drm/msm/dp: Fixed couple of typos
[linux-2.6-microblaze.git] / fs / f2fs / node.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/node.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/mpage.h>
11 #include <linux/backing-dev.h>
12 #include <linux/blkdev.h>
13 #include <linux/pagevec.h>
14 #include <linux/swap.h>
15
16 #include "f2fs.h"
17 #include "node.h"
18 #include "segment.h"
19 #include "xattr.h"
20 #include <trace/events/f2fs.h>
21
22 #define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
23
24 static struct kmem_cache *nat_entry_slab;
25 static struct kmem_cache *free_nid_slab;
26 static struct kmem_cache *nat_entry_set_slab;
27 static struct kmem_cache *fsync_node_entry_slab;
28
29 /*
30  * Check whether the given nid is within node id range.
31  */
32 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
33 {
34         if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
35                 set_sbi_flag(sbi, SBI_NEED_FSCK);
36                 f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
37                           __func__, nid);
38                 return -EFSCORRUPTED;
39         }
40         return 0;
41 }
42
43 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
44 {
45         struct f2fs_nm_info *nm_i = NM_I(sbi);
46         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
47         struct sysinfo val;
48         unsigned long avail_ram;
49         unsigned long mem_size = 0;
50         bool res = false;
51
52         if (!nm_i)
53                 return true;
54
55         si_meminfo(&val);
56
57         /* only uses low memory */
58         avail_ram = val.totalram - val.totalhigh;
59
60         /*
61          * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
62          */
63         if (type == FREE_NIDS) {
64                 mem_size = (nm_i->nid_cnt[FREE_NID] *
65                                 sizeof(struct free_nid)) >> PAGE_SHIFT;
66                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
67         } else if (type == NAT_ENTRIES) {
68                 mem_size = (nm_i->nat_cnt[TOTAL_NAT] *
69                                 sizeof(struct nat_entry)) >> PAGE_SHIFT;
70                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
71                 if (excess_cached_nats(sbi))
72                         res = false;
73         } else if (type == DIRTY_DENTS) {
74                 if (sbi->sb->s_bdi->wb.dirty_exceeded)
75                         return false;
76                 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
77                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
78         } else if (type == INO_ENTRIES) {
79                 int i;
80
81                 for (i = 0; i < MAX_INO_ENTRY; i++)
82                         mem_size += sbi->im[i].ino_num *
83                                                 sizeof(struct ino_entry);
84                 mem_size >>= PAGE_SHIFT;
85                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
86         } else if (type == EXTENT_CACHE) {
87                 mem_size = (atomic_read(&sbi->total_ext_tree) *
88                                 sizeof(struct extent_tree) +
89                                 atomic_read(&sbi->total_ext_node) *
90                                 sizeof(struct extent_node)) >> PAGE_SHIFT;
91                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
92         } else if (type == INMEM_PAGES) {
93                 /* it allows 20% / total_ram for inmemory pages */
94                 mem_size = get_pages(sbi, F2FS_INMEM_PAGES);
95                 res = mem_size < (val.totalram / 5);
96         } else if (type == DISCARD_CACHE) {
97                 mem_size = (atomic_read(&dcc->discard_cmd_cnt) *
98                                 sizeof(struct discard_cmd)) >> PAGE_SHIFT;
99                 res = mem_size < (avail_ram * nm_i->ram_thresh / 100);
100         } else {
101                 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
102                         return true;
103         }
104         return res;
105 }
106
107 static void clear_node_page_dirty(struct page *page)
108 {
109         if (PageDirty(page)) {
110                 f2fs_clear_page_cache_dirty_tag(page);
111                 clear_page_dirty_for_io(page);
112                 dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
113         }
114         ClearPageUptodate(page);
115 }
116
117 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
118 {
119         return f2fs_get_meta_page_retry(sbi, current_nat_addr(sbi, nid));
120 }
121
122 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
123 {
124         struct page *src_page;
125         struct page *dst_page;
126         pgoff_t dst_off;
127         void *src_addr;
128         void *dst_addr;
129         struct f2fs_nm_info *nm_i = NM_I(sbi);
130
131         dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
132
133         /* get current nat block page with lock */
134         src_page = get_current_nat_page(sbi, nid);
135         if (IS_ERR(src_page))
136                 return src_page;
137         dst_page = f2fs_grab_meta_page(sbi, dst_off);
138         f2fs_bug_on(sbi, PageDirty(src_page));
139
140         src_addr = page_address(src_page);
141         dst_addr = page_address(dst_page);
142         memcpy(dst_addr, src_addr, PAGE_SIZE);
143         set_page_dirty(dst_page);
144         f2fs_put_page(src_page, 1);
145
146         set_to_next_nat(nm_i, nid);
147
148         return dst_page;
149 }
150
151 static struct nat_entry *__alloc_nat_entry(nid_t nid, bool no_fail)
152 {
153         struct nat_entry *new;
154
155         if (no_fail)
156                 new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
157         else
158                 new = kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
159         if (new) {
160                 nat_set_nid(new, nid);
161                 nat_reset_flag(new);
162         }
163         return new;
164 }
165
166 static void __free_nat_entry(struct nat_entry *e)
167 {
168         kmem_cache_free(nat_entry_slab, e);
169 }
170
171 /* must be locked by nat_tree_lock */
172 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
173         struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
174 {
175         if (no_fail)
176                 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
177         else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
178                 return NULL;
179
180         if (raw_ne)
181                 node_info_from_raw_nat(&ne->ni, raw_ne);
182
183         spin_lock(&nm_i->nat_list_lock);
184         list_add_tail(&ne->list, &nm_i->nat_entries);
185         spin_unlock(&nm_i->nat_list_lock);
186
187         nm_i->nat_cnt[TOTAL_NAT]++;
188         nm_i->nat_cnt[RECLAIMABLE_NAT]++;
189         return ne;
190 }
191
192 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
193 {
194         struct nat_entry *ne;
195
196         ne = radix_tree_lookup(&nm_i->nat_root, n);
197
198         /* for recent accessed nat entry, move it to tail of lru list */
199         if (ne && !get_nat_flag(ne, IS_DIRTY)) {
200                 spin_lock(&nm_i->nat_list_lock);
201                 if (!list_empty(&ne->list))
202                         list_move_tail(&ne->list, &nm_i->nat_entries);
203                 spin_unlock(&nm_i->nat_list_lock);
204         }
205
206         return ne;
207 }
208
209 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
210                 nid_t start, unsigned int nr, struct nat_entry **ep)
211 {
212         return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
213 }
214
215 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
216 {
217         radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
218         nm_i->nat_cnt[TOTAL_NAT]--;
219         nm_i->nat_cnt[RECLAIMABLE_NAT]--;
220         __free_nat_entry(e);
221 }
222
223 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
224                                                         struct nat_entry *ne)
225 {
226         nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
227         struct nat_entry_set *head;
228
229         head = radix_tree_lookup(&nm_i->nat_set_root, set);
230         if (!head) {
231                 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
232
233                 INIT_LIST_HEAD(&head->entry_list);
234                 INIT_LIST_HEAD(&head->set_list);
235                 head->set = set;
236                 head->entry_cnt = 0;
237                 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
238         }
239         return head;
240 }
241
242 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
243                                                 struct nat_entry *ne)
244 {
245         struct nat_entry_set *head;
246         bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
247
248         if (!new_ne)
249                 head = __grab_nat_entry_set(nm_i, ne);
250
251         /*
252          * update entry_cnt in below condition:
253          * 1. update NEW_ADDR to valid block address;
254          * 2. update old block address to new one;
255          */
256         if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
257                                 !get_nat_flag(ne, IS_DIRTY)))
258                 head->entry_cnt++;
259
260         set_nat_flag(ne, IS_PREALLOC, new_ne);
261
262         if (get_nat_flag(ne, IS_DIRTY))
263                 goto refresh_list;
264
265         nm_i->nat_cnt[DIRTY_NAT]++;
266         nm_i->nat_cnt[RECLAIMABLE_NAT]--;
267         set_nat_flag(ne, IS_DIRTY, true);
268 refresh_list:
269         spin_lock(&nm_i->nat_list_lock);
270         if (new_ne)
271                 list_del_init(&ne->list);
272         else
273                 list_move_tail(&ne->list, &head->entry_list);
274         spin_unlock(&nm_i->nat_list_lock);
275 }
276
277 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
278                 struct nat_entry_set *set, struct nat_entry *ne)
279 {
280         spin_lock(&nm_i->nat_list_lock);
281         list_move_tail(&ne->list, &nm_i->nat_entries);
282         spin_unlock(&nm_i->nat_list_lock);
283
284         set_nat_flag(ne, IS_DIRTY, false);
285         set->entry_cnt--;
286         nm_i->nat_cnt[DIRTY_NAT]--;
287         nm_i->nat_cnt[RECLAIMABLE_NAT]++;
288 }
289
290 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
291                 nid_t start, unsigned int nr, struct nat_entry_set **ep)
292 {
293         return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
294                                                         start, nr);
295 }
296
297 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
298 {
299         return NODE_MAPPING(sbi) == page->mapping &&
300                         IS_DNODE(page) && is_cold_node(page);
301 }
302
303 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
304 {
305         spin_lock_init(&sbi->fsync_node_lock);
306         INIT_LIST_HEAD(&sbi->fsync_node_list);
307         sbi->fsync_seg_id = 0;
308         sbi->fsync_node_num = 0;
309 }
310
311 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
312                                                         struct page *page)
313 {
314         struct fsync_node_entry *fn;
315         unsigned long flags;
316         unsigned int seq_id;
317
318         fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab, GFP_NOFS);
319
320         get_page(page);
321         fn->page = page;
322         INIT_LIST_HEAD(&fn->list);
323
324         spin_lock_irqsave(&sbi->fsync_node_lock, flags);
325         list_add_tail(&fn->list, &sbi->fsync_node_list);
326         fn->seq_id = sbi->fsync_seg_id++;
327         seq_id = fn->seq_id;
328         sbi->fsync_node_num++;
329         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
330
331         return seq_id;
332 }
333
334 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
335 {
336         struct fsync_node_entry *fn;
337         unsigned long flags;
338
339         spin_lock_irqsave(&sbi->fsync_node_lock, flags);
340         list_for_each_entry(fn, &sbi->fsync_node_list, list) {
341                 if (fn->page == page) {
342                         list_del(&fn->list);
343                         sbi->fsync_node_num--;
344                         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
345                         kmem_cache_free(fsync_node_entry_slab, fn);
346                         put_page(page);
347                         return;
348                 }
349         }
350         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
351         f2fs_bug_on(sbi, 1);
352 }
353
354 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
355 {
356         unsigned long flags;
357
358         spin_lock_irqsave(&sbi->fsync_node_lock, flags);
359         sbi->fsync_seg_id = 0;
360         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
361 }
362
363 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
364 {
365         struct f2fs_nm_info *nm_i = NM_I(sbi);
366         struct nat_entry *e;
367         bool need = false;
368
369         down_read(&nm_i->nat_tree_lock);
370         e = __lookup_nat_cache(nm_i, nid);
371         if (e) {
372                 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
373                                 !get_nat_flag(e, HAS_FSYNCED_INODE))
374                         need = true;
375         }
376         up_read(&nm_i->nat_tree_lock);
377         return need;
378 }
379
380 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
381 {
382         struct f2fs_nm_info *nm_i = NM_I(sbi);
383         struct nat_entry *e;
384         bool is_cp = true;
385
386         down_read(&nm_i->nat_tree_lock);
387         e = __lookup_nat_cache(nm_i, nid);
388         if (e && !get_nat_flag(e, IS_CHECKPOINTED))
389                 is_cp = false;
390         up_read(&nm_i->nat_tree_lock);
391         return is_cp;
392 }
393
394 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
395 {
396         struct f2fs_nm_info *nm_i = NM_I(sbi);
397         struct nat_entry *e;
398         bool need_update = true;
399
400         down_read(&nm_i->nat_tree_lock);
401         e = __lookup_nat_cache(nm_i, ino);
402         if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
403                         (get_nat_flag(e, IS_CHECKPOINTED) ||
404                          get_nat_flag(e, HAS_FSYNCED_INODE)))
405                 need_update = false;
406         up_read(&nm_i->nat_tree_lock);
407         return need_update;
408 }
409
410 /* must be locked by nat_tree_lock */
411 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
412                                                 struct f2fs_nat_entry *ne)
413 {
414         struct f2fs_nm_info *nm_i = NM_I(sbi);
415         struct nat_entry *new, *e;
416
417         new = __alloc_nat_entry(nid, false);
418         if (!new)
419                 return;
420
421         down_write(&nm_i->nat_tree_lock);
422         e = __lookup_nat_cache(nm_i, nid);
423         if (!e)
424                 e = __init_nat_entry(nm_i, new, ne, false);
425         else
426                 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
427                                 nat_get_blkaddr(e) !=
428                                         le32_to_cpu(ne->block_addr) ||
429                                 nat_get_version(e) != ne->version);
430         up_write(&nm_i->nat_tree_lock);
431         if (e != new)
432                 __free_nat_entry(new);
433 }
434
435 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
436                         block_t new_blkaddr, bool fsync_done)
437 {
438         struct f2fs_nm_info *nm_i = NM_I(sbi);
439         struct nat_entry *e;
440         struct nat_entry *new = __alloc_nat_entry(ni->nid, true);
441
442         down_write(&nm_i->nat_tree_lock);
443         e = __lookup_nat_cache(nm_i, ni->nid);
444         if (!e) {
445                 e = __init_nat_entry(nm_i, new, NULL, true);
446                 copy_node_info(&e->ni, ni);
447                 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
448         } else if (new_blkaddr == NEW_ADDR) {
449                 /*
450                  * when nid is reallocated,
451                  * previous nat entry can be remained in nat cache.
452                  * So, reinitialize it with new information.
453                  */
454                 copy_node_info(&e->ni, ni);
455                 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
456         }
457         /* let's free early to reduce memory consumption */
458         if (e != new)
459                 __free_nat_entry(new);
460
461         /* sanity check */
462         f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
463         f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
464                         new_blkaddr == NULL_ADDR);
465         f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
466                         new_blkaddr == NEW_ADDR);
467         f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
468                         new_blkaddr == NEW_ADDR);
469
470         /* increment version no as node is removed */
471         if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
472                 unsigned char version = nat_get_version(e);
473
474                 nat_set_version(e, inc_node_version(version));
475         }
476
477         /* change address */
478         nat_set_blkaddr(e, new_blkaddr);
479         if (!__is_valid_data_blkaddr(new_blkaddr))
480                 set_nat_flag(e, IS_CHECKPOINTED, false);
481         __set_nat_cache_dirty(nm_i, e);
482
483         /* update fsync_mark if its inode nat entry is still alive */
484         if (ni->nid != ni->ino)
485                 e = __lookup_nat_cache(nm_i, ni->ino);
486         if (e) {
487                 if (fsync_done && ni->nid == ni->ino)
488                         set_nat_flag(e, HAS_FSYNCED_INODE, true);
489                 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
490         }
491         up_write(&nm_i->nat_tree_lock);
492 }
493
494 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
495 {
496         struct f2fs_nm_info *nm_i = NM_I(sbi);
497         int nr = nr_shrink;
498
499         if (!down_write_trylock(&nm_i->nat_tree_lock))
500                 return 0;
501
502         spin_lock(&nm_i->nat_list_lock);
503         while (nr_shrink) {
504                 struct nat_entry *ne;
505
506                 if (list_empty(&nm_i->nat_entries))
507                         break;
508
509                 ne = list_first_entry(&nm_i->nat_entries,
510                                         struct nat_entry, list);
511                 list_del(&ne->list);
512                 spin_unlock(&nm_i->nat_list_lock);
513
514                 __del_from_nat_cache(nm_i, ne);
515                 nr_shrink--;
516
517                 spin_lock(&nm_i->nat_list_lock);
518         }
519         spin_unlock(&nm_i->nat_list_lock);
520
521         up_write(&nm_i->nat_tree_lock);
522         return nr - nr_shrink;
523 }
524
525 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
526                                                 struct node_info *ni)
527 {
528         struct f2fs_nm_info *nm_i = NM_I(sbi);
529         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
530         struct f2fs_journal *journal = curseg->journal;
531         nid_t start_nid = START_NID(nid);
532         struct f2fs_nat_block *nat_blk;
533         struct page *page = NULL;
534         struct f2fs_nat_entry ne;
535         struct nat_entry *e;
536         pgoff_t index;
537         block_t blkaddr;
538         int i;
539
540         ni->nid = nid;
541
542         /* Check nat cache */
543         down_read(&nm_i->nat_tree_lock);
544         e = __lookup_nat_cache(nm_i, nid);
545         if (e) {
546                 ni->ino = nat_get_ino(e);
547                 ni->blk_addr = nat_get_blkaddr(e);
548                 ni->version = nat_get_version(e);
549                 up_read(&nm_i->nat_tree_lock);
550                 return 0;
551         }
552
553         memset(&ne, 0, sizeof(struct f2fs_nat_entry));
554
555         /* Check current segment summary */
556         down_read(&curseg->journal_rwsem);
557         i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
558         if (i >= 0) {
559                 ne = nat_in_journal(journal, i);
560                 node_info_from_raw_nat(ni, &ne);
561         }
562         up_read(&curseg->journal_rwsem);
563         if (i >= 0) {
564                 up_read(&nm_i->nat_tree_lock);
565                 goto cache;
566         }
567
568         /* Fill node_info from nat page */
569         index = current_nat_addr(sbi, nid);
570         up_read(&nm_i->nat_tree_lock);
571
572         page = f2fs_get_meta_page(sbi, index);
573         if (IS_ERR(page))
574                 return PTR_ERR(page);
575
576         nat_blk = (struct f2fs_nat_block *)page_address(page);
577         ne = nat_blk->entries[nid - start_nid];
578         node_info_from_raw_nat(ni, &ne);
579         f2fs_put_page(page, 1);
580 cache:
581         blkaddr = le32_to_cpu(ne.block_addr);
582         if (__is_valid_data_blkaddr(blkaddr) &&
583                 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
584                 return -EFAULT;
585
586         /* cache nat entry */
587         cache_nat_entry(sbi, nid, &ne);
588         return 0;
589 }
590
591 /*
592  * readahead MAX_RA_NODE number of node pages.
593  */
594 static void f2fs_ra_node_pages(struct page *parent, int start, int n)
595 {
596         struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
597         struct blk_plug plug;
598         int i, end;
599         nid_t nid;
600
601         blk_start_plug(&plug);
602
603         /* Then, try readahead for siblings of the desired node */
604         end = start + n;
605         end = min(end, NIDS_PER_BLOCK);
606         for (i = start; i < end; i++) {
607                 nid = get_nid(parent, i, false);
608                 f2fs_ra_node_page(sbi, nid);
609         }
610
611         blk_finish_plug(&plug);
612 }
613
614 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
615 {
616         const long direct_index = ADDRS_PER_INODE(dn->inode);
617         const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
618         const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
619         unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
620         int cur_level = dn->cur_level;
621         int max_level = dn->max_level;
622         pgoff_t base = 0;
623
624         if (!dn->max_level)
625                 return pgofs + 1;
626
627         while (max_level-- > cur_level)
628                 skipped_unit *= NIDS_PER_BLOCK;
629
630         switch (dn->max_level) {
631         case 3:
632                 base += 2 * indirect_blks;
633                 fallthrough;
634         case 2:
635                 base += 2 * direct_blks;
636                 fallthrough;
637         case 1:
638                 base += direct_index;
639                 break;
640         default:
641                 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
642         }
643
644         return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
645 }
646
647 /*
648  * The maximum depth is four.
649  * Offset[0] will have raw inode offset.
650  */
651 static int get_node_path(struct inode *inode, long block,
652                                 int offset[4], unsigned int noffset[4])
653 {
654         const long direct_index = ADDRS_PER_INODE(inode);
655         const long direct_blks = ADDRS_PER_BLOCK(inode);
656         const long dptrs_per_blk = NIDS_PER_BLOCK;
657         const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
658         const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
659         int n = 0;
660         int level = 0;
661
662         noffset[0] = 0;
663
664         if (block < direct_index) {
665                 offset[n] = block;
666                 goto got;
667         }
668         block -= direct_index;
669         if (block < direct_blks) {
670                 offset[n++] = NODE_DIR1_BLOCK;
671                 noffset[n] = 1;
672                 offset[n] = block;
673                 level = 1;
674                 goto got;
675         }
676         block -= direct_blks;
677         if (block < direct_blks) {
678                 offset[n++] = NODE_DIR2_BLOCK;
679                 noffset[n] = 2;
680                 offset[n] = block;
681                 level = 1;
682                 goto got;
683         }
684         block -= direct_blks;
685         if (block < indirect_blks) {
686                 offset[n++] = NODE_IND1_BLOCK;
687                 noffset[n] = 3;
688                 offset[n++] = block / direct_blks;
689                 noffset[n] = 4 + offset[n - 1];
690                 offset[n] = block % direct_blks;
691                 level = 2;
692                 goto got;
693         }
694         block -= indirect_blks;
695         if (block < indirect_blks) {
696                 offset[n++] = NODE_IND2_BLOCK;
697                 noffset[n] = 4 + dptrs_per_blk;
698                 offset[n++] = block / direct_blks;
699                 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
700                 offset[n] = block % direct_blks;
701                 level = 2;
702                 goto got;
703         }
704         block -= indirect_blks;
705         if (block < dindirect_blks) {
706                 offset[n++] = NODE_DIND_BLOCK;
707                 noffset[n] = 5 + (dptrs_per_blk * 2);
708                 offset[n++] = block / indirect_blks;
709                 noffset[n] = 6 + (dptrs_per_blk * 2) +
710                               offset[n - 1] * (dptrs_per_blk + 1);
711                 offset[n++] = (block / direct_blks) % dptrs_per_blk;
712                 noffset[n] = 7 + (dptrs_per_blk * 2) +
713                               offset[n - 2] * (dptrs_per_blk + 1) +
714                               offset[n - 1];
715                 offset[n] = block % direct_blks;
716                 level = 3;
717                 goto got;
718         } else {
719                 return -E2BIG;
720         }
721 got:
722         return level;
723 }
724
725 /*
726  * Caller should call f2fs_put_dnode(dn).
727  * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
728  * f2fs_unlock_op() only if mode is set with ALLOC_NODE.
729  */
730 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
731 {
732         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
733         struct page *npage[4];
734         struct page *parent = NULL;
735         int offset[4];
736         unsigned int noffset[4];
737         nid_t nids[4];
738         int level, i = 0;
739         int err = 0;
740
741         level = get_node_path(dn->inode, index, offset, noffset);
742         if (level < 0)
743                 return level;
744
745         nids[0] = dn->inode->i_ino;
746         npage[0] = dn->inode_page;
747
748         if (!npage[0]) {
749                 npage[0] = f2fs_get_node_page(sbi, nids[0]);
750                 if (IS_ERR(npage[0]))
751                         return PTR_ERR(npage[0]);
752         }
753
754         /* if inline_data is set, should not report any block indices */
755         if (f2fs_has_inline_data(dn->inode) && index) {
756                 err = -ENOENT;
757                 f2fs_put_page(npage[0], 1);
758                 goto release_out;
759         }
760
761         parent = npage[0];
762         if (level != 0)
763                 nids[1] = get_nid(parent, offset[0], true);
764         dn->inode_page = npage[0];
765         dn->inode_page_locked = true;
766
767         /* get indirect or direct nodes */
768         for (i = 1; i <= level; i++) {
769                 bool done = false;
770
771                 if (!nids[i] && mode == ALLOC_NODE) {
772                         /* alloc new node */
773                         if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
774                                 err = -ENOSPC;
775                                 goto release_pages;
776                         }
777
778                         dn->nid = nids[i];
779                         npage[i] = f2fs_new_node_page(dn, noffset[i]);
780                         if (IS_ERR(npage[i])) {
781                                 f2fs_alloc_nid_failed(sbi, nids[i]);
782                                 err = PTR_ERR(npage[i]);
783                                 goto release_pages;
784                         }
785
786                         set_nid(parent, offset[i - 1], nids[i], i == 1);
787                         f2fs_alloc_nid_done(sbi, nids[i]);
788                         done = true;
789                 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
790                         npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
791                         if (IS_ERR(npage[i])) {
792                                 err = PTR_ERR(npage[i]);
793                                 goto release_pages;
794                         }
795                         done = true;
796                 }
797                 if (i == 1) {
798                         dn->inode_page_locked = false;
799                         unlock_page(parent);
800                 } else {
801                         f2fs_put_page(parent, 1);
802                 }
803
804                 if (!done) {
805                         npage[i] = f2fs_get_node_page(sbi, nids[i]);
806                         if (IS_ERR(npage[i])) {
807                                 err = PTR_ERR(npage[i]);
808                                 f2fs_put_page(npage[0], 0);
809                                 goto release_out;
810                         }
811                 }
812                 if (i < level) {
813                         parent = npage[i];
814                         nids[i + 1] = get_nid(parent, offset[i], false);
815                 }
816         }
817         dn->nid = nids[level];
818         dn->ofs_in_node = offset[level];
819         dn->node_page = npage[level];
820         dn->data_blkaddr = f2fs_data_blkaddr(dn);
821         return 0;
822
823 release_pages:
824         f2fs_put_page(parent, 1);
825         if (i > 1)
826                 f2fs_put_page(npage[0], 0);
827 release_out:
828         dn->inode_page = NULL;
829         dn->node_page = NULL;
830         if (err == -ENOENT) {
831                 dn->cur_level = i;
832                 dn->max_level = level;
833                 dn->ofs_in_node = offset[level];
834         }
835         return err;
836 }
837
838 static int truncate_node(struct dnode_of_data *dn)
839 {
840         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
841         struct node_info ni;
842         int err;
843         pgoff_t index;
844
845         err = f2fs_get_node_info(sbi, dn->nid, &ni);
846         if (err)
847                 return err;
848
849         /* Deallocate node address */
850         f2fs_invalidate_blocks(sbi, ni.blk_addr);
851         dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
852         set_node_addr(sbi, &ni, NULL_ADDR, false);
853
854         if (dn->nid == dn->inode->i_ino) {
855                 f2fs_remove_orphan_inode(sbi, dn->nid);
856                 dec_valid_inode_count(sbi);
857                 f2fs_inode_synced(dn->inode);
858         }
859
860         clear_node_page_dirty(dn->node_page);
861         set_sbi_flag(sbi, SBI_IS_DIRTY);
862
863         index = dn->node_page->index;
864         f2fs_put_page(dn->node_page, 1);
865
866         invalidate_mapping_pages(NODE_MAPPING(sbi),
867                         index, index);
868
869         dn->node_page = NULL;
870         trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
871
872         return 0;
873 }
874
875 static int truncate_dnode(struct dnode_of_data *dn)
876 {
877         struct page *page;
878         int err;
879
880         if (dn->nid == 0)
881                 return 1;
882
883         /* get direct node */
884         page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
885         if (PTR_ERR(page) == -ENOENT)
886                 return 1;
887         else if (IS_ERR(page))
888                 return PTR_ERR(page);
889
890         /* Make dnode_of_data for parameter */
891         dn->node_page = page;
892         dn->ofs_in_node = 0;
893         f2fs_truncate_data_blocks(dn);
894         err = truncate_node(dn);
895         if (err)
896                 return err;
897
898         return 1;
899 }
900
901 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
902                                                 int ofs, int depth)
903 {
904         struct dnode_of_data rdn = *dn;
905         struct page *page;
906         struct f2fs_node *rn;
907         nid_t child_nid;
908         unsigned int child_nofs;
909         int freed = 0;
910         int i, ret;
911
912         if (dn->nid == 0)
913                 return NIDS_PER_BLOCK + 1;
914
915         trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
916
917         page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
918         if (IS_ERR(page)) {
919                 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
920                 return PTR_ERR(page);
921         }
922
923         f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
924
925         rn = F2FS_NODE(page);
926         if (depth < 3) {
927                 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
928                         child_nid = le32_to_cpu(rn->in.nid[i]);
929                         if (child_nid == 0)
930                                 continue;
931                         rdn.nid = child_nid;
932                         ret = truncate_dnode(&rdn);
933                         if (ret < 0)
934                                 goto out_err;
935                         if (set_nid(page, i, 0, false))
936                                 dn->node_changed = true;
937                 }
938         } else {
939                 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
940                 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
941                         child_nid = le32_to_cpu(rn->in.nid[i]);
942                         if (child_nid == 0) {
943                                 child_nofs += NIDS_PER_BLOCK + 1;
944                                 continue;
945                         }
946                         rdn.nid = child_nid;
947                         ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
948                         if (ret == (NIDS_PER_BLOCK + 1)) {
949                                 if (set_nid(page, i, 0, false))
950                                         dn->node_changed = true;
951                                 child_nofs += ret;
952                         } else if (ret < 0 && ret != -ENOENT) {
953                                 goto out_err;
954                         }
955                 }
956                 freed = child_nofs;
957         }
958
959         if (!ofs) {
960                 /* remove current indirect node */
961                 dn->node_page = page;
962                 ret = truncate_node(dn);
963                 if (ret)
964                         goto out_err;
965                 freed++;
966         } else {
967                 f2fs_put_page(page, 1);
968         }
969         trace_f2fs_truncate_nodes_exit(dn->inode, freed);
970         return freed;
971
972 out_err:
973         f2fs_put_page(page, 1);
974         trace_f2fs_truncate_nodes_exit(dn->inode, ret);
975         return ret;
976 }
977
978 static int truncate_partial_nodes(struct dnode_of_data *dn,
979                         struct f2fs_inode *ri, int *offset, int depth)
980 {
981         struct page *pages[2];
982         nid_t nid[3];
983         nid_t child_nid;
984         int err = 0;
985         int i;
986         int idx = depth - 2;
987
988         nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
989         if (!nid[0])
990                 return 0;
991
992         /* get indirect nodes in the path */
993         for (i = 0; i < idx + 1; i++) {
994                 /* reference count'll be increased */
995                 pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
996                 if (IS_ERR(pages[i])) {
997                         err = PTR_ERR(pages[i]);
998                         idx = i - 1;
999                         goto fail;
1000                 }
1001                 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
1002         }
1003
1004         f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
1005
1006         /* free direct nodes linked to a partial indirect node */
1007         for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
1008                 child_nid = get_nid(pages[idx], i, false);
1009                 if (!child_nid)
1010                         continue;
1011                 dn->nid = child_nid;
1012                 err = truncate_dnode(dn);
1013                 if (err < 0)
1014                         goto fail;
1015                 if (set_nid(pages[idx], i, 0, false))
1016                         dn->node_changed = true;
1017         }
1018
1019         if (offset[idx + 1] == 0) {
1020                 dn->node_page = pages[idx];
1021                 dn->nid = nid[idx];
1022                 err = truncate_node(dn);
1023                 if (err)
1024                         goto fail;
1025         } else {
1026                 f2fs_put_page(pages[idx], 1);
1027         }
1028         offset[idx]++;
1029         offset[idx + 1] = 0;
1030         idx--;
1031 fail:
1032         for (i = idx; i >= 0; i--)
1033                 f2fs_put_page(pages[i], 1);
1034
1035         trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1036
1037         return err;
1038 }
1039
1040 /*
1041  * All the block addresses of data and nodes should be nullified.
1042  */
1043 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1044 {
1045         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1046         int err = 0, cont = 1;
1047         int level, offset[4], noffset[4];
1048         unsigned int nofs = 0;
1049         struct f2fs_inode *ri;
1050         struct dnode_of_data dn;
1051         struct page *page;
1052
1053         trace_f2fs_truncate_inode_blocks_enter(inode, from);
1054
1055         level = get_node_path(inode, from, offset, noffset);
1056         if (level < 0) {
1057                 trace_f2fs_truncate_inode_blocks_exit(inode, level);
1058                 return level;
1059         }
1060
1061         page = f2fs_get_node_page(sbi, inode->i_ino);
1062         if (IS_ERR(page)) {
1063                 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1064                 return PTR_ERR(page);
1065         }
1066
1067         set_new_dnode(&dn, inode, page, NULL, 0);
1068         unlock_page(page);
1069
1070         ri = F2FS_INODE(page);
1071         switch (level) {
1072         case 0:
1073         case 1:
1074                 nofs = noffset[1];
1075                 break;
1076         case 2:
1077                 nofs = noffset[1];
1078                 if (!offset[level - 1])
1079                         goto skip_partial;
1080                 err = truncate_partial_nodes(&dn, ri, offset, level);
1081                 if (err < 0 && err != -ENOENT)
1082                         goto fail;
1083                 nofs += 1 + NIDS_PER_BLOCK;
1084                 break;
1085         case 3:
1086                 nofs = 5 + 2 * NIDS_PER_BLOCK;
1087                 if (!offset[level - 1])
1088                         goto skip_partial;
1089                 err = truncate_partial_nodes(&dn, ri, offset, level);
1090                 if (err < 0 && err != -ENOENT)
1091                         goto fail;
1092                 break;
1093         default:
1094                 BUG();
1095         }
1096
1097 skip_partial:
1098         while (cont) {
1099                 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1100                 switch (offset[0]) {
1101                 case NODE_DIR1_BLOCK:
1102                 case NODE_DIR2_BLOCK:
1103                         err = truncate_dnode(&dn);
1104                         break;
1105
1106                 case NODE_IND1_BLOCK:
1107                 case NODE_IND2_BLOCK:
1108                         err = truncate_nodes(&dn, nofs, offset[1], 2);
1109                         break;
1110
1111                 case NODE_DIND_BLOCK:
1112                         err = truncate_nodes(&dn, nofs, offset[1], 3);
1113                         cont = 0;
1114                         break;
1115
1116                 default:
1117                         BUG();
1118                 }
1119                 if (err < 0 && err != -ENOENT)
1120                         goto fail;
1121                 if (offset[1] == 0 &&
1122                                 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
1123                         lock_page(page);
1124                         BUG_ON(page->mapping != NODE_MAPPING(sbi));
1125                         f2fs_wait_on_page_writeback(page, NODE, true, true);
1126                         ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
1127                         set_page_dirty(page);
1128                         unlock_page(page);
1129                 }
1130                 offset[1] = 0;
1131                 offset[0]++;
1132                 nofs += err;
1133         }
1134 fail:
1135         f2fs_put_page(page, 0);
1136         trace_f2fs_truncate_inode_blocks_exit(inode, err);
1137         return err > 0 ? 0 : err;
1138 }
1139
1140 /* caller must lock inode page */
1141 int f2fs_truncate_xattr_node(struct inode *inode)
1142 {
1143         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1144         nid_t nid = F2FS_I(inode)->i_xattr_nid;
1145         struct dnode_of_data dn;
1146         struct page *npage;
1147         int err;
1148
1149         if (!nid)
1150                 return 0;
1151
1152         npage = f2fs_get_node_page(sbi, nid);
1153         if (IS_ERR(npage))
1154                 return PTR_ERR(npage);
1155
1156         set_new_dnode(&dn, inode, NULL, npage, nid);
1157         err = truncate_node(&dn);
1158         if (err) {
1159                 f2fs_put_page(npage, 1);
1160                 return err;
1161         }
1162
1163         f2fs_i_xnid_write(inode, 0);
1164
1165         return 0;
1166 }
1167
1168 /*
1169  * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1170  * f2fs_unlock_op().
1171  */
1172 int f2fs_remove_inode_page(struct inode *inode)
1173 {
1174         struct dnode_of_data dn;
1175         int err;
1176
1177         set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1178         err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1179         if (err)
1180                 return err;
1181
1182         err = f2fs_truncate_xattr_node(inode);
1183         if (err) {
1184                 f2fs_put_dnode(&dn);
1185                 return err;
1186         }
1187
1188         /* remove potential inline_data blocks */
1189         if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1190                                 S_ISLNK(inode->i_mode))
1191                 f2fs_truncate_data_blocks_range(&dn, 1);
1192
1193         /* 0 is possible, after f2fs_new_inode() has failed */
1194         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1195                 f2fs_put_dnode(&dn);
1196                 return -EIO;
1197         }
1198
1199         if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1200                 f2fs_warn(F2FS_I_SB(inode),
1201                         "f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu",
1202                         inode->i_ino, (unsigned long long)inode->i_blocks);
1203                 set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1204         }
1205
1206         /* will put inode & node pages */
1207         err = truncate_node(&dn);
1208         if (err) {
1209                 f2fs_put_dnode(&dn);
1210                 return err;
1211         }
1212         return 0;
1213 }
1214
1215 struct page *f2fs_new_inode_page(struct inode *inode)
1216 {
1217         struct dnode_of_data dn;
1218
1219         /* allocate inode page for new inode */
1220         set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1221
1222         /* caller should f2fs_put_page(page, 1); */
1223         return f2fs_new_node_page(&dn, 0);
1224 }
1225
1226 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1227 {
1228         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1229         struct node_info new_ni;
1230         struct page *page;
1231         int err;
1232
1233         if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1234                 return ERR_PTR(-EPERM);
1235
1236         page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1237         if (!page)
1238                 return ERR_PTR(-ENOMEM);
1239
1240         if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1241                 goto fail;
1242
1243 #ifdef CONFIG_F2FS_CHECK_FS
1244         err = f2fs_get_node_info(sbi, dn->nid, &new_ni);
1245         if (err) {
1246                 dec_valid_node_count(sbi, dn->inode, !ofs);
1247                 goto fail;
1248         }
1249         f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR);
1250 #endif
1251         new_ni.nid = dn->nid;
1252         new_ni.ino = dn->inode->i_ino;
1253         new_ni.blk_addr = NULL_ADDR;
1254         new_ni.flag = 0;
1255         new_ni.version = 0;
1256         set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1257
1258         f2fs_wait_on_page_writeback(page, NODE, true, true);
1259         fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1260         set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1261         if (!PageUptodate(page))
1262                 SetPageUptodate(page);
1263         if (set_page_dirty(page))
1264                 dn->node_changed = true;
1265
1266         if (f2fs_has_xattr_block(ofs))
1267                 f2fs_i_xnid_write(dn->inode, dn->nid);
1268
1269         if (ofs == 0)
1270                 inc_valid_inode_count(sbi);
1271         return page;
1272
1273 fail:
1274         clear_node_page_dirty(page);
1275         f2fs_put_page(page, 1);
1276         return ERR_PTR(err);
1277 }
1278
1279 /*
1280  * Caller should do after getting the following values.
1281  * 0: f2fs_put_page(page, 0)
1282  * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1283  */
1284 static int read_node_page(struct page *page, int op_flags)
1285 {
1286         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1287         struct node_info ni;
1288         struct f2fs_io_info fio = {
1289                 .sbi = sbi,
1290                 .type = NODE,
1291                 .op = REQ_OP_READ,
1292                 .op_flags = op_flags,
1293                 .page = page,
1294                 .encrypted_page = NULL,
1295         };
1296         int err;
1297
1298         if (PageUptodate(page)) {
1299                 if (!f2fs_inode_chksum_verify(sbi, page)) {
1300                         ClearPageUptodate(page);
1301                         return -EFSBADCRC;
1302                 }
1303                 return LOCKED_PAGE;
1304         }
1305
1306         err = f2fs_get_node_info(sbi, page->index, &ni);
1307         if (err)
1308                 return err;
1309
1310         if (unlikely(ni.blk_addr == NULL_ADDR) ||
1311                         is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)) {
1312                 ClearPageUptodate(page);
1313                 return -ENOENT;
1314         }
1315
1316         fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1317
1318         err = f2fs_submit_page_bio(&fio);
1319
1320         if (!err)
1321                 f2fs_update_iostat(sbi, FS_NODE_READ_IO, F2FS_BLKSIZE);
1322
1323         return err;
1324 }
1325
1326 /*
1327  * Readahead a node page
1328  */
1329 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1330 {
1331         struct page *apage;
1332         int err;
1333
1334         if (!nid)
1335                 return;
1336         if (f2fs_check_nid_range(sbi, nid))
1337                 return;
1338
1339         apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
1340         if (apage)
1341                 return;
1342
1343         apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1344         if (!apage)
1345                 return;
1346
1347         err = read_node_page(apage, REQ_RAHEAD);
1348         f2fs_put_page(apage, err ? 1 : 0);
1349 }
1350
1351 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1352                                         struct page *parent, int start)
1353 {
1354         struct page *page;
1355         int err;
1356
1357         if (!nid)
1358                 return ERR_PTR(-ENOENT);
1359         if (f2fs_check_nid_range(sbi, nid))
1360                 return ERR_PTR(-EINVAL);
1361 repeat:
1362         page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1363         if (!page)
1364                 return ERR_PTR(-ENOMEM);
1365
1366         err = read_node_page(page, 0);
1367         if (err < 0) {
1368                 f2fs_put_page(page, 1);
1369                 return ERR_PTR(err);
1370         } else if (err == LOCKED_PAGE) {
1371                 err = 0;
1372                 goto page_hit;
1373         }
1374
1375         if (parent)
1376                 f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1377
1378         lock_page(page);
1379
1380         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1381                 f2fs_put_page(page, 1);
1382                 goto repeat;
1383         }
1384
1385         if (unlikely(!PageUptodate(page))) {
1386                 err = -EIO;
1387                 goto out_err;
1388         }
1389
1390         if (!f2fs_inode_chksum_verify(sbi, page)) {
1391                 err = -EFSBADCRC;
1392                 goto out_err;
1393         }
1394 page_hit:
1395         if (unlikely(nid != nid_of_node(page))) {
1396                 f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1397                           nid, nid_of_node(page), ino_of_node(page),
1398                           ofs_of_node(page), cpver_of_node(page),
1399                           next_blkaddr_of_node(page));
1400                 err = -EINVAL;
1401 out_err:
1402                 ClearPageUptodate(page);
1403                 f2fs_put_page(page, 1);
1404                 return ERR_PTR(err);
1405         }
1406         return page;
1407 }
1408
1409 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1410 {
1411         return __get_node_page(sbi, nid, NULL, 0);
1412 }
1413
1414 struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1415 {
1416         struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1417         nid_t nid = get_nid(parent, start, false);
1418
1419         return __get_node_page(sbi, nid, parent, start);
1420 }
1421
1422 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1423 {
1424         struct inode *inode;
1425         struct page *page;
1426         int ret;
1427
1428         /* should flush inline_data before evict_inode */
1429         inode = ilookup(sbi->sb, ino);
1430         if (!inode)
1431                 return;
1432
1433         page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1434                                         FGP_LOCK|FGP_NOWAIT, 0);
1435         if (!page)
1436                 goto iput_out;
1437
1438         if (!PageUptodate(page))
1439                 goto page_out;
1440
1441         if (!PageDirty(page))
1442                 goto page_out;
1443
1444         if (!clear_page_dirty_for_io(page))
1445                 goto page_out;
1446
1447         ret = f2fs_write_inline_data(inode, page);
1448         inode_dec_dirty_pages(inode);
1449         f2fs_remove_dirty_inode(inode);
1450         if (ret)
1451                 set_page_dirty(page);
1452 page_out:
1453         f2fs_put_page(page, 1);
1454 iput_out:
1455         iput(inode);
1456 }
1457
1458 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1459 {
1460         pgoff_t index;
1461         struct pagevec pvec;
1462         struct page *last_page = NULL;
1463         int nr_pages;
1464
1465         pagevec_init(&pvec);
1466         index = 0;
1467
1468         while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1469                                 PAGECACHE_TAG_DIRTY))) {
1470                 int i;
1471
1472                 for (i = 0; i < nr_pages; i++) {
1473                         struct page *page = pvec.pages[i];
1474
1475                         if (unlikely(f2fs_cp_error(sbi))) {
1476                                 f2fs_put_page(last_page, 0);
1477                                 pagevec_release(&pvec);
1478                                 return ERR_PTR(-EIO);
1479                         }
1480
1481                         if (!IS_DNODE(page) || !is_cold_node(page))
1482                                 continue;
1483                         if (ino_of_node(page) != ino)
1484                                 continue;
1485
1486                         lock_page(page);
1487
1488                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1489 continue_unlock:
1490                                 unlock_page(page);
1491                                 continue;
1492                         }
1493                         if (ino_of_node(page) != ino)
1494                                 goto continue_unlock;
1495
1496                         if (!PageDirty(page)) {
1497                                 /* someone wrote it for us */
1498                                 goto continue_unlock;
1499                         }
1500
1501                         if (last_page)
1502                                 f2fs_put_page(last_page, 0);
1503
1504                         get_page(page);
1505                         last_page = page;
1506                         unlock_page(page);
1507                 }
1508                 pagevec_release(&pvec);
1509                 cond_resched();
1510         }
1511         return last_page;
1512 }
1513
1514 static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1515                                 struct writeback_control *wbc, bool do_balance,
1516                                 enum iostat_type io_type, unsigned int *seq_id)
1517 {
1518         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1519         nid_t nid;
1520         struct node_info ni;
1521         struct f2fs_io_info fio = {
1522                 .sbi = sbi,
1523                 .ino = ino_of_node(page),
1524                 .type = NODE,
1525                 .op = REQ_OP_WRITE,
1526                 .op_flags = wbc_to_write_flags(wbc),
1527                 .page = page,
1528                 .encrypted_page = NULL,
1529                 .submitted = false,
1530                 .io_type = io_type,
1531                 .io_wbc = wbc,
1532         };
1533         unsigned int seq;
1534
1535         trace_f2fs_writepage(page, NODE);
1536
1537         if (unlikely(f2fs_cp_error(sbi))) {
1538                 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) {
1539                         ClearPageUptodate(page);
1540                         dec_page_count(sbi, F2FS_DIRTY_NODES);
1541                         unlock_page(page);
1542                         return 0;
1543                 }
1544                 goto redirty_out;
1545         }
1546
1547         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1548                 goto redirty_out;
1549
1550         if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1551                         wbc->sync_mode == WB_SYNC_NONE &&
1552                         IS_DNODE(page) && is_cold_node(page))
1553                 goto redirty_out;
1554
1555         /* get old block addr of this node page */
1556         nid = nid_of_node(page);
1557         f2fs_bug_on(sbi, page->index != nid);
1558
1559         if (f2fs_get_node_info(sbi, nid, &ni))
1560                 goto redirty_out;
1561
1562         if (wbc->for_reclaim) {
1563                 if (!down_read_trylock(&sbi->node_write))
1564                         goto redirty_out;
1565         } else {
1566                 down_read(&sbi->node_write);
1567         }
1568
1569         /* This page is already truncated */
1570         if (unlikely(ni.blk_addr == NULL_ADDR)) {
1571                 ClearPageUptodate(page);
1572                 dec_page_count(sbi, F2FS_DIRTY_NODES);
1573                 up_read(&sbi->node_write);
1574                 unlock_page(page);
1575                 return 0;
1576         }
1577
1578         if (__is_valid_data_blkaddr(ni.blk_addr) &&
1579                 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1580                                         DATA_GENERIC_ENHANCE)) {
1581                 up_read(&sbi->node_write);
1582                 goto redirty_out;
1583         }
1584
1585         if (atomic && !test_opt(sbi, NOBARRIER))
1586                 fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1587
1588         /* should add to global list before clearing PAGECACHE status */
1589         if (f2fs_in_warm_node_list(sbi, page)) {
1590                 seq = f2fs_add_fsync_node_entry(sbi, page);
1591                 if (seq_id)
1592                         *seq_id = seq;
1593         }
1594
1595         set_page_writeback(page);
1596         ClearPageError(page);
1597
1598         fio.old_blkaddr = ni.blk_addr;
1599         f2fs_do_write_node_page(nid, &fio);
1600         set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1601         dec_page_count(sbi, F2FS_DIRTY_NODES);
1602         up_read(&sbi->node_write);
1603
1604         if (wbc->for_reclaim) {
1605                 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1606                 submitted = NULL;
1607         }
1608
1609         unlock_page(page);
1610
1611         if (unlikely(f2fs_cp_error(sbi))) {
1612                 f2fs_submit_merged_write(sbi, NODE);
1613                 submitted = NULL;
1614         }
1615         if (submitted)
1616                 *submitted = fio.submitted;
1617
1618         if (do_balance)
1619                 f2fs_balance_fs(sbi, false);
1620         return 0;
1621
1622 redirty_out:
1623         redirty_page_for_writepage(wbc, page);
1624         return AOP_WRITEPAGE_ACTIVATE;
1625 }
1626
1627 int f2fs_move_node_page(struct page *node_page, int gc_type)
1628 {
1629         int err = 0;
1630
1631         if (gc_type == FG_GC) {
1632                 struct writeback_control wbc = {
1633                         .sync_mode = WB_SYNC_ALL,
1634                         .nr_to_write = 1,
1635                         .for_reclaim = 0,
1636                 };
1637
1638                 f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1639
1640                 set_page_dirty(node_page);
1641
1642                 if (!clear_page_dirty_for_io(node_page)) {
1643                         err = -EAGAIN;
1644                         goto out_page;
1645                 }
1646
1647                 if (__write_node_page(node_page, false, NULL,
1648                                         &wbc, false, FS_GC_NODE_IO, NULL)) {
1649                         err = -EAGAIN;
1650                         unlock_page(node_page);
1651                 }
1652                 goto release_page;
1653         } else {
1654                 /* set page dirty and write it */
1655                 if (!PageWriteback(node_page))
1656                         set_page_dirty(node_page);
1657         }
1658 out_page:
1659         unlock_page(node_page);
1660 release_page:
1661         f2fs_put_page(node_page, 0);
1662         return err;
1663 }
1664
1665 static int f2fs_write_node_page(struct page *page,
1666                                 struct writeback_control *wbc)
1667 {
1668         return __write_node_page(page, false, NULL, wbc, false,
1669                                                 FS_NODE_IO, NULL);
1670 }
1671
1672 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1673                         struct writeback_control *wbc, bool atomic,
1674                         unsigned int *seq_id)
1675 {
1676         pgoff_t index;
1677         struct pagevec pvec;
1678         int ret = 0;
1679         struct page *last_page = NULL;
1680         bool marked = false;
1681         nid_t ino = inode->i_ino;
1682         int nr_pages;
1683         int nwritten = 0;
1684
1685         if (atomic) {
1686                 last_page = last_fsync_dnode(sbi, ino);
1687                 if (IS_ERR_OR_NULL(last_page))
1688                         return PTR_ERR_OR_ZERO(last_page);
1689         }
1690 retry:
1691         pagevec_init(&pvec);
1692         index = 0;
1693
1694         while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1695                                 PAGECACHE_TAG_DIRTY))) {
1696                 int i;
1697
1698                 for (i = 0; i < nr_pages; i++) {
1699                         struct page *page = pvec.pages[i];
1700                         bool submitted = false;
1701
1702                         if (unlikely(f2fs_cp_error(sbi))) {
1703                                 f2fs_put_page(last_page, 0);
1704                                 pagevec_release(&pvec);
1705                                 ret = -EIO;
1706                                 goto out;
1707                         }
1708
1709                         if (!IS_DNODE(page) || !is_cold_node(page))
1710                                 continue;
1711                         if (ino_of_node(page) != ino)
1712                                 continue;
1713
1714                         lock_page(page);
1715
1716                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1717 continue_unlock:
1718                                 unlock_page(page);
1719                                 continue;
1720                         }
1721                         if (ino_of_node(page) != ino)
1722                                 goto continue_unlock;
1723
1724                         if (!PageDirty(page) && page != last_page) {
1725                                 /* someone wrote it for us */
1726                                 goto continue_unlock;
1727                         }
1728
1729                         f2fs_wait_on_page_writeback(page, NODE, true, true);
1730
1731                         set_fsync_mark(page, 0);
1732                         set_dentry_mark(page, 0);
1733
1734                         if (!atomic || page == last_page) {
1735                                 set_fsync_mark(page, 1);
1736                                 if (IS_INODE(page)) {
1737                                         if (is_inode_flag_set(inode,
1738                                                                 FI_DIRTY_INODE))
1739                                                 f2fs_update_inode(inode, page);
1740                                         set_dentry_mark(page,
1741                                                 f2fs_need_dentry_mark(sbi, ino));
1742                                 }
1743                                 /* may be written by other thread */
1744                                 if (!PageDirty(page))
1745                                         set_page_dirty(page);
1746                         }
1747
1748                         if (!clear_page_dirty_for_io(page))
1749                                 goto continue_unlock;
1750
1751                         ret = __write_node_page(page, atomic &&
1752                                                 page == last_page,
1753                                                 &submitted, wbc, true,
1754                                                 FS_NODE_IO, seq_id);
1755                         if (ret) {
1756                                 unlock_page(page);
1757                                 f2fs_put_page(last_page, 0);
1758                                 break;
1759                         } else if (submitted) {
1760                                 nwritten++;
1761                         }
1762
1763                         if (page == last_page) {
1764                                 f2fs_put_page(page, 0);
1765                                 marked = true;
1766                                 break;
1767                         }
1768                 }
1769                 pagevec_release(&pvec);
1770                 cond_resched();
1771
1772                 if (ret || marked)
1773                         break;
1774         }
1775         if (!ret && atomic && !marked) {
1776                 f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1777                            ino, last_page->index);
1778                 lock_page(last_page);
1779                 f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1780                 set_page_dirty(last_page);
1781                 unlock_page(last_page);
1782                 goto retry;
1783         }
1784 out:
1785         if (nwritten)
1786                 f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1787         return ret ? -EIO : 0;
1788 }
1789
1790 static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
1791 {
1792         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1793         bool clean;
1794
1795         if (inode->i_ino != ino)
1796                 return 0;
1797
1798         if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
1799                 return 0;
1800
1801         spin_lock(&sbi->inode_lock[DIRTY_META]);
1802         clean = list_empty(&F2FS_I(inode)->gdirty_list);
1803         spin_unlock(&sbi->inode_lock[DIRTY_META]);
1804
1805         if (clean)
1806                 return 0;
1807
1808         inode = igrab(inode);
1809         if (!inode)
1810                 return 0;
1811         return 1;
1812 }
1813
1814 static bool flush_dirty_inode(struct page *page)
1815 {
1816         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1817         struct inode *inode;
1818         nid_t ino = ino_of_node(page);
1819
1820         inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
1821         if (!inode)
1822                 return false;
1823
1824         f2fs_update_inode(inode, page);
1825         unlock_page(page);
1826
1827         iput(inode);
1828         return true;
1829 }
1830
1831 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi)
1832 {
1833         pgoff_t index = 0;
1834         struct pagevec pvec;
1835         int nr_pages;
1836
1837         pagevec_init(&pvec);
1838
1839         while ((nr_pages = pagevec_lookup_tag(&pvec,
1840                         NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1841                 int i;
1842
1843                 for (i = 0; i < nr_pages; i++) {
1844                         struct page *page = pvec.pages[i];
1845
1846                         if (!IS_DNODE(page))
1847                                 continue;
1848
1849                         lock_page(page);
1850
1851                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1852 continue_unlock:
1853                                 unlock_page(page);
1854                                 continue;
1855                         }
1856
1857                         if (!PageDirty(page)) {
1858                                 /* someone wrote it for us */
1859                                 goto continue_unlock;
1860                         }
1861
1862                         /* flush inline_data, if it's async context. */
1863                         if (is_inline_node(page)) {
1864                                 clear_inline_node(page);
1865                                 unlock_page(page);
1866                                 flush_inline_data(sbi, ino_of_node(page));
1867                                 continue;
1868                         }
1869                         unlock_page(page);
1870                 }
1871                 pagevec_release(&pvec);
1872                 cond_resched();
1873         }
1874 }
1875
1876 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1877                                 struct writeback_control *wbc,
1878                                 bool do_balance, enum iostat_type io_type)
1879 {
1880         pgoff_t index;
1881         struct pagevec pvec;
1882         int step = 0;
1883         int nwritten = 0;
1884         int ret = 0;
1885         int nr_pages, done = 0;
1886
1887         pagevec_init(&pvec);
1888
1889 next_step:
1890         index = 0;
1891
1892         while (!done && (nr_pages = pagevec_lookup_tag(&pvec,
1893                         NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1894                 int i;
1895
1896                 for (i = 0; i < nr_pages; i++) {
1897                         struct page *page = pvec.pages[i];
1898                         bool submitted = false;
1899                         bool may_dirty = true;
1900
1901                         /* give a priority to WB_SYNC threads */
1902                         if (atomic_read(&sbi->wb_sync_req[NODE]) &&
1903                                         wbc->sync_mode == WB_SYNC_NONE) {
1904                                 done = 1;
1905                                 break;
1906                         }
1907
1908                         /*
1909                          * flushing sequence with step:
1910                          * 0. indirect nodes
1911                          * 1. dentry dnodes
1912                          * 2. file dnodes
1913                          */
1914                         if (step == 0 && IS_DNODE(page))
1915                                 continue;
1916                         if (step == 1 && (!IS_DNODE(page) ||
1917                                                 is_cold_node(page)))
1918                                 continue;
1919                         if (step == 2 && (!IS_DNODE(page) ||
1920                                                 !is_cold_node(page)))
1921                                 continue;
1922 lock_node:
1923                         if (wbc->sync_mode == WB_SYNC_ALL)
1924                                 lock_page(page);
1925                         else if (!trylock_page(page))
1926                                 continue;
1927
1928                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1929 continue_unlock:
1930                                 unlock_page(page);
1931                                 continue;
1932                         }
1933
1934                         if (!PageDirty(page)) {
1935                                 /* someone wrote it for us */
1936                                 goto continue_unlock;
1937                         }
1938
1939                         /* flush inline_data/inode, if it's async context. */
1940                         if (!do_balance)
1941                                 goto write_node;
1942
1943                         /* flush inline_data */
1944                         if (is_inline_node(page)) {
1945                                 clear_inline_node(page);
1946                                 unlock_page(page);
1947                                 flush_inline_data(sbi, ino_of_node(page));
1948                                 goto lock_node;
1949                         }
1950
1951                         /* flush dirty inode */
1952                         if (IS_INODE(page) && may_dirty) {
1953                                 may_dirty = false;
1954                                 if (flush_dirty_inode(page))
1955                                         goto lock_node;
1956                         }
1957 write_node:
1958                         f2fs_wait_on_page_writeback(page, NODE, true, true);
1959
1960                         if (!clear_page_dirty_for_io(page))
1961                                 goto continue_unlock;
1962
1963                         set_fsync_mark(page, 0);
1964                         set_dentry_mark(page, 0);
1965
1966                         ret = __write_node_page(page, false, &submitted,
1967                                                 wbc, do_balance, io_type, NULL);
1968                         if (ret)
1969                                 unlock_page(page);
1970                         else if (submitted)
1971                                 nwritten++;
1972
1973                         if (--wbc->nr_to_write == 0)
1974                                 break;
1975                 }
1976                 pagevec_release(&pvec);
1977                 cond_resched();
1978
1979                 if (wbc->nr_to_write == 0) {
1980                         step = 2;
1981                         break;
1982                 }
1983         }
1984
1985         if (step < 2) {
1986                 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1987                                 wbc->sync_mode == WB_SYNC_NONE && step == 1)
1988                         goto out;
1989                 step++;
1990                 goto next_step;
1991         }
1992 out:
1993         if (nwritten)
1994                 f2fs_submit_merged_write(sbi, NODE);
1995
1996         if (unlikely(f2fs_cp_error(sbi)))
1997                 return -EIO;
1998         return ret;
1999 }
2000
2001 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
2002                                                 unsigned int seq_id)
2003 {
2004         struct fsync_node_entry *fn;
2005         struct page *page;
2006         struct list_head *head = &sbi->fsync_node_list;
2007         unsigned long flags;
2008         unsigned int cur_seq_id = 0;
2009         int ret2, ret = 0;
2010
2011         while (seq_id && cur_seq_id < seq_id) {
2012                 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
2013                 if (list_empty(head)) {
2014                         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2015                         break;
2016                 }
2017                 fn = list_first_entry(head, struct fsync_node_entry, list);
2018                 if (fn->seq_id > seq_id) {
2019                         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2020                         break;
2021                 }
2022                 cur_seq_id = fn->seq_id;
2023                 page = fn->page;
2024                 get_page(page);
2025                 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2026
2027                 f2fs_wait_on_page_writeback(page, NODE, true, false);
2028                 if (TestClearPageError(page))
2029                         ret = -EIO;
2030
2031                 put_page(page);
2032
2033                 if (ret)
2034                         break;
2035         }
2036
2037         ret2 = filemap_check_errors(NODE_MAPPING(sbi));
2038         if (!ret)
2039                 ret = ret2;
2040
2041         return ret;
2042 }
2043
2044 static int f2fs_write_node_pages(struct address_space *mapping,
2045                             struct writeback_control *wbc)
2046 {
2047         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2048         struct blk_plug plug;
2049         long diff;
2050
2051         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2052                 goto skip_write;
2053
2054         /* balancing f2fs's metadata in background */
2055         f2fs_balance_fs_bg(sbi, true);
2056
2057         /* collect a number of dirty node pages and write together */
2058         if (wbc->sync_mode != WB_SYNC_ALL &&
2059                         get_pages(sbi, F2FS_DIRTY_NODES) <
2060                                         nr_pages_to_skip(sbi, NODE))
2061                 goto skip_write;
2062
2063         if (wbc->sync_mode == WB_SYNC_ALL)
2064                 atomic_inc(&sbi->wb_sync_req[NODE]);
2065         else if (atomic_read(&sbi->wb_sync_req[NODE]))
2066                 goto skip_write;
2067
2068         trace_f2fs_writepages(mapping->host, wbc, NODE);
2069
2070         diff = nr_pages_to_write(sbi, NODE, wbc);
2071         blk_start_plug(&plug);
2072         f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
2073         blk_finish_plug(&plug);
2074         wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
2075
2076         if (wbc->sync_mode == WB_SYNC_ALL)
2077                 atomic_dec(&sbi->wb_sync_req[NODE]);
2078         return 0;
2079
2080 skip_write:
2081         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
2082         trace_f2fs_writepages(mapping->host, wbc, NODE);
2083         return 0;
2084 }
2085
2086 static int f2fs_set_node_page_dirty(struct page *page)
2087 {
2088         trace_f2fs_set_page_dirty(page, NODE);
2089
2090         if (!PageUptodate(page))
2091                 SetPageUptodate(page);
2092 #ifdef CONFIG_F2FS_CHECK_FS
2093         if (IS_INODE(page))
2094                 f2fs_inode_chksum_set(F2FS_P_SB(page), page);
2095 #endif
2096         if (!PageDirty(page)) {
2097                 __set_page_dirty_nobuffers(page);
2098                 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
2099                 f2fs_set_page_private(page, 0);
2100                 return 1;
2101         }
2102         return 0;
2103 }
2104
2105 /*
2106  * Structure of the f2fs node operations
2107  */
2108 const struct address_space_operations f2fs_node_aops = {
2109         .writepage      = f2fs_write_node_page,
2110         .writepages     = f2fs_write_node_pages,
2111         .set_page_dirty = f2fs_set_node_page_dirty,
2112         .invalidatepage = f2fs_invalidate_page,
2113         .releasepage    = f2fs_release_page,
2114 #ifdef CONFIG_MIGRATION
2115         .migratepage    = f2fs_migrate_page,
2116 #endif
2117 };
2118
2119 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2120                                                 nid_t n)
2121 {
2122         return radix_tree_lookup(&nm_i->free_nid_root, n);
2123 }
2124
2125 static int __insert_free_nid(struct f2fs_sb_info *sbi,
2126                                 struct free_nid *i)
2127 {
2128         struct f2fs_nm_info *nm_i = NM_I(sbi);
2129         int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2130
2131         if (err)
2132                 return err;
2133
2134         nm_i->nid_cnt[FREE_NID]++;
2135         list_add_tail(&i->list, &nm_i->free_nid_list);
2136         return 0;
2137 }
2138
2139 static void __remove_free_nid(struct f2fs_sb_info *sbi,
2140                         struct free_nid *i, enum nid_state state)
2141 {
2142         struct f2fs_nm_info *nm_i = NM_I(sbi);
2143
2144         f2fs_bug_on(sbi, state != i->state);
2145         nm_i->nid_cnt[state]--;
2146         if (state == FREE_NID)
2147                 list_del(&i->list);
2148         radix_tree_delete(&nm_i->free_nid_root, i->nid);
2149 }
2150
2151 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2152                         enum nid_state org_state, enum nid_state dst_state)
2153 {
2154         struct f2fs_nm_info *nm_i = NM_I(sbi);
2155
2156         f2fs_bug_on(sbi, org_state != i->state);
2157         i->state = dst_state;
2158         nm_i->nid_cnt[org_state]--;
2159         nm_i->nid_cnt[dst_state]++;
2160
2161         switch (dst_state) {
2162         case PREALLOC_NID:
2163                 list_del(&i->list);
2164                 break;
2165         case FREE_NID:
2166                 list_add_tail(&i->list, &nm_i->free_nid_list);
2167                 break;
2168         default:
2169                 BUG_ON(1);
2170         }
2171 }
2172
2173 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2174                                                         bool set, bool build)
2175 {
2176         struct f2fs_nm_info *nm_i = NM_I(sbi);
2177         unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2178         unsigned int nid_ofs = nid - START_NID(nid);
2179
2180         if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2181                 return;
2182
2183         if (set) {
2184                 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2185                         return;
2186                 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2187                 nm_i->free_nid_count[nat_ofs]++;
2188         } else {
2189                 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2190                         return;
2191                 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2192                 if (!build)
2193                         nm_i->free_nid_count[nat_ofs]--;
2194         }
2195 }
2196
2197 /* return if the nid is recognized as free */
2198 static bool add_free_nid(struct f2fs_sb_info *sbi,
2199                                 nid_t nid, bool build, bool update)
2200 {
2201         struct f2fs_nm_info *nm_i = NM_I(sbi);
2202         struct free_nid *i, *e;
2203         struct nat_entry *ne;
2204         int err = -EINVAL;
2205         bool ret = false;
2206
2207         /* 0 nid should not be used */
2208         if (unlikely(nid == 0))
2209                 return false;
2210
2211         if (unlikely(f2fs_check_nid_range(sbi, nid)))
2212                 return false;
2213
2214         i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
2215         i->nid = nid;
2216         i->state = FREE_NID;
2217
2218         radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2219
2220         spin_lock(&nm_i->nid_list_lock);
2221
2222         if (build) {
2223                 /*
2224                  *   Thread A             Thread B
2225                  *  - f2fs_create
2226                  *   - f2fs_new_inode
2227                  *    - f2fs_alloc_nid
2228                  *     - __insert_nid_to_list(PREALLOC_NID)
2229                  *                     - f2fs_balance_fs_bg
2230                  *                      - f2fs_build_free_nids
2231                  *                       - __f2fs_build_free_nids
2232                  *                        - scan_nat_page
2233                  *                         - add_free_nid
2234                  *                          - __lookup_nat_cache
2235                  *  - f2fs_add_link
2236                  *   - f2fs_init_inode_metadata
2237                  *    - f2fs_new_inode_page
2238                  *     - f2fs_new_node_page
2239                  *      - set_node_addr
2240                  *  - f2fs_alloc_nid_done
2241                  *   - __remove_nid_from_list(PREALLOC_NID)
2242                  *                         - __insert_nid_to_list(FREE_NID)
2243                  */
2244                 ne = __lookup_nat_cache(nm_i, nid);
2245                 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2246                                 nat_get_blkaddr(ne) != NULL_ADDR))
2247                         goto err_out;
2248
2249                 e = __lookup_free_nid_list(nm_i, nid);
2250                 if (e) {
2251                         if (e->state == FREE_NID)
2252                                 ret = true;
2253                         goto err_out;
2254                 }
2255         }
2256         ret = true;
2257         err = __insert_free_nid(sbi, i);
2258 err_out:
2259         if (update) {
2260                 update_free_nid_bitmap(sbi, nid, ret, build);
2261                 if (!build)
2262                         nm_i->available_nids++;
2263         }
2264         spin_unlock(&nm_i->nid_list_lock);
2265         radix_tree_preload_end();
2266
2267         if (err)
2268                 kmem_cache_free(free_nid_slab, i);
2269         return ret;
2270 }
2271
2272 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2273 {
2274         struct f2fs_nm_info *nm_i = NM_I(sbi);
2275         struct free_nid *i;
2276         bool need_free = false;
2277
2278         spin_lock(&nm_i->nid_list_lock);
2279         i = __lookup_free_nid_list(nm_i, nid);
2280         if (i && i->state == FREE_NID) {
2281                 __remove_free_nid(sbi, i, FREE_NID);
2282                 need_free = true;
2283         }
2284         spin_unlock(&nm_i->nid_list_lock);
2285
2286         if (need_free)
2287                 kmem_cache_free(free_nid_slab, i);
2288 }
2289
2290 static int scan_nat_page(struct f2fs_sb_info *sbi,
2291                         struct page *nat_page, nid_t start_nid)
2292 {
2293         struct f2fs_nm_info *nm_i = NM_I(sbi);
2294         struct f2fs_nat_block *nat_blk = page_address(nat_page);
2295         block_t blk_addr;
2296         unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2297         int i;
2298
2299         __set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2300
2301         i = start_nid % NAT_ENTRY_PER_BLOCK;
2302
2303         for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2304                 if (unlikely(start_nid >= nm_i->max_nid))
2305                         break;
2306
2307                 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2308
2309                 if (blk_addr == NEW_ADDR)
2310                         return -EINVAL;
2311
2312                 if (blk_addr == NULL_ADDR) {
2313                         add_free_nid(sbi, start_nid, true, true);
2314                 } else {
2315                         spin_lock(&NM_I(sbi)->nid_list_lock);
2316                         update_free_nid_bitmap(sbi, start_nid, false, true);
2317                         spin_unlock(&NM_I(sbi)->nid_list_lock);
2318                 }
2319         }
2320
2321         return 0;
2322 }
2323
2324 static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2325 {
2326         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2327         struct f2fs_journal *journal = curseg->journal;
2328         int i;
2329
2330         down_read(&curseg->journal_rwsem);
2331         for (i = 0; i < nats_in_cursum(journal); i++) {
2332                 block_t addr;
2333                 nid_t nid;
2334
2335                 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2336                 nid = le32_to_cpu(nid_in_journal(journal, i));
2337                 if (addr == NULL_ADDR)
2338                         add_free_nid(sbi, nid, true, false);
2339                 else
2340                         remove_free_nid(sbi, nid);
2341         }
2342         up_read(&curseg->journal_rwsem);
2343 }
2344
2345 static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2346 {
2347         struct f2fs_nm_info *nm_i = NM_I(sbi);
2348         unsigned int i, idx;
2349         nid_t nid;
2350
2351         down_read(&nm_i->nat_tree_lock);
2352
2353         for (i = 0; i < nm_i->nat_blocks; i++) {
2354                 if (!test_bit_le(i, nm_i->nat_block_bitmap))
2355                         continue;
2356                 if (!nm_i->free_nid_count[i])
2357                         continue;
2358                 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2359                         idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2360                                                 NAT_ENTRY_PER_BLOCK, idx);
2361                         if (idx >= NAT_ENTRY_PER_BLOCK)
2362                                 break;
2363
2364                         nid = i * NAT_ENTRY_PER_BLOCK + idx;
2365                         add_free_nid(sbi, nid, true, false);
2366
2367                         if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2368                                 goto out;
2369                 }
2370         }
2371 out:
2372         scan_curseg_cache(sbi);
2373
2374         up_read(&nm_i->nat_tree_lock);
2375 }
2376
2377 static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2378                                                 bool sync, bool mount)
2379 {
2380         struct f2fs_nm_info *nm_i = NM_I(sbi);
2381         int i = 0, ret;
2382         nid_t nid = nm_i->next_scan_nid;
2383
2384         if (unlikely(nid >= nm_i->max_nid))
2385                 nid = 0;
2386
2387         if (unlikely(nid % NAT_ENTRY_PER_BLOCK))
2388                 nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK;
2389
2390         /* Enough entries */
2391         if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2392                 return 0;
2393
2394         if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2395                 return 0;
2396
2397         if (!mount) {
2398                 /* try to find free nids in free_nid_bitmap */
2399                 scan_free_nid_bits(sbi);
2400
2401                 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2402                         return 0;
2403         }
2404
2405         /* readahead nat pages to be scanned */
2406         f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2407                                                         META_NAT, true);
2408
2409         down_read(&nm_i->nat_tree_lock);
2410
2411         while (1) {
2412                 if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2413                                                 nm_i->nat_block_bitmap)) {
2414                         struct page *page = get_current_nat_page(sbi, nid);
2415
2416                         if (IS_ERR(page)) {
2417                                 ret = PTR_ERR(page);
2418                         } else {
2419                                 ret = scan_nat_page(sbi, page, nid);
2420                                 f2fs_put_page(page, 1);
2421                         }
2422
2423                         if (ret) {
2424                                 up_read(&nm_i->nat_tree_lock);
2425                                 f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2426                                 return ret;
2427                         }
2428                 }
2429
2430                 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2431                 if (unlikely(nid >= nm_i->max_nid))
2432                         nid = 0;
2433
2434                 if (++i >= FREE_NID_PAGES)
2435                         break;
2436         }
2437
2438         /* go to the next free nat pages to find free nids abundantly */
2439         nm_i->next_scan_nid = nid;
2440
2441         /* find free nids from current sum_pages */
2442         scan_curseg_cache(sbi);
2443
2444         up_read(&nm_i->nat_tree_lock);
2445
2446         f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2447                                         nm_i->ra_nid_pages, META_NAT, false);
2448
2449         return 0;
2450 }
2451
2452 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2453 {
2454         int ret;
2455
2456         mutex_lock(&NM_I(sbi)->build_lock);
2457         ret = __f2fs_build_free_nids(sbi, sync, mount);
2458         mutex_unlock(&NM_I(sbi)->build_lock);
2459
2460         return ret;
2461 }
2462
2463 /*
2464  * If this function returns success, caller can obtain a new nid
2465  * from second parameter of this function.
2466  * The returned nid could be used ino as well as nid when inode is created.
2467  */
2468 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2469 {
2470         struct f2fs_nm_info *nm_i = NM_I(sbi);
2471         struct free_nid *i = NULL;
2472 retry:
2473         if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2474                 f2fs_show_injection_info(sbi, FAULT_ALLOC_NID);
2475                 return false;
2476         }
2477
2478         spin_lock(&nm_i->nid_list_lock);
2479
2480         if (unlikely(nm_i->available_nids == 0)) {
2481                 spin_unlock(&nm_i->nid_list_lock);
2482                 return false;
2483         }
2484
2485         /* We should not use stale free nids created by f2fs_build_free_nids */
2486         if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2487                 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2488                 i = list_first_entry(&nm_i->free_nid_list,
2489                                         struct free_nid, list);
2490                 *nid = i->nid;
2491
2492                 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2493                 nm_i->available_nids--;
2494
2495                 update_free_nid_bitmap(sbi, *nid, false, false);
2496
2497                 spin_unlock(&nm_i->nid_list_lock);
2498                 return true;
2499         }
2500         spin_unlock(&nm_i->nid_list_lock);
2501
2502         /* Let's scan nat pages and its caches to get free nids */
2503         if (!f2fs_build_free_nids(sbi, true, false))
2504                 goto retry;
2505         return false;
2506 }
2507
2508 /*
2509  * f2fs_alloc_nid() should be called prior to this function.
2510  */
2511 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2512 {
2513         struct f2fs_nm_info *nm_i = NM_I(sbi);
2514         struct free_nid *i;
2515
2516         spin_lock(&nm_i->nid_list_lock);
2517         i = __lookup_free_nid_list(nm_i, nid);
2518         f2fs_bug_on(sbi, !i);
2519         __remove_free_nid(sbi, i, PREALLOC_NID);
2520         spin_unlock(&nm_i->nid_list_lock);
2521
2522         kmem_cache_free(free_nid_slab, i);
2523 }
2524
2525 /*
2526  * f2fs_alloc_nid() should be called prior to this function.
2527  */
2528 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2529 {
2530         struct f2fs_nm_info *nm_i = NM_I(sbi);
2531         struct free_nid *i;
2532         bool need_free = false;
2533
2534         if (!nid)
2535                 return;
2536
2537         spin_lock(&nm_i->nid_list_lock);
2538         i = __lookup_free_nid_list(nm_i, nid);
2539         f2fs_bug_on(sbi, !i);
2540
2541         if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2542                 __remove_free_nid(sbi, i, PREALLOC_NID);
2543                 need_free = true;
2544         } else {
2545                 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2546         }
2547
2548         nm_i->available_nids++;
2549
2550         update_free_nid_bitmap(sbi, nid, true, false);
2551
2552         spin_unlock(&nm_i->nid_list_lock);
2553
2554         if (need_free)
2555                 kmem_cache_free(free_nid_slab, i);
2556 }
2557
2558 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2559 {
2560         struct f2fs_nm_info *nm_i = NM_I(sbi);
2561         int nr = nr_shrink;
2562
2563         if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2564                 return 0;
2565
2566         if (!mutex_trylock(&nm_i->build_lock))
2567                 return 0;
2568
2569         while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) {
2570                 struct free_nid *i, *next;
2571                 unsigned int batch = SHRINK_NID_BATCH_SIZE;
2572
2573                 spin_lock(&nm_i->nid_list_lock);
2574                 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2575                         if (!nr_shrink || !batch ||
2576                                 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2577                                 break;
2578                         __remove_free_nid(sbi, i, FREE_NID);
2579                         kmem_cache_free(free_nid_slab, i);
2580                         nr_shrink--;
2581                         batch--;
2582                 }
2583                 spin_unlock(&nm_i->nid_list_lock);
2584         }
2585
2586         mutex_unlock(&nm_i->build_lock);
2587
2588         return nr - nr_shrink;
2589 }
2590
2591 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2592 {
2593         void *src_addr, *dst_addr;
2594         size_t inline_size;
2595         struct page *ipage;
2596         struct f2fs_inode *ri;
2597
2598         ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2599         if (IS_ERR(ipage))
2600                 return PTR_ERR(ipage);
2601
2602         ri = F2FS_INODE(page);
2603         if (ri->i_inline & F2FS_INLINE_XATTR) {
2604                 if (!f2fs_has_inline_xattr(inode)) {
2605                         set_inode_flag(inode, FI_INLINE_XATTR);
2606                         stat_inc_inline_xattr(inode);
2607                 }
2608         } else {
2609                 if (f2fs_has_inline_xattr(inode)) {
2610                         stat_dec_inline_xattr(inode);
2611                         clear_inode_flag(inode, FI_INLINE_XATTR);
2612                 }
2613                 goto update_inode;
2614         }
2615
2616         dst_addr = inline_xattr_addr(inode, ipage);
2617         src_addr = inline_xattr_addr(inode, page);
2618         inline_size = inline_xattr_size(inode);
2619
2620         f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2621         memcpy(dst_addr, src_addr, inline_size);
2622 update_inode:
2623         f2fs_update_inode(inode, ipage);
2624         f2fs_put_page(ipage, 1);
2625         return 0;
2626 }
2627
2628 int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2629 {
2630         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2631         nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2632         nid_t new_xnid;
2633         struct dnode_of_data dn;
2634         struct node_info ni;
2635         struct page *xpage;
2636         int err;
2637
2638         if (!prev_xnid)
2639                 goto recover_xnid;
2640
2641         /* 1: invalidate the previous xattr nid */
2642         err = f2fs_get_node_info(sbi, prev_xnid, &ni);
2643         if (err)
2644                 return err;
2645
2646         f2fs_invalidate_blocks(sbi, ni.blk_addr);
2647         dec_valid_node_count(sbi, inode, false);
2648         set_node_addr(sbi, &ni, NULL_ADDR, false);
2649
2650 recover_xnid:
2651         /* 2: update xattr nid in inode */
2652         if (!f2fs_alloc_nid(sbi, &new_xnid))
2653                 return -ENOSPC;
2654
2655         set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2656         xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2657         if (IS_ERR(xpage)) {
2658                 f2fs_alloc_nid_failed(sbi, new_xnid);
2659                 return PTR_ERR(xpage);
2660         }
2661
2662         f2fs_alloc_nid_done(sbi, new_xnid);
2663         f2fs_update_inode_page(inode);
2664
2665         /* 3: update and set xattr node page dirty */
2666         memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
2667
2668         set_page_dirty(xpage);
2669         f2fs_put_page(xpage, 1);
2670
2671         return 0;
2672 }
2673
2674 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2675 {
2676         struct f2fs_inode *src, *dst;
2677         nid_t ino = ino_of_node(page);
2678         struct node_info old_ni, new_ni;
2679         struct page *ipage;
2680         int err;
2681
2682         err = f2fs_get_node_info(sbi, ino, &old_ni);
2683         if (err)
2684                 return err;
2685
2686         if (unlikely(old_ni.blk_addr != NULL_ADDR))
2687                 return -EINVAL;
2688 retry:
2689         ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2690         if (!ipage) {
2691                 congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
2692                 goto retry;
2693         }
2694
2695         /* Should not use this inode from free nid list */
2696         remove_free_nid(sbi, ino);
2697
2698         if (!PageUptodate(ipage))
2699                 SetPageUptodate(ipage);
2700         fill_node_footer(ipage, ino, ino, 0, true);
2701         set_cold_node(ipage, false);
2702
2703         src = F2FS_INODE(page);
2704         dst = F2FS_INODE(ipage);
2705
2706         memcpy(dst, src, offsetof(struct f2fs_inode, i_ext));
2707         dst->i_size = 0;
2708         dst->i_blocks = cpu_to_le64(1);
2709         dst->i_links = cpu_to_le32(1);
2710         dst->i_xattr_nid = 0;
2711         dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2712         if (dst->i_inline & F2FS_EXTRA_ATTR) {
2713                 dst->i_extra_isize = src->i_extra_isize;
2714
2715                 if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2716                         F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2717                                                         i_inline_xattr_size))
2718                         dst->i_inline_xattr_size = src->i_inline_xattr_size;
2719
2720                 if (f2fs_sb_has_project_quota(sbi) &&
2721                         F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2722                                                                 i_projid))
2723                         dst->i_projid = src->i_projid;
2724
2725                 if (f2fs_sb_has_inode_crtime(sbi) &&
2726                         F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2727                                                         i_crtime_nsec)) {
2728                         dst->i_crtime = src->i_crtime;
2729                         dst->i_crtime_nsec = src->i_crtime_nsec;
2730                 }
2731         }
2732
2733         new_ni = old_ni;
2734         new_ni.ino = ino;
2735
2736         if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2737                 WARN_ON(1);
2738         set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2739         inc_valid_inode_count(sbi);
2740         set_page_dirty(ipage);
2741         f2fs_put_page(ipage, 1);
2742         return 0;
2743 }
2744
2745 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2746                         unsigned int segno, struct f2fs_summary_block *sum)
2747 {
2748         struct f2fs_node *rn;
2749         struct f2fs_summary *sum_entry;
2750         block_t addr;
2751         int i, idx, last_offset, nrpages;
2752
2753         /* scan the node segment */
2754         last_offset = sbi->blocks_per_seg;
2755         addr = START_BLOCK(sbi, segno);
2756         sum_entry = &sum->entries[0];
2757
2758         for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2759                 nrpages = bio_max_segs(last_offset - i);
2760
2761                 /* readahead node pages */
2762                 f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2763
2764                 for (idx = addr; idx < addr + nrpages; idx++) {
2765                         struct page *page = f2fs_get_tmp_page(sbi, idx);
2766
2767                         if (IS_ERR(page))
2768                                 return PTR_ERR(page);
2769
2770                         rn = F2FS_NODE(page);
2771                         sum_entry->nid = rn->footer.nid;
2772                         sum_entry->version = 0;
2773                         sum_entry->ofs_in_node = 0;
2774                         sum_entry++;
2775                         f2fs_put_page(page, 1);
2776                 }
2777
2778                 invalidate_mapping_pages(META_MAPPING(sbi), addr,
2779                                                         addr + nrpages);
2780         }
2781         return 0;
2782 }
2783
2784 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2785 {
2786         struct f2fs_nm_info *nm_i = NM_I(sbi);
2787         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2788         struct f2fs_journal *journal = curseg->journal;
2789         int i;
2790
2791         down_write(&curseg->journal_rwsem);
2792         for (i = 0; i < nats_in_cursum(journal); i++) {
2793                 struct nat_entry *ne;
2794                 struct f2fs_nat_entry raw_ne;
2795                 nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2796
2797                 if (f2fs_check_nid_range(sbi, nid))
2798                         continue;
2799
2800                 raw_ne = nat_in_journal(journal, i);
2801
2802                 ne = __lookup_nat_cache(nm_i, nid);
2803                 if (!ne) {
2804                         ne = __alloc_nat_entry(nid, true);
2805                         __init_nat_entry(nm_i, ne, &raw_ne, true);
2806                 }
2807
2808                 /*
2809                  * if a free nat in journal has not been used after last
2810                  * checkpoint, we should remove it from available nids,
2811                  * since later we will add it again.
2812                  */
2813                 if (!get_nat_flag(ne, IS_DIRTY) &&
2814                                 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2815                         spin_lock(&nm_i->nid_list_lock);
2816                         nm_i->available_nids--;
2817                         spin_unlock(&nm_i->nid_list_lock);
2818                 }
2819
2820                 __set_nat_cache_dirty(nm_i, ne);
2821         }
2822         update_nats_in_cursum(journal, -i);
2823         up_write(&curseg->journal_rwsem);
2824 }
2825
2826 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2827                                                 struct list_head *head, int max)
2828 {
2829         struct nat_entry_set *cur;
2830
2831         if (nes->entry_cnt >= max)
2832                 goto add_out;
2833
2834         list_for_each_entry(cur, head, set_list) {
2835                 if (cur->entry_cnt >= nes->entry_cnt) {
2836                         list_add(&nes->set_list, cur->set_list.prev);
2837                         return;
2838                 }
2839         }
2840 add_out:
2841         list_add_tail(&nes->set_list, head);
2842 }
2843
2844 static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2845                                                 struct page *page)
2846 {
2847         struct f2fs_nm_info *nm_i = NM_I(sbi);
2848         unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2849         struct f2fs_nat_block *nat_blk = page_address(page);
2850         int valid = 0;
2851         int i = 0;
2852
2853         if (!enabled_nat_bits(sbi, NULL))
2854                 return;
2855
2856         if (nat_index == 0) {
2857                 valid = 1;
2858                 i = 1;
2859         }
2860         for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2861                 if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
2862                         valid++;
2863         }
2864         if (valid == 0) {
2865                 __set_bit_le(nat_index, nm_i->empty_nat_bits);
2866                 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2867                 return;
2868         }
2869
2870         __clear_bit_le(nat_index, nm_i->empty_nat_bits);
2871         if (valid == NAT_ENTRY_PER_BLOCK)
2872                 __set_bit_le(nat_index, nm_i->full_nat_bits);
2873         else
2874                 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2875 }
2876
2877 static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2878                 struct nat_entry_set *set, struct cp_control *cpc)
2879 {
2880         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2881         struct f2fs_journal *journal = curseg->journal;
2882         nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2883         bool to_journal = true;
2884         struct f2fs_nat_block *nat_blk;
2885         struct nat_entry *ne, *cur;
2886         struct page *page = NULL;
2887
2888         /*
2889          * there are two steps to flush nat entries:
2890          * #1, flush nat entries to journal in current hot data summary block.
2891          * #2, flush nat entries to nat page.
2892          */
2893         if (enabled_nat_bits(sbi, cpc) ||
2894                 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2895                 to_journal = false;
2896
2897         if (to_journal) {
2898                 down_write(&curseg->journal_rwsem);
2899         } else {
2900                 page = get_next_nat_page(sbi, start_nid);
2901                 if (IS_ERR(page))
2902                         return PTR_ERR(page);
2903
2904                 nat_blk = page_address(page);
2905                 f2fs_bug_on(sbi, !nat_blk);
2906         }
2907
2908         /* flush dirty nats in nat entry set */
2909         list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2910                 struct f2fs_nat_entry *raw_ne;
2911                 nid_t nid = nat_get_nid(ne);
2912                 int offset;
2913
2914                 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
2915
2916                 if (to_journal) {
2917                         offset = f2fs_lookup_journal_in_cursum(journal,
2918                                                         NAT_JOURNAL, nid, 1);
2919                         f2fs_bug_on(sbi, offset < 0);
2920                         raw_ne = &nat_in_journal(journal, offset);
2921                         nid_in_journal(journal, offset) = cpu_to_le32(nid);
2922                 } else {
2923                         raw_ne = &nat_blk->entries[nid - start_nid];
2924                 }
2925                 raw_nat_from_node_info(raw_ne, &ne->ni);
2926                 nat_reset_flag(ne);
2927                 __clear_nat_cache_dirty(NM_I(sbi), set, ne);
2928                 if (nat_get_blkaddr(ne) == NULL_ADDR) {
2929                         add_free_nid(sbi, nid, false, true);
2930                 } else {
2931                         spin_lock(&NM_I(sbi)->nid_list_lock);
2932                         update_free_nid_bitmap(sbi, nid, false, false);
2933                         spin_unlock(&NM_I(sbi)->nid_list_lock);
2934                 }
2935         }
2936
2937         if (to_journal) {
2938                 up_write(&curseg->journal_rwsem);
2939         } else {
2940                 __update_nat_bits(sbi, start_nid, page);
2941                 f2fs_put_page(page, 1);
2942         }
2943
2944         /* Allow dirty nats by node block allocation in write_begin */
2945         if (!set->entry_cnt) {
2946                 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2947                 kmem_cache_free(nat_entry_set_slab, set);
2948         }
2949         return 0;
2950 }
2951
2952 /*
2953  * This function is called during the checkpointing process.
2954  */
2955 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2956 {
2957         struct f2fs_nm_info *nm_i = NM_I(sbi);
2958         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2959         struct f2fs_journal *journal = curseg->journal;
2960         struct nat_entry_set *setvec[SETVEC_SIZE];
2961         struct nat_entry_set *set, *tmp;
2962         unsigned int found;
2963         nid_t set_idx = 0;
2964         LIST_HEAD(sets);
2965         int err = 0;
2966
2967         /*
2968          * during unmount, let's flush nat_bits before checking
2969          * nat_cnt[DIRTY_NAT].
2970          */
2971         if (enabled_nat_bits(sbi, cpc)) {
2972                 down_write(&nm_i->nat_tree_lock);
2973                 remove_nats_in_journal(sbi);
2974                 up_write(&nm_i->nat_tree_lock);
2975         }
2976
2977         if (!nm_i->nat_cnt[DIRTY_NAT])
2978                 return 0;
2979
2980         down_write(&nm_i->nat_tree_lock);
2981
2982         /*
2983          * if there are no enough space in journal to store dirty nat
2984          * entries, remove all entries from journal and merge them
2985          * into nat entry set.
2986          */
2987         if (enabled_nat_bits(sbi, cpc) ||
2988                 !__has_cursum_space(journal,
2989                         nm_i->nat_cnt[DIRTY_NAT], NAT_JOURNAL))
2990                 remove_nats_in_journal(sbi);
2991
2992         while ((found = __gang_lookup_nat_set(nm_i,
2993                                         set_idx, SETVEC_SIZE, setvec))) {
2994                 unsigned idx;
2995
2996                 set_idx = setvec[found - 1]->set + 1;
2997                 for (idx = 0; idx < found; idx++)
2998                         __adjust_nat_entry_set(setvec[idx], &sets,
2999                                                 MAX_NAT_JENTRIES(journal));
3000         }
3001
3002         /* flush dirty nats in nat entry set */
3003         list_for_each_entry_safe(set, tmp, &sets, set_list) {
3004                 err = __flush_nat_entry_set(sbi, set, cpc);
3005                 if (err)
3006                         break;
3007         }
3008
3009         up_write(&nm_i->nat_tree_lock);
3010         /* Allow dirty nats by node block allocation in write_begin */
3011
3012         return err;
3013 }
3014
3015 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
3016 {
3017         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3018         struct f2fs_nm_info *nm_i = NM_I(sbi);
3019         unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
3020         unsigned int i;
3021         __u64 cp_ver = cur_cp_version(ckpt);
3022         block_t nat_bits_addr;
3023
3024         if (!enabled_nat_bits(sbi, NULL))
3025                 return 0;
3026
3027         nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
3028         nm_i->nat_bits = f2fs_kvzalloc(sbi,
3029                         nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
3030         if (!nm_i->nat_bits)
3031                 return -ENOMEM;
3032
3033         nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
3034                                                 nm_i->nat_bits_blocks;
3035         for (i = 0; i < nm_i->nat_bits_blocks; i++) {
3036                 struct page *page;
3037
3038                 page = f2fs_get_meta_page(sbi, nat_bits_addr++);
3039                 if (IS_ERR(page))
3040                         return PTR_ERR(page);
3041
3042                 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
3043                                         page_address(page), F2FS_BLKSIZE);
3044                 f2fs_put_page(page, 1);
3045         }
3046
3047         cp_ver |= (cur_cp_crc(ckpt) << 32);
3048         if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
3049                 disable_nat_bits(sbi, true);
3050                 return 0;
3051         }
3052
3053         nm_i->full_nat_bits = nm_i->nat_bits + 8;
3054         nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
3055
3056         f2fs_notice(sbi, "Found nat_bits in checkpoint");
3057         return 0;
3058 }
3059
3060 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
3061 {
3062         struct f2fs_nm_info *nm_i = NM_I(sbi);
3063         unsigned int i = 0;
3064         nid_t nid, last_nid;
3065
3066         if (!enabled_nat_bits(sbi, NULL))
3067                 return;
3068
3069         for (i = 0; i < nm_i->nat_blocks; i++) {
3070                 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
3071                 if (i >= nm_i->nat_blocks)
3072                         break;
3073
3074                 __set_bit_le(i, nm_i->nat_block_bitmap);
3075
3076                 nid = i * NAT_ENTRY_PER_BLOCK;
3077                 last_nid = nid + NAT_ENTRY_PER_BLOCK;
3078
3079                 spin_lock(&NM_I(sbi)->nid_list_lock);
3080                 for (; nid < last_nid; nid++)
3081                         update_free_nid_bitmap(sbi, nid, true, true);
3082                 spin_unlock(&NM_I(sbi)->nid_list_lock);
3083         }
3084
3085         for (i = 0; i < nm_i->nat_blocks; i++) {
3086                 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
3087                 if (i >= nm_i->nat_blocks)
3088                         break;
3089
3090                 __set_bit_le(i, nm_i->nat_block_bitmap);
3091         }
3092 }
3093
3094 static int init_node_manager(struct f2fs_sb_info *sbi)
3095 {
3096         struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
3097         struct f2fs_nm_info *nm_i = NM_I(sbi);
3098         unsigned char *version_bitmap;
3099         unsigned int nat_segs;
3100         int err;
3101
3102         nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
3103
3104         /* segment_count_nat includes pair segment so divide to 2. */
3105         nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
3106         nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
3107         nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
3108
3109         /* not used nids: 0, node, meta, (and root counted as valid node) */
3110         nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
3111                                                 F2FS_RESERVED_NODE_NUM;
3112         nm_i->nid_cnt[FREE_NID] = 0;
3113         nm_i->nid_cnt[PREALLOC_NID] = 0;
3114         nm_i->ram_thresh = DEF_RAM_THRESHOLD;
3115         nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
3116         nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
3117
3118         INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
3119         INIT_LIST_HEAD(&nm_i->free_nid_list);
3120         INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
3121         INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
3122         INIT_LIST_HEAD(&nm_i->nat_entries);
3123         spin_lock_init(&nm_i->nat_list_lock);
3124
3125         mutex_init(&nm_i->build_lock);
3126         spin_lock_init(&nm_i->nid_list_lock);
3127         init_rwsem(&nm_i->nat_tree_lock);
3128
3129         nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
3130         nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
3131         version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
3132         nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
3133                                         GFP_KERNEL);
3134         if (!nm_i->nat_bitmap)
3135                 return -ENOMEM;
3136
3137         err = __get_nat_bitmaps(sbi);
3138         if (err)
3139                 return err;
3140
3141 #ifdef CONFIG_F2FS_CHECK_FS
3142         nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3143                                         GFP_KERNEL);
3144         if (!nm_i->nat_bitmap_mir)
3145                 return -ENOMEM;
3146 #endif
3147
3148         return 0;
3149 }
3150
3151 static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3152 {
3153         struct f2fs_nm_info *nm_i = NM_I(sbi);
3154         int i;
3155
3156         nm_i->free_nid_bitmap =
3157                 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *),
3158                                               nm_i->nat_blocks),
3159                               GFP_KERNEL);
3160         if (!nm_i->free_nid_bitmap)
3161                 return -ENOMEM;
3162
3163         for (i = 0; i < nm_i->nat_blocks; i++) {
3164                 nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3165                         f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3166                 if (!nm_i->free_nid_bitmap[i])
3167                         return -ENOMEM;
3168         }
3169
3170         nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3171                                                                 GFP_KERNEL);
3172         if (!nm_i->nat_block_bitmap)
3173                 return -ENOMEM;
3174
3175         nm_i->free_nid_count =
3176                 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3177                                               nm_i->nat_blocks),
3178                               GFP_KERNEL);
3179         if (!nm_i->free_nid_count)
3180                 return -ENOMEM;
3181         return 0;
3182 }
3183
3184 int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3185 {
3186         int err;
3187
3188         sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3189                                                         GFP_KERNEL);
3190         if (!sbi->nm_info)
3191                 return -ENOMEM;
3192
3193         err = init_node_manager(sbi);
3194         if (err)
3195                 return err;
3196
3197         err = init_free_nid_cache(sbi);
3198         if (err)
3199                 return err;
3200
3201         /* load free nid status from nat_bits table */
3202         load_free_nid_bitmap(sbi);
3203
3204         return f2fs_build_free_nids(sbi, true, true);
3205 }
3206
3207 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3208 {
3209         struct f2fs_nm_info *nm_i = NM_I(sbi);
3210         struct free_nid *i, *next_i;
3211         struct nat_entry *natvec[NATVEC_SIZE];
3212         struct nat_entry_set *setvec[SETVEC_SIZE];
3213         nid_t nid = 0;
3214         unsigned int found;
3215
3216         if (!nm_i)
3217                 return;
3218
3219         /* destroy free nid list */
3220         spin_lock(&nm_i->nid_list_lock);
3221         list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3222                 __remove_free_nid(sbi, i, FREE_NID);
3223                 spin_unlock(&nm_i->nid_list_lock);
3224                 kmem_cache_free(free_nid_slab, i);
3225                 spin_lock(&nm_i->nid_list_lock);
3226         }
3227         f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3228         f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3229         f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3230         spin_unlock(&nm_i->nid_list_lock);
3231
3232         /* destroy nat cache */
3233         down_write(&nm_i->nat_tree_lock);
3234         while ((found = __gang_lookup_nat_cache(nm_i,
3235                                         nid, NATVEC_SIZE, natvec))) {
3236                 unsigned idx;
3237
3238                 nid = nat_get_nid(natvec[found - 1]) + 1;
3239                 for (idx = 0; idx < found; idx++) {
3240                         spin_lock(&nm_i->nat_list_lock);
3241                         list_del(&natvec[idx]->list);
3242                         spin_unlock(&nm_i->nat_list_lock);
3243
3244                         __del_from_nat_cache(nm_i, natvec[idx]);
3245                 }
3246         }
3247         f2fs_bug_on(sbi, nm_i->nat_cnt[TOTAL_NAT]);
3248
3249         /* destroy nat set cache */
3250         nid = 0;
3251         while ((found = __gang_lookup_nat_set(nm_i,
3252                                         nid, SETVEC_SIZE, setvec))) {
3253                 unsigned idx;
3254
3255                 nid = setvec[found - 1]->set + 1;
3256                 for (idx = 0; idx < found; idx++) {
3257                         /* entry_cnt is not zero, when cp_error was occurred */
3258                         f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3259                         radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3260                         kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3261                 }
3262         }
3263         up_write(&nm_i->nat_tree_lock);
3264
3265         kvfree(nm_i->nat_block_bitmap);
3266         if (nm_i->free_nid_bitmap) {
3267                 int i;
3268
3269                 for (i = 0; i < nm_i->nat_blocks; i++)
3270                         kvfree(nm_i->free_nid_bitmap[i]);
3271                 kvfree(nm_i->free_nid_bitmap);
3272         }
3273         kvfree(nm_i->free_nid_count);
3274
3275         kvfree(nm_i->nat_bitmap);
3276         kvfree(nm_i->nat_bits);
3277 #ifdef CONFIG_F2FS_CHECK_FS
3278         kvfree(nm_i->nat_bitmap_mir);
3279 #endif
3280         sbi->nm_info = NULL;
3281         kfree(nm_i);
3282 }
3283
3284 int __init f2fs_create_node_manager_caches(void)
3285 {
3286         nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry",
3287                         sizeof(struct nat_entry));
3288         if (!nat_entry_slab)
3289                 goto fail;
3290
3291         free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid",
3292                         sizeof(struct free_nid));
3293         if (!free_nid_slab)
3294                 goto destroy_nat_entry;
3295
3296         nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set",
3297                         sizeof(struct nat_entry_set));
3298         if (!nat_entry_set_slab)
3299                 goto destroy_free_nid;
3300
3301         fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry",
3302                         sizeof(struct fsync_node_entry));
3303         if (!fsync_node_entry_slab)
3304                 goto destroy_nat_entry_set;
3305         return 0;
3306
3307 destroy_nat_entry_set:
3308         kmem_cache_destroy(nat_entry_set_slab);
3309 destroy_free_nid:
3310         kmem_cache_destroy(free_nid_slab);
3311 destroy_nat_entry:
3312         kmem_cache_destroy(nat_entry_slab);
3313 fail:
3314         return -ENOMEM;
3315 }
3316
3317 void f2fs_destroy_node_manager_caches(void)
3318 {
3319         kmem_cache_destroy(fsync_node_entry_slab);
3320         kmem_cache_destroy(nat_entry_set_slab);
3321         kmem_cache_destroy(free_nid_slab);
3322         kmem_cache_destroy(nat_entry_slab);
3323 }