Merge branch 'for-linus' of git://git.kernel.dk/linux-block
[linux-2.6-microblaze.git] / fs / f2fs / gc.c
1 /*
2  * fs/f2fs/gc.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/module.h>
13 #include <linux/backing-dev.h>
14 #include <linux/init.h>
15 #include <linux/f2fs_fs.h>
16 #include <linux/kthread.h>
17 #include <linux/delay.h>
18 #include <linux/freezer.h>
19
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include "gc.h"
24 #include <trace/events/f2fs.h>
25
26 static int gc_thread_func(void *data)
27 {
28         struct f2fs_sb_info *sbi = data;
29         struct f2fs_gc_kthread *gc_th = sbi->gc_thread;
30         wait_queue_head_t *wq = &sbi->gc_thread->gc_wait_queue_head;
31         long wait_ms;
32
33         wait_ms = gc_th->min_sleep_time;
34
35         do {
36                 if (try_to_freeze())
37                         continue;
38                 else
39                         wait_event_interruptible_timeout(*wq,
40                                                 kthread_should_stop(),
41                                                 msecs_to_jiffies(wait_ms));
42                 if (kthread_should_stop())
43                         break;
44
45                 if (sbi->sb->s_writers.frozen >= SB_FREEZE_WRITE) {
46                         increase_sleep_time(gc_th, &wait_ms);
47                         continue;
48                 }
49
50 #ifdef CONFIG_F2FS_FAULT_INJECTION
51                 if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
52                         f2fs_show_injection_info(FAULT_CHECKPOINT);
53                         f2fs_stop_checkpoint(sbi, false);
54                 }
55 #endif
56
57                 /*
58                  * [GC triggering condition]
59                  * 0. GC is not conducted currently.
60                  * 1. There are enough dirty segments.
61                  * 2. IO subsystem is idle by checking the # of writeback pages.
62                  * 3. IO subsystem is idle by checking the # of requests in
63                  *    bdev's request list.
64                  *
65                  * Note) We have to avoid triggering GCs frequently.
66                  * Because it is possible that some segments can be
67                  * invalidated soon after by user update or deletion.
68                  * So, I'd like to wait some time to collect dirty segments.
69                  */
70                 if (!mutex_trylock(&sbi->gc_mutex))
71                         continue;
72
73                 if (!is_idle(sbi)) {
74                         increase_sleep_time(gc_th, &wait_ms);
75                         mutex_unlock(&sbi->gc_mutex);
76                         continue;
77                 }
78
79                 if (has_enough_invalid_blocks(sbi))
80                         decrease_sleep_time(gc_th, &wait_ms);
81                 else
82                         increase_sleep_time(gc_th, &wait_ms);
83
84                 stat_inc_bggc_count(sbi);
85
86                 /* if return value is not zero, no victim was selected */
87                 if (f2fs_gc(sbi, test_opt(sbi, FORCE_FG_GC), true, NULL_SEGNO))
88                         wait_ms = gc_th->no_gc_sleep_time;
89
90                 trace_f2fs_background_gc(sbi->sb, wait_ms,
91                                 prefree_segments(sbi), free_segments(sbi));
92
93                 /* balancing f2fs's metadata periodically */
94                 f2fs_balance_fs_bg(sbi);
95
96         } while (!kthread_should_stop());
97         return 0;
98 }
99
100 int start_gc_thread(struct f2fs_sb_info *sbi)
101 {
102         struct f2fs_gc_kthread *gc_th;
103         dev_t dev = sbi->sb->s_bdev->bd_dev;
104         int err = 0;
105
106         gc_th = f2fs_kmalloc(sbi, sizeof(struct f2fs_gc_kthread), GFP_KERNEL);
107         if (!gc_th) {
108                 err = -ENOMEM;
109                 goto out;
110         }
111
112         gc_th->min_sleep_time = DEF_GC_THREAD_MIN_SLEEP_TIME;
113         gc_th->max_sleep_time = DEF_GC_THREAD_MAX_SLEEP_TIME;
114         gc_th->no_gc_sleep_time = DEF_GC_THREAD_NOGC_SLEEP_TIME;
115
116         gc_th->gc_idle = 0;
117
118         sbi->gc_thread = gc_th;
119         init_waitqueue_head(&sbi->gc_thread->gc_wait_queue_head);
120         sbi->gc_thread->f2fs_gc_task = kthread_run(gc_thread_func, sbi,
121                         "f2fs_gc-%u:%u", MAJOR(dev), MINOR(dev));
122         if (IS_ERR(gc_th->f2fs_gc_task)) {
123                 err = PTR_ERR(gc_th->f2fs_gc_task);
124                 kfree(gc_th);
125                 sbi->gc_thread = NULL;
126         }
127 out:
128         return err;
129 }
130
131 void stop_gc_thread(struct f2fs_sb_info *sbi)
132 {
133         struct f2fs_gc_kthread *gc_th = sbi->gc_thread;
134         if (!gc_th)
135                 return;
136         kthread_stop(gc_th->f2fs_gc_task);
137         kfree(gc_th);
138         sbi->gc_thread = NULL;
139 }
140
141 static int select_gc_type(struct f2fs_gc_kthread *gc_th, int gc_type)
142 {
143         int gc_mode = (gc_type == BG_GC) ? GC_CB : GC_GREEDY;
144
145         if (gc_th && gc_th->gc_idle) {
146                 if (gc_th->gc_idle == 1)
147                         gc_mode = GC_CB;
148                 else if (gc_th->gc_idle == 2)
149                         gc_mode = GC_GREEDY;
150         }
151         return gc_mode;
152 }
153
154 static void select_policy(struct f2fs_sb_info *sbi, int gc_type,
155                         int type, struct victim_sel_policy *p)
156 {
157         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
158
159         if (p->alloc_mode == SSR) {
160                 p->gc_mode = GC_GREEDY;
161                 p->dirty_segmap = dirty_i->dirty_segmap[type];
162                 p->max_search = dirty_i->nr_dirty[type];
163                 p->ofs_unit = 1;
164         } else {
165                 p->gc_mode = select_gc_type(sbi->gc_thread, gc_type);
166                 p->dirty_segmap = dirty_i->dirty_segmap[DIRTY];
167                 p->max_search = dirty_i->nr_dirty[DIRTY];
168                 p->ofs_unit = sbi->segs_per_sec;
169         }
170
171         /* we need to check every dirty segments in the FG_GC case */
172         if (gc_type != FG_GC && p->max_search > sbi->max_victim_search)
173                 p->max_search = sbi->max_victim_search;
174
175         /* let's select beginning hot/small space first */
176         if (type == CURSEG_HOT_DATA || IS_NODESEG(type))
177                 p->offset = 0;
178         else
179                 p->offset = SIT_I(sbi)->last_victim[p->gc_mode];
180 }
181
182 static unsigned int get_max_cost(struct f2fs_sb_info *sbi,
183                                 struct victim_sel_policy *p)
184 {
185         /* SSR allocates in a segment unit */
186         if (p->alloc_mode == SSR)
187                 return sbi->blocks_per_seg;
188         if (p->gc_mode == GC_GREEDY)
189                 return 2 * sbi->blocks_per_seg * p->ofs_unit;
190         else if (p->gc_mode == GC_CB)
191                 return UINT_MAX;
192         else /* No other gc_mode */
193                 return 0;
194 }
195
196 static unsigned int check_bg_victims(struct f2fs_sb_info *sbi)
197 {
198         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
199         unsigned int secno;
200
201         /*
202          * If the gc_type is FG_GC, we can select victim segments
203          * selected by background GC before.
204          * Those segments guarantee they have small valid blocks.
205          */
206         for_each_set_bit(secno, dirty_i->victim_secmap, MAIN_SECS(sbi)) {
207                 if (sec_usage_check(sbi, secno))
208                         continue;
209
210                 if (no_fggc_candidate(sbi, secno))
211                         continue;
212
213                 clear_bit(secno, dirty_i->victim_secmap);
214                 return GET_SEG_FROM_SEC(sbi, secno);
215         }
216         return NULL_SEGNO;
217 }
218
219 static unsigned int get_cb_cost(struct f2fs_sb_info *sbi, unsigned int segno)
220 {
221         struct sit_info *sit_i = SIT_I(sbi);
222         unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
223         unsigned int start = GET_SEG_FROM_SEC(sbi, secno);
224         unsigned long long mtime = 0;
225         unsigned int vblocks;
226         unsigned char age = 0;
227         unsigned char u;
228         unsigned int i;
229
230         for (i = 0; i < sbi->segs_per_sec; i++)
231                 mtime += get_seg_entry(sbi, start + i)->mtime;
232         vblocks = get_valid_blocks(sbi, segno, true);
233
234         mtime = div_u64(mtime, sbi->segs_per_sec);
235         vblocks = div_u64(vblocks, sbi->segs_per_sec);
236
237         u = (vblocks * 100) >> sbi->log_blocks_per_seg;
238
239         /* Handle if the system time has changed by the user */
240         if (mtime < sit_i->min_mtime)
241                 sit_i->min_mtime = mtime;
242         if (mtime > sit_i->max_mtime)
243                 sit_i->max_mtime = mtime;
244         if (sit_i->max_mtime != sit_i->min_mtime)
245                 age = 100 - div64_u64(100 * (mtime - sit_i->min_mtime),
246                                 sit_i->max_mtime - sit_i->min_mtime);
247
248         return UINT_MAX - ((100 * (100 - u) * age) / (100 + u));
249 }
250
251 static unsigned int get_greedy_cost(struct f2fs_sb_info *sbi,
252                                                 unsigned int segno)
253 {
254         unsigned int valid_blocks =
255                         get_valid_blocks(sbi, segno, true);
256
257         return IS_DATASEG(get_seg_entry(sbi, segno)->type) ?
258                                 valid_blocks * 2 : valid_blocks;
259 }
260
261 static inline unsigned int get_gc_cost(struct f2fs_sb_info *sbi,
262                         unsigned int segno, struct victim_sel_policy *p)
263 {
264         if (p->alloc_mode == SSR)
265                 return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
266
267         /* alloc_mode == LFS */
268         if (p->gc_mode == GC_GREEDY)
269                 return get_greedy_cost(sbi, segno);
270         else
271                 return get_cb_cost(sbi, segno);
272 }
273
274 static unsigned int count_bits(const unsigned long *addr,
275                                 unsigned int offset, unsigned int len)
276 {
277         unsigned int end = offset + len, sum = 0;
278
279         while (offset < end) {
280                 if (test_bit(offset++, addr))
281                         ++sum;
282         }
283         return sum;
284 }
285
286 /*
287  * This function is called from two paths.
288  * One is garbage collection and the other is SSR segment selection.
289  * When it is called during GC, it just gets a victim segment
290  * and it does not remove it from dirty seglist.
291  * When it is called from SSR segment selection, it finds a segment
292  * which has minimum valid blocks and removes it from dirty seglist.
293  */
294 static int get_victim_by_default(struct f2fs_sb_info *sbi,
295                 unsigned int *result, int gc_type, int type, char alloc_mode)
296 {
297         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
298         struct sit_info *sm = SIT_I(sbi);
299         struct victim_sel_policy p;
300         unsigned int secno, last_victim;
301         unsigned int last_segment = MAIN_SEGS(sbi);
302         unsigned int nsearched = 0;
303
304         mutex_lock(&dirty_i->seglist_lock);
305
306         p.alloc_mode = alloc_mode;
307         select_policy(sbi, gc_type, type, &p);
308
309         p.min_segno = NULL_SEGNO;
310         p.min_cost = get_max_cost(sbi, &p);
311
312         if (*result != NULL_SEGNO) {
313                 if (IS_DATASEG(get_seg_entry(sbi, *result)->type) &&
314                         get_valid_blocks(sbi, *result, false) &&
315                         !sec_usage_check(sbi, GET_SEC_FROM_SEG(sbi, *result)))
316                         p.min_segno = *result;
317                 goto out;
318         }
319
320         if (p.max_search == 0)
321                 goto out;
322
323         last_victim = sm->last_victim[p.gc_mode];
324         if (p.alloc_mode == LFS && gc_type == FG_GC) {
325                 p.min_segno = check_bg_victims(sbi);
326                 if (p.min_segno != NULL_SEGNO)
327                         goto got_it;
328         }
329
330         while (1) {
331                 unsigned long cost;
332                 unsigned int segno;
333
334                 segno = find_next_bit(p.dirty_segmap, last_segment, p.offset);
335                 if (segno >= last_segment) {
336                         if (sm->last_victim[p.gc_mode]) {
337                                 last_segment =
338                                         sm->last_victim[p.gc_mode];
339                                 sm->last_victim[p.gc_mode] = 0;
340                                 p.offset = 0;
341                                 continue;
342                         }
343                         break;
344                 }
345
346                 p.offset = segno + p.ofs_unit;
347                 if (p.ofs_unit > 1) {
348                         p.offset -= segno % p.ofs_unit;
349                         nsearched += count_bits(p.dirty_segmap,
350                                                 p.offset - p.ofs_unit,
351                                                 p.ofs_unit);
352                 } else {
353                         nsearched++;
354                 }
355
356                 secno = GET_SEC_FROM_SEG(sbi, segno);
357
358                 if (sec_usage_check(sbi, secno))
359                         goto next;
360                 if (gc_type == BG_GC && test_bit(secno, dirty_i->victim_secmap))
361                         goto next;
362                 if (gc_type == FG_GC && p.alloc_mode == LFS &&
363                                         no_fggc_candidate(sbi, secno))
364                         goto next;
365
366                 cost = get_gc_cost(sbi, segno, &p);
367
368                 if (p.min_cost > cost) {
369                         p.min_segno = segno;
370                         p.min_cost = cost;
371                 }
372 next:
373                 if (nsearched >= p.max_search) {
374                         if (!sm->last_victim[p.gc_mode] && segno <= last_victim)
375                                 sm->last_victim[p.gc_mode] = last_victim + 1;
376                         else
377                                 sm->last_victim[p.gc_mode] = segno + 1;
378                         sm->last_victim[p.gc_mode] %= MAIN_SEGS(sbi);
379                         break;
380                 }
381         }
382         if (p.min_segno != NULL_SEGNO) {
383 got_it:
384                 if (p.alloc_mode == LFS) {
385                         secno = GET_SEC_FROM_SEG(sbi, p.min_segno);
386                         if (gc_type == FG_GC)
387                                 sbi->cur_victim_sec = secno;
388                         else
389                                 set_bit(secno, dirty_i->victim_secmap);
390                 }
391                 *result = (p.min_segno / p.ofs_unit) * p.ofs_unit;
392
393                 trace_f2fs_get_victim(sbi->sb, type, gc_type, &p,
394                                 sbi->cur_victim_sec,
395                                 prefree_segments(sbi), free_segments(sbi));
396         }
397 out:
398         mutex_unlock(&dirty_i->seglist_lock);
399
400         return (p.min_segno == NULL_SEGNO) ? 0 : 1;
401 }
402
403 static const struct victim_selection default_v_ops = {
404         .get_victim = get_victim_by_default,
405 };
406
407 static struct inode *find_gc_inode(struct gc_inode_list *gc_list, nid_t ino)
408 {
409         struct inode_entry *ie;
410
411         ie = radix_tree_lookup(&gc_list->iroot, ino);
412         if (ie)
413                 return ie->inode;
414         return NULL;
415 }
416
417 static void add_gc_inode(struct gc_inode_list *gc_list, struct inode *inode)
418 {
419         struct inode_entry *new_ie;
420
421         if (inode == find_gc_inode(gc_list, inode->i_ino)) {
422                 iput(inode);
423                 return;
424         }
425         new_ie = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
426         new_ie->inode = inode;
427
428         f2fs_radix_tree_insert(&gc_list->iroot, inode->i_ino, new_ie);
429         list_add_tail(&new_ie->list, &gc_list->ilist);
430 }
431
432 static void put_gc_inode(struct gc_inode_list *gc_list)
433 {
434         struct inode_entry *ie, *next_ie;
435         list_for_each_entry_safe(ie, next_ie, &gc_list->ilist, list) {
436                 radix_tree_delete(&gc_list->iroot, ie->inode->i_ino);
437                 iput(ie->inode);
438                 list_del(&ie->list);
439                 kmem_cache_free(inode_entry_slab, ie);
440         }
441 }
442
443 static int check_valid_map(struct f2fs_sb_info *sbi,
444                                 unsigned int segno, int offset)
445 {
446         struct sit_info *sit_i = SIT_I(sbi);
447         struct seg_entry *sentry;
448         int ret;
449
450         mutex_lock(&sit_i->sentry_lock);
451         sentry = get_seg_entry(sbi, segno);
452         ret = f2fs_test_bit(offset, sentry->cur_valid_map);
453         mutex_unlock(&sit_i->sentry_lock);
454         return ret;
455 }
456
457 /*
458  * This function compares node address got in summary with that in NAT.
459  * On validity, copy that node with cold status, otherwise (invalid node)
460  * ignore that.
461  */
462 static void gc_node_segment(struct f2fs_sb_info *sbi,
463                 struct f2fs_summary *sum, unsigned int segno, int gc_type)
464 {
465         struct f2fs_summary *entry;
466         block_t start_addr;
467         int off;
468         int phase = 0;
469
470         start_addr = START_BLOCK(sbi, segno);
471
472 next_step:
473         entry = sum;
474
475         for (off = 0; off < sbi->blocks_per_seg; off++, entry++) {
476                 nid_t nid = le32_to_cpu(entry->nid);
477                 struct page *node_page;
478                 struct node_info ni;
479
480                 /* stop BG_GC if there is not enough free sections. */
481                 if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0))
482                         return;
483
484                 if (check_valid_map(sbi, segno, off) == 0)
485                         continue;
486
487                 if (phase == 0) {
488                         ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), 1,
489                                                         META_NAT, true);
490                         continue;
491                 }
492
493                 if (phase == 1) {
494                         ra_node_page(sbi, nid);
495                         continue;
496                 }
497
498                 /* phase == 2 */
499                 node_page = get_node_page(sbi, nid);
500                 if (IS_ERR(node_page))
501                         continue;
502
503                 /* block may become invalid during get_node_page */
504                 if (check_valid_map(sbi, segno, off) == 0) {
505                         f2fs_put_page(node_page, 1);
506                         continue;
507                 }
508
509                 get_node_info(sbi, nid, &ni);
510                 if (ni.blk_addr != start_addr + off) {
511                         f2fs_put_page(node_page, 1);
512                         continue;
513                 }
514
515                 move_node_page(node_page, gc_type);
516                 stat_inc_node_blk_count(sbi, 1, gc_type);
517         }
518
519         if (++phase < 3)
520                 goto next_step;
521 }
522
523 /*
524  * Calculate start block index indicating the given node offset.
525  * Be careful, caller should give this node offset only indicating direct node
526  * blocks. If any node offsets, which point the other types of node blocks such
527  * as indirect or double indirect node blocks, are given, it must be a caller's
528  * bug.
529  */
530 block_t start_bidx_of_node(unsigned int node_ofs, struct inode *inode)
531 {
532         unsigned int indirect_blks = 2 * NIDS_PER_BLOCK + 4;
533         unsigned int bidx;
534
535         if (node_ofs == 0)
536                 return 0;
537
538         if (node_ofs <= 2) {
539                 bidx = node_ofs - 1;
540         } else if (node_ofs <= indirect_blks) {
541                 int dec = (node_ofs - 4) / (NIDS_PER_BLOCK + 1);
542                 bidx = node_ofs - 2 - dec;
543         } else {
544                 int dec = (node_ofs - indirect_blks - 3) / (NIDS_PER_BLOCK + 1);
545                 bidx = node_ofs - 5 - dec;
546         }
547         return bidx * ADDRS_PER_BLOCK + ADDRS_PER_INODE(inode);
548 }
549
550 static bool is_alive(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
551                 struct node_info *dni, block_t blkaddr, unsigned int *nofs)
552 {
553         struct page *node_page;
554         nid_t nid;
555         unsigned int ofs_in_node;
556         block_t source_blkaddr;
557
558         nid = le32_to_cpu(sum->nid);
559         ofs_in_node = le16_to_cpu(sum->ofs_in_node);
560
561         node_page = get_node_page(sbi, nid);
562         if (IS_ERR(node_page))
563                 return false;
564
565         get_node_info(sbi, nid, dni);
566
567         if (sum->version != dni->version) {
568                 f2fs_msg(sbi->sb, KERN_WARNING,
569                                 "%s: valid data with mismatched node version.",
570                                 __func__);
571                 set_sbi_flag(sbi, SBI_NEED_FSCK);
572         }
573
574         *nofs = ofs_of_node(node_page);
575         source_blkaddr = datablock_addr(node_page, ofs_in_node);
576         f2fs_put_page(node_page, 1);
577
578         if (source_blkaddr != blkaddr)
579                 return false;
580         return true;
581 }
582
583 static void move_encrypted_block(struct inode *inode, block_t bidx,
584                                                         unsigned int segno, int off)
585 {
586         struct f2fs_io_info fio = {
587                 .sbi = F2FS_I_SB(inode),
588                 .type = DATA,
589                 .op = REQ_OP_READ,
590                 .op_flags = 0,
591                 .encrypted_page = NULL,
592         };
593         struct dnode_of_data dn;
594         struct f2fs_summary sum;
595         struct node_info ni;
596         struct page *page;
597         block_t newaddr;
598         int err;
599
600         /* do not read out */
601         page = f2fs_grab_cache_page(inode->i_mapping, bidx, false);
602         if (!page)
603                 return;
604
605         if (!check_valid_map(F2FS_I_SB(inode), segno, off))
606                 goto out;
607
608         if (f2fs_is_atomic_file(inode))
609                 goto out;
610
611         set_new_dnode(&dn, inode, NULL, NULL, 0);
612         err = get_dnode_of_data(&dn, bidx, LOOKUP_NODE);
613         if (err)
614                 goto out;
615
616         if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
617                 ClearPageUptodate(page);
618                 goto put_out;
619         }
620
621         /*
622          * don't cache encrypted data into meta inode until previous dirty
623          * data were writebacked to avoid racing between GC and flush.
624          */
625         f2fs_wait_on_page_writeback(page, DATA, true);
626
627         get_node_info(fio.sbi, dn.nid, &ni);
628         set_summary(&sum, dn.nid, dn.ofs_in_node, ni.version);
629
630         /* read page */
631         fio.page = page;
632         fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr;
633
634         allocate_data_block(fio.sbi, NULL, fio.old_blkaddr, &newaddr,
635                                                         &sum, CURSEG_COLD_DATA);
636
637         fio.encrypted_page = pagecache_get_page(META_MAPPING(fio.sbi), newaddr,
638                                         FGP_LOCK | FGP_CREAT, GFP_NOFS);
639         if (!fio.encrypted_page) {
640                 err = -ENOMEM;
641                 goto recover_block;
642         }
643
644         err = f2fs_submit_page_bio(&fio);
645         if (err)
646                 goto put_page_out;
647
648         /* write page */
649         lock_page(fio.encrypted_page);
650
651         if (unlikely(fio.encrypted_page->mapping != META_MAPPING(fio.sbi))) {
652                 err = -EIO;
653                 goto put_page_out;
654         }
655         if (unlikely(!PageUptodate(fio.encrypted_page))) {
656                 err = -EIO;
657                 goto put_page_out;
658         }
659
660         set_page_dirty(fio.encrypted_page);
661         f2fs_wait_on_page_writeback(fio.encrypted_page, DATA, true);
662         if (clear_page_dirty_for_io(fio.encrypted_page))
663                 dec_page_count(fio.sbi, F2FS_DIRTY_META);
664
665         set_page_writeback(fio.encrypted_page);
666
667         /* allocate block address */
668         f2fs_wait_on_page_writeback(dn.node_page, NODE, true);
669
670         fio.op = REQ_OP_WRITE;
671         fio.op_flags = REQ_SYNC;
672         fio.new_blkaddr = newaddr;
673         f2fs_submit_page_mbio(&fio);
674
675         f2fs_update_data_blkaddr(&dn, newaddr);
676         set_inode_flag(inode, FI_APPEND_WRITE);
677         if (page->index == 0)
678                 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
679 put_page_out:
680         f2fs_put_page(fio.encrypted_page, 1);
681 recover_block:
682         if (err)
683                 __f2fs_replace_block(fio.sbi, &sum, newaddr, fio.old_blkaddr,
684                                                                 true, true);
685 put_out:
686         f2fs_put_dnode(&dn);
687 out:
688         f2fs_put_page(page, 1);
689 }
690
691 static void move_data_page(struct inode *inode, block_t bidx, int gc_type,
692                                                         unsigned int segno, int off)
693 {
694         struct page *page;
695
696         page = get_lock_data_page(inode, bidx, true);
697         if (IS_ERR(page))
698                 return;
699
700         if (!check_valid_map(F2FS_I_SB(inode), segno, off))
701                 goto out;
702
703         if (f2fs_is_atomic_file(inode))
704                 goto out;
705
706         if (gc_type == BG_GC) {
707                 if (PageWriteback(page))
708                         goto out;
709                 set_page_dirty(page);
710                 set_cold_data(page);
711         } else {
712                 struct f2fs_io_info fio = {
713                         .sbi = F2FS_I_SB(inode),
714                         .type = DATA,
715                         .op = REQ_OP_WRITE,
716                         .op_flags = REQ_SYNC,
717                         .old_blkaddr = NULL_ADDR,
718                         .page = page,
719                         .encrypted_page = NULL,
720                         .need_lock = true,
721                 };
722                 bool is_dirty = PageDirty(page);
723                 int err;
724
725 retry:
726                 set_page_dirty(page);
727                 f2fs_wait_on_page_writeback(page, DATA, true);
728                 if (clear_page_dirty_for_io(page)) {
729                         inode_dec_dirty_pages(inode);
730                         remove_dirty_inode(inode);
731                 }
732
733                 set_cold_data(page);
734
735                 err = do_write_data_page(&fio);
736                 if (err == -ENOMEM && is_dirty) {
737                         congestion_wait(BLK_RW_ASYNC, HZ/50);
738                         goto retry;
739                 }
740         }
741 out:
742         f2fs_put_page(page, 1);
743 }
744
745 /*
746  * This function tries to get parent node of victim data block, and identifies
747  * data block validity. If the block is valid, copy that with cold status and
748  * modify parent node.
749  * If the parent node is not valid or the data block address is different,
750  * the victim data block is ignored.
751  */
752 static void gc_data_segment(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
753                 struct gc_inode_list *gc_list, unsigned int segno, int gc_type)
754 {
755         struct super_block *sb = sbi->sb;
756         struct f2fs_summary *entry;
757         block_t start_addr;
758         int off;
759         int phase = 0;
760
761         start_addr = START_BLOCK(sbi, segno);
762
763 next_step:
764         entry = sum;
765
766         for (off = 0; off < sbi->blocks_per_seg; off++, entry++) {
767                 struct page *data_page;
768                 struct inode *inode;
769                 struct node_info dni; /* dnode info for the data */
770                 unsigned int ofs_in_node, nofs;
771                 block_t start_bidx;
772                 nid_t nid = le32_to_cpu(entry->nid);
773
774                 /* stop BG_GC if there is not enough free sections. */
775                 if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0))
776                         return;
777
778                 if (check_valid_map(sbi, segno, off) == 0)
779                         continue;
780
781                 if (phase == 0) {
782                         ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), 1,
783                                                         META_NAT, true);
784                         continue;
785                 }
786
787                 if (phase == 1) {
788                         ra_node_page(sbi, nid);
789                         continue;
790                 }
791
792                 /* Get an inode by ino with checking validity */
793                 if (!is_alive(sbi, entry, &dni, start_addr + off, &nofs))
794                         continue;
795
796                 if (phase == 2) {
797                         ra_node_page(sbi, dni.ino);
798                         continue;
799                 }
800
801                 ofs_in_node = le16_to_cpu(entry->ofs_in_node);
802
803                 if (phase == 3) {
804                         inode = f2fs_iget(sb, dni.ino);
805                         if (IS_ERR(inode) || is_bad_inode(inode))
806                                 continue;
807
808                         /* if encrypted inode, let's go phase 3 */
809                         if (f2fs_encrypted_inode(inode) &&
810                                                 S_ISREG(inode->i_mode)) {
811                                 add_gc_inode(gc_list, inode);
812                                 continue;
813                         }
814
815                         start_bidx = start_bidx_of_node(nofs, inode);
816                         data_page = get_read_data_page(inode,
817                                         start_bidx + ofs_in_node, REQ_RAHEAD,
818                                         true);
819                         if (IS_ERR(data_page)) {
820                                 iput(inode);
821                                 continue;
822                         }
823
824                         f2fs_put_page(data_page, 0);
825                         add_gc_inode(gc_list, inode);
826                         continue;
827                 }
828
829                 /* phase 4 */
830                 inode = find_gc_inode(gc_list, dni.ino);
831                 if (inode) {
832                         struct f2fs_inode_info *fi = F2FS_I(inode);
833                         bool locked = false;
834
835                         if (S_ISREG(inode->i_mode)) {
836                                 if (!down_write_trylock(&fi->dio_rwsem[READ]))
837                                         continue;
838                                 if (!down_write_trylock(
839                                                 &fi->dio_rwsem[WRITE])) {
840                                         up_write(&fi->dio_rwsem[READ]);
841                                         continue;
842                                 }
843                                 locked = true;
844                         }
845
846                         start_bidx = start_bidx_of_node(nofs, inode)
847                                                                 + ofs_in_node;
848                         if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
849                                 move_encrypted_block(inode, start_bidx, segno, off);
850                         else
851                                 move_data_page(inode, start_bidx, gc_type, segno, off);
852
853                         if (locked) {
854                                 up_write(&fi->dio_rwsem[WRITE]);
855                                 up_write(&fi->dio_rwsem[READ]);
856                         }
857
858                         stat_inc_data_blk_count(sbi, 1, gc_type);
859                 }
860         }
861
862         if (++phase < 5)
863                 goto next_step;
864 }
865
866 static int __get_victim(struct f2fs_sb_info *sbi, unsigned int *victim,
867                         int gc_type)
868 {
869         struct sit_info *sit_i = SIT_I(sbi);
870         int ret;
871
872         mutex_lock(&sit_i->sentry_lock);
873         ret = DIRTY_I(sbi)->v_ops->get_victim(sbi, victim, gc_type,
874                                               NO_CHECK_TYPE, LFS);
875         mutex_unlock(&sit_i->sentry_lock);
876         return ret;
877 }
878
879 static int do_garbage_collect(struct f2fs_sb_info *sbi,
880                                 unsigned int start_segno,
881                                 struct gc_inode_list *gc_list, int gc_type)
882 {
883         struct page *sum_page;
884         struct f2fs_summary_block *sum;
885         struct blk_plug plug;
886         unsigned int segno = start_segno;
887         unsigned int end_segno = start_segno + sbi->segs_per_sec;
888         int sec_freed = 0;
889         unsigned char type = IS_DATASEG(get_seg_entry(sbi, segno)->type) ?
890                                                 SUM_TYPE_DATA : SUM_TYPE_NODE;
891
892         /* readahead multi ssa blocks those have contiguous address */
893         if (sbi->segs_per_sec > 1)
894                 ra_meta_pages(sbi, GET_SUM_BLOCK(sbi, segno),
895                                         sbi->segs_per_sec, META_SSA, true);
896
897         /* reference all summary page */
898         while (segno < end_segno) {
899                 sum_page = get_sum_page(sbi, segno++);
900                 unlock_page(sum_page);
901         }
902
903         blk_start_plug(&plug);
904
905         for (segno = start_segno; segno < end_segno; segno++) {
906
907                 /* find segment summary of victim */
908                 sum_page = find_get_page(META_MAPPING(sbi),
909                                         GET_SUM_BLOCK(sbi, segno));
910                 f2fs_put_page(sum_page, 0);
911
912                 if (get_valid_blocks(sbi, segno, false) == 0 ||
913                                 !PageUptodate(sum_page) ||
914                                 unlikely(f2fs_cp_error(sbi)))
915                         goto next;
916
917                 sum = page_address(sum_page);
918                 f2fs_bug_on(sbi, type != GET_SUM_TYPE((&sum->footer)));
919
920                 /*
921                  * this is to avoid deadlock:
922                  * - lock_page(sum_page)         - f2fs_replace_block
923                  *  - check_valid_map()            - mutex_lock(sentry_lock)
924                  *   - mutex_lock(sentry_lock)     - change_curseg()
925                  *                                  - lock_page(sum_page)
926                  */
927                 if (type == SUM_TYPE_NODE)
928                         gc_node_segment(sbi, sum->entries, segno, gc_type);
929                 else
930                         gc_data_segment(sbi, sum->entries, gc_list, segno,
931                                                                 gc_type);
932
933                 stat_inc_seg_count(sbi, type, gc_type);
934 next:
935                 f2fs_put_page(sum_page, 0);
936         }
937
938         if (gc_type == FG_GC)
939                 f2fs_submit_merged_bio(sbi,
940                                 (type == SUM_TYPE_NODE) ? NODE : DATA, WRITE);
941
942         blk_finish_plug(&plug);
943
944         if (gc_type == FG_GC &&
945                 get_valid_blocks(sbi, start_segno, true) == 0)
946                 sec_freed = 1;
947
948         stat_inc_call_count(sbi->stat_info);
949
950         return sec_freed;
951 }
952
953 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync,
954                         bool background, unsigned int segno)
955 {
956         int gc_type = sync ? FG_GC : BG_GC;
957         int sec_freed = 0;
958         int ret = -EINVAL;
959         struct cp_control cpc;
960         unsigned int init_segno = segno;
961         struct gc_inode_list gc_list = {
962                 .ilist = LIST_HEAD_INIT(gc_list.ilist),
963                 .iroot = RADIX_TREE_INIT(GFP_NOFS),
964         };
965
966         cpc.reason = __get_cp_reason(sbi);
967 gc_more:
968         if (unlikely(!(sbi->sb->s_flags & MS_ACTIVE)))
969                 goto stop;
970         if (unlikely(f2fs_cp_error(sbi))) {
971                 ret = -EIO;
972                 goto stop;
973         }
974
975         if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0)) {
976                 /*
977                  * For example, if there are many prefree_segments below given
978                  * threshold, we can make them free by checkpoint. Then, we
979                  * secure free segments which doesn't need fggc any more.
980                  */
981                 if (prefree_segments(sbi)) {
982                         ret = write_checkpoint(sbi, &cpc);
983                         if (ret)
984                                 goto stop;
985                 }
986                 if (has_not_enough_free_secs(sbi, 0, 0))
987                         gc_type = FG_GC;
988         }
989
990         /* f2fs_balance_fs doesn't need to do BG_GC in critical path. */
991         if (gc_type == BG_GC && !background)
992                 goto stop;
993         if (!__get_victim(sbi, &segno, gc_type))
994                 goto stop;
995         ret = 0;
996
997         if (do_garbage_collect(sbi, segno, &gc_list, gc_type) &&
998                         gc_type == FG_GC)
999                 sec_freed++;
1000
1001         if (gc_type == FG_GC)
1002                 sbi->cur_victim_sec = NULL_SEGNO;
1003
1004         if (!sync) {
1005                 if (has_not_enough_free_secs(sbi, sec_freed, 0)) {
1006                         segno = NULL_SEGNO;
1007                         goto gc_more;
1008                 }
1009
1010                 if (gc_type == FG_GC)
1011                         ret = write_checkpoint(sbi, &cpc);
1012         }
1013 stop:
1014         SIT_I(sbi)->last_victim[ALLOC_NEXT] = 0;
1015         SIT_I(sbi)->last_victim[FLUSH_DEVICE] = init_segno;
1016         mutex_unlock(&sbi->gc_mutex);
1017
1018         put_gc_inode(&gc_list);
1019
1020         if (sync)
1021                 ret = sec_freed ? 0 : -EAGAIN;
1022         return ret;
1023 }
1024
1025 void build_gc_manager(struct f2fs_sb_info *sbi)
1026 {
1027         u64 main_count, resv_count, ovp_count;
1028
1029         DIRTY_I(sbi)->v_ops = &default_v_ops;
1030
1031         /* threshold of # of valid blocks in a section for victims of FG_GC */
1032         main_count = SM_I(sbi)->main_segments << sbi->log_blocks_per_seg;
1033         resv_count = SM_I(sbi)->reserved_segments << sbi->log_blocks_per_seg;
1034         ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg;
1035
1036         sbi->fggc_threshold = div64_u64((main_count - ovp_count) *
1037                                 BLKS_PER_SEC(sbi), (main_count - resv_count));
1038
1039         /* give warm/cold data area from slower device */
1040         if (sbi->s_ndevs && sbi->segs_per_sec == 1)
1041                 SIT_I(sbi)->last_victim[ALLOC_NEXT] =
1042                                 GET_SEGNO(sbi, FDEV(0).end_blk) + 1;
1043 }