f2fs: switch discard_policy.timeout to bool type
[linux-2.6-microblaze.git] / fs / f2fs / node.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/node.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/mpage.h>
11 #include <linux/backing-dev.h>
12 #include <linux/blkdev.h>
13 #include <linux/pagevec.h>
14 #include <linux/swap.h>
15
16 #include "f2fs.h"
17 #include "node.h"
18 #include "segment.h"
19 #include "xattr.h"
20 #include "trace.h"
21 #include <trace/events/f2fs.h>
22
23 #define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
24
25 static struct kmem_cache *nat_entry_slab;
26 static struct kmem_cache *free_nid_slab;
27 static struct kmem_cache *nat_entry_set_slab;
28 static struct kmem_cache *fsync_node_entry_slab;
29
30 /*
31  * Check whether the given nid is within node id range.
32  */
33 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
34 {
35         if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
36                 set_sbi_flag(sbi, SBI_NEED_FSCK);
37                 f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
38                           __func__, nid);
39                 return -EFSCORRUPTED;
40         }
41         return 0;
42 }
43
44 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
45 {
46         struct f2fs_nm_info *nm_i = NM_I(sbi);
47         struct sysinfo val;
48         unsigned long avail_ram;
49         unsigned long mem_size = 0;
50         bool res = false;
51
52         si_meminfo(&val);
53
54         /* only uses low memory */
55         avail_ram = val.totalram - val.totalhigh;
56
57         /*
58          * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
59          */
60         if (type == FREE_NIDS) {
61                 mem_size = (nm_i->nid_cnt[FREE_NID] *
62                                 sizeof(struct free_nid)) >> PAGE_SHIFT;
63                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
64         } else if (type == NAT_ENTRIES) {
65                 mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
66                                                         PAGE_SHIFT;
67                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
68                 if (excess_cached_nats(sbi))
69                         res = false;
70         } else if (type == DIRTY_DENTS) {
71                 if (sbi->sb->s_bdi->wb.dirty_exceeded)
72                         return false;
73                 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
74                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
75         } else if (type == INO_ENTRIES) {
76                 int i;
77
78                 for (i = 0; i < MAX_INO_ENTRY; i++)
79                         mem_size += sbi->im[i].ino_num *
80                                                 sizeof(struct ino_entry);
81                 mem_size >>= PAGE_SHIFT;
82                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
83         } else if (type == EXTENT_CACHE) {
84                 mem_size = (atomic_read(&sbi->total_ext_tree) *
85                                 sizeof(struct extent_tree) +
86                                 atomic_read(&sbi->total_ext_node) *
87                                 sizeof(struct extent_node)) >> PAGE_SHIFT;
88                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
89         } else if (type == INMEM_PAGES) {
90                 /* it allows 20% / total_ram for inmemory pages */
91                 mem_size = get_pages(sbi, F2FS_INMEM_PAGES);
92                 res = mem_size < (val.totalram / 5);
93         } else {
94                 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
95                         return true;
96         }
97         return res;
98 }
99
100 static void clear_node_page_dirty(struct page *page)
101 {
102         if (PageDirty(page)) {
103                 f2fs_clear_page_cache_dirty_tag(page);
104                 clear_page_dirty_for_io(page);
105                 dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
106         }
107         ClearPageUptodate(page);
108 }
109
110 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
111 {
112         return f2fs_get_meta_page_nofail(sbi, current_nat_addr(sbi, nid));
113 }
114
115 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
116 {
117         struct page *src_page;
118         struct page *dst_page;
119         pgoff_t dst_off;
120         void *src_addr;
121         void *dst_addr;
122         struct f2fs_nm_info *nm_i = NM_I(sbi);
123
124         dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
125
126         /* get current nat block page with lock */
127         src_page = get_current_nat_page(sbi, nid);
128         if (IS_ERR(src_page))
129                 return src_page;
130         dst_page = f2fs_grab_meta_page(sbi, dst_off);
131         f2fs_bug_on(sbi, PageDirty(src_page));
132
133         src_addr = page_address(src_page);
134         dst_addr = page_address(dst_page);
135         memcpy(dst_addr, src_addr, PAGE_SIZE);
136         set_page_dirty(dst_page);
137         f2fs_put_page(src_page, 1);
138
139         set_to_next_nat(nm_i, nid);
140
141         return dst_page;
142 }
143
144 static struct nat_entry *__alloc_nat_entry(nid_t nid, bool no_fail)
145 {
146         struct nat_entry *new;
147
148         if (no_fail)
149                 new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
150         else
151                 new = kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
152         if (new) {
153                 nat_set_nid(new, nid);
154                 nat_reset_flag(new);
155         }
156         return new;
157 }
158
159 static void __free_nat_entry(struct nat_entry *e)
160 {
161         kmem_cache_free(nat_entry_slab, e);
162 }
163
164 /* must be locked by nat_tree_lock */
165 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
166         struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
167 {
168         if (no_fail)
169                 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
170         else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
171                 return NULL;
172
173         if (raw_ne)
174                 node_info_from_raw_nat(&ne->ni, raw_ne);
175
176         spin_lock(&nm_i->nat_list_lock);
177         list_add_tail(&ne->list, &nm_i->nat_entries);
178         spin_unlock(&nm_i->nat_list_lock);
179
180         nm_i->nat_cnt++;
181         return ne;
182 }
183
184 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
185 {
186         struct nat_entry *ne;
187
188         ne = radix_tree_lookup(&nm_i->nat_root, n);
189
190         /* for recent accessed nat entry, move it to tail of lru list */
191         if (ne && !get_nat_flag(ne, IS_DIRTY)) {
192                 spin_lock(&nm_i->nat_list_lock);
193                 if (!list_empty(&ne->list))
194                         list_move_tail(&ne->list, &nm_i->nat_entries);
195                 spin_unlock(&nm_i->nat_list_lock);
196         }
197
198         return ne;
199 }
200
201 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
202                 nid_t start, unsigned int nr, struct nat_entry **ep)
203 {
204         return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
205 }
206
207 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
208 {
209         radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
210         nm_i->nat_cnt--;
211         __free_nat_entry(e);
212 }
213
214 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
215                                                         struct nat_entry *ne)
216 {
217         nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
218         struct nat_entry_set *head;
219
220         head = radix_tree_lookup(&nm_i->nat_set_root, set);
221         if (!head) {
222                 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
223
224                 INIT_LIST_HEAD(&head->entry_list);
225                 INIT_LIST_HEAD(&head->set_list);
226                 head->set = set;
227                 head->entry_cnt = 0;
228                 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
229         }
230         return head;
231 }
232
233 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
234                                                 struct nat_entry *ne)
235 {
236         struct nat_entry_set *head;
237         bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
238
239         if (!new_ne)
240                 head = __grab_nat_entry_set(nm_i, ne);
241
242         /*
243          * update entry_cnt in below condition:
244          * 1. update NEW_ADDR to valid block address;
245          * 2. update old block address to new one;
246          */
247         if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
248                                 !get_nat_flag(ne, IS_DIRTY)))
249                 head->entry_cnt++;
250
251         set_nat_flag(ne, IS_PREALLOC, new_ne);
252
253         if (get_nat_flag(ne, IS_DIRTY))
254                 goto refresh_list;
255
256         nm_i->dirty_nat_cnt++;
257         set_nat_flag(ne, IS_DIRTY, true);
258 refresh_list:
259         spin_lock(&nm_i->nat_list_lock);
260         if (new_ne)
261                 list_del_init(&ne->list);
262         else
263                 list_move_tail(&ne->list, &head->entry_list);
264         spin_unlock(&nm_i->nat_list_lock);
265 }
266
267 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
268                 struct nat_entry_set *set, struct nat_entry *ne)
269 {
270         spin_lock(&nm_i->nat_list_lock);
271         list_move_tail(&ne->list, &nm_i->nat_entries);
272         spin_unlock(&nm_i->nat_list_lock);
273
274         set_nat_flag(ne, IS_DIRTY, false);
275         set->entry_cnt--;
276         nm_i->dirty_nat_cnt--;
277 }
278
279 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
280                 nid_t start, unsigned int nr, struct nat_entry_set **ep)
281 {
282         return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
283                                                         start, nr);
284 }
285
286 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
287 {
288         return NODE_MAPPING(sbi) == page->mapping &&
289                         IS_DNODE(page) && is_cold_node(page);
290 }
291
292 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
293 {
294         spin_lock_init(&sbi->fsync_node_lock);
295         INIT_LIST_HEAD(&sbi->fsync_node_list);
296         sbi->fsync_seg_id = 0;
297         sbi->fsync_node_num = 0;
298 }
299
300 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
301                                                         struct page *page)
302 {
303         struct fsync_node_entry *fn;
304         unsigned long flags;
305         unsigned int seq_id;
306
307         fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab, GFP_NOFS);
308
309         get_page(page);
310         fn->page = page;
311         INIT_LIST_HEAD(&fn->list);
312
313         spin_lock_irqsave(&sbi->fsync_node_lock, flags);
314         list_add_tail(&fn->list, &sbi->fsync_node_list);
315         fn->seq_id = sbi->fsync_seg_id++;
316         seq_id = fn->seq_id;
317         sbi->fsync_node_num++;
318         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
319
320         return seq_id;
321 }
322
323 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
324 {
325         struct fsync_node_entry *fn;
326         unsigned long flags;
327
328         spin_lock_irqsave(&sbi->fsync_node_lock, flags);
329         list_for_each_entry(fn, &sbi->fsync_node_list, list) {
330                 if (fn->page == page) {
331                         list_del(&fn->list);
332                         sbi->fsync_node_num--;
333                         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
334                         kmem_cache_free(fsync_node_entry_slab, fn);
335                         put_page(page);
336                         return;
337                 }
338         }
339         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
340         f2fs_bug_on(sbi, 1);
341 }
342
343 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
344 {
345         unsigned long flags;
346
347         spin_lock_irqsave(&sbi->fsync_node_lock, flags);
348         sbi->fsync_seg_id = 0;
349         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
350 }
351
352 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
353 {
354         struct f2fs_nm_info *nm_i = NM_I(sbi);
355         struct nat_entry *e;
356         bool need = false;
357
358         down_read(&nm_i->nat_tree_lock);
359         e = __lookup_nat_cache(nm_i, nid);
360         if (e) {
361                 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
362                                 !get_nat_flag(e, HAS_FSYNCED_INODE))
363                         need = true;
364         }
365         up_read(&nm_i->nat_tree_lock);
366         return need;
367 }
368
369 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
370 {
371         struct f2fs_nm_info *nm_i = NM_I(sbi);
372         struct nat_entry *e;
373         bool is_cp = true;
374
375         down_read(&nm_i->nat_tree_lock);
376         e = __lookup_nat_cache(nm_i, nid);
377         if (e && !get_nat_flag(e, IS_CHECKPOINTED))
378                 is_cp = false;
379         up_read(&nm_i->nat_tree_lock);
380         return is_cp;
381 }
382
383 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
384 {
385         struct f2fs_nm_info *nm_i = NM_I(sbi);
386         struct nat_entry *e;
387         bool need_update = true;
388
389         down_read(&nm_i->nat_tree_lock);
390         e = __lookup_nat_cache(nm_i, ino);
391         if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
392                         (get_nat_flag(e, IS_CHECKPOINTED) ||
393                          get_nat_flag(e, HAS_FSYNCED_INODE)))
394                 need_update = false;
395         up_read(&nm_i->nat_tree_lock);
396         return need_update;
397 }
398
399 /* must be locked by nat_tree_lock */
400 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
401                                                 struct f2fs_nat_entry *ne)
402 {
403         struct f2fs_nm_info *nm_i = NM_I(sbi);
404         struct nat_entry *new, *e;
405
406         new = __alloc_nat_entry(nid, false);
407         if (!new)
408                 return;
409
410         down_write(&nm_i->nat_tree_lock);
411         e = __lookup_nat_cache(nm_i, nid);
412         if (!e)
413                 e = __init_nat_entry(nm_i, new, ne, false);
414         else
415                 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
416                                 nat_get_blkaddr(e) !=
417                                         le32_to_cpu(ne->block_addr) ||
418                                 nat_get_version(e) != ne->version);
419         up_write(&nm_i->nat_tree_lock);
420         if (e != new)
421                 __free_nat_entry(new);
422 }
423
424 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
425                         block_t new_blkaddr, bool fsync_done)
426 {
427         struct f2fs_nm_info *nm_i = NM_I(sbi);
428         struct nat_entry *e;
429         struct nat_entry *new = __alloc_nat_entry(ni->nid, true);
430
431         down_write(&nm_i->nat_tree_lock);
432         e = __lookup_nat_cache(nm_i, ni->nid);
433         if (!e) {
434                 e = __init_nat_entry(nm_i, new, NULL, true);
435                 copy_node_info(&e->ni, ni);
436                 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
437         } else if (new_blkaddr == NEW_ADDR) {
438                 /*
439                  * when nid is reallocated,
440                  * previous nat entry can be remained in nat cache.
441                  * So, reinitialize it with new information.
442                  */
443                 copy_node_info(&e->ni, ni);
444                 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
445         }
446         /* let's free early to reduce memory consumption */
447         if (e != new)
448                 __free_nat_entry(new);
449
450         /* sanity check */
451         f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
452         f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
453                         new_blkaddr == NULL_ADDR);
454         f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
455                         new_blkaddr == NEW_ADDR);
456         f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
457                         new_blkaddr == NEW_ADDR);
458
459         /* increment version no as node is removed */
460         if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
461                 unsigned char version = nat_get_version(e);
462                 nat_set_version(e, inc_node_version(version));
463         }
464
465         /* change address */
466         nat_set_blkaddr(e, new_blkaddr);
467         if (!__is_valid_data_blkaddr(new_blkaddr))
468                 set_nat_flag(e, IS_CHECKPOINTED, false);
469         __set_nat_cache_dirty(nm_i, e);
470
471         /* update fsync_mark if its inode nat entry is still alive */
472         if (ni->nid != ni->ino)
473                 e = __lookup_nat_cache(nm_i, ni->ino);
474         if (e) {
475                 if (fsync_done && ni->nid == ni->ino)
476                         set_nat_flag(e, HAS_FSYNCED_INODE, true);
477                 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
478         }
479         up_write(&nm_i->nat_tree_lock);
480 }
481
482 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
483 {
484         struct f2fs_nm_info *nm_i = NM_I(sbi);
485         int nr = nr_shrink;
486
487         if (!down_write_trylock(&nm_i->nat_tree_lock))
488                 return 0;
489
490         spin_lock(&nm_i->nat_list_lock);
491         while (nr_shrink) {
492                 struct nat_entry *ne;
493
494                 if (list_empty(&nm_i->nat_entries))
495                         break;
496
497                 ne = list_first_entry(&nm_i->nat_entries,
498                                         struct nat_entry, list);
499                 list_del(&ne->list);
500                 spin_unlock(&nm_i->nat_list_lock);
501
502                 __del_from_nat_cache(nm_i, ne);
503                 nr_shrink--;
504
505                 spin_lock(&nm_i->nat_list_lock);
506         }
507         spin_unlock(&nm_i->nat_list_lock);
508
509         up_write(&nm_i->nat_tree_lock);
510         return nr - nr_shrink;
511 }
512
513 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
514                                                 struct node_info *ni)
515 {
516         struct f2fs_nm_info *nm_i = NM_I(sbi);
517         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
518         struct f2fs_journal *journal = curseg->journal;
519         nid_t start_nid = START_NID(nid);
520         struct f2fs_nat_block *nat_blk;
521         struct page *page = NULL;
522         struct f2fs_nat_entry ne;
523         struct nat_entry *e;
524         pgoff_t index;
525         block_t blkaddr;
526         int i;
527
528         ni->nid = nid;
529
530         /* Check nat cache */
531         down_read(&nm_i->nat_tree_lock);
532         e = __lookup_nat_cache(nm_i, nid);
533         if (e) {
534                 ni->ino = nat_get_ino(e);
535                 ni->blk_addr = nat_get_blkaddr(e);
536                 ni->version = nat_get_version(e);
537                 up_read(&nm_i->nat_tree_lock);
538                 return 0;
539         }
540
541         memset(&ne, 0, sizeof(struct f2fs_nat_entry));
542
543         /* Check current segment summary */
544         down_read(&curseg->journal_rwsem);
545         i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
546         if (i >= 0) {
547                 ne = nat_in_journal(journal, i);
548                 node_info_from_raw_nat(ni, &ne);
549         }
550         up_read(&curseg->journal_rwsem);
551         if (i >= 0) {
552                 up_read(&nm_i->nat_tree_lock);
553                 goto cache;
554         }
555
556         /* Fill node_info from nat page */
557         index = current_nat_addr(sbi, nid);
558         up_read(&nm_i->nat_tree_lock);
559
560         page = f2fs_get_meta_page(sbi, index);
561         if (IS_ERR(page))
562                 return PTR_ERR(page);
563
564         nat_blk = (struct f2fs_nat_block *)page_address(page);
565         ne = nat_blk->entries[nid - start_nid];
566         node_info_from_raw_nat(ni, &ne);
567         f2fs_put_page(page, 1);
568 cache:
569         blkaddr = le32_to_cpu(ne.block_addr);
570         if (__is_valid_data_blkaddr(blkaddr) &&
571                 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
572                 return -EFAULT;
573
574         /* cache nat entry */
575         cache_nat_entry(sbi, nid, &ne);
576         return 0;
577 }
578
579 /*
580  * readahead MAX_RA_NODE number of node pages.
581  */
582 static void f2fs_ra_node_pages(struct page *parent, int start, int n)
583 {
584         struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
585         struct blk_plug plug;
586         int i, end;
587         nid_t nid;
588
589         blk_start_plug(&plug);
590
591         /* Then, try readahead for siblings of the desired node */
592         end = start + n;
593         end = min(end, NIDS_PER_BLOCK);
594         for (i = start; i < end; i++) {
595                 nid = get_nid(parent, i, false);
596                 f2fs_ra_node_page(sbi, nid);
597         }
598
599         blk_finish_plug(&plug);
600 }
601
602 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
603 {
604         const long direct_index = ADDRS_PER_INODE(dn->inode);
605         const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
606         const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
607         unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
608         int cur_level = dn->cur_level;
609         int max_level = dn->max_level;
610         pgoff_t base = 0;
611
612         if (!dn->max_level)
613                 return pgofs + 1;
614
615         while (max_level-- > cur_level)
616                 skipped_unit *= NIDS_PER_BLOCK;
617
618         switch (dn->max_level) {
619         case 3:
620                 base += 2 * indirect_blks;
621                 /* fall through */
622         case 2:
623                 base += 2 * direct_blks;
624                 /* fall through */
625         case 1:
626                 base += direct_index;
627                 break;
628         default:
629                 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
630         }
631
632         return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
633 }
634
635 /*
636  * The maximum depth is four.
637  * Offset[0] will have raw inode offset.
638  */
639 static int get_node_path(struct inode *inode, long block,
640                                 int offset[4], unsigned int noffset[4])
641 {
642         const long direct_index = ADDRS_PER_INODE(inode);
643         const long direct_blks = ADDRS_PER_BLOCK(inode);
644         const long dptrs_per_blk = NIDS_PER_BLOCK;
645         const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
646         const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
647         int n = 0;
648         int level = 0;
649
650         noffset[0] = 0;
651
652         if (block < direct_index) {
653                 offset[n] = block;
654                 goto got;
655         }
656         block -= direct_index;
657         if (block < direct_blks) {
658                 offset[n++] = NODE_DIR1_BLOCK;
659                 noffset[n] = 1;
660                 offset[n] = block;
661                 level = 1;
662                 goto got;
663         }
664         block -= direct_blks;
665         if (block < direct_blks) {
666                 offset[n++] = NODE_DIR2_BLOCK;
667                 noffset[n] = 2;
668                 offset[n] = block;
669                 level = 1;
670                 goto got;
671         }
672         block -= direct_blks;
673         if (block < indirect_blks) {
674                 offset[n++] = NODE_IND1_BLOCK;
675                 noffset[n] = 3;
676                 offset[n++] = block / direct_blks;
677                 noffset[n] = 4 + offset[n - 1];
678                 offset[n] = block % direct_blks;
679                 level = 2;
680                 goto got;
681         }
682         block -= indirect_blks;
683         if (block < indirect_blks) {
684                 offset[n++] = NODE_IND2_BLOCK;
685                 noffset[n] = 4 + dptrs_per_blk;
686                 offset[n++] = block / direct_blks;
687                 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
688                 offset[n] = block % direct_blks;
689                 level = 2;
690                 goto got;
691         }
692         block -= indirect_blks;
693         if (block < dindirect_blks) {
694                 offset[n++] = NODE_DIND_BLOCK;
695                 noffset[n] = 5 + (dptrs_per_blk * 2);
696                 offset[n++] = block / indirect_blks;
697                 noffset[n] = 6 + (dptrs_per_blk * 2) +
698                               offset[n - 1] * (dptrs_per_blk + 1);
699                 offset[n++] = (block / direct_blks) % dptrs_per_blk;
700                 noffset[n] = 7 + (dptrs_per_blk * 2) +
701                               offset[n - 2] * (dptrs_per_blk + 1) +
702                               offset[n - 1];
703                 offset[n] = block % direct_blks;
704                 level = 3;
705                 goto got;
706         } else {
707                 return -E2BIG;
708         }
709 got:
710         return level;
711 }
712
713 /*
714  * Caller should call f2fs_put_dnode(dn).
715  * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
716  * f2fs_unlock_op() only if mode is set with ALLOC_NODE.
717  */
718 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
719 {
720         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
721         struct page *npage[4];
722         struct page *parent = NULL;
723         int offset[4];
724         unsigned int noffset[4];
725         nid_t nids[4];
726         int level, i = 0;
727         int err = 0;
728
729         level = get_node_path(dn->inode, index, offset, noffset);
730         if (level < 0)
731                 return level;
732
733         nids[0] = dn->inode->i_ino;
734         npage[0] = dn->inode_page;
735
736         if (!npage[0]) {
737                 npage[0] = f2fs_get_node_page(sbi, nids[0]);
738                 if (IS_ERR(npage[0]))
739                         return PTR_ERR(npage[0]);
740         }
741
742         /* if inline_data is set, should not report any block indices */
743         if (f2fs_has_inline_data(dn->inode) && index) {
744                 err = -ENOENT;
745                 f2fs_put_page(npage[0], 1);
746                 goto release_out;
747         }
748
749         parent = npage[0];
750         if (level != 0)
751                 nids[1] = get_nid(parent, offset[0], true);
752         dn->inode_page = npage[0];
753         dn->inode_page_locked = true;
754
755         /* get indirect or direct nodes */
756         for (i = 1; i <= level; i++) {
757                 bool done = false;
758
759                 if (!nids[i] && mode == ALLOC_NODE) {
760                         /* alloc new node */
761                         if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
762                                 err = -ENOSPC;
763                                 goto release_pages;
764                         }
765
766                         dn->nid = nids[i];
767                         npage[i] = f2fs_new_node_page(dn, noffset[i]);
768                         if (IS_ERR(npage[i])) {
769                                 f2fs_alloc_nid_failed(sbi, nids[i]);
770                                 err = PTR_ERR(npage[i]);
771                                 goto release_pages;
772                         }
773
774                         set_nid(parent, offset[i - 1], nids[i], i == 1);
775                         f2fs_alloc_nid_done(sbi, nids[i]);
776                         done = true;
777                 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
778                         npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
779                         if (IS_ERR(npage[i])) {
780                                 err = PTR_ERR(npage[i]);
781                                 goto release_pages;
782                         }
783                         done = true;
784                 }
785                 if (i == 1) {
786                         dn->inode_page_locked = false;
787                         unlock_page(parent);
788                 } else {
789                         f2fs_put_page(parent, 1);
790                 }
791
792                 if (!done) {
793                         npage[i] = f2fs_get_node_page(sbi, nids[i]);
794                         if (IS_ERR(npage[i])) {
795                                 err = PTR_ERR(npage[i]);
796                                 f2fs_put_page(npage[0], 0);
797                                 goto release_out;
798                         }
799                 }
800                 if (i < level) {
801                         parent = npage[i];
802                         nids[i + 1] = get_nid(parent, offset[i], false);
803                 }
804         }
805         dn->nid = nids[level];
806         dn->ofs_in_node = offset[level];
807         dn->node_page = npage[level];
808         dn->data_blkaddr = f2fs_data_blkaddr(dn);
809         return 0;
810
811 release_pages:
812         f2fs_put_page(parent, 1);
813         if (i > 1)
814                 f2fs_put_page(npage[0], 0);
815 release_out:
816         dn->inode_page = NULL;
817         dn->node_page = NULL;
818         if (err == -ENOENT) {
819                 dn->cur_level = i;
820                 dn->max_level = level;
821                 dn->ofs_in_node = offset[level];
822         }
823         return err;
824 }
825
826 static int truncate_node(struct dnode_of_data *dn)
827 {
828         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
829         struct node_info ni;
830         int err;
831         pgoff_t index;
832
833         err = f2fs_get_node_info(sbi, dn->nid, &ni);
834         if (err)
835                 return err;
836
837         /* Deallocate node address */
838         f2fs_invalidate_blocks(sbi, ni.blk_addr);
839         dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
840         set_node_addr(sbi, &ni, NULL_ADDR, false);
841
842         if (dn->nid == dn->inode->i_ino) {
843                 f2fs_remove_orphan_inode(sbi, dn->nid);
844                 dec_valid_inode_count(sbi);
845                 f2fs_inode_synced(dn->inode);
846         }
847
848         clear_node_page_dirty(dn->node_page);
849         set_sbi_flag(sbi, SBI_IS_DIRTY);
850
851         index = dn->node_page->index;
852         f2fs_put_page(dn->node_page, 1);
853
854         invalidate_mapping_pages(NODE_MAPPING(sbi),
855                         index, index);
856
857         dn->node_page = NULL;
858         trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
859
860         return 0;
861 }
862
863 static int truncate_dnode(struct dnode_of_data *dn)
864 {
865         struct page *page;
866         int err;
867
868         if (dn->nid == 0)
869                 return 1;
870
871         /* get direct node */
872         page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
873         if (PTR_ERR(page) == -ENOENT)
874                 return 1;
875         else if (IS_ERR(page))
876                 return PTR_ERR(page);
877
878         /* Make dnode_of_data for parameter */
879         dn->node_page = page;
880         dn->ofs_in_node = 0;
881         f2fs_truncate_data_blocks(dn);
882         err = truncate_node(dn);
883         if (err)
884                 return err;
885
886         return 1;
887 }
888
889 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
890                                                 int ofs, int depth)
891 {
892         struct dnode_of_data rdn = *dn;
893         struct page *page;
894         struct f2fs_node *rn;
895         nid_t child_nid;
896         unsigned int child_nofs;
897         int freed = 0;
898         int i, ret;
899
900         if (dn->nid == 0)
901                 return NIDS_PER_BLOCK + 1;
902
903         trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
904
905         page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
906         if (IS_ERR(page)) {
907                 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
908                 return PTR_ERR(page);
909         }
910
911         f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
912
913         rn = F2FS_NODE(page);
914         if (depth < 3) {
915                 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
916                         child_nid = le32_to_cpu(rn->in.nid[i]);
917                         if (child_nid == 0)
918                                 continue;
919                         rdn.nid = child_nid;
920                         ret = truncate_dnode(&rdn);
921                         if (ret < 0)
922                                 goto out_err;
923                         if (set_nid(page, i, 0, false))
924                                 dn->node_changed = true;
925                 }
926         } else {
927                 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
928                 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
929                         child_nid = le32_to_cpu(rn->in.nid[i]);
930                         if (child_nid == 0) {
931                                 child_nofs += NIDS_PER_BLOCK + 1;
932                                 continue;
933                         }
934                         rdn.nid = child_nid;
935                         ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
936                         if (ret == (NIDS_PER_BLOCK + 1)) {
937                                 if (set_nid(page, i, 0, false))
938                                         dn->node_changed = true;
939                                 child_nofs += ret;
940                         } else if (ret < 0 && ret != -ENOENT) {
941                                 goto out_err;
942                         }
943                 }
944                 freed = child_nofs;
945         }
946
947         if (!ofs) {
948                 /* remove current indirect node */
949                 dn->node_page = page;
950                 ret = truncate_node(dn);
951                 if (ret)
952                         goto out_err;
953                 freed++;
954         } else {
955                 f2fs_put_page(page, 1);
956         }
957         trace_f2fs_truncate_nodes_exit(dn->inode, freed);
958         return freed;
959
960 out_err:
961         f2fs_put_page(page, 1);
962         trace_f2fs_truncate_nodes_exit(dn->inode, ret);
963         return ret;
964 }
965
966 static int truncate_partial_nodes(struct dnode_of_data *dn,
967                         struct f2fs_inode *ri, int *offset, int depth)
968 {
969         struct page *pages[2];
970         nid_t nid[3];
971         nid_t child_nid;
972         int err = 0;
973         int i;
974         int idx = depth - 2;
975
976         nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
977         if (!nid[0])
978                 return 0;
979
980         /* get indirect nodes in the path */
981         for (i = 0; i < idx + 1; i++) {
982                 /* reference count'll be increased */
983                 pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
984                 if (IS_ERR(pages[i])) {
985                         err = PTR_ERR(pages[i]);
986                         idx = i - 1;
987                         goto fail;
988                 }
989                 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
990         }
991
992         f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
993
994         /* free direct nodes linked to a partial indirect node */
995         for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
996                 child_nid = get_nid(pages[idx], i, false);
997                 if (!child_nid)
998                         continue;
999                 dn->nid = child_nid;
1000                 err = truncate_dnode(dn);
1001                 if (err < 0)
1002                         goto fail;
1003                 if (set_nid(pages[idx], i, 0, false))
1004                         dn->node_changed = true;
1005         }
1006
1007         if (offset[idx + 1] == 0) {
1008                 dn->node_page = pages[idx];
1009                 dn->nid = nid[idx];
1010                 err = truncate_node(dn);
1011                 if (err)
1012                         goto fail;
1013         } else {
1014                 f2fs_put_page(pages[idx], 1);
1015         }
1016         offset[idx]++;
1017         offset[idx + 1] = 0;
1018         idx--;
1019 fail:
1020         for (i = idx; i >= 0; i--)
1021                 f2fs_put_page(pages[i], 1);
1022
1023         trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1024
1025         return err;
1026 }
1027
1028 /*
1029  * All the block addresses of data and nodes should be nullified.
1030  */
1031 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1032 {
1033         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1034         int err = 0, cont = 1;
1035         int level, offset[4], noffset[4];
1036         unsigned int nofs = 0;
1037         struct f2fs_inode *ri;
1038         struct dnode_of_data dn;
1039         struct page *page;
1040
1041         trace_f2fs_truncate_inode_blocks_enter(inode, from);
1042
1043         level = get_node_path(inode, from, offset, noffset);
1044         if (level < 0)
1045                 return level;
1046
1047         page = f2fs_get_node_page(sbi, inode->i_ino);
1048         if (IS_ERR(page)) {
1049                 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1050                 return PTR_ERR(page);
1051         }
1052
1053         set_new_dnode(&dn, inode, page, NULL, 0);
1054         unlock_page(page);
1055
1056         ri = F2FS_INODE(page);
1057         switch (level) {
1058         case 0:
1059         case 1:
1060                 nofs = noffset[1];
1061                 break;
1062         case 2:
1063                 nofs = noffset[1];
1064                 if (!offset[level - 1])
1065                         goto skip_partial;
1066                 err = truncate_partial_nodes(&dn, ri, offset, level);
1067                 if (err < 0 && err != -ENOENT)
1068                         goto fail;
1069                 nofs += 1 + NIDS_PER_BLOCK;
1070                 break;
1071         case 3:
1072                 nofs = 5 + 2 * NIDS_PER_BLOCK;
1073                 if (!offset[level - 1])
1074                         goto skip_partial;
1075                 err = truncate_partial_nodes(&dn, ri, offset, level);
1076                 if (err < 0 && err != -ENOENT)
1077                         goto fail;
1078                 break;
1079         default:
1080                 BUG();
1081         }
1082
1083 skip_partial:
1084         while (cont) {
1085                 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1086                 switch (offset[0]) {
1087                 case NODE_DIR1_BLOCK:
1088                 case NODE_DIR2_BLOCK:
1089                         err = truncate_dnode(&dn);
1090                         break;
1091
1092                 case NODE_IND1_BLOCK:
1093                 case NODE_IND2_BLOCK:
1094                         err = truncate_nodes(&dn, nofs, offset[1], 2);
1095                         break;
1096
1097                 case NODE_DIND_BLOCK:
1098                         err = truncate_nodes(&dn, nofs, offset[1], 3);
1099                         cont = 0;
1100                         break;
1101
1102                 default:
1103                         BUG();
1104                 }
1105                 if (err < 0 && err != -ENOENT)
1106                         goto fail;
1107                 if (offset[1] == 0 &&
1108                                 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
1109                         lock_page(page);
1110                         BUG_ON(page->mapping != NODE_MAPPING(sbi));
1111                         f2fs_wait_on_page_writeback(page, NODE, true, true);
1112                         ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
1113                         set_page_dirty(page);
1114                         unlock_page(page);
1115                 }
1116                 offset[1] = 0;
1117                 offset[0]++;
1118                 nofs += err;
1119         }
1120 fail:
1121         f2fs_put_page(page, 0);
1122         trace_f2fs_truncate_inode_blocks_exit(inode, err);
1123         return err > 0 ? 0 : err;
1124 }
1125
1126 /* caller must lock inode page */
1127 int f2fs_truncate_xattr_node(struct inode *inode)
1128 {
1129         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1130         nid_t nid = F2FS_I(inode)->i_xattr_nid;
1131         struct dnode_of_data dn;
1132         struct page *npage;
1133         int err;
1134
1135         if (!nid)
1136                 return 0;
1137
1138         npage = f2fs_get_node_page(sbi, nid);
1139         if (IS_ERR(npage))
1140                 return PTR_ERR(npage);
1141
1142         set_new_dnode(&dn, inode, NULL, npage, nid);
1143         err = truncate_node(&dn);
1144         if (err) {
1145                 f2fs_put_page(npage, 1);
1146                 return err;
1147         }
1148
1149         f2fs_i_xnid_write(inode, 0);
1150
1151         return 0;
1152 }
1153
1154 /*
1155  * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1156  * f2fs_unlock_op().
1157  */
1158 int f2fs_remove_inode_page(struct inode *inode)
1159 {
1160         struct dnode_of_data dn;
1161         int err;
1162
1163         set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1164         err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1165         if (err)
1166                 return err;
1167
1168         err = f2fs_truncate_xattr_node(inode);
1169         if (err) {
1170                 f2fs_put_dnode(&dn);
1171                 return err;
1172         }
1173
1174         /* remove potential inline_data blocks */
1175         if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1176                                 S_ISLNK(inode->i_mode))
1177                 f2fs_truncate_data_blocks_range(&dn, 1);
1178
1179         /* 0 is possible, after f2fs_new_inode() has failed */
1180         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1181                 f2fs_put_dnode(&dn);
1182                 return -EIO;
1183         }
1184
1185         if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1186                 f2fs_warn(F2FS_I_SB(inode),
1187                         "f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu",
1188                         inode->i_ino, (unsigned long long)inode->i_blocks);
1189                 set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1190         }
1191
1192         /* will put inode & node pages */
1193         err = truncate_node(&dn);
1194         if (err) {
1195                 f2fs_put_dnode(&dn);
1196                 return err;
1197         }
1198         return 0;
1199 }
1200
1201 struct page *f2fs_new_inode_page(struct inode *inode)
1202 {
1203         struct dnode_of_data dn;
1204
1205         /* allocate inode page for new inode */
1206         set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1207
1208         /* caller should f2fs_put_page(page, 1); */
1209         return f2fs_new_node_page(&dn, 0);
1210 }
1211
1212 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1213 {
1214         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1215         struct node_info new_ni;
1216         struct page *page;
1217         int err;
1218
1219         if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1220                 return ERR_PTR(-EPERM);
1221
1222         page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1223         if (!page)
1224                 return ERR_PTR(-ENOMEM);
1225
1226         if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1227                 goto fail;
1228
1229 #ifdef CONFIG_F2FS_CHECK_FS
1230         err = f2fs_get_node_info(sbi, dn->nid, &new_ni);
1231         if (err) {
1232                 dec_valid_node_count(sbi, dn->inode, !ofs);
1233                 goto fail;
1234         }
1235         f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR);
1236 #endif
1237         new_ni.nid = dn->nid;
1238         new_ni.ino = dn->inode->i_ino;
1239         new_ni.blk_addr = NULL_ADDR;
1240         new_ni.flag = 0;
1241         new_ni.version = 0;
1242         set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1243
1244         f2fs_wait_on_page_writeback(page, NODE, true, true);
1245         fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1246         set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1247         if (!PageUptodate(page))
1248                 SetPageUptodate(page);
1249         if (set_page_dirty(page))
1250                 dn->node_changed = true;
1251
1252         if (f2fs_has_xattr_block(ofs))
1253                 f2fs_i_xnid_write(dn->inode, dn->nid);
1254
1255         if (ofs == 0)
1256                 inc_valid_inode_count(sbi);
1257         return page;
1258
1259 fail:
1260         clear_node_page_dirty(page);
1261         f2fs_put_page(page, 1);
1262         return ERR_PTR(err);
1263 }
1264
1265 /*
1266  * Caller should do after getting the following values.
1267  * 0: f2fs_put_page(page, 0)
1268  * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1269  */
1270 static int read_node_page(struct page *page, int op_flags)
1271 {
1272         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1273         struct node_info ni;
1274         struct f2fs_io_info fio = {
1275                 .sbi = sbi,
1276                 .type = NODE,
1277                 .op = REQ_OP_READ,
1278                 .op_flags = op_flags,
1279                 .page = page,
1280                 .encrypted_page = NULL,
1281         };
1282         int err;
1283
1284         if (PageUptodate(page)) {
1285                 if (!f2fs_inode_chksum_verify(sbi, page)) {
1286                         ClearPageUptodate(page);
1287                         return -EFSBADCRC;
1288                 }
1289                 return LOCKED_PAGE;
1290         }
1291
1292         err = f2fs_get_node_info(sbi, page->index, &ni);
1293         if (err)
1294                 return err;
1295
1296         if (unlikely(ni.blk_addr == NULL_ADDR) ||
1297                         is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)) {
1298                 ClearPageUptodate(page);
1299                 return -ENOENT;
1300         }
1301
1302         fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1303         return f2fs_submit_page_bio(&fio);
1304 }
1305
1306 /*
1307  * Readahead a node page
1308  */
1309 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1310 {
1311         struct page *apage;
1312         int err;
1313
1314         if (!nid)
1315                 return;
1316         if (f2fs_check_nid_range(sbi, nid))
1317                 return;
1318
1319         apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
1320         if (apage)
1321                 return;
1322
1323         apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1324         if (!apage)
1325                 return;
1326
1327         err = read_node_page(apage, REQ_RAHEAD);
1328         f2fs_put_page(apage, err ? 1 : 0);
1329 }
1330
1331 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1332                                         struct page *parent, int start)
1333 {
1334         struct page *page;
1335         int err;
1336
1337         if (!nid)
1338                 return ERR_PTR(-ENOENT);
1339         if (f2fs_check_nid_range(sbi, nid))
1340                 return ERR_PTR(-EINVAL);
1341 repeat:
1342         page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1343         if (!page)
1344                 return ERR_PTR(-ENOMEM);
1345
1346         err = read_node_page(page, 0);
1347         if (err < 0) {
1348                 f2fs_put_page(page, 1);
1349                 return ERR_PTR(err);
1350         } else if (err == LOCKED_PAGE) {
1351                 err = 0;
1352                 goto page_hit;
1353         }
1354
1355         if (parent)
1356                 f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1357
1358         lock_page(page);
1359
1360         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1361                 f2fs_put_page(page, 1);
1362                 goto repeat;
1363         }
1364
1365         if (unlikely(!PageUptodate(page))) {
1366                 err = -EIO;
1367                 goto out_err;
1368         }
1369
1370         if (!f2fs_inode_chksum_verify(sbi, page)) {
1371                 err = -EFSBADCRC;
1372                 goto out_err;
1373         }
1374 page_hit:
1375         if(unlikely(nid != nid_of_node(page))) {
1376                 f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1377                           nid, nid_of_node(page), ino_of_node(page),
1378                           ofs_of_node(page), cpver_of_node(page),
1379                           next_blkaddr_of_node(page));
1380                 err = -EINVAL;
1381 out_err:
1382                 ClearPageUptodate(page);
1383                 f2fs_put_page(page, 1);
1384                 return ERR_PTR(err);
1385         }
1386         return page;
1387 }
1388
1389 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1390 {
1391         return __get_node_page(sbi, nid, NULL, 0);
1392 }
1393
1394 struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1395 {
1396         struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1397         nid_t nid = get_nid(parent, start, false);
1398
1399         return __get_node_page(sbi, nid, parent, start);
1400 }
1401
1402 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1403 {
1404         struct inode *inode;
1405         struct page *page;
1406         int ret;
1407
1408         /* should flush inline_data before evict_inode */
1409         inode = ilookup(sbi->sb, ino);
1410         if (!inode)
1411                 return;
1412
1413         page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1414                                         FGP_LOCK|FGP_NOWAIT, 0);
1415         if (!page)
1416                 goto iput_out;
1417
1418         if (!PageUptodate(page))
1419                 goto page_out;
1420
1421         if (!PageDirty(page))
1422                 goto page_out;
1423
1424         if (!clear_page_dirty_for_io(page))
1425                 goto page_out;
1426
1427         ret = f2fs_write_inline_data(inode, page);
1428         inode_dec_dirty_pages(inode);
1429         f2fs_remove_dirty_inode(inode);
1430         if (ret)
1431                 set_page_dirty(page);
1432 page_out:
1433         f2fs_put_page(page, 1);
1434 iput_out:
1435         iput(inode);
1436 }
1437
1438 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1439 {
1440         pgoff_t index;
1441         struct pagevec pvec;
1442         struct page *last_page = NULL;
1443         int nr_pages;
1444
1445         pagevec_init(&pvec);
1446         index = 0;
1447
1448         while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1449                                 PAGECACHE_TAG_DIRTY))) {
1450                 int i;
1451
1452                 for (i = 0; i < nr_pages; i++) {
1453                         struct page *page = pvec.pages[i];
1454
1455                         if (unlikely(f2fs_cp_error(sbi))) {
1456                                 f2fs_put_page(last_page, 0);
1457                                 pagevec_release(&pvec);
1458                                 return ERR_PTR(-EIO);
1459                         }
1460
1461                         if (!IS_DNODE(page) || !is_cold_node(page))
1462                                 continue;
1463                         if (ino_of_node(page) != ino)
1464                                 continue;
1465
1466                         lock_page(page);
1467
1468                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1469 continue_unlock:
1470                                 unlock_page(page);
1471                                 continue;
1472                         }
1473                         if (ino_of_node(page) != ino)
1474                                 goto continue_unlock;
1475
1476                         if (!PageDirty(page)) {
1477                                 /* someone wrote it for us */
1478                                 goto continue_unlock;
1479                         }
1480
1481                         if (last_page)
1482                                 f2fs_put_page(last_page, 0);
1483
1484                         get_page(page);
1485                         last_page = page;
1486                         unlock_page(page);
1487                 }
1488                 pagevec_release(&pvec);
1489                 cond_resched();
1490         }
1491         return last_page;
1492 }
1493
1494 static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1495                                 struct writeback_control *wbc, bool do_balance,
1496                                 enum iostat_type io_type, unsigned int *seq_id)
1497 {
1498         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1499         nid_t nid;
1500         struct node_info ni;
1501         struct f2fs_io_info fio = {
1502                 .sbi = sbi,
1503                 .ino = ino_of_node(page),
1504                 .type = NODE,
1505                 .op = REQ_OP_WRITE,
1506                 .op_flags = wbc_to_write_flags(wbc),
1507                 .page = page,
1508                 .encrypted_page = NULL,
1509                 .submitted = false,
1510                 .io_type = io_type,
1511                 .io_wbc = wbc,
1512         };
1513         unsigned int seq;
1514
1515         trace_f2fs_writepage(page, NODE);
1516
1517         if (unlikely(f2fs_cp_error(sbi)))
1518                 goto redirty_out;
1519
1520         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1521                 goto redirty_out;
1522
1523         if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1524                         wbc->sync_mode == WB_SYNC_NONE &&
1525                         IS_DNODE(page) && is_cold_node(page))
1526                 goto redirty_out;
1527
1528         /* get old block addr of this node page */
1529         nid = nid_of_node(page);
1530         f2fs_bug_on(sbi, page->index != nid);
1531
1532         if (f2fs_get_node_info(sbi, nid, &ni))
1533                 goto redirty_out;
1534
1535         if (wbc->for_reclaim) {
1536                 if (!down_read_trylock(&sbi->node_write))
1537                         goto redirty_out;
1538         } else {
1539                 down_read(&sbi->node_write);
1540         }
1541
1542         /* This page is already truncated */
1543         if (unlikely(ni.blk_addr == NULL_ADDR)) {
1544                 ClearPageUptodate(page);
1545                 dec_page_count(sbi, F2FS_DIRTY_NODES);
1546                 up_read(&sbi->node_write);
1547                 unlock_page(page);
1548                 return 0;
1549         }
1550
1551         if (__is_valid_data_blkaddr(ni.blk_addr) &&
1552                 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1553                                         DATA_GENERIC_ENHANCE)) {
1554                 up_read(&sbi->node_write);
1555                 goto redirty_out;
1556         }
1557
1558         if (atomic && !test_opt(sbi, NOBARRIER))
1559                 fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1560
1561         /* should add to global list before clearing PAGECACHE status */
1562         if (f2fs_in_warm_node_list(sbi, page)) {
1563                 seq = f2fs_add_fsync_node_entry(sbi, page);
1564                 if (seq_id)
1565                         *seq_id = seq;
1566         }
1567
1568         set_page_writeback(page);
1569         ClearPageError(page);
1570
1571         fio.old_blkaddr = ni.blk_addr;
1572         f2fs_do_write_node_page(nid, &fio);
1573         set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1574         dec_page_count(sbi, F2FS_DIRTY_NODES);
1575         up_read(&sbi->node_write);
1576
1577         if (wbc->for_reclaim) {
1578                 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1579                 submitted = NULL;
1580         }
1581
1582         unlock_page(page);
1583
1584         if (unlikely(f2fs_cp_error(sbi))) {
1585                 f2fs_submit_merged_write(sbi, NODE);
1586                 submitted = NULL;
1587         }
1588         if (submitted)
1589                 *submitted = fio.submitted;
1590
1591         if (do_balance)
1592                 f2fs_balance_fs(sbi, false);
1593         return 0;
1594
1595 redirty_out:
1596         redirty_page_for_writepage(wbc, page);
1597         return AOP_WRITEPAGE_ACTIVATE;
1598 }
1599
1600 int f2fs_move_node_page(struct page *node_page, int gc_type)
1601 {
1602         int err = 0;
1603
1604         if (gc_type == FG_GC) {
1605                 struct writeback_control wbc = {
1606                         .sync_mode = WB_SYNC_ALL,
1607                         .nr_to_write = 1,
1608                         .for_reclaim = 0,
1609                 };
1610
1611                 f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1612
1613                 set_page_dirty(node_page);
1614
1615                 if (!clear_page_dirty_for_io(node_page)) {
1616                         err = -EAGAIN;
1617                         goto out_page;
1618                 }
1619
1620                 if (__write_node_page(node_page, false, NULL,
1621                                         &wbc, false, FS_GC_NODE_IO, NULL)) {
1622                         err = -EAGAIN;
1623                         unlock_page(node_page);
1624                 }
1625                 goto release_page;
1626         } else {
1627                 /* set page dirty and write it */
1628                 if (!PageWriteback(node_page))
1629                         set_page_dirty(node_page);
1630         }
1631 out_page:
1632         unlock_page(node_page);
1633 release_page:
1634         f2fs_put_page(node_page, 0);
1635         return err;
1636 }
1637
1638 static int f2fs_write_node_page(struct page *page,
1639                                 struct writeback_control *wbc)
1640 {
1641         return __write_node_page(page, false, NULL, wbc, false,
1642                                                 FS_NODE_IO, NULL);
1643 }
1644
1645 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1646                         struct writeback_control *wbc, bool atomic,
1647                         unsigned int *seq_id)
1648 {
1649         pgoff_t index;
1650         struct pagevec pvec;
1651         int ret = 0;
1652         struct page *last_page = NULL;
1653         bool marked = false;
1654         nid_t ino = inode->i_ino;
1655         int nr_pages;
1656         int nwritten = 0;
1657
1658         if (atomic) {
1659                 last_page = last_fsync_dnode(sbi, ino);
1660                 if (IS_ERR_OR_NULL(last_page))
1661                         return PTR_ERR_OR_ZERO(last_page);
1662         }
1663 retry:
1664         pagevec_init(&pvec);
1665         index = 0;
1666
1667         while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1668                                 PAGECACHE_TAG_DIRTY))) {
1669                 int i;
1670
1671                 for (i = 0; i < nr_pages; i++) {
1672                         struct page *page = pvec.pages[i];
1673                         bool submitted = false;
1674
1675                         if (unlikely(f2fs_cp_error(sbi))) {
1676                                 f2fs_put_page(last_page, 0);
1677                                 pagevec_release(&pvec);
1678                                 ret = -EIO;
1679                                 goto out;
1680                         }
1681
1682                         if (!IS_DNODE(page) || !is_cold_node(page))
1683                                 continue;
1684                         if (ino_of_node(page) != ino)
1685                                 continue;
1686
1687                         lock_page(page);
1688
1689                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1690 continue_unlock:
1691                                 unlock_page(page);
1692                                 continue;
1693                         }
1694                         if (ino_of_node(page) != ino)
1695                                 goto continue_unlock;
1696
1697                         if (!PageDirty(page) && page != last_page) {
1698                                 /* someone wrote it for us */
1699                                 goto continue_unlock;
1700                         }
1701
1702                         f2fs_wait_on_page_writeback(page, NODE, true, true);
1703
1704                         set_fsync_mark(page, 0);
1705                         set_dentry_mark(page, 0);
1706
1707                         if (!atomic || page == last_page) {
1708                                 set_fsync_mark(page, 1);
1709                                 if (IS_INODE(page)) {
1710                                         if (is_inode_flag_set(inode,
1711                                                                 FI_DIRTY_INODE))
1712                                                 f2fs_update_inode(inode, page);
1713                                         set_dentry_mark(page,
1714                                                 f2fs_need_dentry_mark(sbi, ino));
1715                                 }
1716                                 /*  may be written by other thread */
1717                                 if (!PageDirty(page))
1718                                         set_page_dirty(page);
1719                         }
1720
1721                         if (!clear_page_dirty_for_io(page))
1722                                 goto continue_unlock;
1723
1724                         ret = __write_node_page(page, atomic &&
1725                                                 page == last_page,
1726                                                 &submitted, wbc, true,
1727                                                 FS_NODE_IO, seq_id);
1728                         if (ret) {
1729                                 unlock_page(page);
1730                                 f2fs_put_page(last_page, 0);
1731                                 break;
1732                         } else if (submitted) {
1733                                 nwritten++;
1734                         }
1735
1736                         if (page == last_page) {
1737                                 f2fs_put_page(page, 0);
1738                                 marked = true;
1739                                 break;
1740                         }
1741                 }
1742                 pagevec_release(&pvec);
1743                 cond_resched();
1744
1745                 if (ret || marked)
1746                         break;
1747         }
1748         if (!ret && atomic && !marked) {
1749                 f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1750                            ino, last_page->index);
1751                 lock_page(last_page);
1752                 f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1753                 set_page_dirty(last_page);
1754                 unlock_page(last_page);
1755                 goto retry;
1756         }
1757 out:
1758         if (nwritten)
1759                 f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1760         return ret ? -EIO: 0;
1761 }
1762
1763 static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
1764 {
1765         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1766         bool clean;
1767
1768         if (inode->i_ino != ino)
1769                 return 0;
1770
1771         if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
1772                 return 0;
1773
1774         spin_lock(&sbi->inode_lock[DIRTY_META]);
1775         clean = list_empty(&F2FS_I(inode)->gdirty_list);
1776         spin_unlock(&sbi->inode_lock[DIRTY_META]);
1777
1778         if (clean)
1779                 return 0;
1780
1781         inode = igrab(inode);
1782         if (!inode)
1783                 return 0;
1784         return 1;
1785 }
1786
1787 static bool flush_dirty_inode(struct page *page)
1788 {
1789         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1790         struct inode *inode;
1791         nid_t ino = ino_of_node(page);
1792
1793         inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
1794         if (!inode)
1795                 return false;
1796
1797         f2fs_update_inode(inode, page);
1798         unlock_page(page);
1799
1800         iput(inode);
1801         return true;
1802 }
1803
1804 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1805                                 struct writeback_control *wbc,
1806                                 bool do_balance, enum iostat_type io_type)
1807 {
1808         pgoff_t index;
1809         struct pagevec pvec;
1810         int step = 0;
1811         int nwritten = 0;
1812         int ret = 0;
1813         int nr_pages, done = 0;
1814
1815         pagevec_init(&pvec);
1816
1817 next_step:
1818         index = 0;
1819
1820         while (!done && (nr_pages = pagevec_lookup_tag(&pvec,
1821                         NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1822                 int i;
1823
1824                 for (i = 0; i < nr_pages; i++) {
1825                         struct page *page = pvec.pages[i];
1826                         bool submitted = false;
1827                         bool may_dirty = true;
1828
1829                         /* give a priority to WB_SYNC threads */
1830                         if (atomic_read(&sbi->wb_sync_req[NODE]) &&
1831                                         wbc->sync_mode == WB_SYNC_NONE) {
1832                                 done = 1;
1833                                 break;
1834                         }
1835
1836                         /*
1837                          * flushing sequence with step:
1838                          * 0. indirect nodes
1839                          * 1. dentry dnodes
1840                          * 2. file dnodes
1841                          */
1842                         if (step == 0 && IS_DNODE(page))
1843                                 continue;
1844                         if (step == 1 && (!IS_DNODE(page) ||
1845                                                 is_cold_node(page)))
1846                                 continue;
1847                         if (step == 2 && (!IS_DNODE(page) ||
1848                                                 !is_cold_node(page)))
1849                                 continue;
1850 lock_node:
1851                         if (wbc->sync_mode == WB_SYNC_ALL)
1852                                 lock_page(page);
1853                         else if (!trylock_page(page))
1854                                 continue;
1855
1856                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1857 continue_unlock:
1858                                 unlock_page(page);
1859                                 continue;
1860                         }
1861
1862                         if (!PageDirty(page)) {
1863                                 /* someone wrote it for us */
1864                                 goto continue_unlock;
1865                         }
1866
1867                         /* flush inline_data */
1868                         if (is_inline_node(page)) {
1869                                 clear_inline_node(page);
1870                                 unlock_page(page);
1871                                 flush_inline_data(sbi, ino_of_node(page));
1872                                 goto lock_node;
1873                         }
1874
1875                         /* flush dirty inode */
1876                         if (IS_INODE(page) && may_dirty) {
1877                                 may_dirty = false;
1878                                 if (flush_dirty_inode(page))
1879                                         goto lock_node;
1880                         }
1881
1882                         f2fs_wait_on_page_writeback(page, NODE, true, true);
1883
1884                         if (!clear_page_dirty_for_io(page))
1885                                 goto continue_unlock;
1886
1887                         set_fsync_mark(page, 0);
1888                         set_dentry_mark(page, 0);
1889
1890                         ret = __write_node_page(page, false, &submitted,
1891                                                 wbc, do_balance, io_type, NULL);
1892                         if (ret)
1893                                 unlock_page(page);
1894                         else if (submitted)
1895                                 nwritten++;
1896
1897                         if (--wbc->nr_to_write == 0)
1898                                 break;
1899                 }
1900                 pagevec_release(&pvec);
1901                 cond_resched();
1902
1903                 if (wbc->nr_to_write == 0) {
1904                         step = 2;
1905                         break;
1906                 }
1907         }
1908
1909         if (step < 2) {
1910                 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1911                                 wbc->sync_mode == WB_SYNC_NONE && step == 1)
1912                         goto out;
1913                 step++;
1914                 goto next_step;
1915         }
1916 out:
1917         if (nwritten)
1918                 f2fs_submit_merged_write(sbi, NODE);
1919
1920         if (unlikely(f2fs_cp_error(sbi)))
1921                 return -EIO;
1922         return ret;
1923 }
1924
1925 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
1926                                                 unsigned int seq_id)
1927 {
1928         struct fsync_node_entry *fn;
1929         struct page *page;
1930         struct list_head *head = &sbi->fsync_node_list;
1931         unsigned long flags;
1932         unsigned int cur_seq_id = 0;
1933         int ret2, ret = 0;
1934
1935         while (seq_id && cur_seq_id < seq_id) {
1936                 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
1937                 if (list_empty(head)) {
1938                         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
1939                         break;
1940                 }
1941                 fn = list_first_entry(head, struct fsync_node_entry, list);
1942                 if (fn->seq_id > seq_id) {
1943                         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
1944                         break;
1945                 }
1946                 cur_seq_id = fn->seq_id;
1947                 page = fn->page;
1948                 get_page(page);
1949                 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
1950
1951                 f2fs_wait_on_page_writeback(page, NODE, true, false);
1952                 if (TestClearPageError(page))
1953                         ret = -EIO;
1954
1955                 put_page(page);
1956
1957                 if (ret)
1958                         break;
1959         }
1960
1961         ret2 = filemap_check_errors(NODE_MAPPING(sbi));
1962         if (!ret)
1963                 ret = ret2;
1964
1965         return ret;
1966 }
1967
1968 static int f2fs_write_node_pages(struct address_space *mapping,
1969                             struct writeback_control *wbc)
1970 {
1971         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1972         struct blk_plug plug;
1973         long diff;
1974
1975         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1976                 goto skip_write;
1977
1978         /* balancing f2fs's metadata in background */
1979         f2fs_balance_fs_bg(sbi, true);
1980
1981         /* collect a number of dirty node pages and write together */
1982         if (wbc->sync_mode != WB_SYNC_ALL &&
1983                         get_pages(sbi, F2FS_DIRTY_NODES) <
1984                                         nr_pages_to_skip(sbi, NODE))
1985                 goto skip_write;
1986
1987         if (wbc->sync_mode == WB_SYNC_ALL)
1988                 atomic_inc(&sbi->wb_sync_req[NODE]);
1989         else if (atomic_read(&sbi->wb_sync_req[NODE]))
1990                 goto skip_write;
1991
1992         trace_f2fs_writepages(mapping->host, wbc, NODE);
1993
1994         diff = nr_pages_to_write(sbi, NODE, wbc);
1995         blk_start_plug(&plug);
1996         f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
1997         blk_finish_plug(&plug);
1998         wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1999
2000         if (wbc->sync_mode == WB_SYNC_ALL)
2001                 atomic_dec(&sbi->wb_sync_req[NODE]);
2002         return 0;
2003
2004 skip_write:
2005         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
2006         trace_f2fs_writepages(mapping->host, wbc, NODE);
2007         return 0;
2008 }
2009
2010 static int f2fs_set_node_page_dirty(struct page *page)
2011 {
2012         trace_f2fs_set_page_dirty(page, NODE);
2013
2014         if (!PageUptodate(page))
2015                 SetPageUptodate(page);
2016 #ifdef CONFIG_F2FS_CHECK_FS
2017         if (IS_INODE(page))
2018                 f2fs_inode_chksum_set(F2FS_P_SB(page), page);
2019 #endif
2020         if (!PageDirty(page)) {
2021                 __set_page_dirty_nobuffers(page);
2022                 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
2023                 f2fs_set_page_private(page, 0);
2024                 f2fs_trace_pid(page);
2025                 return 1;
2026         }
2027         return 0;
2028 }
2029
2030 /*
2031  * Structure of the f2fs node operations
2032  */
2033 const struct address_space_operations f2fs_node_aops = {
2034         .writepage      = f2fs_write_node_page,
2035         .writepages     = f2fs_write_node_pages,
2036         .set_page_dirty = f2fs_set_node_page_dirty,
2037         .invalidatepage = f2fs_invalidate_page,
2038         .releasepage    = f2fs_release_page,
2039 #ifdef CONFIG_MIGRATION
2040         .migratepage    = f2fs_migrate_page,
2041 #endif
2042 };
2043
2044 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2045                                                 nid_t n)
2046 {
2047         return radix_tree_lookup(&nm_i->free_nid_root, n);
2048 }
2049
2050 static int __insert_free_nid(struct f2fs_sb_info *sbi,
2051                         struct free_nid *i, enum nid_state state)
2052 {
2053         struct f2fs_nm_info *nm_i = NM_I(sbi);
2054
2055         int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2056         if (err)
2057                 return err;
2058
2059         f2fs_bug_on(sbi, state != i->state);
2060         nm_i->nid_cnt[state]++;
2061         if (state == FREE_NID)
2062                 list_add_tail(&i->list, &nm_i->free_nid_list);
2063         return 0;
2064 }
2065
2066 static void __remove_free_nid(struct f2fs_sb_info *sbi,
2067                         struct free_nid *i, enum nid_state state)
2068 {
2069         struct f2fs_nm_info *nm_i = NM_I(sbi);
2070
2071         f2fs_bug_on(sbi, state != i->state);
2072         nm_i->nid_cnt[state]--;
2073         if (state == FREE_NID)
2074                 list_del(&i->list);
2075         radix_tree_delete(&nm_i->free_nid_root, i->nid);
2076 }
2077
2078 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2079                         enum nid_state org_state, enum nid_state dst_state)
2080 {
2081         struct f2fs_nm_info *nm_i = NM_I(sbi);
2082
2083         f2fs_bug_on(sbi, org_state != i->state);
2084         i->state = dst_state;
2085         nm_i->nid_cnt[org_state]--;
2086         nm_i->nid_cnt[dst_state]++;
2087
2088         switch (dst_state) {
2089         case PREALLOC_NID:
2090                 list_del(&i->list);
2091                 break;
2092         case FREE_NID:
2093                 list_add_tail(&i->list, &nm_i->free_nid_list);
2094                 break;
2095         default:
2096                 BUG_ON(1);
2097         }
2098 }
2099
2100 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2101                                                         bool set, bool build)
2102 {
2103         struct f2fs_nm_info *nm_i = NM_I(sbi);
2104         unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2105         unsigned int nid_ofs = nid - START_NID(nid);
2106
2107         if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2108                 return;
2109
2110         if (set) {
2111                 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2112                         return;
2113                 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2114                 nm_i->free_nid_count[nat_ofs]++;
2115         } else {
2116                 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2117                         return;
2118                 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2119                 if (!build)
2120                         nm_i->free_nid_count[nat_ofs]--;
2121         }
2122 }
2123
2124 /* return if the nid is recognized as free */
2125 static bool add_free_nid(struct f2fs_sb_info *sbi,
2126                                 nid_t nid, bool build, bool update)
2127 {
2128         struct f2fs_nm_info *nm_i = NM_I(sbi);
2129         struct free_nid *i, *e;
2130         struct nat_entry *ne;
2131         int err = -EINVAL;
2132         bool ret = false;
2133
2134         /* 0 nid should not be used */
2135         if (unlikely(nid == 0))
2136                 return false;
2137
2138         if (unlikely(f2fs_check_nid_range(sbi, nid)))
2139                 return false;
2140
2141         i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
2142         i->nid = nid;
2143         i->state = FREE_NID;
2144
2145         radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2146
2147         spin_lock(&nm_i->nid_list_lock);
2148
2149         if (build) {
2150                 /*
2151                  *   Thread A             Thread B
2152                  *  - f2fs_create
2153                  *   - f2fs_new_inode
2154                  *    - f2fs_alloc_nid
2155                  *     - __insert_nid_to_list(PREALLOC_NID)
2156                  *                     - f2fs_balance_fs_bg
2157                  *                      - f2fs_build_free_nids
2158                  *                       - __f2fs_build_free_nids
2159                  *                        - scan_nat_page
2160                  *                         - add_free_nid
2161                  *                          - __lookup_nat_cache
2162                  *  - f2fs_add_link
2163                  *   - f2fs_init_inode_metadata
2164                  *    - f2fs_new_inode_page
2165                  *     - f2fs_new_node_page
2166                  *      - set_node_addr
2167                  *  - f2fs_alloc_nid_done
2168                  *   - __remove_nid_from_list(PREALLOC_NID)
2169                  *                         - __insert_nid_to_list(FREE_NID)
2170                  */
2171                 ne = __lookup_nat_cache(nm_i, nid);
2172                 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2173                                 nat_get_blkaddr(ne) != NULL_ADDR))
2174                         goto err_out;
2175
2176                 e = __lookup_free_nid_list(nm_i, nid);
2177                 if (e) {
2178                         if (e->state == FREE_NID)
2179                                 ret = true;
2180                         goto err_out;
2181                 }
2182         }
2183         ret = true;
2184         err = __insert_free_nid(sbi, i, FREE_NID);
2185 err_out:
2186         if (update) {
2187                 update_free_nid_bitmap(sbi, nid, ret, build);
2188                 if (!build)
2189                         nm_i->available_nids++;
2190         }
2191         spin_unlock(&nm_i->nid_list_lock);
2192         radix_tree_preload_end();
2193
2194         if (err)
2195                 kmem_cache_free(free_nid_slab, i);
2196         return ret;
2197 }
2198
2199 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2200 {
2201         struct f2fs_nm_info *nm_i = NM_I(sbi);
2202         struct free_nid *i;
2203         bool need_free = false;
2204
2205         spin_lock(&nm_i->nid_list_lock);
2206         i = __lookup_free_nid_list(nm_i, nid);
2207         if (i && i->state == FREE_NID) {
2208                 __remove_free_nid(sbi, i, FREE_NID);
2209                 need_free = true;
2210         }
2211         spin_unlock(&nm_i->nid_list_lock);
2212
2213         if (need_free)
2214                 kmem_cache_free(free_nid_slab, i);
2215 }
2216
2217 static int scan_nat_page(struct f2fs_sb_info *sbi,
2218                         struct page *nat_page, nid_t start_nid)
2219 {
2220         struct f2fs_nm_info *nm_i = NM_I(sbi);
2221         struct f2fs_nat_block *nat_blk = page_address(nat_page);
2222         block_t blk_addr;
2223         unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2224         int i;
2225
2226         __set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2227
2228         i = start_nid % NAT_ENTRY_PER_BLOCK;
2229
2230         for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2231                 if (unlikely(start_nid >= nm_i->max_nid))
2232                         break;
2233
2234                 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2235
2236                 if (blk_addr == NEW_ADDR)
2237                         return -EINVAL;
2238
2239                 if (blk_addr == NULL_ADDR) {
2240                         add_free_nid(sbi, start_nid, true, true);
2241                 } else {
2242                         spin_lock(&NM_I(sbi)->nid_list_lock);
2243                         update_free_nid_bitmap(sbi, start_nid, false, true);
2244                         spin_unlock(&NM_I(sbi)->nid_list_lock);
2245                 }
2246         }
2247
2248         return 0;
2249 }
2250
2251 static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2252 {
2253         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2254         struct f2fs_journal *journal = curseg->journal;
2255         int i;
2256
2257         down_read(&curseg->journal_rwsem);
2258         for (i = 0; i < nats_in_cursum(journal); i++) {
2259                 block_t addr;
2260                 nid_t nid;
2261
2262                 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2263                 nid = le32_to_cpu(nid_in_journal(journal, i));
2264                 if (addr == NULL_ADDR)
2265                         add_free_nid(sbi, nid, true, false);
2266                 else
2267                         remove_free_nid(sbi, nid);
2268         }
2269         up_read(&curseg->journal_rwsem);
2270 }
2271
2272 static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2273 {
2274         struct f2fs_nm_info *nm_i = NM_I(sbi);
2275         unsigned int i, idx;
2276         nid_t nid;
2277
2278         down_read(&nm_i->nat_tree_lock);
2279
2280         for (i = 0; i < nm_i->nat_blocks; i++) {
2281                 if (!test_bit_le(i, nm_i->nat_block_bitmap))
2282                         continue;
2283                 if (!nm_i->free_nid_count[i])
2284                         continue;
2285                 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2286                         idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2287                                                 NAT_ENTRY_PER_BLOCK, idx);
2288                         if (idx >= NAT_ENTRY_PER_BLOCK)
2289                                 break;
2290
2291                         nid = i * NAT_ENTRY_PER_BLOCK + idx;
2292                         add_free_nid(sbi, nid, true, false);
2293
2294                         if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2295                                 goto out;
2296                 }
2297         }
2298 out:
2299         scan_curseg_cache(sbi);
2300
2301         up_read(&nm_i->nat_tree_lock);
2302 }
2303
2304 static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2305                                                 bool sync, bool mount)
2306 {
2307         struct f2fs_nm_info *nm_i = NM_I(sbi);
2308         int i = 0, ret;
2309         nid_t nid = nm_i->next_scan_nid;
2310
2311         if (unlikely(nid >= nm_i->max_nid))
2312                 nid = 0;
2313
2314         /* Enough entries */
2315         if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2316                 return 0;
2317
2318         if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2319                 return 0;
2320
2321         if (!mount) {
2322                 /* try to find free nids in free_nid_bitmap */
2323                 scan_free_nid_bits(sbi);
2324
2325                 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2326                         return 0;
2327         }
2328
2329         /* readahead nat pages to be scanned */
2330         f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2331                                                         META_NAT, true);
2332
2333         down_read(&nm_i->nat_tree_lock);
2334
2335         while (1) {
2336                 if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2337                                                 nm_i->nat_block_bitmap)) {
2338                         struct page *page = get_current_nat_page(sbi, nid);
2339
2340                         if (IS_ERR(page)) {
2341                                 ret = PTR_ERR(page);
2342                         } else {
2343                                 ret = scan_nat_page(sbi, page, nid);
2344                                 f2fs_put_page(page, 1);
2345                         }
2346
2347                         if (ret) {
2348                                 up_read(&nm_i->nat_tree_lock);
2349                                 f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2350                                 return ret;
2351                         }
2352                 }
2353
2354                 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2355                 if (unlikely(nid >= nm_i->max_nid))
2356                         nid = 0;
2357
2358                 if (++i >= FREE_NID_PAGES)
2359                         break;
2360         }
2361
2362         /* go to the next free nat pages to find free nids abundantly */
2363         nm_i->next_scan_nid = nid;
2364
2365         /* find free nids from current sum_pages */
2366         scan_curseg_cache(sbi);
2367
2368         up_read(&nm_i->nat_tree_lock);
2369
2370         f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2371                                         nm_i->ra_nid_pages, META_NAT, false);
2372
2373         return 0;
2374 }
2375
2376 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2377 {
2378         int ret;
2379
2380         mutex_lock(&NM_I(sbi)->build_lock);
2381         ret = __f2fs_build_free_nids(sbi, sync, mount);
2382         mutex_unlock(&NM_I(sbi)->build_lock);
2383
2384         return ret;
2385 }
2386
2387 /*
2388  * If this function returns success, caller can obtain a new nid
2389  * from second parameter of this function.
2390  * The returned nid could be used ino as well as nid when inode is created.
2391  */
2392 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2393 {
2394         struct f2fs_nm_info *nm_i = NM_I(sbi);
2395         struct free_nid *i = NULL;
2396 retry:
2397         if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2398                 f2fs_show_injection_info(sbi, FAULT_ALLOC_NID);
2399                 return false;
2400         }
2401
2402         spin_lock(&nm_i->nid_list_lock);
2403
2404         if (unlikely(nm_i->available_nids == 0)) {
2405                 spin_unlock(&nm_i->nid_list_lock);
2406                 return false;
2407         }
2408
2409         /* We should not use stale free nids created by f2fs_build_free_nids */
2410         if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2411                 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2412                 i = list_first_entry(&nm_i->free_nid_list,
2413                                         struct free_nid, list);
2414                 *nid = i->nid;
2415
2416                 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2417                 nm_i->available_nids--;
2418
2419                 update_free_nid_bitmap(sbi, *nid, false, false);
2420
2421                 spin_unlock(&nm_i->nid_list_lock);
2422                 return true;
2423         }
2424         spin_unlock(&nm_i->nid_list_lock);
2425
2426         /* Let's scan nat pages and its caches to get free nids */
2427         if (!f2fs_build_free_nids(sbi, true, false))
2428                 goto retry;
2429         return false;
2430 }
2431
2432 /*
2433  * f2fs_alloc_nid() should be called prior to this function.
2434  */
2435 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2436 {
2437         struct f2fs_nm_info *nm_i = NM_I(sbi);
2438         struct free_nid *i;
2439
2440         spin_lock(&nm_i->nid_list_lock);
2441         i = __lookup_free_nid_list(nm_i, nid);
2442         f2fs_bug_on(sbi, !i);
2443         __remove_free_nid(sbi, i, PREALLOC_NID);
2444         spin_unlock(&nm_i->nid_list_lock);
2445
2446         kmem_cache_free(free_nid_slab, i);
2447 }
2448
2449 /*
2450  * f2fs_alloc_nid() should be called prior to this function.
2451  */
2452 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2453 {
2454         struct f2fs_nm_info *nm_i = NM_I(sbi);
2455         struct free_nid *i;
2456         bool need_free = false;
2457
2458         if (!nid)
2459                 return;
2460
2461         spin_lock(&nm_i->nid_list_lock);
2462         i = __lookup_free_nid_list(nm_i, nid);
2463         f2fs_bug_on(sbi, !i);
2464
2465         if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2466                 __remove_free_nid(sbi, i, PREALLOC_NID);
2467                 need_free = true;
2468         } else {
2469                 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2470         }
2471
2472         nm_i->available_nids++;
2473
2474         update_free_nid_bitmap(sbi, nid, true, false);
2475
2476         spin_unlock(&nm_i->nid_list_lock);
2477
2478         if (need_free)
2479                 kmem_cache_free(free_nid_slab, i);
2480 }
2481
2482 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2483 {
2484         struct f2fs_nm_info *nm_i = NM_I(sbi);
2485         struct free_nid *i, *next;
2486         int nr = nr_shrink;
2487
2488         if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2489                 return 0;
2490
2491         if (!mutex_trylock(&nm_i->build_lock))
2492                 return 0;
2493
2494         spin_lock(&nm_i->nid_list_lock);
2495         list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2496                 if (nr_shrink <= 0 ||
2497                                 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2498                         break;
2499
2500                 __remove_free_nid(sbi, i, FREE_NID);
2501                 kmem_cache_free(free_nid_slab, i);
2502                 nr_shrink--;
2503         }
2504         spin_unlock(&nm_i->nid_list_lock);
2505         mutex_unlock(&nm_i->build_lock);
2506
2507         return nr - nr_shrink;
2508 }
2509
2510 void f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2511 {
2512         void *src_addr, *dst_addr;
2513         size_t inline_size;
2514         struct page *ipage;
2515         struct f2fs_inode *ri;
2516
2517         ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2518         f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
2519
2520         ri = F2FS_INODE(page);
2521         if (ri->i_inline & F2FS_INLINE_XATTR) {
2522                 set_inode_flag(inode, FI_INLINE_XATTR);
2523         } else {
2524                 clear_inode_flag(inode, FI_INLINE_XATTR);
2525                 goto update_inode;
2526         }
2527
2528         dst_addr = inline_xattr_addr(inode, ipage);
2529         src_addr = inline_xattr_addr(inode, page);
2530         inline_size = inline_xattr_size(inode);
2531
2532         f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2533         memcpy(dst_addr, src_addr, inline_size);
2534 update_inode:
2535         f2fs_update_inode(inode, ipage);
2536         f2fs_put_page(ipage, 1);
2537 }
2538
2539 int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2540 {
2541         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2542         nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2543         nid_t new_xnid;
2544         struct dnode_of_data dn;
2545         struct node_info ni;
2546         struct page *xpage;
2547         int err;
2548
2549         if (!prev_xnid)
2550                 goto recover_xnid;
2551
2552         /* 1: invalidate the previous xattr nid */
2553         err = f2fs_get_node_info(sbi, prev_xnid, &ni);
2554         if (err)
2555                 return err;
2556
2557         f2fs_invalidate_blocks(sbi, ni.blk_addr);
2558         dec_valid_node_count(sbi, inode, false);
2559         set_node_addr(sbi, &ni, NULL_ADDR, false);
2560
2561 recover_xnid:
2562         /* 2: update xattr nid in inode */
2563         if (!f2fs_alloc_nid(sbi, &new_xnid))
2564                 return -ENOSPC;
2565
2566         set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2567         xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2568         if (IS_ERR(xpage)) {
2569                 f2fs_alloc_nid_failed(sbi, new_xnid);
2570                 return PTR_ERR(xpage);
2571         }
2572
2573         f2fs_alloc_nid_done(sbi, new_xnid);
2574         f2fs_update_inode_page(inode);
2575
2576         /* 3: update and set xattr node page dirty */
2577         memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
2578
2579         set_page_dirty(xpage);
2580         f2fs_put_page(xpage, 1);
2581
2582         return 0;
2583 }
2584
2585 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2586 {
2587         struct f2fs_inode *src, *dst;
2588         nid_t ino = ino_of_node(page);
2589         struct node_info old_ni, new_ni;
2590         struct page *ipage;
2591         int err;
2592
2593         err = f2fs_get_node_info(sbi, ino, &old_ni);
2594         if (err)
2595                 return err;
2596
2597         if (unlikely(old_ni.blk_addr != NULL_ADDR))
2598                 return -EINVAL;
2599 retry:
2600         ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2601         if (!ipage) {
2602                 congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
2603                 goto retry;
2604         }
2605
2606         /* Should not use this inode from free nid list */
2607         remove_free_nid(sbi, ino);
2608
2609         if (!PageUptodate(ipage))
2610                 SetPageUptodate(ipage);
2611         fill_node_footer(ipage, ino, ino, 0, true);
2612         set_cold_node(ipage, false);
2613
2614         src = F2FS_INODE(page);
2615         dst = F2FS_INODE(ipage);
2616
2617         memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
2618         dst->i_size = 0;
2619         dst->i_blocks = cpu_to_le64(1);
2620         dst->i_links = cpu_to_le32(1);
2621         dst->i_xattr_nid = 0;
2622         dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2623         if (dst->i_inline & F2FS_EXTRA_ATTR) {
2624                 dst->i_extra_isize = src->i_extra_isize;
2625
2626                 if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2627                         F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2628                                                         i_inline_xattr_size))
2629                         dst->i_inline_xattr_size = src->i_inline_xattr_size;
2630
2631                 if (f2fs_sb_has_project_quota(sbi) &&
2632                         F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2633                                                                 i_projid))
2634                         dst->i_projid = src->i_projid;
2635
2636                 if (f2fs_sb_has_inode_crtime(sbi) &&
2637                         F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2638                                                         i_crtime_nsec)) {
2639                         dst->i_crtime = src->i_crtime;
2640                         dst->i_crtime_nsec = src->i_crtime_nsec;
2641                 }
2642         }
2643
2644         new_ni = old_ni;
2645         new_ni.ino = ino;
2646
2647         if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2648                 WARN_ON(1);
2649         set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2650         inc_valid_inode_count(sbi);
2651         set_page_dirty(ipage);
2652         f2fs_put_page(ipage, 1);
2653         return 0;
2654 }
2655
2656 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2657                         unsigned int segno, struct f2fs_summary_block *sum)
2658 {
2659         struct f2fs_node *rn;
2660         struct f2fs_summary *sum_entry;
2661         block_t addr;
2662         int i, idx, last_offset, nrpages;
2663
2664         /* scan the node segment */
2665         last_offset = sbi->blocks_per_seg;
2666         addr = START_BLOCK(sbi, segno);
2667         sum_entry = &sum->entries[0];
2668
2669         for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2670                 nrpages = min(last_offset - i, BIO_MAX_PAGES);
2671
2672                 /* readahead node pages */
2673                 f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2674
2675                 for (idx = addr; idx < addr + nrpages; idx++) {
2676                         struct page *page = f2fs_get_tmp_page(sbi, idx);
2677
2678                         if (IS_ERR(page))
2679                                 return PTR_ERR(page);
2680
2681                         rn = F2FS_NODE(page);
2682                         sum_entry->nid = rn->footer.nid;
2683                         sum_entry->version = 0;
2684                         sum_entry->ofs_in_node = 0;
2685                         sum_entry++;
2686                         f2fs_put_page(page, 1);
2687                 }
2688
2689                 invalidate_mapping_pages(META_MAPPING(sbi), addr,
2690                                                         addr + nrpages);
2691         }
2692         return 0;
2693 }
2694
2695 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2696 {
2697         struct f2fs_nm_info *nm_i = NM_I(sbi);
2698         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2699         struct f2fs_journal *journal = curseg->journal;
2700         int i;
2701
2702         down_write(&curseg->journal_rwsem);
2703         for (i = 0; i < nats_in_cursum(journal); i++) {
2704                 struct nat_entry *ne;
2705                 struct f2fs_nat_entry raw_ne;
2706                 nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2707
2708                 raw_ne = nat_in_journal(journal, i);
2709
2710                 ne = __lookup_nat_cache(nm_i, nid);
2711                 if (!ne) {
2712                         ne = __alloc_nat_entry(nid, true);
2713                         __init_nat_entry(nm_i, ne, &raw_ne, true);
2714                 }
2715
2716                 /*
2717                  * if a free nat in journal has not been used after last
2718                  * checkpoint, we should remove it from available nids,
2719                  * since later we will add it again.
2720                  */
2721                 if (!get_nat_flag(ne, IS_DIRTY) &&
2722                                 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2723                         spin_lock(&nm_i->nid_list_lock);
2724                         nm_i->available_nids--;
2725                         spin_unlock(&nm_i->nid_list_lock);
2726                 }
2727
2728                 __set_nat_cache_dirty(nm_i, ne);
2729         }
2730         update_nats_in_cursum(journal, -i);
2731         up_write(&curseg->journal_rwsem);
2732 }
2733
2734 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2735                                                 struct list_head *head, int max)
2736 {
2737         struct nat_entry_set *cur;
2738
2739         if (nes->entry_cnt >= max)
2740                 goto add_out;
2741
2742         list_for_each_entry(cur, head, set_list) {
2743                 if (cur->entry_cnt >= nes->entry_cnt) {
2744                         list_add(&nes->set_list, cur->set_list.prev);
2745                         return;
2746                 }
2747         }
2748 add_out:
2749         list_add_tail(&nes->set_list, head);
2750 }
2751
2752 static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2753                                                 struct page *page)
2754 {
2755         struct f2fs_nm_info *nm_i = NM_I(sbi);
2756         unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2757         struct f2fs_nat_block *nat_blk = page_address(page);
2758         int valid = 0;
2759         int i = 0;
2760
2761         if (!enabled_nat_bits(sbi, NULL))
2762                 return;
2763
2764         if (nat_index == 0) {
2765                 valid = 1;
2766                 i = 1;
2767         }
2768         for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2769                 if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
2770                         valid++;
2771         }
2772         if (valid == 0) {
2773                 __set_bit_le(nat_index, nm_i->empty_nat_bits);
2774                 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2775                 return;
2776         }
2777
2778         __clear_bit_le(nat_index, nm_i->empty_nat_bits);
2779         if (valid == NAT_ENTRY_PER_BLOCK)
2780                 __set_bit_le(nat_index, nm_i->full_nat_bits);
2781         else
2782                 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2783 }
2784
2785 static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2786                 struct nat_entry_set *set, struct cp_control *cpc)
2787 {
2788         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2789         struct f2fs_journal *journal = curseg->journal;
2790         nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2791         bool to_journal = true;
2792         struct f2fs_nat_block *nat_blk;
2793         struct nat_entry *ne, *cur;
2794         struct page *page = NULL;
2795
2796         /*
2797          * there are two steps to flush nat entries:
2798          * #1, flush nat entries to journal in current hot data summary block.
2799          * #2, flush nat entries to nat page.
2800          */
2801         if (enabled_nat_bits(sbi, cpc) ||
2802                 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2803                 to_journal = false;
2804
2805         if (to_journal) {
2806                 down_write(&curseg->journal_rwsem);
2807         } else {
2808                 page = get_next_nat_page(sbi, start_nid);
2809                 if (IS_ERR(page))
2810                         return PTR_ERR(page);
2811
2812                 nat_blk = page_address(page);
2813                 f2fs_bug_on(sbi, !nat_blk);
2814         }
2815
2816         /* flush dirty nats in nat entry set */
2817         list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2818                 struct f2fs_nat_entry *raw_ne;
2819                 nid_t nid = nat_get_nid(ne);
2820                 int offset;
2821
2822                 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
2823
2824                 if (to_journal) {
2825                         offset = f2fs_lookup_journal_in_cursum(journal,
2826                                                         NAT_JOURNAL, nid, 1);
2827                         f2fs_bug_on(sbi, offset < 0);
2828                         raw_ne = &nat_in_journal(journal, offset);
2829                         nid_in_journal(journal, offset) = cpu_to_le32(nid);
2830                 } else {
2831                         raw_ne = &nat_blk->entries[nid - start_nid];
2832                 }
2833                 raw_nat_from_node_info(raw_ne, &ne->ni);
2834                 nat_reset_flag(ne);
2835                 __clear_nat_cache_dirty(NM_I(sbi), set, ne);
2836                 if (nat_get_blkaddr(ne) == NULL_ADDR) {
2837                         add_free_nid(sbi, nid, false, true);
2838                 } else {
2839                         spin_lock(&NM_I(sbi)->nid_list_lock);
2840                         update_free_nid_bitmap(sbi, nid, false, false);
2841                         spin_unlock(&NM_I(sbi)->nid_list_lock);
2842                 }
2843         }
2844
2845         if (to_journal) {
2846                 up_write(&curseg->journal_rwsem);
2847         } else {
2848                 __update_nat_bits(sbi, start_nid, page);
2849                 f2fs_put_page(page, 1);
2850         }
2851
2852         /* Allow dirty nats by node block allocation in write_begin */
2853         if (!set->entry_cnt) {
2854                 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2855                 kmem_cache_free(nat_entry_set_slab, set);
2856         }
2857         return 0;
2858 }
2859
2860 /*
2861  * This function is called during the checkpointing process.
2862  */
2863 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2864 {
2865         struct f2fs_nm_info *nm_i = NM_I(sbi);
2866         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2867         struct f2fs_journal *journal = curseg->journal;
2868         struct nat_entry_set *setvec[SETVEC_SIZE];
2869         struct nat_entry_set *set, *tmp;
2870         unsigned int found;
2871         nid_t set_idx = 0;
2872         LIST_HEAD(sets);
2873         int err = 0;
2874
2875         /* during unmount, let's flush nat_bits before checking dirty_nat_cnt */
2876         if (enabled_nat_bits(sbi, cpc)) {
2877                 down_write(&nm_i->nat_tree_lock);
2878                 remove_nats_in_journal(sbi);
2879                 up_write(&nm_i->nat_tree_lock);
2880         }
2881
2882         if (!nm_i->dirty_nat_cnt)
2883                 return 0;
2884
2885         down_write(&nm_i->nat_tree_lock);
2886
2887         /*
2888          * if there are no enough space in journal to store dirty nat
2889          * entries, remove all entries from journal and merge them
2890          * into nat entry set.
2891          */
2892         if (enabled_nat_bits(sbi, cpc) ||
2893                 !__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL))
2894                 remove_nats_in_journal(sbi);
2895
2896         while ((found = __gang_lookup_nat_set(nm_i,
2897                                         set_idx, SETVEC_SIZE, setvec))) {
2898                 unsigned idx;
2899                 set_idx = setvec[found - 1]->set + 1;
2900                 for (idx = 0; idx < found; idx++)
2901                         __adjust_nat_entry_set(setvec[idx], &sets,
2902                                                 MAX_NAT_JENTRIES(journal));
2903         }
2904
2905         /* flush dirty nats in nat entry set */
2906         list_for_each_entry_safe(set, tmp, &sets, set_list) {
2907                 err = __flush_nat_entry_set(sbi, set, cpc);
2908                 if (err)
2909                         break;
2910         }
2911
2912         up_write(&nm_i->nat_tree_lock);
2913         /* Allow dirty nats by node block allocation in write_begin */
2914
2915         return err;
2916 }
2917
2918 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
2919 {
2920         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2921         struct f2fs_nm_info *nm_i = NM_I(sbi);
2922         unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
2923         unsigned int i;
2924         __u64 cp_ver = cur_cp_version(ckpt);
2925         block_t nat_bits_addr;
2926
2927         if (!enabled_nat_bits(sbi, NULL))
2928                 return 0;
2929
2930         nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
2931         nm_i->nat_bits = f2fs_kzalloc(sbi,
2932                         nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
2933         if (!nm_i->nat_bits)
2934                 return -ENOMEM;
2935
2936         nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
2937                                                 nm_i->nat_bits_blocks;
2938         for (i = 0; i < nm_i->nat_bits_blocks; i++) {
2939                 struct page *page;
2940
2941                 page = f2fs_get_meta_page(sbi, nat_bits_addr++);
2942                 if (IS_ERR(page))
2943                         return PTR_ERR(page);
2944
2945                 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
2946                                         page_address(page), F2FS_BLKSIZE);
2947                 f2fs_put_page(page, 1);
2948         }
2949
2950         cp_ver |= (cur_cp_crc(ckpt) << 32);
2951         if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
2952                 disable_nat_bits(sbi, true);
2953                 return 0;
2954         }
2955
2956         nm_i->full_nat_bits = nm_i->nat_bits + 8;
2957         nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
2958
2959         f2fs_notice(sbi, "Found nat_bits in checkpoint");
2960         return 0;
2961 }
2962
2963 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
2964 {
2965         struct f2fs_nm_info *nm_i = NM_I(sbi);
2966         unsigned int i = 0;
2967         nid_t nid, last_nid;
2968
2969         if (!enabled_nat_bits(sbi, NULL))
2970                 return;
2971
2972         for (i = 0; i < nm_i->nat_blocks; i++) {
2973                 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
2974                 if (i >= nm_i->nat_blocks)
2975                         break;
2976
2977                 __set_bit_le(i, nm_i->nat_block_bitmap);
2978
2979                 nid = i * NAT_ENTRY_PER_BLOCK;
2980                 last_nid = nid + NAT_ENTRY_PER_BLOCK;
2981
2982                 spin_lock(&NM_I(sbi)->nid_list_lock);
2983                 for (; nid < last_nid; nid++)
2984                         update_free_nid_bitmap(sbi, nid, true, true);
2985                 spin_unlock(&NM_I(sbi)->nid_list_lock);
2986         }
2987
2988         for (i = 0; i < nm_i->nat_blocks; i++) {
2989                 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
2990                 if (i >= nm_i->nat_blocks)
2991                         break;
2992
2993                 __set_bit_le(i, nm_i->nat_block_bitmap);
2994         }
2995 }
2996
2997 static int init_node_manager(struct f2fs_sb_info *sbi)
2998 {
2999         struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
3000         struct f2fs_nm_info *nm_i = NM_I(sbi);
3001         unsigned char *version_bitmap;
3002         unsigned int nat_segs;
3003         int err;
3004
3005         nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
3006
3007         /* segment_count_nat includes pair segment so divide to 2. */
3008         nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
3009         nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
3010         nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
3011
3012         /* not used nids: 0, node, meta, (and root counted as valid node) */
3013         nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
3014                                                 F2FS_RESERVED_NODE_NUM;
3015         nm_i->nid_cnt[FREE_NID] = 0;
3016         nm_i->nid_cnt[PREALLOC_NID] = 0;
3017         nm_i->nat_cnt = 0;
3018         nm_i->ram_thresh = DEF_RAM_THRESHOLD;
3019         nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
3020         nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
3021
3022         INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
3023         INIT_LIST_HEAD(&nm_i->free_nid_list);
3024         INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
3025         INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
3026         INIT_LIST_HEAD(&nm_i->nat_entries);
3027         spin_lock_init(&nm_i->nat_list_lock);
3028
3029         mutex_init(&nm_i->build_lock);
3030         spin_lock_init(&nm_i->nid_list_lock);
3031         init_rwsem(&nm_i->nat_tree_lock);
3032
3033         nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
3034         nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
3035         version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
3036         if (!version_bitmap)
3037                 return -EFAULT;
3038
3039         nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
3040                                         GFP_KERNEL);
3041         if (!nm_i->nat_bitmap)
3042                 return -ENOMEM;
3043
3044         err = __get_nat_bitmaps(sbi);
3045         if (err)
3046                 return err;
3047
3048 #ifdef CONFIG_F2FS_CHECK_FS
3049         nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3050                                         GFP_KERNEL);
3051         if (!nm_i->nat_bitmap_mir)
3052                 return -ENOMEM;
3053 #endif
3054
3055         return 0;
3056 }
3057
3058 static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3059 {
3060         struct f2fs_nm_info *nm_i = NM_I(sbi);
3061         int i;
3062
3063         nm_i->free_nid_bitmap =
3064                 f2fs_kzalloc(sbi, array_size(sizeof(unsigned char *),
3065                                              nm_i->nat_blocks),
3066                              GFP_KERNEL);
3067         if (!nm_i->free_nid_bitmap)
3068                 return -ENOMEM;
3069
3070         for (i = 0; i < nm_i->nat_blocks; i++) {
3071                 nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3072                         f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3073                 if (!nm_i->free_nid_bitmap[i])
3074                         return -ENOMEM;
3075         }
3076
3077         nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3078                                                                 GFP_KERNEL);
3079         if (!nm_i->nat_block_bitmap)
3080                 return -ENOMEM;
3081
3082         nm_i->free_nid_count =
3083                 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3084                                               nm_i->nat_blocks),
3085                               GFP_KERNEL);
3086         if (!nm_i->free_nid_count)
3087                 return -ENOMEM;
3088         return 0;
3089 }
3090
3091 int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3092 {
3093         int err;
3094
3095         sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3096                                                         GFP_KERNEL);
3097         if (!sbi->nm_info)
3098                 return -ENOMEM;
3099
3100         err = init_node_manager(sbi);
3101         if (err)
3102                 return err;
3103
3104         err = init_free_nid_cache(sbi);
3105         if (err)
3106                 return err;
3107
3108         /* load free nid status from nat_bits table */
3109         load_free_nid_bitmap(sbi);
3110
3111         return f2fs_build_free_nids(sbi, true, true);
3112 }
3113
3114 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3115 {
3116         struct f2fs_nm_info *nm_i = NM_I(sbi);
3117         struct free_nid *i, *next_i;
3118         struct nat_entry *natvec[NATVEC_SIZE];
3119         struct nat_entry_set *setvec[SETVEC_SIZE];
3120         nid_t nid = 0;
3121         unsigned int found;
3122
3123         if (!nm_i)
3124                 return;
3125
3126         /* destroy free nid list */
3127         spin_lock(&nm_i->nid_list_lock);
3128         list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3129                 __remove_free_nid(sbi, i, FREE_NID);
3130                 spin_unlock(&nm_i->nid_list_lock);
3131                 kmem_cache_free(free_nid_slab, i);
3132                 spin_lock(&nm_i->nid_list_lock);
3133         }
3134         f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3135         f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3136         f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3137         spin_unlock(&nm_i->nid_list_lock);
3138
3139         /* destroy nat cache */
3140         down_write(&nm_i->nat_tree_lock);
3141         while ((found = __gang_lookup_nat_cache(nm_i,
3142                                         nid, NATVEC_SIZE, natvec))) {
3143                 unsigned idx;
3144
3145                 nid = nat_get_nid(natvec[found - 1]) + 1;
3146                 for (idx = 0; idx < found; idx++) {
3147                         spin_lock(&nm_i->nat_list_lock);
3148                         list_del(&natvec[idx]->list);
3149                         spin_unlock(&nm_i->nat_list_lock);
3150
3151                         __del_from_nat_cache(nm_i, natvec[idx]);
3152                 }
3153         }
3154         f2fs_bug_on(sbi, nm_i->nat_cnt);
3155
3156         /* destroy nat set cache */
3157         nid = 0;
3158         while ((found = __gang_lookup_nat_set(nm_i,
3159                                         nid, SETVEC_SIZE, setvec))) {
3160                 unsigned idx;
3161
3162                 nid = setvec[found - 1]->set + 1;
3163                 for (idx = 0; idx < found; idx++) {
3164                         /* entry_cnt is not zero, when cp_error was occurred */
3165                         f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3166                         radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3167                         kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3168                 }
3169         }
3170         up_write(&nm_i->nat_tree_lock);
3171
3172         kvfree(nm_i->nat_block_bitmap);
3173         if (nm_i->free_nid_bitmap) {
3174                 int i;
3175
3176                 for (i = 0; i < nm_i->nat_blocks; i++)
3177                         kvfree(nm_i->free_nid_bitmap[i]);
3178                 kvfree(nm_i->free_nid_bitmap);
3179         }
3180         kvfree(nm_i->free_nid_count);
3181
3182         kvfree(nm_i->nat_bitmap);
3183         kvfree(nm_i->nat_bits);
3184 #ifdef CONFIG_F2FS_CHECK_FS
3185         kvfree(nm_i->nat_bitmap_mir);
3186 #endif
3187         sbi->nm_info = NULL;
3188         kvfree(nm_i);
3189 }
3190
3191 int __init f2fs_create_node_manager_caches(void)
3192 {
3193         nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry",
3194                         sizeof(struct nat_entry));
3195         if (!nat_entry_slab)
3196                 goto fail;
3197
3198         free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid",
3199                         sizeof(struct free_nid));
3200         if (!free_nid_slab)
3201                 goto destroy_nat_entry;
3202
3203         nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set",
3204                         sizeof(struct nat_entry_set));
3205         if (!nat_entry_set_slab)
3206                 goto destroy_free_nid;
3207
3208         fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry",
3209                         sizeof(struct fsync_node_entry));
3210         if (!fsync_node_entry_slab)
3211                 goto destroy_nat_entry_set;
3212         return 0;
3213
3214 destroy_nat_entry_set:
3215         kmem_cache_destroy(nat_entry_set_slab);
3216 destroy_free_nid:
3217         kmem_cache_destroy(free_nid_slab);
3218 destroy_nat_entry:
3219         kmem_cache_destroy(nat_entry_slab);
3220 fail:
3221         return -ENOMEM;
3222 }
3223
3224 void f2fs_destroy_node_manager_caches(void)
3225 {
3226         kmem_cache_destroy(fsync_node_entry_slab);
3227         kmem_cache_destroy(nat_entry_set_slab);
3228         kmem_cache_destroy(free_nid_slab);
3229         kmem_cache_destroy(nat_entry_slab);
3230 }