Merge tag 'io_uring-5.13-2021-06-03' of git://git.kernel.dk/linux-block
[linux-2.6-microblaze.git] / fs / f2fs / gc.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/gc.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/init.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/kthread.h>
14 #include <linux/delay.h>
15 #include <linux/freezer.h>
16 #include <linux/sched/signal.h>
17
18 #include "f2fs.h"
19 #include "node.h"
20 #include "segment.h"
21 #include "gc.h"
22 #include <trace/events/f2fs.h>
23
24 static struct kmem_cache *victim_entry_slab;
25
26 static unsigned int count_bits(const unsigned long *addr,
27                                 unsigned int offset, unsigned int len);
28
29 static int gc_thread_func(void *data)
30 {
31         struct f2fs_sb_info *sbi = data;
32         struct f2fs_gc_kthread *gc_th = sbi->gc_thread;
33         wait_queue_head_t *wq = &sbi->gc_thread->gc_wait_queue_head;
34         wait_queue_head_t *fggc_wq = &sbi->gc_thread->fggc_wq;
35         unsigned int wait_ms;
36
37         wait_ms = gc_th->min_sleep_time;
38
39         set_freezable();
40         do {
41                 bool sync_mode, foreground = false;
42
43                 wait_event_interruptible_timeout(*wq,
44                                 kthread_should_stop() || freezing(current) ||
45                                 waitqueue_active(fggc_wq) ||
46                                 gc_th->gc_wake,
47                                 msecs_to_jiffies(wait_ms));
48
49                 if (test_opt(sbi, GC_MERGE) && waitqueue_active(fggc_wq))
50                         foreground = true;
51
52                 /* give it a try one time */
53                 if (gc_th->gc_wake)
54                         gc_th->gc_wake = 0;
55
56                 if (try_to_freeze()) {
57                         stat_other_skip_bggc_count(sbi);
58                         continue;
59                 }
60                 if (kthread_should_stop())
61                         break;
62
63                 if (sbi->sb->s_writers.frozen >= SB_FREEZE_WRITE) {
64                         increase_sleep_time(gc_th, &wait_ms);
65                         stat_other_skip_bggc_count(sbi);
66                         continue;
67                 }
68
69                 if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
70                         f2fs_show_injection_info(sbi, FAULT_CHECKPOINT);
71                         f2fs_stop_checkpoint(sbi, false);
72                 }
73
74                 if (!sb_start_write_trylock(sbi->sb)) {
75                         stat_other_skip_bggc_count(sbi);
76                         continue;
77                 }
78
79                 /*
80                  * [GC triggering condition]
81                  * 0. GC is not conducted currently.
82                  * 1. There are enough dirty segments.
83                  * 2. IO subsystem is idle by checking the # of writeback pages.
84                  * 3. IO subsystem is idle by checking the # of requests in
85                  *    bdev's request list.
86                  *
87                  * Note) We have to avoid triggering GCs frequently.
88                  * Because it is possible that some segments can be
89                  * invalidated soon after by user update or deletion.
90                  * So, I'd like to wait some time to collect dirty segments.
91                  */
92                 if (sbi->gc_mode == GC_URGENT_HIGH) {
93                         wait_ms = gc_th->urgent_sleep_time;
94                         down_write(&sbi->gc_lock);
95                         goto do_gc;
96                 }
97
98                 if (foreground) {
99                         down_write(&sbi->gc_lock);
100                         goto do_gc;
101                 } else if (!down_write_trylock(&sbi->gc_lock)) {
102                         stat_other_skip_bggc_count(sbi);
103                         goto next;
104                 }
105
106                 if (!is_idle(sbi, GC_TIME)) {
107                         increase_sleep_time(gc_th, &wait_ms);
108                         up_write(&sbi->gc_lock);
109                         stat_io_skip_bggc_count(sbi);
110                         goto next;
111                 }
112
113                 if (has_enough_invalid_blocks(sbi))
114                         decrease_sleep_time(gc_th, &wait_ms);
115                 else
116                         increase_sleep_time(gc_th, &wait_ms);
117 do_gc:
118                 if (!foreground)
119                         stat_inc_bggc_count(sbi->stat_info);
120
121                 sync_mode = F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_SYNC;
122
123                 /* foreground GC was been triggered via f2fs_balance_fs() */
124                 if (foreground)
125                         sync_mode = false;
126
127                 /* if return value is not zero, no victim was selected */
128                 if (f2fs_gc(sbi, sync_mode, !foreground, false, NULL_SEGNO))
129                         wait_ms = gc_th->no_gc_sleep_time;
130
131                 if (foreground)
132                         wake_up_all(&gc_th->fggc_wq);
133
134                 trace_f2fs_background_gc(sbi->sb, wait_ms,
135                                 prefree_segments(sbi), free_segments(sbi));
136
137                 /* balancing f2fs's metadata periodically */
138                 f2fs_balance_fs_bg(sbi, true);
139 next:
140                 sb_end_write(sbi->sb);
141
142         } while (!kthread_should_stop());
143         return 0;
144 }
145
146 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi)
147 {
148         struct f2fs_gc_kthread *gc_th;
149         dev_t dev = sbi->sb->s_bdev->bd_dev;
150         int err = 0;
151
152         gc_th = f2fs_kmalloc(sbi, sizeof(struct f2fs_gc_kthread), GFP_KERNEL);
153         if (!gc_th) {
154                 err = -ENOMEM;
155                 goto out;
156         }
157
158         gc_th->urgent_sleep_time = DEF_GC_THREAD_URGENT_SLEEP_TIME;
159         gc_th->min_sleep_time = DEF_GC_THREAD_MIN_SLEEP_TIME;
160         gc_th->max_sleep_time = DEF_GC_THREAD_MAX_SLEEP_TIME;
161         gc_th->no_gc_sleep_time = DEF_GC_THREAD_NOGC_SLEEP_TIME;
162
163         gc_th->gc_wake = 0;
164
165         sbi->gc_thread = gc_th;
166         init_waitqueue_head(&sbi->gc_thread->gc_wait_queue_head);
167         init_waitqueue_head(&sbi->gc_thread->fggc_wq);
168         sbi->gc_thread->f2fs_gc_task = kthread_run(gc_thread_func, sbi,
169                         "f2fs_gc-%u:%u", MAJOR(dev), MINOR(dev));
170         if (IS_ERR(gc_th->f2fs_gc_task)) {
171                 err = PTR_ERR(gc_th->f2fs_gc_task);
172                 kfree(gc_th);
173                 sbi->gc_thread = NULL;
174         }
175 out:
176         return err;
177 }
178
179 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi)
180 {
181         struct f2fs_gc_kthread *gc_th = sbi->gc_thread;
182
183         if (!gc_th)
184                 return;
185         kthread_stop(gc_th->f2fs_gc_task);
186         wake_up_all(&gc_th->fggc_wq);
187         kfree(gc_th);
188         sbi->gc_thread = NULL;
189 }
190
191 static int select_gc_type(struct f2fs_sb_info *sbi, int gc_type)
192 {
193         int gc_mode;
194
195         if (gc_type == BG_GC) {
196                 if (sbi->am.atgc_enabled)
197                         gc_mode = GC_AT;
198                 else
199                         gc_mode = GC_CB;
200         } else {
201                 gc_mode = GC_GREEDY;
202         }
203
204         switch (sbi->gc_mode) {
205         case GC_IDLE_CB:
206                 gc_mode = GC_CB;
207                 break;
208         case GC_IDLE_GREEDY:
209         case GC_URGENT_HIGH:
210                 gc_mode = GC_GREEDY;
211                 break;
212         case GC_IDLE_AT:
213                 gc_mode = GC_AT;
214                 break;
215         }
216
217         return gc_mode;
218 }
219
220 static void select_policy(struct f2fs_sb_info *sbi, int gc_type,
221                         int type, struct victim_sel_policy *p)
222 {
223         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
224
225         if (p->alloc_mode == SSR) {
226                 p->gc_mode = GC_GREEDY;
227                 p->dirty_bitmap = dirty_i->dirty_segmap[type];
228                 p->max_search = dirty_i->nr_dirty[type];
229                 p->ofs_unit = 1;
230         } else if (p->alloc_mode == AT_SSR) {
231                 p->gc_mode = GC_GREEDY;
232                 p->dirty_bitmap = dirty_i->dirty_segmap[type];
233                 p->max_search = dirty_i->nr_dirty[type];
234                 p->ofs_unit = 1;
235         } else {
236                 p->gc_mode = select_gc_type(sbi, gc_type);
237                 p->ofs_unit = sbi->segs_per_sec;
238                 if (__is_large_section(sbi)) {
239                         p->dirty_bitmap = dirty_i->dirty_secmap;
240                         p->max_search = count_bits(p->dirty_bitmap,
241                                                 0, MAIN_SECS(sbi));
242                 } else {
243                         p->dirty_bitmap = dirty_i->dirty_segmap[DIRTY];
244                         p->max_search = dirty_i->nr_dirty[DIRTY];
245                 }
246         }
247
248         /*
249          * adjust candidates range, should select all dirty segments for
250          * foreground GC and urgent GC cases.
251          */
252         if (gc_type != FG_GC &&
253                         (sbi->gc_mode != GC_URGENT_HIGH) &&
254                         (p->gc_mode != GC_AT && p->alloc_mode != AT_SSR) &&
255                         p->max_search > sbi->max_victim_search)
256                 p->max_search = sbi->max_victim_search;
257
258         /* let's select beginning hot/small space first in no_heap mode*/
259         if (test_opt(sbi, NOHEAP) &&
260                 (type == CURSEG_HOT_DATA || IS_NODESEG(type)))
261                 p->offset = 0;
262         else
263                 p->offset = SIT_I(sbi)->last_victim[p->gc_mode];
264 }
265
266 static unsigned int get_max_cost(struct f2fs_sb_info *sbi,
267                                 struct victim_sel_policy *p)
268 {
269         /* SSR allocates in a segment unit */
270         if (p->alloc_mode == SSR)
271                 return sbi->blocks_per_seg;
272         else if (p->alloc_mode == AT_SSR)
273                 return UINT_MAX;
274
275         /* LFS */
276         if (p->gc_mode == GC_GREEDY)
277                 return 2 * sbi->blocks_per_seg * p->ofs_unit;
278         else if (p->gc_mode == GC_CB)
279                 return UINT_MAX;
280         else if (p->gc_mode == GC_AT)
281                 return UINT_MAX;
282         else /* No other gc_mode */
283                 return 0;
284 }
285
286 static unsigned int check_bg_victims(struct f2fs_sb_info *sbi)
287 {
288         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
289         unsigned int secno;
290
291         /*
292          * If the gc_type is FG_GC, we can select victim segments
293          * selected by background GC before.
294          * Those segments guarantee they have small valid blocks.
295          */
296         for_each_set_bit(secno, dirty_i->victim_secmap, MAIN_SECS(sbi)) {
297                 if (sec_usage_check(sbi, secno))
298                         continue;
299                 clear_bit(secno, dirty_i->victim_secmap);
300                 return GET_SEG_FROM_SEC(sbi, secno);
301         }
302         return NULL_SEGNO;
303 }
304
305 static unsigned int get_cb_cost(struct f2fs_sb_info *sbi, unsigned int segno)
306 {
307         struct sit_info *sit_i = SIT_I(sbi);
308         unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
309         unsigned int start = GET_SEG_FROM_SEC(sbi, secno);
310         unsigned long long mtime = 0;
311         unsigned int vblocks;
312         unsigned char age = 0;
313         unsigned char u;
314         unsigned int i;
315         unsigned int usable_segs_per_sec = f2fs_usable_segs_in_sec(sbi, segno);
316
317         for (i = 0; i < usable_segs_per_sec; i++)
318                 mtime += get_seg_entry(sbi, start + i)->mtime;
319         vblocks = get_valid_blocks(sbi, segno, true);
320
321         mtime = div_u64(mtime, usable_segs_per_sec);
322         vblocks = div_u64(vblocks, usable_segs_per_sec);
323
324         u = (vblocks * 100) >> sbi->log_blocks_per_seg;
325
326         /* Handle if the system time has changed by the user */
327         if (mtime < sit_i->min_mtime)
328                 sit_i->min_mtime = mtime;
329         if (mtime > sit_i->max_mtime)
330                 sit_i->max_mtime = mtime;
331         if (sit_i->max_mtime != sit_i->min_mtime)
332                 age = 100 - div64_u64(100 * (mtime - sit_i->min_mtime),
333                                 sit_i->max_mtime - sit_i->min_mtime);
334
335         return UINT_MAX - ((100 * (100 - u) * age) / (100 + u));
336 }
337
338 static inline unsigned int get_gc_cost(struct f2fs_sb_info *sbi,
339                         unsigned int segno, struct victim_sel_policy *p)
340 {
341         if (p->alloc_mode == SSR)
342                 return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
343
344         /* alloc_mode == LFS */
345         if (p->gc_mode == GC_GREEDY)
346                 return get_valid_blocks(sbi, segno, true);
347         else if (p->gc_mode == GC_CB)
348                 return get_cb_cost(sbi, segno);
349
350         f2fs_bug_on(sbi, 1);
351         return 0;
352 }
353
354 static unsigned int count_bits(const unsigned long *addr,
355                                 unsigned int offset, unsigned int len)
356 {
357         unsigned int end = offset + len, sum = 0;
358
359         while (offset < end) {
360                 if (test_bit(offset++, addr))
361                         ++sum;
362         }
363         return sum;
364 }
365
366 static struct victim_entry *attach_victim_entry(struct f2fs_sb_info *sbi,
367                                 unsigned long long mtime, unsigned int segno,
368                                 struct rb_node *parent, struct rb_node **p,
369                                 bool left_most)
370 {
371         struct atgc_management *am = &sbi->am;
372         struct victim_entry *ve;
373
374         ve =  f2fs_kmem_cache_alloc(victim_entry_slab, GFP_NOFS);
375
376         ve->mtime = mtime;
377         ve->segno = segno;
378
379         rb_link_node(&ve->rb_node, parent, p);
380         rb_insert_color_cached(&ve->rb_node, &am->root, left_most);
381
382         list_add_tail(&ve->list, &am->victim_list);
383
384         am->victim_count++;
385
386         return ve;
387 }
388
389 static void insert_victim_entry(struct f2fs_sb_info *sbi,
390                                 unsigned long long mtime, unsigned int segno)
391 {
392         struct atgc_management *am = &sbi->am;
393         struct rb_node **p;
394         struct rb_node *parent = NULL;
395         bool left_most = true;
396
397         p = f2fs_lookup_rb_tree_ext(sbi, &am->root, &parent, mtime, &left_most);
398         attach_victim_entry(sbi, mtime, segno, parent, p, left_most);
399 }
400
401 static void add_victim_entry(struct f2fs_sb_info *sbi,
402                                 struct victim_sel_policy *p, unsigned int segno)
403 {
404         struct sit_info *sit_i = SIT_I(sbi);
405         unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
406         unsigned int start = GET_SEG_FROM_SEC(sbi, secno);
407         unsigned long long mtime = 0;
408         unsigned int i;
409
410         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
411                 if (p->gc_mode == GC_AT &&
412                         get_valid_blocks(sbi, segno, true) == 0)
413                         return;
414         }
415
416         for (i = 0; i < sbi->segs_per_sec; i++)
417                 mtime += get_seg_entry(sbi, start + i)->mtime;
418         mtime = div_u64(mtime, sbi->segs_per_sec);
419
420         /* Handle if the system time has changed by the user */
421         if (mtime < sit_i->min_mtime)
422                 sit_i->min_mtime = mtime;
423         if (mtime > sit_i->max_mtime)
424                 sit_i->max_mtime = mtime;
425         if (mtime < sit_i->dirty_min_mtime)
426                 sit_i->dirty_min_mtime = mtime;
427         if (mtime > sit_i->dirty_max_mtime)
428                 sit_i->dirty_max_mtime = mtime;
429
430         /* don't choose young section as candidate */
431         if (sit_i->dirty_max_mtime - mtime < p->age_threshold)
432                 return;
433
434         insert_victim_entry(sbi, mtime, segno);
435 }
436
437 static struct rb_node *lookup_central_victim(struct f2fs_sb_info *sbi,
438                                                 struct victim_sel_policy *p)
439 {
440         struct atgc_management *am = &sbi->am;
441         struct rb_node *parent = NULL;
442         bool left_most;
443
444         f2fs_lookup_rb_tree_ext(sbi, &am->root, &parent, p->age, &left_most);
445
446         return parent;
447 }
448
449 static void atgc_lookup_victim(struct f2fs_sb_info *sbi,
450                                                 struct victim_sel_policy *p)
451 {
452         struct sit_info *sit_i = SIT_I(sbi);
453         struct atgc_management *am = &sbi->am;
454         struct rb_root_cached *root = &am->root;
455         struct rb_node *node;
456         struct rb_entry *re;
457         struct victim_entry *ve;
458         unsigned long long total_time;
459         unsigned long long age, u, accu;
460         unsigned long long max_mtime = sit_i->dirty_max_mtime;
461         unsigned long long min_mtime = sit_i->dirty_min_mtime;
462         unsigned int sec_blocks = BLKS_PER_SEC(sbi);
463         unsigned int vblocks;
464         unsigned int dirty_threshold = max(am->max_candidate_count,
465                                         am->candidate_ratio *
466                                         am->victim_count / 100);
467         unsigned int age_weight = am->age_weight;
468         unsigned int cost;
469         unsigned int iter = 0;
470
471         if (max_mtime < min_mtime)
472                 return;
473
474         max_mtime += 1;
475         total_time = max_mtime - min_mtime;
476
477         accu = div64_u64(ULLONG_MAX, total_time);
478         accu = min_t(unsigned long long, div_u64(accu, 100),
479                                         DEFAULT_ACCURACY_CLASS);
480
481         node = rb_first_cached(root);
482 next:
483         re = rb_entry_safe(node, struct rb_entry, rb_node);
484         if (!re)
485                 return;
486
487         ve = (struct victim_entry *)re;
488
489         if (ve->mtime >= max_mtime || ve->mtime < min_mtime)
490                 goto skip;
491
492         /* age = 10000 * x% * 60 */
493         age = div64_u64(accu * (max_mtime - ve->mtime), total_time) *
494                                                                 age_weight;
495
496         vblocks = get_valid_blocks(sbi, ve->segno, true);
497         f2fs_bug_on(sbi, !vblocks || vblocks == sec_blocks);
498
499         /* u = 10000 * x% * 40 */
500         u = div64_u64(accu * (sec_blocks - vblocks), sec_blocks) *
501                                                         (100 - age_weight);
502
503         f2fs_bug_on(sbi, age + u >= UINT_MAX);
504
505         cost = UINT_MAX - (age + u);
506         iter++;
507
508         if (cost < p->min_cost ||
509                         (cost == p->min_cost && age > p->oldest_age)) {
510                 p->min_cost = cost;
511                 p->oldest_age = age;
512                 p->min_segno = ve->segno;
513         }
514 skip:
515         if (iter < dirty_threshold) {
516                 node = rb_next(node);
517                 goto next;
518         }
519 }
520
521 /*
522  * select candidates around source section in range of
523  * [target - dirty_threshold, target + dirty_threshold]
524  */
525 static void atssr_lookup_victim(struct f2fs_sb_info *sbi,
526                                                 struct victim_sel_policy *p)
527 {
528         struct sit_info *sit_i = SIT_I(sbi);
529         struct atgc_management *am = &sbi->am;
530         struct rb_node *node;
531         struct rb_entry *re;
532         struct victim_entry *ve;
533         unsigned long long age;
534         unsigned long long max_mtime = sit_i->dirty_max_mtime;
535         unsigned long long min_mtime = sit_i->dirty_min_mtime;
536         unsigned int seg_blocks = sbi->blocks_per_seg;
537         unsigned int vblocks;
538         unsigned int dirty_threshold = max(am->max_candidate_count,
539                                         am->candidate_ratio *
540                                         am->victim_count / 100);
541         unsigned int cost;
542         unsigned int iter = 0;
543         int stage = 0;
544
545         if (max_mtime < min_mtime)
546                 return;
547         max_mtime += 1;
548 next_stage:
549         node = lookup_central_victim(sbi, p);
550 next_node:
551         re = rb_entry_safe(node, struct rb_entry, rb_node);
552         if (!re) {
553                 if (stage == 0)
554                         goto skip_stage;
555                 return;
556         }
557
558         ve = (struct victim_entry *)re;
559
560         if (ve->mtime >= max_mtime || ve->mtime < min_mtime)
561                 goto skip_node;
562
563         age = max_mtime - ve->mtime;
564
565         vblocks = get_seg_entry(sbi, ve->segno)->ckpt_valid_blocks;
566         f2fs_bug_on(sbi, !vblocks);
567
568         /* rare case */
569         if (vblocks == seg_blocks)
570                 goto skip_node;
571
572         iter++;
573
574         age = max_mtime - abs(p->age - age);
575         cost = UINT_MAX - vblocks;
576
577         if (cost < p->min_cost ||
578                         (cost == p->min_cost && age > p->oldest_age)) {
579                 p->min_cost = cost;
580                 p->oldest_age = age;
581                 p->min_segno = ve->segno;
582         }
583 skip_node:
584         if (iter < dirty_threshold) {
585                 if (stage == 0)
586                         node = rb_prev(node);
587                 else if (stage == 1)
588                         node = rb_next(node);
589                 goto next_node;
590         }
591 skip_stage:
592         if (stage < 1) {
593                 stage++;
594                 iter = 0;
595                 goto next_stage;
596         }
597 }
598 static void lookup_victim_by_age(struct f2fs_sb_info *sbi,
599                                                 struct victim_sel_policy *p)
600 {
601         f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
602                                                 &sbi->am.root, true));
603
604         if (p->gc_mode == GC_AT)
605                 atgc_lookup_victim(sbi, p);
606         else if (p->alloc_mode == AT_SSR)
607                 atssr_lookup_victim(sbi, p);
608         else
609                 f2fs_bug_on(sbi, 1);
610 }
611
612 static void release_victim_entry(struct f2fs_sb_info *sbi)
613 {
614         struct atgc_management *am = &sbi->am;
615         struct victim_entry *ve, *tmp;
616
617         list_for_each_entry_safe(ve, tmp, &am->victim_list, list) {
618                 list_del(&ve->list);
619                 kmem_cache_free(victim_entry_slab, ve);
620                 am->victim_count--;
621         }
622
623         am->root = RB_ROOT_CACHED;
624
625         f2fs_bug_on(sbi, am->victim_count);
626         f2fs_bug_on(sbi, !list_empty(&am->victim_list));
627 }
628
629 /*
630  * This function is called from two paths.
631  * One is garbage collection and the other is SSR segment selection.
632  * When it is called during GC, it just gets a victim segment
633  * and it does not remove it from dirty seglist.
634  * When it is called from SSR segment selection, it finds a segment
635  * which has minimum valid blocks and removes it from dirty seglist.
636  */
637 static int get_victim_by_default(struct f2fs_sb_info *sbi,
638                         unsigned int *result, int gc_type, int type,
639                         char alloc_mode, unsigned long long age)
640 {
641         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
642         struct sit_info *sm = SIT_I(sbi);
643         struct victim_sel_policy p;
644         unsigned int secno, last_victim;
645         unsigned int last_segment;
646         unsigned int nsearched;
647         bool is_atgc;
648         int ret = 0;
649
650         mutex_lock(&dirty_i->seglist_lock);
651         last_segment = MAIN_SECS(sbi) * sbi->segs_per_sec;
652
653         p.alloc_mode = alloc_mode;
654         p.age = age;
655         p.age_threshold = sbi->am.age_threshold;
656
657 retry:
658         select_policy(sbi, gc_type, type, &p);
659         p.min_segno = NULL_SEGNO;
660         p.oldest_age = 0;
661         p.min_cost = get_max_cost(sbi, &p);
662
663         is_atgc = (p.gc_mode == GC_AT || p.alloc_mode == AT_SSR);
664         nsearched = 0;
665
666         if (is_atgc)
667                 SIT_I(sbi)->dirty_min_mtime = ULLONG_MAX;
668
669         if (*result != NULL_SEGNO) {
670                 if (!get_valid_blocks(sbi, *result, false)) {
671                         ret = -ENODATA;
672                         goto out;
673                 }
674
675                 if (sec_usage_check(sbi, GET_SEC_FROM_SEG(sbi, *result)))
676                         ret = -EBUSY;
677                 else
678                         p.min_segno = *result;
679                 goto out;
680         }
681
682         ret = -ENODATA;
683         if (p.max_search == 0)
684                 goto out;
685
686         if (__is_large_section(sbi) && p.alloc_mode == LFS) {
687                 if (sbi->next_victim_seg[BG_GC] != NULL_SEGNO) {
688                         p.min_segno = sbi->next_victim_seg[BG_GC];
689                         *result = p.min_segno;
690                         sbi->next_victim_seg[BG_GC] = NULL_SEGNO;
691                         goto got_result;
692                 }
693                 if (gc_type == FG_GC &&
694                                 sbi->next_victim_seg[FG_GC] != NULL_SEGNO) {
695                         p.min_segno = sbi->next_victim_seg[FG_GC];
696                         *result = p.min_segno;
697                         sbi->next_victim_seg[FG_GC] = NULL_SEGNO;
698                         goto got_result;
699                 }
700         }
701
702         last_victim = sm->last_victim[p.gc_mode];
703         if (p.alloc_mode == LFS && gc_type == FG_GC) {
704                 p.min_segno = check_bg_victims(sbi);
705                 if (p.min_segno != NULL_SEGNO)
706                         goto got_it;
707         }
708
709         while (1) {
710                 unsigned long cost, *dirty_bitmap;
711                 unsigned int unit_no, segno;
712
713                 dirty_bitmap = p.dirty_bitmap;
714                 unit_no = find_next_bit(dirty_bitmap,
715                                 last_segment / p.ofs_unit,
716                                 p.offset / p.ofs_unit);
717                 segno = unit_no * p.ofs_unit;
718                 if (segno >= last_segment) {
719                         if (sm->last_victim[p.gc_mode]) {
720                                 last_segment =
721                                         sm->last_victim[p.gc_mode];
722                                 sm->last_victim[p.gc_mode] = 0;
723                                 p.offset = 0;
724                                 continue;
725                         }
726                         break;
727                 }
728
729                 p.offset = segno + p.ofs_unit;
730                 nsearched++;
731
732 #ifdef CONFIG_F2FS_CHECK_FS
733                 /*
734                  * skip selecting the invalid segno (that is failed due to block
735                  * validity check failure during GC) to avoid endless GC loop in
736                  * such cases.
737                  */
738                 if (test_bit(segno, sm->invalid_segmap))
739                         goto next;
740 #endif
741
742                 secno = GET_SEC_FROM_SEG(sbi, segno);
743
744                 if (sec_usage_check(sbi, secno))
745                         goto next;
746
747                 /* Don't touch checkpointed data */
748                 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
749                         if (p.alloc_mode == LFS) {
750                                 /*
751                                  * LFS is set to find source section during GC.
752                                  * The victim should have no checkpointed data.
753                                  */
754                                 if (get_ckpt_valid_blocks(sbi, segno, true))
755                                         goto next;
756                         } else {
757                                 /*
758                                  * SSR | AT_SSR are set to find target segment
759                                  * for writes which can be full by checkpointed
760                                  * and newly written blocks.
761                                  */
762                                 if (!f2fs_segment_has_free_slot(sbi, segno))
763                                         goto next;
764                         }
765                 }
766
767                 if (gc_type == BG_GC && test_bit(secno, dirty_i->victim_secmap))
768                         goto next;
769
770                 if (is_atgc) {
771                         add_victim_entry(sbi, &p, segno);
772                         goto next;
773                 }
774
775                 cost = get_gc_cost(sbi, segno, &p);
776
777                 if (p.min_cost > cost) {
778                         p.min_segno = segno;
779                         p.min_cost = cost;
780                 }
781 next:
782                 if (nsearched >= p.max_search) {
783                         if (!sm->last_victim[p.gc_mode] && segno <= last_victim)
784                                 sm->last_victim[p.gc_mode] =
785                                         last_victim + p.ofs_unit;
786                         else
787                                 sm->last_victim[p.gc_mode] = segno + p.ofs_unit;
788                         sm->last_victim[p.gc_mode] %=
789                                 (MAIN_SECS(sbi) * sbi->segs_per_sec);
790                         break;
791                 }
792         }
793
794         /* get victim for GC_AT/AT_SSR */
795         if (is_atgc) {
796                 lookup_victim_by_age(sbi, &p);
797                 release_victim_entry(sbi);
798         }
799
800         if (is_atgc && p.min_segno == NULL_SEGNO &&
801                         sm->elapsed_time < p.age_threshold) {
802                 p.age_threshold = 0;
803                 goto retry;
804         }
805
806         if (p.min_segno != NULL_SEGNO) {
807 got_it:
808                 *result = (p.min_segno / p.ofs_unit) * p.ofs_unit;
809 got_result:
810                 if (p.alloc_mode == LFS) {
811                         secno = GET_SEC_FROM_SEG(sbi, p.min_segno);
812                         if (gc_type == FG_GC)
813                                 sbi->cur_victim_sec = secno;
814                         else
815                                 set_bit(secno, dirty_i->victim_secmap);
816                 }
817                 ret = 0;
818
819         }
820 out:
821         if (p.min_segno != NULL_SEGNO)
822                 trace_f2fs_get_victim(sbi->sb, type, gc_type, &p,
823                                 sbi->cur_victim_sec,
824                                 prefree_segments(sbi), free_segments(sbi));
825         mutex_unlock(&dirty_i->seglist_lock);
826
827         return ret;
828 }
829
830 static const struct victim_selection default_v_ops = {
831         .get_victim = get_victim_by_default,
832 };
833
834 static struct inode *find_gc_inode(struct gc_inode_list *gc_list, nid_t ino)
835 {
836         struct inode_entry *ie;
837
838         ie = radix_tree_lookup(&gc_list->iroot, ino);
839         if (ie)
840                 return ie->inode;
841         return NULL;
842 }
843
844 static void add_gc_inode(struct gc_inode_list *gc_list, struct inode *inode)
845 {
846         struct inode_entry *new_ie;
847
848         if (inode == find_gc_inode(gc_list, inode->i_ino)) {
849                 iput(inode);
850                 return;
851         }
852         new_ie = f2fs_kmem_cache_alloc(f2fs_inode_entry_slab, GFP_NOFS);
853         new_ie->inode = inode;
854
855         f2fs_radix_tree_insert(&gc_list->iroot, inode->i_ino, new_ie);
856         list_add_tail(&new_ie->list, &gc_list->ilist);
857 }
858
859 static void put_gc_inode(struct gc_inode_list *gc_list)
860 {
861         struct inode_entry *ie, *next_ie;
862
863         list_for_each_entry_safe(ie, next_ie, &gc_list->ilist, list) {
864                 radix_tree_delete(&gc_list->iroot, ie->inode->i_ino);
865                 iput(ie->inode);
866                 list_del(&ie->list);
867                 kmem_cache_free(f2fs_inode_entry_slab, ie);
868         }
869 }
870
871 static int check_valid_map(struct f2fs_sb_info *sbi,
872                                 unsigned int segno, int offset)
873 {
874         struct sit_info *sit_i = SIT_I(sbi);
875         struct seg_entry *sentry;
876         int ret;
877
878         down_read(&sit_i->sentry_lock);
879         sentry = get_seg_entry(sbi, segno);
880         ret = f2fs_test_bit(offset, sentry->cur_valid_map);
881         up_read(&sit_i->sentry_lock);
882         return ret;
883 }
884
885 /*
886  * This function compares node address got in summary with that in NAT.
887  * On validity, copy that node with cold status, otherwise (invalid node)
888  * ignore that.
889  */
890 static int gc_node_segment(struct f2fs_sb_info *sbi,
891                 struct f2fs_summary *sum, unsigned int segno, int gc_type)
892 {
893         struct f2fs_summary *entry;
894         block_t start_addr;
895         int off;
896         int phase = 0;
897         bool fggc = (gc_type == FG_GC);
898         int submitted = 0;
899         unsigned int usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
900
901         start_addr = START_BLOCK(sbi, segno);
902
903 next_step:
904         entry = sum;
905
906         if (fggc && phase == 2)
907                 atomic_inc(&sbi->wb_sync_req[NODE]);
908
909         for (off = 0; off < usable_blks_in_seg; off++, entry++) {
910                 nid_t nid = le32_to_cpu(entry->nid);
911                 struct page *node_page;
912                 struct node_info ni;
913                 int err;
914
915                 /* stop BG_GC if there is not enough free sections. */
916                 if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0))
917                         return submitted;
918
919                 if (check_valid_map(sbi, segno, off) == 0)
920                         continue;
921
922                 if (phase == 0) {
923                         f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), 1,
924                                                         META_NAT, true);
925                         continue;
926                 }
927
928                 if (phase == 1) {
929                         f2fs_ra_node_page(sbi, nid);
930                         continue;
931                 }
932
933                 /* phase == 2 */
934                 node_page = f2fs_get_node_page(sbi, nid);
935                 if (IS_ERR(node_page))
936                         continue;
937
938                 /* block may become invalid during f2fs_get_node_page */
939                 if (check_valid_map(sbi, segno, off) == 0) {
940                         f2fs_put_page(node_page, 1);
941                         continue;
942                 }
943
944                 if (f2fs_get_node_info(sbi, nid, &ni)) {
945                         f2fs_put_page(node_page, 1);
946                         continue;
947                 }
948
949                 if (ni.blk_addr != start_addr + off) {
950                         f2fs_put_page(node_page, 1);
951                         continue;
952                 }
953
954                 err = f2fs_move_node_page(node_page, gc_type);
955                 if (!err && gc_type == FG_GC)
956                         submitted++;
957                 stat_inc_node_blk_count(sbi, 1, gc_type);
958         }
959
960         if (++phase < 3)
961                 goto next_step;
962
963         if (fggc)
964                 atomic_dec(&sbi->wb_sync_req[NODE]);
965         return submitted;
966 }
967
968 /*
969  * Calculate start block index indicating the given node offset.
970  * Be careful, caller should give this node offset only indicating direct node
971  * blocks. If any node offsets, which point the other types of node blocks such
972  * as indirect or double indirect node blocks, are given, it must be a caller's
973  * bug.
974  */
975 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode)
976 {
977         unsigned int indirect_blks = 2 * NIDS_PER_BLOCK + 4;
978         unsigned int bidx;
979
980         if (node_ofs == 0)
981                 return 0;
982
983         if (node_ofs <= 2) {
984                 bidx = node_ofs - 1;
985         } else if (node_ofs <= indirect_blks) {
986                 int dec = (node_ofs - 4) / (NIDS_PER_BLOCK + 1);
987
988                 bidx = node_ofs - 2 - dec;
989         } else {
990                 int dec = (node_ofs - indirect_blks - 3) / (NIDS_PER_BLOCK + 1);
991
992                 bidx = node_ofs - 5 - dec;
993         }
994         return bidx * ADDRS_PER_BLOCK(inode) + ADDRS_PER_INODE(inode);
995 }
996
997 static bool is_alive(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
998                 struct node_info *dni, block_t blkaddr, unsigned int *nofs)
999 {
1000         struct page *node_page;
1001         nid_t nid;
1002         unsigned int ofs_in_node;
1003         block_t source_blkaddr;
1004
1005         nid = le32_to_cpu(sum->nid);
1006         ofs_in_node = le16_to_cpu(sum->ofs_in_node);
1007
1008         node_page = f2fs_get_node_page(sbi, nid);
1009         if (IS_ERR(node_page))
1010                 return false;
1011
1012         if (f2fs_get_node_info(sbi, nid, dni)) {
1013                 f2fs_put_page(node_page, 1);
1014                 return false;
1015         }
1016
1017         if (sum->version != dni->version) {
1018                 f2fs_warn(sbi, "%s: valid data with mismatched node version.",
1019                           __func__);
1020                 set_sbi_flag(sbi, SBI_NEED_FSCK);
1021         }
1022
1023         *nofs = ofs_of_node(node_page);
1024         source_blkaddr = data_blkaddr(NULL, node_page, ofs_in_node);
1025         f2fs_put_page(node_page, 1);
1026
1027         if (source_blkaddr != blkaddr) {
1028 #ifdef CONFIG_F2FS_CHECK_FS
1029                 unsigned int segno = GET_SEGNO(sbi, blkaddr);
1030                 unsigned long offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
1031
1032                 if (unlikely(check_valid_map(sbi, segno, offset))) {
1033                         if (!test_and_set_bit(segno, SIT_I(sbi)->invalid_segmap)) {
1034                                 f2fs_err(sbi, "mismatched blkaddr %u (source_blkaddr %u) in seg %u\n",
1035                                                 blkaddr, source_blkaddr, segno);
1036                                 f2fs_bug_on(sbi, 1);
1037                         }
1038                 }
1039 #endif
1040                 return false;
1041         }
1042         return true;
1043 }
1044
1045 static int ra_data_block(struct inode *inode, pgoff_t index)
1046 {
1047         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1048         struct address_space *mapping = inode->i_mapping;
1049         struct dnode_of_data dn;
1050         struct page *page;
1051         struct extent_info ei = {0, 0, 0};
1052         struct f2fs_io_info fio = {
1053                 .sbi = sbi,
1054                 .ino = inode->i_ino,
1055                 .type = DATA,
1056                 .temp = COLD,
1057                 .op = REQ_OP_READ,
1058                 .op_flags = 0,
1059                 .encrypted_page = NULL,
1060                 .in_list = false,
1061                 .retry = false,
1062         };
1063         int err;
1064
1065         page = f2fs_grab_cache_page(mapping, index, true);
1066         if (!page)
1067                 return -ENOMEM;
1068
1069         if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1070                 dn.data_blkaddr = ei.blk + index - ei.fofs;
1071                 if (unlikely(!f2fs_is_valid_blkaddr(sbi, dn.data_blkaddr,
1072                                                 DATA_GENERIC_ENHANCE_READ))) {
1073                         err = -EFSCORRUPTED;
1074                         goto put_page;
1075                 }
1076                 goto got_it;
1077         }
1078
1079         set_new_dnode(&dn, inode, NULL, NULL, 0);
1080         err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1081         if (err)
1082                 goto put_page;
1083         f2fs_put_dnode(&dn);
1084
1085         if (!__is_valid_data_blkaddr(dn.data_blkaddr)) {
1086                 err = -ENOENT;
1087                 goto put_page;
1088         }
1089         if (unlikely(!f2fs_is_valid_blkaddr(sbi, dn.data_blkaddr,
1090                                                 DATA_GENERIC_ENHANCE))) {
1091                 err = -EFSCORRUPTED;
1092                 goto put_page;
1093         }
1094 got_it:
1095         /* read page */
1096         fio.page = page;
1097         fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr;
1098
1099         /*
1100          * don't cache encrypted data into meta inode until previous dirty
1101          * data were writebacked to avoid racing between GC and flush.
1102          */
1103         f2fs_wait_on_page_writeback(page, DATA, true, true);
1104
1105         f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
1106
1107         fio.encrypted_page = f2fs_pagecache_get_page(META_MAPPING(sbi),
1108                                         dn.data_blkaddr,
1109                                         FGP_LOCK | FGP_CREAT, GFP_NOFS);
1110         if (!fio.encrypted_page) {
1111                 err = -ENOMEM;
1112                 goto put_page;
1113         }
1114
1115         err = f2fs_submit_page_bio(&fio);
1116         if (err)
1117                 goto put_encrypted_page;
1118         f2fs_put_page(fio.encrypted_page, 0);
1119         f2fs_put_page(page, 1);
1120
1121         f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE);
1122         f2fs_update_iostat(sbi, FS_GDATA_READ_IO, F2FS_BLKSIZE);
1123
1124         return 0;
1125 put_encrypted_page:
1126         f2fs_put_page(fio.encrypted_page, 1);
1127 put_page:
1128         f2fs_put_page(page, 1);
1129         return err;
1130 }
1131
1132 /*
1133  * Move data block via META_MAPPING while keeping locked data page.
1134  * This can be used to move blocks, aka LBAs, directly on disk.
1135  */
1136 static int move_data_block(struct inode *inode, block_t bidx,
1137                                 int gc_type, unsigned int segno, int off)
1138 {
1139         struct f2fs_io_info fio = {
1140                 .sbi = F2FS_I_SB(inode),
1141                 .ino = inode->i_ino,
1142                 .type = DATA,
1143                 .temp = COLD,
1144                 .op = REQ_OP_READ,
1145                 .op_flags = 0,
1146                 .encrypted_page = NULL,
1147                 .in_list = false,
1148                 .retry = false,
1149         };
1150         struct dnode_of_data dn;
1151         struct f2fs_summary sum;
1152         struct node_info ni;
1153         struct page *page, *mpage;
1154         block_t newaddr;
1155         int err = 0;
1156         bool lfs_mode = f2fs_lfs_mode(fio.sbi);
1157         int type = fio.sbi->am.atgc_enabled && (gc_type == BG_GC) &&
1158                                 (fio.sbi->gc_mode != GC_URGENT_HIGH) ?
1159                                 CURSEG_ALL_DATA_ATGC : CURSEG_COLD_DATA;
1160
1161         /* do not read out */
1162         page = f2fs_grab_cache_page(inode->i_mapping, bidx, false);
1163         if (!page)
1164                 return -ENOMEM;
1165
1166         if (!check_valid_map(F2FS_I_SB(inode), segno, off)) {
1167                 err = -ENOENT;
1168                 goto out;
1169         }
1170
1171         if (f2fs_is_atomic_file(inode)) {
1172                 F2FS_I(inode)->i_gc_failures[GC_FAILURE_ATOMIC]++;
1173                 F2FS_I_SB(inode)->skipped_atomic_files[gc_type]++;
1174                 err = -EAGAIN;
1175                 goto out;
1176         }
1177
1178         if (f2fs_is_pinned_file(inode)) {
1179                 f2fs_pin_file_control(inode, true);
1180                 err = -EAGAIN;
1181                 goto out;
1182         }
1183
1184         set_new_dnode(&dn, inode, NULL, NULL, 0);
1185         err = f2fs_get_dnode_of_data(&dn, bidx, LOOKUP_NODE);
1186         if (err)
1187                 goto out;
1188
1189         if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1190                 ClearPageUptodate(page);
1191                 err = -ENOENT;
1192                 goto put_out;
1193         }
1194
1195         /*
1196          * don't cache encrypted data into meta inode until previous dirty
1197          * data were writebacked to avoid racing between GC and flush.
1198          */
1199         f2fs_wait_on_page_writeback(page, DATA, true, true);
1200
1201         f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
1202
1203         err = f2fs_get_node_info(fio.sbi, dn.nid, &ni);
1204         if (err)
1205                 goto put_out;
1206
1207         /* read page */
1208         fio.page = page;
1209         fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr;
1210
1211         if (lfs_mode)
1212                 down_write(&fio.sbi->io_order_lock);
1213
1214         mpage = f2fs_grab_cache_page(META_MAPPING(fio.sbi),
1215                                         fio.old_blkaddr, false);
1216         if (!mpage) {
1217                 err = -ENOMEM;
1218                 goto up_out;
1219         }
1220
1221         fio.encrypted_page = mpage;
1222
1223         /* read source block in mpage */
1224         if (!PageUptodate(mpage)) {
1225                 err = f2fs_submit_page_bio(&fio);
1226                 if (err) {
1227                         f2fs_put_page(mpage, 1);
1228                         goto up_out;
1229                 }
1230
1231                 f2fs_update_iostat(fio.sbi, FS_DATA_READ_IO, F2FS_BLKSIZE);
1232                 f2fs_update_iostat(fio.sbi, FS_GDATA_READ_IO, F2FS_BLKSIZE);
1233
1234                 lock_page(mpage);
1235                 if (unlikely(mpage->mapping != META_MAPPING(fio.sbi) ||
1236                                                 !PageUptodate(mpage))) {
1237                         err = -EIO;
1238                         f2fs_put_page(mpage, 1);
1239                         goto up_out;
1240                 }
1241         }
1242
1243         set_summary(&sum, dn.nid, dn.ofs_in_node, ni.version);
1244
1245         /* allocate block address */
1246         f2fs_allocate_data_block(fio.sbi, NULL, fio.old_blkaddr, &newaddr,
1247                                 &sum, type, NULL);
1248
1249         fio.encrypted_page = f2fs_pagecache_get_page(META_MAPPING(fio.sbi),
1250                                 newaddr, FGP_LOCK | FGP_CREAT, GFP_NOFS);
1251         if (!fio.encrypted_page) {
1252                 err = -ENOMEM;
1253                 f2fs_put_page(mpage, 1);
1254                 goto recover_block;
1255         }
1256
1257         /* write target block */
1258         f2fs_wait_on_page_writeback(fio.encrypted_page, DATA, true, true);
1259         memcpy(page_address(fio.encrypted_page),
1260                                 page_address(mpage), PAGE_SIZE);
1261         f2fs_put_page(mpage, 1);
1262         invalidate_mapping_pages(META_MAPPING(fio.sbi),
1263                                 fio.old_blkaddr, fio.old_blkaddr);
1264
1265         set_page_dirty(fio.encrypted_page);
1266         if (clear_page_dirty_for_io(fio.encrypted_page))
1267                 dec_page_count(fio.sbi, F2FS_DIRTY_META);
1268
1269         set_page_writeback(fio.encrypted_page);
1270         ClearPageError(page);
1271
1272         fio.op = REQ_OP_WRITE;
1273         fio.op_flags = REQ_SYNC;
1274         fio.new_blkaddr = newaddr;
1275         f2fs_submit_page_write(&fio);
1276         if (fio.retry) {
1277                 err = -EAGAIN;
1278                 if (PageWriteback(fio.encrypted_page))
1279                         end_page_writeback(fio.encrypted_page);
1280                 goto put_page_out;
1281         }
1282
1283         f2fs_update_iostat(fio.sbi, FS_GC_DATA_IO, F2FS_BLKSIZE);
1284
1285         f2fs_update_data_blkaddr(&dn, newaddr);
1286         set_inode_flag(inode, FI_APPEND_WRITE);
1287         if (page->index == 0)
1288                 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
1289 put_page_out:
1290         f2fs_put_page(fio.encrypted_page, 1);
1291 recover_block:
1292         if (err)
1293                 f2fs_do_replace_block(fio.sbi, &sum, newaddr, fio.old_blkaddr,
1294                                                         true, true, true);
1295 up_out:
1296         if (lfs_mode)
1297                 up_write(&fio.sbi->io_order_lock);
1298 put_out:
1299         f2fs_put_dnode(&dn);
1300 out:
1301         f2fs_put_page(page, 1);
1302         return err;
1303 }
1304
1305 static int move_data_page(struct inode *inode, block_t bidx, int gc_type,
1306                                                         unsigned int segno, int off)
1307 {
1308         struct page *page;
1309         int err = 0;
1310
1311         page = f2fs_get_lock_data_page(inode, bidx, true);
1312         if (IS_ERR(page))
1313                 return PTR_ERR(page);
1314
1315         if (!check_valid_map(F2FS_I_SB(inode), segno, off)) {
1316                 err = -ENOENT;
1317                 goto out;
1318         }
1319
1320         if (f2fs_is_atomic_file(inode)) {
1321                 F2FS_I(inode)->i_gc_failures[GC_FAILURE_ATOMIC]++;
1322                 F2FS_I_SB(inode)->skipped_atomic_files[gc_type]++;
1323                 err = -EAGAIN;
1324                 goto out;
1325         }
1326         if (f2fs_is_pinned_file(inode)) {
1327                 if (gc_type == FG_GC)
1328                         f2fs_pin_file_control(inode, true);
1329                 err = -EAGAIN;
1330                 goto out;
1331         }
1332
1333         if (gc_type == BG_GC) {
1334                 if (PageWriteback(page)) {
1335                         err = -EAGAIN;
1336                         goto out;
1337                 }
1338                 set_page_dirty(page);
1339                 set_cold_data(page);
1340         } else {
1341                 struct f2fs_io_info fio = {
1342                         .sbi = F2FS_I_SB(inode),
1343                         .ino = inode->i_ino,
1344                         .type = DATA,
1345                         .temp = COLD,
1346                         .op = REQ_OP_WRITE,
1347                         .op_flags = REQ_SYNC,
1348                         .old_blkaddr = NULL_ADDR,
1349                         .page = page,
1350                         .encrypted_page = NULL,
1351                         .need_lock = LOCK_REQ,
1352                         .io_type = FS_GC_DATA_IO,
1353                 };
1354                 bool is_dirty = PageDirty(page);
1355
1356 retry:
1357                 f2fs_wait_on_page_writeback(page, DATA, true, true);
1358
1359                 set_page_dirty(page);
1360                 if (clear_page_dirty_for_io(page)) {
1361                         inode_dec_dirty_pages(inode);
1362                         f2fs_remove_dirty_inode(inode);
1363                 }
1364
1365                 set_cold_data(page);
1366
1367                 err = f2fs_do_write_data_page(&fio);
1368                 if (err) {
1369                         clear_cold_data(page);
1370                         if (err == -ENOMEM) {
1371                                 congestion_wait(BLK_RW_ASYNC,
1372                                                 DEFAULT_IO_TIMEOUT);
1373                                 goto retry;
1374                         }
1375                         if (is_dirty)
1376                                 set_page_dirty(page);
1377                 }
1378         }
1379 out:
1380         f2fs_put_page(page, 1);
1381         return err;
1382 }
1383
1384 /*
1385  * This function tries to get parent node of victim data block, and identifies
1386  * data block validity. If the block is valid, copy that with cold status and
1387  * modify parent node.
1388  * If the parent node is not valid or the data block address is different,
1389  * the victim data block is ignored.
1390  */
1391 static int gc_data_segment(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
1392                 struct gc_inode_list *gc_list, unsigned int segno, int gc_type,
1393                 bool force_migrate)
1394 {
1395         struct super_block *sb = sbi->sb;
1396         struct f2fs_summary *entry;
1397         block_t start_addr;
1398         int off;
1399         int phase = 0;
1400         int submitted = 0;
1401         unsigned int usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
1402
1403         start_addr = START_BLOCK(sbi, segno);
1404
1405 next_step:
1406         entry = sum;
1407
1408         for (off = 0; off < usable_blks_in_seg; off++, entry++) {
1409                 struct page *data_page;
1410                 struct inode *inode;
1411                 struct node_info dni; /* dnode info for the data */
1412                 unsigned int ofs_in_node, nofs;
1413                 block_t start_bidx;
1414                 nid_t nid = le32_to_cpu(entry->nid);
1415
1416                 /*
1417                  * stop BG_GC if there is not enough free sections.
1418                  * Or, stop GC if the segment becomes fully valid caused by
1419                  * race condition along with SSR block allocation.
1420                  */
1421                 if ((gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0)) ||
1422                         (!force_migrate && get_valid_blocks(sbi, segno, true) ==
1423                                                         BLKS_PER_SEC(sbi)))
1424                         return submitted;
1425
1426                 if (check_valid_map(sbi, segno, off) == 0)
1427                         continue;
1428
1429                 if (phase == 0) {
1430                         f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), 1,
1431                                                         META_NAT, true);
1432                         continue;
1433                 }
1434
1435                 if (phase == 1) {
1436                         f2fs_ra_node_page(sbi, nid);
1437                         continue;
1438                 }
1439
1440                 /* Get an inode by ino with checking validity */
1441                 if (!is_alive(sbi, entry, &dni, start_addr + off, &nofs))
1442                         continue;
1443
1444                 if (phase == 2) {
1445                         f2fs_ra_node_page(sbi, dni.ino);
1446                         continue;
1447                 }
1448
1449                 ofs_in_node = le16_to_cpu(entry->ofs_in_node);
1450
1451                 if (phase == 3) {
1452                         inode = f2fs_iget(sb, dni.ino);
1453                         if (IS_ERR(inode) || is_bad_inode(inode)) {
1454                                 set_sbi_flag(sbi, SBI_NEED_FSCK);
1455                                 continue;
1456                         }
1457
1458                         if (!down_write_trylock(
1459                                 &F2FS_I(inode)->i_gc_rwsem[WRITE])) {
1460                                 iput(inode);
1461                                 sbi->skipped_gc_rwsem++;
1462                                 continue;
1463                         }
1464
1465                         start_bidx = f2fs_start_bidx_of_node(nofs, inode) +
1466                                                                 ofs_in_node;
1467
1468                         if (f2fs_post_read_required(inode)) {
1469                                 int err = ra_data_block(inode, start_bidx);
1470
1471                                 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1472                                 if (err) {
1473                                         iput(inode);
1474                                         continue;
1475                                 }
1476                                 add_gc_inode(gc_list, inode);
1477                                 continue;
1478                         }
1479
1480                         data_page = f2fs_get_read_data_page(inode,
1481                                                 start_bidx, REQ_RAHEAD, true);
1482                         up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1483                         if (IS_ERR(data_page)) {
1484                                 iput(inode);
1485                                 continue;
1486                         }
1487
1488                         f2fs_put_page(data_page, 0);
1489                         add_gc_inode(gc_list, inode);
1490                         continue;
1491                 }
1492
1493                 /* phase 4 */
1494                 inode = find_gc_inode(gc_list, dni.ino);
1495                 if (inode) {
1496                         struct f2fs_inode_info *fi = F2FS_I(inode);
1497                         bool locked = false;
1498                         int err;
1499
1500                         if (S_ISREG(inode->i_mode)) {
1501                                 if (!down_write_trylock(&fi->i_gc_rwsem[READ]))
1502                                         continue;
1503                                 if (!down_write_trylock(
1504                                                 &fi->i_gc_rwsem[WRITE])) {
1505                                         sbi->skipped_gc_rwsem++;
1506                                         up_write(&fi->i_gc_rwsem[READ]);
1507                                         continue;
1508                                 }
1509                                 locked = true;
1510
1511                                 /* wait for all inflight aio data */
1512                                 inode_dio_wait(inode);
1513                         }
1514
1515                         start_bidx = f2fs_start_bidx_of_node(nofs, inode)
1516                                                                 + ofs_in_node;
1517                         if (f2fs_post_read_required(inode))
1518                                 err = move_data_block(inode, start_bidx,
1519                                                         gc_type, segno, off);
1520                         else
1521                                 err = move_data_page(inode, start_bidx, gc_type,
1522                                                                 segno, off);
1523
1524                         if (!err && (gc_type == FG_GC ||
1525                                         f2fs_post_read_required(inode)))
1526                                 submitted++;
1527
1528                         if (locked) {
1529                                 up_write(&fi->i_gc_rwsem[WRITE]);
1530                                 up_write(&fi->i_gc_rwsem[READ]);
1531                         }
1532
1533                         stat_inc_data_blk_count(sbi, 1, gc_type);
1534                 }
1535         }
1536
1537         if (++phase < 5)
1538                 goto next_step;
1539
1540         return submitted;
1541 }
1542
1543 static int __get_victim(struct f2fs_sb_info *sbi, unsigned int *victim,
1544                         int gc_type)
1545 {
1546         struct sit_info *sit_i = SIT_I(sbi);
1547         int ret;
1548
1549         down_write(&sit_i->sentry_lock);
1550         ret = DIRTY_I(sbi)->v_ops->get_victim(sbi, victim, gc_type,
1551                                               NO_CHECK_TYPE, LFS, 0);
1552         up_write(&sit_i->sentry_lock);
1553         return ret;
1554 }
1555
1556 static int do_garbage_collect(struct f2fs_sb_info *sbi,
1557                                 unsigned int start_segno,
1558                                 struct gc_inode_list *gc_list, int gc_type,
1559                                 bool force_migrate)
1560 {
1561         struct page *sum_page;
1562         struct f2fs_summary_block *sum;
1563         struct blk_plug plug;
1564         unsigned int segno = start_segno;
1565         unsigned int end_segno = start_segno + sbi->segs_per_sec;
1566         int seg_freed = 0, migrated = 0;
1567         unsigned char type = IS_DATASEG(get_seg_entry(sbi, segno)->type) ?
1568                                                 SUM_TYPE_DATA : SUM_TYPE_NODE;
1569         int submitted = 0;
1570
1571         if (__is_large_section(sbi))
1572                 end_segno = rounddown(end_segno, sbi->segs_per_sec);
1573
1574         /*
1575          * zone-capacity can be less than zone-size in zoned devices,
1576          * resulting in less than expected usable segments in the zone,
1577          * calculate the end segno in the zone which can be garbage collected
1578          */
1579         if (f2fs_sb_has_blkzoned(sbi))
1580                 end_segno -= sbi->segs_per_sec -
1581                                         f2fs_usable_segs_in_sec(sbi, segno);
1582
1583         sanity_check_seg_type(sbi, get_seg_entry(sbi, segno)->type);
1584
1585         /* readahead multi ssa blocks those have contiguous address */
1586         if (__is_large_section(sbi))
1587                 f2fs_ra_meta_pages(sbi, GET_SUM_BLOCK(sbi, segno),
1588                                         end_segno - segno, META_SSA, true);
1589
1590         /* reference all summary page */
1591         while (segno < end_segno) {
1592                 sum_page = f2fs_get_sum_page(sbi, segno++);
1593                 if (IS_ERR(sum_page)) {
1594                         int err = PTR_ERR(sum_page);
1595
1596                         end_segno = segno - 1;
1597                         for (segno = start_segno; segno < end_segno; segno++) {
1598                                 sum_page = find_get_page(META_MAPPING(sbi),
1599                                                 GET_SUM_BLOCK(sbi, segno));
1600                                 f2fs_put_page(sum_page, 0);
1601                                 f2fs_put_page(sum_page, 0);
1602                         }
1603                         return err;
1604                 }
1605                 unlock_page(sum_page);
1606         }
1607
1608         blk_start_plug(&plug);
1609
1610         for (segno = start_segno; segno < end_segno; segno++) {
1611
1612                 /* find segment summary of victim */
1613                 sum_page = find_get_page(META_MAPPING(sbi),
1614                                         GET_SUM_BLOCK(sbi, segno));
1615                 f2fs_put_page(sum_page, 0);
1616
1617                 if (get_valid_blocks(sbi, segno, false) == 0)
1618                         goto freed;
1619                 if (gc_type == BG_GC && __is_large_section(sbi) &&
1620                                 migrated >= sbi->migration_granularity)
1621                         goto skip;
1622                 if (!PageUptodate(sum_page) || unlikely(f2fs_cp_error(sbi)))
1623                         goto skip;
1624
1625                 sum = page_address(sum_page);
1626                 if (type != GET_SUM_TYPE((&sum->footer))) {
1627                         f2fs_err(sbi, "Inconsistent segment (%u) type [%d, %d] in SSA and SIT",
1628                                  segno, type, GET_SUM_TYPE((&sum->footer)));
1629                         set_sbi_flag(sbi, SBI_NEED_FSCK);
1630                         f2fs_stop_checkpoint(sbi, false);
1631                         goto skip;
1632                 }
1633
1634                 /*
1635                  * this is to avoid deadlock:
1636                  * - lock_page(sum_page)         - f2fs_replace_block
1637                  *  - check_valid_map()            - down_write(sentry_lock)
1638                  *   - down_read(sentry_lock)     - change_curseg()
1639                  *                                  - lock_page(sum_page)
1640                  */
1641                 if (type == SUM_TYPE_NODE)
1642                         submitted += gc_node_segment(sbi, sum->entries, segno,
1643                                                                 gc_type);
1644                 else
1645                         submitted += gc_data_segment(sbi, sum->entries, gc_list,
1646                                                         segno, gc_type,
1647                                                         force_migrate);
1648
1649                 stat_inc_seg_count(sbi, type, gc_type);
1650                 migrated++;
1651
1652 freed:
1653                 if (gc_type == FG_GC &&
1654                                 get_valid_blocks(sbi, segno, false) == 0)
1655                         seg_freed++;
1656
1657                 if (__is_large_section(sbi) && segno + 1 < end_segno)
1658                         sbi->next_victim_seg[gc_type] = segno + 1;
1659 skip:
1660                 f2fs_put_page(sum_page, 0);
1661         }
1662
1663         if (submitted)
1664                 f2fs_submit_merged_write(sbi,
1665                                 (type == SUM_TYPE_NODE) ? NODE : DATA);
1666
1667         blk_finish_plug(&plug);
1668
1669         stat_inc_call_count(sbi->stat_info);
1670
1671         return seg_freed;
1672 }
1673
1674 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync,
1675                         bool background, bool force, unsigned int segno)
1676 {
1677         int gc_type = sync ? FG_GC : BG_GC;
1678         int sec_freed = 0, seg_freed = 0, total_freed = 0;
1679         int ret = 0;
1680         struct cp_control cpc;
1681         unsigned int init_segno = segno;
1682         struct gc_inode_list gc_list = {
1683                 .ilist = LIST_HEAD_INIT(gc_list.ilist),
1684                 .iroot = RADIX_TREE_INIT(gc_list.iroot, GFP_NOFS),
1685         };
1686         unsigned long long last_skipped = sbi->skipped_atomic_files[FG_GC];
1687         unsigned long long first_skipped;
1688         unsigned int skipped_round = 0, round = 0;
1689
1690         trace_f2fs_gc_begin(sbi->sb, sync, background,
1691                                 get_pages(sbi, F2FS_DIRTY_NODES),
1692                                 get_pages(sbi, F2FS_DIRTY_DENTS),
1693                                 get_pages(sbi, F2FS_DIRTY_IMETA),
1694                                 free_sections(sbi),
1695                                 free_segments(sbi),
1696                                 reserved_segments(sbi),
1697                                 prefree_segments(sbi));
1698
1699         cpc.reason = __get_cp_reason(sbi);
1700         sbi->skipped_gc_rwsem = 0;
1701         first_skipped = last_skipped;
1702 gc_more:
1703         if (unlikely(!(sbi->sb->s_flags & SB_ACTIVE))) {
1704                 ret = -EINVAL;
1705                 goto stop;
1706         }
1707         if (unlikely(f2fs_cp_error(sbi))) {
1708                 ret = -EIO;
1709                 goto stop;
1710         }
1711
1712         if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0)) {
1713                 /*
1714                  * For example, if there are many prefree_segments below given
1715                  * threshold, we can make them free by checkpoint. Then, we
1716                  * secure free segments which doesn't need fggc any more.
1717                  */
1718                 if (prefree_segments(sbi) &&
1719                                 !is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
1720                         ret = f2fs_write_checkpoint(sbi, &cpc);
1721                         if (ret)
1722                                 goto stop;
1723                 }
1724                 if (has_not_enough_free_secs(sbi, 0, 0))
1725                         gc_type = FG_GC;
1726         }
1727
1728         /* f2fs_balance_fs doesn't need to do BG_GC in critical path. */
1729         if (gc_type == BG_GC && !background) {
1730                 ret = -EINVAL;
1731                 goto stop;
1732         }
1733         ret = __get_victim(sbi, &segno, gc_type);
1734         if (ret)
1735                 goto stop;
1736
1737         seg_freed = do_garbage_collect(sbi, segno, &gc_list, gc_type, force);
1738         if (gc_type == FG_GC &&
1739                 seg_freed == f2fs_usable_segs_in_sec(sbi, segno))
1740                 sec_freed++;
1741         total_freed += seg_freed;
1742
1743         if (gc_type == FG_GC) {
1744                 if (sbi->skipped_atomic_files[FG_GC] > last_skipped ||
1745                                                 sbi->skipped_gc_rwsem)
1746                         skipped_round++;
1747                 last_skipped = sbi->skipped_atomic_files[FG_GC];
1748                 round++;
1749         }
1750
1751         if (gc_type == FG_GC && seg_freed)
1752                 sbi->cur_victim_sec = NULL_SEGNO;
1753
1754         if (sync)
1755                 goto stop;
1756
1757         if (has_not_enough_free_secs(sbi, sec_freed, 0)) {
1758                 if (skipped_round <= MAX_SKIP_GC_COUNT ||
1759                                         skipped_round * 2 < round) {
1760                         segno = NULL_SEGNO;
1761                         goto gc_more;
1762                 }
1763
1764                 if (first_skipped < last_skipped &&
1765                                 (last_skipped - first_skipped) >
1766                                                 sbi->skipped_gc_rwsem) {
1767                         f2fs_drop_inmem_pages_all(sbi, true);
1768                         segno = NULL_SEGNO;
1769                         goto gc_more;
1770                 }
1771                 if (gc_type == FG_GC && !is_sbi_flag_set(sbi, SBI_CP_DISABLED))
1772                         ret = f2fs_write_checkpoint(sbi, &cpc);
1773         }
1774 stop:
1775         SIT_I(sbi)->last_victim[ALLOC_NEXT] = 0;
1776         SIT_I(sbi)->last_victim[FLUSH_DEVICE] = init_segno;
1777
1778         trace_f2fs_gc_end(sbi->sb, ret, total_freed, sec_freed,
1779                                 get_pages(sbi, F2FS_DIRTY_NODES),
1780                                 get_pages(sbi, F2FS_DIRTY_DENTS),
1781                                 get_pages(sbi, F2FS_DIRTY_IMETA),
1782                                 free_sections(sbi),
1783                                 free_segments(sbi),
1784                                 reserved_segments(sbi),
1785                                 prefree_segments(sbi));
1786
1787         up_write(&sbi->gc_lock);
1788
1789         put_gc_inode(&gc_list);
1790
1791         if (sync && !ret)
1792                 ret = sec_freed ? 0 : -EAGAIN;
1793         return ret;
1794 }
1795
1796 int __init f2fs_create_garbage_collection_cache(void)
1797 {
1798         victim_entry_slab = f2fs_kmem_cache_create("f2fs_victim_entry",
1799                                         sizeof(struct victim_entry));
1800         if (!victim_entry_slab)
1801                 return -ENOMEM;
1802         return 0;
1803 }
1804
1805 void f2fs_destroy_garbage_collection_cache(void)
1806 {
1807         kmem_cache_destroy(victim_entry_slab);
1808 }
1809
1810 static void init_atgc_management(struct f2fs_sb_info *sbi)
1811 {
1812         struct atgc_management *am = &sbi->am;
1813
1814         if (test_opt(sbi, ATGC) &&
1815                 SIT_I(sbi)->elapsed_time >= DEF_GC_THREAD_AGE_THRESHOLD)
1816                 am->atgc_enabled = true;
1817
1818         am->root = RB_ROOT_CACHED;
1819         INIT_LIST_HEAD(&am->victim_list);
1820         am->victim_count = 0;
1821
1822         am->candidate_ratio = DEF_GC_THREAD_CANDIDATE_RATIO;
1823         am->max_candidate_count = DEF_GC_THREAD_MAX_CANDIDATE_COUNT;
1824         am->age_weight = DEF_GC_THREAD_AGE_WEIGHT;
1825 }
1826
1827 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi)
1828 {
1829         DIRTY_I(sbi)->v_ops = &default_v_ops;
1830
1831         sbi->gc_pin_file_threshold = DEF_GC_FAILED_PINNED_FILES;
1832
1833         /* give warm/cold data area from slower device */
1834         if (f2fs_is_multi_device(sbi) && !__is_large_section(sbi))
1835                 SIT_I(sbi)->last_victim[ALLOC_NEXT] =
1836                                 GET_SEGNO(sbi, FDEV(0).end_blk) + 1;
1837
1838         init_atgc_management(sbi);
1839 }
1840
1841 static int free_segment_range(struct f2fs_sb_info *sbi,
1842                                 unsigned int secs, bool gc_only)
1843 {
1844         unsigned int segno, next_inuse, start, end;
1845         struct cp_control cpc = { CP_RESIZE, 0, 0, 0 };
1846         int gc_mode, gc_type;
1847         int err = 0;
1848         int type;
1849
1850         /* Force block allocation for GC */
1851         MAIN_SECS(sbi) -= secs;
1852         start = MAIN_SECS(sbi) * sbi->segs_per_sec;
1853         end = MAIN_SEGS(sbi) - 1;
1854
1855         mutex_lock(&DIRTY_I(sbi)->seglist_lock);
1856         for (gc_mode = 0; gc_mode < MAX_GC_POLICY; gc_mode++)
1857                 if (SIT_I(sbi)->last_victim[gc_mode] >= start)
1858                         SIT_I(sbi)->last_victim[gc_mode] = 0;
1859
1860         for (gc_type = BG_GC; gc_type <= FG_GC; gc_type++)
1861                 if (sbi->next_victim_seg[gc_type] >= start)
1862                         sbi->next_victim_seg[gc_type] = NULL_SEGNO;
1863         mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
1864
1865         /* Move out cursegs from the target range */
1866         for (type = CURSEG_HOT_DATA; type < NR_CURSEG_PERSIST_TYPE; type++)
1867                 f2fs_allocate_segment_for_resize(sbi, type, start, end);
1868
1869         /* do GC to move out valid blocks in the range */
1870         for (segno = start; segno <= end; segno += sbi->segs_per_sec) {
1871                 struct gc_inode_list gc_list = {
1872                         .ilist = LIST_HEAD_INIT(gc_list.ilist),
1873                         .iroot = RADIX_TREE_INIT(gc_list.iroot, GFP_NOFS),
1874                 };
1875
1876                 do_garbage_collect(sbi, segno, &gc_list, FG_GC, true);
1877                 put_gc_inode(&gc_list);
1878
1879                 if (!gc_only && get_valid_blocks(sbi, segno, true)) {
1880                         err = -EAGAIN;
1881                         goto out;
1882                 }
1883                 if (fatal_signal_pending(current)) {
1884                         err = -ERESTARTSYS;
1885                         goto out;
1886                 }
1887         }
1888         if (gc_only)
1889                 goto out;
1890
1891         err = f2fs_write_checkpoint(sbi, &cpc);
1892         if (err)
1893                 goto out;
1894
1895         next_inuse = find_next_inuse(FREE_I(sbi), end + 1, start);
1896         if (next_inuse <= end) {
1897                 f2fs_err(sbi, "segno %u should be free but still inuse!",
1898                          next_inuse);
1899                 f2fs_bug_on(sbi, 1);
1900         }
1901 out:
1902         MAIN_SECS(sbi) += secs;
1903         return err;
1904 }
1905
1906 static void update_sb_metadata(struct f2fs_sb_info *sbi, int secs)
1907 {
1908         struct f2fs_super_block *raw_sb = F2FS_RAW_SUPER(sbi);
1909         int section_count;
1910         int segment_count;
1911         int segment_count_main;
1912         long long block_count;
1913         int segs = secs * sbi->segs_per_sec;
1914
1915         down_write(&sbi->sb_lock);
1916
1917         section_count = le32_to_cpu(raw_sb->section_count);
1918         segment_count = le32_to_cpu(raw_sb->segment_count);
1919         segment_count_main = le32_to_cpu(raw_sb->segment_count_main);
1920         block_count = le64_to_cpu(raw_sb->block_count);
1921
1922         raw_sb->section_count = cpu_to_le32(section_count + secs);
1923         raw_sb->segment_count = cpu_to_le32(segment_count + segs);
1924         raw_sb->segment_count_main = cpu_to_le32(segment_count_main + segs);
1925         raw_sb->block_count = cpu_to_le64(block_count +
1926                                         (long long)segs * sbi->blocks_per_seg);
1927         if (f2fs_is_multi_device(sbi)) {
1928                 int last_dev = sbi->s_ndevs - 1;
1929                 int dev_segs =
1930                         le32_to_cpu(raw_sb->devs[last_dev].total_segments);
1931
1932                 raw_sb->devs[last_dev].total_segments =
1933                                                 cpu_to_le32(dev_segs + segs);
1934         }
1935
1936         up_write(&sbi->sb_lock);
1937 }
1938
1939 static void update_fs_metadata(struct f2fs_sb_info *sbi, int secs)
1940 {
1941         int segs = secs * sbi->segs_per_sec;
1942         long long blks = (long long)segs * sbi->blocks_per_seg;
1943         long long user_block_count =
1944                                 le64_to_cpu(F2FS_CKPT(sbi)->user_block_count);
1945
1946         SM_I(sbi)->segment_count = (int)SM_I(sbi)->segment_count + segs;
1947         MAIN_SEGS(sbi) = (int)MAIN_SEGS(sbi) + segs;
1948         MAIN_SECS(sbi) += secs;
1949         FREE_I(sbi)->free_sections = (int)FREE_I(sbi)->free_sections + secs;
1950         FREE_I(sbi)->free_segments = (int)FREE_I(sbi)->free_segments + segs;
1951         F2FS_CKPT(sbi)->user_block_count = cpu_to_le64(user_block_count + blks);
1952
1953         if (f2fs_is_multi_device(sbi)) {
1954                 int last_dev = sbi->s_ndevs - 1;
1955
1956                 FDEV(last_dev).total_segments =
1957                                 (int)FDEV(last_dev).total_segments + segs;
1958                 FDEV(last_dev).end_blk =
1959                                 (long long)FDEV(last_dev).end_blk + blks;
1960 #ifdef CONFIG_BLK_DEV_ZONED
1961                 FDEV(last_dev).nr_blkz = (int)FDEV(last_dev).nr_blkz +
1962                                         (int)(blks >> sbi->log_blocks_per_blkz);
1963 #endif
1964         }
1965 }
1966
1967 int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count)
1968 {
1969         __u64 old_block_count, shrunk_blocks;
1970         struct cp_control cpc = { CP_RESIZE, 0, 0, 0 };
1971         unsigned int secs;
1972         int err = 0;
1973         __u32 rem;
1974
1975         old_block_count = le64_to_cpu(F2FS_RAW_SUPER(sbi)->block_count);
1976         if (block_count > old_block_count)
1977                 return -EINVAL;
1978
1979         if (f2fs_is_multi_device(sbi)) {
1980                 int last_dev = sbi->s_ndevs - 1;
1981                 __u64 last_segs = FDEV(last_dev).total_segments;
1982
1983                 if (block_count + last_segs * sbi->blocks_per_seg <=
1984                                                                 old_block_count)
1985                         return -EINVAL;
1986         }
1987
1988         /* new fs size should align to section size */
1989         div_u64_rem(block_count, BLKS_PER_SEC(sbi), &rem);
1990         if (rem)
1991                 return -EINVAL;
1992
1993         if (block_count == old_block_count)
1994                 return 0;
1995
1996         if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1997                 f2fs_err(sbi, "Should run fsck to repair first.");
1998                 return -EFSCORRUPTED;
1999         }
2000
2001         if (test_opt(sbi, DISABLE_CHECKPOINT)) {
2002                 f2fs_err(sbi, "Checkpoint should be enabled.");
2003                 return -EINVAL;
2004         }
2005
2006         shrunk_blocks = old_block_count - block_count;
2007         secs = div_u64(shrunk_blocks, BLKS_PER_SEC(sbi));
2008
2009         /* stop other GC */
2010         if (!down_write_trylock(&sbi->gc_lock))
2011                 return -EAGAIN;
2012
2013         /* stop CP to protect MAIN_SEC in free_segment_range */
2014         f2fs_lock_op(sbi);
2015
2016         spin_lock(&sbi->stat_lock);
2017         if (shrunk_blocks + valid_user_blocks(sbi) +
2018                 sbi->current_reserved_blocks + sbi->unusable_block_count +
2019                 F2FS_OPTION(sbi).root_reserved_blocks > sbi->user_block_count)
2020                 err = -ENOSPC;
2021         spin_unlock(&sbi->stat_lock);
2022
2023         if (err)
2024                 goto out_unlock;
2025
2026         err = free_segment_range(sbi, secs, true);
2027
2028 out_unlock:
2029         f2fs_unlock_op(sbi);
2030         up_write(&sbi->gc_lock);
2031         if (err)
2032                 return err;
2033
2034         set_sbi_flag(sbi, SBI_IS_RESIZEFS);
2035
2036         freeze_super(sbi->sb);
2037         down_write(&sbi->gc_lock);
2038         down_write(&sbi->cp_global_sem);
2039
2040         spin_lock(&sbi->stat_lock);
2041         if (shrunk_blocks + valid_user_blocks(sbi) +
2042                 sbi->current_reserved_blocks + sbi->unusable_block_count +
2043                 F2FS_OPTION(sbi).root_reserved_blocks > sbi->user_block_count)
2044                 err = -ENOSPC;
2045         else
2046                 sbi->user_block_count -= shrunk_blocks;
2047         spin_unlock(&sbi->stat_lock);
2048         if (err)
2049                 goto out_err;
2050
2051         err = free_segment_range(sbi, secs, false);
2052         if (err)
2053                 goto recover_out;
2054
2055         update_sb_metadata(sbi, -secs);
2056
2057         err = f2fs_commit_super(sbi, false);
2058         if (err) {
2059                 update_sb_metadata(sbi, secs);
2060                 goto recover_out;
2061         }
2062
2063         update_fs_metadata(sbi, -secs);
2064         clear_sbi_flag(sbi, SBI_IS_RESIZEFS);
2065         set_sbi_flag(sbi, SBI_IS_DIRTY);
2066
2067         err = f2fs_write_checkpoint(sbi, &cpc);
2068         if (err) {
2069                 update_fs_metadata(sbi, secs);
2070                 update_sb_metadata(sbi, secs);
2071                 f2fs_commit_super(sbi, false);
2072         }
2073 recover_out:
2074         if (err) {
2075                 set_sbi_flag(sbi, SBI_NEED_FSCK);
2076                 f2fs_err(sbi, "resize_fs failed, should run fsck to repair!");
2077
2078                 spin_lock(&sbi->stat_lock);
2079                 sbi->user_block_count += shrunk_blocks;
2080                 spin_unlock(&sbi->stat_lock);
2081         }
2082 out_err:
2083         up_write(&sbi->cp_global_sem);
2084         up_write(&sbi->gc_lock);
2085         thaw_super(sbi->sb);
2086         clear_sbi_flag(sbi, SBI_IS_RESIZEFS);
2087         return err;
2088 }