if (!new)
412                 return;
413
414         down_write(&nm_i->nat_tree_lock);
415         e = __lookup_nat_cache(nm_i, nid);
416         if (!e)
417                 e = __init_nat_entry(nm_i, new, ne, false);
418         else
419                 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
420                                 nat_get_blkaddr(e) !=
421                                         le32_to_cpu(ne->block_addr) ||
422                                 nat_get_version(e) != ne->version);
423         up_write(&nm_i->nat_tree_lock);
424         if (e != new)
425                 __free_nat_entry(new);
426 }
427
428 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
429                         block_t new_blkaddr, bool fsync_done)
430 {
431         struct f2fs_nm_info *nm_i = NM_I(sbi);
432         struct nat_entry *e;
433         struct nat_entry *new = __alloc_nat_entry(ni->nid, true);
434
435         down_write(&nm_i->nat_tree_lock);
436         e = __lookup_nat_cache(nm_i, ni->nid);
437         if (!e) {
438                 e = __init_nat_entry(nm_i, new, NULL, true);
439                 copy_node_info(&e->ni, ni);
440                 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
441         } else if (new_blkaddr == NEW_ADDR) {
442                 /*
443                  * when nid is reallocated,
444                  * previous nat entry can be remained in nat cache.
445                  * So, reinitialize it with new information.
446                  */
447                 copy_node_info(&e->ni, ni);
448                 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
449         }
450         /* let's free early to reduce memory consumption */
451         if (e != new)
452                 __free_nat_entry(new);
453
454         /* sanity check */
455         f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
456         f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
457                         new_blkaddr == NULL_ADDR);
458         f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
459                         new_blkaddr == NEW_ADDR);
460         f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
461                         new_blkaddr == NEW_ADDR);
462
463         /* increment version no as node is removed */
464         if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
465                 unsigned char version = nat_get_version(e);
466                 nat_set_version(e, inc_node_version(version));
467         }
468
469         /* change address */
470         nat_set_blkaddr(e, new_blkaddr);
471         if (!__is_valid_data_blkaddr(new_blkaddr))
472                 set_nat_flag(e, IS_CHECKPOINTED, false);
473         __set_nat_cache_dirty(nm_i, e);
474
475         /* update fsync_mark if its inode nat entry is still alive */
476         if (ni->nid != ni->ino)
477                 e = __lookup_nat_cache(nm_i, ni->ino);
478         if (e) {
479                 if (fsync_done && ni->nid == ni->ino)
480                         set_nat_flag(e, HAS_FSYNCED_INODE, true);
481                 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
482         }
483         up_write(&nm_i->nat_tree_lock);
484 }
485
486 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
487 {
488         struct f2fs_nm_info *nm_i = NM_I(sbi);
489         int nr = nr_shrink;
490
491         if (!down_write_trylock(&nm_i->nat_tree_lock))
492                 return 0;
493
494         spin_lock(&nm_i->nat_list_lock);
495         while (nr_shrink) {
496                 struct nat_entry *ne;
497
498                 if (list_empty(&nm_i->nat_entries))
499                         break;
500
501                 ne = list_first_entry(&nm_i->nat_entries,
502                                         struct nat_entry, list);
503                 list_del(&ne->list);
504                 spin_unlock(&nm_i->nat_list_lock);
505
506                 __del_from_nat_cache(nm_i, ne);
507                 nr_shrink--;
508
509                 spin_lock(&nm_i->nat_list_lock);
510         }
511         spin_unlock(&nm_i->nat_list_lock);
512
513         up_write(&nm_i->nat_tree_lock);
514         return nr - nr_shrink;
515 }
516
517 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
518                                                 struct node_info *ni)
519 {
520         struct f2fs_nm_info *nm_i = NM_I(sbi);
521         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
522         struct f2fs_journal *journal = curseg->journal;
523         nid_t start_nid = START_NID(nid);
524         struct f2fs_nat_block *nat_blk;
525         struct page *page = NULL;
526         struct f2fs_nat_entry ne;
527         struct nat_entry *e;
528         pgoff_t index;
529         block_t blkaddr;
530         int i;
531
532         ni->nid = nid;
533
534         /* Check nat cache */
535         down_read(&nm_i->nat_tree_lock);
536         e = __lookup_nat_cache(nm_i, nid);
537         if (e) {
538                 ni->ino = nat_get_ino(e);
539                 ni->blk_addr = nat_get_blkaddr(e);
540                 ni->version = nat_get_version(e);
541                 up_read(&nm_i->nat_tree_lock);
542                 return 0;
543         }
544
545         memset(&ne, 0, sizeof(struct f2fs_nat_entry));
546
547         /* Check current segment summary */
548         down_read(&curseg->journal_rwsem);
549         i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
550         if (i >= 0) {
551                 ne = nat_in_journal(journal, i);
552                 node_info_from_raw_nat(ni, &ne);
553         }
554         up_read(&curseg->journal_rwsem);
555         if (i >= 0) {
556                 up_read(&nm_i->nat_tree_lock);
557                 goto cache;
558         }
559
560         /* Fill node_info from nat page */
561         index = current_nat_addr(sbi, nid);
562         up_read(&nm_i->nat_tree_lock);
563
564         page = f2fs_get_meta_page(sbi, index);
565         if (IS_ERR(page))
566                 return PTR_ERR(page);
567
568         nat_blk = (struct f2fs_nat_block *)page_address(page);
569         ne = nat_blk->entries[nid - start_nid];
570         node_info_from_raw_nat(ni, &ne);
571         f2fs_put_page(page, 1);
572 cache:
573         blkaddr = le32_to_cpu(ne.block_addr);
574         if (__is_valid_data_blkaddr(blkaddr) &&
575                 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
576                 return -EFAULT;
577
578         /* cache nat entry */
579         cache_nat_entry(sbi, nid, &ne);
580         return 0;
581 }
582
583 /*
584  * readahead MAX_RA_NODE number of node pages.
585  */
586 static void f2fs_ra_node_pages(struct page *parent, int start, int n)
587 {
588         struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
589         struct blk_plug plug;
590         int i, end;
591         nid_t nid;
592
593         blk_start_plug(&plug);
594
595         /* Then, try readahead for siblings of the desired node */
596         end = start + n;
597         end = min(end, NIDS_PER_BLOCK);
598         for (i = start; i < end; i++) {
599                 nid = get_nid(parent, i, false);
600                 f2fs_ra_node_page(sbi, nid);
601         }
602
603         blk_finish_plug(&plug);
604 }
605
606 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
607 {
608         const long direct_index = ADDRS_PER_INODE(dn->inode);
609         const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
610         const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
611         unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
612         int cur_level = dn->cur_level;
613         int max_level = dn->max_level;
614         pgoff_t base = 0;
615
616         if (!dn->max_level)
617                 return pgofs + 1;
618
619         while (max_level-- > cur_level)
620                 skipped_unit *= NIDS_PER_BLOCK;
621
622         switch (dn->max_level) {
623         case 3:
624                 base += 2 * indirect_blks;
625                 fallthrough;
626         case 2:
627                 base += 2 * direct_blks;
628                 fallthrough;
629         case 1:
630                 base += direct_index;
631                 break;
632         default:
633                 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
634         }
635
636         return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
637 }
638
639 /*
640  * The maximum depth is four.
641  * Offset[0] will have raw inode offset.
642  */
643 static int get_node_path(struct inode *inode, long block,
644                                 int offset[4], unsigned int noffset[4])
645 {
646         const long direct_index = ADDRS_PER_INODE(inode);
647         const long direct_blks = ADDRS_PER_BLOCK(inode);
648         const long dptrs_per_blk = NIDS_PER_BLOCK;
649         const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
650         const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
651         int n = 0;
652         int level = 0;
653
654         noffset[0] = 0;
655
656         if (block < direct_index) {
657                 offset[n] = block;
658                 goto got;
659         }
660         block -= direct_index;
661         if (block < direct_blks) {
662                 offset[n++] = NODE_DIR1_BLOCK;
663                 noffset[n] = 1;
664                 offset[n] = block;
665                 level = 1;
666                 goto got;
667         }
668         block -= direct_blks;
669         if (block < direct_blks) {
670                 offset[n++] = NODE_DIR2_BLOCK;
671                 noffset[n] = 2;
672                 offset[n] = block;
673                 level = 1;
674                 goto got;
675         }
676         block -= direct_blks;
677         if (block < indirect_blks) {
678                 offset[n++] = NODE_IND1_BLOCK;
679                 noffset[n] = 3;
680                 offset[n++] = block / direct_blks;
681                 noffset[n] = 4 + offset[n - 1];
682                 offset[n] = block % direct_blks;
683                 level = 2;
684                 goto got;
685         }
686         block -= indirect_blks;
687         if (block < indirect_blks) {
688                 offset[n++] = NODE_IND2_BLOCK;
689                 noffset[n] = 4 + dptrs_per_blk;
690                 offset[n++] = block / direct_blks;
691                 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
692                 offset[n] = block % direct_blks;
693                 level = 2;
694                 goto got;
695         }
696         block -= indirect_blks;
697         if (block < dindirect_blks) {
698                 offset[n++] = NODE_DIND_BLOCK;
699                 noffset[n] = 5 + (dptrs_per_blk * 2);
700                 offset[n++] = block / indirect_blks;
701                 noffset[n] = 6 + (dptrs_per_blk * 2) +
702                               offset[n - 1] * (dptrs_per_blk + 1);
703                 offset[n++] = (block / direct_blks) % dptrs_per_blk;
704                 noffset[n] = 7 + (dptrs_per_blk * 2) +
705                               offset[n - 2] * (dptrs_per_blk + 1) +
706                               offset[n - 1];
707                 offset[n] = block % direct_blks;
708                 level = 3;
709                 goto got;
710         } else {
711                 return -E2BIG;
712         }
713 got:
714         return level;
715 }
716
717 /*
718  * Caller should call f2fs_put_dnode(dn).
719  * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
720  * f2fs_unlock_op() only if mode is set with ALLOC_NODE.
721  */
722 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
723 {
724         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
725         struct page *npage[4];
726         struct page *parent = NULL;
727         int offset[4];
728         unsigned int noffset[4];
729         nid_t nids[4];
730         int level, i = 0;
731         int err = 0;
732
733         level = get_node_path(dn->inode, index, offset, noffset);
734         if (level < 0)
735                 return level;
736
737         nids[0] = dn->inode->i_ino;
738         npage[0] = dn->inode_page;
739
740         if (!npage[0]) {
741                 npage[0] = f2fs_get_node_page(sbi, nids[0]);
742                 if (IS_ERR(npage[0]))
743                         return PTR_ERR(npage[0]);
744         }
745
746         /* if inline_data is set, should not report any block indices */
747         if (f2fs_has_inline_data(dn->inode) && index) {
748                 err = -ENOENT;
749                 f2fs_put_page(npage[0], 1);
750                 goto release_out;
751         }
752
753         parent = npage[0];
754         if (level != 0)
755                 nids[1] = get_nid(parent, offset[0], true);
756         dn->inode_page = npage[0];
757         dn->inode_page_locked = true;
758
759         /* get indirect or direct nodes */
760         for (i = 1; i <= level; i++) {
761                 bool done = false;
762
763                 if (!nids[i] && mode == ALLOC_NODE) {
764                         /* alloc new node */
765                         if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
766                                 err = -ENOSPC;
767                                 goto release_pages;
768                         }
769
770                         dn->nid = nids[i];
771                         npage[i] = f2fs_new_node_page(dn, noffset[i]);
772                         if (IS_ERR(npage[i])) {
773                                 f2fs_alloc_nid_failed(sbi, nids[i]);
774                                 err = PTR_ERR(npage[i]);
775                                 goto release_pages;
776                         }
777
778                         set_nid(parent, offset[i - 1], nids[i], i == 1);
779                         f2fs_alloc_nid_done(sbi, nids[i]);
780                         done = true;
781                 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
782                         npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
783                         if (IS_ERR(npage[i])) {
784                                 err = PTR_ERR(npage[i]);
785                                 goto release_pages;
786                         }
787                         done = true;
788                 }
789                 if (i == 1) {
790                         dn->inode_page_locked = false;
791                         unlock_page(parent);
792                 } else {
793                         f2fs_put_page(parent, 1);
794                 }
795
796                 if (!done) {
797                         npage[i] = f2fs_get_node_page(sbi, nids[i]);
798                         if (IS_ERR(npage[i])) {
799                                 err = PTR_ERR(npage[i]);
800                                 f2fs_put_page(npage[0], 0);
801                                 goto release_out;
802                         }
803                 }
804                 if (i < level) {
805                         parent = npage[i];
806                         nids[i + 1] = get_nid(parent, offset[i], false);
807                 }
808         }
809         dn->nid = nids[level];
810         dn->ofs_in_node = offset[level];
811         dn->node_page = npage[level];
812         dn->data_blkaddr = f2fs_data_blkaddr(dn);
813         return 0;
814
815 release_pages:
816         f2fs_put_page(parent, 1);
817         if (i > 1)
818                 f2fs_put_page(npage[0], 0);
819 release_out:
820         dn->inode_page = NULL;
821         dn->node_page = NULL;
822         if (err == -ENOENT) {
823                 dn->cur_level = i;
824                 dn->max_level = level;
825                 dn->ofs_in_node = offset[level];
826         }
827         return err;
828 }
829
830 static int truncate_node(struct dnode_of_data *dn)
831 {
832         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
833         struct node_info ni;
834         int err;
835         pgoff_t index;
836
837         err = f2fs_get_node_info(sbi, dn->nid, &ni);
838         if (err)
839                 return err;
840
841         /* Deallocate node address */
842         f2fs_invalidate_blocks(sbi, ni.blk_addr);
843         dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
844         set_node_addr(sbi, &ni, NULL_ADDR, false);
845
846         if (dn->nid == dn->inode->i_ino) {
847                 f2fs_remove_orphan_inode(sbi, dn->nid);
848                 dec_valid_inode_count(sbi);
849                 f2fs_inode_synced(dn->inode);
850         }
851
852         clear_node_page_dirty(dn->node_page);
853         set_sbi_flag(sbi, SBI_IS_DIRTY);
854
855         index = dn->node_page->index;
856         f2fs_put_page(dn->node_page, 1);
857
858         invalidate_mapping_pages(NODE_MAPPING(sbi),
859                         index, index);
860
861         dn->node_page = NULL;
862         trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
863
864         return 0;
865 }
866
867 static int truncate_dnode(struct dnode_of_data *dn)
868 {
869         struct page *page;
870         int err;
871
872         if (dn->nid == 0)
873                 return 1;
874
875         /* get direct node */
876         page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
877         if (PTR_ERR(page) == -ENOENT)
878                 return 1;
879         else if (IS_ERR(page))
880                 return PTR_ERR(page);
881
882         /* Make dnode_of_data for parameter */
883         dn->node_page = page;
884         dn->ofs_in_node = 0;
885         f2fs_truncate_data_blocks(dn);
886         err = truncate_node(dn);
887         if (err)
888                 return err;
889
890         return 1;
891 }
892
893 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
894                                                 int ofs, int depth)
895 {
896         struct dnode_of_data rdn = *dn;
897         struct page *page;
898         struct f2fs_node *rn;
899         nid_t child_nid;
900         unsigned int child_nofs;
901         int freed = 0;
902         int i, ret;
903
904         if (dn->nid == 0)
905                 return NIDS_PER_BLOCK + 1;
906
907         trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
908
909         page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
910         if (IS_ERR(page)) {
911                 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
912                 return PTR_ERR(page);
913         }
914
915         f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
916
917         rn = F2FS_NODE(page);
918         if (depth < 3) {
919                 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
920                         child_nid = le32_to_cpu(rn->in.nid[i]);
921                         if (child_nid == 0)
922                                 continue;
923                         rdn.nid = child_nid;
924                         ret = truncate_dnode(&rdn);
925                         if (ret < 0)
926                                 goto out_err;
927                         if (set_nid(page, i, 0, false))
928                                 dn->node_changed = true;
929                 }
930         } else {
931                 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
932                 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
933                         child_nid = le32_to_cpu(rn->in.nid[i]);
934                         if (child_nid == 0) {
935                                 child_nofs += NIDS_PER_BLOCK + 1;
936                                 continue;
937                         }
938                         rdn.nid = child_nid;
939                         ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
940                         if (ret == (NIDS_PER_BLOCK + 1)) {
941                                 if (set_nid(page, i, 0, false))
942                                         dn->node_changed = true;
943                                 child_nofs += ret;
944                         } else if (ret < 0 && ret != -ENOENT) {
945                                 goto out_err;
946                         }
947                 }
948                 freed = child_nofs;
949         }
950
951         if (!ofs) {
952                 /* remove current indirect node */
953                 dn->node_page = page;
954                 ret = truncate_node(dn);
955                 if (ret)
956                         goto out_err;
957                 freed++;
958         } else {
959                 f2fs_put_page(page, 1);
960         }
961         trace_f2fs_truncate_nodes_exit(dn->inode, freed);
962         return freed;
963
964 out_err:
965         f2fs_put_page(page, 1);
966         trace_f2fs_truncate_nodes_exit(dn->inode, ret);
967         return ret;
968 }
969
970 static int truncate_partial_nodes(struct dnode_of_data *dn,
971                         struct f2fs_inode *ri, int *offset, int depth)
972 {
973         struct page *pages[2];
974         nid_t nid[3];
975         nid_t child_nid;
976         int err = 0;
977         int i;
978         int idx = depth - 2;
979
980         nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
981         if (!nid[0])
982                 return 0;
983
984         /* get indirect nodes in the path */
985         for (i = 0; i < idx + 1; i++) {
986                 /* reference count'll be increased */
987                 pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
988                 if (IS_ERR(pages[i])) {
989                         err = PTR_ERR(pages[i]);
990                         idx = i - 1;
991                         goto fail;
992                 }
993                 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
994         }
995
996         f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
997
998         /* free direct nodes linked to a partial indirect node */
999         for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
1000                 child_nid = get_nid(pages[idx], i, false);
1001                 if (!child_nid)
1002                         continue;
1003                 dn->nid = child_nid;
1004                 err = truncate_dnode(dn);
1005                 if (err < 0)
1006                         goto fail;
1007                 if (set_nid(pages[idx], i, 0, false))
1008                         dn->node_changed = true;
1009         }
1010
1011         if (offset[idx + 1] == 0) {
1012                 dn->node_page = pages[idx];
1013                 dn->nid = nid[idx];
1014                 err = truncate_node(dn);
1015                 if (err)
1016                         goto fail;
1017         } else {
1018                 f2fs_put_page(pages[idx], 1);
1019         }
1020         offset[idx]++;
1021         offset[idx + 1] = 0;
1022         idx--;
1023 fail:
1024         for (i = idx; i >= 0; i--)
1025                 f2fs_put_page(pages[i], 1);
1026
1027         trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1028
1029         return err;
1030 }
1031
1032 /*
1033  * All the block addresses of data and nodes should be nullified.
1034  */
1035 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1036 {
1037         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1038         int err = 0, cont = 1;
1039         int level, offset[4], noffset[4];
1040         unsigned int nofs = 0;
1041         struct f2fs_inode *ri;
1042         struct dnode_of_data dn;
1043         struct page *page;
1044
1045         trace_f2fs_truncate_inode_blocks_enter(inode, from);
1046
1047         level = get_node_path(inode, from, offset, noffset);
1048         if (level < 0) {
1049                 trace_f2fs_truncate_inode_blocks_exit(inode, level);
1050                 return level;
1051         }
1052
1053         page = f2fs_get_node_page(sbi, inode->i_ino);
1054         if (IS_ERR(page)) {
1055                 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1056                 return PTR_ERR(page);
1057         }
1058
1059         set_new_dnode(&dn, inode, page, NULL, 0);
1060         unlock_page(page);
1061
1062         ri = F2FS_INODE(page);
1063         switch (level) {
1064         case 0:
1065         case 1:
1066                 nofs = noffset[1];
1067                 break;
1068         case 2:
1069                 nofs = noffset[1];
1070                 if (!offset[level - 1])
1071                         goto skip_partial;
1072                 err = truncate_partial_nodes(&dn, ri, offset, level);
1073                 if (err < 0 && err != -ENOENT)
1074                         goto fail;
1075                 nofs += 1 + NIDS_PER_BLOCK;
1076                 break;
1077         case 3:
1078                 nofs = 5 + 2 * NIDS_PER_BLOCK;
1079                 if (!offset[level - 1])
1080                         goto skip_partial;
1081                 err = truncate_partial_nodes(&dn, ri, offset, level);
1082                 if (err < 0 && err != -ENOENT)
1083                         goto fail;
1084                 break;
1085         default:
1086                 BUG();
1087         }
1088
1089 skip_partial:
1090         while (cont) {
1091                 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1092                 switch (offset[0]) {
1093                 case NODE_DIR1_BLOCK:
1094                 case NODE_DIR2_BLOCK:
1095                         err = truncate_dnode(&dn);
1096                         break;
1097
1098                 case NODE_IND1_BLOCK:
1099                 case NODE_IND2_BLOCK:
1100                         err = truncate_nodes(&dn, nofs, offset[1], 2);
1101                         break;
1102
1103                 case NODE_DIND_BLOCK:
1104                         err = truncate_nodes(&dn, nofs, offset[1], 3);
1105                         cont = 0;
1106                         break;
1107
1108                 default:
1109                         BUG();
1110                 }
1111                 if (err < 0 && err != -ENOENT)
1112                         goto fail;
1113                 if (offset[1] == 0 &&
1114                                 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
1115                         lock_page(page);
1116                         BUG_ON(page->mapping != NODE_MAPPING(sbi));
1117                         f2fs_wait_on_page_writeback(page, NODE, true, true);
1118                         ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
1119                         set_page_dirty(page);
1120                         unlock_page(page);
1121                 }
1122                 offset[1] = 0;
1123                 offset[0]++;
1124                 nofs += err;
1125         }
1126 fail:
1127         f2fs_put_page(page, 0);
1128         trace_f2fs_truncate_inode_blocks_exit(inode, err);
1129         return err > 0 ? 0 : err;
1130 }
1131
1132 /* caller must lock inode page */
1133 int f2fs_truncate_xattr_node(struct inode *inode)
1134 {
1135         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1136         nid_t nid = F2FS_I(inode)->i_xattr_nid;
1137         struct dnode_of_data dn;
1138         struct page *npage;
1139         int err;
1140
1141         if (!nid)
1142                 return 0;
1143
1144         npage = f2fs_get_node_page(sbi, nid);
1145         if (IS_ERR(npage))
1146                 return PTR_ERR(npage);
1147
1148         set_new_dnode(&dn, inode, NULL, npage, nid);
1149         err = truncate_node(&dn);
1150         if (err) {
1151                 f2fs_put_page(npage, 1);
1152                 return err;
1153         }
1154
1155         f2fs_i_xnid_write(inode, 0);
1156
1157         return 0;
1158 }
1159
1160 /*
1161  * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1162  * f2fs_unlock_op().
1163  */
1164 int f2fs_remove_inode_page(struct inode *inode)
1165 {
1166         struct dnode_of_data dn;
1167         int err;
1168
1169         set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1170         err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1171         if (err)
1172                 return err;
1173
1174         err = f2fs_truncate_xattr_node(inode);
1175         if (err) {
1176                 f2fs_put_dnode(&dn);
1177                 return err;
1178         }
1179
1180         /* remove potential inline_data blocks */
1181         if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1182                                 S_ISLNK(inode->i_mode))
1183                 f2fs_truncate_data_blocks_range(&dn, 1);
1184
1185         /* 0 is possible, after f2fs_new_inode() has failed */
1186         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1187                 f2fs_put_dnode(&dn);
1188                 return -EIO;
1189         }
1190
1191         if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1192                 f2fs_warn(F2FS_I_SB(inode),
1193                         "f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu",
1194                         inode->i_ino, (unsigned long long)inode->i_blocks);
1195                 set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1196         }
1197
1198         /* will put inode & node pages */
1199         err = truncate_node(&dn);
1200         if (err) {
1201                 f2fs_put_dnode(&dn);
1202                 return err;
1203         }
1204         return 0;
1205 }
1206
1207 struct page *f2fs_new_inode_page(struct inode *inode)
1208 {
1209         struct dnode_of_data dn;
1210
1211         /* allocate inode page for new inode */
1212         set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1213
1214         /* caller should f2fs_put_page(page, 1); */
1215         return f2fs_new_node_page(&dn, 0);
1216 }
1217
1218 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1219 {
1220         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1221         struct node_info new_ni;
1222         struct page *page;
1223         int err;
1224
1225         if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1226                 return ERR_PTR(-EPERM);
1227
1228         page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1229         if (!page)
1230                 return ERR_PTR(-ENOMEM);
1231
1232         if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1233                 goto fail;
1234
1235 #ifdef CONFIG_F2FS_CHECK_FS
1236         err = f2fs_get_node_info(sbi, dn->nid, &new_ni);
1237         if (err) {
1238                 dec_valid_node_count(sbi, dn->inode, !ofs);
1239                 goto fail;
1240         }
1241         f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR);
1242 #endif
1243         new_ni.nid = dn->nid;
1244         new_ni.ino = dn->inode->i_ino;
1245         new_ni.blk_addr = NULL_ADDR;
1246         new_ni.flag = 0;
1247         new_ni.version = 0;
1248         set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1249
1250         f2fs_wait_on_page_writeback(page, NODE, true, true);
1251         fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1252         set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1253         if (!PageUptodate(page))
1254                 SetPageUptodate(page);
1255         if (set_page_dirty(page))
1256                 dn->node_changed = true;
1257
1258         if (f2fs_has_xattr_block(ofs))
1259                 f2fs_i_xnid_write(dn->inode, dn->nid);
1260
1261         if (ofs == 0)
1262                 inc_valid_inode_count(sbi);
1263         return page;
1264
1265 fail:
1266         clear_node_page_dirty(page);
1267         f2fs_put_page(page, 1);
1268         return ERR_PTR(err);
1269 }
1270
1271 /*
1272  * Caller should do after getting the following values.
1273  * 0: f2fs_put_page(page, 0)
1274  * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1275  */
1276 static int read_node_page(struct page *page, int op_flags)
1277 {
1278         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1279         struct node_info ni;
1280         struct f2fs_io_info fio = {
1281                 .sbi = sbi,
1282                 .type = NODE,
1283                 .op = REQ_OP_READ,
1284                 .op_flags = op_flags,
1285                 .page = page,
1286                 .encrypted_page = NULL,
1287         };
1288         int err;
1289
1290         if (PageUptodate(page)) {
1291                 if (!f2fs_inode_chksum_verify(sbi, page)) {
1292                         ClearPageUptodate(page);
1293                         return -EFSBADCRC;
1294                 }
1295                 return LOCKED_PAGE;
1296         }
1297
1298         err = f2fs_get_node_info(sbi, page->index, &ni);
1299         if (err)
1300                 return err;
1301
1302         if (unlikely(ni.blk_addr == NULL_ADDR) ||
1303                         is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)) {
1304                 ClearPageUptodate(page);
1305                 return -ENOENT;
1306         }
1307
1308         fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1309
1310         err = f2fs_submit_page_bio(&fio);
1311
1312         if (!err)
1313                 f2fs_update_iostat(sbi, FS_NODE_READ_IO, F2FS_BLKSIZE);
1314
1315         return err;
1316 }
1317
1318 /*
1319  * Readahead a node page
1320  */
1321 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1322 {
1323         struct page *apage;
1324         int err;
1325
1326         if (!nid)
1327                 return;
1328         if (f2fs_check_nid_range(sbi, nid))
1329                 return;
1330
1331         apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
1332         if (apage)
1333                 return;
1334
1335         apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1336         if (!apage)
1337                 return;
1338
1339         err = read_node_page(apage, REQ_RAHEAD);
1340         f2fs_put_page(apage, err ? 1 : 0);
1341 }
1342
1343 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1344                                         struct page *parent, int start)
1345 {
1346         struct page *page;
1347         int err;
1348
1349         if (!nid)
1350                 return ERR_PTR(-ENOENT);
1351         if (f2fs_check_nid_range(sbi, nid))
1352                 return ERR_PTR(-EINVAL);
1353 repeat:
1354         page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1355         if (!page)
1356                 return ERR_PTR(-ENOMEM);
1357
1358         err = read_node_page(page, 0);
1359         if (err < 0) {
1360                 f2fs_put_page(page, 1);
1361                 return ERR_PTR(err);
1362         } else if (err == LOCKED_PAGE) {
1363                 err = 0;
1364                 goto page_hit;
1365         }
1366
1367         if (parent)
1368                 f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1369
1370         lock_page(page);
1371
1372         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1373                 f2fs_put_page(page, 1);
1374                 goto repeat;
1375         }
1376
1377         if (unlikely(!PageUptodate(page))) {
1378                 err = -EIO;
1379                 goto out_err;
1380         }
1381
1382         if (!f2fs_inode_chksum_verify(sbi, page)) {
1383                 err = -EFSBADCRC;
1384                 goto out_err;
1385         }
1386 page_hit:
1387         if(unlikely(nid != nid_of_node(page))) {
1388                 f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1389                           nid, nid_of_node(page), ino_of_node(page),
1390                           ofs_of_node(page), cpver_of_node(page),
1391                           next_blkaddr_of_node(page));
1392                 err = -EINVAL;
1393 out_err:
1394                 ClearPageUptodate(page);
1395                 f2fs_put_page(page, 1);
1396                 return ERR_PTR(err);
1397         }
1398         return page;
1399 }
1400
1401 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1402 {
1403         return __get_node_page(sbi, nid, NULL, 0);
1404 }
1405
1406 struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1407 {
1408         struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1409         nid_t nid = get_nid(parent, start, false);
1410
1411         return __get_node_page(sbi, nid, parent, start);
1412 }
1413
1414 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1415 {
1416         struct inode *inode;
1417         struct page *page;
1418         int ret;
1419
1420         /* should flush inline_data before evict_inode */
1421         inode = ilookup(sbi->sb, ino);
1422         if (!inode)
1423                 return;
1424
1425         page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1426                                         FGP_LOCK|FGP_NOWAIT, 0);
1427         if (!page)
1428                 goto iput_out;
1429
1430         if (!PageUptodate(page))
1431                 goto page_out;
1432
1433         if (!PageDirty(page))
1434                 goto page_out;
1435
1436         if (!clear_page_dirty_for_io(page))
1437                 goto page_out;
1438
1439         ret = f2fs_write_inline_data(inode, page);
1440         inode_dec_dirty_pages(inode);
1441         f2fs_remove_dirty_inode(inode);
1442         if (ret)
1443                 set_page_dirty(page);
1444 page_out:
1445         f2fs_put_page(page, 1);
1446 iput_out:
1447         iput(inode);
1448 }
1449
1450 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1451 {
1452         pgoff_t index;
1453         struct pagevec pvec;
1454         struct page *last_page = NULL;
1455         int nr_pages;
1456
1457         pagevec_init(&pvec);
1458         index = 0;
1459
1460         while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1461                                 PAGECACHE_TAG_DIRTY))) {
1462                 int i;
1463
1464                 for (i = 0; i < nr_pages; i++) {
1465                         struct page *page = pvec.pages[i];
1466
1467                         if (unlikely(f2fs_cp_error(sbi))) {
1468                                 f2fs_put_page(last_page, 0);
1469                                 pagevec_release(&pvec);
1470                                 return ERR_PTR(-EIO);
1471                         }
1472
1473                         if (!IS_DNODE(page) || !is_cold_node(page))
1474                                 continue;
1475                         if (ino_of_node(page) != ino)
1476                                 continue;
1477
1478                         lock_page(page);
1479
1480                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1481 continue_unlock:
1482                                 unlock_page(page);
1483                                 continue;
1484                         }
1485                         if (ino_of_node(page) != ino)
1486                                 goto continue_unlock;
1487
1488                         if (!PageDirty(page)) {
1489                                 /* someone wrote it for us */
1490                                 goto continue_unlock;
1491                         }
1492
1493                         if (last_page)
1494                                 f2fs_put_page(last_page, 0);
1495
1496                         get_page(page);
1497                         last_page = page;
1498                         unlock_page(page);
1499                 }
1500                 pagevec_release(&pvec);
1501                 cond_resched();
1502         }
1503         return last_page;
1504 }
1505
1506 static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1507                                 struct writeback_control *wbc, bool do_balance,
1508                                 enum iostat_type io_type, unsigned int *seq_id)
1509 {
1510         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1511         nid_t nid;
1512         struct node_info ni;
1513         struct f2fs_io_info fio = {
1514                 .sbi = sbi,
1515                 .ino = ino_of_node(page),
1516                 .type = NODE,
1517                 .op = REQ_OP_WRITE,
1518                 .op_flags = wbc_to_write_flags(wbc),
1519                 .page = page,
1520                 .encrypted_page = NULL,
1521                 .submitted = false,
1522                 .io_type = io_type,
1523                 .io_wbc = wbc,
1524         };
1525         unsigned int seq;
1526
1527         trace_f2fs_writepage(page, NODE);
1528
1529         if (unlikely(f2fs_cp_error(sbi))) {
1530                 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) {
1531                         ClearPageUptodate(page);
1532                         dec_page_count(sbi, F2FS_DIRTY_NODES);
1533                         unlock_page(page);
1534                         return 0;
1535                 }
1536                 goto redirty_out;
1537         }
1538
1539         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1540                 goto redirty_out;
1541
1542         if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1543                         wbc->sync_mode == WB_SYNC_NONE &&
1544                         IS_DNODE(page) && is_cold_node(page))
1545                 goto redirty_out;
1546
1547         /* get old block addr of this node page */
1548         nid = nid_of_node(page);
1549         f2fs_bug_on(sbi, page->index != nid);
1550
1551         if (f2fs_get_node_info(sbi, nid, &ni))
1552                 goto redirty_out;
1553
1554         if (wbc->for_reclaim) {
1555                 if (!down_read_trylock(&sbi->node_write))
1556                         goto redirty_out;
1557         } else {
1558                 down_read(&sbi->node_write);
1559         }
1560
1561         /* This page is already truncated */
1562         if (unlikely(ni.blk_addr == NULL_ADDR)) {
1563                 ClearPageUptodate(page);
1564                 dec_page_count(sbi, F2FS_DIRTY_NODES);
1565                 up_read(&sbi->node_write);
1566                 unlock_page(page);
1567                 return 0;
1568         }
1569
1570         if (__is_valid_data_blkaddr(ni.blk_addr) &&
1571                 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1572                                         DATA_GENERIC_ENHANCE)) {
1573                 up_read(&sbi->node_write);
1574                 goto redirty_out;
1575         }
1576
1577         if (atomic && !test_opt(sbi, NOBARRIER))
1578                 fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1579
1580         /* should add to global list before clearing PAGECACHE status */
1581         if (f2fs_in_warm_node_list(sbi, page)) {
1582                 seq = f2fs_add_fsync_node_entry(sbi, page);
1583                 if (seq_id)
1584                         *seq_id = seq;
1585         }
1586
1587         set_page_writeback(page);
1588         ClearPageError(page);
1589
1590         fio.old_blkaddr = ni.blk_addr;
1591         f2fs_do_write_node_page(nid, &fio);
1592         set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1593         dec_page_count(sbi, F2FS_DIRTY_NODES);
1594         up_read(&sbi->node_write);
1595
1596         if (wbc->for_reclaim) {
1597                 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1598                 submitted = NULL;
1599         }
1600
1601         unlock_page(page);
1602
1603         if (unlikely(f2fs_cp_error(sbi))) {
1604                 f2fs_submit_merged_write(sbi, NODE);
1605                 submitted = NULL;
1606         }
1607         if (submitted)
1608                 *submitted = fio.submitted;
1609
1610         if (do_balance)
1611                 f2fs_balance_fs(sbi, false);
1612         return 0;
1613
1614 redirty_out:
1615         redirty_page_for_writepage(wbc, page);
1616         return AOP_WRITEPAGE_ACTIVATE;
1617 }
1618
1619 int f2fs_move_node_page(struct page *node_page, int gc_type)
1620 {
1621         int err = 0;
1622
1623         if (gc_type == FG_GC) {
1624                 struct writeback_control wbc = {
1625                         .sync_mode = WB_SYNC_ALL,
1626                         .nr_to_write = 1,
1627                         .for_reclaim = 0,
1628                 };
1629
1630                 f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1631
1632                 set_page_dirty(node_page);
1633
1634                 if (!clear_page_dirty_for_io(node_page)) {
1635                         err = -EAGAIN;
1636                         goto out_page;
1637                 }
1638
1639                 if (__write_node_page(node_page, false, NULL,
1640                                         &wbc, false, FS_GC_NODE_IO, NULL)) {
1641                         err = -EAGAIN;
1642                         unlock_page(node_page);
1643                 }
1644                 goto release_page;
1645         } else {
1646                 /* set page dirty and write it */
1647                 if (!PageWriteback(node_page))
1648                         set_page_dirty(node_page);
1649         }
1650 out_page:
1651         unlock_page(node_page);
1652 release_page:
1653         f2fs_put_page(node_page, 0);
1654         return err;
1655 }
1656
1657 static int f2fs_write_node_page(struct page *page,
1658                                 struct writeback_control *wbc)
1659 {
1660         return __write_node_page(page, false, NULL, wbc, false,
1661                                                 FS_NODE_IO, NULL);
1662 }
1663
1664 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1665                         struct writeback_control *wbc, bool atomic,
1666                         unsigned int *seq_id)
1667 {
1668         pgoff_t index;
1669         struct pagevec pvec;
1670         int ret = 0;
1671         struct page *last_page = NULL;
1672         bool marked = false;
1673         nid_t ino = inode->i_ino;
1674         int nr_pages;
1675         int nwritten = 0;
1676
1677         if (atomic) {
1678                 last_page = last_fsync_dnode(sbi, ino);
1679                 if (IS_ERR_OR_NULL(last_page))
1680                         return PTR_ERR_OR_ZERO(last_page);
1681         }
1682 retry:
1683         pagevec_init(&pvec);
1684         index = 0;
1685
1686         while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1687                                 PAGECACHE_TAG_DIRTY))) {
1688                 int i;
1689
1690                 for (i = 0; i < nr_pages; i++) {
1691                         struct page *page = pvec.pages[i];
1692                         bool submitted = false;
1693
1694                         if (unlikely(f2fs_cp_error(sbi))) {
1695                                 f2fs_put_page(last_page, 0);
1696                                 pagevec_release(&pvec);
1697                                 ret = -EIO;
1698                                 goto out;
1699                         }
1700
1701                         if (!IS_DNODE(page) || !is_cold_node(page))
1702                                 continue;
1703                         if (ino_of_node(page) != ino)
1704                                 continue;
1705
1706                         lock_page(page);
1707
1708                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1709 continue_unlock:
1710                                 unlock_page(page);
1711                                 continue;
1712                         }
1713                         if (ino_of_node(page) != ino)
1714                                 goto continue_unlock;
1715
1716                         if (!PageDirty(page) && page != last_page) {
1717                                 /* someone wrote it for us */
1718                                 goto continue_unlock;
1719                         }
1720
1721                         f2fs_wait_on_page_writeback(page, NODE, true, true);
1722
1723                         set_fsync_mark(page, 0);
1724                         set_dentry_mark(page, 0);
1725
1726                         if (!atomic || page == last_page) {
1727                                 set_fsync_mark(page, 1);
1728                                 if (IS_INODE(page)) {
1729                                         if (is_inode_flag_set(inode,
1730                                                                 FI_DIRTY_INODE))
1731                                                 f2fs_update_inode(inode, page);
1732                                         set_dentry_mark(page,
1733                                                 f2fs_need_dentry_mark(sbi, ino));
1734                                 }
1735                                 /* may be written by other thread */
1736                                 if (!PageDirty(page))
1737                                         set_page_dirty(page);
1738                         }
1739
1740                         if (!clear_page_dirty_for_io(page))
1741                                 goto continue_unlock;
1742
1743                         ret = __write_node_page(page, atomic &&
1744                                                 page == last_page,
1745                                                 &submitted, wbc, true,
1746                                                 FS_NODE_IO, seq_id);
1747                         if (ret) {
1748                                 unlock_page(page);
1749                                 f2fs_put_page(last_page, 0);
1750                                 break;
1751                         } else if (submitted) {
1752                                 nwritten++;
1753                         }
1754
1755                         if (page == last_page) {
1756                                 f2fs_put_page(page, 0);
1757                                 marked = true;
1758                                 break;
1759                         }
1760                 }
1761                 pagevec_release(&pvec);
1762                 cond_resched();
1763
1764                 if (ret || marked)
1765                         break;
1766         }
1767         if (!ret && atomic && !marked) {
1768                 f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1769                            ino, last_page->index);
1770                 lock_page(last_page);
1771                 f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1772                 set_page_dirty(last_page);
1773                 unlock_page(last_page);
1774                 goto retry;
1775         }
1776 out:
1777         if (nwritten)
1778                 f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1779         return ret ? -EIO: 0;
1780 }
1781
1782 static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
1783 {
1784         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1785         bool clean;
1786
1787         if (inode->i_ino != ino)
1788                 return 0;
1789
1790         if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
1791                 return 0;
1792
1793         spin_lock(&sbi->inode_lock[DIRTY_META]);
1794         clean = list_empty(&F2FS_I(inode)->gdirty_list);
1795         spin_unlock(&sbi->inode_lock[DIRTY_META]);
1796
1797         if (clean)
1798                 return 0;
1799
1800         inode = igrab(inode);
1801         if (!inode)
1802                 return 0;
1803         return 1;
1804 }
1805
1806 static bool flush_dirty_inode(struct page *page)
1807 {
1808         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1809         struct inode *inode;
1810         nid_t ino = ino_of_node(page);
1811
1812         inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
1813         if (!inode)
1814                 return false;
1815
1816         f2fs_update_inode(inode, page);
1817         unlock_page(page);
1818
1819         iput(inode);
1820         return true;
1821 }
1822
1823 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi)
1824 {
1825         pgoff_t index = 0;
1826         struct pagevec pvec;
1827         int nr_pages;
1828
1829         pagevec_init(&pvec);
1830
1831         while ((nr_pages = pagevec_lookup_tag(&pvec,
1832                         NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1833                 int i;
1834
1835                 for (i = 0; i < nr_pages; i++) {
1836                         struct page *page = pvec.pages[i];
1837
1838                         if (!IS_DNODE(page))
1839                                 continue;
1840
1841                         lock_page(page);
1842
1843                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1844 continue_unlock:
1845                                 unlock_page(page);
1846                                 continue;
1847                         }
1848
1849                         if (!PageDirty(page)) {
1850                                 /* someone wrote it for us */
1851                                 goto continue_unlock;
1852                         }
1853
1854                         /* flush inline_data, if it's async context. */
1855                         if (is_inline_node(page)) {
1856                                 clear_inline_node(page);
1857                                 unlock_page(page);
1858                                 flush_inline_data(sbi, ino_of_node(page));
1859                                 continue;
1860                         }
1861                         unlock_page(page);
1862                 }
1863                 pagevec_release(&pvec);
1864                 cond_resched();
1865         }
1866 }
1867
1868 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1869                                 struct writeback_control *wbc,
1870                                 bool do_balance, enum iostat_type io_type)
1871 {
1872         pgoff_t index;
1873         struct pagevec pvec;
1874         int step = 0;
1875         int nwritten = 0;
1876         int ret = 0;
1877         int nr_pages, done = 0;
1878
1879         pagevec_init(&pvec);
1880
1881 next_step:
1882         index = 0;
1883
1884         while (!done && (nr_pages = pagevec_lookup_tag(&pvec,
1885                         NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1886                 int i;
1887
1888                 for (i = 0; i < nr_pages; i++) {
1889                         struct page *page = pvec.pages[i];
1890                         bool submitted = false;
1891                         bool may_dirty = true;
1892
1893                         /* give a priority to WB_SYNC threads */
1894                         if (atomic_read(&sbi->wb_sync_req[NODE]) &&
1895                                         wbc->sync_mode == WB_SYNC_NONE) {
1896                                 done = 1;
1897                                 break;
1898                         }
1899
1900                         /*
1901                          * flushing sequence with step:
1902                          * 0. indirect nodes
1903                          * 1. dentry dnodes
1904                          * 2. file dnodes
1905                          */
1906                         if (step == 0 && IS_DNODE(page))
1907                                 continue;
1908                         if (step == 1 && (!IS_DNODE(page) ||
1909                                                 is_cold_node(page)))
1910                                 continue;
1911                         if (step == 2 && (!IS_DNODE(page) ||
1912                                                 !is_cold_node(page)))
1913                                 continue;
1914 lock_node:
1915                         if (wbc->sync_mode == WB_SYNC_ALL)
1916                                 lock_page(page);
1917                         else if (!trylock_page(page))
1918                                 continue;
1919
1920                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1921 continue_unlock:
1922                                 unlock_page(page);
1923                                 continue;
1924                         }
1925
1926                         if (!PageDirty(page)) {
1927                                 /* someone wrote it for us */
1928                                 goto continue_unlock;
1929                         }
1930
1931                         /* flush inline_data/inode, if it's async context. */
1932                         if (!do_balance)
1933                                 goto write_node;
1934
1935                         /* flush inline_data */
1936                         if (is_inline_node(page)) {
1937                                 clear_inline_node(page);
1938                                 unlock_page(page);
1939                                 flush_inline_data(sbi, ino_of_node(page));
1940                                 goto lock_node;
1941                         }
1942
1943                         /* flush dirty inode */
1944                         if (IS_INODE(page) && may_dirty) {
1945                                 may_dirty = false;
1946                                 if (flush_dirty_inode(page))
1947                                         goto lock_node;
1948                         }
1949 write_node:
1950                         f2fs_wait_on_page_writeback(page, NODE, true, true);
1951
1952                         if (!clear_page_dirty_for_io(page))
1953                                 goto continue_unlock;
1954
1955                         set_fsync_mark(page, 0);
1956                         set_dentry_mark(page, 0);
1957
1958                         ret = __write_node_page(page, false, &submitted,
1959                                                 wbc, do_balance, io_type, NULL);
1960                         if (ret)
1961                                 unlock_page(page);
1962                         else if (submitted)
1963                                 nwritten++;
1964
1965                         if (--wbc->nr_to_write == 0)
1966                                 break;
1967                 }
1968                 pagevec_release(&pvec);
1969                 cond_resched();
1970
1971                 if (wbc->nr_to_write == 0) {
1972                         step = 2;
1973                         break;
1974                 }
1975         }
1976
1977         if (step < 2) {
1978                 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1979                                 wbc->sync_mode == WB_SYNC_NONE && step == 1)
1980                         goto out;
1981                 step++;
1982                 goto next_step;
1983         }
1984 out:
1985         if (nwritten)
1986                 f2fs_submit_merged_write(sbi, NODE);
1987
1988         if (unlikely(f2fs_cp_error(sbi)))
1989                 return -EIO;
1990         return ret;
1991 }
1992
1993 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
1994                                                 unsigned int seq_id)
1995 {
1996         struct fsync_node_entry *fn;
1997         struct page *page;
1998         struct list_head *head = &sbi->fsync_node_list;
1999         unsigned long flags;
2000         unsigned int cur_seq_id = 0;
2001         int ret2, ret = 0;
2002
2003         while (seq_id && cur_seq_id < seq_id) {
2004                 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
2005                 if (list_empty(head)) {
2006                         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2007                         break;
2008                 }
2009                 fn = list_first_entry(head, struct fsync_node_entry, list);
2010                 if (fn->seq_id > seq_id) {
2011                         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2012                         break;
2013                 }
2014                 cur_seq_id = fn->seq_id;
2015                 page = fn->page;
2016                 get_page(page);
2017                 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2018
2019                 f2fs_wait_on_page_writeback(page, NODE, true, false);
2020                 if (TestClearPageError(page))
2021                         ret = -EIO;
2022
2023                 put_page(page);
2024
2025                 if (ret)
2026                         break;
2027         }
2028
2029         ret2 = filemap_check_errors(NODE_MAPPING(sbi));
2030         if (!ret)
2031                 ret = ret2;
2032
2033         return ret;
2034 }
2035
2036 static int f2fs_write_node_pages(struct address_space *mapping,
2037                             struct writeback_control *wbc)
2038 {
2039         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2040         struct blk_plug plug;
2041         long diff;
2042
2043         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2044                 goto skip_write;
2045
2046         /* balancing f2fs's metadata in background */
2047         f2fs_balance_fs_bg(sbi, true);
2048
2049         /* collect a number of dirty node pages and write together */
2050         if (wbc->sync_mode != WB_SYNC_ALL &&
2051                         get_pages(sbi, F2FS_DIRTY_NODES) <
2052                                         nr_pages_to_skip(sbi, NODE))
2053                 goto skip_write;
2054
2055         if (wbc->sync_mode == WB_SYNC_ALL)
2056                 atomic_inc(&sbi->wb_sync_req[NODE]);
2057         else if (atomic_read(&sbi->wb_sync_req[NODE]))
2058                 goto skip_write;
2059
2060         trace_f2fs_writepages(mapping->host, wbc, NODE);
2061
2062         diff = nr_pages_to_write(sbi, NODE, wbc);
2063         blk_start_plug(&plug);
2064         f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
2065         blk_finish_plug(&plug);
2066         wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
2067
2068         if (wbc->sync_mode == WB_SYNC_ALL)
2069                 atomic_dec(&sbi->wb_sync_req[NODE]);
2070         return 0;
2071
2072 skip_write:
2073         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
2074         trace_f2fs_writepages(mapping->host, wbc, NODE);
2075         return 0;
2076 }
2077
2078 static int f2fs_set_node_page_dirty(struct page *page)
2079 {
2080         trace_f2fs_set_page_dirty(page, NODE);
2081
2082         if (!PageUptodate(page))
2083                 SetPageUptodate(page);
2084 #ifdef CONFIG_F2FS_CHECK_FS
2085         if (IS_INODE(page))
2086                 f2fs_inode_chksum_set(F2FS_P_SB(page), page);
2087 #endif
2088         if (!PageDirty(page)) {
2089                 __set_page_dirty_nobuffers(page);
2090                 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
2091                 f2fs_set_page_private(page, 0);
2092                 f2fs_trace_pid(page);
2093                 return 1;
2094         }
2095         return 0;
2096 }
2097
2098 /*
2099  * Structure of the f2fs node operations
2100  */
2101 const struct address_space_operations f2fs_node_aops = {
2102         .writepage      = f2fs_write_node_page,
2103         .writepages     = f2fs_write_node_pages,
2104         .set_page_dirty = f2fs_set_node_page_dirty,
2105         .invalidatepage = f2fs_invalidate_page,
2106         .releasepage    = f2fs_release_page,
2107 #ifdef CONFIG_MIGRATION
2108         .migratepage    = f2fs_migrate_page,
2109 #endif
2110 };
2111
2112 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2113                                                 nid_t n)
2114 {
2115         return radix_tree_lookup(&nm_i->free_nid_root, n);
2116 }
2117
2118 static int __insert_free_nid(struct f2fs_sb_info *sbi,
2119                                 struct free_nid *i)
2120 {
2121         struct f2fs_nm_info *nm_i = NM_I(sbi);
2122
2123         int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2124         if (err)
2125                 return err;
2126
2127         nm_i->nid_cnt[FREE_NID]++;
2128         list_add_tail(&i->list, &nm_i->free_nid_list);
2129         return 0;
2130 }
2131
2132 static void __remove_free_nid(struct f2fs_sb_info *sbi,
2133                         struct free_nid *i, enum nid_state state)
2134 {
2135         struct f2fs_nm_info *nm_i = NM_I(sbi);
2136
2137         f2fs_bug_on(sbi, state != i->state);
2138         nm_i->nid_cnt[state]--;
2139         if (state == FREE_NID)
2140                 list_del(&i->list);
2141         radix_tree_delete(&nm_i->free_nid_root, i->nid);
2142 }
2143
2144 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2145                         enum nid_state org_state, enum nid_state dst_state)
2146 {
2147         struct f2fs_nm_info *nm_i = NM_I(sbi);
2148
2149         f2fs_bug_on(sbi, org_state != i->state);
2150         i->state = dst_state;
2151         nm_i->nid_cnt[org_state]--;
2152         nm_i->nid_cnt[dst_state]++;
2153
2154         switch (dst_state) {
2155         case PREALLOC_NID:
2156                 list_del(&i->list);
2157                 break;
2158         case FREE_NID:
2159                 list_add_tail(&i->list, &nm_i->free_nid_list);
2160                 break;
2161         default:
2162                 BUG_ON(1);
2163         }
2164 }
2165
2166 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2167                                                         bool set, bool build)
2168 {
2169         struct f2fs_nm_info *nm_i = NM_I(sbi);
2170         unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2171         unsigned int nid_ofs = nid - START_NID(nid);
2172
2173         if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2174                 return;
2175
2176         if (set) {
2177                 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2178                         return;
2179                 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2180                 nm_i->free_nid_count[nat_ofs]++;
2181         } else {
2182                 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2183                         return;
2184                 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2185                 if (!build)
2186                         nm_i->free_nid_count[nat_ofs]--;
2187         }
2188 }
2189
2190 /* return if the nid is recognized as free */
2191 static bool add_free_nid(struct f2fs_sb_info *sbi,
2192                                 nid_t nid, bool build, bool update)
2193 {
2194         struct f2fs_nm_info *nm_i = NM_I(sbi);
2195         struct free_nid *i, *e;
2196         struct nat_entry *ne;
2197         int err = -EINVAL;
2198         bool ret = false;
2199
2200         /* 0 nid should not be used */
2201         if (unlikely(nid == 0))
2202                 return false;
2203
2204         if (unlikely(f2fs_check_nid_range(sbi, nid)))
2205                 return false;
2206
2207         i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
2208         i->nid = nid;
2209         i->state = FREE_NID;
2210
2211         radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2212
2213         spin_lock(&nm_i->nid_list_lock);
2214
2215         if (build) {
2216                 /*
2217                  *   Thread A             Thread B
2218                  *  - f2fs_create
2219                  *   - f2fs_new_inode
2220                  *    - f2fs_alloc_nid
2221                  *     - __insert_nid_to_list(PREALLOC_NID)
2222                  *                     - f2fs_balance_fs_bg
2223                  *                      - f2fs_build_free_nids
2224                  *                       - __f2fs_build_free_nids
2225                  *                        - scan_nat_page
2226                  *                         - add_free_nid
2227                  *                          - __lookup_nat_cache
2228                  *  - f2fs_add_link
2229                  *   - f2fs_init_inode_metadata
2230                  *    - f2fs_new_inode_page
2231                  *     - f2fs_new_node_page
2232                  *      - set_node_addr
2233                  *  - f2fs_alloc_nid_done
2234                  *   - __remove_nid_from_list(PREALLOC_NID)
2235                  *                         - __insert_nid_to_list(FREE_NID)
2236                  */
2237                 ne = __lookup_nat_cache(nm_i, nid);
2238                 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2239                                 nat_get_blkaddr(ne) != NULL_ADDR))
2240                         goto err_out;
2241
2242                 e = __lookup_free_nid_list(nm_i, nid);
2243                 if (e) {
2244                         if (e->state == FREE_NID)
2245                                 ret = true;
2246                         goto err_out;
2247                 }
2248         }
2249         ret = true;
2250         err = __insert_free_nid(sbi, i);
2251 err_out:
2252         if (update) {
2253                 update_free_nid_bitmap(sbi, nid, ret, build);
2254                 if (!build)
2255                         nm_i->available_nids++;
2256         }
2257         spin_unlock(&nm_i->nid_list_lock);
2258         radix_tree_preload_end();
2259
2260         if (err)
2261                 kmem_cache_free(free_nid_slab, i);
2262         return ret;
2263 }
2264
2265 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2266 {
2267         struct f2fs_nm_info *nm_i = NM_I(sbi);
2268         struct free_nid *i;
2269         bool need_free = false;
2270
2271         spin_lock(&nm_i->nid_list_lock);
2272         i = __lookup_free_nid_list(nm_i, nid);
2273         if (i && i->state == FREE_NID) {
2274                 __remove_free_nid(sbi, i, FREE_NID);
2275                 need_free = true;
2276         }
2277         spin_unlock(&nm_i->nid_list_lock);
2278
2279         if (need_free)
2280                 kmem_cache_free(free_nid_slab, i);
2281 }
2282
2283 static int scan_nat_page(struct f2fs_sb_info *sbi,
2284                         struct page *nat_page, nid_t start_nid)
2285 {
2286         struct f2fs_nm_info *nm_i = NM_I(sbi);
2287         struct f2fs_nat_block *nat_blk = page_address(nat_page);
2288         block_t blk_addr;
2289         unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2290         int i;
2291
2292         __set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2293
2294         i = start_nid % NAT_ENTRY_PER_BLOCK;
2295
2296         for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2297                 if (unlikely(start_nid >= nm_i->max_nid))
2298                         break;
2299
2300                 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2301
2302                 if (blk_addr == NEW_ADDR)
2303                         return -EINVAL;
2304
2305                 if (blk_addr == NULL_ADDR) {
2306                         add_free_nid(sbi, start_nid, true, true);
2307                 } else {
2308                         spin_lock(&NM_I(sbi)->nid_list_lock);
2309                         update_free_nid_bitmap(sbi, start_nid, false, true);
2310                         spin_unlock(&NM_I(sbi)->nid_list_lock);
2311                 }
2312         }
2313
2314         return 0;
2315 }
2316
2317 static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2318 {
2319         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2320         struct f2fs_journal *journal = curseg->journal;
2321         int i;
2322
2323         down_read(&curseg->journal_rwsem);
2324         for (i = 0; i < nats_in_cursum(journal); i++) {
2325                 block_t addr;
2326                 nid_t nid;
2327
2328                 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2329                 nid = le32_to_cpu(nid_in_journal(journal, i));
2330                 if (addr == NULL_ADDR)
2331                         add_free_nid(sbi, nid, true, false);
2332                 else
2333                         remove_free_nid(sbi, nid);
2334         }
2335         up_read(&curseg->journal_rwsem);
2336 }
2337
2338 static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2339 {
2340         struct f2fs_nm_info *nm_i = NM_I(sbi);
2341         unsigned int i, idx;
2342         nid_t nid;
2343
2344         down_read(&nm_i->nat_tree_lock);
2345
2346         for (i = 0; i < nm_i->nat_blocks; i++) {
2347                 if (!test_bit_le(i, nm_i->nat_block_bitmap))
2348                         continue;
2349                 if (!nm_i->free_nid_count[i])
2350                         continue;
2351                 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2352                         idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2353                                                 NAT_ENTRY_PER_BLOCK, idx);
2354                         if (idx >= NAT_ENTRY_PER_BLOCK)
2355                                 break;
2356
2357                         nid = i * NAT_ENTRY_PER_BLOCK + idx;
2358                         add_free_nid(sbi, nid, true, false);
2359
2360                         if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2361                                 goto out;
2362                 }
2363         }
2364 out:
2365         scan_curseg_cache(sbi);
2366
2367         up_read(&nm_i->nat_tree_lock);
2368 }
2369
2370 static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2371                                                 bool sync, bool mount)
2372 {
2373         struct f2fs_nm_info *nm_i = NM_I(sbi);
2374         int i = 0, ret;
2375         nid_t nid = nm_i->next_scan_nid;
2376
2377         if (unlikely(nid >= nm_i->max_nid))
2378                 nid = 0;
2379
2380         if (unlikely(nid % NAT_ENTRY_PER_BLOCK))
2381                 nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK;
2382
2383         /* Enough entries */
2384         if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2385                 return 0;
2386
2387         if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2388                 return 0;
2389
2390         if (!mount) {
2391                 /* try to find free nids in free_nid_bitmap */
2392                 scan_free_nid_bits(sbi);
2393
2394                 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2395                         return 0;
2396         }
2397
2398         /* readahead nat pages to be scanned */
2399         f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2400                                                         META_NAT, true);
2401
2402         down_read(&nm_i->nat_tree_lock);
2403
2404         while (1) {
2405                 if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2406                                                 nm_i->nat_block_bitmap)) {
2407                         struct page *page = get_current_nat_page(sbi, nid);
2408
2409                         if (IS_ERR(page)) {
2410                                 ret = PTR_ERR(page);
2411                         } else {
2412                                 ret = scan_nat_page(sbi, page, nid);
2413                                 f2fs_put_page(page, 1);
2414                         }
2415
2416                         if (ret) {
2417                                 up_read(&nm_i->nat_tree_lock);
2418                                 f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2419                                 return ret;
2420                         }
2421                 }
2422
2423                 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2424                 if (unlikely(nid >= nm_i->max_nid))
2425                         nid = 0;
2426
2427                 if (++i >= FREE_NID_PAGES)
2428                         break;
2429         }
2430
2431         /* go to the next free nat pages to find free nids abundantly */
2432         nm_i->next_scan_nid = nid;
2433
2434         /* find free nids from current sum_pages */
2435         scan_curseg_cache(sbi);
2436
2437         up_read(&nm_i->nat_tree_lock);
2438
2439         f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2440                                         nm_i->ra_nid_pages, META_NAT, false);
2441
2442         return 0;
2443 }
2444
2445 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2446 {
2447         int ret;
2448
2449         mutex_lock(&NM_I(sbi)->build_lock);
2450         ret = __f2fs_build_free_nids(sbi, sync, mount);
2451         mutex_unlock(&NM_I(sbi)->build_lock);
2452
2453         return ret;
2454 }
2455
2456 /*
2457  * If this function returns success, caller can obtain a new nid
2458  * from second parameter of this function.
2459  * The returned nid could be used ino as well as nid when inode is created.
2460  */
2461 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2462 {
2463         struct f2fs_nm_info *nm_i = NM_I(sbi);
2464         struct free_nid *i = NULL;
2465 retry:
2466         if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2467                 f2fs_show_injection_info(sbi, FAULT_ALLOC_NID);
2468                 return false;
2469         }
2470
2471         spin_lock(&nm_i->nid_list_lock);
2472
2473         if (unlikely(nm_i->available_nids == 0)) {
2474                 spin_unlock(&nm_i->nid_list_lock);
2475                 return false;
2476         }
2477
2478         /* We should not use stale free nids created by f2fs_build_free_nids */
2479         if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2480                 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2481                 i = list_first_entry(&nm_i->free_nid_list,
2482                                         struct free_nid, list);
2483                 *nid = i->nid;
2484
2485                 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2486                 nm_i->available_nids--;
2487
2488                 update_free_nid_bitmap(sbi, *nid, false, false);
2489
2490                 spin_unlock(&nm_i->nid_list_lock);
2491                 return true;
2492         }
2493         spin_unlock(&nm_i->nid_list_lock);
2494
2495         /* Let's scan nat pages and its caches to get free nids */
2496         if (!f2fs_build_free_nids(sbi, true, false))
2497                 goto retry;
2498         return false;
2499 }
2500
2501 /*
2502  * f2fs_alloc_nid() should be called prior to this function.
2503  */
2504 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2505 {
2506         struct f2fs_nm_info *nm_i = NM_I(sbi);
2507         struct free_nid *i;
2508
2509         spin_lock(&nm_i->nid_list_lock);
2510         i = __lookup_free_nid_list(nm_i, nid);
2511         f2fs_bug_on(sbi, !i);
2512         __remove_free_nid(sbi, i, PREALLOC_NID);
2513         spin_unlock(&nm_i->nid_list_lock);
2514
2515         kmem_cache_free(free_nid_slab, i);
2516 }
2517
2518 /*
2519  * f2fs_alloc_nid() should be called prior to this function.
2520  */
2521 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2522 {
2523         struct f2fs_nm_info *nm_i = NM_I(sbi);
2524         struct free_nid *i;
2525         bool need_free = false;
2526
2527         if (!nid)
2528                 return;
2529
2530         spin_lock(&nm_i->nid_list_lock);
2531         i = __lookup_free_nid_list(nm_i, nid);
2532         f2fs_bug_on(sbi, !i);
2533
2534         if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2535                 __remove_free_nid(sbi, i, PREALLOC_NID);
2536                 need_free = true;
2537         } else {
2538                 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2539         }
2540
2541         nm_i->available_nids++;
2542
2543         update_free_nid_bitmap(sbi, nid, true, false);
2544
2545         spin_unlock(&nm_i->nid_list_lock);
2546
2547         if (need_free)
2548                 kmem_cache_free(free_nid_slab, i);
2549 }
2550
2551 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2552 {
2553         struct f2fs_nm_info *nm_i = NM_I(sbi);
2554         int nr = nr_shrink;
2555
2556         if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2557                 return 0;
2558
2559         if (!mutex_trylock(&nm_i->build_lock))
2560                 return 0;
2561
2562         while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) {
2563                 struct free_nid *i, *next;
2564                 unsigned int batch = SHRINK_NID_BATCH_SIZE;
2565
2566                 spin_lock(&nm_i->nid_list_lock);
2567                 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2568                         if (!nr_shrink || !batch ||
2569                                 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2570                                 break;
2571                         __remove_free_nid(sbi, i, FREE_NID);
2572                         kmem_cache_free(free_nid_slab, i);
2573                         nr_shrink--;
2574                         batch--;
2575                 }
2576                 spin_unlock(&nm_i->nid_list_lock);
2577         }
2578
2579         mutex_unlock(&nm_i->build_lock);
2580
2581         return nr - nr_shrink;
2582 }
2583
2584 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2585 {
2586         void *src_addr, *dst_addr;
2587         size_t inline_size;
2588         struct page *ipage;
2589         struct f2fs_inode *ri;
2590
2591         ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2592         if (IS_ERR(ipage))
2593                 return PTR_ERR(ipage);
2594
2595         ri = F2FS_INODE(page);
2596         if (ri->i_inline & F2FS_INLINE_XATTR) {
2597                 if (!f2fs_has_inline_xattr(inode)) {
2598                         set_inode_flag(inode, FI_INLINE_XATTR);
2599                         stat_inc_inline_xattr(inode);
2600                 }
2601         } else {
2602                 if (f2fs_has_inline_xattr(inode)) {
2603                         stat_dec_inline_xattr(inode);
2604                         clear_inode_flag(inode, FI_INLINE_XATTR);
2605                 }
2606                 goto update_inode;
2607         }
2608
2609         dst_addr = inline_xattr_addr(inode, ipage);
2610         src_addr = inline_xattr_addr(inode, page);
2611         inline_size = inline_xattr_size(inode);
2612
2613         f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2614         memcpy(dst_addr, src_addr, inline_size);
2615 update_inode:
2616         f2fs_update_inode(inode, ipage);
2617         f2fs_put_page(ipage, 1);
2618         return 0;
2619 }
2620
2621 int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2622 {
2623         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2624         nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2625         nid_t new_xnid;
2626         struct dnode_of_data dn;
2627         struct node_info ni;
2628         struct page *xpage;
2629         int err;
2630
2631         if (!prev_xnid)
2632                 goto recover_xnid;
2633
2634         /* 1: invalidate the previous xattr nid */
2635         err = f2fs_get_node_info(sbi, prev_xnid, &ni);
2636         if (err)
2637                 return err;
2638
2639         f2fs_invalidate_blocks(sbi, ni.blk_addr);
2640         dec_valid_node_count(sbi, inode, false);
2641         set_node_addr(sbi, &ni, NULL_ADDR, false);
2642
2643 recover_xnid:
2644         /* 2: update xattr nid in inode */
2645         if (!f2fs_alloc_nid(sbi, &new_xnid))
2646                 return -ENOSPC;
2647
2648         set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2649         xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2650         if (IS_ERR(xpage)) {
2651                 f2fs_alloc_nid_failed(sbi, new_xnid);
2652                 return PTR_ERR(xpage);
2653         }
2654
2655         f2fs_alloc_nid_done(sbi, new_xnid);
2656         f2fs_update_inode_page(inode);
2657
2658         /* 3: update and set xattr node page dirty */
2659         memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
2660
2661         set_page_dirty(xpage);
2662         f2fs_put_page(xpage, 1);
2663
2664         return 0;
2665 }
2666
2667 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2668 {
2669         struct f2fs_inode *src, *dst;
2670         nid_t ino = ino_of_node(page);
2671         struct node_info old_ni, new_ni;
2672         struct page *ipage;
2673         int err;
2674
2675         err = f2fs_get_node_info(sbi, ino, &old_ni);
2676         if (err)
2677                 return err;
2678
2679         if (unlikely(old_ni.blk_addr != NULL_ADDR))
2680                 return -EINVAL;
2681 retry:
2682         ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2683         if (!ipage) {
2684                 congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
2685                 goto retry;
2686         }
2687
2688         /* Should not use this inode from free nid list */
2689         remove_free_nid(sbi, ino);
2690
2691         if (!PageUptodate(ipage))
2692                 SetPageUptodate(ipage);
2693         fill_node_footer(ipage, ino, ino, 0, true);
2694         set_cold_node(ipage, false);
2695
2696         src = F2FS_INODE(page);
2697         dst = F2FS_INODE(ipage);
2698
2699         memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
2700         dst->i_size = 0;
2701         dst->i_blocks = cpu_to_le64(1);
2702         dst->i_links = cpu_to_le32(1);
2703         dst->i_xattr_nid = 0;
2704         dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2705         if (dst->i_inline & F2FS_EXTRA_ATTR) {
2706                 dst->i_extra_isize = src->i_extra_isize;
2707
2708                 if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2709                         F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2710                                                         i_inline_xattr_size))
2711                         dst->i_inline_xattr_size = src->i_inline_xattr_size;
2712
2713                 if (f2fs_sb_has_project_quota(sbi) &&
2714                         F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2715                                                                 i_projid))
2716                         dst->i_projid = src->i_projid;
2717
2718                 if (f2fs_sb_has_inode_crtime(sbi) &&
2719                         F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2720                                                         i_crtime_nsec)) {
2721                         dst->i_crtime = src->i_crtime;
2722                         dst->i_crtime_nsec = src->i_crtime_nsec;
2723                 }
2724         }
2725
2726         new_ni = old_ni;
2727         new_ni.ino = ino;
2728
2729         if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2730                 WARN_ON(1);
2731         set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2732         inc_valid_inode_count(sbi);
2733         set_page_dirty(ipage);
2734         f2fs_put_page(ipage, 1);
2735         return 0;
2736 }
2737
2738 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2739                         unsigned int segno, struct f2fs_summary_block *sum)
2740 {
2741         struct f2fs_node *rn;
2742         struct f2fs_summary *sum_entry;
2743         block_t addr;
2744         int i, idx, last_offset, nrpages;
2745
2746         /* scan the node segment */
2747         last_offset = sbi->blocks_per_seg;
2748         addr = START_BLOCK(sbi, segno);
2749         sum_entry = &sum->entries[0];
2750
2751         for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2752                 nrpages = min(last_offset - i, BIO_MAX_PAGES);
2753
2754                 /* readahead node pages */
2755                 f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2756
2757                 for (idx = addr; idx < addr + nrpages; idx++) {
2758                         struct page *page = f2fs_get_tmp_page(sbi, idx);
2759
2760                         if (IS_ERR(page))
2761                                 return PTR_ERR(page);
2762
2763                         rn = F2FS_NODE(page);
2764                         sum_entry->nid = rn->footer.nid;
2765                         sum_entry->version = 0;
2766                         sum_entry->ofs_in_node = 0;
2767                         sum_entry++;
2768                         f2fs_put_page(page, 1);
2769                 }
2770
2771                 invalidate_mapping_pages(META_MAPPING(sbi), addr,
2772                                                         addr + nrpages);
2773         }
2774         return 0;
2775 }
2776
2777 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2778 {
2779         struct f2fs_nm_info *nm_i = NM_I(sbi);
2780         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2781         struct f2fs_journal *journal = curseg->journal;
2782         int i;
2783
2784         down_write(&curseg->journal_rwsem);
2785         for (i = 0; i < nats_in_cursum(journal); i++) {
2786                 struct nat_entry *ne;
2787                 struct f2fs_nat_entry raw_ne;
2788                 nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2789
2790                 raw_ne = nat_in_journal(journal, i);
2791
2792                 ne = __lookup_nat_cache(nm_i, nid);
2793                 if (!ne) {
2794                         ne = __alloc_nat_entry(nid, true);
2795                         __init_nat_entry(nm_i, ne, &raw_ne, true);
2796                 }
2797
2798                 /*
2799                  * if a free nat in journal has not been used after last
2800                  * checkpoint, we should remove it from available nids,
2801                  * since later we will add it again.
2802                  */
2803                 if (!get_nat_flag(ne, IS_DIRTY) &&
2804                                 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2805                         spin_lock(&nm_i->nid_list_lock);
2806                         nm_i->available_nids--;
2807                         spin_unlock(&nm_i->nid_list_lock);
2808                 }
2809
2810                 __set_nat_cache_dirty(nm_i, ne);
2811         }
2812         update_nats_in_cursum(journal, -i);
2813         up_write(&curseg->journal_rwsem);
2814 }
2815
2816 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2817                                                 struct list_head *head, int max)
2818 {
2819         struct nat_entry_set *cur;
2820
2821         if (nes->entry_cnt >= max)
2822                 goto add_out;
2823
2824         list_for_each_entry(cur, head, set_list) {
2825                 if (cur->entry_cnt >= nes->entry_cnt) {
2826                         list_add(&nes->set_list, cur->set_list.prev);
2827                         return;
2828                 }
2829         }
2830 add_out:
2831         list_add_tail(&nes->set_list, head);
2832 }
2833
2834 static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2835                                                 struct page *page)
2836 {
2837         struct f2fs_nm_info *nm_i = NM_I(sbi);
2838         unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2839         struct f2fs_nat_block *nat_blk = page_address(page);
2840         int valid = 0;
2841         int i = 0;
2842
2843         if (!enabled_nat_bits(sbi, NULL))
2844                 return;
2845
2846         if (nat_index == 0) {
2847                 valid = 1;
2848                 i = 1;
2849         }
2850         for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2851                 if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
2852                         valid++;
2853         }
2854         if (valid == 0) {
2855                 __set_bit_le(nat_index, nm_i->empty_nat_bits);
2856                 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2857                 return;
2858         }
2859
2860         __clear_bit_le(nat_index, nm_i->empty_nat_bits);
2861         if (valid == NAT_ENTRY_PER_BLOCK)
2862                 __set_bit_le(nat_index, nm_i->full_nat_bits);
2863         else
2864                 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2865 }
2866
2867 static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2868                 struct nat_entry_set *set, struct cp_control *cpc)
2869 {
2870         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2871         struct f2fs_journal *journal = curseg->journal;
2872         nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2873         bool to_journal = true;
2874         struct f2fs_nat_block *nat_blk;
2875         struct nat_entry *ne, *cur;
2876         struct page *page = NULL;
2877
2878         /*
2879          * there are two steps to flush nat entries:
2880          * #1, flush nat entries to journal in current hot data summary block.
2881          * #2, flush nat entries to nat page.
2882          */
2883         if (enabled_nat_bits(sbi, cpc) ||
2884                 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2885                 to_journal = false;
2886
2887         if (to_journal) {
2888                 down_write(&curseg->journal_rwsem);
2889         } else {
2890                 page = get_next_nat_page(sbi, start_nid);
2891                 if (IS_ERR(page))
2892                         return PTR_ERR(page);
2893
2894                 nat_blk = page_address(page);
2895                 f2fs_bug_on(sbi, !nat_blk);
2896         }
2897
2898         /* flush dirty nats in nat entry set */
2899         list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2900                 struct f2fs_nat_entry *raw_ne;
2901                 nid_t nid = nat_get_nid(ne);
2902                 int offset;
2903
2904                 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
2905
2906                 if (to_journal) {
2907                         offset = f2fs_lookup_journal_in_cursum(journal,
2908                                                         NAT_JOURNAL, nid, 1);
2909                         f2fs_bug_on(sbi, offset < 0);
2910                         raw_ne = &nat_in_journal(journal, offset);
2911                         nid_in_journal(journal, offset) = cpu_to_le32(nid);
2912                 } else {
2913                         raw_ne = &nat_blk->entries[nid - start_nid];
2914                 }
2915                 raw_nat_from_node_info(raw_ne, &ne->ni);
2916                 nat_reset_flag(ne);
2917                 __clear_nat_cache_dirty(NM_I(sbi), set, ne);
2918                 if (nat_get_blkaddr(ne) == NULL_ADDR) {
2919                         add_free_nid(sbi, nid, false, true);
2920                 } else {
2921                         spin_lock(&NM_I(sbi)->nid_list_lock);
2922                         update_free_nid_bitmap(sbi, nid, false, false);
2923                         spin_unlock(&NM_I(sbi)->nid_list_lock);
2924                 }
2925         }
2926
2927         if (to_journal) {
2928                 up_write(&curseg->journal_rwsem);
2929         } else {
2930                 __update_nat_bits(sbi, start_nid, page);
2931                 f2fs_put_page(page, 1);
2932         }
2933
2934         /* Allow dirty nats by node block allocation in write_begin */
2935         if (!set->entry_cnt) {
2936                 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2937                 kmem_cache_free(nat_entry_set_slab, set);
2938         }
2939         return 0;
2940 }
2941
2942 /*
2943  * This function is called during the checkpointing process.
2944  */
2945 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2946 {
2947         struct f2fs_nm_info *nm_i = NM_I(sbi);
2948         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2949         struct f2fs_journal *journal = curseg->journal;
2950         struct nat_entry_set *setvec[SETVEC_SIZE];
2951         struct nat_entry_set *set, *tmp;
2952         unsigned int found;
2953         nid_t set_idx = 0;
2954         LIST_HEAD(sets);
2955         int err = 0;
2956
2957         /*
2958          * during unmount, let's flush nat_bits before checking
2959          * nat_cnt[DIRTY_NAT].
2960          */
2961         if (enabled_nat_bits(sbi, cpc)) {
2962                 down_write(&nm_i->nat_tree_lock);
2963                 remove_nats_in_journal(sbi);
2964                 up_write(&nm_i->nat_tree_lock);
2965         }
2966
2967         if (!nm_i->nat_cnt[DIRTY_NAT])
2968                 return 0;
2969
2970         down_write(&nm_i->nat_tree_lock);
2971
2972         /*
2973          * if there are no enough space in journal to store dirty nat
2974          * entries, remove all entries from journal and merge them
2975          * into nat entry set.
2976          */
2977         if (enabled_nat_bits(sbi, cpc) ||
2978                 !__has_cursum_space(journal,
2979                         nm_i->nat_cnt[DIRTY_NAT], NAT_JOURNAL))
2980                 remove_nats_in_journal(sbi);
2981
2982         while ((found = __gang_lookup_nat_set(nm_i,
2983                                         set_idx, SETVEC_SIZE, setvec))) {
2984                 unsigned idx;
2985                 set_idx = setvec[found - 1]->set + 1;
2986                 for (idx = 0; idx < found; idx++)
2987                         __adjust_nat_entry_set(setvec[idx], &sets,
2988                                                 MAX_NAT_JENTRIES(journal));
2989         }
2990
2991         /* flush dirty nats in nat entry set */
2992         list_for_each_entry_safe(set, tmp, &sets, set_list) {
2993                 err = __flush_nat_entry_set(sbi, set, cpc);
2994                 if (err)
2995                         break;
2996         }
2997
2998         up_write(&nm_i->nat_tree_lock);
2999         /* Allow dirty nats by node block allocation in write_begin */
3000
3001         return err;
3002 }
3003
3004 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
3005 {
3006         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3007         struct f2fs_nm_info *nm_i = NM_I(sbi);
3008         unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
3009         unsigned int i;
3010         __u64 cp_ver = cur_cp_version(ckpt);
3011         block_t nat_bits_addr;
3012
3013         if (!enabled_nat_bits(sbi, NULL))
3014                 return 0;
3015
3016         nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
3017         nm_i->nat_bits = f2fs_kvzalloc(sbi,
3018                         nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
3019         if (!nm_i->nat_bits)
3020                 return -ENOMEM;
3021
3022         nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
3023                                                 nm_i->nat_bits_blocks;
3024         for (i = 0; i < nm_i->nat_bits_blocks; i++) {
3025                 struct page *page;
3026
3027                 page = f2fs_get_meta_page(sbi, nat_bits_addr++);
3028                 if (IS_ERR(page))
3029                         return PTR_ERR(page);
3030
3031                 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
3032                                         page_address(page), F2FS_BLKSIZE);
3033                 f2fs_put_page(page, 1);
3034         }
3035
3036         cp_ver |= (cur_cp_crc(ckpt) << 32);
3037         if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
3038                 disable_nat_bits(sbi, true);
3039                 return 0;
3040         }
3041
3042         nm_i->full_nat_bits = nm_i->nat_bits + 8;
3043         nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
3044
3045         f2fs_notice(sbi, "Found nat_bits in checkpoint");
3046         return 0;
3047 }
3048
3049 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
3050 {
3051         struct f2fs_nm_info *nm_i = NM_I(sbi);
3052         unsigned int i = 0;
3053         nid_t nid, last_nid;
3054
3055         if (!enabled_nat_bits(sbi, NULL))
3056                 return;
3057
3058         for (i = 0; i < nm_i->nat_blocks; i++) {
3059                 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
3060                 if (i >= nm_i->nat_blocks)
3061                         break;
3062
3063                 __set_bit_le(i, nm_i->nat_block_bitmap);
3064
3065                 nid = i * NAT_ENTRY_PER_BLOCK;
3066                 last_nid = nid + NAT_ENTRY_PER_BLOCK;
3067
3068                 spin_lock(&NM_I(sbi)->nid_list_lock);
3069                 for (; nid < last_nid; nid++)
3070                         update_free_nid_bitmap(sbi, nid, true, true);
3071                 spin_unlock(&NM_I(sbi)->nid_list_lock);
3072         }
3073
3074         for (i = 0; i < nm_i->nat_blocks; i++) {
3075                 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
3076                 if (i >= nm_i->nat_blocks)
3077                         break;
3078
3079                 __set_bit_le(i, nm_i->nat_block_bitmap);
3080         }
3081 }
3082
3083 static int init_node_manager(struct f2fs_sb_info *sbi)
3084 {
3085         struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
3086         struct f2fs_nm_info *nm_i = NM_I(sbi);
3087         unsigned char *version_bitmap;
3088         unsigned int nat_segs;
3089         int err;
3090
3091         nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
3092
3093         /* segment_count_nat includes pair segment so divide to 2. */
3094         nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
3095         nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
3096         nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
3097
3098         /* not used nids: 0, node, meta, (and root counted as valid node) */
3099         nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
3100                                                 F2FS_RESERVED_NODE_NUM;
3101         nm_i->nid_cnt[FREE_NID] = 0;
3102         nm_i->nid_cnt[PREALLOC_NID] = 0;
3103         nm_i->ram_thresh = DEF_RAM_THRESHOLD;
3104         nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
3105         nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
3106
3107         INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
3108         INIT_LIST_HEAD(&nm_i->free_nid_list);
3109         INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
3110         INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
3111         INIT_LIST_HEAD(&nm_i->nat_entries);
3112         spin_lock_init(&nm_i->nat_list_lock);
3113
3114         mutex_init(&nm_i->build_lock);
3115         spin_lock_init(&nm_i->nid_list_lock);
3116         init_rwsem(&nm_i->nat_tree_lock);
3117
3118         nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
3119         nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
3120         version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
3121         nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
3122                                         GFP_KERNEL);
3123         if (!nm_i->nat_bitmap)
3124                 return -ENOMEM;
3125
3126         err = __get_nat_bitmaps(sbi);
3127         if (err)
3128                 return err;
3129
3130 #ifdef CONFIG_F2FS_CHECK_FS
3131         nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3132                                         GFP_KERNEL);
3133         if (!nm_i->nat_bitmap_mir)
3134                 return -ENOMEM;
3135 #endif
3136
3137         return 0;
3138 }
3139
3140 static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3141 {
3142         struct f2fs_nm_info *nm_i = NM_I(sbi);
3143         int i;
3144
3145         nm_i->free_nid_bitmap =
3146                 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *),
3147                                               nm_i->nat_blocks),
3148                               GFP_KERNEL);
3149         if (!nm_i->free_nid_bitmap)
3150                 return -ENOMEM;
3151
3152         for (i = 0; i < nm_i->nat_blocks; i++) {
3153                 nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3154                         f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3155                 if (!nm_i->free_nid_bitmap[i])
3156                         return -ENOMEM;
3157         }
3158
3159         nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3160                                                                 GFP_KERNEL);
3161         if (!nm_i->nat_block_bitmap)
3162                 return -ENOMEM;
3163
3164         nm_i->free_nid_count =
3165                 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3166                                               nm_i->nat_blocks),
3167                               GFP_KERNEL);
3168         if (!nm_i->free_nid_count)
3169                 return -ENOMEM;
3170         return 0;
3171 }
3172
3173 int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3174 {
3175         int err;
3176
3177         sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3178                                                         GFP_KERNEL);
3179         if (!sbi->nm_info)
3180                 return -ENOMEM;
3181
3182         err = init_node_manager(sbi);
3183         if (err)
3184                 return err;
3185
3186         err = init_free_nid_cache(sbi);
3187         if (err)
3188                 return err;
3189
3190         /* load free nid status from nat_bits table */
3191         load_free_nid_bitmap(sbi);
3192
3193         return f2fs_build_free_nids(sbi, true, true);
3194 }
3195
3196 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3197 {
3198         struct f2fs_nm_info *nm_i = NM_I(sbi);
3199         struct free_nid *i, *next_i;
3200         struct nat_entry *natvec[NATVEC_SIZE];
3201         struct nat_entry_set *setvec[SETVEC_SIZE];
3202         nid_t nid = 0;
3203         unsigned int found;
3204
3205         if (!nm_i)
3206                 return;
3207
3208         /* destroy free nid list */
3209         spin_lock(&nm_i->nid_list_lock);
3210         list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3211                 __remove_free_nid(sbi, i, FREE_NID);
3212                 spin_unlock(&nm_i->nid_list_lock);
3213                 kmem_cache_free(free_nid_slab, i);
3214                 spin_lock(&nm_i->nid_list_lock);
3215         }
3216         f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3217         f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3218         f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3219         spin_unlock(&nm_i->nid_list_lock);
3220
3221         /* destroy nat cache */
3222         down_write(&nm_i->nat_tree_lock);
3223         while ((found = __gang_lookup_nat_cache(nm_i,
3224                                         nid, NATVEC_SIZE, natvec))) {
3225                 unsigned idx;
3226
3227                 nid = nat_get_nid(natvec[found - 1]) + 1;
3228                 for (idx = 0; idx < found; idx++) {
3229                         spin_lock(&nm_i->nat_list_lock);
3230                         list_del(&natvec[idx]->list);
3231                         spin_unlock(&nm_i->nat_list_lock);
3232
3233                         __del_from_nat_cache(nm_i, natvec[idx]);
3234                 }
3235         }
3236         f2fs_bug_on(sbi, nm_i->nat_cnt[TOTAL_NAT]);
3237
3238         /* destroy nat set cache */
3239         nid = 0;
3240         while ((found = __gang_lookup_nat_set(nm_i,
3241                                         nid, SETVEC_SIZE, setvec))) {
3242                 unsigned idx;
3243
3244                 nid = setvec[found - 1]->set + 1;
3245                 for (idx = 0; idx < found; idx++) {
3246                         /* entry_cnt is not zero, when cp_error was occurred */
3247                         f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3248                         radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3249                         kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3250                 }
3251         }
3252         up_write(&nm_i->nat_tree_lock);
3253
3254         kvfree(nm_i->nat_block_bitmap);
3255         if (nm_i->free_nid_bitmap) {
3256                 int i;
3257
3258                 for (i = 0; i < nm_i->nat_blocks; i++)
3259                         kvfree(nm_i->free_nid_bitmap[i]);
3260                 kvfree(nm_i->free_nid_bitmap);
3261         }
3262         kvfree(nm_i->free_nid_count);
3263
3264         kvfree(nm_i->nat_bitmap);
3265         kvfree(nm_i->nat_bits);
3266 #ifdef CONFIG_F2FS_CHECK_FS
3267         kvfree(nm_i->nat_bitmap_mir);
3268 #endif
3269         sbi->nm_info = NULL;
3270         kfree(nm_i);
3271 }
3272
3273 int __init f2fs_create_node_manager_caches(void)
3274 {
3275         nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry",
3276                         sizeof(struct nat_entry));
3277         if (!nat_entry_slab)
3278                 goto fail;
3279
3280         free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid",
3281                         sizeof(struct free_nid));
3282         if (!free_nid_slab)
3283                 goto destroy_nat_entry;
3284
3285         nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set",
3286                         sizeof(struct nat_entry_set));
3287         if (!nat_entry_set_slab)
3288                 goto destroy_free_nid;
3289
3290         fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry",
3291                         sizeof(struct fsync_node_entry));
3292         if (!fsync_node_entry_slab)
3293                 goto destroy_nat_entry_set;
3294         return 0;
3295
3296 destroy_nat_entry_set:
3297         kmem_cache_destroy(nat_entry_set_slab);
3298 destroy_free_nid:
3299         kmem_cache_destroy(free_nid_slab);
3300 destroy_nat_entry:
3301         kmem_cache_destroy(nat_entry_slab);
3302 fail:
3303         return -ENOMEM;
3304 }
3305
3306 void f2fs_destroy_node_manager_caches(void)
3307 {
3308         kmem_cache_destroy(fsync_node_entry_slab);
3309         kmem_cache_destroy(nat_entry_set_slab);
3310         kmem_cache_destroy(free_nid_slab);
3311         kmem_cache_destroy(nat_entry_slab);
3312 }