Merge tag 'f2fs-for-v5.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/jaegeu...
[linux-2.6-microblaze.git] / fs / f2fs / node.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/node.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/mpage.h>
11 #include <linux/backing-dev.h>
12 #include <linux/blkdev.h>
13 #include <linux/pagevec.h>
14 #include <linux/swap.h>
15
16 #include "f2fs.h"
17 #include "node.h"
18 #include "segment.h"
19 #include "xattr.h"
20 #include "trace.h"
21 #include <trace/events/f2fs.h>
22
23 #define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
24
25 static struct kmem_cache *nat_entry_slab;
26 static struct kmem_cache *free_nid_slab;
27 static struct kmem_cache *nat_entry_set_slab;
28 static struct kmem_cache *fsync_node_entry_slab;
29
30 /*
31  * Check whether the given nid is within node id range.
32  */
33 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
34 {
35         if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
36                 set_sbi_flag(sbi, SBI_NEED_FSCK);
37                 f2fs_msg(sbi->sb, KERN_WARNING,
38                                 "%s: out-of-range nid=%x, run fsck to fix.",
39                                 __func__, nid);
40                 return -EINVAL;
41         }
42         return 0;
43 }
44
45 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
46 {
47         struct f2fs_nm_info *nm_i = NM_I(sbi);
48         struct sysinfo val;
49         unsigned long avail_ram;
50         unsigned long mem_size = 0;
51         bool res = false;
52
53         si_meminfo(&val);
54
55         /* only uses low memory */
56         avail_ram = val.totalram - val.totalhigh;
57
58         /*
59          * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
60          */
61         if (type == FREE_NIDS) {
62                 mem_size = (nm_i->nid_cnt[FREE_NID] *
63                                 sizeof(struct free_nid)) >> PAGE_SHIFT;
64                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
65         } else if (type == NAT_ENTRIES) {
66                 mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
67                                                         PAGE_SHIFT;
68                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
69                 if (excess_cached_nats(sbi))
70                         res = false;
71         } else if (type == DIRTY_DENTS) {
72                 if (sbi->sb->s_bdi->wb.dirty_exceeded)
73                         return false;
74                 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
75                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
76         } else if (type == INO_ENTRIES) {
77                 int i;
78
79                 for (i = 0; i < MAX_INO_ENTRY; i++)
80                         mem_size += sbi->im[i].ino_num *
81                                                 sizeof(struct ino_entry);
82                 mem_size >>= PAGE_SHIFT;
83                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
84         } else if (type == EXTENT_CACHE) {
85                 mem_size = (atomic_read(&sbi->total_ext_tree) *
86                                 sizeof(struct extent_tree) +
87                                 atomic_read(&sbi->total_ext_node) *
88                                 sizeof(struct extent_node)) >> PAGE_SHIFT;
89                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
90         } else if (type == INMEM_PAGES) {
91                 /* it allows 20% / total_ram for inmemory pages */
92                 mem_size = get_pages(sbi, F2FS_INMEM_PAGES);
93                 res = mem_size < (val.totalram / 5);
94         } else {
95                 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
96                         return true;
97         }
98         return res;
99 }
100
101 static void clear_node_page_dirty(struct page *page)
102 {
103         if (PageDirty(page)) {
104                 f2fs_clear_page_cache_dirty_tag(page);
105                 clear_page_dirty_for_io(page);
106                 dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
107         }
108         ClearPageUptodate(page);
109 }
110
111 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
112 {
113         return f2fs_get_meta_page_nofail(sbi, current_nat_addr(sbi, nid));
114 }
115
116 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
117 {
118         struct page *src_page;
119         struct page *dst_page;
120         pgoff_t dst_off;
121         void *src_addr;
122         void *dst_addr;
123         struct f2fs_nm_info *nm_i = NM_I(sbi);
124
125         dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
126
127         /* get current nat block page with lock */
128         src_page = get_current_nat_page(sbi, nid);
129         if (IS_ERR(src_page))
130                 return src_page;
131         dst_page = f2fs_grab_meta_page(sbi, dst_off);
132         f2fs_bug_on(sbi, PageDirty(src_page));
133
134         src_addr = page_address(src_page);
135         dst_addr = page_address(dst_page);
136         memcpy(dst_addr, src_addr, PAGE_SIZE);
137         set_page_dirty(dst_page);
138         f2fs_put_page(src_page, 1);
139
140         set_to_next_nat(nm_i, nid);
141
142         return dst_page;
143 }
144
145 static struct nat_entry *__alloc_nat_entry(nid_t nid, bool no_fail)
146 {
147         struct nat_entry *new;
148
149         if (no_fail)
150                 new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
151         else
152                 new = kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
153         if (new) {
154                 nat_set_nid(new, nid);
155                 nat_reset_flag(new);
156         }
157         return new;
158 }
159
160 static void __free_nat_entry(struct nat_entry *e)
161 {
162         kmem_cache_free(nat_entry_slab, e);
163 }
164
165 /* must be locked by nat_tree_lock */
166 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
167         struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
168 {
169         if (no_fail)
170                 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
171         else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
172                 return NULL;
173
174         if (raw_ne)
175                 node_info_from_raw_nat(&ne->ni, raw_ne);
176
177         spin_lock(&nm_i->nat_list_lock);
178         list_add_tail(&ne->list, &nm_i->nat_entries);
179         spin_unlock(&nm_i->nat_list_lock);
180
181         nm_i->nat_cnt++;
182         return ne;
183 }
184
185 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
186 {
187         struct nat_entry *ne;
188
189         ne = radix_tree_lookup(&nm_i->nat_root, n);
190
191         /* for recent accessed nat entry, move it to tail of lru list */
192         if (ne && !get_nat_flag(ne, IS_DIRTY)) {
193                 spin_lock(&nm_i->nat_list_lock);
194                 if (!list_empty(&ne->list))
195                         list_move_tail(&ne->list, &nm_i->nat_entries);
196                 spin_unlock(&nm_i->nat_list_lock);
197         }
198
199         return ne;
200 }
201
202 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
203                 nid_t start, unsigned int nr, struct nat_entry **ep)
204 {
205         return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
206 }
207
208 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
209 {
210         radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
211         nm_i->nat_cnt--;
212         __free_nat_entry(e);
213 }
214
215 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
216                                                         struct nat_entry *ne)
217 {
218         nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
219         struct nat_entry_set *head;
220
221         head = radix_tree_lookup(&nm_i->nat_set_root, set);
222         if (!head) {
223                 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
224
225                 INIT_LIST_HEAD(&head->entry_list);
226                 INIT_LIST_HEAD(&head->set_list);
227                 head->set = set;
228                 head->entry_cnt = 0;
229                 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
230         }
231         return head;
232 }
233
234 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
235                                                 struct nat_entry *ne)
236 {
237         struct nat_entry_set *head;
238         bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
239
240         if (!new_ne)
241                 head = __grab_nat_entry_set(nm_i, ne);
242
243         /*
244          * update entry_cnt in below condition:
245          * 1. update NEW_ADDR to valid block address;
246          * 2. update old block address to new one;
247          */
248         if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
249                                 !get_nat_flag(ne, IS_DIRTY)))
250                 head->entry_cnt++;
251
252         set_nat_flag(ne, IS_PREALLOC, new_ne);
253
254         if (get_nat_flag(ne, IS_DIRTY))
255                 goto refresh_list;
256
257         nm_i->dirty_nat_cnt++;
258         set_nat_flag(ne, IS_DIRTY, true);
259 refresh_list:
260         spin_lock(&nm_i->nat_list_lock);
261         if (new_ne)
262                 list_del_init(&ne->list);
263         else
264                 list_move_tail(&ne->list, &head->entry_list);
265         spin_unlock(&nm_i->nat_list_lock);
266 }
267
268 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
269                 struct nat_entry_set *set, struct nat_entry *ne)
270 {
271         spin_lock(&nm_i->nat_list_lock);
272         list_move_tail(&ne->list, &nm_i->nat_entries);
273         spin_unlock(&nm_i->nat_list_lock);
274
275         set_nat_flag(ne, IS_DIRTY, false);
276         set->entry_cnt--;
277         nm_i->dirty_nat_cnt--;
278 }
279
280 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
281                 nid_t start, unsigned int nr, struct nat_entry_set **ep)
282 {
283         return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
284                                                         start, nr);
285 }
286
287 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
288 {
289         return NODE_MAPPING(sbi) == page->mapping &&
290                         IS_DNODE(page) && is_cold_node(page);
291 }
292
293 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
294 {
295         spin_lock_init(&sbi->fsync_node_lock);
296         INIT_LIST_HEAD(&sbi->fsync_node_list);
297         sbi->fsync_seg_id = 0;
298         sbi->fsync_node_num = 0;
299 }
300
301 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
302                                                         struct page *page)
303 {
304         struct fsync_node_entry *fn;
305         unsigned long flags;
306         unsigned int seq_id;
307
308         fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab, GFP_NOFS);
309
310         get_page(page);
311         fn->page = page;
312         INIT_LIST_HEAD(&fn->list);
313
314         spin_lock_irqsave(&sbi->fsync_node_lock, flags);
315         list_add_tail(&fn->list, &sbi->fsync_node_list);
316         fn->seq_id = sbi->fsync_seg_id++;
317         seq_id = fn->seq_id;
318         sbi->fsync_node_num++;
319         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
320
321         return seq_id;
322 }
323
324 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
325 {
326         struct fsync_node_entry *fn;
327         unsigned long flags;
328
329         spin_lock_irqsave(&sbi->fsync_node_lock, flags);
330         list_for_each_entry(fn, &sbi->fsync_node_list, list) {
331                 if (fn->page == page) {
332                         list_del(&fn->list);
333                         sbi->fsync_node_num--;
334                         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
335                         kmem_cache_free(fsync_node_entry_slab, fn);
336                         put_page(page);
337                         return;
338                 }
339         }
340         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
341         f2fs_bug_on(sbi, 1);
342 }
343
344 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
345 {
346         unsigned long flags;
347
348         spin_lock_irqsave(&sbi->fsync_node_lock, flags);
349         sbi->fsync_seg_id = 0;
350         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
351 }
352
353 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
354 {
355         struct f2fs_nm_info *nm_i = NM_I(sbi);
356         struct nat_entry *e;
357         bool need = false;
358
359         down_read(&nm_i->nat_tree_lock);
360         e = __lookup_nat_cache(nm_i, nid);
361         if (e) {
362                 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
363                                 !get_nat_flag(e, HAS_FSYNCED_INODE))
364                         need = true;
365         }
366         up_read(&nm_i->nat_tree_lock);
367         return need;
368 }
369
370 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
371 {
372         struct f2fs_nm_info *nm_i = NM_I(sbi);
373         struct nat_entry *e;
374         bool is_cp = true;
375
376         down_read(&nm_i->nat_tree_lock);
377         e = __lookup_nat_cache(nm_i, nid);
378         if (e && !get_nat_flag(e, IS_CHECKPOINTED))
379                 is_cp = false;
380         up_read(&nm_i->nat_tree_lock);
381         return is_cp;
382 }
383
384 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
385 {
386         struct f2fs_nm_info *nm_i = NM_I(sbi);
387         struct nat_entry *e;
388         bool need_update = true;
389
390         down_read(&nm_i->nat_tree_lock);
391         e = __lookup_nat_cache(nm_i, ino);
392         if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
393                         (get_nat_flag(e, IS_CHECKPOINTED) ||
394                          get_nat_flag(e, HAS_FSYNCED_INODE)))
395                 need_update = false;
396         up_read(&nm_i->nat_tree_lock);
397         return need_update;
398 }
399
400 /* must be locked by nat_tree_lock */
401 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
402                                                 struct f2fs_nat_entry *ne)
403 {
404         struct f2fs_nm_info *nm_i = NM_I(sbi);
405         struct nat_entry *new, *e;
406
407         new = __alloc_nat_entry(nid, false);
408         if (!new)
409                 return;
410
411         down_write(&nm_i->nat_tree_lock);
412         e = __lookup_nat_cache(nm_i, nid);
413         if (!e)
414                 e = __init_nat_entry(nm_i, new, ne, false);
415         else
416                 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
417                                 nat_get_blkaddr(e) !=
418                                         le32_to_cpu(ne->block_addr) ||
419                                 nat_get_version(e) != ne->version);
420         up_write(&nm_i->nat_tree_lock);
421         if (e != new)
422                 __free_nat_entry(new);
423 }
424
425 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
426                         block_t new_blkaddr, bool fsync_done)
427 {
428         struct f2fs_nm_info *nm_i = NM_I(sbi);
429         struct nat_entry *e;
430         struct nat_entry *new = __alloc_nat_entry(ni->nid, true);
431
432         down_write(&nm_i->nat_tree_lock);
433         e = __lookup_nat_cache(nm_i, ni->nid);
434         if (!e) {
435                 e = __init_nat_entry(nm_i, new, NULL, true);
436                 copy_node_info(&e->ni, ni);
437                 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
438         } else if (new_blkaddr == NEW_ADDR) {
439                 /*
440                  * when nid is reallocated,
441                  * previous nat entry can be remained in nat cache.
442                  * So, reinitialize it with new information.
443                  */
444                 copy_node_info(&e->ni, ni);
445                 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
446         }
447         /* let's free early to reduce memory consumption */
448         if (e != new)
449                 __free_nat_entry(new);
450
451         /* sanity check */
452         f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
453         f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
454                         new_blkaddr == NULL_ADDR);
455         f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
456                         new_blkaddr == NEW_ADDR);
457         f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
458                         new_blkaddr == NEW_ADDR);
459
460         /* increment version no as node is removed */
461         if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
462                 unsigned char version = nat_get_version(e);
463                 nat_set_version(e, inc_node_version(version));
464         }
465
466         /* change address */
467         nat_set_blkaddr(e, new_blkaddr);
468         if (!__is_valid_data_blkaddr(new_blkaddr))
469                 set_nat_flag(e, IS_CHECKPOINTED, false);
470         __set_nat_cache_dirty(nm_i, e);
471
472         /* update fsync_mark if its inode nat entry is still alive */
473         if (ni->nid != ni->ino)
474                 e = __lookup_nat_cache(nm_i, ni->ino);
475         if (e) {
476                 if (fsync_done && ni->nid == ni->ino)
477                         set_nat_flag(e, HAS_FSYNCED_INODE, true);
478                 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
479         }
480         up_write(&nm_i->nat_tree_lock);
481 }
482
483 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
484 {
485         struct f2fs_nm_info *nm_i = NM_I(sbi);
486         int nr = nr_shrink;
487
488         if (!down_write_trylock(&nm_i->nat_tree_lock))
489                 return 0;
490
491         spin_lock(&nm_i->nat_list_lock);
492         while (nr_shrink) {
493                 struct nat_entry *ne;
494
495                 if (list_empty(&nm_i->nat_entries))
496                         break;
497
498                 ne = list_first_entry(&nm_i->nat_entries,
499                                         struct nat_entry, list);
500                 list_del(&ne->list);
501                 spin_unlock(&nm_i->nat_list_lock);
502
503                 __del_from_nat_cache(nm_i, ne);
504                 nr_shrink--;
505
506                 spin_lock(&nm_i->nat_list_lock);
507         }
508         spin_unlock(&nm_i->nat_list_lock);
509
510         up_write(&nm_i->nat_tree_lock);
511         return nr - nr_shrink;
512 }
513
514 /*
515  * This function always returns success
516  */
517 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
518                                                 struct node_info *ni)
519 {
520         struct f2fs_nm_info *nm_i = NM_I(sbi);
521         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
522         struct f2fs_journal *journal = curseg->journal;
523         nid_t start_nid = START_NID(nid);
524         struct f2fs_nat_block *nat_blk;
525         struct page *page = NULL;
526         struct f2fs_nat_entry ne;
527         struct nat_entry *e;
528         pgoff_t index;
529         block_t blkaddr;
530         int i;
531
532         ni->nid = nid;
533
534         /* Check nat cache */
535         down_read(&nm_i->nat_tree_lock);
536         e = __lookup_nat_cache(nm_i, nid);
537         if (e) {
538                 ni->ino = nat_get_ino(e);
539                 ni->blk_addr = nat_get_blkaddr(e);
540                 ni->version = nat_get_version(e);
541                 up_read(&nm_i->nat_tree_lock);
542                 return 0;
543         }
544
545         memset(&ne, 0, sizeof(struct f2fs_nat_entry));
546
547         /* Check current segment summary */
548         down_read(&curseg->journal_rwsem);
549         i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
550         if (i >= 0) {
551                 ne = nat_in_journal(journal, i);
552                 node_info_from_raw_nat(ni, &ne);
553         }
554         up_read(&curseg->journal_rwsem);
555         if (i >= 0) {
556                 up_read(&nm_i->nat_tree_lock);
557                 goto cache;
558         }
559
560         /* Fill node_info from nat page */
561         index = current_nat_addr(sbi, nid);
562         up_read(&nm_i->nat_tree_lock);
563
564         page = f2fs_get_meta_page(sbi, index);
565         if (IS_ERR(page))
566                 return PTR_ERR(page);
567
568         nat_blk = (struct f2fs_nat_block *)page_address(page);
569         ne = nat_blk->entries[nid - start_nid];
570         node_info_from_raw_nat(ni, &ne);
571         f2fs_put_page(page, 1);
572 cache:
573         blkaddr = le32_to_cpu(ne.block_addr);
574         if (__is_valid_data_blkaddr(blkaddr) &&
575                 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
576                 return -EFAULT;
577
578         /* cache nat entry */
579         cache_nat_entry(sbi, nid, &ne);
580         return 0;
581 }
582
583 /*
584  * readahead MAX_RA_NODE number of node pages.
585  */
586 static void f2fs_ra_node_pages(struct page *parent, int start, int n)
587 {
588         struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
589         struct blk_plug plug;
590         int i, end;
591         nid_t nid;
592
593         blk_start_plug(&plug);
594
595         /* Then, try readahead for siblings of the desired node */
596         end = start + n;
597         end = min(end, NIDS_PER_BLOCK);
598         for (i = start; i < end; i++) {
599                 nid = get_nid(parent, i, false);
600                 f2fs_ra_node_page(sbi, nid);
601         }
602
603         blk_finish_plug(&plug);
604 }
605
606 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
607 {
608         const long direct_index = ADDRS_PER_INODE(dn->inode);
609         const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
610         const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
611         unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
612         int cur_level = dn->cur_level;
613         int max_level = dn->max_level;
614         pgoff_t base = 0;
615
616         if (!dn->max_level)
617                 return pgofs + 1;
618
619         while (max_level-- > cur_level)
620                 skipped_unit *= NIDS_PER_BLOCK;
621
622         switch (dn->max_level) {
623         case 3:
624                 base += 2 * indirect_blks;
625                 /* fall through */
626         case 2:
627                 base += 2 * direct_blks;
628                 /* fall through */
629         case 1:
630                 base += direct_index;
631                 break;
632         default:
633                 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
634         }
635
636         return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
637 }
638
639 /*
640  * The maximum depth is four.
641  * Offset[0] will have raw inode offset.
642  */
643 static int get_node_path(struct inode *inode, long block,
644                                 int offset[4], unsigned int noffset[4])
645 {
646         const long direct_index = ADDRS_PER_INODE(inode);
647         const long direct_blks = ADDRS_PER_BLOCK(inode);
648         const long dptrs_per_blk = NIDS_PER_BLOCK;
649         const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
650         const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
651         int n = 0;
652         int level = 0;
653
654         noffset[0] = 0;
655
656         if (block < direct_index) {
657                 offset[n] = block;
658                 goto got;
659         }
660         block -= direct_index;
661         if (block < direct_blks) {
662                 offset[n++] = NODE_DIR1_BLOCK;
663                 noffset[n] = 1;
664                 offset[n] = block;
665                 level = 1;
666                 goto got;
667         }
668         block -= direct_blks;
669         if (block < direct_blks) {
670                 offset[n++] = NODE_DIR2_BLOCK;
671                 noffset[n] = 2;
672                 offset[n] = block;
673                 level = 1;
674                 goto got;
675         }
676         block -= direct_blks;
677         if (block < indirect_blks) {
678                 offset[n++] = NODE_IND1_BLOCK;
679                 noffset[n] = 3;
680                 offset[n++] = block / direct_blks;
681                 noffset[n] = 4 + offset[n - 1];
682                 offset[n] = block % direct_blks;
683                 level = 2;
684                 goto got;
685         }
686         block -= indirect_blks;
687         if (block < indirect_blks) {
688                 offset[n++] = NODE_IND2_BLOCK;
689                 noffset[n] = 4 + dptrs_per_blk;
690                 offset[n++] = block / direct_blks;
691                 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
692                 offset[n] = block % direct_blks;
693                 level = 2;
694                 goto got;
695         }
696         block -= indirect_blks;
697         if (block < dindirect_blks) {
698                 offset[n++] = NODE_DIND_BLOCK;
699                 noffset[n] = 5 + (dptrs_per_blk * 2);
700                 offset[n++] = block / indirect_blks;
701                 noffset[n] = 6 + (dptrs_per_blk * 2) +
702                               offset[n - 1] * (dptrs_per_blk + 1);
703                 offset[n++] = (block / direct_blks) % dptrs_per_blk;
704                 noffset[n] = 7 + (dptrs_per_blk * 2) +
705                               offset[n - 2] * (dptrs_per_blk + 1) +
706                               offset[n - 1];
707                 offset[n] = block % direct_blks;
708                 level = 3;
709                 goto got;
710         } else {
711                 return -E2BIG;
712         }
713 got:
714         return level;
715 }
716
717 /*
718  * Caller should call f2fs_put_dnode(dn).
719  * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
720  * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
721  * In the case of RDONLY_NODE, we don't need to care about mutex.
722  */
723 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
724 {
725         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
726         struct page *npage[4];
727         struct page *parent = NULL;
728         int offset[4];
729         unsigned int noffset[4];
730         nid_t nids[4];
731         int level, i = 0;
732         int err = 0;
733
734         level = get_node_path(dn->inode, index, offset, noffset);
735         if (level < 0)
736                 return level;
737
738         nids[0] = dn->inode->i_ino;
739         npage[0] = dn->inode_page;
740
741         if (!npage[0]) {
742                 npage[0] = f2fs_get_node_page(sbi, nids[0]);
743                 if (IS_ERR(npage[0]))
744                         return PTR_ERR(npage[0]);
745         }
746
747         /* if inline_data is set, should not report any block indices */
748         if (f2fs_has_inline_data(dn->inode) && index) {
749                 err = -ENOENT;
750                 f2fs_put_page(npage[0], 1);
751                 goto release_out;
752         }
753
754         parent = npage[0];
755         if (level != 0)
756                 nids[1] = get_nid(parent, offset[0], true);
757         dn->inode_page = npage[0];
758         dn->inode_page_locked = true;
759
760         /* get indirect or direct nodes */
761         for (i = 1; i <= level; i++) {
762                 bool done = false;
763
764                 if (!nids[i] && mode == ALLOC_NODE) {
765                         /* alloc new node */
766                         if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
767                                 err = -ENOSPC;
768                                 goto release_pages;
769                         }
770
771                         dn->nid = nids[i];
772                         npage[i] = f2fs_new_node_page(dn, noffset[i]);
773                         if (IS_ERR(npage[i])) {
774                                 f2fs_alloc_nid_failed(sbi, nids[i]);
775                                 err = PTR_ERR(npage[i]);
776                                 goto release_pages;
777                         }
778
779                         set_nid(parent, offset[i - 1], nids[i], i == 1);
780                         f2fs_alloc_nid_done(sbi, nids[i]);
781                         done = true;
782                 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
783                         npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
784                         if (IS_ERR(npage[i])) {
785                                 err = PTR_ERR(npage[i]);
786                                 goto release_pages;
787                         }
788                         done = true;
789                 }
790                 if (i == 1) {
791                         dn->inode_page_locked = false;
792                         unlock_page(parent);
793                 } else {
794                         f2fs_put_page(parent, 1);
795                 }
796
797                 if (!done) {
798                         npage[i] = f2fs_get_node_page(sbi, nids[i]);
799                         if (IS_ERR(npage[i])) {
800                                 err = PTR_ERR(npage[i]);
801                                 f2fs_put_page(npage[0], 0);
802                                 goto release_out;
803                         }
804                 }
805                 if (i < level) {
806                         parent = npage[i];
807                         nids[i + 1] = get_nid(parent, offset[i], false);
808                 }
809         }
810         dn->nid = nids[level];
811         dn->ofs_in_node = offset[level];
812         dn->node_page = npage[level];
813         dn->data_blkaddr = datablock_addr(dn->inode,
814                                 dn->node_page, dn->ofs_in_node);
815         return 0;
816
817 release_pages:
818         f2fs_put_page(parent, 1);
819         if (i > 1)
820                 f2fs_put_page(npage[0], 0);
821 release_out:
822         dn->inode_page = NULL;
823         dn->node_page = NULL;
824         if (err == -ENOENT) {
825                 dn->cur_level = i;
826                 dn->max_level = level;
827                 dn->ofs_in_node = offset[level];
828         }
829         return err;
830 }
831
832 static int truncate_node(struct dnode_of_data *dn)
833 {
834         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
835         struct node_info ni;
836         int err;
837         pgoff_t index;
838
839         err = f2fs_get_node_info(sbi, dn->nid, &ni);
840         if (err)
841                 return err;
842
843         /* Deallocate node address */
844         f2fs_invalidate_blocks(sbi, ni.blk_addr);
845         dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
846         set_node_addr(sbi, &ni, NULL_ADDR, false);
847
848         if (dn->nid == dn->inode->i_ino) {
849                 f2fs_remove_orphan_inode(sbi, dn->nid);
850                 dec_valid_inode_count(sbi);
851                 f2fs_inode_synced(dn->inode);
852         }
853
854         clear_node_page_dirty(dn->node_page);
855         set_sbi_flag(sbi, SBI_IS_DIRTY);
856
857         index = dn->node_page->index;
858         f2fs_put_page(dn->node_page, 1);
859
860         invalidate_mapping_pages(NODE_MAPPING(sbi),
861                         index, index);
862
863         dn->node_page = NULL;
864         trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
865
866         return 0;
867 }
868
869 static int truncate_dnode(struct dnode_of_data *dn)
870 {
871         struct page *page;
872         int err;
873
874         if (dn->nid == 0)
875                 return 1;
876
877         /* get direct node */
878         page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
879         if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
880                 return 1;
881         else if (IS_ERR(page))
882                 return PTR_ERR(page);
883
884         /* Make dnode_of_data for parameter */
885         dn->node_page = page;
886         dn->ofs_in_node = 0;
887         f2fs_truncate_data_blocks(dn);
888         err = truncate_node(dn);
889         if (err)
890                 return err;
891
892         return 1;
893 }
894
895 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
896                                                 int ofs, int depth)
897 {
898         struct dnode_of_data rdn = *dn;
899         struct page *page;
900         struct f2fs_node *rn;
901         nid_t child_nid;
902         unsigned int child_nofs;
903         int freed = 0;
904         int i, ret;
905
906         if (dn->nid == 0)
907                 return NIDS_PER_BLOCK + 1;
908
909         trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
910
911         page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
912         if (IS_ERR(page)) {
913                 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
914                 return PTR_ERR(page);
915         }
916
917         f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
918
919         rn = F2FS_NODE(page);
920         if (depth < 3) {
921                 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
922                         child_nid = le32_to_cpu(rn->in.nid[i]);
923                         if (child_nid == 0)
924                                 continue;
925                         rdn.nid = child_nid;
926                         ret = truncate_dnode(&rdn);
927                         if (ret < 0)
928                                 goto out_err;
929                         if (set_nid(page, i, 0, false))
930                                 dn->node_changed = true;
931                 }
932         } else {
933                 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
934                 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
935                         child_nid = le32_to_cpu(rn->in.nid[i]);
936                         if (child_nid == 0) {
937                                 child_nofs += NIDS_PER_BLOCK + 1;
938                                 continue;
939                         }
940                         rdn.nid = child_nid;
941                         ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
942                         if (ret == (NIDS_PER_BLOCK + 1)) {
943                                 if (set_nid(page, i, 0, false))
944                                         dn->node_changed = true;
945                                 child_nofs += ret;
946                         } else if (ret < 0 && ret != -ENOENT) {
947                                 goto out_err;
948                         }
949                 }
950                 freed = child_nofs;
951         }
952
953         if (!ofs) {
954                 /* remove current indirect node */
955                 dn->node_page = page;
956                 ret = truncate_node(dn);
957                 if (ret)
958                         goto out_err;
959                 freed++;
960         } else {
961                 f2fs_put_page(page, 1);
962         }
963         trace_f2fs_truncate_nodes_exit(dn->inode, freed);
964         return freed;
965
966 out_err:
967         f2fs_put_page(page, 1);
968         trace_f2fs_truncate_nodes_exit(dn->inode, ret);
969         return ret;
970 }
971
972 static int truncate_partial_nodes(struct dnode_of_data *dn,
973                         struct f2fs_inode *ri, int *offset, int depth)
974 {
975         struct page *pages[2];
976         nid_t nid[3];
977         nid_t child_nid;
978         int err = 0;
979         int i;
980         int idx = depth - 2;
981
982         nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
983         if (!nid[0])
984                 return 0;
985
986         /* get indirect nodes in the path */
987         for (i = 0; i < idx + 1; i++) {
988                 /* reference count'll be increased */
989                 pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
990                 if (IS_ERR(pages[i])) {
991                         err = PTR_ERR(pages[i]);
992                         idx = i - 1;
993                         goto fail;
994                 }
995                 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
996         }
997
998         f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
999
1000         /* free direct nodes linked to a partial indirect node */
1001         for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
1002                 child_nid = get_nid(pages[idx], i, false);
1003                 if (!child_nid)
1004                         continue;
1005                 dn->nid = child_nid;
1006                 err = truncate_dnode(dn);
1007                 if (err < 0)
1008                         goto fail;
1009                 if (set_nid(pages[idx], i, 0, false))
1010                         dn->node_changed = true;
1011         }
1012
1013         if (offset[idx + 1] == 0) {
1014                 dn->node_page = pages[idx];
1015                 dn->nid = nid[idx];
1016                 err = truncate_node(dn);
1017                 if (err)
1018                         goto fail;
1019         } else {
1020                 f2fs_put_page(pages[idx], 1);
1021         }
1022         offset[idx]++;
1023         offset[idx + 1] = 0;
1024         idx--;
1025 fail:
1026         for (i = idx; i >= 0; i--)
1027                 f2fs_put_page(pages[i], 1);
1028
1029         trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1030
1031         return err;
1032 }
1033
1034 /*
1035  * All the block addresses of data and nodes should be nullified.
1036  */
1037 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1038 {
1039         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1040         int err = 0, cont = 1;
1041         int level, offset[4], noffset[4];
1042         unsigned int nofs = 0;
1043         struct f2fs_inode *ri;
1044         struct dnode_of_data dn;
1045         struct page *page;
1046
1047         trace_f2fs_truncate_inode_blocks_enter(inode, from);
1048
1049         level = get_node_path(inode, from, offset, noffset);
1050         if (level < 0)
1051                 return level;
1052
1053         page = f2fs_get_node_page(sbi, inode->i_ino);
1054         if (IS_ERR(page)) {
1055                 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1056                 return PTR_ERR(page);
1057         }
1058
1059         set_new_dnode(&dn, inode, page, NULL, 0);
1060         unlock_page(page);
1061
1062         ri = F2FS_INODE(page);
1063         switch (level) {
1064         case 0:
1065         case 1:
1066                 nofs = noffset[1];
1067                 break;
1068         case 2:
1069                 nofs = noffset[1];
1070                 if (!offset[level - 1])
1071                         goto skip_partial;
1072                 err = truncate_partial_nodes(&dn, ri, offset, level);
1073                 if (err < 0 && err != -ENOENT)
1074                         goto fail;
1075                 nofs += 1 + NIDS_PER_BLOCK;
1076                 break;
1077         case 3:
1078                 nofs = 5 + 2 * NIDS_PER_BLOCK;
1079                 if (!offset[level - 1])
1080                         goto skip_partial;
1081                 err = truncate_partial_nodes(&dn, ri, offset, level);
1082                 if (err < 0 && err != -ENOENT)
1083                         goto fail;
1084                 break;
1085         default:
1086                 BUG();
1087         }
1088
1089 skip_partial:
1090         while (cont) {
1091                 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1092                 switch (offset[0]) {
1093                 case NODE_DIR1_BLOCK:
1094                 case NODE_DIR2_BLOCK:
1095                         err = truncate_dnode(&dn);
1096                         break;
1097
1098                 case NODE_IND1_BLOCK:
1099                 case NODE_IND2_BLOCK:
1100                         err = truncate_nodes(&dn, nofs, offset[1], 2);
1101                         break;
1102
1103                 case NODE_DIND_BLOCK:
1104                         err = truncate_nodes(&dn, nofs, offset[1], 3);
1105                         cont = 0;
1106                         break;
1107
1108                 default:
1109                         BUG();
1110                 }
1111                 if (err < 0 && err != -ENOENT)
1112                         goto fail;
1113                 if (offset[1] == 0 &&
1114                                 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
1115                         lock_page(page);
1116                         BUG_ON(page->mapping != NODE_MAPPING(sbi));
1117                         f2fs_wait_on_page_writeback(page, NODE, true, true);
1118                         ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
1119                         set_page_dirty(page);
1120                         unlock_page(page);
1121                 }
1122                 offset[1] = 0;
1123                 offset[0]++;
1124                 nofs += err;
1125         }
1126 fail:
1127         f2fs_put_page(page, 0);
1128         trace_f2fs_truncate_inode_blocks_exit(inode, err);
1129         return err > 0 ? 0 : err;
1130 }
1131
1132 /* caller must lock inode page */
1133 int f2fs_truncate_xattr_node(struct inode *inode)
1134 {
1135         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1136         nid_t nid = F2FS_I(inode)->i_xattr_nid;
1137         struct dnode_of_data dn;
1138         struct page *npage;
1139         int err;
1140
1141         if (!nid)
1142                 return 0;
1143
1144         npage = f2fs_get_node_page(sbi, nid);
1145         if (IS_ERR(npage))
1146                 return PTR_ERR(npage);
1147
1148         set_new_dnode(&dn, inode, NULL, npage, nid);
1149         err = truncate_node(&dn);
1150         if (err) {
1151                 f2fs_put_page(npage, 1);
1152                 return err;
1153         }
1154
1155         f2fs_i_xnid_write(inode, 0);
1156
1157         return 0;
1158 }
1159
1160 /*
1161  * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1162  * f2fs_unlock_op().
1163  */
1164 int f2fs_remove_inode_page(struct inode *inode)
1165 {
1166         struct dnode_of_data dn;
1167         int err;
1168
1169         set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1170         err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1171         if (err)
1172                 return err;
1173
1174         err = f2fs_truncate_xattr_node(inode);
1175         if (err) {
1176                 f2fs_put_dnode(&dn);
1177                 return err;
1178         }
1179
1180         /* remove potential inline_data blocks */
1181         if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1182                                 S_ISLNK(inode->i_mode))
1183                 f2fs_truncate_data_blocks_range(&dn, 1);
1184
1185         /* 0 is possible, after f2fs_new_inode() has failed */
1186         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1187                 f2fs_put_dnode(&dn);
1188                 return -EIO;
1189         }
1190
1191         if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1192                 f2fs_msg(F2FS_I_SB(inode)->sb, KERN_WARNING,
1193                         "Inconsistent i_blocks, ino:%lu, iblocks:%llu",
1194                         inode->i_ino,
1195                         (unsigned long long)inode->i_blocks);
1196                 set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1197         }
1198
1199         /* will put inode & node pages */
1200         err = truncate_node(&dn);
1201         if (err) {
1202                 f2fs_put_dnode(&dn);
1203                 return err;
1204         }
1205         return 0;
1206 }
1207
1208 struct page *f2fs_new_inode_page(struct inode *inode)
1209 {
1210         struct dnode_of_data dn;
1211
1212         /* allocate inode page for new inode */
1213         set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1214
1215         /* caller should f2fs_put_page(page, 1); */
1216         return f2fs_new_node_page(&dn, 0);
1217 }
1218
1219 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1220 {
1221         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1222         struct node_info new_ni;
1223         struct page *page;
1224         int err;
1225
1226         if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1227                 return ERR_PTR(-EPERM);
1228
1229         page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1230         if (!page)
1231                 return ERR_PTR(-ENOMEM);
1232
1233         if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1234                 goto fail;
1235
1236 #ifdef CONFIG_F2FS_CHECK_FS
1237         err = f2fs_get_node_info(sbi, dn->nid, &new_ni);
1238         if (err) {
1239                 dec_valid_node_count(sbi, dn->inode, !ofs);
1240                 goto fail;
1241         }
1242         f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR);
1243 #endif
1244         new_ni.nid = dn->nid;
1245         new_ni.ino = dn->inode->i_ino;
1246         new_ni.blk_addr = NULL_ADDR;
1247         new_ni.flag = 0;
1248         new_ni.version = 0;
1249         set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1250
1251         f2fs_wait_on_page_writeback(page, NODE, true, true);
1252         fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1253         set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1254         if (!PageUptodate(page))
1255                 SetPageUptodate(page);
1256         if (set_page_dirty(page))
1257                 dn->node_changed = true;
1258
1259         if (f2fs_has_xattr_block(ofs))
1260                 f2fs_i_xnid_write(dn->inode, dn->nid);
1261
1262         if (ofs == 0)
1263                 inc_valid_inode_count(sbi);
1264         return page;
1265
1266 fail:
1267         clear_node_page_dirty(page);
1268         f2fs_put_page(page, 1);
1269         return ERR_PTR(err);
1270 }
1271
1272 /*
1273  * Caller should do after getting the following values.
1274  * 0: f2fs_put_page(page, 0)
1275  * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1276  */
1277 static int read_node_page(struct page *page, int op_flags)
1278 {
1279         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1280         struct node_info ni;
1281         struct f2fs_io_info fio = {
1282                 .sbi = sbi,
1283                 .type = NODE,
1284                 .op = REQ_OP_READ,
1285                 .op_flags = op_flags,
1286                 .page = page,
1287                 .encrypted_page = NULL,
1288         };
1289         int err;
1290
1291         if (PageUptodate(page)) {
1292                 if (!f2fs_inode_chksum_verify(sbi, page)) {
1293                         ClearPageUptodate(page);
1294                         return -EBADMSG;
1295                 }
1296                 return LOCKED_PAGE;
1297         }
1298
1299         err = f2fs_get_node_info(sbi, page->index, &ni);
1300         if (err)
1301                 return err;
1302
1303         if (unlikely(ni.blk_addr == NULL_ADDR) ||
1304                         is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)) {
1305                 ClearPageUptodate(page);
1306                 return -ENOENT;
1307         }
1308
1309         fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1310         return f2fs_submit_page_bio(&fio);
1311 }
1312
1313 /*
1314  * Readahead a node page
1315  */
1316 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1317 {
1318         struct page *apage;
1319         int err;
1320
1321         if (!nid)
1322                 return;
1323         if (f2fs_check_nid_range(sbi, nid))
1324                 return;
1325
1326         apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
1327         if (apage)
1328                 return;
1329
1330         apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1331         if (!apage)
1332                 return;
1333
1334         err = read_node_page(apage, REQ_RAHEAD);
1335         f2fs_put_page(apage, err ? 1 : 0);
1336 }
1337
1338 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1339                                         struct page *parent, int start)
1340 {
1341         struct page *page;
1342         int err;
1343
1344         if (!nid)
1345                 return ERR_PTR(-ENOENT);
1346         if (f2fs_check_nid_range(sbi, nid))
1347                 return ERR_PTR(-EINVAL);
1348 repeat:
1349         page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1350         if (!page)
1351                 return ERR_PTR(-ENOMEM);
1352
1353         err = read_node_page(page, 0);
1354         if (err < 0) {
1355                 f2fs_put_page(page, 1);
1356                 return ERR_PTR(err);
1357         } else if (err == LOCKED_PAGE) {
1358                 err = 0;
1359                 goto page_hit;
1360         }
1361
1362         if (parent)
1363                 f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1364
1365         lock_page(page);
1366
1367         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1368                 f2fs_put_page(page, 1);
1369                 goto repeat;
1370         }
1371
1372         if (unlikely(!PageUptodate(page))) {
1373                 err = -EIO;
1374                 goto out_err;
1375         }
1376
1377         if (!f2fs_inode_chksum_verify(sbi, page)) {
1378                 err = -EBADMSG;
1379                 goto out_err;
1380         }
1381 page_hit:
1382         if(unlikely(nid != nid_of_node(page))) {
1383                 f2fs_msg(sbi->sb, KERN_WARNING, "inconsistent node block, "
1384                         "nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1385                         nid, nid_of_node(page), ino_of_node(page),
1386                         ofs_of_node(page), cpver_of_node(page),
1387                         next_blkaddr_of_node(page));
1388                 err = -EINVAL;
1389 out_err:
1390                 ClearPageUptodate(page);
1391                 f2fs_put_page(page, 1);
1392                 return ERR_PTR(err);
1393         }
1394         return page;
1395 }
1396
1397 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1398 {
1399         return __get_node_page(sbi, nid, NULL, 0);
1400 }
1401
1402 struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1403 {
1404         struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1405         nid_t nid = get_nid(parent, start, false);
1406
1407         return __get_node_page(sbi, nid, parent, start);
1408 }
1409
1410 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1411 {
1412         struct inode *inode;
1413         struct page *page;
1414         int ret;
1415
1416         /* should flush inline_data before evict_inode */
1417         inode = ilookup(sbi->sb, ino);
1418         if (!inode)
1419                 return;
1420
1421         page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1422                                         FGP_LOCK|FGP_NOWAIT, 0);
1423         if (!page)
1424                 goto iput_out;
1425
1426         if (!PageUptodate(page))
1427                 goto page_out;
1428
1429         if (!PageDirty(page))
1430                 goto page_out;
1431
1432         if (!clear_page_dirty_for_io(page))
1433                 goto page_out;
1434
1435         ret = f2fs_write_inline_data(inode, page);
1436         inode_dec_dirty_pages(inode);
1437         f2fs_remove_dirty_inode(inode);
1438         if (ret)
1439                 set_page_dirty(page);
1440 page_out:
1441         f2fs_put_page(page, 1);
1442 iput_out:
1443         iput(inode);
1444 }
1445
1446 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1447 {
1448         pgoff_t index;
1449         struct pagevec pvec;
1450         struct page *last_page = NULL;
1451         int nr_pages;
1452
1453         pagevec_init(&pvec);
1454         index = 0;
1455
1456         while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1457                                 PAGECACHE_TAG_DIRTY))) {
1458                 int i;
1459
1460                 for (i = 0; i < nr_pages; i++) {
1461                         struct page *page = pvec.pages[i];
1462
1463                         if (unlikely(f2fs_cp_error(sbi))) {
1464                                 f2fs_put_page(last_page, 0);
1465                                 pagevec_release(&pvec);
1466                                 return ERR_PTR(-EIO);
1467                         }
1468
1469                         if (!IS_DNODE(page) || !is_cold_node(page))
1470                                 continue;
1471                         if (ino_of_node(page) != ino)
1472                                 continue;
1473
1474                         lock_page(page);
1475
1476                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1477 continue_unlock:
1478                                 unlock_page(page);
1479                                 continue;
1480                         }
1481                         if (ino_of_node(page) != ino)
1482                                 goto continue_unlock;
1483
1484                         if (!PageDirty(page)) {
1485                                 /* someone wrote it for us */
1486                                 goto continue_unlock;
1487                         }
1488
1489                         if (last_page)
1490                                 f2fs_put_page(last_page, 0);
1491
1492                         get_page(page);
1493                         last_page = page;
1494                         unlock_page(page);
1495                 }
1496                 pagevec_release(&pvec);
1497                 cond_resched();
1498         }
1499         return last_page;
1500 }
1501
1502 static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1503                                 struct writeback_control *wbc, bool do_balance,
1504                                 enum iostat_type io_type, unsigned int *seq_id)
1505 {
1506         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1507         nid_t nid;
1508         struct node_info ni;
1509         struct f2fs_io_info fio = {
1510                 .sbi = sbi,
1511                 .ino = ino_of_node(page),
1512                 .type = NODE,
1513                 .op = REQ_OP_WRITE,
1514                 .op_flags = wbc_to_write_flags(wbc),
1515                 .page = page,
1516                 .encrypted_page = NULL,
1517                 .submitted = false,
1518                 .io_type = io_type,
1519                 .io_wbc = wbc,
1520         };
1521         unsigned int seq;
1522
1523         trace_f2fs_writepage(page, NODE);
1524
1525         if (unlikely(f2fs_cp_error(sbi)))
1526                 goto redirty_out;
1527
1528         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1529                 goto redirty_out;
1530
1531         if (wbc->sync_mode == WB_SYNC_NONE &&
1532                         IS_DNODE(page) && is_cold_node(page))
1533                 goto redirty_out;
1534
1535         /* get old block addr of this node page */
1536         nid = nid_of_node(page);
1537         f2fs_bug_on(sbi, page->index != nid);
1538
1539         if (f2fs_get_node_info(sbi, nid, &ni))
1540                 goto redirty_out;
1541
1542         if (wbc->for_reclaim) {
1543                 if (!down_read_trylock(&sbi->node_write))
1544                         goto redirty_out;
1545         } else {
1546                 down_read(&sbi->node_write);
1547         }
1548
1549         /* This page is already truncated */
1550         if (unlikely(ni.blk_addr == NULL_ADDR)) {
1551                 ClearPageUptodate(page);
1552                 dec_page_count(sbi, F2FS_DIRTY_NODES);
1553                 up_read(&sbi->node_write);
1554                 unlock_page(page);
1555                 return 0;
1556         }
1557
1558         if (__is_valid_data_blkaddr(ni.blk_addr) &&
1559                 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1560                                         DATA_GENERIC_ENHANCE)) {
1561                 up_read(&sbi->node_write);
1562                 goto redirty_out;
1563         }
1564
1565         if (atomic && !test_opt(sbi, NOBARRIER))
1566                 fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1567
1568         set_page_writeback(page);
1569         ClearPageError(page);
1570
1571         if (f2fs_in_warm_node_list(sbi, page)) {
1572                 seq = f2fs_add_fsync_node_entry(sbi, page);
1573                 if (seq_id)
1574                         *seq_id = seq;
1575         }
1576
1577         fio.old_blkaddr = ni.blk_addr;
1578         f2fs_do_write_node_page(nid, &fio);
1579         set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1580         dec_page_count(sbi, F2FS_DIRTY_NODES);
1581         up_read(&sbi->node_write);
1582
1583         if (wbc->for_reclaim) {
1584                 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1585                 submitted = NULL;
1586         }
1587
1588         unlock_page(page);
1589
1590         if (unlikely(f2fs_cp_error(sbi))) {
1591                 f2fs_submit_merged_write(sbi, NODE);
1592                 submitted = NULL;
1593         }
1594         if (submitted)
1595                 *submitted = fio.submitted;
1596
1597         if (do_balance)
1598                 f2fs_balance_fs(sbi, false);
1599         return 0;
1600
1601 redirty_out:
1602         redirty_page_for_writepage(wbc, page);
1603         return AOP_WRITEPAGE_ACTIVATE;
1604 }
1605
1606 int f2fs_move_node_page(struct page *node_page, int gc_type)
1607 {
1608         int err = 0;
1609
1610         if (gc_type == FG_GC) {
1611                 struct writeback_control wbc = {
1612                         .sync_mode = WB_SYNC_ALL,
1613                         .nr_to_write = 1,
1614                         .for_reclaim = 0,
1615                 };
1616
1617                 f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1618
1619                 set_page_dirty(node_page);
1620
1621                 if (!clear_page_dirty_for_io(node_page)) {
1622                         err = -EAGAIN;
1623                         goto out_page;
1624                 }
1625
1626                 if (__write_node_page(node_page, false, NULL,
1627                                         &wbc, false, FS_GC_NODE_IO, NULL)) {
1628                         err = -EAGAIN;
1629                         unlock_page(node_page);
1630                 }
1631                 goto release_page;
1632         } else {
1633                 /* set page dirty and write it */
1634                 if (!PageWriteback(node_page))
1635                         set_page_dirty(node_page);
1636         }
1637 out_page:
1638         unlock_page(node_page);
1639 release_page:
1640         f2fs_put_page(node_page, 0);
1641         return err;
1642 }
1643
1644 static int f2fs_write_node_page(struct page *page,
1645                                 struct writeback_control *wbc)
1646 {
1647         return __write_node_page(page, false, NULL, wbc, false,
1648                                                 FS_NODE_IO, NULL);
1649 }
1650
1651 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1652                         struct writeback_control *wbc, bool atomic,
1653                         unsigned int *seq_id)
1654 {
1655         pgoff_t index;
1656         struct pagevec pvec;
1657         int ret = 0;
1658         struct page *last_page = NULL;
1659         bool marked = false;
1660         nid_t ino = inode->i_ino;
1661         int nr_pages;
1662         int nwritten = 0;
1663
1664         if (atomic) {
1665                 last_page = last_fsync_dnode(sbi, ino);
1666                 if (IS_ERR_OR_NULL(last_page))
1667                         return PTR_ERR_OR_ZERO(last_page);
1668         }
1669 retry:
1670         pagevec_init(&pvec);
1671         index = 0;
1672
1673         while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1674                                 PAGECACHE_TAG_DIRTY))) {
1675                 int i;
1676
1677                 for (i = 0; i < nr_pages; i++) {
1678                         struct page *page = pvec.pages[i];
1679                         bool submitted = false;
1680
1681                         if (unlikely(f2fs_cp_error(sbi))) {
1682                                 f2fs_put_page(last_page, 0);
1683                                 pagevec_release(&pvec);
1684                                 ret = -EIO;
1685                                 goto out;
1686                         }
1687
1688                         if (!IS_DNODE(page) || !is_cold_node(page))
1689                                 continue;
1690                         if (ino_of_node(page) != ino)
1691                                 continue;
1692
1693                         lock_page(page);
1694
1695                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1696 continue_unlock:
1697                                 unlock_page(page);
1698                                 continue;
1699                         }
1700                         if (ino_of_node(page) != ino)
1701                                 goto continue_unlock;
1702
1703                         if (!PageDirty(page) && page != last_page) {
1704                                 /* someone wrote it for us */
1705                                 goto continue_unlock;
1706                         }
1707
1708                         f2fs_wait_on_page_writeback(page, NODE, true, true);
1709
1710                         set_fsync_mark(page, 0);
1711                         set_dentry_mark(page, 0);
1712
1713                         if (!atomic || page == last_page) {
1714                                 set_fsync_mark(page, 1);
1715                                 if (IS_INODE(page)) {
1716                                         if (is_inode_flag_set(inode,
1717                                                                 FI_DIRTY_INODE))
1718                                                 f2fs_update_inode(inode, page);
1719                                         set_dentry_mark(page,
1720                                                 f2fs_need_dentry_mark(sbi, ino));
1721                                 }
1722                                 /*  may be written by other thread */
1723                                 if (!PageDirty(page))
1724                                         set_page_dirty(page);
1725                         }
1726
1727                         if (!clear_page_dirty_for_io(page))
1728                                 goto continue_unlock;
1729
1730                         ret = __write_node_page(page, atomic &&
1731                                                 page == last_page,
1732                                                 &submitted, wbc, true,
1733                                                 FS_NODE_IO, seq_id);
1734                         if (ret) {
1735                                 unlock_page(page);
1736                                 f2fs_put_page(last_page, 0);
1737                                 break;
1738                         } else if (submitted) {
1739                                 nwritten++;
1740                         }
1741
1742                         if (page == last_page) {
1743                                 f2fs_put_page(page, 0);
1744                                 marked = true;
1745                                 break;
1746                         }
1747                 }
1748                 pagevec_release(&pvec);
1749                 cond_resched();
1750
1751                 if (ret || marked)
1752                         break;
1753         }
1754         if (!ret && atomic && !marked) {
1755                 f2fs_msg(sbi->sb, KERN_DEBUG,
1756                         "Retry to write fsync mark: ino=%u, idx=%lx",
1757                                         ino, last_page->index);
1758                 lock_page(last_page);
1759                 f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1760                 set_page_dirty(last_page);
1761                 unlock_page(last_page);
1762                 goto retry;
1763         }
1764 out:
1765         if (nwritten)
1766                 f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1767         return ret ? -EIO: 0;
1768 }
1769
1770 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1771                                 struct writeback_control *wbc,
1772                                 bool do_balance, enum iostat_type io_type)
1773 {
1774         pgoff_t index;
1775         struct pagevec pvec;
1776         int step = 0;
1777         int nwritten = 0;
1778         int ret = 0;
1779         int nr_pages, done = 0;
1780
1781         pagevec_init(&pvec);
1782
1783 next_step:
1784         index = 0;
1785
1786         while (!done && (nr_pages = pagevec_lookup_tag(&pvec,
1787                         NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1788                 int i;
1789
1790                 for (i = 0; i < nr_pages; i++) {
1791                         struct page *page = pvec.pages[i];
1792                         bool submitted = false;
1793
1794                         /* give a priority to WB_SYNC threads */
1795                         if (atomic_read(&sbi->wb_sync_req[NODE]) &&
1796                                         wbc->sync_mode == WB_SYNC_NONE) {
1797                                 done = 1;
1798                                 break;
1799                         }
1800
1801                         /*
1802                          * flushing sequence with step:
1803                          * 0. indirect nodes
1804                          * 1. dentry dnodes
1805                          * 2. file dnodes
1806                          */
1807                         if (step == 0 && IS_DNODE(page))
1808                                 continue;
1809                         if (step == 1 && (!IS_DNODE(page) ||
1810                                                 is_cold_node(page)))
1811                                 continue;
1812                         if (step == 2 && (!IS_DNODE(page) ||
1813                                                 !is_cold_node(page)))
1814                                 continue;
1815 lock_node:
1816                         if (wbc->sync_mode == WB_SYNC_ALL)
1817                                 lock_page(page);
1818                         else if (!trylock_page(page))
1819                                 continue;
1820
1821                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1822 continue_unlock:
1823                                 unlock_page(page);
1824                                 continue;
1825                         }
1826
1827                         if (!PageDirty(page)) {
1828                                 /* someone wrote it for us */
1829                                 goto continue_unlock;
1830                         }
1831
1832                         /* flush inline_data */
1833                         if (is_inline_node(page)) {
1834                                 clear_inline_node(page);
1835                                 unlock_page(page);
1836                                 flush_inline_data(sbi, ino_of_node(page));
1837                                 goto lock_node;
1838                         }
1839
1840                         f2fs_wait_on_page_writeback(page, NODE, true, true);
1841
1842                         if (!clear_page_dirty_for_io(page))
1843                                 goto continue_unlock;
1844
1845                         set_fsync_mark(page, 0);
1846                         set_dentry_mark(page, 0);
1847
1848                         ret = __write_node_page(page, false, &submitted,
1849                                                 wbc, do_balance, io_type, NULL);
1850                         if (ret)
1851                                 unlock_page(page);
1852                         else if (submitted)
1853                                 nwritten++;
1854
1855                         if (--wbc->nr_to_write == 0)
1856                                 break;
1857                 }
1858                 pagevec_release(&pvec);
1859                 cond_resched();
1860
1861                 if (wbc->nr_to_write == 0) {
1862                         step = 2;
1863                         break;
1864                 }
1865         }
1866
1867         if (step < 2) {
1868                 if (wbc->sync_mode == WB_SYNC_NONE && step == 1)
1869                         goto out;
1870                 step++;
1871                 goto next_step;
1872         }
1873 out:
1874         if (nwritten)
1875                 f2fs_submit_merged_write(sbi, NODE);
1876
1877         if (unlikely(f2fs_cp_error(sbi)))
1878                 return -EIO;
1879         return ret;
1880 }
1881
1882 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
1883                                                 unsigned int seq_id)
1884 {
1885         struct fsync_node_entry *fn;
1886         struct page *page;
1887         struct list_head *head = &sbi->fsync_node_list;
1888         unsigned long flags;
1889         unsigned int cur_seq_id = 0;
1890         int ret2, ret = 0;
1891
1892         while (seq_id && cur_seq_id < seq_id) {
1893                 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
1894                 if (list_empty(head)) {
1895                         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
1896                         break;
1897                 }
1898                 fn = list_first_entry(head, struct fsync_node_entry, list);
1899                 if (fn->seq_id > seq_id) {
1900                         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
1901                         break;
1902                 }
1903                 cur_seq_id = fn->seq_id;
1904                 page = fn->page;
1905                 get_page(page);
1906                 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
1907
1908                 f2fs_wait_on_page_writeback(page, NODE, true, false);
1909                 if (TestClearPageError(page))
1910                         ret = -EIO;
1911
1912                 put_page(page);
1913
1914                 if (ret)
1915                         break;
1916         }
1917
1918         ret2 = filemap_check_errors(NODE_MAPPING(sbi));
1919         if (!ret)
1920                 ret = ret2;
1921
1922         return ret;
1923 }
1924
1925 static int f2fs_write_node_pages(struct address_space *mapping,
1926                             struct writeback_control *wbc)
1927 {
1928         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1929         struct blk_plug plug;
1930         long diff;
1931
1932         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1933                 goto skip_write;
1934
1935         /* balancing f2fs's metadata in background */
1936         f2fs_balance_fs_bg(sbi);
1937
1938         /* collect a number of dirty node pages and write together */
1939         if (wbc->sync_mode != WB_SYNC_ALL &&
1940                         get_pages(sbi, F2FS_DIRTY_NODES) <
1941                                         nr_pages_to_skip(sbi, NODE))
1942                 goto skip_write;
1943
1944         if (wbc->sync_mode == WB_SYNC_ALL)
1945                 atomic_inc(&sbi->wb_sync_req[NODE]);
1946         else if (atomic_read(&sbi->wb_sync_req[NODE]))
1947                 goto skip_write;
1948
1949         trace_f2fs_writepages(mapping->host, wbc, NODE);
1950
1951         diff = nr_pages_to_write(sbi, NODE, wbc);
1952         blk_start_plug(&plug);
1953         f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
1954         blk_finish_plug(&plug);
1955         wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1956
1957         if (wbc->sync_mode == WB_SYNC_ALL)
1958                 atomic_dec(&sbi->wb_sync_req[NODE]);
1959         return 0;
1960
1961 skip_write:
1962         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
1963         trace_f2fs_writepages(mapping->host, wbc, NODE);
1964         return 0;
1965 }
1966
1967 static int f2fs_set_node_page_dirty(struct page *page)
1968 {
1969         trace_f2fs_set_page_dirty(page, NODE);
1970
1971         if (!PageUptodate(page))
1972                 SetPageUptodate(page);
1973 #ifdef CONFIG_F2FS_CHECK_FS
1974         if (IS_INODE(page))
1975                 f2fs_inode_chksum_set(F2FS_P_SB(page), page);
1976 #endif
1977         if (!PageDirty(page)) {
1978                 __set_page_dirty_nobuffers(page);
1979                 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
1980                 f2fs_set_page_private(page, 0);
1981                 f2fs_trace_pid(page);
1982                 return 1;
1983         }
1984         return 0;
1985 }
1986
1987 /*
1988  * Structure of the f2fs node operations
1989  */
1990 const struct address_space_operations f2fs_node_aops = {
1991         .writepage      = f2fs_write_node_page,
1992         .writepages     = f2fs_write_node_pages,
1993         .set_page_dirty = f2fs_set_node_page_dirty,
1994         .invalidatepage = f2fs_invalidate_page,
1995         .releasepage    = f2fs_release_page,
1996 #ifdef CONFIG_MIGRATION
1997         .migratepage    = f2fs_migrate_page,
1998 #endif
1999 };
2000
2001 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2002                                                 nid_t n)
2003 {
2004         return radix_tree_lookup(&nm_i->free_nid_root, n);
2005 }
2006
2007 static int __insert_free_nid(struct f2fs_sb_info *sbi,
2008                         struct free_nid *i, enum nid_state state)
2009 {
2010         struct f2fs_nm_info *nm_i = NM_I(sbi);
2011
2012         int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2013         if (err)
2014                 return err;
2015
2016         f2fs_bug_on(sbi, state != i->state);
2017         nm_i->nid_cnt[state]++;
2018         if (state == FREE_NID)
2019                 list_add_tail(&i->list, &nm_i->free_nid_list);
2020         return 0;
2021 }
2022
2023 static void __remove_free_nid(struct f2fs_sb_info *sbi,
2024                         struct free_nid *i, enum nid_state state)
2025 {
2026         struct f2fs_nm_info *nm_i = NM_I(sbi);
2027
2028         f2fs_bug_on(sbi, state != i->state);
2029         nm_i->nid_cnt[state]--;
2030         if (state == FREE_NID)
2031                 list_del(&i->list);
2032         radix_tree_delete(&nm_i->free_nid_root, i->nid);
2033 }
2034
2035 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2036                         enum nid_state org_state, enum nid_state dst_state)
2037 {
2038         struct f2fs_nm_info *nm_i = NM_I(sbi);
2039
2040         f2fs_bug_on(sbi, org_state != i->state);
2041         i->state = dst_state;
2042         nm_i->nid_cnt[org_state]--;
2043         nm_i->nid_cnt[dst_state]++;
2044
2045         switch (dst_state) {
2046         case PREALLOC_NID:
2047                 list_del(&i->list);
2048                 break;
2049         case FREE_NID:
2050                 list_add_tail(&i->list, &nm_i->free_nid_list);
2051                 break;
2052         default:
2053                 BUG_ON(1);
2054         }
2055 }
2056
2057 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2058                                                         bool set, bool build)
2059 {
2060         struct f2fs_nm_info *nm_i = NM_I(sbi);
2061         unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2062         unsigned int nid_ofs = nid - START_NID(nid);
2063
2064         if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2065                 return;
2066
2067         if (set) {
2068                 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2069                         return;
2070                 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2071                 nm_i->free_nid_count[nat_ofs]++;
2072         } else {
2073                 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2074                         return;
2075                 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2076                 if (!build)
2077                         nm_i->free_nid_count[nat_ofs]--;
2078         }
2079 }
2080
2081 /* return if the nid is recognized as free */
2082 static bool add_free_nid(struct f2fs_sb_info *sbi,
2083                                 nid_t nid, bool build, bool update)
2084 {
2085         struct f2fs_nm_info *nm_i = NM_I(sbi);
2086         struct free_nid *i, *e;
2087         struct nat_entry *ne;
2088         int err = -EINVAL;
2089         bool ret = false;
2090
2091         /* 0 nid should not be used */
2092         if (unlikely(nid == 0))
2093                 return false;
2094
2095         if (unlikely(f2fs_check_nid_range(sbi, nid)))
2096                 return false;
2097
2098         i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
2099         i->nid = nid;
2100         i->state = FREE_NID;
2101
2102         radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2103
2104         spin_lock(&nm_i->nid_list_lock);
2105
2106         if (build) {
2107                 /*
2108                  *   Thread A             Thread B
2109                  *  - f2fs_create
2110                  *   - f2fs_new_inode
2111                  *    - f2fs_alloc_nid
2112                  *     - __insert_nid_to_list(PREALLOC_NID)
2113                  *                     - f2fs_balance_fs_bg
2114                  *                      - f2fs_build_free_nids
2115                  *                       - __f2fs_build_free_nids
2116                  *                        - scan_nat_page
2117                  *                         - add_free_nid
2118                  *                          - __lookup_nat_cache
2119                  *  - f2fs_add_link
2120                  *   - f2fs_init_inode_metadata
2121                  *    - f2fs_new_inode_page
2122                  *     - f2fs_new_node_page
2123                  *      - set_node_addr
2124                  *  - f2fs_alloc_nid_done
2125                  *   - __remove_nid_from_list(PREALLOC_NID)
2126                  *                         - __insert_nid_to_list(FREE_NID)
2127                  */
2128                 ne = __lookup_nat_cache(nm_i, nid);
2129                 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2130                                 nat_get_blkaddr(ne) != NULL_ADDR))
2131                         goto err_out;
2132
2133                 e = __lookup_free_nid_list(nm_i, nid);
2134                 if (e) {
2135                         if (e->state == FREE_NID)
2136                                 ret = true;
2137                         goto err_out;
2138                 }
2139         }
2140         ret = true;
2141         err = __insert_free_nid(sbi, i, FREE_NID);
2142 err_out:
2143         if (update) {
2144                 update_free_nid_bitmap(sbi, nid, ret, build);
2145                 if (!build)
2146                         nm_i->available_nids++;
2147         }
2148         spin_unlock(&nm_i->nid_list_lock);
2149         radix_tree_preload_end();
2150
2151         if (err)
2152                 kmem_cache_free(free_nid_slab, i);
2153         return ret;
2154 }
2155
2156 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2157 {
2158         struct f2fs_nm_info *nm_i = NM_I(sbi);
2159         struct free_nid *i;
2160         bool need_free = false;
2161
2162         spin_lock(&nm_i->nid_list_lock);
2163         i = __lookup_free_nid_list(nm_i, nid);
2164         if (i && i->state == FREE_NID) {
2165                 __remove_free_nid(sbi, i, FREE_NID);
2166                 need_free = true;
2167         }
2168         spin_unlock(&nm_i->nid_list_lock);
2169
2170         if (need_free)
2171                 kmem_cache_free(free_nid_slab, i);
2172 }
2173
2174 static int scan_nat_page(struct f2fs_sb_info *sbi,
2175                         struct page *nat_page, nid_t start_nid)
2176 {
2177         struct f2fs_nm_info *nm_i = NM_I(sbi);
2178         struct f2fs_nat_block *nat_blk = page_address(nat_page);
2179         block_t blk_addr;
2180         unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2181         int i;
2182
2183         __set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2184
2185         i = start_nid % NAT_ENTRY_PER_BLOCK;
2186
2187         for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2188                 if (unlikely(start_nid >= nm_i->max_nid))
2189                         break;
2190
2191                 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2192
2193                 if (blk_addr == NEW_ADDR)
2194                         return -EINVAL;
2195
2196                 if (blk_addr == NULL_ADDR) {
2197                         add_free_nid(sbi, start_nid, true, true);
2198                 } else {
2199                         spin_lock(&NM_I(sbi)->nid_list_lock);
2200                         update_free_nid_bitmap(sbi, start_nid, false, true);
2201                         spin_unlock(&NM_I(sbi)->nid_list_lock);
2202                 }
2203         }
2204
2205         return 0;
2206 }
2207
2208 static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2209 {
2210         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2211         struct f2fs_journal *journal = curseg->journal;
2212         int i;
2213
2214         down_read(&curseg->journal_rwsem);
2215         for (i = 0; i < nats_in_cursum(journal); i++) {
2216                 block_t addr;
2217                 nid_t nid;
2218
2219                 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2220                 nid = le32_to_cpu(nid_in_journal(journal, i));
2221                 if (addr == NULL_ADDR)
2222                         add_free_nid(sbi, nid, true, false);
2223                 else
2224                         remove_free_nid(sbi, nid);
2225         }
2226         up_read(&curseg->journal_rwsem);
2227 }
2228
2229 static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2230 {
2231         struct f2fs_nm_info *nm_i = NM_I(sbi);
2232         unsigned int i, idx;
2233         nid_t nid;
2234
2235         down_read(&nm_i->nat_tree_lock);
2236
2237         for (i = 0; i < nm_i->nat_blocks; i++) {
2238                 if (!test_bit_le(i, nm_i->nat_block_bitmap))
2239                         continue;
2240                 if (!nm_i->free_nid_count[i])
2241                         continue;
2242                 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2243                         idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2244                                                 NAT_ENTRY_PER_BLOCK, idx);
2245                         if (idx >= NAT_ENTRY_PER_BLOCK)
2246                                 break;
2247
2248                         nid = i * NAT_ENTRY_PER_BLOCK + idx;
2249                         add_free_nid(sbi, nid, true, false);
2250
2251                         if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2252                                 goto out;
2253                 }
2254         }
2255 out:
2256         scan_curseg_cache(sbi);
2257
2258         up_read(&nm_i->nat_tree_lock);
2259 }
2260
2261 static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2262                                                 bool sync, bool mount)
2263 {
2264         struct f2fs_nm_info *nm_i = NM_I(sbi);
2265         int i = 0, ret;
2266         nid_t nid = nm_i->next_scan_nid;
2267
2268         if (unlikely(nid >= nm_i->max_nid))
2269                 nid = 0;
2270
2271         /* Enough entries */
2272         if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2273                 return 0;
2274
2275         if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2276                 return 0;
2277
2278         if (!mount) {
2279                 /* try to find free nids in free_nid_bitmap */
2280                 scan_free_nid_bits(sbi);
2281
2282                 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2283                         return 0;
2284         }
2285
2286         /* readahead nat pages to be scanned */
2287         f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2288                                                         META_NAT, true);
2289
2290         down_read(&nm_i->nat_tree_lock);
2291
2292         while (1) {
2293                 if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2294                                                 nm_i->nat_block_bitmap)) {
2295                         struct page *page = get_current_nat_page(sbi, nid);
2296
2297                         if (IS_ERR(page)) {
2298                                 ret = PTR_ERR(page);
2299                         } else {
2300                                 ret = scan_nat_page(sbi, page, nid);
2301                                 f2fs_put_page(page, 1);
2302                         }
2303
2304                         if (ret) {
2305                                 up_read(&nm_i->nat_tree_lock);
2306                                 f2fs_bug_on(sbi, !mount);
2307                                 f2fs_msg(sbi->sb, KERN_ERR,
2308                                         "NAT is corrupt, run fsck to fix it");
2309                                 return ret;
2310                         }
2311                 }
2312
2313                 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2314                 if (unlikely(nid >= nm_i->max_nid))
2315                         nid = 0;
2316
2317                 if (++i >= FREE_NID_PAGES)
2318                         break;
2319         }
2320
2321         /* go to the next free nat pages to find free nids abundantly */
2322         nm_i->next_scan_nid = nid;
2323
2324         /* find free nids from current sum_pages */
2325         scan_curseg_cache(sbi);
2326
2327         up_read(&nm_i->nat_tree_lock);
2328
2329         f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2330                                         nm_i->ra_nid_pages, META_NAT, false);
2331
2332         return 0;
2333 }
2334
2335 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2336 {
2337         int ret;
2338
2339         mutex_lock(&NM_I(sbi)->build_lock);
2340         ret = __f2fs_build_free_nids(sbi, sync, mount);
2341         mutex_unlock(&NM_I(sbi)->build_lock);
2342
2343         return ret;
2344 }
2345
2346 /*
2347  * If this function returns success, caller can obtain a new nid
2348  * from second parameter of this function.
2349  * The returned nid could be used ino as well as nid when inode is created.
2350  */
2351 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2352 {
2353         struct f2fs_nm_info *nm_i = NM_I(sbi);
2354         struct free_nid *i = NULL;
2355 retry:
2356         if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2357                 f2fs_show_injection_info(FAULT_ALLOC_NID);
2358                 return false;
2359         }
2360
2361         spin_lock(&nm_i->nid_list_lock);
2362
2363         if (unlikely(nm_i->available_nids == 0)) {
2364                 spin_unlock(&nm_i->nid_list_lock);
2365                 return false;
2366         }
2367
2368         /* We should not use stale free nids created by f2fs_build_free_nids */
2369         if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2370                 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2371                 i = list_first_entry(&nm_i->free_nid_list,
2372                                         struct free_nid, list);
2373                 *nid = i->nid;
2374
2375                 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2376                 nm_i->available_nids--;
2377
2378                 update_free_nid_bitmap(sbi, *nid, false, false);
2379
2380                 spin_unlock(&nm_i->nid_list_lock);
2381                 return true;
2382         }
2383         spin_unlock(&nm_i->nid_list_lock);
2384
2385         /* Let's scan nat pages and its caches to get free nids */
2386         if (!f2fs_build_free_nids(sbi, true, false))
2387                 goto retry;
2388         return false;
2389 }
2390
2391 /*
2392  * f2fs_alloc_nid() should be called prior to this function.
2393  */
2394 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2395 {
2396         struct f2fs_nm_info *nm_i = NM_I(sbi);
2397         struct free_nid *i;
2398
2399         spin_lock(&nm_i->nid_list_lock);
2400         i = __lookup_free_nid_list(nm_i, nid);
2401         f2fs_bug_on(sbi, !i);
2402         __remove_free_nid(sbi, i, PREALLOC_NID);
2403         spin_unlock(&nm_i->nid_list_lock);
2404
2405         kmem_cache_free(free_nid_slab, i);
2406 }
2407
2408 /*
2409  * f2fs_alloc_nid() should be called prior to this function.
2410  */
2411 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2412 {
2413         struct f2fs_nm_info *nm_i = NM_I(sbi);
2414         struct free_nid *i;
2415         bool need_free = false;
2416
2417         if (!nid)
2418                 return;
2419
2420         spin_lock(&nm_i->nid_list_lock);
2421         i = __lookup_free_nid_list(nm_i, nid);
2422         f2fs_bug_on(sbi, !i);
2423
2424         if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2425                 __remove_free_nid(sbi, i, PREALLOC_NID);
2426                 need_free = true;
2427         } else {
2428                 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2429         }
2430
2431         nm_i->available_nids++;
2432
2433         update_free_nid_bitmap(sbi, nid, true, false);
2434
2435         spin_unlock(&nm_i->nid_list_lock);
2436
2437         if (need_free)
2438                 kmem_cache_free(free_nid_slab, i);
2439 }
2440
2441 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2442 {
2443         struct f2fs_nm_info *nm_i = NM_I(sbi);
2444         struct free_nid *i, *next;
2445         int nr = nr_shrink;
2446
2447         if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2448                 return 0;
2449
2450         if (!mutex_trylock(&nm_i->build_lock))
2451                 return 0;
2452
2453         spin_lock(&nm_i->nid_list_lock);
2454         list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2455                 if (nr_shrink <= 0 ||
2456                                 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2457                         break;
2458
2459                 __remove_free_nid(sbi, i, FREE_NID);
2460                 kmem_cache_free(free_nid_slab, i);
2461                 nr_shrink--;
2462         }
2463         spin_unlock(&nm_i->nid_list_lock);
2464         mutex_unlock(&nm_i->build_lock);
2465
2466         return nr - nr_shrink;
2467 }
2468
2469 void f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2470 {
2471         void *src_addr, *dst_addr;
2472         size_t inline_size;
2473         struct page *ipage;
2474         struct f2fs_inode *ri;
2475
2476         ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2477         f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
2478
2479         ri = F2FS_INODE(page);
2480         if (ri->i_inline & F2FS_INLINE_XATTR) {
2481                 set_inode_flag(inode, FI_INLINE_XATTR);
2482         } else {
2483                 clear_inode_flag(inode, FI_INLINE_XATTR);
2484                 goto update_inode;
2485         }
2486
2487         dst_addr = inline_xattr_addr(inode, ipage);
2488         src_addr = inline_xattr_addr(inode, page);
2489         inline_size = inline_xattr_size(inode);
2490
2491         f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2492         memcpy(dst_addr, src_addr, inline_size);
2493 update_inode:
2494         f2fs_update_inode(inode, ipage);
2495         f2fs_put_page(ipage, 1);
2496 }
2497
2498 int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2499 {
2500         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2501         nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2502         nid_t new_xnid;
2503         struct dnode_of_data dn;
2504         struct node_info ni;
2505         struct page *xpage;
2506         int err;
2507
2508         if (!prev_xnid)
2509                 goto recover_xnid;
2510
2511         /* 1: invalidate the previous xattr nid */
2512         err = f2fs_get_node_info(sbi, prev_xnid, &ni);
2513         if (err)
2514                 return err;
2515
2516         f2fs_invalidate_blocks(sbi, ni.blk_addr);
2517         dec_valid_node_count(sbi, inode, false);
2518         set_node_addr(sbi, &ni, NULL_ADDR, false);
2519
2520 recover_xnid:
2521         /* 2: update xattr nid in inode */
2522         if (!f2fs_alloc_nid(sbi, &new_xnid))
2523                 return -ENOSPC;
2524
2525         set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2526         xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2527         if (IS_ERR(xpage)) {
2528                 f2fs_alloc_nid_failed(sbi, new_xnid);
2529                 return PTR_ERR(xpage);
2530         }
2531
2532         f2fs_alloc_nid_done(sbi, new_xnid);
2533         f2fs_update_inode_page(inode);
2534
2535         /* 3: update and set xattr node page dirty */
2536         memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
2537
2538         set_page_dirty(xpage);
2539         f2fs_put_page(xpage, 1);
2540
2541         return 0;
2542 }
2543
2544 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2545 {
2546         struct f2fs_inode *src, *dst;
2547         nid_t ino = ino_of_node(page);
2548         struct node_info old_ni, new_ni;
2549         struct page *ipage;
2550         int err;
2551
2552         err = f2fs_get_node_info(sbi, ino, &old_ni);
2553         if (err)
2554                 return err;
2555
2556         if (unlikely(old_ni.blk_addr != NULL_ADDR))
2557                 return -EINVAL;
2558 retry:
2559         ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2560         if (!ipage) {
2561                 congestion_wait(BLK_RW_ASYNC, HZ/50);
2562                 goto retry;
2563         }
2564
2565         /* Should not use this inode from free nid list */
2566         remove_free_nid(sbi, ino);
2567
2568         if (!PageUptodate(ipage))
2569                 SetPageUptodate(ipage);
2570         fill_node_footer(ipage, ino, ino, 0, true);
2571         set_cold_node(ipage, false);
2572
2573         src = F2FS_INODE(page);
2574         dst = F2FS_INODE(ipage);
2575
2576         memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
2577         dst->i_size = 0;
2578         dst->i_blocks = cpu_to_le64(1);
2579         dst->i_links = cpu_to_le32(1);
2580         dst->i_xattr_nid = 0;
2581         dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2582         if (dst->i_inline & F2FS_EXTRA_ATTR) {
2583                 dst->i_extra_isize = src->i_extra_isize;
2584
2585                 if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2586                         F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2587                                                         i_inline_xattr_size))
2588                         dst->i_inline_xattr_size = src->i_inline_xattr_size;
2589
2590                 if (f2fs_sb_has_project_quota(sbi) &&
2591                         F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2592                                                                 i_projid))
2593                         dst->i_projid = src->i_projid;
2594
2595                 if (f2fs_sb_has_inode_crtime(sbi) &&
2596                         F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2597                                                         i_crtime_nsec)) {
2598                         dst->i_crtime = src->i_crtime;
2599                         dst->i_crtime_nsec = src->i_crtime_nsec;
2600                 }
2601         }
2602
2603         new_ni = old_ni;
2604         new_ni.ino = ino;
2605
2606         if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2607                 WARN_ON(1);
2608         set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2609         inc_valid_inode_count(sbi);
2610         set_page_dirty(ipage);
2611         f2fs_put_page(ipage, 1);
2612         return 0;
2613 }
2614
2615 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2616                         unsigned int segno, struct f2fs_summary_block *sum)
2617 {
2618         struct f2fs_node *rn;
2619         struct f2fs_summary *sum_entry;
2620         block_t addr;
2621         int i, idx, last_offset, nrpages;
2622
2623         /* scan the node segment */
2624         last_offset = sbi->blocks_per_seg;
2625         addr = START_BLOCK(sbi, segno);
2626         sum_entry = &sum->entries[0];
2627
2628         for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2629                 nrpages = min(last_offset - i, BIO_MAX_PAGES);
2630
2631                 /* readahead node pages */
2632                 f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2633
2634                 for (idx = addr; idx < addr + nrpages; idx++) {
2635                         struct page *page = f2fs_get_tmp_page(sbi, idx);
2636
2637                         if (IS_ERR(page))
2638                                 return PTR_ERR(page);
2639
2640                         rn = F2FS_NODE(page);
2641                         sum_entry->nid = rn->footer.nid;
2642                         sum_entry->version = 0;
2643                         sum_entry->ofs_in_node = 0;
2644                         sum_entry++;
2645                         f2fs_put_page(page, 1);
2646                 }
2647
2648                 invalidate_mapping_pages(META_MAPPING(sbi), addr,
2649                                                         addr + nrpages);
2650         }
2651         return 0;
2652 }
2653
2654 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2655 {
2656         struct f2fs_nm_info *nm_i = NM_I(sbi);
2657         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2658         struct f2fs_journal *journal = curseg->journal;
2659         int i;
2660
2661         down_write(&curseg->journal_rwsem);
2662         for (i = 0; i < nats_in_cursum(journal); i++) {
2663                 struct nat_entry *ne;
2664                 struct f2fs_nat_entry raw_ne;
2665                 nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2666
2667                 raw_ne = nat_in_journal(journal, i);
2668
2669                 ne = __lookup_nat_cache(nm_i, nid);
2670                 if (!ne) {
2671                         ne = __alloc_nat_entry(nid, true);
2672                         __init_nat_entry(nm_i, ne, &raw_ne, true);
2673                 }
2674
2675                 /*
2676                  * if a free nat in journal has not been used after last
2677                  * checkpoint, we should remove it from available nids,
2678                  * since later we will add it again.
2679                  */
2680                 if (!get_nat_flag(ne, IS_DIRTY) &&
2681                                 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2682                         spin_lock(&nm_i->nid_list_lock);
2683                         nm_i->available_nids--;
2684                         spin_unlock(&nm_i->nid_list_lock);
2685                 }
2686
2687                 __set_nat_cache_dirty(nm_i, ne);
2688         }
2689         update_nats_in_cursum(journal, -i);
2690         up_write(&curseg->journal_rwsem);
2691 }
2692
2693 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2694                                                 struct list_head *head, int max)
2695 {
2696         struct nat_entry_set *cur;
2697
2698         if (nes->entry_cnt >= max)
2699                 goto add_out;
2700
2701         list_for_each_entry(cur, head, set_list) {
2702                 if (cur->entry_cnt >= nes->entry_cnt) {
2703                         list_add(&nes->set_list, cur->set_list.prev);
2704                         return;
2705                 }
2706         }
2707 add_out:
2708         list_add_tail(&nes->set_list, head);
2709 }
2710
2711 static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2712                                                 struct page *page)
2713 {
2714         struct f2fs_nm_info *nm_i = NM_I(sbi);
2715         unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2716         struct f2fs_nat_block *nat_blk = page_address(page);
2717         int valid = 0;
2718         int i = 0;
2719
2720         if (!enabled_nat_bits(sbi, NULL))
2721                 return;
2722
2723         if (nat_index == 0) {
2724                 valid = 1;
2725                 i = 1;
2726         }
2727         for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2728                 if (nat_blk->entries[i].block_addr != NULL_ADDR)
2729                         valid++;
2730         }
2731         if (valid == 0) {
2732                 __set_bit_le(nat_index, nm_i->empty_nat_bits);
2733                 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2734                 return;
2735         }
2736
2737         __clear_bit_le(nat_index, nm_i->empty_nat_bits);
2738         if (valid == NAT_ENTRY_PER_BLOCK)
2739                 __set_bit_le(nat_index, nm_i->full_nat_bits);
2740         else
2741                 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2742 }
2743
2744 static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2745                 struct nat_entry_set *set, struct cp_control *cpc)
2746 {
2747         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2748         struct f2fs_journal *journal = curseg->journal;
2749         nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2750         bool to_journal = true;
2751         struct f2fs_nat_block *nat_blk;
2752         struct nat_entry *ne, *cur;
2753         struct page *page = NULL;
2754
2755         /*
2756          * there are two steps to flush nat entries:
2757          * #1, flush nat entries to journal in current hot data summary block.
2758          * #2, flush nat entries to nat page.
2759          */
2760         if (enabled_nat_bits(sbi, cpc) ||
2761                 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2762                 to_journal = false;
2763
2764         if (to_journal) {
2765                 down_write(&curseg->journal_rwsem);
2766         } else {
2767                 page = get_next_nat_page(sbi, start_nid);
2768                 if (IS_ERR(page))
2769                         return PTR_ERR(page);
2770
2771                 nat_blk = page_address(page);
2772                 f2fs_bug_on(sbi, !nat_blk);
2773         }
2774
2775         /* flush dirty nats in nat entry set */
2776         list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2777                 struct f2fs_nat_entry *raw_ne;
2778                 nid_t nid = nat_get_nid(ne);
2779                 int offset;
2780
2781                 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
2782
2783                 if (to_journal) {
2784                         offset = f2fs_lookup_journal_in_cursum(journal,
2785                                                         NAT_JOURNAL, nid, 1);
2786                         f2fs_bug_on(sbi, offset < 0);
2787                         raw_ne = &nat_in_journal(journal, offset);
2788                         nid_in_journal(journal, offset) = cpu_to_le32(nid);
2789                 } else {
2790                         raw_ne = &nat_blk->entries[nid - start_nid];
2791                 }
2792                 raw_nat_from_node_info(raw_ne, &ne->ni);
2793                 nat_reset_flag(ne);
2794                 __clear_nat_cache_dirty(NM_I(sbi), set, ne);
2795                 if (nat_get_blkaddr(ne) == NULL_ADDR) {
2796                         add_free_nid(sbi, nid, false, true);
2797                 } else {
2798                         spin_lock(&NM_I(sbi)->nid_list_lock);
2799                         update_free_nid_bitmap(sbi, nid, false, false);
2800                         spin_unlock(&NM_I(sbi)->nid_list_lock);
2801                 }
2802         }
2803
2804         if (to_journal) {
2805                 up_write(&curseg->journal_rwsem);
2806         } else {
2807                 __update_nat_bits(sbi, start_nid, page);
2808                 f2fs_put_page(page, 1);
2809         }
2810
2811         /* Allow dirty nats by node block allocation in write_begin */
2812         if (!set->entry_cnt) {
2813                 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2814                 kmem_cache_free(nat_entry_set_slab, set);
2815         }
2816         return 0;
2817 }
2818
2819 /*
2820  * This function is called during the checkpointing process.
2821  */
2822 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2823 {
2824         struct f2fs_nm_info *nm_i = NM_I(sbi);
2825         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2826         struct f2fs_journal *journal = curseg->journal;
2827         struct nat_entry_set *setvec[SETVEC_SIZE];
2828         struct nat_entry_set *set, *tmp;
2829         unsigned int found;
2830         nid_t set_idx = 0;
2831         LIST_HEAD(sets);
2832         int err = 0;
2833
2834         /* during unmount, let's flush nat_bits before checking dirty_nat_cnt */
2835         if (enabled_nat_bits(sbi, cpc)) {
2836                 down_write(&nm_i->nat_tree_lock);
2837                 remove_nats_in_journal(sbi);
2838                 up_write(&nm_i->nat_tree_lock);
2839         }
2840
2841         if (!nm_i->dirty_nat_cnt)
2842                 return 0;
2843
2844         down_write(&nm_i->nat_tree_lock);
2845
2846         /*
2847          * if there are no enough space in journal to store dirty nat
2848          * entries, remove all entries from journal and merge them
2849          * into nat entry set.
2850          */
2851         if (enabled_nat_bits(sbi, cpc) ||
2852                 !__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL))
2853                 remove_nats_in_journal(sbi);
2854
2855         while ((found = __gang_lookup_nat_set(nm_i,
2856                                         set_idx, SETVEC_SIZE, setvec))) {
2857                 unsigned idx;
2858                 set_idx = setvec[found - 1]->set + 1;
2859                 for (idx = 0; idx < found; idx++)
2860                         __adjust_nat_entry_set(setvec[idx], &sets,
2861                                                 MAX_NAT_JENTRIES(journal));
2862         }
2863
2864         /* flush dirty nats in nat entry set */
2865         list_for_each_entry_safe(set, tmp, &sets, set_list) {
2866                 err = __flush_nat_entry_set(sbi, set, cpc);
2867                 if (err)
2868                         break;
2869         }
2870
2871         up_write(&nm_i->nat_tree_lock);
2872         /* Allow dirty nats by node block allocation in write_begin */
2873
2874         return err;
2875 }
2876
2877 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
2878 {
2879         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2880         struct f2fs_nm_info *nm_i = NM_I(sbi);
2881         unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
2882         unsigned int i;
2883         __u64 cp_ver = cur_cp_version(ckpt);
2884         block_t nat_bits_addr;
2885
2886         if (!enabled_nat_bits(sbi, NULL))
2887                 return 0;
2888
2889         nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
2890         nm_i->nat_bits = f2fs_kzalloc(sbi,
2891                         nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
2892         if (!nm_i->nat_bits)
2893                 return -ENOMEM;
2894
2895         nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
2896                                                 nm_i->nat_bits_blocks;
2897         for (i = 0; i < nm_i->nat_bits_blocks; i++) {
2898                 struct page *page;
2899
2900                 page = f2fs_get_meta_page(sbi, nat_bits_addr++);
2901                 if (IS_ERR(page))
2902                         return PTR_ERR(page);
2903
2904                 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
2905                                         page_address(page), F2FS_BLKSIZE);
2906                 f2fs_put_page(page, 1);
2907         }
2908
2909         cp_ver |= (cur_cp_crc(ckpt) << 32);
2910         if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
2911                 disable_nat_bits(sbi, true);
2912                 return 0;
2913         }
2914
2915         nm_i->full_nat_bits = nm_i->nat_bits + 8;
2916         nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
2917
2918         f2fs_msg(sbi->sb, KERN_NOTICE, "Found nat_bits in checkpoint");
2919         return 0;
2920 }
2921
2922 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
2923 {
2924         struct f2fs_nm_info *nm_i = NM_I(sbi);
2925         unsigned int i = 0;
2926         nid_t nid, last_nid;
2927
2928         if (!enabled_nat_bits(sbi, NULL))
2929                 return;
2930
2931         for (i = 0; i < nm_i->nat_blocks; i++) {
2932                 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
2933                 if (i >= nm_i->nat_blocks)
2934                         break;
2935
2936                 __set_bit_le(i, nm_i->nat_block_bitmap);
2937
2938                 nid = i * NAT_ENTRY_PER_BLOCK;
2939                 last_nid = nid + NAT_ENTRY_PER_BLOCK;
2940
2941                 spin_lock(&NM_I(sbi)->nid_list_lock);
2942                 for (; nid < last_nid; nid++)
2943                         update_free_nid_bitmap(sbi, nid, true, true);
2944                 spin_unlock(&NM_I(sbi)->nid_list_lock);
2945         }
2946
2947         for (i = 0; i < nm_i->nat_blocks; i++) {
2948                 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
2949                 if (i >= nm_i->nat_blocks)
2950                         break;
2951
2952                 __set_bit_le(i, nm_i->nat_block_bitmap);
2953         }
2954 }
2955
2956 static int init_node_manager(struct f2fs_sb_info *sbi)
2957 {
2958         struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
2959         struct f2fs_nm_info *nm_i = NM_I(sbi);
2960         unsigned char *version_bitmap;
2961         unsigned int nat_segs;
2962         int err;
2963
2964         nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
2965
2966         /* segment_count_nat includes pair segment so divide to 2. */
2967         nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
2968         nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
2969         nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
2970
2971         /* not used nids: 0, node, meta, (and root counted as valid node) */
2972         nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
2973                                 sbi->nquota_files - F2FS_RESERVED_NODE_NUM;
2974         nm_i->nid_cnt[FREE_NID] = 0;
2975         nm_i->nid_cnt[PREALLOC_NID] = 0;
2976         nm_i->nat_cnt = 0;
2977         nm_i->ram_thresh = DEF_RAM_THRESHOLD;
2978         nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
2979         nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
2980
2981         INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
2982         INIT_LIST_HEAD(&nm_i->free_nid_list);
2983         INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
2984         INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
2985         INIT_LIST_HEAD(&nm_i->nat_entries);
2986         spin_lock_init(&nm_i->nat_list_lock);
2987
2988         mutex_init(&nm_i->build_lock);
2989         spin_lock_init(&nm_i->nid_list_lock);
2990         init_rwsem(&nm_i->nat_tree_lock);
2991
2992         nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
2993         nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
2994         version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
2995         if (!version_bitmap)
2996                 return -EFAULT;
2997
2998         nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
2999                                         GFP_KERNEL);
3000         if (!nm_i->nat_bitmap)
3001                 return -ENOMEM;
3002
3003         err = __get_nat_bitmaps(sbi);
3004         if (err)
3005                 return err;
3006
3007 #ifdef CONFIG_F2FS_CHECK_FS
3008         nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3009                                         GFP_KERNEL);
3010         if (!nm_i->nat_bitmap_mir)
3011                 return -ENOMEM;
3012 #endif
3013
3014         return 0;
3015 }
3016
3017 static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3018 {
3019         struct f2fs_nm_info *nm_i = NM_I(sbi);
3020         int i;
3021
3022         nm_i->free_nid_bitmap =
3023                 f2fs_kzalloc(sbi, array_size(sizeof(unsigned char *),
3024                                              nm_i->nat_blocks),
3025                              GFP_KERNEL);
3026         if (!nm_i->free_nid_bitmap)
3027                 return -ENOMEM;
3028
3029         for (i = 0; i < nm_i->nat_blocks; i++) {
3030                 nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3031                         f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3032                 if (!nm_i->free_nid_bitmap[i])
3033                         return -ENOMEM;
3034         }
3035
3036         nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3037                                                                 GFP_KERNEL);
3038         if (!nm_i->nat_block_bitmap)
3039                 return -ENOMEM;
3040
3041         nm_i->free_nid_count =
3042                 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3043                                               nm_i->nat_blocks),
3044                               GFP_KERNEL);
3045         if (!nm_i->free_nid_count)
3046                 return -ENOMEM;
3047         return 0;
3048 }
3049
3050 int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3051 {
3052         int err;
3053
3054         sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3055                                                         GFP_KERNEL);
3056         if (!sbi->nm_info)
3057                 return -ENOMEM;
3058
3059         err = init_node_manager(sbi);
3060         if (err)
3061                 return err;
3062
3063         err = init_free_nid_cache(sbi);
3064         if (err)
3065                 return err;
3066
3067         /* load free nid status from nat_bits table */
3068         load_free_nid_bitmap(sbi);
3069
3070         return f2fs_build_free_nids(sbi, true, true);
3071 }
3072
3073 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3074 {
3075         struct f2fs_nm_info *nm_i = NM_I(sbi);
3076         struct free_nid *i, *next_i;
3077         struct nat_entry *natvec[NATVEC_SIZE];
3078         struct nat_entry_set *setvec[SETVEC_SIZE];
3079         nid_t nid = 0;
3080         unsigned int found;
3081
3082         if (!nm_i)
3083                 return;
3084
3085         /* destroy free nid list */
3086         spin_lock(&nm_i->nid_list_lock);
3087         list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3088                 __remove_free_nid(sbi, i, FREE_NID);
3089                 spin_unlock(&nm_i->nid_list_lock);
3090                 kmem_cache_free(free_nid_slab, i);
3091                 spin_lock(&nm_i->nid_list_lock);
3092         }
3093         f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3094         f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3095         f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3096         spin_unlock(&nm_i->nid_list_lock);
3097
3098         /* destroy nat cache */
3099         down_write(&nm_i->nat_tree_lock);
3100         while ((found = __gang_lookup_nat_cache(nm_i,
3101                                         nid, NATVEC_SIZE, natvec))) {
3102                 unsigned idx;
3103
3104                 nid = nat_get_nid(natvec[found - 1]) + 1;
3105                 for (idx = 0; idx < found; idx++) {
3106                         spin_lock(&nm_i->nat_list_lock);
3107                         list_del(&natvec[idx]->list);
3108                         spin_unlock(&nm_i->nat_list_lock);
3109
3110                         __del_from_nat_cache(nm_i, natvec[idx]);
3111                 }
3112         }
3113         f2fs_bug_on(sbi, nm_i->nat_cnt);
3114
3115         /* destroy nat set cache */
3116         nid = 0;
3117         while ((found = __gang_lookup_nat_set(nm_i,
3118                                         nid, SETVEC_SIZE, setvec))) {
3119                 unsigned idx;
3120
3121                 nid = setvec[found - 1]->set + 1;
3122                 for (idx = 0; idx < found; idx++) {
3123                         /* entry_cnt is not zero, when cp_error was occurred */
3124                         f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3125                         radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3126                         kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3127                 }
3128         }
3129         up_write(&nm_i->nat_tree_lock);
3130
3131         kvfree(nm_i->nat_block_bitmap);
3132         if (nm_i->free_nid_bitmap) {
3133                 int i;
3134
3135                 for (i = 0; i < nm_i->nat_blocks; i++)
3136                         kvfree(nm_i->free_nid_bitmap[i]);
3137                 kvfree(nm_i->free_nid_bitmap);
3138         }
3139         kvfree(nm_i->free_nid_count);
3140
3141         kvfree(nm_i->nat_bitmap);
3142         kvfree(nm_i->nat_bits);
3143 #ifdef CONFIG_F2FS_CHECK_FS
3144         kvfree(nm_i->nat_bitmap_mir);
3145 #endif
3146         sbi->nm_info = NULL;
3147         kvfree(nm_i);
3148 }
3149
3150 int __init f2fs_create_node_manager_caches(void)
3151 {
3152         nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
3153                         sizeof(struct nat_entry));
3154         if (!nat_entry_slab)
3155                 goto fail;
3156
3157         free_nid_slab = f2fs_kmem_cache_create("free_nid",
3158                         sizeof(struct free_nid));
3159         if (!free_nid_slab)
3160                 goto destroy_nat_entry;
3161
3162         nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
3163                         sizeof(struct nat_entry_set));
3164         if (!nat_entry_set_slab)
3165                 goto destroy_free_nid;
3166
3167         fsync_node_entry_slab = f2fs_kmem_cache_create("fsync_node_entry",
3168                         sizeof(struct fsync_node_entry));
3169         if (!fsync_node_entry_slab)
3170                 goto destroy_nat_entry_set;
3171         return 0;
3172
3173 destroy_nat_entry_set:
3174         kmem_cache_destroy(nat_entry_set_slab);
3175 destroy_free_nid:
3176         kmem_cache_destroy(free_nid_slab);
3177 destroy_nat_entry:
3178         kmem_cache_destroy(nat_entry_slab);
3179 fail:
3180         return -ENOMEM;
3181 }
3182
3183 void f2fs_destroy_node_manager_caches(void)
3184 {
3185         kmem_cache_destroy(fsync_node_entry_slab);
3186         kmem_cache_destroy(nat_entry_set_slab);
3187         kmem_cache_destroy(free_nid_slab);
3188         kmem_cache_destroy(nat_entry_slab);
3189 }