ARM: s3c64xx: bring back notes from removed debug-macro.S
[linux-2.6-microblaze.git] / fs / f2fs / node.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/node.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/mpage.h>
11 #include <linux/backing-dev.h>
12 #include <linux/blkdev.h>
13 #include <linux/pagevec.h>
14 #include <linux/swap.h>
15
16 #include "f2fs.h"
17 #include "node.h"
18 #include "segment.h"
19 #include "xattr.h"
20 #include "trace.h"
21 #include <trace/events/f2fs.h>
22
23 #define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
24
25 static struct kmem_cache *nat_entry_slab;
26 static struct kmem_cache *free_nid_slab;
27 static struct kmem_cache *nat_entry_set_slab;
28 static struct kmem_cache *fsync_node_entry_slab;
29
30 /*
31  * Check whether the given nid is within node id range.
32  */
33 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
34 {
35         if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
36                 set_sbi_flag(sbi, SBI_NEED_FSCK);
37                 f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
38                           __func__, nid);
39                 return -EFSCORRUPTED;
40         }
41         return 0;
42 }
43
44 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
45 {
46         struct f2fs_nm_info *nm_i = NM_I(sbi);
47         struct sysinfo val;
48         unsigned long avail_ram;
49         unsigned long mem_size = 0;
50         bool res = false;
51
52         si_meminfo(&val);
53
54         /* only uses low memory */
55         avail_ram = val.totalram - val.totalhigh;
56
57         /*
58          * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
59          */
60         if (type == FREE_NIDS) {
61                 mem_size = (nm_i->nid_cnt[FREE_NID] *
62                                 sizeof(struct free_nid)) >> PAGE_SHIFT;
63                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
64         } else if (type == NAT_ENTRIES) {
65                 mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
66                                                         PAGE_SHIFT;
67                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
68                 if (excess_cached_nats(sbi))
69                         res = false;
70         } else if (type == DIRTY_DENTS) {
71                 if (sbi->sb->s_bdi->wb.dirty_exceeded)
72                         return false;
73                 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
74                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
75         } else if (type == INO_ENTRIES) {
76                 int i;
77
78                 for (i = 0; i < MAX_INO_ENTRY; i++)
79                         mem_size += sbi->im[i].ino_num *
80                                                 sizeof(struct ino_entry);
81                 mem_size >>= PAGE_SHIFT;
82                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
83         } else if (type == EXTENT_CACHE) {
84                 mem_size = (atomic_read(&sbi->total_ext_tree) *
85                                 sizeof(struct extent_tree) +
86                                 atomic_read(&sbi->total_ext_node) *
87                                 sizeof(struct extent_node)) >> PAGE_SHIFT;
88                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
89         } else if (type == INMEM_PAGES) {
90                 /* it allows 20% / total_ram for inmemory pages */
91                 mem_size = get_pages(sbi, F2FS_INMEM_PAGES);
92                 res = mem_size < (val.totalram / 5);
93         } else {
94                 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
95                         return true;
96         }
97         return res;
98 }
99
100 static void clear_node_page_dirty(struct page *page)
101 {
102         if (PageDirty(page)) {
103                 f2fs_clear_page_cache_dirty_tag(page);
104                 clear_page_dirty_for_io(page);
105                 dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
106         }
107         ClearPageUptodate(page);
108 }
109
110 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
111 {
112         return f2fs_get_meta_page_nofail(sbi, current_nat_addr(sbi, nid));
113 }
114
115 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
116 {
117         struct page *src_page;
118         struct page *dst_page;
119         pgoff_t dst_off;
120         void *src_addr;
121         void *dst_addr;
122         struct f2fs_nm_info *nm_i = NM_I(sbi);
123
124         dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
125
126         /* get current nat block page with lock */
127         src_page = get_current_nat_page(sbi, nid);
128         if (IS_ERR(src_page))
129                 return src_page;
130         dst_page = f2fs_grab_meta_page(sbi, dst_off);
131         f2fs_bug_on(sbi, PageDirty(src_page));
132
133         src_addr = page_address(src_page);
134         dst_addr = page_address(dst_page);
135         memcpy(dst_addr, src_addr, PAGE_SIZE);
136         set_page_dirty(dst_page);
137         f2fs_put_page(src_page, 1);
138
139         set_to_next_nat(nm_i, nid);
140
141         return dst_page;
142 }
143
144 static struct nat_entry *__alloc_nat_entry(nid_t nid, bool no_fail)
145 {
146         struct nat_entry *new;
147
148         if (no_fail)
149                 new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
150         else
151                 new = kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
152         if (new) {
153                 nat_set_nid(new, nid);
154                 nat_reset_flag(new);
155         }
156         return new;
157 }
158
159 static void __free_nat_entry(struct nat_entry *e)
160 {
161         kmem_cache_free(nat_entry_slab, e);
162 }
163
164 /* must be locked by nat_tree_lock */
165 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
166         struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
167 {
168         if (no_fail)
169                 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
170         else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
171                 return NULL;
172
173         if (raw_ne)
174                 node_info_from_raw_nat(&ne->ni, raw_ne);
175
176         spin_lock(&nm_i->nat_list_lock);
177         list_add_tail(&ne->list, &nm_i->nat_entries);
178         spin_unlock(&nm_i->nat_list_lock);
179
180         nm_i->nat_cnt++;
181         return ne;
182 }
183
184 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
185 {
186         struct nat_entry *ne;
187
188         ne = radix_tree_lookup(&nm_i->nat_root, n);
189
190         /* for recent accessed nat entry, move it to tail of lru list */
191         if (ne && !get_nat_flag(ne, IS_DIRTY)) {
192                 spin_lock(&nm_i->nat_list_lock);
193                 if (!list_empty(&ne->list))
194                         list_move_tail(&ne->list, &nm_i->nat_entries);
195                 spin_unlock(&nm_i->nat_list_lock);
196         }
197
198         return ne;
199 }
200
201 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
202                 nid_t start, unsigned int nr, struct nat_entry **ep)
203 {
204         return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
205 }
206
207 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
208 {
209         radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
210         nm_i->nat_cnt--;
211         __free_nat_entry(e);
212 }
213
214 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
215                                                         struct nat_entry *ne)
216 {
217         nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
218         struct nat_entry_set *head;
219
220         head = radix_tree_lookup(&nm_i->nat_set_root, set);
221         if (!head) {
222                 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
223
224                 INIT_LIST_HEAD(&head->entry_list);
225                 INIT_LIST_HEAD(&head->set_list);
226                 head->set = set;
227                 head->entry_cnt = 0;
228                 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
229         }
230         return head;
231 }
232
233 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
234                                                 struct nat_entry *ne)
235 {
236         struct nat_entry_set *head;
237         bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
238
239         if (!new_ne)
240                 head = __grab_nat_entry_set(nm_i, ne);
241
242         /*
243          * update entry_cnt in below condition:
244          * 1. update NEW_ADDR to valid block address;
245          * 2. update old block address to new one;
246          */
247         if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
248                                 !get_nat_flag(ne, IS_DIRTY)))
249                 head->entry_cnt++;
250
251         set_nat_flag(ne, IS_PREALLOC, new_ne);
252
253         if (get_nat_flag(ne, IS_DIRTY))
254                 goto refresh_list;
255
256         nm_i->dirty_nat_cnt++;
257         set_nat_flag(ne, IS_DIRTY, true);
258 refresh_list:
259         spin_lock(&nm_i->nat_list_lock);
260         if (new_ne)
261                 list_del_init(&ne->list);
262         else
263                 list_move_tail(&ne->list, &head->entry_list);
264         spin_unlock(&nm_i->nat_list_lock);
265 }
266
267 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
268                 struct nat_entry_set *set, struct nat_entry *ne)
269 {
270         spin_lock(&nm_i->nat_list_lock);
271         list_move_tail(&ne->list, &nm_i->nat_entries);
272         spin_unlock(&nm_i->nat_list_lock);
273
274         set_nat_flag(ne, IS_DIRTY, false);
275         set->entry_cnt--;
276         nm_i->dirty_nat_cnt--;
277 }
278
279 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
280                 nid_t start, unsigned int nr, struct nat_entry_set **ep)
281 {
282         return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
283                                                         start, nr);
284 }
285
286 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
287 {
288         return NODE_MAPPING(sbi) == page->mapping &&
289                         IS_DNODE(page) && is_cold_node(page);
290 }
291
292 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
293 {
294         spin_lock_init(&sbi->fsync_node_lock);
295         INIT_LIST_HEAD(&sbi->fsync_node_list);
296         sbi->fsync_seg_id = 0;
297         sbi->fsync_node_num = 0;
298 }
299
300 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
301                                                         struct page *page)
302 {
303         struct fsync_node_entry *fn;
304         unsigned long flags;
305         unsigned int seq_id;
306
307         fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab, GFP_NOFS);
308
309         get_page(page);
310         fn->page = page;
311         INIT_LIST_HEAD(&fn->list);
312
313         spin_lock_irqsave(&sbi->fsync_node_lock, flags);
314         list_add_tail(&fn->list, &sbi->fsync_node_list);
315         fn->seq_id = sbi->fsync_seg_id++;
316         seq_id = fn->seq_id;
317         sbi->fsync_node_num++;
318         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
319
320         return seq_id;
321 }
322
323 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
324 {
325         struct fsync_node_entry *fn;
326         unsigned long flags;
327
328         spin_lock_irqsave(&sbi->fsync_node_lock, flags);
329         list_for_each_entry(fn, &sbi->fsync_node_list, list) {
330                 if (fn->page == page) {
331                         list_del(&fn->list);
332                         sbi->fsync_node_num--;
333                         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
334                         kmem_cache_free(fsync_node_entry_slab, fn);
335                         put_page(page);
336                         return;
337                 }
338         }
339         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
340         f2fs_bug_on(sbi, 1);
341 }
342
343 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
344 {
345         unsigned long flags;
346
347         spin_lock_irqsave(&sbi->fsync_node_lock, flags);
348         sbi->fsync_seg_id = 0;
349         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
350 }
351
352 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
353 {
354         struct f2fs_nm_info *nm_i = NM_I(sbi);
355         struct nat_entry *e;
356         bool need = false;
357
358         down_read(&nm_i->nat_tree_lock);
359         e = __lookup_nat_cache(nm_i, nid);
360         if (e) {
361                 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
362                                 !get_nat_flag(e, HAS_FSYNCED_INODE))
363                         need = true;
364         }
365         up_read(&nm_i->nat_tree_lock);
366         return need;
367 }
368
369 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
370 {
371         struct f2fs_nm_info *nm_i = NM_I(sbi);
372         struct nat_entry *e;
373         bool is_cp = true;
374
375         down_read(&nm_i->nat_tree_lock);
376         e = __lookup_nat_cache(nm_i, nid);
377         if (e && !get_nat_flag(e, IS_CHECKPOINTED))
378                 is_cp = false;
379         up_read(&nm_i->nat_tree_lock);
380         return is_cp;
381 }
382
383 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
384 {
385         struct f2fs_nm_info *nm_i = NM_I(sbi);
386         struct nat_entry *e;
387         bool need_update = true;
388
389         down_read(&nm_i->nat_tree_lock);
390         e = __lookup_nat_cache(nm_i, ino);
391         if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
392                         (get_nat_flag(e, IS_CHECKPOINTED) ||
393                          get_nat_flag(e, HAS_FSYNCED_INODE)))
394                 need_update = false;
395         up_read(&nm_i->nat_tree_lock);
396         return need_update;
397 }
398
399 /* must be locked by nat_tree_lock */
400 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
401                                                 struct f2fs_nat_entry *ne)
402 {
403         struct f2fs_nm_info *nm_i = NM_I(sbi);
404         struct nat_entry *new, *e;
405
406         new = __alloc_nat_entry(nid, false);
407         if (!new)
408                 return;
409
410         down_write(&nm_i->nat_tree_lock);
411         e = __lookup_nat_cache(nm_i, nid);
412         if (!e)
413                 e = __init_nat_entry(nm_i, new, ne, false);
414         else
415                 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
416                                 nat_get_blkaddr(e) !=
417                                         le32_to_cpu(ne->block_addr) ||
418                                 nat_get_version(e) != ne->version);
419         up_write(&nm_i->nat_tree_lock);
420         if (e != new)
421                 __free_nat_entry(new);
422 }
423
424 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
425                         block_t new_blkaddr, bool fsync_done)
426 {
427         struct f2fs_nm_info *nm_i = NM_I(sbi);
428         struct nat_entry *e;
429         struct nat_entry *new = __alloc_nat_entry(ni->nid, true);
430
431         down_write(&nm_i->nat_tree_lock);
432         e = __lookup_nat_cache(nm_i, ni->nid);
433         if (!e) {
434                 e = __init_nat_entry(nm_i, new, NULL, true);
435                 copy_node_info(&e->ni, ni);
436                 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
437         } else if (new_blkaddr == NEW_ADDR) {
438                 /*
439                  * when nid is reallocated,
440                  * previous nat entry can be remained in nat cache.
441                  * So, reinitialize it with new information.
442                  */
443                 copy_node_info(&e->ni, ni);
444                 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
445         }
446         /* let's free early to reduce memory consumption */
447         if (e != new)
448                 __free_nat_entry(new);
449
450         /* sanity check */
451         f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
452         f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
453                         new_blkaddr == NULL_ADDR);
454         f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
455                         new_blkaddr == NEW_ADDR);
456         f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
457                         new_blkaddr == NEW_ADDR);
458
459         /* increment version no as node is removed */
460         if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
461                 unsigned char version = nat_get_version(e);
462                 nat_set_version(e, inc_node_version(version));
463         }
464
465         /* change address */
466         nat_set_blkaddr(e, new_blkaddr);
467         if (!__is_valid_data_blkaddr(new_blkaddr))
468                 set_nat_flag(e, IS_CHECKPOINTED, false);
469         __set_nat_cache_dirty(nm_i, e);
470
471         /* update fsync_mark if its inode nat entry is still alive */
472         if (ni->nid != ni->ino)
473                 e = __lookup_nat_cache(nm_i, ni->ino);
474         if (e) {
475                 if (fsync_done && ni->nid == ni->ino)
476                         set_nat_flag(e, HAS_FSYNCED_INODE, true);
477                 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
478         }
479         up_write(&nm_i->nat_tree_lock);
480 }
481
482 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
483 {
484         struct f2fs_nm_info *nm_i = NM_I(sbi);
485         int nr = nr_shrink;
486
487         if (!down_write_trylock(&nm_i->nat_tree_lock))
488                 return 0;
489
490         spin_lock(&nm_i->nat_list_lock);
491         while (nr_shrink) {
492                 struct nat_entry *ne;
493
494                 if (list_empty(&nm_i->nat_entries))
495                         break;
496
497                 ne = list_first_entry(&nm_i->nat_entries,
498                                         struct nat_entry, list);
499                 list_del(&ne->list);
500                 spin_unlock(&nm_i->nat_list_lock);
501
502                 __del_from_nat_cache(nm_i, ne);
503                 nr_shrink--;
504
505                 spin_lock(&nm_i->nat_list_lock);
506         }
507         spin_unlock(&nm_i->nat_list_lock);
508
509         up_write(&nm_i->nat_tree_lock);
510         return nr - nr_shrink;
511 }
512
513 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
514                                                 struct node_info *ni)
515 {
516         struct f2fs_nm_info *nm_i = NM_I(sbi);
517         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
518         struct f2fs_journal *journal = curseg->journal;
519         nid_t start_nid = START_NID(nid);
520         struct f2fs_nat_block *nat_blk;
521         struct page *page = NULL;
522         struct f2fs_nat_entry ne;
523         struct nat_entry *e;
524         pgoff_t index;
525         block_t blkaddr;
526         int i;
527
528         ni->nid = nid;
529
530         /* Check nat cache */
531         down_read(&nm_i->nat_tree_lock);
532         e = __lookup_nat_cache(nm_i, nid);
533         if (e) {
534                 ni->ino = nat_get_ino(e);
535                 ni->blk_addr = nat_get_blkaddr(e);
536                 ni->version = nat_get_version(e);
537                 up_read(&nm_i->nat_tree_lock);
538                 return 0;
539         }
540
541         memset(&ne, 0, sizeof(struct f2fs_nat_entry));
542
543         /* Check current segment summary */
544         down_read(&curseg->journal_rwsem);
545         i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
546         if (i >= 0) {
547                 ne = nat_in_journal(journal, i);
548                 node_info_from_raw_nat(ni, &ne);
549         }
550         up_read(&curseg->journal_rwsem);
551         if (i >= 0) {
552                 up_read(&nm_i->nat_tree_lock);
553                 goto cache;
554         }
555
556         /* Fill node_info from nat page */
557         index = current_nat_addr(sbi, nid);
558         up_read(&nm_i->nat_tree_lock);
559
560         page = f2fs_get_meta_page(sbi, index);
561         if (IS_ERR(page))
562                 return PTR_ERR(page);
563
564         nat_blk = (struct f2fs_nat_block *)page_address(page);
565         ne = nat_blk->entries[nid - start_nid];
566         node_info_from_raw_nat(ni, &ne);
567         f2fs_put_page(page, 1);
568 cache:
569         blkaddr = le32_to_cpu(ne.block_addr);
570         if (__is_valid_data_blkaddr(blkaddr) &&
571                 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
572                 return -EFAULT;
573
574         /* cache nat entry */
575         cache_nat_entry(sbi, nid, &ne);
576         return 0;
577 }
578
579 /*
580  * readahead MAX_RA_NODE number of node pages.
581  */
582 static void f2fs_ra_node_pages(struct page *parent, int start, int n)
583 {
584         struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
585         struct blk_plug plug;
586         int i, end;
587         nid_t nid;
588
589         blk_start_plug(&plug);
590
591         /* Then, try readahead for siblings of the desired node */
592         end = start + n;
593         end = min(end, NIDS_PER_BLOCK);
594         for (i = start; i < end; i++) {
595                 nid = get_nid(parent, i, false);
596                 f2fs_ra_node_page(sbi, nid);
597         }
598
599         blk_finish_plug(&plug);
600 }
601
602 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
603 {
604         const long direct_index = ADDRS_PER_INODE(dn->inode);
605         const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
606         const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
607         unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
608         int cur_level = dn->cur_level;
609         int max_level = dn->max_level;
610         pgoff_t base = 0;
611
612         if (!dn->max_level)
613                 return pgofs + 1;
614
615         while (max_level-- > cur_level)
616                 skipped_unit *= NIDS_PER_BLOCK;
617
618         switch (dn->max_level) {
619         case 3:
620                 base += 2 * indirect_blks;
621                 /* fall through */
622         case 2:
623                 base += 2 * direct_blks;
624                 /* fall through */
625         case 1:
626                 base += direct_index;
627                 break;
628         default:
629                 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
630         }
631
632         return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
633 }
634
635 /*
636  * The maximum depth is four.
637  * Offset[0] will have raw inode offset.
638  */
639 static int get_node_path(struct inode *inode, long block,
640                                 int offset[4], unsigned int noffset[4])
641 {
642         const long direct_index = ADDRS_PER_INODE(inode);
643         const long direct_blks = ADDRS_PER_BLOCK(inode);
644         const long dptrs_per_blk = NIDS_PER_BLOCK;
645         const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
646         const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
647         int n = 0;
648         int level = 0;
649
650         noffset[0] = 0;
651
652         if (block < direct_index) {
653                 offset[n] = block;
654                 goto got;
655         }
656         block -= direct_index;
657         if (block < direct_blks) {
658                 offset[n++] = NODE_DIR1_BLOCK;
659                 noffset[n] = 1;
660                 offset[n] = block;
661                 level = 1;
662                 goto got;
663         }
664         block -= direct_blks;
665         if (block < direct_blks) {
666                 offset[n++] = NODE_DIR2_BLOCK;
667                 noffset[n] = 2;
668                 offset[n] = block;
669                 level = 1;
670                 goto got;
671         }
672         block -= direct_blks;
673         if (block < indirect_blks) {
674                 offset[n++] = NODE_IND1_BLOCK;
675                 noffset[n] = 3;
676                 offset[n++] = block / direct_blks;
677                 noffset[n] = 4 + offset[n - 1];
678                 offset[n] = block % direct_blks;
679                 level = 2;
680                 goto got;
681         }
682         block -= indirect_blks;
683         if (block < indirect_blks) {
684                 offset[n++] = NODE_IND2_BLOCK;
685                 noffset[n] = 4 + dptrs_per_blk;
686                 offset[n++] = block / direct_blks;
687                 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
688                 offset[n] = block % direct_blks;
689                 level = 2;
690                 goto got;
691         }
692         block -= indirect_blks;
693         if (block < dindirect_blks) {
694                 offset[n++] = NODE_DIND_BLOCK;
695                 noffset[n] = 5 + (dptrs_per_blk * 2);
696                 offset[n++] = block / indirect_blks;
697                 noffset[n] = 6 + (dptrs_per_blk * 2) +
698                               offset[n - 1] * (dptrs_per_blk + 1);
699                 offset[n++] = (block / direct_blks) % dptrs_per_blk;
700                 noffset[n] = 7 + (dptrs_per_blk * 2) +
701                               offset[n - 2] * (dptrs_per_blk + 1) +
702                               offset[n - 1];
703                 offset[n] = block % direct_blks;
704                 level = 3;
705                 goto got;
706         } else {
707                 return -E2BIG;
708         }
709 got:
710         return level;
711 }
712
713 /*
714  * Caller should call f2fs_put_dnode(dn).
715  * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
716  * f2fs_unlock_op() only if mode is set with ALLOC_NODE.
717  */
718 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
719 {
720         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
721         struct page *npage[4];
722         struct page *parent = NULL;
723         int offset[4];
724         unsigned int noffset[4];
725         nid_t nids[4];
726         int level, i = 0;
727         int err = 0;
728
729         level = get_node_path(dn->inode, index, offset, noffset);
730         if (level < 0)
731                 return level;
732
733         nids[0] = dn->inode->i_ino;
734         npage[0] = dn->inode_page;
735
736         if (!npage[0]) {
737                 npage[0] = f2fs_get_node_page(sbi, nids[0]);
738                 if (IS_ERR(npage[0]))
739                         return PTR_ERR(npage[0]);
740         }
741
742         /* if inline_data is set, should not report any block indices */
743         if (f2fs_has_inline_data(dn->inode) && index) {
744                 err = -ENOENT;
745                 f2fs_put_page(npage[0], 1);
746                 goto release_out;
747         }
748
749         parent = npage[0];
750         if (level != 0)
751                 nids[1] = get_nid(parent, offset[0], true);
752         dn->inode_page = npage[0];
753         dn->inode_page_locked = true;
754
755         /* get indirect or direct nodes */
756         for (i = 1; i <= level; i++) {
757                 bool done = false;
758
759                 if (!nids[i] && mode == ALLOC_NODE) {
760                         /* alloc new node */
761                         if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
762                                 err = -ENOSPC;
763                                 goto release_pages;
764                         }
765
766                         dn->nid = nids[i];
767                         npage[i] = f2fs_new_node_page(dn, noffset[i]);
768                         if (IS_ERR(npage[i])) {
769                                 f2fs_alloc_nid_failed(sbi, nids[i]);
770                                 err = PTR_ERR(npage[i]);
771                                 goto release_pages;
772                         }
773
774                         set_nid(parent, offset[i - 1], nids[i], i == 1);
775                         f2fs_alloc_nid_done(sbi, nids[i]);
776                         done = true;
777                 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
778                         npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
779                         if (IS_ERR(npage[i])) {
780                                 err = PTR_ERR(npage[i]);
781                                 goto release_pages;
782                         }
783                         done = true;
784                 }
785                 if (i == 1) {
786                         dn->inode_page_locked = false;
787                         unlock_page(parent);
788                 } else {
789                         f2fs_put_page(parent, 1);
790                 }
791
792                 if (!done) {
793                         npage[i] = f2fs_get_node_page(sbi, nids[i]);
794                         if (IS_ERR(npage[i])) {
795                                 err = PTR_ERR(npage[i]);
796                                 f2fs_put_page(npage[0], 0);
797                                 goto release_out;
798                         }
799                 }
800                 if (i < level) {
801                         parent = npage[i];
802                         nids[i + 1] = get_nid(parent, offset[i], false);
803                 }
804         }
805         dn->nid = nids[level];
806         dn->ofs_in_node = offset[level];
807         dn->node_page = npage[level];
808         dn->data_blkaddr = f2fs_data_blkaddr(dn);
809         return 0;
810
811 release_pages:
812         f2fs_put_page(parent, 1);
813         if (i > 1)
814                 f2fs_put_page(npage[0], 0);
815 release_out:
816         dn->inode_page = NULL;
817         dn->node_page = NULL;
818         if (err == -ENOENT) {
819                 dn->cur_level = i;
820                 dn->max_level = level;
821                 dn->ofs_in_node = offset[level];
822         }
823         return err;
824 }
825
826 static int truncate_node(struct dnode_of_data *dn)
827 {
828         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
829         struct node_info ni;
830         int err;
831         pgoff_t index;
832
833         err = f2fs_get_node_info(sbi, dn->nid, &ni);
834         if (err)
835                 return err;
836
837         /* Deallocate node address */
838         f2fs_invalidate_blocks(sbi, ni.blk_addr);
839         dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
840         set_node_addr(sbi, &ni, NULL_ADDR, false);
841
842         if (dn->nid == dn->inode->i_ino) {
843                 f2fs_remove_orphan_inode(sbi, dn->nid);
844                 dec_valid_inode_count(sbi);
845                 f2fs_inode_synced(dn->inode);
846         }
847
848         clear_node_page_dirty(dn->node_page);
849         set_sbi_flag(sbi, SBI_IS_DIRTY);
850
851         index = dn->node_page->index;
852         f2fs_put_page(dn->node_page, 1);
853
854         invalidate_mapping_pages(NODE_MAPPING(sbi),
855                         index, index);
856
857         dn->node_page = NULL;
858         trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
859
860         return 0;
861 }
862
863 static int truncate_dnode(struct dnode_of_data *dn)
864 {
865         struct page *page;
866         int err;
867
868         if (dn->nid == 0)
869                 return 1;
870
871         /* get direct node */
872         page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
873         if (PTR_ERR(page) == -ENOENT)
874                 return 1;
875         else if (IS_ERR(page))
876                 return PTR_ERR(page);
877
878         /* Make dnode_of_data for parameter */
879         dn->node_page = page;
880         dn->ofs_in_node = 0;
881         f2fs_truncate_data_blocks(dn);
882         err = truncate_node(dn);
883         if (err)
884                 return err;
885
886         return 1;
887 }
888
889 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
890                                                 int ofs, int depth)
891 {
892         struct dnode_of_data rdn = *dn;
893         struct page *page;
894         struct f2fs_node *rn;
895         nid_t child_nid;
896         unsigned int child_nofs;
897         int freed = 0;
898         int i, ret;
899
900         if (dn->nid == 0)
901                 return NIDS_PER_BLOCK + 1;
902
903         trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
904
905         page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
906         if (IS_ERR(page)) {
907                 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
908                 return PTR_ERR(page);
909         }
910
911         f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
912
913         rn = F2FS_NODE(page);
914         if (depth < 3) {
915                 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
916                         child_nid = le32_to_cpu(rn->in.nid[i]);
917                         if (child_nid == 0)
918                                 continue;
919                         rdn.nid = child_nid;
920                         ret = truncate_dnode(&rdn);
921                         if (ret < 0)
922                                 goto out_err;
923                         if (set_nid(page, i, 0, false))
924                                 dn->node_changed = true;
925                 }
926         } else {
927                 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
928                 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
929                         child_nid = le32_to_cpu(rn->in.nid[i]);
930                         if (child_nid == 0) {
931                                 child_nofs += NIDS_PER_BLOCK + 1;
932                                 continue;
933                         }
934                         rdn.nid = child_nid;
935                         ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
936                         if (ret == (NIDS_PER_BLOCK + 1)) {
937                                 if (set_nid(page, i, 0, false))
938                                         dn->node_changed = true;
939                                 child_nofs += ret;
940                         } else if (ret < 0 && ret != -ENOENT) {
941                                 goto out_err;
942                         }
943                 }
944                 freed = child_nofs;
945         }
946
947         if (!ofs) {
948                 /* remove current indirect node */
949                 dn->node_page = page;
950                 ret = truncate_node(dn);
951                 if (ret)
952                         goto out_err;
953                 freed++;
954         } else {
955                 f2fs_put_page(page, 1);
956         }
957         trace_f2fs_truncate_nodes_exit(dn->inode, freed);
958         return freed;
959
960 out_err:
961         f2fs_put_page(page, 1);
962         trace_f2fs_truncate_nodes_exit(dn->inode, ret);
963         return ret;
964 }
965
966 static int truncate_partial_nodes(struct dnode_of_data *dn,
967                         struct f2fs_inode *ri, int *offset, int depth)
968 {
969         struct page *pages[2];
970         nid_t nid[3];
971         nid_t child_nid;
972         int err = 0;
973         int i;
974         int idx = depth - 2;
975
976         nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
977         if (!nid[0])
978                 return 0;
979
980         /* get indirect nodes in the path */
981         for (i = 0; i < idx + 1; i++) {
982                 /* reference count'll be increased */
983                 pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
984                 if (IS_ERR(pages[i])) {
985                         err = PTR_ERR(pages[i]);
986                         idx = i - 1;
987                         goto fail;
988                 }
989                 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
990         }
991
992         f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
993
994         /* free direct nodes linked to a partial indirect node */
995         for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
996                 child_nid = get_nid(pages[idx], i, false);
997                 if (!child_nid)
998                         continue;
999                 dn->nid = child_nid;
1000                 err = truncate_dnode(dn);
1001                 if (err < 0)
1002                         goto fail;
1003                 if (set_nid(pages[idx], i, 0, false))
1004                         dn->node_changed = true;
1005         }
1006
1007         if (offset[idx + 1] == 0) {
1008                 dn->node_page = pages[idx];
1009                 dn->nid = nid[idx];
1010                 err = truncate_node(dn);
1011                 if (err)
1012                         goto fail;
1013         } else {
1014                 f2fs_put_page(pages[idx], 1);
1015         }
1016         offset[idx]++;
1017         offset[idx + 1] = 0;
1018         idx--;
1019 fail:
1020         for (i = idx; i >= 0; i--)
1021                 f2fs_put_page(pages[i], 1);
1022
1023         trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1024
1025         return err;
1026 }
1027
1028 /*
1029  * All the block addresses of data and nodes should be nullified.
1030  */
1031 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1032 {
1033         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1034         int err = 0, cont = 1;
1035         int level, offset[4], noffset[4];
1036         unsigned int nofs = 0;
1037         struct f2fs_inode *ri;
1038         struct dnode_of_data dn;
1039         struct page *page;
1040
1041         trace_f2fs_truncate_inode_blocks_enter(inode, from);
1042
1043         level = get_node_path(inode, from, offset, noffset);
1044         if (level < 0) {
1045                 trace_f2fs_truncate_inode_blocks_exit(inode, level);
1046                 return level;
1047         }
1048
1049         page = f2fs_get_node_page(sbi, inode->i_ino);
1050         if (IS_ERR(page)) {
1051                 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1052                 return PTR_ERR(page);
1053         }
1054
1055         set_new_dnode(&dn, inode, page, NULL, 0);
1056         unlock_page(page);
1057
1058         ri = F2FS_INODE(page);
1059         switch (level) {
1060         case 0:
1061         case 1:
1062                 nofs = noffset[1];
1063                 break;
1064         case 2:
1065                 nofs = noffset[1];
1066                 if (!offset[level - 1])
1067                         goto skip_partial;
1068                 err = truncate_partial_nodes(&dn, ri, offset, level);
1069                 if (err < 0 && err != -ENOENT)
1070                         goto fail;
1071                 nofs += 1 + NIDS_PER_BLOCK;
1072                 break;
1073         case 3:
1074                 nofs = 5 + 2 * NIDS_PER_BLOCK;
1075                 if (!offset[level - 1])
1076                         goto skip_partial;
1077                 err = truncate_partial_nodes(&dn, ri, offset, level);
1078                 if (err < 0 && err != -ENOENT)
1079                         goto fail;
1080                 break;
1081         default:
1082                 BUG();
1083         }
1084
1085 skip_partial:
1086         while (cont) {
1087                 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1088                 switch (offset[0]) {
1089                 case NODE_DIR1_BLOCK:
1090                 case NODE_DIR2_BLOCK:
1091                         err = truncate_dnode(&dn);
1092                         break;
1093
1094                 case NODE_IND1_BLOCK:
1095                 case NODE_IND2_BLOCK:
1096                         err = truncate_nodes(&dn, nofs, offset[1], 2);
1097                         break;
1098
1099                 case NODE_DIND_BLOCK:
1100                         err = truncate_nodes(&dn, nofs, offset[1], 3);
1101                         cont = 0;
1102                         break;
1103
1104                 default:
1105                         BUG();
1106                 }
1107                 if (err < 0 && err != -ENOENT)
1108                         goto fail;
1109                 if (offset[1] == 0 &&
1110                                 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
1111                         lock_page(page);
1112                         BUG_ON(page->mapping != NODE_MAPPING(sbi));
1113                         f2fs_wait_on_page_writeback(page, NODE, true, true);
1114                         ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
1115                         set_page_dirty(page);
1116                         unlock_page(page);
1117                 }
1118                 offset[1] = 0;
1119                 offset[0]++;
1120                 nofs += err;
1121         }
1122 fail:
1123         f2fs_put_page(page, 0);
1124         trace_f2fs_truncate_inode_blocks_exit(inode, err);
1125         return err > 0 ? 0 : err;
1126 }
1127
1128 /* caller must lock inode page */
1129 int f2fs_truncate_xattr_node(struct inode *inode)
1130 {
1131         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1132         nid_t nid = F2FS_I(inode)->i_xattr_nid;
1133         struct dnode_of_data dn;
1134         struct page *npage;
1135         int err;
1136
1137         if (!nid)
1138                 return 0;
1139
1140         npage = f2fs_get_node_page(sbi, nid);
1141         if (IS_ERR(npage))
1142                 return PTR_ERR(npage);
1143
1144         set_new_dnode(&dn, inode, NULL, npage, nid);
1145         err = truncate_node(&dn);
1146         if (err) {
1147                 f2fs_put_page(npage, 1);
1148                 return err;
1149         }
1150
1151         f2fs_i_xnid_write(inode, 0);
1152
1153         return 0;
1154 }
1155
1156 /*
1157  * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1158  * f2fs_unlock_op().
1159  */
1160 int f2fs_remove_inode_page(struct inode *inode)
1161 {
1162         struct dnode_of_data dn;
1163         int err;
1164
1165         set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1166         err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1167         if (err)
1168                 return err;
1169
1170         err = f2fs_truncate_xattr_node(inode);
1171         if (err) {
1172                 f2fs_put_dnode(&dn);
1173                 return err;
1174         }
1175
1176         /* remove potential inline_data blocks */
1177         if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1178                                 S_ISLNK(inode->i_mode))
1179                 f2fs_truncate_data_blocks_range(&dn, 1);
1180
1181         /* 0 is possible, after f2fs_new_inode() has failed */
1182         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1183                 f2fs_put_dnode(&dn);
1184                 return -EIO;
1185         }
1186
1187         if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1188                 f2fs_warn(F2FS_I_SB(inode),
1189                         "f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu",
1190                         inode->i_ino, (unsigned long long)inode->i_blocks);
1191                 set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1192         }
1193
1194         /* will put inode & node pages */
1195         err = truncate_node(&dn);
1196         if (err) {
1197                 f2fs_put_dnode(&dn);
1198                 return err;
1199         }
1200         return 0;
1201 }
1202
1203 struct page *f2fs_new_inode_page(struct inode *inode)
1204 {
1205         struct dnode_of_data dn;
1206
1207         /* allocate inode page for new inode */
1208         set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1209
1210         /* caller should f2fs_put_page(page, 1); */
1211         return f2fs_new_node_page(&dn, 0);
1212 }
1213
1214 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1215 {
1216         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1217         struct node_info new_ni;
1218         struct page *page;
1219         int err;
1220
1221         if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1222                 return ERR_PTR(-EPERM);
1223
1224         page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1225         if (!page)
1226                 return ERR_PTR(-ENOMEM);
1227
1228         if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1229                 goto fail;
1230
1231 #ifdef CONFIG_F2FS_CHECK_FS
1232         err = f2fs_get_node_info(sbi, dn->nid, &new_ni);
1233         if (err) {
1234                 dec_valid_node_count(sbi, dn->inode, !ofs);
1235                 goto fail;
1236         }
1237         f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR);
1238 #endif
1239         new_ni.nid = dn->nid;
1240         new_ni.ino = dn->inode->i_ino;
1241         new_ni.blk_addr = NULL_ADDR;
1242         new_ni.flag = 0;
1243         new_ni.version = 0;
1244         set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1245
1246         f2fs_wait_on_page_writeback(page, NODE, true, true);
1247         fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1248         set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1249         if (!PageUptodate(page))
1250                 SetPageUptodate(page);
1251         if (set_page_dirty(page))
1252                 dn->node_changed = true;
1253
1254         if (f2fs_has_xattr_block(ofs))
1255                 f2fs_i_xnid_write(dn->inode, dn->nid);
1256
1257         if (ofs == 0)
1258                 inc_valid_inode_count(sbi);
1259         return page;
1260
1261 fail:
1262         clear_node_page_dirty(page);
1263         f2fs_put_page(page, 1);
1264         return ERR_PTR(err);
1265 }
1266
1267 /*
1268  * Caller should do after getting the following values.
1269  * 0: f2fs_put_page(page, 0)
1270  * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1271  */
1272 static int read_node_page(struct page *page, int op_flags)
1273 {
1274         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1275         struct node_info ni;
1276         struct f2fs_io_info fio = {
1277                 .sbi = sbi,
1278                 .type = NODE,
1279                 .op = REQ_OP_READ,
1280                 .op_flags = op_flags,
1281                 .page = page,
1282                 .encrypted_page = NULL,
1283         };
1284         int err;
1285
1286         if (PageUptodate(page)) {
1287                 if (!f2fs_inode_chksum_verify(sbi, page)) {
1288                         ClearPageUptodate(page);
1289                         return -EFSBADCRC;
1290                 }
1291                 return LOCKED_PAGE;
1292         }
1293
1294         err = f2fs_get_node_info(sbi, page->index, &ni);
1295         if (err)
1296                 return err;
1297
1298         if (unlikely(ni.blk_addr == NULL_ADDR) ||
1299                         is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)) {
1300                 ClearPageUptodate(page);
1301                 return -ENOENT;
1302         }
1303
1304         fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1305
1306         err = f2fs_submit_page_bio(&fio);
1307
1308         if (!err)
1309                 f2fs_update_iostat(sbi, FS_NODE_READ_IO, F2FS_BLKSIZE);
1310
1311         return err;
1312 }
1313
1314 /*
1315  * Readahead a node page
1316  */
1317 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1318 {
1319         struct page *apage;
1320         int err;
1321
1322         if (!nid)
1323                 return;
1324         if (f2fs_check_nid_range(sbi, nid))
1325                 return;
1326
1327         apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
1328         if (apage)
1329                 return;
1330
1331         apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1332         if (!apage)
1333                 return;
1334
1335         err = read_node_page(apage, REQ_RAHEAD);
1336         f2fs_put_page(apage, err ? 1 : 0);
1337 }
1338
1339 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1340                                         struct page *parent, int start)
1341 {
1342         struct page *page;
1343         int err;
1344
1345         if (!nid)
1346                 return ERR_PTR(-ENOENT);
1347         if (f2fs_check_nid_range(sbi, nid))
1348                 return ERR_PTR(-EINVAL);
1349 repeat:
1350         page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1351         if (!page)
1352                 return ERR_PTR(-ENOMEM);
1353
1354         err = read_node_page(page, 0);
1355         if (err < 0) {
1356                 f2fs_put_page(page, 1);
1357                 return ERR_PTR(err);
1358         } else if (err == LOCKED_PAGE) {
1359                 err = 0;
1360                 goto page_hit;
1361         }
1362
1363         if (parent)
1364                 f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1365
1366         lock_page(page);
1367
1368         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1369                 f2fs_put_page(page, 1);
1370                 goto repeat;
1371         }
1372
1373         if (unlikely(!PageUptodate(page))) {
1374                 err = -EIO;
1375                 goto out_err;
1376         }
1377
1378         if (!f2fs_inode_chksum_verify(sbi, page)) {
1379                 err = -EFSBADCRC;
1380                 goto out_err;
1381         }
1382 page_hit:
1383         if(unlikely(nid != nid_of_node(page))) {
1384                 f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1385                           nid, nid_of_node(page), ino_of_node(page),
1386                           ofs_of_node(page), cpver_of_node(page),
1387                           next_blkaddr_of_node(page));
1388                 err = -EINVAL;
1389 out_err:
1390                 ClearPageUptodate(page);
1391                 f2fs_put_page(page, 1);
1392                 return ERR_PTR(err);
1393         }
1394         return page;
1395 }
1396
1397 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1398 {
1399         return __get_node_page(sbi, nid, NULL, 0);
1400 }
1401
1402 struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1403 {
1404         struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1405         nid_t nid = get_nid(parent, start, false);
1406
1407         return __get_node_page(sbi, nid, parent, start);
1408 }
1409
1410 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1411 {
1412         struct inode *inode;
1413         struct page *page;
1414         int ret;
1415
1416         /* should flush inline_data before evict_inode */
1417         inode = ilookup(sbi->sb, ino);
1418         if (!inode)
1419                 return;
1420
1421         page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1422                                         FGP_LOCK|FGP_NOWAIT, 0);
1423         if (!page)
1424                 goto iput_out;
1425
1426         if (!PageUptodate(page))
1427                 goto page_out;
1428
1429         if (!PageDirty(page))
1430                 goto page_out;
1431
1432         if (!clear_page_dirty_for_io(page))
1433                 goto page_out;
1434
1435         ret = f2fs_write_inline_data(inode, page);
1436         inode_dec_dirty_pages(inode);
1437         f2fs_remove_dirty_inode(inode);
1438         if (ret)
1439                 set_page_dirty(page);
1440 page_out:
1441         f2fs_put_page(page, 1);
1442 iput_out:
1443         iput(inode);
1444 }
1445
1446 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1447 {
1448         pgoff_t index;
1449         struct pagevec pvec;
1450         struct page *last_page = NULL;
1451         int nr_pages;
1452
1453         pagevec_init(&pvec);
1454         index = 0;
1455
1456         while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1457                                 PAGECACHE_TAG_DIRTY))) {
1458                 int i;
1459
1460                 for (i = 0; i < nr_pages; i++) {
1461                         struct page *page = pvec.pages[i];
1462
1463                         if (unlikely(f2fs_cp_error(sbi))) {
1464                                 f2fs_put_page(last_page, 0);
1465                                 pagevec_release(&pvec);
1466                                 return ERR_PTR(-EIO);
1467                         }
1468
1469                         if (!IS_DNODE(page) || !is_cold_node(page))
1470                                 continue;
1471                         if (ino_of_node(page) != ino)
1472                                 continue;
1473
1474                         lock_page(page);
1475
1476                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1477 continue_unlock:
1478                                 unlock_page(page);
1479                                 continue;
1480                         }
1481                         if (ino_of_node(page) != ino)
1482                                 goto continue_unlock;
1483
1484                         if (!PageDirty(page)) {
1485                                 /* someone wrote it for us */
1486                                 goto continue_unlock;
1487                         }
1488
1489                         if (last_page)
1490                                 f2fs_put_page(last_page, 0);
1491
1492                         get_page(page);
1493                         last_page = page;
1494                         unlock_page(page);
1495                 }
1496                 pagevec_release(&pvec);
1497                 cond_resched();
1498         }
1499         return last_page;
1500 }
1501
1502 static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1503                                 struct writeback_control *wbc, bool do_balance,
1504                                 enum iostat_type io_type, unsigned int *seq_id)
1505 {
1506         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1507         nid_t nid;
1508         struct node_info ni;
1509         struct f2fs_io_info fio = {
1510                 .sbi = sbi,
1511                 .ino = ino_of_node(page),
1512                 .type = NODE,
1513                 .op = REQ_OP_WRITE,
1514                 .op_flags = wbc_to_write_flags(wbc),
1515                 .page = page,
1516                 .encrypted_page = NULL,
1517                 .submitted = false,
1518                 .io_type = io_type,
1519                 .io_wbc = wbc,
1520         };
1521         unsigned int seq;
1522
1523         trace_f2fs_writepage(page, NODE);
1524
1525         if (unlikely(f2fs_cp_error(sbi))) {
1526                 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) {
1527                         ClearPageUptodate(page);
1528                         dec_page_count(sbi, F2FS_DIRTY_NODES);
1529                         unlock_page(page);
1530                         return 0;
1531                 }
1532                 goto redirty_out;
1533         }
1534
1535         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1536                 goto redirty_out;
1537
1538         if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1539                         wbc->sync_mode == WB_SYNC_NONE &&
1540                         IS_DNODE(page) && is_cold_node(page))
1541                 goto redirty_out;
1542
1543         /* get old block addr of this node page */
1544         nid = nid_of_node(page);
1545         f2fs_bug_on(sbi, page->index != nid);
1546
1547         if (f2fs_get_node_info(sbi, nid, &ni))
1548                 goto redirty_out;
1549
1550         if (wbc->for_reclaim) {
1551                 if (!down_read_trylock(&sbi->node_write))
1552                         goto redirty_out;
1553         } else {
1554                 down_read(&sbi->node_write);
1555         }
1556
1557         /* This page is already truncated */
1558         if (unlikely(ni.blk_addr == NULL_ADDR)) {
1559                 ClearPageUptodate(page);
1560                 dec_page_count(sbi, F2FS_DIRTY_NODES);
1561                 up_read(&sbi->node_write);
1562                 unlock_page(page);
1563                 return 0;
1564         }
1565
1566         if (__is_valid_data_blkaddr(ni.blk_addr) &&
1567                 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1568                                         DATA_GENERIC_ENHANCE)) {
1569                 up_read(&sbi->node_write);
1570                 goto redirty_out;
1571         }
1572
1573         if (atomic && !test_opt(sbi, NOBARRIER))
1574                 fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1575
1576         /* should add to global list before clearing PAGECACHE status */
1577         if (f2fs_in_warm_node_list(sbi, page)) {
1578                 seq = f2fs_add_fsync_node_entry(sbi, page);
1579                 if (seq_id)
1580                         *seq_id = seq;
1581         }
1582
1583         set_page_writeback(page);
1584         ClearPageError(page);
1585
1586         fio.old_blkaddr = ni.blk_addr;
1587         f2fs_do_write_node_page(nid, &fio);
1588         set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1589         dec_page_count(sbi, F2FS_DIRTY_NODES);
1590         up_read(&sbi->node_write);
1591
1592         if (wbc->for_reclaim) {
1593                 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1594                 submitted = NULL;
1595         }
1596
1597         unlock_page(page);
1598
1599         if (unlikely(f2fs_cp_error(sbi))) {
1600                 f2fs_submit_merged_write(sbi, NODE);
1601                 submitted = NULL;
1602         }
1603         if (submitted)
1604                 *submitted = fio.submitted;
1605
1606         if (do_balance)
1607                 f2fs_balance_fs(sbi, false);
1608         return 0;
1609
1610 redirty_out:
1611         redirty_page_for_writepage(wbc, page);
1612         return AOP_WRITEPAGE_ACTIVATE;
1613 }
1614
1615 int f2fs_move_node_page(struct page *node_page, int gc_type)
1616 {
1617         int err = 0;
1618
1619         if (gc_type == FG_GC) {
1620                 struct writeback_control wbc = {
1621                         .sync_mode = WB_SYNC_ALL,
1622                         .nr_to_write = 1,
1623                         .for_reclaim = 0,
1624                 };
1625
1626                 f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1627
1628                 set_page_dirty(node_page);
1629
1630                 if (!clear_page_dirty_for_io(node_page)) {
1631                         err = -EAGAIN;
1632                         goto out_page;
1633                 }
1634
1635                 if (__write_node_page(node_page, false, NULL,
1636                                         &wbc, false, FS_GC_NODE_IO, NULL)) {
1637                         err = -EAGAIN;
1638                         unlock_page(node_page);
1639                 }
1640                 goto release_page;
1641         } else {
1642                 /* set page dirty and write it */
1643                 if (!PageWriteback(node_page))
1644                         set_page_dirty(node_page);
1645         }
1646 out_page:
1647         unlock_page(node_page);
1648 release_page:
1649         f2fs_put_page(node_page, 0);
1650         return err;
1651 }
1652
1653 static int f2fs_write_node_page(struct page *page,
1654                                 struct writeback_control *wbc)
1655 {
1656         return __write_node_page(page, false, NULL, wbc, false,
1657                                                 FS_NODE_IO, NULL);
1658 }
1659
1660 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1661                         struct writeback_control *wbc, bool atomic,
1662                         unsigned int *seq_id)
1663 {
1664         pgoff_t index;
1665         struct pagevec pvec;
1666         int ret = 0;
1667         struct page *last_page = NULL;
1668         bool marked = false;
1669         nid_t ino = inode->i_ino;
1670         int nr_pages;
1671         int nwritten = 0;
1672
1673         if (atomic) {
1674                 last_page = last_fsync_dnode(sbi, ino);
1675                 if (IS_ERR_OR_NULL(last_page))
1676                         return PTR_ERR_OR_ZERO(last_page);
1677         }
1678 retry:
1679         pagevec_init(&pvec);
1680         index = 0;
1681
1682         while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1683                                 PAGECACHE_TAG_DIRTY))) {
1684                 int i;
1685
1686                 for (i = 0; i < nr_pages; i++) {
1687                         struct page *page = pvec.pages[i];
1688                         bool submitted = false;
1689
1690                         if (unlikely(f2fs_cp_error(sbi))) {
1691                                 f2fs_put_page(last_page, 0);
1692                                 pagevec_release(&pvec);
1693                                 ret = -EIO;
1694                                 goto out;
1695                         }
1696
1697                         if (!IS_DNODE(page) || !is_cold_node(page))
1698                                 continue;
1699                         if (ino_of_node(page) != ino)
1700                                 continue;
1701
1702                         lock_page(page);
1703
1704                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1705 continue_unlock:
1706                                 unlock_page(page);
1707                                 continue;
1708                         }
1709                         if (ino_of_node(page) != ino)
1710                                 goto continue_unlock;
1711
1712                         if (!PageDirty(page) && page != last_page) {
1713                                 /* someone wrote it for us */
1714                                 goto continue_unlock;
1715                         }
1716
1717                         f2fs_wait_on_page_writeback(page, NODE, true, true);
1718
1719                         set_fsync_mark(page, 0);
1720                         set_dentry_mark(page, 0);
1721
1722                         if (!atomic || page == last_page) {
1723                                 set_fsync_mark(page, 1);
1724                                 if (IS_INODE(page)) {
1725                                         if (is_inode_flag_set(inode,
1726                                                                 FI_DIRTY_INODE))
1727                                                 f2fs_update_inode(inode, page);
1728                                         set_dentry_mark(page,
1729                                                 f2fs_need_dentry_mark(sbi, ino));
1730                                 }
1731                                 /* may be written by other thread */
1732                                 if (!PageDirty(page))
1733                                         set_page_dirty(page);
1734                         }
1735
1736                         if (!clear_page_dirty_for_io(page))
1737                                 goto continue_unlock;
1738
1739                         ret = __write_node_page(page, atomic &&
1740                                                 page == last_page,
1741                                                 &submitted, wbc, true,
1742                                                 FS_NODE_IO, seq_id);
1743                         if (ret) {
1744                                 unlock_page(page);
1745                                 f2fs_put_page(last_page, 0);
1746                                 break;
1747                         } else if (submitted) {
1748                                 nwritten++;
1749                         }
1750
1751                         if (page == last_page) {
1752                                 f2fs_put_page(page, 0);
1753                                 marked = true;
1754                                 break;
1755                         }
1756                 }
1757                 pagevec_release(&pvec);
1758                 cond_resched();
1759
1760                 if (ret || marked)
1761                         break;
1762         }
1763         if (!ret && atomic && !marked) {
1764                 f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1765                            ino, last_page->index);
1766                 lock_page(last_page);
1767                 f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1768                 set_page_dirty(last_page);
1769                 unlock_page(last_page);
1770                 goto retry;
1771         }
1772 out:
1773         if (nwritten)
1774                 f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1775         return ret ? -EIO: 0;
1776 }
1777
1778 static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
1779 {
1780         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1781         bool clean;
1782
1783         if (inode->i_ino != ino)
1784                 return 0;
1785
1786         if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
1787                 return 0;
1788
1789         spin_lock(&sbi->inode_lock[DIRTY_META]);
1790         clean = list_empty(&F2FS_I(inode)->gdirty_list);
1791         spin_unlock(&sbi->inode_lock[DIRTY_META]);
1792
1793         if (clean)
1794                 return 0;
1795
1796         inode = igrab(inode);
1797         if (!inode)
1798                 return 0;
1799         return 1;
1800 }
1801
1802 static bool flush_dirty_inode(struct page *page)
1803 {
1804         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1805         struct inode *inode;
1806         nid_t ino = ino_of_node(page);
1807
1808         inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
1809         if (!inode)
1810                 return false;
1811
1812         f2fs_update_inode(inode, page);
1813         unlock_page(page);
1814
1815         iput(inode);
1816         return true;
1817 }
1818
1819 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi)
1820 {
1821         pgoff_t index = 0;
1822         struct pagevec pvec;
1823         int nr_pages;
1824
1825         pagevec_init(&pvec);
1826
1827         while ((nr_pages = pagevec_lookup_tag(&pvec,
1828                         NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1829                 int i;
1830
1831                 for (i = 0; i < nr_pages; i++) {
1832                         struct page *page = pvec.pages[i];
1833
1834                         if (!IS_DNODE(page))
1835                                 continue;
1836
1837                         lock_page(page);
1838
1839                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1840 continue_unlock:
1841                                 unlock_page(page);
1842                                 continue;
1843                         }
1844
1845                         if (!PageDirty(page)) {
1846                                 /* someone wrote it for us */
1847                                 goto continue_unlock;
1848                         }
1849
1850                         /* flush inline_data, if it's async context. */
1851                         if (is_inline_node(page)) {
1852                                 clear_inline_node(page);
1853                                 unlock_page(page);
1854                                 flush_inline_data(sbi, ino_of_node(page));
1855                                 continue;
1856                         }
1857                         unlock_page(page);
1858                 }
1859                 pagevec_release(&pvec);
1860                 cond_resched();
1861         }
1862 }
1863
1864 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1865                                 struct writeback_control *wbc,
1866                                 bool do_balance, enum iostat_type io_type)
1867 {
1868         pgoff_t index;
1869         struct pagevec pvec;
1870         int step = 0;
1871         int nwritten = 0;
1872         int ret = 0;
1873         int nr_pages, done = 0;
1874
1875         pagevec_init(&pvec);
1876
1877 next_step:
1878         index = 0;
1879
1880         while (!done && (nr_pages = pagevec_lookup_tag(&pvec,
1881                         NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1882                 int i;
1883
1884                 for (i = 0; i < nr_pages; i++) {
1885                         struct page *page = pvec.pages[i];
1886                         bool submitted = false;
1887                         bool may_dirty = true;
1888
1889                         /* give a priority to WB_SYNC threads */
1890                         if (atomic_read(&sbi->wb_sync_req[NODE]) &&
1891                                         wbc->sync_mode == WB_SYNC_NONE) {
1892                                 done = 1;
1893                                 break;
1894                         }
1895
1896                         /*
1897                          * flushing sequence with step:
1898                          * 0. indirect nodes
1899                          * 1. dentry dnodes
1900                          * 2. file dnodes
1901                          */
1902                         if (step == 0 && IS_DNODE(page))
1903                                 continue;
1904                         if (step == 1 && (!IS_DNODE(page) ||
1905                                                 is_cold_node(page)))
1906                                 continue;
1907                         if (step == 2 && (!IS_DNODE(page) ||
1908                                                 !is_cold_node(page)))
1909                                 continue;
1910 lock_node:
1911                         if (wbc->sync_mode == WB_SYNC_ALL)
1912                                 lock_page(page);
1913                         else if (!trylock_page(page))
1914                                 continue;
1915
1916                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1917 continue_unlock:
1918                                 unlock_page(page);
1919                                 continue;
1920                         }
1921
1922                         if (!PageDirty(page)) {
1923                                 /* someone wrote it for us */
1924                                 goto continue_unlock;
1925                         }
1926
1927                         /* flush inline_data/inode, if it's async context. */
1928                         if (!do_balance)
1929                                 goto write_node;
1930
1931                         /* flush inline_data */
1932                         if (is_inline_node(page)) {
1933                                 clear_inline_node(page);
1934                                 unlock_page(page);
1935                                 flush_inline_data(sbi, ino_of_node(page));
1936                                 goto lock_node;
1937                         }
1938
1939                         /* flush dirty inode */
1940                         if (IS_INODE(page) && may_dirty) {
1941                                 may_dirty = false;
1942                                 if (flush_dirty_inode(page))
1943                                         goto lock_node;
1944                         }
1945 write_node:
1946                         f2fs_wait_on_page_writeback(page, NODE, true, true);
1947
1948                         if (!clear_page_dirty_for_io(page))
1949                                 goto continue_unlock;
1950
1951                         set_fsync_mark(page, 0);
1952                         set_dentry_mark(page, 0);
1953
1954                         ret = __write_node_page(page, false, &submitted,
1955                                                 wbc, do_balance, io_type, NULL);
1956                         if (ret)
1957                                 unlock_page(page);
1958                         else if (submitted)
1959                                 nwritten++;
1960
1961                         if (--wbc->nr_to_write == 0)
1962                                 break;
1963                 }
1964                 pagevec_release(&pvec);
1965                 cond_resched();
1966
1967                 if (wbc->nr_to_write == 0) {
1968                         step = 2;
1969                         break;
1970                 }
1971         }
1972
1973         if (step < 2) {
1974                 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1975                                 wbc->sync_mode == WB_SYNC_NONE && step == 1)
1976                         goto out;
1977                 step++;
1978                 goto next_step;
1979         }
1980 out:
1981         if (nwritten)
1982                 f2fs_submit_merged_write(sbi, NODE);
1983
1984         if (unlikely(f2fs_cp_error(sbi)))
1985                 return -EIO;
1986         return ret;
1987 }
1988
1989 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
1990                                                 unsigned int seq_id)
1991 {
1992         struct fsync_node_entry *fn;
1993         struct page *page;
1994         struct list_head *head = &sbi->fsync_node_list;
1995         unsigned long flags;
1996         unsigned int cur_seq_id = 0;
1997         int ret2, ret = 0;
1998
1999         while (seq_id && cur_seq_id < seq_id) {
2000                 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
2001                 if (list_empty(head)) {
2002                         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2003                         break;
2004                 }
2005                 fn = list_first_entry(head, struct fsync_node_entry, list);
2006                 if (fn->seq_id > seq_id) {
2007                         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2008                         break;
2009                 }
2010                 cur_seq_id = fn->seq_id;
2011                 page = fn->page;
2012                 get_page(page);
2013                 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2014
2015                 f2fs_wait_on_page_writeback(page, NODE, true, false);
2016                 if (TestClearPageError(page))
2017                         ret = -EIO;
2018
2019                 put_page(page);
2020
2021                 if (ret)
2022                         break;
2023         }
2024
2025         ret2 = filemap_check_errors(NODE_MAPPING(sbi));
2026         if (!ret)
2027                 ret = ret2;
2028
2029         return ret;
2030 }
2031
2032 static int f2fs_write_node_pages(struct address_space *mapping,
2033                             struct writeback_control *wbc)
2034 {
2035         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2036         struct blk_plug plug;
2037         long diff;
2038
2039         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2040                 goto skip_write;
2041
2042         /* balancing f2fs's metadata in background */
2043         f2fs_balance_fs_bg(sbi, true);
2044
2045         /* collect a number of dirty node pages and write together */
2046         if (wbc->sync_mode != WB_SYNC_ALL &&
2047                         get_pages(sbi, F2FS_DIRTY_NODES) <
2048                                         nr_pages_to_skip(sbi, NODE))
2049                 goto skip_write;
2050
2051         if (wbc->sync_mode == WB_SYNC_ALL)
2052                 atomic_inc(&sbi->wb_sync_req[NODE]);
2053         else if (atomic_read(&sbi->wb_sync_req[NODE]))
2054                 goto skip_write;
2055
2056         trace_f2fs_writepages(mapping->host, wbc, NODE);
2057
2058         diff = nr_pages_to_write(sbi, NODE, wbc);
2059         blk_start_plug(&plug);
2060         f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
2061         blk_finish_plug(&plug);
2062         wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
2063
2064         if (wbc->sync_mode == WB_SYNC_ALL)
2065                 atomic_dec(&sbi->wb_sync_req[NODE]);
2066         return 0;
2067
2068 skip_write:
2069         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
2070         trace_f2fs_writepages(mapping->host, wbc, NODE);
2071         return 0;
2072 }
2073
2074 static int f2fs_set_node_page_dirty(struct page *page)
2075 {
2076         trace_f2fs_set_page_dirty(page, NODE);
2077
2078         if (!PageUptodate(page))
2079                 SetPageUptodate(page);
2080 #ifdef CONFIG_F2FS_CHECK_FS
2081         if (IS_INODE(page))
2082                 f2fs_inode_chksum_set(F2FS_P_SB(page), page);
2083 #endif
2084         if (!PageDirty(page)) {
2085                 __set_page_dirty_nobuffers(page);
2086                 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
2087                 f2fs_set_page_private(page, 0);
2088                 f2fs_trace_pid(page);
2089                 return 1;
2090         }
2091         return 0;
2092 }
2093
2094 /*
2095  * Structure of the f2fs node operations
2096  */
2097 const struct address_space_operations f2fs_node_aops = {
2098         .writepage      = f2fs_write_node_page,
2099         .writepages     = f2fs_write_node_pages,
2100         .set_page_dirty = f2fs_set_node_page_dirty,
2101         .invalidatepage = f2fs_invalidate_page,
2102         .releasepage    = f2fs_release_page,
2103 #ifdef CONFIG_MIGRATION
2104         .migratepage    = f2fs_migrate_page,
2105 #endif
2106 };
2107
2108 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2109                                                 nid_t n)
2110 {
2111         return radix_tree_lookup(&nm_i->free_nid_root, n);
2112 }
2113
2114 static int __insert_free_nid(struct f2fs_sb_info *sbi,
2115                                 struct free_nid *i)
2116 {
2117         struct f2fs_nm_info *nm_i = NM_I(sbi);
2118
2119         int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2120         if (err)
2121                 return err;
2122
2123         nm_i->nid_cnt[FREE_NID]++;
2124         list_add_tail(&i->list, &nm_i->free_nid_list);
2125         return 0;
2126 }
2127
2128 static void __remove_free_nid(struct f2fs_sb_info *sbi,
2129                         struct free_nid *i, enum nid_state state)
2130 {
2131         struct f2fs_nm_info *nm_i = NM_I(sbi);
2132
2133         f2fs_bug_on(sbi, state != i->state);
2134         nm_i->nid_cnt[state]--;
2135         if (state == FREE_NID)
2136                 list_del(&i->list);
2137         radix_tree_delete(&nm_i->free_nid_root, i->nid);
2138 }
2139
2140 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2141                         enum nid_state org_state, enum nid_state dst_state)
2142 {
2143         struct f2fs_nm_info *nm_i = NM_I(sbi);
2144
2145         f2fs_bug_on(sbi, org_state != i->state);
2146         i->state = dst_state;
2147         nm_i->nid_cnt[org_state]--;
2148         nm_i->nid_cnt[dst_state]++;
2149
2150         switch (dst_state) {
2151         case PREALLOC_NID:
2152                 list_del(&i->list);
2153                 break;
2154         case FREE_NID:
2155                 list_add_tail(&i->list, &nm_i->free_nid_list);
2156                 break;
2157         default:
2158                 BUG_ON(1);
2159         }
2160 }
2161
2162 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2163                                                         bool set, bool build)
2164 {
2165         struct f2fs_nm_info *nm_i = NM_I(sbi);
2166         unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2167         unsigned int nid_ofs = nid - START_NID(nid);
2168
2169         if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2170                 return;
2171
2172         if (set) {
2173                 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2174                         return;
2175                 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2176                 nm_i->free_nid_count[nat_ofs]++;
2177         } else {
2178                 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2179                         return;
2180                 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2181                 if (!build)
2182                         nm_i->free_nid_count[nat_ofs]--;
2183         }
2184 }
2185
2186 /* return if the nid is recognized as free */
2187 static bool add_free_nid(struct f2fs_sb_info *sbi,
2188                                 nid_t nid, bool build, bool update)
2189 {
2190         struct f2fs_nm_info *nm_i = NM_I(sbi);
2191         struct free_nid *i, *e;
2192         struct nat_entry *ne;
2193         int err = -EINVAL;
2194         bool ret = false;
2195
2196         /* 0 nid should not be used */
2197         if (unlikely(nid == 0))
2198                 return false;
2199
2200         if (unlikely(f2fs_check_nid_range(sbi, nid)))
2201                 return false;
2202
2203         i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
2204         i->nid = nid;
2205         i->state = FREE_NID;
2206
2207         radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2208
2209         spin_lock(&nm_i->nid_list_lock);
2210
2211         if (build) {
2212                 /*
2213                  *   Thread A             Thread B
2214                  *  - f2fs_create
2215                  *   - f2fs_new_inode
2216                  *    - f2fs_alloc_nid
2217                  *     - __insert_nid_to_list(PREALLOC_NID)
2218                  *                     - f2fs_balance_fs_bg
2219                  *                      - f2fs_build_free_nids
2220                  *                       - __f2fs_build_free_nids
2221                  *                        - scan_nat_page
2222                  *                         - add_free_nid
2223                  *                          - __lookup_nat_cache
2224                  *  - f2fs_add_link
2225                  *   - f2fs_init_inode_metadata
2226                  *    - f2fs_new_inode_page
2227                  *     - f2fs_new_node_page
2228                  *      - set_node_addr
2229                  *  - f2fs_alloc_nid_done
2230                  *   - __remove_nid_from_list(PREALLOC_NID)
2231                  *                         - __insert_nid_to_list(FREE_NID)
2232                  */
2233                 ne = __lookup_nat_cache(nm_i, nid);
2234                 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2235                                 nat_get_blkaddr(ne) != NULL_ADDR))
2236                         goto err_out;
2237
2238                 e = __lookup_free_nid_list(nm_i, nid);
2239                 if (e) {
2240                         if (e->state == FREE_NID)
2241                                 ret = true;
2242                         goto err_out;
2243                 }
2244         }
2245         ret = true;
2246         err = __insert_free_nid(sbi, i);
2247 err_out:
2248         if (update) {
2249                 update_free_nid_bitmap(sbi, nid, ret, build);
2250                 if (!build)
2251                         nm_i->available_nids++;
2252         }
2253         spin_unlock(&nm_i->nid_list_lock);
2254         radix_tree_preload_end();
2255
2256         if (err)
2257                 kmem_cache_free(free_nid_slab, i);
2258         return ret;
2259 }
2260
2261 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2262 {
2263         struct f2fs_nm_info *nm_i = NM_I(sbi);
2264         struct free_nid *i;
2265         bool need_free = false;
2266
2267         spin_lock(&nm_i->nid_list_lock);
2268         i = __lookup_free_nid_list(nm_i, nid);
2269         if (i && i->state == FREE_NID) {
2270                 __remove_free_nid(sbi, i, FREE_NID);
2271                 need_free = true;
2272         }
2273         spin_unlock(&nm_i->nid_list_lock);
2274
2275         if (need_free)
2276                 kmem_cache_free(free_nid_slab, i);
2277 }
2278
2279 static int scan_nat_page(struct f2fs_sb_info *sbi,
2280                         struct page *nat_page, nid_t start_nid)
2281 {
2282         struct f2fs_nm_info *nm_i = NM_I(sbi);
2283         struct f2fs_nat_block *nat_blk = page_address(nat_page);
2284         block_t blk_addr;
2285         unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2286         int i;
2287
2288         __set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2289
2290         i = start_nid % NAT_ENTRY_PER_BLOCK;
2291
2292         for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2293                 if (unlikely(start_nid >= nm_i->max_nid))
2294                         break;
2295
2296                 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2297
2298                 if (blk_addr == NEW_ADDR)
2299                         return -EINVAL;
2300
2301                 if (blk_addr == NULL_ADDR) {
2302                         add_free_nid(sbi, start_nid, true, true);
2303                 } else {
2304                         spin_lock(&NM_I(sbi)->nid_list_lock);
2305                         update_free_nid_bitmap(sbi, start_nid, false, true);
2306                         spin_unlock(&NM_I(sbi)->nid_list_lock);
2307                 }
2308         }
2309
2310         return 0;
2311 }
2312
2313 static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2314 {
2315         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2316         struct f2fs_journal *journal = curseg->journal;
2317         int i;
2318
2319         down_read(&curseg->journal_rwsem);
2320         for (i = 0; i < nats_in_cursum(journal); i++) {
2321                 block_t addr;
2322                 nid_t nid;
2323
2324                 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2325                 nid = le32_to_cpu(nid_in_journal(journal, i));
2326                 if (addr == NULL_ADDR)
2327                         add_free_nid(sbi, nid, true, false);
2328                 else
2329                         remove_free_nid(sbi, nid);
2330         }
2331         up_read(&curseg->journal_rwsem);
2332 }
2333
2334 static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2335 {
2336         struct f2fs_nm_info *nm_i = NM_I(sbi);
2337         unsigned int i, idx;
2338         nid_t nid;
2339
2340         down_read(&nm_i->nat_tree_lock);
2341
2342         for (i = 0; i < nm_i->nat_blocks; i++) {
2343                 if (!test_bit_le(i, nm_i->nat_block_bitmap))
2344                         continue;
2345                 if (!nm_i->free_nid_count[i])
2346                         continue;
2347                 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2348                         idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2349                                                 NAT_ENTRY_PER_BLOCK, idx);
2350                         if (idx >= NAT_ENTRY_PER_BLOCK)
2351                                 break;
2352
2353                         nid = i * NAT_ENTRY_PER_BLOCK + idx;
2354                         add_free_nid(sbi, nid, true, false);
2355
2356                         if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2357                                 goto out;
2358                 }
2359         }
2360 out:
2361         scan_curseg_cache(sbi);
2362
2363         up_read(&nm_i->nat_tree_lock);
2364 }
2365
2366 static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2367                                                 bool sync, bool mount)
2368 {
2369         struct f2fs_nm_info *nm_i = NM_I(sbi);
2370         int i = 0, ret;
2371         nid_t nid = nm_i->next_scan_nid;
2372
2373         if (unlikely(nid >= nm_i->max_nid))
2374                 nid = 0;
2375
2376         /* Enough entries */
2377         if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2378                 return 0;
2379
2380         if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2381                 return 0;
2382
2383         if (!mount) {
2384                 /* try to find free nids in free_nid_bitmap */
2385                 scan_free_nid_bits(sbi);
2386
2387                 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2388                         return 0;
2389         }
2390
2391         /* readahead nat pages to be scanned */
2392         f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2393                                                         META_NAT, true);
2394
2395         down_read(&nm_i->nat_tree_lock);
2396
2397         while (1) {
2398                 if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2399                                                 nm_i->nat_block_bitmap)) {
2400                         struct page *page = get_current_nat_page(sbi, nid);
2401
2402                         if (IS_ERR(page)) {
2403                                 ret = PTR_ERR(page);
2404                         } else {
2405                                 ret = scan_nat_page(sbi, page, nid);
2406                                 f2fs_put_page(page, 1);
2407                         }
2408
2409                         if (ret) {
2410                                 up_read(&nm_i->nat_tree_lock);
2411                                 f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2412                                 return ret;
2413                         }
2414                 }
2415
2416                 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2417                 if (unlikely(nid >= nm_i->max_nid))
2418                         nid = 0;
2419
2420                 if (++i >= FREE_NID_PAGES)
2421                         break;
2422         }
2423
2424         /* go to the next free nat pages to find free nids abundantly */
2425         nm_i->next_scan_nid = nid;
2426
2427         /* find free nids from current sum_pages */
2428         scan_curseg_cache(sbi);
2429
2430         up_read(&nm_i->nat_tree_lock);
2431
2432         f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2433                                         nm_i->ra_nid_pages, META_NAT, false);
2434
2435         return 0;
2436 }
2437
2438 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2439 {
2440         int ret;
2441
2442         mutex_lock(&NM_I(sbi)->build_lock);
2443         ret = __f2fs_build_free_nids(sbi, sync, mount);
2444         mutex_unlock(&NM_I(sbi)->build_lock);
2445
2446         return ret;
2447 }
2448
2449 /*
2450  * If this function returns success, caller can obtain a new nid
2451  * from second parameter of this function.
2452  * The returned nid could be used ino as well as nid when inode is created.
2453  */
2454 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2455 {
2456         struct f2fs_nm_info *nm_i = NM_I(sbi);
2457         struct free_nid *i = NULL;
2458 retry:
2459         if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2460                 f2fs_show_injection_info(sbi, FAULT_ALLOC_NID);
2461                 return false;
2462         }
2463
2464         spin_lock(&nm_i->nid_list_lock);
2465
2466         if (unlikely(nm_i->available_nids == 0)) {
2467                 spin_unlock(&nm_i->nid_list_lock);
2468                 return false;
2469         }
2470
2471         /* We should not use stale free nids created by f2fs_build_free_nids */
2472         if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2473                 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2474                 i = list_first_entry(&nm_i->free_nid_list,
2475                                         struct free_nid, list);
2476                 *nid = i->nid;
2477
2478                 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2479                 nm_i->available_nids--;
2480
2481                 update_free_nid_bitmap(sbi, *nid, false, false);
2482
2483                 spin_unlock(&nm_i->nid_list_lock);
2484                 return true;
2485         }
2486         spin_unlock(&nm_i->nid_list_lock);
2487
2488         /* Let's scan nat pages and its caches to get free nids */
2489         if (!f2fs_build_free_nids(sbi, true, false))
2490                 goto retry;
2491         return false;
2492 }
2493
2494 /*
2495  * f2fs_alloc_nid() should be called prior to this function.
2496  */
2497 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2498 {
2499         struct f2fs_nm_info *nm_i = NM_I(sbi);
2500         struct free_nid *i;
2501
2502         spin_lock(&nm_i->nid_list_lock);
2503         i = __lookup_free_nid_list(nm_i, nid);
2504         f2fs_bug_on(sbi, !i);
2505         __remove_free_nid(sbi, i, PREALLOC_NID);
2506         spin_unlock(&nm_i->nid_list_lock);
2507
2508         kmem_cache_free(free_nid_slab, i);
2509 }
2510
2511 /*
2512  * f2fs_alloc_nid() should be called prior to this function.
2513  */
2514 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2515 {
2516         struct f2fs_nm_info *nm_i = NM_I(sbi);
2517         struct free_nid *i;
2518         bool need_free = false;
2519
2520         if (!nid)
2521                 return;
2522
2523         spin_lock(&nm_i->nid_list_lock);
2524         i = __lookup_free_nid_list(nm_i, nid);
2525         f2fs_bug_on(sbi, !i);
2526
2527         if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2528                 __remove_free_nid(sbi, i, PREALLOC_NID);
2529                 need_free = true;
2530         } else {
2531                 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2532         }
2533
2534         nm_i->available_nids++;
2535
2536         update_free_nid_bitmap(sbi, nid, true, false);
2537
2538         spin_unlock(&nm_i->nid_list_lock);
2539
2540         if (need_free)
2541                 kmem_cache_free(free_nid_slab, i);
2542 }
2543
2544 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2545 {
2546         struct f2fs_nm_info *nm_i = NM_I(sbi);
2547         int nr = nr_shrink;
2548
2549         if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2550                 return 0;
2551
2552         if (!mutex_trylock(&nm_i->build_lock))
2553                 return 0;
2554
2555         while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) {
2556                 struct free_nid *i, *next;
2557                 unsigned int batch = SHRINK_NID_BATCH_SIZE;
2558
2559                 spin_lock(&nm_i->nid_list_lock);
2560                 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2561                         if (!nr_shrink || !batch ||
2562                                 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2563                                 break;
2564                         __remove_free_nid(sbi, i, FREE_NID);
2565                         kmem_cache_free(free_nid_slab, i);
2566                         nr_shrink--;
2567                         batch--;
2568                 }
2569                 spin_unlock(&nm_i->nid_list_lock);
2570         }
2571
2572         mutex_unlock(&nm_i->build_lock);
2573
2574         return nr - nr_shrink;
2575 }
2576
2577 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2578 {
2579         void *src_addr, *dst_addr;
2580         size_t inline_size;
2581         struct page *ipage;
2582         struct f2fs_inode *ri;
2583
2584         ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2585         if (IS_ERR(ipage))
2586                 return PTR_ERR(ipage);
2587
2588         ri = F2FS_INODE(page);
2589         if (ri->i_inline & F2FS_INLINE_XATTR) {
2590                 set_inode_flag(inode, FI_INLINE_XATTR);
2591         } else {
2592                 clear_inode_flag(inode, FI_INLINE_XATTR);
2593                 goto update_inode;
2594         }
2595
2596         dst_addr = inline_xattr_addr(inode, ipage);
2597         src_addr = inline_xattr_addr(inode, page);
2598         inline_size = inline_xattr_size(inode);
2599
2600         f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2601         memcpy(dst_addr, src_addr, inline_size);
2602 update_inode:
2603         f2fs_update_inode(inode, ipage);
2604         f2fs_put_page(ipage, 1);
2605         return 0;
2606 }
2607
2608 int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2609 {
2610         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2611         nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2612         nid_t new_xnid;
2613         struct dnode_of_data dn;
2614         struct node_info ni;
2615         struct page *xpage;
2616         int err;
2617
2618         if (!prev_xnid)
2619                 goto recover_xnid;
2620
2621         /* 1: invalidate the previous xattr nid */
2622         err = f2fs_get_node_info(sbi, prev_xnid, &ni);
2623         if (err)
2624                 return err;
2625
2626         f2fs_invalidate_blocks(sbi, ni.blk_addr);
2627         dec_valid_node_count(sbi, inode, false);
2628         set_node_addr(sbi, &ni, NULL_ADDR, false);
2629
2630 recover_xnid:
2631         /* 2: update xattr nid in inode */
2632         if (!f2fs_alloc_nid(sbi, &new_xnid))
2633                 return -ENOSPC;
2634
2635         set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2636         xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2637         if (IS_ERR(xpage)) {
2638                 f2fs_alloc_nid_failed(sbi, new_xnid);
2639                 return PTR_ERR(xpage);
2640         }
2641
2642         f2fs_alloc_nid_done(sbi, new_xnid);
2643         f2fs_update_inode_page(inode);
2644
2645         /* 3: update and set xattr node page dirty */
2646         memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
2647
2648         set_page_dirty(xpage);
2649         f2fs_put_page(xpage, 1);
2650
2651         return 0;
2652 }
2653
2654 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2655 {
2656         struct f2fs_inode *src, *dst;
2657         nid_t ino = ino_of_node(page);
2658         struct node_info old_ni, new_ni;
2659         struct page *ipage;
2660         int err;
2661
2662         err = f2fs_get_node_info(sbi, ino, &old_ni);
2663         if (err)
2664                 return err;
2665
2666         if (unlikely(old_ni.blk_addr != NULL_ADDR))
2667                 return -EINVAL;
2668 retry:
2669         ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2670         if (!ipage) {
2671                 congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
2672                 goto retry;
2673         }
2674
2675         /* Should not use this inode from free nid list */
2676         remove_free_nid(sbi, ino);
2677
2678         if (!PageUptodate(ipage))
2679                 SetPageUptodate(ipage);
2680         fill_node_footer(ipage, ino, ino, 0, true);
2681         set_cold_node(ipage, false);
2682
2683         src = F2FS_INODE(page);
2684         dst = F2FS_INODE(ipage);
2685
2686         memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
2687         dst->i_size = 0;
2688         dst->i_blocks = cpu_to_le64(1);
2689         dst->i_links = cpu_to_le32(1);
2690         dst->i_xattr_nid = 0;
2691         dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2692         if (dst->i_inline & F2FS_EXTRA_ATTR) {
2693                 dst->i_extra_isize = src->i_extra_isize;
2694
2695                 if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2696                         F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2697                                                         i_inline_xattr_size))
2698                         dst->i_inline_xattr_size = src->i_inline_xattr_size;
2699
2700                 if (f2fs_sb_has_project_quota(sbi) &&
2701                         F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2702                                                                 i_projid))
2703                         dst->i_projid = src->i_projid;
2704
2705                 if (f2fs_sb_has_inode_crtime(sbi) &&
2706                         F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2707                                                         i_crtime_nsec)) {
2708                         dst->i_crtime = src->i_crtime;
2709                         dst->i_crtime_nsec = src->i_crtime_nsec;
2710                 }
2711         }
2712
2713         new_ni = old_ni;
2714         new_ni.ino = ino;
2715
2716         if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2717                 WARN_ON(1);
2718         set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2719         inc_valid_inode_count(sbi);
2720         set_page_dirty(ipage);
2721         f2fs_put_page(ipage, 1);
2722         return 0;
2723 }
2724
2725 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2726                         unsigned int segno, struct f2fs_summary_block *sum)
2727 {
2728         struct f2fs_node *rn;
2729         struct f2fs_summary *sum_entry;
2730         block_t addr;
2731         int i, idx, last_offset, nrpages;
2732
2733         /* scan the node segment */
2734         last_offset = sbi->blocks_per_seg;
2735         addr = START_BLOCK(sbi, segno);
2736         sum_entry = &sum->entries[0];
2737
2738         for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2739                 nrpages = min(last_offset - i, BIO_MAX_PAGES);
2740
2741                 /* readahead node pages */
2742                 f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2743
2744                 for (idx = addr; idx < addr + nrpages; idx++) {
2745                         struct page *page = f2fs_get_tmp_page(sbi, idx);
2746
2747                         if (IS_ERR(page))
2748                                 return PTR_ERR(page);
2749
2750                         rn = F2FS_NODE(page);
2751                         sum_entry->nid = rn->footer.nid;
2752                         sum_entry->version = 0;
2753                         sum_entry->ofs_in_node = 0;
2754                         sum_entry++;
2755                         f2fs_put_page(page, 1);
2756                 }
2757
2758                 invalidate_mapping_pages(META_MAPPING(sbi), addr,
2759                                                         addr + nrpages);
2760         }
2761         return 0;
2762 }
2763
2764 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2765 {
2766         struct f2fs_nm_info *nm_i = NM_I(sbi);
2767         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2768         struct f2fs_journal *journal = curseg->journal;
2769         int i;
2770
2771         down_write(&curseg->journal_rwsem);
2772         for (i = 0; i < nats_in_cursum(journal); i++) {
2773                 struct nat_entry *ne;
2774                 struct f2fs_nat_entry raw_ne;
2775                 nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2776
2777                 raw_ne = nat_in_journal(journal, i);
2778
2779                 ne = __lookup_nat_cache(nm_i, nid);
2780                 if (!ne) {
2781                         ne = __alloc_nat_entry(nid, true);
2782                         __init_nat_entry(nm_i, ne, &raw_ne, true);
2783                 }
2784
2785                 /*
2786                  * if a free nat in journal has not been used after last
2787                  * checkpoint, we should remove it from available nids,
2788                  * since later we will add it again.
2789                  */
2790                 if (!get_nat_flag(ne, IS_DIRTY) &&
2791                                 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2792                         spin_lock(&nm_i->nid_list_lock);
2793                         nm_i->available_nids--;
2794                         spin_unlock(&nm_i->nid_list_lock);
2795                 }
2796
2797                 __set_nat_cache_dirty(nm_i, ne);
2798         }
2799         update_nats_in_cursum(journal, -i);
2800         up_write(&curseg->journal_rwsem);
2801 }
2802
2803 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2804                                                 struct list_head *head, int max)
2805 {
2806         struct nat_entry_set *cur;
2807
2808         if (nes->entry_cnt >= max)
2809                 goto add_out;
2810
2811         list_for_each_entry(cur, head, set_list) {
2812                 if (cur->entry_cnt >= nes->entry_cnt) {
2813                         list_add(&nes->set_list, cur->set_list.prev);
2814                         return;
2815                 }
2816         }
2817 add_out:
2818         list_add_tail(&nes->set_list, head);
2819 }
2820
2821 static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2822                                                 struct page *page)
2823 {
2824         struct f2fs_nm_info *nm_i = NM_I(sbi);
2825         unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2826         struct f2fs_nat_block *nat_blk = page_address(page);
2827         int valid = 0;
2828         int i = 0;
2829
2830         if (!enabled_nat_bits(sbi, NULL))
2831                 return;
2832
2833         if (nat_index == 0) {
2834                 valid = 1;
2835                 i = 1;
2836         }
2837         for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2838                 if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
2839                         valid++;
2840         }
2841         if (valid == 0) {
2842                 __set_bit_le(nat_index, nm_i->empty_nat_bits);
2843                 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2844                 return;
2845         }
2846
2847         __clear_bit_le(nat_index, nm_i->empty_nat_bits);
2848         if (valid == NAT_ENTRY_PER_BLOCK)
2849                 __set_bit_le(nat_index, nm_i->full_nat_bits);
2850         else
2851                 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2852 }
2853
2854 static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2855                 struct nat_entry_set *set, struct cp_control *cpc)
2856 {
2857         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2858         struct f2fs_journal *journal = curseg->journal;
2859         nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2860         bool to_journal = true;
2861         struct f2fs_nat_block *nat_blk;
2862         struct nat_entry *ne, *cur;
2863         struct page *page = NULL;
2864
2865         /*
2866          * there are two steps to flush nat entries:
2867          * #1, flush nat entries to journal in current hot data summary block.
2868          * #2, flush nat entries to nat page.
2869          */
2870         if (enabled_nat_bits(sbi, cpc) ||
2871                 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2872                 to_journal = false;
2873
2874         if (to_journal) {
2875                 down_write(&curseg->journal_rwsem);
2876         } else {
2877                 page = get_next_nat_page(sbi, start_nid);
2878                 if (IS_ERR(page))
2879                         return PTR_ERR(page);
2880
2881                 nat_blk = page_address(page);
2882                 f2fs_bug_on(sbi, !nat_blk);
2883         }
2884
2885         /* flush dirty nats in nat entry set */
2886         list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2887                 struct f2fs_nat_entry *raw_ne;
2888                 nid_t nid = nat_get_nid(ne);
2889                 int offset;
2890
2891                 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
2892
2893                 if (to_journal) {
2894                         offset = f2fs_lookup_journal_in_cursum(journal,
2895                                                         NAT_JOURNAL, nid, 1);
2896                         f2fs_bug_on(sbi, offset < 0);
2897                         raw_ne = &nat_in_journal(journal, offset);
2898                         nid_in_journal(journal, offset) = cpu_to_le32(nid);
2899                 } else {
2900                         raw_ne = &nat_blk->entries[nid - start_nid];
2901                 }
2902                 raw_nat_from_node_info(raw_ne, &ne->ni);
2903                 nat_reset_flag(ne);
2904                 __clear_nat_cache_dirty(NM_I(sbi), set, ne);
2905                 if (nat_get_blkaddr(ne) == NULL_ADDR) {
2906                         add_free_nid(sbi, nid, false, true);
2907                 } else {
2908                         spin_lock(&NM_I(sbi)->nid_list_lock);
2909                         update_free_nid_bitmap(sbi, nid, false, false);
2910                         spin_unlock(&NM_I(sbi)->nid_list_lock);
2911                 }
2912         }
2913
2914         if (to_journal) {
2915                 up_write(&curseg->journal_rwsem);
2916         } else {
2917                 __update_nat_bits(sbi, start_nid, page);
2918                 f2fs_put_page(page, 1);
2919         }
2920
2921         /* Allow dirty nats by node block allocation in write_begin */
2922         if (!set->entry_cnt) {
2923                 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2924                 kmem_cache_free(nat_entry_set_slab, set);
2925         }
2926         return 0;
2927 }
2928
2929 /*
2930  * This function is called during the checkpointing process.
2931  */
2932 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2933 {
2934         struct f2fs_nm_info *nm_i = NM_I(sbi);
2935         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2936         struct f2fs_journal *journal = curseg->journal;
2937         struct nat_entry_set *setvec[SETVEC_SIZE];
2938         struct nat_entry_set *set, *tmp;
2939         unsigned int found;
2940         nid_t set_idx = 0;
2941         LIST_HEAD(sets);
2942         int err = 0;
2943
2944         /* during unmount, let's flush nat_bits before checking dirty_nat_cnt */
2945         if (enabled_nat_bits(sbi, cpc)) {
2946                 down_write(&nm_i->nat_tree_lock);
2947                 remove_nats_in_journal(sbi);
2948                 up_write(&nm_i->nat_tree_lock);
2949         }
2950
2951         if (!nm_i->dirty_nat_cnt)
2952                 return 0;
2953
2954         down_write(&nm_i->nat_tree_lock);
2955
2956         /*
2957          * if there are no enough space in journal to store dirty nat
2958          * entries, remove all entries from journal and merge them
2959          * into nat entry set.
2960          */
2961         if (enabled_nat_bits(sbi, cpc) ||
2962                 !__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL))
2963                 remove_nats_in_journal(sbi);
2964
2965         while ((found = __gang_lookup_nat_set(nm_i,
2966                                         set_idx, SETVEC_SIZE, setvec))) {
2967                 unsigned idx;
2968                 set_idx = setvec[found - 1]->set + 1;
2969                 for (idx = 0; idx < found; idx++)
2970                         __adjust_nat_entry_set(setvec[idx], &sets,
2971                                                 MAX_NAT_JENTRIES(journal));
2972         }
2973
2974         /* flush dirty nats in nat entry set */
2975         list_for_each_entry_safe(set, tmp, &sets, set_list) {
2976                 err = __flush_nat_entry_set(sbi, set, cpc);
2977                 if (err)
2978                         break;
2979         }
2980
2981         up_write(&nm_i->nat_tree_lock);
2982         /* Allow dirty nats by node block allocation in write_begin */
2983
2984         return err;
2985 }
2986
2987 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
2988 {
2989         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2990         struct f2fs_nm_info *nm_i = NM_I(sbi);
2991         unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
2992         unsigned int i;
2993         __u64 cp_ver = cur_cp_version(ckpt);
2994         block_t nat_bits_addr;
2995
2996         if (!enabled_nat_bits(sbi, NULL))
2997                 return 0;
2998
2999         nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
3000         nm_i->nat_bits = f2fs_kvzalloc(sbi,
3001                         nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
3002         if (!nm_i->nat_bits)
3003                 return -ENOMEM;
3004
3005         nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
3006                                                 nm_i->nat_bits_blocks;
3007         for (i = 0; i < nm_i->nat_bits_blocks; i++) {
3008                 struct page *page;
3009
3010                 page = f2fs_get_meta_page(sbi, nat_bits_addr++);
3011                 if (IS_ERR(page))
3012                         return PTR_ERR(page);
3013
3014                 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
3015                                         page_address(page), F2FS_BLKSIZE);
3016                 f2fs_put_page(page, 1);
3017         }
3018
3019         cp_ver |= (cur_cp_crc(ckpt) << 32);
3020         if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
3021                 disable_nat_bits(sbi, true);
3022                 return 0;
3023         }
3024
3025         nm_i->full_nat_bits = nm_i->nat_bits + 8;
3026         nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
3027
3028         f2fs_notice(sbi, "Found nat_bits in checkpoint");
3029         return 0;
3030 }
3031
3032 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
3033 {
3034         struct f2fs_nm_info *nm_i = NM_I(sbi);
3035         unsigned int i = 0;
3036         nid_t nid, last_nid;
3037
3038         if (!enabled_nat_bits(sbi, NULL))
3039                 return;
3040
3041         for (i = 0; i < nm_i->nat_blocks; i++) {
3042                 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
3043                 if (i >= nm_i->nat_blocks)
3044                         break;
3045
3046                 __set_bit_le(i, nm_i->nat_block_bitmap);
3047
3048                 nid = i * NAT_ENTRY_PER_BLOCK;
3049                 last_nid = nid + NAT_ENTRY_PER_BLOCK;
3050
3051                 spin_lock(&NM_I(sbi)->nid_list_lock);
3052                 for (; nid < last_nid; nid++)
3053                         update_free_nid_bitmap(sbi, nid, true, true);
3054                 spin_unlock(&NM_I(sbi)->nid_list_lock);
3055         }
3056
3057         for (i = 0; i < nm_i->nat_blocks; i++) {
3058                 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
3059                 if (i >= nm_i->nat_blocks)
3060                         break;
3061
3062                 __set_bit_le(i, nm_i->nat_block_bitmap);
3063         }
3064 }
3065
3066 static int init_node_manager(struct f2fs_sb_info *sbi)
3067 {
3068         struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
3069         struct f2fs_nm_info *nm_i = NM_I(sbi);
3070         unsigned char *version_bitmap;
3071         unsigned int nat_segs;
3072         int err;
3073
3074         nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
3075
3076         /* segment_count_nat includes pair segment so divide to 2. */
3077         nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
3078         nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
3079         nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
3080
3081         /* not used nids: 0, node, meta, (and root counted as valid node) */
3082         nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
3083                                                 F2FS_RESERVED_NODE_NUM;
3084         nm_i->nid_cnt[FREE_NID] = 0;
3085         nm_i->nid_cnt[PREALLOC_NID] = 0;
3086         nm_i->nat_cnt = 0;
3087         nm_i->ram_thresh = DEF_RAM_THRESHOLD;
3088         nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
3089         nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
3090
3091         INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
3092         INIT_LIST_HEAD(&nm_i->free_nid_list);
3093         INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
3094         INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
3095         INIT_LIST_HEAD(&nm_i->nat_entries);
3096         spin_lock_init(&nm_i->nat_list_lock);
3097
3098         mutex_init(&nm_i->build_lock);
3099         spin_lock_init(&nm_i->nid_list_lock);
3100         init_rwsem(&nm_i->nat_tree_lock);
3101
3102         nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
3103         nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
3104         version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
3105         if (!version_bitmap)
3106                 return -EFAULT;
3107
3108         nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
3109                                         GFP_KERNEL);
3110         if (!nm_i->nat_bitmap)
3111                 return -ENOMEM;
3112
3113         err = __get_nat_bitmaps(sbi);
3114         if (err)
3115                 return err;
3116
3117 #ifdef CONFIG_F2FS_CHECK_FS
3118         nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3119                                         GFP_KERNEL);
3120         if (!nm_i->nat_bitmap_mir)
3121                 return -ENOMEM;
3122 #endif
3123
3124         return 0;
3125 }
3126
3127 static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3128 {
3129         struct f2fs_nm_info *nm_i = NM_I(sbi);
3130         int i;
3131
3132         nm_i->free_nid_bitmap =
3133                 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *),
3134                                               nm_i->nat_blocks),
3135                               GFP_KERNEL);
3136         if (!nm_i->free_nid_bitmap)
3137                 return -ENOMEM;
3138
3139         for (i = 0; i < nm_i->nat_blocks; i++) {
3140                 nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3141                         f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3142                 if (!nm_i->free_nid_bitmap[i])
3143                         return -ENOMEM;
3144         }
3145
3146         nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3147                                                                 GFP_KERNEL);
3148         if (!nm_i->nat_block_bitmap)
3149                 return -ENOMEM;
3150
3151         nm_i->free_nid_count =
3152                 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3153                                               nm_i->nat_blocks),
3154                               GFP_KERNEL);
3155         if (!nm_i->free_nid_count)
3156                 return -ENOMEM;
3157         return 0;
3158 }
3159
3160 int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3161 {
3162         int err;
3163
3164         sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3165                                                         GFP_KERNEL);
3166         if (!sbi->nm_info)
3167                 return -ENOMEM;
3168
3169         err = init_node_manager(sbi);
3170         if (err)
3171                 return err;
3172
3173         err = init_free_nid_cache(sbi);
3174         if (err)
3175                 return err;
3176
3177         /* load free nid status from nat_bits table */
3178         load_free_nid_bitmap(sbi);
3179
3180         return f2fs_build_free_nids(sbi, true, true);
3181 }
3182
3183 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3184 {
3185         struct f2fs_nm_info *nm_i = NM_I(sbi);
3186         struct free_nid *i, *next_i;
3187         struct nat_entry *natvec[NATVEC_SIZE];
3188         struct nat_entry_set *setvec[SETVEC_SIZE];
3189         nid_t nid = 0;
3190         unsigned int found;
3191
3192         if (!nm_i)
3193                 return;
3194
3195         /* destroy free nid list */
3196         spin_lock(&nm_i->nid_list_lock);
3197         list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3198                 __remove_free_nid(sbi, i, FREE_NID);
3199                 spin_unlock(&nm_i->nid_list_lock);
3200                 kmem_cache_free(free_nid_slab, i);
3201                 spin_lock(&nm_i->nid_list_lock);
3202         }
3203         f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3204         f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3205         f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3206         spin_unlock(&nm_i->nid_list_lock);
3207
3208         /* destroy nat cache */
3209         down_write(&nm_i->nat_tree_lock);
3210         while ((found = __gang_lookup_nat_cache(nm_i,
3211                                         nid, NATVEC_SIZE, natvec))) {
3212                 unsigned idx;
3213
3214                 nid = nat_get_nid(natvec[found - 1]) + 1;
3215                 for (idx = 0; idx < found; idx++) {
3216                         spin_lock(&nm_i->nat_list_lock);
3217                         list_del(&natvec[idx]->list);
3218                         spin_unlock(&nm_i->nat_list_lock);
3219
3220                         __del_from_nat_cache(nm_i, natvec[idx]);
3221                 }
3222         }
3223         f2fs_bug_on(sbi, nm_i->nat_cnt);
3224
3225         /* destroy nat set cache */
3226         nid = 0;
3227         while ((found = __gang_lookup_nat_set(nm_i,
3228                                         nid, SETVEC_SIZE, setvec))) {
3229                 unsigned idx;
3230
3231                 nid = setvec[found - 1]->set + 1;
3232                 for (idx = 0; idx < found; idx++) {
3233                         /* entry_cnt is not zero, when cp_error was occurred */
3234                         f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3235                         radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3236                         kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3237                 }
3238         }
3239         up_write(&nm_i->nat_tree_lock);
3240
3241         kvfree(nm_i->nat_block_bitmap);
3242         if (nm_i->free_nid_bitmap) {
3243                 int i;
3244
3245                 for (i = 0; i < nm_i->nat_blocks; i++)
3246                         kvfree(nm_i->free_nid_bitmap[i]);
3247                 kvfree(nm_i->free_nid_bitmap);
3248         }
3249         kvfree(nm_i->free_nid_count);
3250
3251         kvfree(nm_i->nat_bitmap);
3252         kvfree(nm_i->nat_bits);
3253 #ifdef CONFIG_F2FS_CHECK_FS
3254         kvfree(nm_i->nat_bitmap_mir);
3255 #endif
3256         sbi->nm_info = NULL;
3257         kvfree(nm_i);
3258 }
3259
3260 int __init f2fs_create_node_manager_caches(void)
3261 {
3262         nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry",
3263                         sizeof(struct nat_entry));
3264         if (!nat_entry_slab)
3265                 goto fail;
3266
3267         free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid",
3268                         sizeof(struct free_nid));
3269         if (!free_nid_slab)
3270                 goto destroy_nat_entry;
3271
3272         nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set",
3273                         sizeof(struct nat_entry_set));
3274         if (!nat_entry_set_slab)
3275                 goto destroy_free_nid;
3276
3277         fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry",
3278                         sizeof(struct fsync_node_entry));
3279         if (!fsync_node_entry_slab)
3280                 goto destroy_nat_entry_set;
3281         return 0;
3282
3283 destroy_nat_entry_set:
3284         kmem_cache_destroy(nat_entry_set_slab);
3285 destroy_free_nid:
3286         kmem_cache_destroy(free_nid_slab);
3287 destroy_nat_entry:
3288         kmem_cache_destroy(nat_entry_slab);
3289 fail:
3290         return -ENOMEM;
3291 }
3292
3293 void f2fs_destroy_node_manager_caches(void)
3294 {
3295         kmem_cache_destroy(fsync_node_entry_slab);
3296         kmem_cache_destroy(nat_entry_set_slab);
3297         kmem_cache_destroy(free_nid_slab);
3298         kmem_cache_destroy(nat_entry_slab);
3299 }