Merge tag 'probes-v6.5' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux...
[linux-2.6-microblaze.git] / fs / f2fs / file.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/file.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/stat.h>
11 #include <linux/buffer_head.h>
12 #include <linux/writeback.h>
13 #include <linux/blkdev.h>
14 #include <linux/falloc.h>
15 #include <linux/types.h>
16 #include <linux/compat.h>
17 #include <linux/uaccess.h>
18 #include <linux/mount.h>
19 #include <linux/pagevec.h>
20 #include <linux/uio.h>
21 #include <linux/uuid.h>
22 #include <linux/file.h>
23 #include <linux/nls.h>
24 #include <linux/sched/signal.h>
25 #include <linux/fileattr.h>
26 #include <linux/fadvise.h>
27 #include <linux/iomap.h>
28
29 #include "f2fs.h"
30 #include "node.h"
31 #include "segment.h"
32 #include "xattr.h"
33 #include "acl.h"
34 #include "gc.h"
35 #include "iostat.h"
36 #include <trace/events/f2fs.h>
37 #include <uapi/linux/f2fs.h>
38
39 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf)
40 {
41         struct inode *inode = file_inode(vmf->vma->vm_file);
42         vm_fault_t ret;
43
44         ret = filemap_fault(vmf);
45         if (!ret)
46                 f2fs_update_iostat(F2FS_I_SB(inode), inode,
47                                         APP_MAPPED_READ_IO, F2FS_BLKSIZE);
48
49         trace_f2fs_filemap_fault(inode, vmf->pgoff, (unsigned long)ret);
50
51         return ret;
52 }
53
54 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf)
55 {
56         struct page *page = vmf->page;
57         struct inode *inode = file_inode(vmf->vma->vm_file);
58         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
59         struct dnode_of_data dn;
60         bool need_alloc = true;
61         int err = 0;
62
63         if (unlikely(IS_IMMUTABLE(inode)))
64                 return VM_FAULT_SIGBUS;
65
66         if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
67                 return VM_FAULT_SIGBUS;
68
69         if (unlikely(f2fs_cp_error(sbi))) {
70                 err = -EIO;
71                 goto err;
72         }
73
74         if (!f2fs_is_checkpoint_ready(sbi)) {
75                 err = -ENOSPC;
76                 goto err;
77         }
78
79         err = f2fs_convert_inline_inode(inode);
80         if (err)
81                 goto err;
82
83 #ifdef CONFIG_F2FS_FS_COMPRESSION
84         if (f2fs_compressed_file(inode)) {
85                 int ret = f2fs_is_compressed_cluster(inode, page->index);
86
87                 if (ret < 0) {
88                         err = ret;
89                         goto err;
90                 } else if (ret) {
91                         need_alloc = false;
92                 }
93         }
94 #endif
95         /* should do out of any locked page */
96         if (need_alloc)
97                 f2fs_balance_fs(sbi, true);
98
99         sb_start_pagefault(inode->i_sb);
100
101         f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
102
103         file_update_time(vmf->vma->vm_file);
104         filemap_invalidate_lock_shared(inode->i_mapping);
105         lock_page(page);
106         if (unlikely(page->mapping != inode->i_mapping ||
107                         page_offset(page) > i_size_read(inode) ||
108                         !PageUptodate(page))) {
109                 unlock_page(page);
110                 err = -EFAULT;
111                 goto out_sem;
112         }
113
114         if (need_alloc) {
115                 /* block allocation */
116                 set_new_dnode(&dn, inode, NULL, NULL, 0);
117                 err = f2fs_get_block_locked(&dn, page->index);
118         }
119
120 #ifdef CONFIG_F2FS_FS_COMPRESSION
121         if (!need_alloc) {
122                 set_new_dnode(&dn, inode, NULL, NULL, 0);
123                 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
124                 f2fs_put_dnode(&dn);
125         }
126 #endif
127         if (err) {
128                 unlock_page(page);
129                 goto out_sem;
130         }
131
132         f2fs_wait_on_page_writeback(page, DATA, false, true);
133
134         /* wait for GCed page writeback via META_MAPPING */
135         f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
136
137         /*
138          * check to see if the page is mapped already (no holes)
139          */
140         if (PageMappedToDisk(page))
141                 goto out_sem;
142
143         /* page is wholly or partially inside EOF */
144         if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
145                                                 i_size_read(inode)) {
146                 loff_t offset;
147
148                 offset = i_size_read(inode) & ~PAGE_MASK;
149                 zero_user_segment(page, offset, PAGE_SIZE);
150         }
151         set_page_dirty(page);
152         if (!PageUptodate(page))
153                 SetPageUptodate(page);
154
155         f2fs_update_iostat(sbi, inode, APP_MAPPED_IO, F2FS_BLKSIZE);
156         f2fs_update_time(sbi, REQ_TIME);
157
158         trace_f2fs_vm_page_mkwrite(page, DATA);
159 out_sem:
160         filemap_invalidate_unlock_shared(inode->i_mapping);
161
162         sb_end_pagefault(inode->i_sb);
163 err:
164         return block_page_mkwrite_return(err);
165 }
166
167 static const struct vm_operations_struct f2fs_file_vm_ops = {
168         .fault          = f2fs_filemap_fault,
169         .map_pages      = filemap_map_pages,
170         .page_mkwrite   = f2fs_vm_page_mkwrite,
171 };
172
173 static int get_parent_ino(struct inode *inode, nid_t *pino)
174 {
175         struct dentry *dentry;
176
177         /*
178          * Make sure to get the non-deleted alias.  The alias associated with
179          * the open file descriptor being fsync()'ed may be deleted already.
180          */
181         dentry = d_find_alias(inode);
182         if (!dentry)
183                 return 0;
184
185         *pino = parent_ino(dentry);
186         dput(dentry);
187         return 1;
188 }
189
190 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode)
191 {
192         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
193         enum cp_reason_type cp_reason = CP_NO_NEEDED;
194
195         if (!S_ISREG(inode->i_mode))
196                 cp_reason = CP_NON_REGULAR;
197         else if (f2fs_compressed_file(inode))
198                 cp_reason = CP_COMPRESSED;
199         else if (inode->i_nlink != 1)
200                 cp_reason = CP_HARDLINK;
201         else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
202                 cp_reason = CP_SB_NEED_CP;
203         else if (file_wrong_pino(inode))
204                 cp_reason = CP_WRONG_PINO;
205         else if (!f2fs_space_for_roll_forward(sbi))
206                 cp_reason = CP_NO_SPC_ROLL;
207         else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
208                 cp_reason = CP_NODE_NEED_CP;
209         else if (test_opt(sbi, FASTBOOT))
210                 cp_reason = CP_FASTBOOT_MODE;
211         else if (F2FS_OPTION(sbi).active_logs == 2)
212                 cp_reason = CP_SPEC_LOG_NUM;
213         else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT &&
214                 f2fs_need_dentry_mark(sbi, inode->i_ino) &&
215                 f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
216                                                         TRANS_DIR_INO))
217                 cp_reason = CP_RECOVER_DIR;
218
219         return cp_reason;
220 }
221
222 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
223 {
224         struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
225         bool ret = false;
226         /* But we need to avoid that there are some inode updates */
227         if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino))
228                 ret = true;
229         f2fs_put_page(i, 0);
230         return ret;
231 }
232
233 static void try_to_fix_pino(struct inode *inode)
234 {
235         struct f2fs_inode_info *fi = F2FS_I(inode);
236         nid_t pino;
237
238         f2fs_down_write(&fi->i_sem);
239         if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
240                         get_parent_ino(inode, &pino)) {
241                 f2fs_i_pino_write(inode, pino);
242                 file_got_pino(inode);
243         }
244         f2fs_up_write(&fi->i_sem);
245 }
246
247 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
248                                                 int datasync, bool atomic)
249 {
250         struct inode *inode = file->f_mapping->host;
251         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
252         nid_t ino = inode->i_ino;
253         int ret = 0;
254         enum cp_reason_type cp_reason = 0;
255         struct writeback_control wbc = {
256                 .sync_mode = WB_SYNC_ALL,
257                 .nr_to_write = LONG_MAX,
258                 .for_reclaim = 0,
259         };
260         unsigned int seq_id = 0;
261
262         if (unlikely(f2fs_readonly(inode->i_sb)))
263                 return 0;
264
265         trace_f2fs_sync_file_enter(inode);
266
267         if (S_ISDIR(inode->i_mode))
268                 goto go_write;
269
270         /* if fdatasync is triggered, let's do in-place-update */
271         if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
272                 set_inode_flag(inode, FI_NEED_IPU);
273         ret = file_write_and_wait_range(file, start, end);
274         clear_inode_flag(inode, FI_NEED_IPU);
275
276         if (ret || is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
277                 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
278                 return ret;
279         }
280
281         /* if the inode is dirty, let's recover all the time */
282         if (!f2fs_skip_inode_update(inode, datasync)) {
283                 f2fs_write_inode(inode, NULL);
284                 goto go_write;
285         }
286
287         /*
288          * if there is no written data, don't waste time to write recovery info.
289          */
290         if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
291                         !f2fs_exist_written_data(sbi, ino, APPEND_INO)) {
292
293                 /* it may call write_inode just prior to fsync */
294                 if (need_inode_page_update(sbi, ino))
295                         goto go_write;
296
297                 if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
298                                 f2fs_exist_written_data(sbi, ino, UPDATE_INO))
299                         goto flush_out;
300                 goto out;
301         } else {
302                 /*
303                  * for OPU case, during fsync(), node can be persisted before
304                  * data when lower device doesn't support write barrier, result
305                  * in data corruption after SPO.
306                  * So for strict fsync mode, force to use atomic write semantics
307                  * to keep write order in between data/node and last node to
308                  * avoid potential data corruption.
309                  */
310                 if (F2FS_OPTION(sbi).fsync_mode ==
311                                 FSYNC_MODE_STRICT && !atomic)
312                         atomic = true;
313         }
314 go_write:
315         /*
316          * Both of fdatasync() and fsync() are able to be recovered from
317          * sudden-power-off.
318          */
319         f2fs_down_read(&F2FS_I(inode)->i_sem);
320         cp_reason = need_do_checkpoint(inode);
321         f2fs_up_read(&F2FS_I(inode)->i_sem);
322
323         if (cp_reason) {
324                 /* all the dirty node pages should be flushed for POR */
325                 ret = f2fs_sync_fs(inode->i_sb, 1);
326
327                 /*
328                  * We've secured consistency through sync_fs. Following pino
329                  * will be used only for fsynced inodes after checkpoint.
330                  */
331                 try_to_fix_pino(inode);
332                 clear_inode_flag(inode, FI_APPEND_WRITE);
333                 clear_inode_flag(inode, FI_UPDATE_WRITE);
334                 goto out;
335         }
336 sync_nodes:
337         atomic_inc(&sbi->wb_sync_req[NODE]);
338         ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id);
339         atomic_dec(&sbi->wb_sync_req[NODE]);
340         if (ret)
341                 goto out;
342
343         /* if cp_error was enabled, we should avoid infinite loop */
344         if (unlikely(f2fs_cp_error(sbi))) {
345                 ret = -EIO;
346                 goto out;
347         }
348
349         if (f2fs_need_inode_block_update(sbi, ino)) {
350                 f2fs_mark_inode_dirty_sync(inode, true);
351                 f2fs_write_inode(inode, NULL);
352                 goto sync_nodes;
353         }
354
355         /*
356          * If it's atomic_write, it's just fine to keep write ordering. So
357          * here we don't need to wait for node write completion, since we use
358          * node chain which serializes node blocks. If one of node writes are
359          * reordered, we can see simply broken chain, resulting in stopping
360          * roll-forward recovery. It means we'll recover all or none node blocks
361          * given fsync mark.
362          */
363         if (!atomic) {
364                 ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id);
365                 if (ret)
366                         goto out;
367         }
368
369         /* once recovery info is written, don't need to tack this */
370         f2fs_remove_ino_entry(sbi, ino, APPEND_INO);
371         clear_inode_flag(inode, FI_APPEND_WRITE);
372 flush_out:
373         if ((!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER) ||
374             (atomic && !test_opt(sbi, NOBARRIER) && f2fs_sb_has_blkzoned(sbi)))
375                 ret = f2fs_issue_flush(sbi, inode->i_ino);
376         if (!ret) {
377                 f2fs_remove_ino_entry(sbi, ino, UPDATE_INO);
378                 clear_inode_flag(inode, FI_UPDATE_WRITE);
379                 f2fs_remove_ino_entry(sbi, ino, FLUSH_INO);
380         }
381         f2fs_update_time(sbi, REQ_TIME);
382 out:
383         trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
384         return ret;
385 }
386
387 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
388 {
389         if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
390                 return -EIO;
391         return f2fs_do_sync_file(file, start, end, datasync, false);
392 }
393
394 static bool __found_offset(struct address_space *mapping, block_t blkaddr,
395                                 pgoff_t index, int whence)
396 {
397         switch (whence) {
398         case SEEK_DATA:
399                 if (__is_valid_data_blkaddr(blkaddr))
400                         return true;
401                 if (blkaddr == NEW_ADDR &&
402                     xa_get_mark(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY))
403                         return true;
404                 break;
405         case SEEK_HOLE:
406                 if (blkaddr == NULL_ADDR)
407                         return true;
408                 break;
409         }
410         return false;
411 }
412
413 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
414 {
415         struct inode *inode = file->f_mapping->host;
416         loff_t maxbytes = inode->i_sb->s_maxbytes;
417         struct dnode_of_data dn;
418         pgoff_t pgofs, end_offset;
419         loff_t data_ofs = offset;
420         loff_t isize;
421         int err = 0;
422
423         inode_lock(inode);
424
425         isize = i_size_read(inode);
426         if (offset >= isize)
427                 goto fail;
428
429         /* handle inline data case */
430         if (f2fs_has_inline_data(inode)) {
431                 if (whence == SEEK_HOLE) {
432                         data_ofs = isize;
433                         goto found;
434                 } else if (whence == SEEK_DATA) {
435                         data_ofs = offset;
436                         goto found;
437                 }
438         }
439
440         pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
441
442         for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
443                 set_new_dnode(&dn, inode, NULL, NULL, 0);
444                 err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
445                 if (err && err != -ENOENT) {
446                         goto fail;
447                 } else if (err == -ENOENT) {
448                         /* direct node does not exists */
449                         if (whence == SEEK_DATA) {
450                                 pgofs = f2fs_get_next_page_offset(&dn, pgofs);
451                                 continue;
452                         } else {
453                                 goto found;
454                         }
455                 }
456
457                 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
458
459                 /* find data/hole in dnode block */
460                 for (; dn.ofs_in_node < end_offset;
461                                 dn.ofs_in_node++, pgofs++,
462                                 data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
463                         block_t blkaddr;
464
465                         blkaddr = f2fs_data_blkaddr(&dn);
466
467                         if (__is_valid_data_blkaddr(blkaddr) &&
468                                 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
469                                         blkaddr, DATA_GENERIC_ENHANCE)) {
470                                 f2fs_put_dnode(&dn);
471                                 goto fail;
472                         }
473
474                         if (__found_offset(file->f_mapping, blkaddr,
475                                                         pgofs, whence)) {
476                                 f2fs_put_dnode(&dn);
477                                 goto found;
478                         }
479                 }
480                 f2fs_put_dnode(&dn);
481         }
482
483         if (whence == SEEK_DATA)
484                 goto fail;
485 found:
486         if (whence == SEEK_HOLE && data_ofs > isize)
487                 data_ofs = isize;
488         inode_unlock(inode);
489         return vfs_setpos(file, data_ofs, maxbytes);
490 fail:
491         inode_unlock(inode);
492         return -ENXIO;
493 }
494
495 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
496 {
497         struct inode *inode = file->f_mapping->host;
498         loff_t maxbytes = inode->i_sb->s_maxbytes;
499
500         if (f2fs_compressed_file(inode))
501                 maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
502
503         switch (whence) {
504         case SEEK_SET:
505         case SEEK_CUR:
506         case SEEK_END:
507                 return generic_file_llseek_size(file, offset, whence,
508                                                 maxbytes, i_size_read(inode));
509         case SEEK_DATA:
510         case SEEK_HOLE:
511                 if (offset < 0)
512                         return -ENXIO;
513                 return f2fs_seek_block(file, offset, whence);
514         }
515
516         return -EINVAL;
517 }
518
519 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
520 {
521         struct inode *inode = file_inode(file);
522
523         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
524                 return -EIO;
525
526         if (!f2fs_is_compress_backend_ready(inode))
527                 return -EOPNOTSUPP;
528
529         file_accessed(file);
530         vma->vm_ops = &f2fs_file_vm_ops;
531         set_inode_flag(inode, FI_MMAP_FILE);
532         return 0;
533 }
534
535 static int f2fs_file_open(struct inode *inode, struct file *filp)
536 {
537         int err = fscrypt_file_open(inode, filp);
538
539         if (err)
540                 return err;
541
542         if (!f2fs_is_compress_backend_ready(inode))
543                 return -EOPNOTSUPP;
544
545         err = fsverity_file_open(inode, filp);
546         if (err)
547                 return err;
548
549         filp->f_mode |= FMODE_NOWAIT;
550
551         return dquot_file_open(inode, filp);
552 }
553
554 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count)
555 {
556         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
557         struct f2fs_node *raw_node;
558         int nr_free = 0, ofs = dn->ofs_in_node, len = count;
559         __le32 *addr;
560         int base = 0;
561         bool compressed_cluster = false;
562         int cluster_index = 0, valid_blocks = 0;
563         int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
564         bool released = !atomic_read(&F2FS_I(dn->inode)->i_compr_blocks);
565
566         if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
567                 base = get_extra_isize(dn->inode);
568
569         raw_node = F2FS_NODE(dn->node_page);
570         addr = blkaddr_in_node(raw_node) + base + ofs;
571
572         /* Assumption: truncation starts with cluster */
573         for (; count > 0; count--, addr++, dn->ofs_in_node++, cluster_index++) {
574                 block_t blkaddr = le32_to_cpu(*addr);
575
576                 if (f2fs_compressed_file(dn->inode) &&
577                                         !(cluster_index & (cluster_size - 1))) {
578                         if (compressed_cluster)
579                                 f2fs_i_compr_blocks_update(dn->inode,
580                                                         valid_blocks, false);
581                         compressed_cluster = (blkaddr == COMPRESS_ADDR);
582                         valid_blocks = 0;
583                 }
584
585                 if (blkaddr == NULL_ADDR)
586                         continue;
587
588                 dn->data_blkaddr = NULL_ADDR;
589                 f2fs_set_data_blkaddr(dn);
590
591                 if (__is_valid_data_blkaddr(blkaddr)) {
592                         if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
593                                         DATA_GENERIC_ENHANCE))
594                                 continue;
595                         if (compressed_cluster)
596                                 valid_blocks++;
597                 }
598
599                 if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
600                         clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN);
601
602                 f2fs_invalidate_blocks(sbi, blkaddr);
603
604                 if (!released || blkaddr != COMPRESS_ADDR)
605                         nr_free++;
606         }
607
608         if (compressed_cluster)
609                 f2fs_i_compr_blocks_update(dn->inode, valid_blocks, false);
610
611         if (nr_free) {
612                 pgoff_t fofs;
613                 /*
614                  * once we invalidate valid blkaddr in range [ofs, ofs + count],
615                  * we will invalidate all blkaddr in the whole range.
616                  */
617                 fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page),
618                                                         dn->inode) + ofs;
619                 f2fs_update_read_extent_cache_range(dn, fofs, 0, len);
620                 f2fs_update_age_extent_cache_range(dn, fofs, len);
621                 dec_valid_block_count(sbi, dn->inode, nr_free);
622         }
623         dn->ofs_in_node = ofs;
624
625         f2fs_update_time(sbi, REQ_TIME);
626         trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
627                                          dn->ofs_in_node, nr_free);
628 }
629
630 void f2fs_truncate_data_blocks(struct dnode_of_data *dn)
631 {
632         f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK(dn->inode));
633 }
634
635 static int truncate_partial_data_page(struct inode *inode, u64 from,
636                                                                 bool cache_only)
637 {
638         loff_t offset = from & (PAGE_SIZE - 1);
639         pgoff_t index = from >> PAGE_SHIFT;
640         struct address_space *mapping = inode->i_mapping;
641         struct page *page;
642
643         if (!offset && !cache_only)
644                 return 0;
645
646         if (cache_only) {
647                 page = find_lock_page(mapping, index);
648                 if (page && PageUptodate(page))
649                         goto truncate_out;
650                 f2fs_put_page(page, 1);
651                 return 0;
652         }
653
654         page = f2fs_get_lock_data_page(inode, index, true);
655         if (IS_ERR(page))
656                 return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page);
657 truncate_out:
658         f2fs_wait_on_page_writeback(page, DATA, true, true);
659         zero_user(page, offset, PAGE_SIZE - offset);
660
661         /* An encrypted inode should have a key and truncate the last page. */
662         f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode));
663         if (!cache_only)
664                 set_page_dirty(page);
665         f2fs_put_page(page, 1);
666         return 0;
667 }
668
669 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock)
670 {
671         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
672         struct dnode_of_data dn;
673         pgoff_t free_from;
674         int count = 0, err = 0;
675         struct page *ipage;
676         bool truncate_page = false;
677
678         trace_f2fs_truncate_blocks_enter(inode, from);
679
680         free_from = (pgoff_t)F2FS_BLK_ALIGN(from);
681
682         if (free_from >= max_file_blocks(inode))
683                 goto free_partial;
684
685         if (lock)
686                 f2fs_lock_op(sbi);
687
688         ipage = f2fs_get_node_page(sbi, inode->i_ino);
689         if (IS_ERR(ipage)) {
690                 err = PTR_ERR(ipage);
691                 goto out;
692         }
693
694         if (f2fs_has_inline_data(inode)) {
695                 f2fs_truncate_inline_inode(inode, ipage, from);
696                 f2fs_put_page(ipage, 1);
697                 truncate_page = true;
698                 goto out;
699         }
700
701         set_new_dnode(&dn, inode, ipage, NULL, 0);
702         err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
703         if (err) {
704                 if (err == -ENOENT)
705                         goto free_next;
706                 goto out;
707         }
708
709         count = ADDRS_PER_PAGE(dn.node_page, inode);
710
711         count -= dn.ofs_in_node;
712         f2fs_bug_on(sbi, count < 0);
713
714         if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
715                 f2fs_truncate_data_blocks_range(&dn, count);
716                 free_from += count;
717         }
718
719         f2fs_put_dnode(&dn);
720 free_next:
721         err = f2fs_truncate_inode_blocks(inode, free_from);
722 out:
723         if (lock)
724                 f2fs_unlock_op(sbi);
725 free_partial:
726         /* lastly zero out the first data page */
727         if (!err)
728                 err = truncate_partial_data_page(inode, from, truncate_page);
729
730         trace_f2fs_truncate_blocks_exit(inode, err);
731         return err;
732 }
733
734 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock)
735 {
736         u64 free_from = from;
737         int err;
738
739 #ifdef CONFIG_F2FS_FS_COMPRESSION
740         /*
741          * for compressed file, only support cluster size
742          * aligned truncation.
743          */
744         if (f2fs_compressed_file(inode))
745                 free_from = round_up(from,
746                                 F2FS_I(inode)->i_cluster_size << PAGE_SHIFT);
747 #endif
748
749         err = f2fs_do_truncate_blocks(inode, free_from, lock);
750         if (err)
751                 return err;
752
753 #ifdef CONFIG_F2FS_FS_COMPRESSION
754         /*
755          * For compressed file, after release compress blocks, don't allow write
756          * direct, but we should allow write direct after truncate to zero.
757          */
758         if (f2fs_compressed_file(inode) && !free_from
759                         && is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
760                 clear_inode_flag(inode, FI_COMPRESS_RELEASED);
761
762         if (from != free_from) {
763                 err = f2fs_truncate_partial_cluster(inode, from, lock);
764                 if (err)
765                         return err;
766         }
767 #endif
768
769         return 0;
770 }
771
772 int f2fs_truncate(struct inode *inode)
773 {
774         int err;
775
776         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
777                 return -EIO;
778
779         if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
780                                 S_ISLNK(inode->i_mode)))
781                 return 0;
782
783         trace_f2fs_truncate(inode);
784
785         if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE))
786                 return -EIO;
787
788         err = f2fs_dquot_initialize(inode);
789         if (err)
790                 return err;
791
792         /* we should check inline_data size */
793         if (!f2fs_may_inline_data(inode)) {
794                 err = f2fs_convert_inline_inode(inode);
795                 if (err)
796                         return err;
797         }
798
799         err = f2fs_truncate_blocks(inode, i_size_read(inode), true);
800         if (err)
801                 return err;
802
803         inode->i_mtime = inode->i_ctime = current_time(inode);
804         f2fs_mark_inode_dirty_sync(inode, false);
805         return 0;
806 }
807
808 static bool f2fs_force_buffered_io(struct inode *inode, int rw)
809 {
810         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
811
812         if (!fscrypt_dio_supported(inode))
813                 return true;
814         if (fsverity_active(inode))
815                 return true;
816         if (f2fs_compressed_file(inode))
817                 return true;
818
819         /* disallow direct IO if any of devices has unaligned blksize */
820         if (f2fs_is_multi_device(sbi) && !sbi->aligned_blksize)
821                 return true;
822         /*
823          * for blkzoned device, fallback direct IO to buffered IO, so
824          * all IOs can be serialized by log-structured write.
825          */
826         if (f2fs_sb_has_blkzoned(sbi) && (rw == WRITE))
827                 return true;
828         if (f2fs_lfs_mode(sbi) && rw == WRITE && F2FS_IO_ALIGNED(sbi))
829                 return true;
830         if (is_sbi_flag_set(sbi, SBI_CP_DISABLED))
831                 return true;
832
833         return false;
834 }
835
836 int f2fs_getattr(struct mnt_idmap *idmap, const struct path *path,
837                  struct kstat *stat, u32 request_mask, unsigned int query_flags)
838 {
839         struct inode *inode = d_inode(path->dentry);
840         struct f2fs_inode_info *fi = F2FS_I(inode);
841         struct f2fs_inode *ri = NULL;
842         unsigned int flags;
843
844         if (f2fs_has_extra_attr(inode) &&
845                         f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) &&
846                         F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) {
847                 stat->result_mask |= STATX_BTIME;
848                 stat->btime.tv_sec = fi->i_crtime.tv_sec;
849                 stat->btime.tv_nsec = fi->i_crtime.tv_nsec;
850         }
851
852         /*
853          * Return the DIO alignment restrictions if requested.  We only return
854          * this information when requested, since on encrypted files it might
855          * take a fair bit of work to get if the file wasn't opened recently.
856          *
857          * f2fs sometimes supports DIO reads but not DIO writes.  STATX_DIOALIGN
858          * cannot represent that, so in that case we report no DIO support.
859          */
860         if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
861                 unsigned int bsize = i_blocksize(inode);
862
863                 stat->result_mask |= STATX_DIOALIGN;
864                 if (!f2fs_force_buffered_io(inode, WRITE)) {
865                         stat->dio_mem_align = bsize;
866                         stat->dio_offset_align = bsize;
867                 }
868         }
869
870         flags = fi->i_flags;
871         if (flags & F2FS_COMPR_FL)
872                 stat->attributes |= STATX_ATTR_COMPRESSED;
873         if (flags & F2FS_APPEND_FL)
874                 stat->attributes |= STATX_ATTR_APPEND;
875         if (IS_ENCRYPTED(inode))
876                 stat->attributes |= STATX_ATTR_ENCRYPTED;
877         if (flags & F2FS_IMMUTABLE_FL)
878                 stat->attributes |= STATX_ATTR_IMMUTABLE;
879         if (flags & F2FS_NODUMP_FL)
880                 stat->attributes |= STATX_ATTR_NODUMP;
881         if (IS_VERITY(inode))
882                 stat->attributes |= STATX_ATTR_VERITY;
883
884         stat->attributes_mask |= (STATX_ATTR_COMPRESSED |
885                                   STATX_ATTR_APPEND |
886                                   STATX_ATTR_ENCRYPTED |
887                                   STATX_ATTR_IMMUTABLE |
888                                   STATX_ATTR_NODUMP |
889                                   STATX_ATTR_VERITY);
890
891         generic_fillattr(idmap, inode, stat);
892
893         /* we need to show initial sectors used for inline_data/dentries */
894         if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) ||
895                                         f2fs_has_inline_dentry(inode))
896                 stat->blocks += (stat->size + 511) >> 9;
897
898         return 0;
899 }
900
901 #ifdef CONFIG_F2FS_FS_POSIX_ACL
902 static void __setattr_copy(struct mnt_idmap *idmap,
903                            struct inode *inode, const struct iattr *attr)
904 {
905         unsigned int ia_valid = attr->ia_valid;
906
907         i_uid_update(idmap, attr, inode);
908         i_gid_update(idmap, attr, inode);
909         if (ia_valid & ATTR_ATIME)
910                 inode->i_atime = attr->ia_atime;
911         if (ia_valid & ATTR_MTIME)
912                 inode->i_mtime = attr->ia_mtime;
913         if (ia_valid & ATTR_CTIME)
914                 inode->i_ctime = attr->ia_ctime;
915         if (ia_valid & ATTR_MODE) {
916                 umode_t mode = attr->ia_mode;
917                 vfsgid_t vfsgid = i_gid_into_vfsgid(idmap, inode);
918
919                 if (!vfsgid_in_group_p(vfsgid) &&
920                     !capable_wrt_inode_uidgid(idmap, inode, CAP_FSETID))
921                         mode &= ~S_ISGID;
922                 set_acl_inode(inode, mode);
923         }
924 }
925 #else
926 #define __setattr_copy setattr_copy
927 #endif
928
929 int f2fs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
930                  struct iattr *attr)
931 {
932         struct inode *inode = d_inode(dentry);
933         int err;
934
935         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
936                 return -EIO;
937
938         if (unlikely(IS_IMMUTABLE(inode)))
939                 return -EPERM;
940
941         if (unlikely(IS_APPEND(inode) &&
942                         (attr->ia_valid & (ATTR_MODE | ATTR_UID |
943                                   ATTR_GID | ATTR_TIMES_SET))))
944                 return -EPERM;
945
946         if ((attr->ia_valid & ATTR_SIZE) &&
947                 !f2fs_is_compress_backend_ready(inode))
948                 return -EOPNOTSUPP;
949
950         err = setattr_prepare(idmap, dentry, attr);
951         if (err)
952                 return err;
953
954         err = fscrypt_prepare_setattr(dentry, attr);
955         if (err)
956                 return err;
957
958         err = fsverity_prepare_setattr(dentry, attr);
959         if (err)
960                 return err;
961
962         if (is_quota_modification(idmap, inode, attr)) {
963                 err = f2fs_dquot_initialize(inode);
964                 if (err)
965                         return err;
966         }
967         if (i_uid_needs_update(idmap, attr, inode) ||
968             i_gid_needs_update(idmap, attr, inode)) {
969                 f2fs_lock_op(F2FS_I_SB(inode));
970                 err = dquot_transfer(idmap, inode, attr);
971                 if (err) {
972                         set_sbi_flag(F2FS_I_SB(inode),
973                                         SBI_QUOTA_NEED_REPAIR);
974                         f2fs_unlock_op(F2FS_I_SB(inode));
975                         return err;
976                 }
977                 /*
978                  * update uid/gid under lock_op(), so that dquot and inode can
979                  * be updated atomically.
980                  */
981                 i_uid_update(idmap, attr, inode);
982                 i_gid_update(idmap, attr, inode);
983                 f2fs_mark_inode_dirty_sync(inode, true);
984                 f2fs_unlock_op(F2FS_I_SB(inode));
985         }
986
987         if (attr->ia_valid & ATTR_SIZE) {
988                 loff_t old_size = i_size_read(inode);
989
990                 if (attr->ia_size > MAX_INLINE_DATA(inode)) {
991                         /*
992                          * should convert inline inode before i_size_write to
993                          * keep smaller than inline_data size with inline flag.
994                          */
995                         err = f2fs_convert_inline_inode(inode);
996                         if (err)
997                                 return err;
998                 }
999
1000                 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1001                 filemap_invalidate_lock(inode->i_mapping);
1002
1003                 truncate_setsize(inode, attr->ia_size);
1004
1005                 if (attr->ia_size <= old_size)
1006                         err = f2fs_truncate(inode);
1007                 /*
1008                  * do not trim all blocks after i_size if target size is
1009                  * larger than i_size.
1010                  */
1011                 filemap_invalidate_unlock(inode->i_mapping);
1012                 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1013                 if (err)
1014                         return err;
1015
1016                 spin_lock(&F2FS_I(inode)->i_size_lock);
1017                 inode->i_mtime = inode->i_ctime = current_time(inode);
1018                 F2FS_I(inode)->last_disk_size = i_size_read(inode);
1019                 spin_unlock(&F2FS_I(inode)->i_size_lock);
1020         }
1021
1022         __setattr_copy(idmap, inode, attr);
1023
1024         if (attr->ia_valid & ATTR_MODE) {
1025                 err = posix_acl_chmod(idmap, dentry, f2fs_get_inode_mode(inode));
1026
1027                 if (is_inode_flag_set(inode, FI_ACL_MODE)) {
1028                         if (!err)
1029                                 inode->i_mode = F2FS_I(inode)->i_acl_mode;
1030                         clear_inode_flag(inode, FI_ACL_MODE);
1031                 }
1032         }
1033
1034         /* file size may changed here */
1035         f2fs_mark_inode_dirty_sync(inode, true);
1036
1037         /* inode change will produce dirty node pages flushed by checkpoint */
1038         f2fs_balance_fs(F2FS_I_SB(inode), true);
1039
1040         return err;
1041 }
1042
1043 const struct inode_operations f2fs_file_inode_operations = {
1044         .getattr        = f2fs_getattr,
1045         .setattr        = f2fs_setattr,
1046         .get_inode_acl  = f2fs_get_acl,
1047         .set_acl        = f2fs_set_acl,
1048         .listxattr      = f2fs_listxattr,
1049         .fiemap         = f2fs_fiemap,
1050         .fileattr_get   = f2fs_fileattr_get,
1051         .fileattr_set   = f2fs_fileattr_set,
1052 };
1053
1054 static int fill_zero(struct inode *inode, pgoff_t index,
1055                                         loff_t start, loff_t len)
1056 {
1057         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1058         struct page *page;
1059
1060         if (!len)
1061                 return 0;
1062
1063         f2fs_balance_fs(sbi, true);
1064
1065         f2fs_lock_op(sbi);
1066         page = f2fs_get_new_data_page(inode, NULL, index, false);
1067         f2fs_unlock_op(sbi);
1068
1069         if (IS_ERR(page))
1070                 return PTR_ERR(page);
1071
1072         f2fs_wait_on_page_writeback(page, DATA, true, true);
1073         zero_user(page, start, len);
1074         set_page_dirty(page);
1075         f2fs_put_page(page, 1);
1076         return 0;
1077 }
1078
1079 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
1080 {
1081         int err;
1082
1083         while (pg_start < pg_end) {
1084                 struct dnode_of_data dn;
1085                 pgoff_t end_offset, count;
1086
1087                 set_new_dnode(&dn, inode, NULL, NULL, 0);
1088                 err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
1089                 if (err) {
1090                         if (err == -ENOENT) {
1091                                 pg_start = f2fs_get_next_page_offset(&dn,
1092                                                                 pg_start);
1093                                 continue;
1094                         }
1095                         return err;
1096                 }
1097
1098                 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1099                 count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
1100
1101                 f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
1102
1103                 f2fs_truncate_data_blocks_range(&dn, count);
1104                 f2fs_put_dnode(&dn);
1105
1106                 pg_start += count;
1107         }
1108         return 0;
1109 }
1110
1111 static int f2fs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
1112 {
1113         pgoff_t pg_start, pg_end;
1114         loff_t off_start, off_end;
1115         int ret;
1116
1117         ret = f2fs_convert_inline_inode(inode);
1118         if (ret)
1119                 return ret;
1120
1121         pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1122         pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1123
1124         off_start = offset & (PAGE_SIZE - 1);
1125         off_end = (offset + len) & (PAGE_SIZE - 1);
1126
1127         if (pg_start == pg_end) {
1128                 ret = fill_zero(inode, pg_start, off_start,
1129                                                 off_end - off_start);
1130                 if (ret)
1131                         return ret;
1132         } else {
1133                 if (off_start) {
1134                         ret = fill_zero(inode, pg_start++, off_start,
1135                                                 PAGE_SIZE - off_start);
1136                         if (ret)
1137                                 return ret;
1138                 }
1139                 if (off_end) {
1140                         ret = fill_zero(inode, pg_end, 0, off_end);
1141                         if (ret)
1142                                 return ret;
1143                 }
1144
1145                 if (pg_start < pg_end) {
1146                         loff_t blk_start, blk_end;
1147                         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1148
1149                         f2fs_balance_fs(sbi, true);
1150
1151                         blk_start = (loff_t)pg_start << PAGE_SHIFT;
1152                         blk_end = (loff_t)pg_end << PAGE_SHIFT;
1153
1154                         f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1155                         filemap_invalidate_lock(inode->i_mapping);
1156
1157                         truncate_pagecache_range(inode, blk_start, blk_end - 1);
1158
1159                         f2fs_lock_op(sbi);
1160                         ret = f2fs_truncate_hole(inode, pg_start, pg_end);
1161                         f2fs_unlock_op(sbi);
1162
1163                         filemap_invalidate_unlock(inode->i_mapping);
1164                         f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1165                 }
1166         }
1167
1168         return ret;
1169 }
1170
1171 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
1172                                 int *do_replace, pgoff_t off, pgoff_t len)
1173 {
1174         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1175         struct dnode_of_data dn;
1176         int ret, done, i;
1177
1178 next_dnode:
1179         set_new_dnode(&dn, inode, NULL, NULL, 0);
1180         ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
1181         if (ret && ret != -ENOENT) {
1182                 return ret;
1183         } else if (ret == -ENOENT) {
1184                 if (dn.max_level == 0)
1185                         return -ENOENT;
1186                 done = min((pgoff_t)ADDRS_PER_BLOCK(inode) -
1187                                                 dn.ofs_in_node, len);
1188                 blkaddr += done;
1189                 do_replace += done;
1190                 goto next;
1191         }
1192
1193         done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
1194                                                         dn.ofs_in_node, len);
1195         for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
1196                 *blkaddr = f2fs_data_blkaddr(&dn);
1197
1198                 if (__is_valid_data_blkaddr(*blkaddr) &&
1199                         !f2fs_is_valid_blkaddr(sbi, *blkaddr,
1200                                         DATA_GENERIC_ENHANCE)) {
1201                         f2fs_put_dnode(&dn);
1202                         f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1203                         return -EFSCORRUPTED;
1204                 }
1205
1206                 if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) {
1207
1208                         if (f2fs_lfs_mode(sbi)) {
1209                                 f2fs_put_dnode(&dn);
1210                                 return -EOPNOTSUPP;
1211                         }
1212
1213                         /* do not invalidate this block address */
1214                         f2fs_update_data_blkaddr(&dn, NULL_ADDR);
1215                         *do_replace = 1;
1216                 }
1217         }
1218         f2fs_put_dnode(&dn);
1219 next:
1220         len -= done;
1221         off += done;
1222         if (len)
1223                 goto next_dnode;
1224         return 0;
1225 }
1226
1227 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
1228                                 int *do_replace, pgoff_t off, int len)
1229 {
1230         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1231         struct dnode_of_data dn;
1232         int ret, i;
1233
1234         for (i = 0; i < len; i++, do_replace++, blkaddr++) {
1235                 if (*do_replace == 0)
1236                         continue;
1237
1238                 set_new_dnode(&dn, inode, NULL, NULL, 0);
1239                 ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
1240                 if (ret) {
1241                         dec_valid_block_count(sbi, inode, 1);
1242                         f2fs_invalidate_blocks(sbi, *blkaddr);
1243                 } else {
1244                         f2fs_update_data_blkaddr(&dn, *blkaddr);
1245                 }
1246                 f2fs_put_dnode(&dn);
1247         }
1248         return 0;
1249 }
1250
1251 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
1252                         block_t *blkaddr, int *do_replace,
1253                         pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
1254 {
1255         struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
1256         pgoff_t i = 0;
1257         int ret;
1258
1259         while (i < len) {
1260                 if (blkaddr[i] == NULL_ADDR && !full) {
1261                         i++;
1262                         continue;
1263                 }
1264
1265                 if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
1266                         struct dnode_of_data dn;
1267                         struct node_info ni;
1268                         size_t new_size;
1269                         pgoff_t ilen;
1270
1271                         set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
1272                         ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
1273                         if (ret)
1274                                 return ret;
1275
1276                         ret = f2fs_get_node_info(sbi, dn.nid, &ni, false);
1277                         if (ret) {
1278                                 f2fs_put_dnode(&dn);
1279                                 return ret;
1280                         }
1281
1282                         ilen = min((pgoff_t)
1283                                 ADDRS_PER_PAGE(dn.node_page, dst_inode) -
1284                                                 dn.ofs_in_node, len - i);
1285                         do {
1286                                 dn.data_blkaddr = f2fs_data_blkaddr(&dn);
1287                                 f2fs_truncate_data_blocks_range(&dn, 1);
1288
1289                                 if (do_replace[i]) {
1290                                         f2fs_i_blocks_write(src_inode,
1291                                                         1, false, false);
1292                                         f2fs_i_blocks_write(dst_inode,
1293                                                         1, true, false);
1294                                         f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
1295                                         blkaddr[i], ni.version, true, false);
1296
1297                                         do_replace[i] = 0;
1298                                 }
1299                                 dn.ofs_in_node++;
1300                                 i++;
1301                                 new_size = (loff_t)(dst + i) << PAGE_SHIFT;
1302                                 if (dst_inode->i_size < new_size)
1303                                         f2fs_i_size_write(dst_inode, new_size);
1304                         } while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
1305
1306                         f2fs_put_dnode(&dn);
1307                 } else {
1308                         struct page *psrc, *pdst;
1309
1310                         psrc = f2fs_get_lock_data_page(src_inode,
1311                                                         src + i, true);
1312                         if (IS_ERR(psrc))
1313                                 return PTR_ERR(psrc);
1314                         pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i,
1315                                                                 true);
1316                         if (IS_ERR(pdst)) {
1317                                 f2fs_put_page(psrc, 1);
1318                                 return PTR_ERR(pdst);
1319                         }
1320                         memcpy_page(pdst, 0, psrc, 0, PAGE_SIZE);
1321                         set_page_dirty(pdst);
1322                         f2fs_put_page(pdst, 1);
1323                         f2fs_put_page(psrc, 1);
1324
1325                         ret = f2fs_truncate_hole(src_inode,
1326                                                 src + i, src + i + 1);
1327                         if (ret)
1328                                 return ret;
1329                         i++;
1330                 }
1331         }
1332         return 0;
1333 }
1334
1335 static int __exchange_data_block(struct inode *src_inode,
1336                         struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1337                         pgoff_t len, bool full)
1338 {
1339         block_t *src_blkaddr;
1340         int *do_replace;
1341         pgoff_t olen;
1342         int ret;
1343
1344         while (len) {
1345                 olen = min((pgoff_t)4 * ADDRS_PER_BLOCK(src_inode), len);
1346
1347                 src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1348                                         array_size(olen, sizeof(block_t)),
1349                                         GFP_NOFS);
1350                 if (!src_blkaddr)
1351                         return -ENOMEM;
1352
1353                 do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1354                                         array_size(olen, sizeof(int)),
1355                                         GFP_NOFS);
1356                 if (!do_replace) {
1357                         kvfree(src_blkaddr);
1358                         return -ENOMEM;
1359                 }
1360
1361                 ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1362                                         do_replace, src, olen);
1363                 if (ret)
1364                         goto roll_back;
1365
1366                 ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1367                                         do_replace, src, dst, olen, full);
1368                 if (ret)
1369                         goto roll_back;
1370
1371                 src += olen;
1372                 dst += olen;
1373                 len -= olen;
1374
1375                 kvfree(src_blkaddr);
1376                 kvfree(do_replace);
1377         }
1378         return 0;
1379
1380 roll_back:
1381         __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen);
1382         kvfree(src_blkaddr);
1383         kvfree(do_replace);
1384         return ret;
1385 }
1386
1387 static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len)
1388 {
1389         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1390         pgoff_t nrpages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1391         pgoff_t start = offset >> PAGE_SHIFT;
1392         pgoff_t end = (offset + len) >> PAGE_SHIFT;
1393         int ret;
1394
1395         f2fs_balance_fs(sbi, true);
1396
1397         /* avoid gc operation during block exchange */
1398         f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1399         filemap_invalidate_lock(inode->i_mapping);
1400
1401         f2fs_lock_op(sbi);
1402         f2fs_drop_extent_tree(inode);
1403         truncate_pagecache(inode, offset);
1404         ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1405         f2fs_unlock_op(sbi);
1406
1407         filemap_invalidate_unlock(inode->i_mapping);
1408         f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1409         return ret;
1410 }
1411
1412 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1413 {
1414         loff_t new_size;
1415         int ret;
1416
1417         if (offset + len >= i_size_read(inode))
1418                 return -EINVAL;
1419
1420         /* collapse range should be aligned to block size of f2fs. */
1421         if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1422                 return -EINVAL;
1423
1424         ret = f2fs_convert_inline_inode(inode);
1425         if (ret)
1426                 return ret;
1427
1428         /* write out all dirty pages from offset */
1429         ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1430         if (ret)
1431                 return ret;
1432
1433         ret = f2fs_do_collapse(inode, offset, len);
1434         if (ret)
1435                 return ret;
1436
1437         /* write out all moved pages, if possible */
1438         filemap_invalidate_lock(inode->i_mapping);
1439         filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1440         truncate_pagecache(inode, offset);
1441
1442         new_size = i_size_read(inode) - len;
1443         ret = f2fs_truncate_blocks(inode, new_size, true);
1444         filemap_invalidate_unlock(inode->i_mapping);
1445         if (!ret)
1446                 f2fs_i_size_write(inode, new_size);
1447         return ret;
1448 }
1449
1450 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1451                                                                 pgoff_t end)
1452 {
1453         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1454         pgoff_t index = start;
1455         unsigned int ofs_in_node = dn->ofs_in_node;
1456         blkcnt_t count = 0;
1457         int ret;
1458
1459         for (; index < end; index++, dn->ofs_in_node++) {
1460                 if (f2fs_data_blkaddr(dn) == NULL_ADDR)
1461                         count++;
1462         }
1463
1464         dn->ofs_in_node = ofs_in_node;
1465         ret = f2fs_reserve_new_blocks(dn, count);
1466         if (ret)
1467                 return ret;
1468
1469         dn->ofs_in_node = ofs_in_node;
1470         for (index = start; index < end; index++, dn->ofs_in_node++) {
1471                 dn->data_blkaddr = f2fs_data_blkaddr(dn);
1472                 /*
1473                  * f2fs_reserve_new_blocks will not guarantee entire block
1474                  * allocation.
1475                  */
1476                 if (dn->data_blkaddr == NULL_ADDR) {
1477                         ret = -ENOSPC;
1478                         break;
1479                 }
1480
1481                 if (dn->data_blkaddr == NEW_ADDR)
1482                         continue;
1483
1484                 if (!f2fs_is_valid_blkaddr(sbi, dn->data_blkaddr,
1485                                         DATA_GENERIC_ENHANCE)) {
1486                         ret = -EFSCORRUPTED;
1487                         f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1488                         break;
1489                 }
1490
1491                 f2fs_invalidate_blocks(sbi, dn->data_blkaddr);
1492                 dn->data_blkaddr = NEW_ADDR;
1493                 f2fs_set_data_blkaddr(dn);
1494         }
1495
1496         f2fs_update_read_extent_cache_range(dn, start, 0, index - start);
1497         f2fs_update_age_extent_cache_range(dn, start, index - start);
1498
1499         return ret;
1500 }
1501
1502 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1503                                                                 int mode)
1504 {
1505         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1506         struct address_space *mapping = inode->i_mapping;
1507         pgoff_t index, pg_start, pg_end;
1508         loff_t new_size = i_size_read(inode);
1509         loff_t off_start, off_end;
1510         int ret = 0;
1511
1512         ret = inode_newsize_ok(inode, (len + offset));
1513         if (ret)
1514                 return ret;
1515
1516         ret = f2fs_convert_inline_inode(inode);
1517         if (ret)
1518                 return ret;
1519
1520         ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1521         if (ret)
1522                 return ret;
1523
1524         pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1525         pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1526
1527         off_start = offset & (PAGE_SIZE - 1);
1528         off_end = (offset + len) & (PAGE_SIZE - 1);
1529
1530         if (pg_start == pg_end) {
1531                 ret = fill_zero(inode, pg_start, off_start,
1532                                                 off_end - off_start);
1533                 if (ret)
1534                         return ret;
1535
1536                 new_size = max_t(loff_t, new_size, offset + len);
1537         } else {
1538                 if (off_start) {
1539                         ret = fill_zero(inode, pg_start++, off_start,
1540                                                 PAGE_SIZE - off_start);
1541                         if (ret)
1542                                 return ret;
1543
1544                         new_size = max_t(loff_t, new_size,
1545                                         (loff_t)pg_start << PAGE_SHIFT);
1546                 }
1547
1548                 for (index = pg_start; index < pg_end;) {
1549                         struct dnode_of_data dn;
1550                         unsigned int end_offset;
1551                         pgoff_t end;
1552
1553                         f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1554                         filemap_invalidate_lock(mapping);
1555
1556                         truncate_pagecache_range(inode,
1557                                 (loff_t)index << PAGE_SHIFT,
1558                                 ((loff_t)pg_end << PAGE_SHIFT) - 1);
1559
1560                         f2fs_lock_op(sbi);
1561
1562                         set_new_dnode(&dn, inode, NULL, NULL, 0);
1563                         ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
1564                         if (ret) {
1565                                 f2fs_unlock_op(sbi);
1566                                 filemap_invalidate_unlock(mapping);
1567                                 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1568                                 goto out;
1569                         }
1570
1571                         end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1572                         end = min(pg_end, end_offset - dn.ofs_in_node + index);
1573
1574                         ret = f2fs_do_zero_range(&dn, index, end);
1575                         f2fs_put_dnode(&dn);
1576
1577                         f2fs_unlock_op(sbi);
1578                         filemap_invalidate_unlock(mapping);
1579                         f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1580
1581                         f2fs_balance_fs(sbi, dn.node_changed);
1582
1583                         if (ret)
1584                                 goto out;
1585
1586                         index = end;
1587                         new_size = max_t(loff_t, new_size,
1588                                         (loff_t)index << PAGE_SHIFT);
1589                 }
1590
1591                 if (off_end) {
1592                         ret = fill_zero(inode, pg_end, 0, off_end);
1593                         if (ret)
1594                                 goto out;
1595
1596                         new_size = max_t(loff_t, new_size, offset + len);
1597                 }
1598         }
1599
1600 out:
1601         if (new_size > i_size_read(inode)) {
1602                 if (mode & FALLOC_FL_KEEP_SIZE)
1603                         file_set_keep_isize(inode);
1604                 else
1605                         f2fs_i_size_write(inode, new_size);
1606         }
1607         return ret;
1608 }
1609
1610 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1611 {
1612         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1613         struct address_space *mapping = inode->i_mapping;
1614         pgoff_t nr, pg_start, pg_end, delta, idx;
1615         loff_t new_size;
1616         int ret = 0;
1617
1618         new_size = i_size_read(inode) + len;
1619         ret = inode_newsize_ok(inode, new_size);
1620         if (ret)
1621                 return ret;
1622
1623         if (offset >= i_size_read(inode))
1624                 return -EINVAL;
1625
1626         /* insert range should be aligned to block size of f2fs. */
1627         if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1628                 return -EINVAL;
1629
1630         ret = f2fs_convert_inline_inode(inode);
1631         if (ret)
1632                 return ret;
1633
1634         f2fs_balance_fs(sbi, true);
1635
1636         filemap_invalidate_lock(mapping);
1637         ret = f2fs_truncate_blocks(inode, i_size_read(inode), true);
1638         filemap_invalidate_unlock(mapping);
1639         if (ret)
1640                 return ret;
1641
1642         /* write out all dirty pages from offset */
1643         ret = filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1644         if (ret)
1645                 return ret;
1646
1647         pg_start = offset >> PAGE_SHIFT;
1648         pg_end = (offset + len) >> PAGE_SHIFT;
1649         delta = pg_end - pg_start;
1650         idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1651
1652         /* avoid gc operation during block exchange */
1653         f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1654         filemap_invalidate_lock(mapping);
1655         truncate_pagecache(inode, offset);
1656
1657         while (!ret && idx > pg_start) {
1658                 nr = idx - pg_start;
1659                 if (nr > delta)
1660                         nr = delta;
1661                 idx -= nr;
1662
1663                 f2fs_lock_op(sbi);
1664                 f2fs_drop_extent_tree(inode);
1665
1666                 ret = __exchange_data_block(inode, inode, idx,
1667                                         idx + delta, nr, false);
1668                 f2fs_unlock_op(sbi);
1669         }
1670         filemap_invalidate_unlock(mapping);
1671         f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1672
1673         /* write out all moved pages, if possible */
1674         filemap_invalidate_lock(mapping);
1675         filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1676         truncate_pagecache(inode, offset);
1677         filemap_invalidate_unlock(mapping);
1678
1679         if (!ret)
1680                 f2fs_i_size_write(inode, new_size);
1681         return ret;
1682 }
1683
1684 static int f2fs_expand_inode_data(struct inode *inode, loff_t offset,
1685                                         loff_t len, int mode)
1686 {
1687         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1688         struct f2fs_map_blocks map = { .m_next_pgofs = NULL,
1689                         .m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE,
1690                         .m_may_create = true };
1691         struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO,
1692                         .init_gc_type = FG_GC,
1693                         .should_migrate_blocks = false,
1694                         .err_gc_skipped = true,
1695                         .nr_free_secs = 0 };
1696         pgoff_t pg_start, pg_end;
1697         loff_t new_size;
1698         loff_t off_end;
1699         block_t expanded = 0;
1700         int err;
1701
1702         err = inode_newsize_ok(inode, (len + offset));
1703         if (err)
1704                 return err;
1705
1706         err = f2fs_convert_inline_inode(inode);
1707         if (err)
1708                 return err;
1709
1710         f2fs_balance_fs(sbi, true);
1711
1712         pg_start = ((unsigned long long)offset) >> PAGE_SHIFT;
1713         pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1714         off_end = (offset + len) & (PAGE_SIZE - 1);
1715
1716         map.m_lblk = pg_start;
1717         map.m_len = pg_end - pg_start;
1718         if (off_end)
1719                 map.m_len++;
1720
1721         if (!map.m_len)
1722                 return 0;
1723
1724         if (f2fs_is_pinned_file(inode)) {
1725                 block_t sec_blks = CAP_BLKS_PER_SEC(sbi);
1726                 block_t sec_len = roundup(map.m_len, sec_blks);
1727
1728                 map.m_len = sec_blks;
1729 next_alloc:
1730                 if (has_not_enough_free_secs(sbi, 0,
1731                         GET_SEC_FROM_SEG(sbi, overprovision_segments(sbi)))) {
1732                         f2fs_down_write(&sbi->gc_lock);
1733                         err = f2fs_gc(sbi, &gc_control);
1734                         if (err && err != -ENODATA)
1735                                 goto out_err;
1736                 }
1737
1738                 f2fs_down_write(&sbi->pin_sem);
1739
1740                 f2fs_lock_op(sbi);
1741                 f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
1742                 f2fs_unlock_op(sbi);
1743
1744                 map.m_seg_type = CURSEG_COLD_DATA_PINNED;
1745                 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRE_DIO);
1746                 file_dont_truncate(inode);
1747
1748                 f2fs_up_write(&sbi->pin_sem);
1749
1750                 expanded += map.m_len;
1751                 sec_len -= map.m_len;
1752                 map.m_lblk += map.m_len;
1753                 if (!err && sec_len)
1754                         goto next_alloc;
1755
1756                 map.m_len = expanded;
1757         } else {
1758                 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRE_AIO);
1759                 expanded = map.m_len;
1760         }
1761 out_err:
1762         if (err) {
1763                 pgoff_t last_off;
1764
1765                 if (!expanded)
1766                         return err;
1767
1768                 last_off = pg_start + expanded - 1;
1769
1770                 /* update new size to the failed position */
1771                 new_size = (last_off == pg_end) ? offset + len :
1772                                         (loff_t)(last_off + 1) << PAGE_SHIFT;
1773         } else {
1774                 new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1775         }
1776
1777         if (new_size > i_size_read(inode)) {
1778                 if (mode & FALLOC_FL_KEEP_SIZE)
1779                         file_set_keep_isize(inode);
1780                 else
1781                         f2fs_i_size_write(inode, new_size);
1782         }
1783
1784         return err;
1785 }
1786
1787 static long f2fs_fallocate(struct file *file, int mode,
1788                                 loff_t offset, loff_t len)
1789 {
1790         struct inode *inode = file_inode(file);
1791         long ret = 0;
1792
1793         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
1794                 return -EIO;
1795         if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
1796                 return -ENOSPC;
1797         if (!f2fs_is_compress_backend_ready(inode))
1798                 return -EOPNOTSUPP;
1799
1800         /* f2fs only support ->fallocate for regular file */
1801         if (!S_ISREG(inode->i_mode))
1802                 return -EINVAL;
1803
1804         if (IS_ENCRYPTED(inode) &&
1805                 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1806                 return -EOPNOTSUPP;
1807
1808         /*
1809          * Pinned file should not support partial truncation since the block
1810          * can be used by applications.
1811          */
1812         if ((f2fs_compressed_file(inode) || f2fs_is_pinned_file(inode)) &&
1813                 (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE |
1814                         FALLOC_FL_ZERO_RANGE | FALLOC_FL_INSERT_RANGE)))
1815                 return -EOPNOTSUPP;
1816
1817         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1818                         FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1819                         FALLOC_FL_INSERT_RANGE))
1820                 return -EOPNOTSUPP;
1821
1822         inode_lock(inode);
1823
1824         ret = file_modified(file);
1825         if (ret)
1826                 goto out;
1827
1828         if (mode & FALLOC_FL_PUNCH_HOLE) {
1829                 if (offset >= inode->i_size)
1830                         goto out;
1831
1832                 ret = f2fs_punch_hole(inode, offset, len);
1833         } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1834                 ret = f2fs_collapse_range(inode, offset, len);
1835         } else if (mode & FALLOC_FL_ZERO_RANGE) {
1836                 ret = f2fs_zero_range(inode, offset, len, mode);
1837         } else if (mode & FALLOC_FL_INSERT_RANGE) {
1838                 ret = f2fs_insert_range(inode, offset, len);
1839         } else {
1840                 ret = f2fs_expand_inode_data(inode, offset, len, mode);
1841         }
1842
1843         if (!ret) {
1844                 inode->i_mtime = inode->i_ctime = current_time(inode);
1845                 f2fs_mark_inode_dirty_sync(inode, false);
1846                 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1847         }
1848
1849 out:
1850         inode_unlock(inode);
1851
1852         trace_f2fs_fallocate(inode, mode, offset, len, ret);
1853         return ret;
1854 }
1855
1856 static int f2fs_release_file(struct inode *inode, struct file *filp)
1857 {
1858         /*
1859          * f2fs_release_file is called at every close calls. So we should
1860          * not drop any inmemory pages by close called by other process.
1861          */
1862         if (!(filp->f_mode & FMODE_WRITE) ||
1863                         atomic_read(&inode->i_writecount) != 1)
1864                 return 0;
1865
1866         inode_lock(inode);
1867         f2fs_abort_atomic_write(inode, true);
1868         inode_unlock(inode);
1869
1870         return 0;
1871 }
1872
1873 static int f2fs_file_flush(struct file *file, fl_owner_t id)
1874 {
1875         struct inode *inode = file_inode(file);
1876
1877         /*
1878          * If the process doing a transaction is crashed, we should do
1879          * roll-back. Otherwise, other reader/write can see corrupted database
1880          * until all the writers close its file. Since this should be done
1881          * before dropping file lock, it needs to do in ->flush.
1882          */
1883         if (F2FS_I(inode)->atomic_write_task == current &&
1884                                 (current->flags & PF_EXITING)) {
1885                 inode_lock(inode);
1886                 f2fs_abort_atomic_write(inode, true);
1887                 inode_unlock(inode);
1888         }
1889
1890         return 0;
1891 }
1892
1893 static int f2fs_setflags_common(struct inode *inode, u32 iflags, u32 mask)
1894 {
1895         struct f2fs_inode_info *fi = F2FS_I(inode);
1896         u32 masked_flags = fi->i_flags & mask;
1897
1898         /* mask can be shrunk by flags_valid selector */
1899         iflags &= mask;
1900
1901         /* Is it quota file? Do not allow user to mess with it */
1902         if (IS_NOQUOTA(inode))
1903                 return -EPERM;
1904
1905         if ((iflags ^ masked_flags) & F2FS_CASEFOLD_FL) {
1906                 if (!f2fs_sb_has_casefold(F2FS_I_SB(inode)))
1907                         return -EOPNOTSUPP;
1908                 if (!f2fs_empty_dir(inode))
1909                         return -ENOTEMPTY;
1910         }
1911
1912         if (iflags & (F2FS_COMPR_FL | F2FS_NOCOMP_FL)) {
1913                 if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
1914                         return -EOPNOTSUPP;
1915                 if ((iflags & F2FS_COMPR_FL) && (iflags & F2FS_NOCOMP_FL))
1916                         return -EINVAL;
1917         }
1918
1919         if ((iflags ^ masked_flags) & F2FS_COMPR_FL) {
1920                 if (masked_flags & F2FS_COMPR_FL) {
1921                         if (!f2fs_disable_compressed_file(inode))
1922                                 return -EINVAL;
1923                 } else {
1924                         /* try to convert inline_data to support compression */
1925                         int err = f2fs_convert_inline_inode(inode);
1926                         if (err)
1927                                 return err;
1928                         if (!f2fs_may_compress(inode))
1929                                 return -EINVAL;
1930                         if (S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode))
1931                                 return -EINVAL;
1932                         if (set_compress_context(inode))
1933                                 return -EOPNOTSUPP;
1934                 }
1935         }
1936
1937         fi->i_flags = iflags | (fi->i_flags & ~mask);
1938         f2fs_bug_on(F2FS_I_SB(inode), (fi->i_flags & F2FS_COMPR_FL) &&
1939                                         (fi->i_flags & F2FS_NOCOMP_FL));
1940
1941         if (fi->i_flags & F2FS_PROJINHERIT_FL)
1942                 set_inode_flag(inode, FI_PROJ_INHERIT);
1943         else
1944                 clear_inode_flag(inode, FI_PROJ_INHERIT);
1945
1946         inode->i_ctime = current_time(inode);
1947         f2fs_set_inode_flags(inode);
1948         f2fs_mark_inode_dirty_sync(inode, true);
1949         return 0;
1950 }
1951
1952 /* FS_IOC_[GS]ETFLAGS and FS_IOC_FS[GS]ETXATTR support */
1953
1954 /*
1955  * To make a new on-disk f2fs i_flag gettable via FS_IOC_GETFLAGS, add an entry
1956  * for it to f2fs_fsflags_map[], and add its FS_*_FL equivalent to
1957  * F2FS_GETTABLE_FS_FL.  To also make it settable via FS_IOC_SETFLAGS, also add
1958  * its FS_*_FL equivalent to F2FS_SETTABLE_FS_FL.
1959  *
1960  * Translating flags to fsx_flags value used by FS_IOC_FSGETXATTR and
1961  * FS_IOC_FSSETXATTR is done by the VFS.
1962  */
1963
1964 static const struct {
1965         u32 iflag;
1966         u32 fsflag;
1967 } f2fs_fsflags_map[] = {
1968         { F2FS_COMPR_FL,        FS_COMPR_FL },
1969         { F2FS_SYNC_FL,         FS_SYNC_FL },
1970         { F2FS_IMMUTABLE_FL,    FS_IMMUTABLE_FL },
1971         { F2FS_APPEND_FL,       FS_APPEND_FL },
1972         { F2FS_NODUMP_FL,       FS_NODUMP_FL },
1973         { F2FS_NOATIME_FL,      FS_NOATIME_FL },
1974         { F2FS_NOCOMP_FL,       FS_NOCOMP_FL },
1975         { F2FS_INDEX_FL,        FS_INDEX_FL },
1976         { F2FS_DIRSYNC_FL,      FS_DIRSYNC_FL },
1977         { F2FS_PROJINHERIT_FL,  FS_PROJINHERIT_FL },
1978         { F2FS_CASEFOLD_FL,     FS_CASEFOLD_FL },
1979 };
1980
1981 #define F2FS_GETTABLE_FS_FL (           \
1982                 FS_COMPR_FL |           \
1983                 FS_SYNC_FL |            \
1984                 FS_IMMUTABLE_FL |       \
1985                 FS_APPEND_FL |          \
1986                 FS_NODUMP_FL |          \
1987                 FS_NOATIME_FL |         \
1988                 FS_NOCOMP_FL |          \
1989                 FS_INDEX_FL |           \
1990                 FS_DIRSYNC_FL |         \
1991                 FS_PROJINHERIT_FL |     \
1992                 FS_ENCRYPT_FL |         \
1993                 FS_INLINE_DATA_FL |     \
1994                 FS_NOCOW_FL |           \
1995                 FS_VERITY_FL |          \
1996                 FS_CASEFOLD_FL)
1997
1998 #define F2FS_SETTABLE_FS_FL (           \
1999                 FS_COMPR_FL |           \
2000                 FS_SYNC_FL |            \
2001                 FS_IMMUTABLE_FL |       \
2002                 FS_APPEND_FL |          \
2003                 FS_NODUMP_FL |          \
2004                 FS_NOATIME_FL |         \
2005                 FS_NOCOMP_FL |          \
2006                 FS_DIRSYNC_FL |         \
2007                 FS_PROJINHERIT_FL |     \
2008                 FS_CASEFOLD_FL)
2009
2010 /* Convert f2fs on-disk i_flags to FS_IOC_{GET,SET}FLAGS flags */
2011 static inline u32 f2fs_iflags_to_fsflags(u32 iflags)
2012 {
2013         u32 fsflags = 0;
2014         int i;
2015
2016         for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
2017                 if (iflags & f2fs_fsflags_map[i].iflag)
2018                         fsflags |= f2fs_fsflags_map[i].fsflag;
2019
2020         return fsflags;
2021 }
2022
2023 /* Convert FS_IOC_{GET,SET}FLAGS flags to f2fs on-disk i_flags */
2024 static inline u32 f2fs_fsflags_to_iflags(u32 fsflags)
2025 {
2026         u32 iflags = 0;
2027         int i;
2028
2029         for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
2030                 if (fsflags & f2fs_fsflags_map[i].fsflag)
2031                         iflags |= f2fs_fsflags_map[i].iflag;
2032
2033         return iflags;
2034 }
2035
2036 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
2037 {
2038         struct inode *inode = file_inode(filp);
2039
2040         return put_user(inode->i_generation, (int __user *)arg);
2041 }
2042
2043 static int f2fs_ioc_start_atomic_write(struct file *filp, bool truncate)
2044 {
2045         struct inode *inode = file_inode(filp);
2046         struct mnt_idmap *idmap = file_mnt_idmap(filp);
2047         struct f2fs_inode_info *fi = F2FS_I(inode);
2048         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2049         struct inode *pinode;
2050         loff_t isize;
2051         int ret;
2052
2053         if (!inode_owner_or_capable(idmap, inode))
2054                 return -EACCES;
2055
2056         if (!S_ISREG(inode->i_mode))
2057                 return -EINVAL;
2058
2059         if (filp->f_flags & O_DIRECT)
2060                 return -EINVAL;
2061
2062         ret = mnt_want_write_file(filp);
2063         if (ret)
2064                 return ret;
2065
2066         inode_lock(inode);
2067
2068         if (!f2fs_disable_compressed_file(inode)) {
2069                 ret = -EINVAL;
2070                 goto out;
2071         }
2072
2073         if (f2fs_is_atomic_file(inode))
2074                 goto out;
2075
2076         ret = f2fs_convert_inline_inode(inode);
2077         if (ret)
2078                 goto out;
2079
2080         f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
2081
2082         /*
2083          * Should wait end_io to count F2FS_WB_CP_DATA correctly by
2084          * f2fs_is_atomic_file.
2085          */
2086         if (get_dirty_pages(inode))
2087                 f2fs_warn(sbi, "Unexpected flush for atomic writes: ino=%lu, npages=%u",
2088                           inode->i_ino, get_dirty_pages(inode));
2089         ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
2090         if (ret) {
2091                 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2092                 goto out;
2093         }
2094
2095         /* Check if the inode already has a COW inode */
2096         if (fi->cow_inode == NULL) {
2097                 /* Create a COW inode for atomic write */
2098                 pinode = f2fs_iget(inode->i_sb, fi->i_pino);
2099                 if (IS_ERR(pinode)) {
2100                         f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2101                         ret = PTR_ERR(pinode);
2102                         goto out;
2103                 }
2104
2105                 ret = f2fs_get_tmpfile(idmap, pinode, &fi->cow_inode);
2106                 iput(pinode);
2107                 if (ret) {
2108                         f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2109                         goto out;
2110                 }
2111
2112                 set_inode_flag(fi->cow_inode, FI_COW_FILE);
2113                 clear_inode_flag(fi->cow_inode, FI_INLINE_DATA);
2114         } else {
2115                 /* Reuse the already created COW inode */
2116                 ret = f2fs_do_truncate_blocks(fi->cow_inode, 0, true);
2117                 if (ret) {
2118                         f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2119                         goto out;
2120                 }
2121         }
2122
2123         f2fs_write_inode(inode, NULL);
2124
2125         stat_inc_atomic_inode(inode);
2126
2127         set_inode_flag(inode, FI_ATOMIC_FILE);
2128
2129         isize = i_size_read(inode);
2130         fi->original_i_size = isize;
2131         if (truncate) {
2132                 set_inode_flag(inode, FI_ATOMIC_REPLACE);
2133                 truncate_inode_pages_final(inode->i_mapping);
2134                 f2fs_i_size_write(inode, 0);
2135                 isize = 0;
2136         }
2137         f2fs_i_size_write(fi->cow_inode, isize);
2138
2139         f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2140
2141         f2fs_update_time(sbi, REQ_TIME);
2142         fi->atomic_write_task = current;
2143         stat_update_max_atomic_write(inode);
2144         fi->atomic_write_cnt = 0;
2145 out:
2146         inode_unlock(inode);
2147         mnt_drop_write_file(filp);
2148         return ret;
2149 }
2150
2151 static int f2fs_ioc_commit_atomic_write(struct file *filp)
2152 {
2153         struct inode *inode = file_inode(filp);
2154         struct mnt_idmap *idmap = file_mnt_idmap(filp);
2155         int ret;
2156
2157         if (!inode_owner_or_capable(idmap, inode))
2158                 return -EACCES;
2159
2160         ret = mnt_want_write_file(filp);
2161         if (ret)
2162                 return ret;
2163
2164         f2fs_balance_fs(F2FS_I_SB(inode), true);
2165
2166         inode_lock(inode);
2167
2168         if (f2fs_is_atomic_file(inode)) {
2169                 ret = f2fs_commit_atomic_write(inode);
2170                 if (!ret)
2171                         ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
2172
2173                 f2fs_abort_atomic_write(inode, ret);
2174         } else {
2175                 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false);
2176         }
2177
2178         inode_unlock(inode);
2179         mnt_drop_write_file(filp);
2180         return ret;
2181 }
2182
2183 static int f2fs_ioc_abort_atomic_write(struct file *filp)
2184 {
2185         struct inode *inode = file_inode(filp);
2186         struct mnt_idmap *idmap = file_mnt_idmap(filp);
2187         int ret;
2188
2189         if (!inode_owner_or_capable(idmap, inode))
2190                 return -EACCES;
2191
2192         ret = mnt_want_write_file(filp);
2193         if (ret)
2194                 return ret;
2195
2196         inode_lock(inode);
2197
2198         f2fs_abort_atomic_write(inode, true);
2199
2200         inode_unlock(inode);
2201
2202         mnt_drop_write_file(filp);
2203         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2204         return ret;
2205 }
2206
2207 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
2208 {
2209         struct inode *inode = file_inode(filp);
2210         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2211         struct super_block *sb = sbi->sb;
2212         __u32 in;
2213         int ret = 0;
2214
2215         if (!capable(CAP_SYS_ADMIN))
2216                 return -EPERM;
2217
2218         if (get_user(in, (__u32 __user *)arg))
2219                 return -EFAULT;
2220
2221         if (in != F2FS_GOING_DOWN_FULLSYNC) {
2222                 ret = mnt_want_write_file(filp);
2223                 if (ret) {
2224                         if (ret == -EROFS) {
2225                                 ret = 0;
2226                                 f2fs_stop_checkpoint(sbi, false,
2227                                                 STOP_CP_REASON_SHUTDOWN);
2228                                 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2229                                 trace_f2fs_shutdown(sbi, in, ret);
2230                         }
2231                         return ret;
2232                 }
2233         }
2234
2235         switch (in) {
2236         case F2FS_GOING_DOWN_FULLSYNC:
2237                 ret = freeze_bdev(sb->s_bdev);
2238                 if (ret)
2239                         goto out;
2240                 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2241                 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2242                 thaw_bdev(sb->s_bdev);
2243                 break;
2244         case F2FS_GOING_DOWN_METASYNC:
2245                 /* do checkpoint only */
2246                 ret = f2fs_sync_fs(sb, 1);
2247                 if (ret)
2248                         goto out;
2249                 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2250                 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2251                 break;
2252         case F2FS_GOING_DOWN_NOSYNC:
2253                 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2254                 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2255                 break;
2256         case F2FS_GOING_DOWN_METAFLUSH:
2257                 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO);
2258                 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2259                 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2260                 break;
2261         case F2FS_GOING_DOWN_NEED_FSCK:
2262                 set_sbi_flag(sbi, SBI_NEED_FSCK);
2263                 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
2264                 set_sbi_flag(sbi, SBI_IS_DIRTY);
2265                 /* do checkpoint only */
2266                 ret = f2fs_sync_fs(sb, 1);
2267                 goto out;
2268         default:
2269                 ret = -EINVAL;
2270                 goto out;
2271         }
2272
2273         f2fs_stop_gc_thread(sbi);
2274         f2fs_stop_discard_thread(sbi);
2275
2276         f2fs_drop_discard_cmd(sbi);
2277         clear_opt(sbi, DISCARD);
2278
2279         f2fs_update_time(sbi, REQ_TIME);
2280 out:
2281         if (in != F2FS_GOING_DOWN_FULLSYNC)
2282                 mnt_drop_write_file(filp);
2283
2284         trace_f2fs_shutdown(sbi, in, ret);
2285
2286         return ret;
2287 }
2288
2289 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
2290 {
2291         struct inode *inode = file_inode(filp);
2292         struct super_block *sb = inode->i_sb;
2293         struct fstrim_range range;
2294         int ret;
2295
2296         if (!capable(CAP_SYS_ADMIN))
2297                 return -EPERM;
2298
2299         if (!f2fs_hw_support_discard(F2FS_SB(sb)))
2300                 return -EOPNOTSUPP;
2301
2302         if (copy_from_user(&range, (struct fstrim_range __user *)arg,
2303                                 sizeof(range)))
2304                 return -EFAULT;
2305
2306         ret = mnt_want_write_file(filp);
2307         if (ret)
2308                 return ret;
2309
2310         range.minlen = max((unsigned int)range.minlen,
2311                            bdev_discard_granularity(sb->s_bdev));
2312         ret = f2fs_trim_fs(F2FS_SB(sb), &range);
2313         mnt_drop_write_file(filp);
2314         if (ret < 0)
2315                 return ret;
2316
2317         if (copy_to_user((struct fstrim_range __user *)arg, &range,
2318                                 sizeof(range)))
2319                 return -EFAULT;
2320         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2321         return 0;
2322 }
2323
2324 static bool uuid_is_nonzero(__u8 u[16])
2325 {
2326         int i;
2327
2328         for (i = 0; i < 16; i++)
2329                 if (u[i])
2330                         return true;
2331         return false;
2332 }
2333
2334 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
2335 {
2336         struct inode *inode = file_inode(filp);
2337
2338         if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode)))
2339                 return -EOPNOTSUPP;
2340
2341         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2342
2343         return fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
2344 }
2345
2346 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
2347 {
2348         if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2349                 return -EOPNOTSUPP;
2350         return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
2351 }
2352
2353 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
2354 {
2355         struct inode *inode = file_inode(filp);
2356         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2357         u8 encrypt_pw_salt[16];
2358         int err;
2359
2360         if (!f2fs_sb_has_encrypt(sbi))
2361                 return -EOPNOTSUPP;
2362
2363         err = mnt_want_write_file(filp);
2364         if (err)
2365                 return err;
2366
2367         f2fs_down_write(&sbi->sb_lock);
2368
2369         if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
2370                 goto got_it;
2371
2372         /* update superblock with uuid */
2373         generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
2374
2375         err = f2fs_commit_super(sbi, false);
2376         if (err) {
2377                 /* undo new data */
2378                 memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
2379                 goto out_err;
2380         }
2381 got_it:
2382         memcpy(encrypt_pw_salt, sbi->raw_super->encrypt_pw_salt, 16);
2383 out_err:
2384         f2fs_up_write(&sbi->sb_lock);
2385         mnt_drop_write_file(filp);
2386
2387         if (!err && copy_to_user((__u8 __user *)arg, encrypt_pw_salt, 16))
2388                 err = -EFAULT;
2389
2390         return err;
2391 }
2392
2393 static int f2fs_ioc_get_encryption_policy_ex(struct file *filp,
2394                                              unsigned long arg)
2395 {
2396         if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2397                 return -EOPNOTSUPP;
2398
2399         return fscrypt_ioctl_get_policy_ex(filp, (void __user *)arg);
2400 }
2401
2402 static int f2fs_ioc_add_encryption_key(struct file *filp, unsigned long arg)
2403 {
2404         if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2405                 return -EOPNOTSUPP;
2406
2407         return fscrypt_ioctl_add_key(filp, (void __user *)arg);
2408 }
2409
2410 static int f2fs_ioc_remove_encryption_key(struct file *filp, unsigned long arg)
2411 {
2412         if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2413                 return -EOPNOTSUPP;
2414
2415         return fscrypt_ioctl_remove_key(filp, (void __user *)arg);
2416 }
2417
2418 static int f2fs_ioc_remove_encryption_key_all_users(struct file *filp,
2419                                                     unsigned long arg)
2420 {
2421         if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2422                 return -EOPNOTSUPP;
2423
2424         return fscrypt_ioctl_remove_key_all_users(filp, (void __user *)arg);
2425 }
2426
2427 static int f2fs_ioc_get_encryption_key_status(struct file *filp,
2428                                               unsigned long arg)
2429 {
2430         if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2431                 return -EOPNOTSUPP;
2432
2433         return fscrypt_ioctl_get_key_status(filp, (void __user *)arg);
2434 }
2435
2436 static int f2fs_ioc_get_encryption_nonce(struct file *filp, unsigned long arg)
2437 {
2438         if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2439                 return -EOPNOTSUPP;
2440
2441         return fscrypt_ioctl_get_nonce(filp, (void __user *)arg);
2442 }
2443
2444 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
2445 {
2446         struct inode *inode = file_inode(filp);
2447         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2448         struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO,
2449                         .no_bg_gc = false,
2450                         .should_migrate_blocks = false,
2451                         .nr_free_secs = 0 };
2452         __u32 sync;
2453         int ret;
2454
2455         if (!capable(CAP_SYS_ADMIN))
2456                 return -EPERM;
2457
2458         if (get_user(sync, (__u32 __user *)arg))
2459                 return -EFAULT;
2460
2461         if (f2fs_readonly(sbi->sb))
2462                 return -EROFS;
2463
2464         ret = mnt_want_write_file(filp);
2465         if (ret)
2466                 return ret;
2467
2468         if (!sync) {
2469                 if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2470                         ret = -EBUSY;
2471                         goto out;
2472                 }
2473         } else {
2474                 f2fs_down_write(&sbi->gc_lock);
2475         }
2476
2477         gc_control.init_gc_type = sync ? FG_GC : BG_GC;
2478         gc_control.err_gc_skipped = sync;
2479         ret = f2fs_gc(sbi, &gc_control);
2480 out:
2481         mnt_drop_write_file(filp);
2482         return ret;
2483 }
2484
2485 static int __f2fs_ioc_gc_range(struct file *filp, struct f2fs_gc_range *range)
2486 {
2487         struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
2488         struct f2fs_gc_control gc_control = {
2489                         .init_gc_type = range->sync ? FG_GC : BG_GC,
2490                         .no_bg_gc = false,
2491                         .should_migrate_blocks = false,
2492                         .err_gc_skipped = range->sync,
2493                         .nr_free_secs = 0 };
2494         u64 end;
2495         int ret;
2496
2497         if (!capable(CAP_SYS_ADMIN))
2498                 return -EPERM;
2499         if (f2fs_readonly(sbi->sb))
2500                 return -EROFS;
2501
2502         end = range->start + range->len;
2503         if (end < range->start || range->start < MAIN_BLKADDR(sbi) ||
2504                                         end >= MAX_BLKADDR(sbi))
2505                 return -EINVAL;
2506
2507         ret = mnt_want_write_file(filp);
2508         if (ret)
2509                 return ret;
2510
2511 do_more:
2512         if (!range->sync) {
2513                 if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2514                         ret = -EBUSY;
2515                         goto out;
2516                 }
2517         } else {
2518                 f2fs_down_write(&sbi->gc_lock);
2519         }
2520
2521         gc_control.victim_segno = GET_SEGNO(sbi, range->start);
2522         ret = f2fs_gc(sbi, &gc_control);
2523         if (ret) {
2524                 if (ret == -EBUSY)
2525                         ret = -EAGAIN;
2526                 goto out;
2527         }
2528         range->start += CAP_BLKS_PER_SEC(sbi);
2529         if (range->start <= end)
2530                 goto do_more;
2531 out:
2532         mnt_drop_write_file(filp);
2533         return ret;
2534 }
2535
2536 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
2537 {
2538         struct f2fs_gc_range range;
2539
2540         if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
2541                                                         sizeof(range)))
2542                 return -EFAULT;
2543         return __f2fs_ioc_gc_range(filp, &range);
2544 }
2545
2546 static int f2fs_ioc_write_checkpoint(struct file *filp)
2547 {
2548         struct inode *inode = file_inode(filp);
2549         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2550         int ret;
2551
2552         if (!capable(CAP_SYS_ADMIN))
2553                 return -EPERM;
2554
2555         if (f2fs_readonly(sbi->sb))
2556                 return -EROFS;
2557
2558         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2559                 f2fs_info(sbi, "Skipping Checkpoint. Checkpoints currently disabled.");
2560                 return -EINVAL;
2561         }
2562
2563         ret = mnt_want_write_file(filp);
2564         if (ret)
2565                 return ret;
2566
2567         ret = f2fs_sync_fs(sbi->sb, 1);
2568
2569         mnt_drop_write_file(filp);
2570         return ret;
2571 }
2572
2573 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
2574                                         struct file *filp,
2575                                         struct f2fs_defragment *range)
2576 {
2577         struct inode *inode = file_inode(filp);
2578         struct f2fs_map_blocks map = { .m_next_extent = NULL,
2579                                         .m_seg_type = NO_CHECK_TYPE,
2580                                         .m_may_create = false };
2581         struct extent_info ei = {};
2582         pgoff_t pg_start, pg_end, next_pgofs;
2583         unsigned int blk_per_seg = sbi->blocks_per_seg;
2584         unsigned int total = 0, sec_num;
2585         block_t blk_end = 0;
2586         bool fragmented = false;
2587         int err;
2588
2589         pg_start = range->start >> PAGE_SHIFT;
2590         pg_end = (range->start + range->len) >> PAGE_SHIFT;
2591
2592         f2fs_balance_fs(sbi, true);
2593
2594         inode_lock(inode);
2595
2596         /* if in-place-update policy is enabled, don't waste time here */
2597         set_inode_flag(inode, FI_OPU_WRITE);
2598         if (f2fs_should_update_inplace(inode, NULL)) {
2599                 err = -EINVAL;
2600                 goto out;
2601         }
2602
2603         /* writeback all dirty pages in the range */
2604         err = filemap_write_and_wait_range(inode->i_mapping, range->start,
2605                                                 range->start + range->len - 1);
2606         if (err)
2607                 goto out;
2608
2609         /*
2610          * lookup mapping info in extent cache, skip defragmenting if physical
2611          * block addresses are continuous.
2612          */
2613         if (f2fs_lookup_read_extent_cache(inode, pg_start, &ei)) {
2614                 if (ei.fofs + ei.len >= pg_end)
2615                         goto out;
2616         }
2617
2618         map.m_lblk = pg_start;
2619         map.m_next_pgofs = &next_pgofs;
2620
2621         /*
2622          * lookup mapping info in dnode page cache, skip defragmenting if all
2623          * physical block addresses are continuous even if there are hole(s)
2624          * in logical blocks.
2625          */
2626         while (map.m_lblk < pg_end) {
2627                 map.m_len = pg_end - map.m_lblk;
2628                 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
2629                 if (err)
2630                         goto out;
2631
2632                 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2633                         map.m_lblk = next_pgofs;
2634                         continue;
2635                 }
2636
2637                 if (blk_end && blk_end != map.m_pblk)
2638                         fragmented = true;
2639
2640                 /* record total count of block that we're going to move */
2641                 total += map.m_len;
2642
2643                 blk_end = map.m_pblk + map.m_len;
2644
2645                 map.m_lblk += map.m_len;
2646         }
2647
2648         if (!fragmented) {
2649                 total = 0;
2650                 goto out;
2651         }
2652
2653         sec_num = DIV_ROUND_UP(total, CAP_BLKS_PER_SEC(sbi));
2654
2655         /*
2656          * make sure there are enough free section for LFS allocation, this can
2657          * avoid defragment running in SSR mode when free section are allocated
2658          * intensively
2659          */
2660         if (has_not_enough_free_secs(sbi, 0, sec_num)) {
2661                 err = -EAGAIN;
2662                 goto out;
2663         }
2664
2665         map.m_lblk = pg_start;
2666         map.m_len = pg_end - pg_start;
2667         total = 0;
2668
2669         while (map.m_lblk < pg_end) {
2670                 pgoff_t idx;
2671                 int cnt = 0;
2672
2673 do_map:
2674                 map.m_len = pg_end - map.m_lblk;
2675                 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
2676                 if (err)
2677                         goto clear_out;
2678
2679                 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2680                         map.m_lblk = next_pgofs;
2681                         goto check;
2682                 }
2683
2684                 set_inode_flag(inode, FI_SKIP_WRITES);
2685
2686                 idx = map.m_lblk;
2687                 while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
2688                         struct page *page;
2689
2690                         page = f2fs_get_lock_data_page(inode, idx, true);
2691                         if (IS_ERR(page)) {
2692                                 err = PTR_ERR(page);
2693                                 goto clear_out;
2694                         }
2695
2696                         set_page_dirty(page);
2697                         set_page_private_gcing(page);
2698                         f2fs_put_page(page, 1);
2699
2700                         idx++;
2701                         cnt++;
2702                         total++;
2703                 }
2704
2705                 map.m_lblk = idx;
2706 check:
2707                 if (map.m_lblk < pg_end && cnt < blk_per_seg)
2708                         goto do_map;
2709
2710                 clear_inode_flag(inode, FI_SKIP_WRITES);
2711
2712                 err = filemap_fdatawrite(inode->i_mapping);
2713                 if (err)
2714                         goto out;
2715         }
2716 clear_out:
2717         clear_inode_flag(inode, FI_SKIP_WRITES);
2718 out:
2719         clear_inode_flag(inode, FI_OPU_WRITE);
2720         inode_unlock(inode);
2721         if (!err)
2722                 range->len = (u64)total << PAGE_SHIFT;
2723         return err;
2724 }
2725
2726 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2727 {
2728         struct inode *inode = file_inode(filp);
2729         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2730         struct f2fs_defragment range;
2731         int err;
2732
2733         if (!capable(CAP_SYS_ADMIN))
2734                 return -EPERM;
2735
2736         if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode))
2737                 return -EINVAL;
2738
2739         if (f2fs_readonly(sbi->sb))
2740                 return -EROFS;
2741
2742         if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2743                                                         sizeof(range)))
2744                 return -EFAULT;
2745
2746         /* verify alignment of offset & size */
2747         if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
2748                 return -EINVAL;
2749
2750         if (unlikely((range.start + range.len) >> PAGE_SHIFT >
2751                                         max_file_blocks(inode)))
2752                 return -EINVAL;
2753
2754         err = mnt_want_write_file(filp);
2755         if (err)
2756                 return err;
2757
2758         err = f2fs_defragment_range(sbi, filp, &range);
2759         mnt_drop_write_file(filp);
2760
2761         f2fs_update_time(sbi, REQ_TIME);
2762         if (err < 0)
2763                 return err;
2764
2765         if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2766                                                         sizeof(range)))
2767                 return -EFAULT;
2768
2769         return 0;
2770 }
2771
2772 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
2773                         struct file *file_out, loff_t pos_out, size_t len)
2774 {
2775         struct inode *src = file_inode(file_in);
2776         struct inode *dst = file_inode(file_out);
2777         struct f2fs_sb_info *sbi = F2FS_I_SB(src);
2778         size_t olen = len, dst_max_i_size = 0;
2779         size_t dst_osize;
2780         int ret;
2781
2782         if (file_in->f_path.mnt != file_out->f_path.mnt ||
2783                                 src->i_sb != dst->i_sb)
2784                 return -EXDEV;
2785
2786         if (unlikely(f2fs_readonly(src->i_sb)))
2787                 return -EROFS;
2788
2789         if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
2790                 return -EINVAL;
2791
2792         if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst))
2793                 return -EOPNOTSUPP;
2794
2795         if (pos_out < 0 || pos_in < 0)
2796                 return -EINVAL;
2797
2798         if (src == dst) {
2799                 if (pos_in == pos_out)
2800                         return 0;
2801                 if (pos_out > pos_in && pos_out < pos_in + len)
2802                         return -EINVAL;
2803         }
2804
2805         inode_lock(src);
2806         if (src != dst) {
2807                 ret = -EBUSY;
2808                 if (!inode_trylock(dst))
2809                         goto out;
2810         }
2811
2812         ret = -EINVAL;
2813         if (pos_in + len > src->i_size || pos_in + len < pos_in)
2814                 goto out_unlock;
2815         if (len == 0)
2816                 olen = len = src->i_size - pos_in;
2817         if (pos_in + len == src->i_size)
2818                 len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
2819         if (len == 0) {
2820                 ret = 0;
2821                 goto out_unlock;
2822         }
2823
2824         dst_osize = dst->i_size;
2825         if (pos_out + olen > dst->i_size)
2826                 dst_max_i_size = pos_out + olen;
2827
2828         /* verify the end result is block aligned */
2829         if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
2830                         !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
2831                         !IS_ALIGNED(pos_out, F2FS_BLKSIZE))
2832                 goto out_unlock;
2833
2834         ret = f2fs_convert_inline_inode(src);
2835         if (ret)
2836                 goto out_unlock;
2837
2838         ret = f2fs_convert_inline_inode(dst);
2839         if (ret)
2840                 goto out_unlock;
2841
2842         /* write out all dirty pages from offset */
2843         ret = filemap_write_and_wait_range(src->i_mapping,
2844                                         pos_in, pos_in + len);
2845         if (ret)
2846                 goto out_unlock;
2847
2848         ret = filemap_write_and_wait_range(dst->i_mapping,
2849                                         pos_out, pos_out + len);
2850         if (ret)
2851                 goto out_unlock;
2852
2853         f2fs_balance_fs(sbi, true);
2854
2855         f2fs_down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2856         if (src != dst) {
2857                 ret = -EBUSY;
2858                 if (!f2fs_down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE]))
2859                         goto out_src;
2860         }
2861
2862         f2fs_lock_op(sbi);
2863         ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
2864                                 pos_out >> F2FS_BLKSIZE_BITS,
2865                                 len >> F2FS_BLKSIZE_BITS, false);
2866
2867         if (!ret) {
2868                 if (dst_max_i_size)
2869                         f2fs_i_size_write(dst, dst_max_i_size);
2870                 else if (dst_osize != dst->i_size)
2871                         f2fs_i_size_write(dst, dst_osize);
2872         }
2873         f2fs_unlock_op(sbi);
2874
2875         if (src != dst)
2876                 f2fs_up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]);
2877 out_src:
2878         f2fs_up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2879 out_unlock:
2880         if (src != dst)
2881                 inode_unlock(dst);
2882 out:
2883         inode_unlock(src);
2884         return ret;
2885 }
2886
2887 static int __f2fs_ioc_move_range(struct file *filp,
2888                                 struct f2fs_move_range *range)
2889 {
2890         struct fd dst;
2891         int err;
2892
2893         if (!(filp->f_mode & FMODE_READ) ||
2894                         !(filp->f_mode & FMODE_WRITE))
2895                 return -EBADF;
2896
2897         dst = fdget(range->dst_fd);
2898         if (!dst.file)
2899                 return -EBADF;
2900
2901         if (!(dst.file->f_mode & FMODE_WRITE)) {
2902                 err = -EBADF;
2903                 goto err_out;
2904         }
2905
2906         err = mnt_want_write_file(filp);
2907         if (err)
2908                 goto err_out;
2909
2910         err = f2fs_move_file_range(filp, range->pos_in, dst.file,
2911                                         range->pos_out, range->len);
2912
2913         mnt_drop_write_file(filp);
2914 err_out:
2915         fdput(dst);
2916         return err;
2917 }
2918
2919 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
2920 {
2921         struct f2fs_move_range range;
2922
2923         if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
2924                                                         sizeof(range)))
2925                 return -EFAULT;
2926         return __f2fs_ioc_move_range(filp, &range);
2927 }
2928
2929 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
2930 {
2931         struct inode *inode = file_inode(filp);
2932         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2933         struct sit_info *sm = SIT_I(sbi);
2934         unsigned int start_segno = 0, end_segno = 0;
2935         unsigned int dev_start_segno = 0, dev_end_segno = 0;
2936         struct f2fs_flush_device range;
2937         struct f2fs_gc_control gc_control = {
2938                         .init_gc_type = FG_GC,
2939                         .should_migrate_blocks = true,
2940                         .err_gc_skipped = true,
2941                         .nr_free_secs = 0 };
2942         int ret;
2943
2944         if (!capable(CAP_SYS_ADMIN))
2945                 return -EPERM;
2946
2947         if (f2fs_readonly(sbi->sb))
2948                 return -EROFS;
2949
2950         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2951                 return -EINVAL;
2952
2953         if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
2954                                                         sizeof(range)))
2955                 return -EFAULT;
2956
2957         if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num ||
2958                         __is_large_section(sbi)) {
2959                 f2fs_warn(sbi, "Can't flush %u in %d for segs_per_sec %u != 1",
2960                           range.dev_num, sbi->s_ndevs, sbi->segs_per_sec);
2961                 return -EINVAL;
2962         }
2963
2964         ret = mnt_want_write_file(filp);
2965         if (ret)
2966                 return ret;
2967
2968         if (range.dev_num != 0)
2969                 dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
2970         dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
2971
2972         start_segno = sm->last_victim[FLUSH_DEVICE];
2973         if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
2974                 start_segno = dev_start_segno;
2975         end_segno = min(start_segno + range.segments, dev_end_segno);
2976
2977         while (start_segno < end_segno) {
2978                 if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2979                         ret = -EBUSY;
2980                         goto out;
2981                 }
2982                 sm->last_victim[GC_CB] = end_segno + 1;
2983                 sm->last_victim[GC_GREEDY] = end_segno + 1;
2984                 sm->last_victim[ALLOC_NEXT] = end_segno + 1;
2985
2986                 gc_control.victim_segno = start_segno;
2987                 ret = f2fs_gc(sbi, &gc_control);
2988                 if (ret == -EAGAIN)
2989                         ret = 0;
2990                 else if (ret < 0)
2991                         break;
2992                 start_segno++;
2993         }
2994 out:
2995         mnt_drop_write_file(filp);
2996         return ret;
2997 }
2998
2999 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg)
3000 {
3001         struct inode *inode = file_inode(filp);
3002         u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature);
3003
3004         /* Must validate to set it with SQLite behavior in Android. */
3005         sb_feature |= F2FS_FEATURE_ATOMIC_WRITE;
3006
3007         return put_user(sb_feature, (u32 __user *)arg);
3008 }
3009
3010 #ifdef CONFIG_QUOTA
3011 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3012 {
3013         struct dquot *transfer_to[MAXQUOTAS] = {};
3014         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3015         struct super_block *sb = sbi->sb;
3016         int err;
3017
3018         transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid));
3019         if (IS_ERR(transfer_to[PRJQUOTA]))
3020                 return PTR_ERR(transfer_to[PRJQUOTA]);
3021
3022         err = __dquot_transfer(inode, transfer_to);
3023         if (err)
3024                 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3025         dqput(transfer_to[PRJQUOTA]);
3026         return err;
3027 }
3028
3029 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
3030 {
3031         struct f2fs_inode_info *fi = F2FS_I(inode);
3032         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3033         struct f2fs_inode *ri = NULL;
3034         kprojid_t kprojid;
3035         int err;
3036
3037         if (!f2fs_sb_has_project_quota(sbi)) {
3038                 if (projid != F2FS_DEF_PROJID)
3039                         return -EOPNOTSUPP;
3040                 else
3041                         return 0;
3042         }
3043
3044         if (!f2fs_has_extra_attr(inode))
3045                 return -EOPNOTSUPP;
3046
3047         kprojid = make_kprojid(&init_user_ns, (projid_t)projid);
3048
3049         if (projid_eq(kprojid, fi->i_projid))
3050                 return 0;
3051
3052         err = -EPERM;
3053         /* Is it quota file? Do not allow user to mess with it */
3054         if (IS_NOQUOTA(inode))
3055                 return err;
3056
3057         if (!F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_projid))
3058                 return -EOVERFLOW;
3059
3060         err = f2fs_dquot_initialize(inode);
3061         if (err)
3062                 return err;
3063
3064         f2fs_lock_op(sbi);
3065         err = f2fs_transfer_project_quota(inode, kprojid);
3066         if (err)
3067                 goto out_unlock;
3068
3069         fi->i_projid = kprojid;
3070         inode->i_ctime = current_time(inode);
3071         f2fs_mark_inode_dirty_sync(inode, true);
3072 out_unlock:
3073         f2fs_unlock_op(sbi);
3074         return err;
3075 }
3076 #else
3077 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3078 {
3079         return 0;
3080 }
3081
3082 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
3083 {
3084         if (projid != F2FS_DEF_PROJID)
3085                 return -EOPNOTSUPP;
3086         return 0;
3087 }
3088 #endif
3089
3090 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3091 {
3092         struct inode *inode = d_inode(dentry);
3093         struct f2fs_inode_info *fi = F2FS_I(inode);
3094         u32 fsflags = f2fs_iflags_to_fsflags(fi->i_flags);
3095
3096         if (IS_ENCRYPTED(inode))
3097                 fsflags |= FS_ENCRYPT_FL;
3098         if (IS_VERITY(inode))
3099                 fsflags |= FS_VERITY_FL;
3100         if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode))
3101                 fsflags |= FS_INLINE_DATA_FL;
3102         if (is_inode_flag_set(inode, FI_PIN_FILE))
3103                 fsflags |= FS_NOCOW_FL;
3104
3105         fileattr_fill_flags(fa, fsflags & F2FS_GETTABLE_FS_FL);
3106
3107         if (f2fs_sb_has_project_quota(F2FS_I_SB(inode)))
3108                 fa->fsx_projid = from_kprojid(&init_user_ns, fi->i_projid);
3109
3110         return 0;
3111 }
3112
3113 int f2fs_fileattr_set(struct mnt_idmap *idmap,
3114                       struct dentry *dentry, struct fileattr *fa)
3115 {
3116         struct inode *inode = d_inode(dentry);
3117         u32 fsflags = fa->flags, mask = F2FS_SETTABLE_FS_FL;
3118         u32 iflags;
3119         int err;
3120
3121         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
3122                 return -EIO;
3123         if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
3124                 return -ENOSPC;
3125         if (fsflags & ~F2FS_GETTABLE_FS_FL)
3126                 return -EOPNOTSUPP;
3127         fsflags &= F2FS_SETTABLE_FS_FL;
3128         if (!fa->flags_valid)
3129                 mask &= FS_COMMON_FL;
3130
3131         iflags = f2fs_fsflags_to_iflags(fsflags);
3132         if (f2fs_mask_flags(inode->i_mode, iflags) != iflags)
3133                 return -EOPNOTSUPP;
3134
3135         err = f2fs_setflags_common(inode, iflags, f2fs_fsflags_to_iflags(mask));
3136         if (!err)
3137                 err = f2fs_ioc_setproject(inode, fa->fsx_projid);
3138
3139         return err;
3140 }
3141
3142 int f2fs_pin_file_control(struct inode *inode, bool inc)
3143 {
3144         struct f2fs_inode_info *fi = F2FS_I(inode);
3145         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3146
3147         /* Use i_gc_failures for normal file as a risk signal. */
3148         if (inc)
3149                 f2fs_i_gc_failures_write(inode,
3150                                 fi->i_gc_failures[GC_FAILURE_PIN] + 1);
3151
3152         if (fi->i_gc_failures[GC_FAILURE_PIN] > sbi->gc_pin_file_threshold) {
3153                 f2fs_warn(sbi, "%s: Enable GC = ino %lx after %x GC trials",
3154                           __func__, inode->i_ino,
3155                           fi->i_gc_failures[GC_FAILURE_PIN]);
3156                 clear_inode_flag(inode, FI_PIN_FILE);
3157                 return -EAGAIN;
3158         }
3159         return 0;
3160 }
3161
3162 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg)
3163 {
3164         struct inode *inode = file_inode(filp);
3165         __u32 pin;
3166         int ret = 0;
3167
3168         if (get_user(pin, (__u32 __user *)arg))
3169                 return -EFAULT;
3170
3171         if (!S_ISREG(inode->i_mode))
3172                 return -EINVAL;
3173
3174         if (f2fs_readonly(F2FS_I_SB(inode)->sb))
3175                 return -EROFS;
3176
3177         ret = mnt_want_write_file(filp);
3178         if (ret)
3179                 return ret;
3180
3181         inode_lock(inode);
3182
3183         if (!pin) {
3184                 clear_inode_flag(inode, FI_PIN_FILE);
3185                 f2fs_i_gc_failures_write(inode, 0);
3186                 goto done;
3187         }
3188
3189         if (f2fs_should_update_outplace(inode, NULL)) {
3190                 ret = -EINVAL;
3191                 goto out;
3192         }
3193
3194         if (f2fs_pin_file_control(inode, false)) {
3195                 ret = -EAGAIN;
3196                 goto out;
3197         }
3198
3199         ret = f2fs_convert_inline_inode(inode);
3200         if (ret)
3201                 goto out;
3202
3203         if (!f2fs_disable_compressed_file(inode)) {
3204                 ret = -EOPNOTSUPP;
3205                 goto out;
3206         }
3207
3208         set_inode_flag(inode, FI_PIN_FILE);
3209         ret = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3210 done:
3211         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3212 out:
3213         inode_unlock(inode);
3214         mnt_drop_write_file(filp);
3215         return ret;
3216 }
3217
3218 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg)
3219 {
3220         struct inode *inode = file_inode(filp);
3221         __u32 pin = 0;
3222
3223         if (is_inode_flag_set(inode, FI_PIN_FILE))
3224                 pin = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3225         return put_user(pin, (u32 __user *)arg);
3226 }
3227
3228 int f2fs_precache_extents(struct inode *inode)
3229 {
3230         struct f2fs_inode_info *fi = F2FS_I(inode);
3231         struct f2fs_map_blocks map;
3232         pgoff_t m_next_extent;
3233         loff_t end;
3234         int err;
3235
3236         if (is_inode_flag_set(inode, FI_NO_EXTENT))
3237                 return -EOPNOTSUPP;
3238
3239         map.m_lblk = 0;
3240         map.m_next_pgofs = NULL;
3241         map.m_next_extent = &m_next_extent;
3242         map.m_seg_type = NO_CHECK_TYPE;
3243         map.m_may_create = false;
3244         end = max_file_blocks(inode);
3245
3246         while (map.m_lblk < end) {
3247                 map.m_len = end - map.m_lblk;
3248
3249                 f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
3250                 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRECACHE);
3251                 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
3252                 if (err)
3253                         return err;
3254
3255                 map.m_lblk = m_next_extent;
3256         }
3257
3258         return 0;
3259 }
3260
3261 static int f2fs_ioc_precache_extents(struct file *filp)
3262 {
3263         return f2fs_precache_extents(file_inode(filp));
3264 }
3265
3266 static int f2fs_ioc_resize_fs(struct file *filp, unsigned long arg)
3267 {
3268         struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
3269         __u64 block_count;
3270
3271         if (!capable(CAP_SYS_ADMIN))
3272                 return -EPERM;
3273
3274         if (f2fs_readonly(sbi->sb))
3275                 return -EROFS;
3276
3277         if (copy_from_user(&block_count, (void __user *)arg,
3278                            sizeof(block_count)))
3279                 return -EFAULT;
3280
3281         return f2fs_resize_fs(sbi, block_count);
3282 }
3283
3284 static int f2fs_ioc_enable_verity(struct file *filp, unsigned long arg)
3285 {
3286         struct inode *inode = file_inode(filp);
3287
3288         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3289
3290         if (!f2fs_sb_has_verity(F2FS_I_SB(inode))) {
3291                 f2fs_warn(F2FS_I_SB(inode),
3292                           "Can't enable fs-verity on inode %lu: the verity feature is not enabled on this filesystem",
3293                           inode->i_ino);
3294                 return -EOPNOTSUPP;
3295         }
3296
3297         return fsverity_ioctl_enable(filp, (const void __user *)arg);
3298 }
3299
3300 static int f2fs_ioc_measure_verity(struct file *filp, unsigned long arg)
3301 {
3302         if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3303                 return -EOPNOTSUPP;
3304
3305         return fsverity_ioctl_measure(filp, (void __user *)arg);
3306 }
3307
3308 static int f2fs_ioc_read_verity_metadata(struct file *filp, unsigned long arg)
3309 {
3310         if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3311                 return -EOPNOTSUPP;
3312
3313         return fsverity_ioctl_read_metadata(filp, (const void __user *)arg);
3314 }
3315
3316 static int f2fs_ioc_getfslabel(struct file *filp, unsigned long arg)
3317 {
3318         struct inode *inode = file_inode(filp);
3319         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3320         char *vbuf;
3321         int count;
3322         int err = 0;
3323
3324         vbuf = f2fs_kzalloc(sbi, MAX_VOLUME_NAME, GFP_KERNEL);
3325         if (!vbuf)
3326                 return -ENOMEM;
3327
3328         f2fs_down_read(&sbi->sb_lock);
3329         count = utf16s_to_utf8s(sbi->raw_super->volume_name,
3330                         ARRAY_SIZE(sbi->raw_super->volume_name),
3331                         UTF16_LITTLE_ENDIAN, vbuf, MAX_VOLUME_NAME);
3332         f2fs_up_read(&sbi->sb_lock);
3333
3334         if (copy_to_user((char __user *)arg, vbuf,
3335                                 min(FSLABEL_MAX, count)))
3336                 err = -EFAULT;
3337
3338         kfree(vbuf);
3339         return err;
3340 }
3341
3342 static int f2fs_ioc_setfslabel(struct file *filp, unsigned long arg)
3343 {
3344         struct inode *inode = file_inode(filp);
3345         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3346         char *vbuf;
3347         int err = 0;
3348
3349         if (!capable(CAP_SYS_ADMIN))
3350                 return -EPERM;
3351
3352         vbuf = strndup_user((const char __user *)arg, FSLABEL_MAX);
3353         if (IS_ERR(vbuf))
3354                 return PTR_ERR(vbuf);
3355
3356         err = mnt_want_write_file(filp);
3357         if (err)
3358                 goto out;
3359
3360         f2fs_down_write(&sbi->sb_lock);
3361
3362         memset(sbi->raw_super->volume_name, 0,
3363                         sizeof(sbi->raw_super->volume_name));
3364         utf8s_to_utf16s(vbuf, strlen(vbuf), UTF16_LITTLE_ENDIAN,
3365                         sbi->raw_super->volume_name,
3366                         ARRAY_SIZE(sbi->raw_super->volume_name));
3367
3368         err = f2fs_commit_super(sbi, false);
3369
3370         f2fs_up_write(&sbi->sb_lock);
3371
3372         mnt_drop_write_file(filp);
3373 out:
3374         kfree(vbuf);
3375         return err;
3376 }
3377
3378 static int f2fs_get_compress_blocks(struct file *filp, unsigned long arg)
3379 {
3380         struct inode *inode = file_inode(filp);
3381         __u64 blocks;
3382
3383         if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3384                 return -EOPNOTSUPP;
3385
3386         if (!f2fs_compressed_file(inode))
3387                 return -EINVAL;
3388
3389         blocks = atomic_read(&F2FS_I(inode)->i_compr_blocks);
3390         return put_user(blocks, (u64 __user *)arg);
3391 }
3392
3393 static int release_compress_blocks(struct dnode_of_data *dn, pgoff_t count)
3394 {
3395         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3396         unsigned int released_blocks = 0;
3397         int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3398         block_t blkaddr;
3399         int i;
3400
3401         for (i = 0; i < count; i++) {
3402                 blkaddr = data_blkaddr(dn->inode, dn->node_page,
3403                                                 dn->ofs_in_node + i);
3404
3405                 if (!__is_valid_data_blkaddr(blkaddr))
3406                         continue;
3407                 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3408                                         DATA_GENERIC_ENHANCE))) {
3409                         f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
3410                         return -EFSCORRUPTED;
3411                 }
3412         }
3413
3414         while (count) {
3415                 int compr_blocks = 0;
3416
3417                 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3418                         blkaddr = f2fs_data_blkaddr(dn);
3419
3420                         if (i == 0) {
3421                                 if (blkaddr == COMPRESS_ADDR)
3422                                         continue;
3423                                 dn->ofs_in_node += cluster_size;
3424                                 goto next;
3425                         }
3426
3427                         if (__is_valid_data_blkaddr(blkaddr))
3428                                 compr_blocks++;
3429
3430                         if (blkaddr != NEW_ADDR)
3431                                 continue;
3432
3433                         dn->data_blkaddr = NULL_ADDR;
3434                         f2fs_set_data_blkaddr(dn);
3435                 }
3436
3437                 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, false);
3438                 dec_valid_block_count(sbi, dn->inode,
3439                                         cluster_size - compr_blocks);
3440
3441                 released_blocks += cluster_size - compr_blocks;
3442 next:
3443                 count -= cluster_size;
3444         }
3445
3446         return released_blocks;
3447 }
3448
3449 static int f2fs_release_compress_blocks(struct file *filp, unsigned long arg)
3450 {
3451         struct inode *inode = file_inode(filp);
3452         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3453         pgoff_t page_idx = 0, last_idx;
3454         unsigned int released_blocks = 0;
3455         int ret;
3456         int writecount;
3457
3458         if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3459                 return -EOPNOTSUPP;
3460
3461         if (!f2fs_compressed_file(inode))
3462                 return -EINVAL;
3463
3464         if (f2fs_readonly(sbi->sb))
3465                 return -EROFS;
3466
3467         ret = mnt_want_write_file(filp);
3468         if (ret)
3469                 return ret;
3470
3471         f2fs_balance_fs(F2FS_I_SB(inode), true);
3472
3473         inode_lock(inode);
3474
3475         writecount = atomic_read(&inode->i_writecount);
3476         if ((filp->f_mode & FMODE_WRITE && writecount != 1) ||
3477                         (!(filp->f_mode & FMODE_WRITE) && writecount)) {
3478                 ret = -EBUSY;
3479                 goto out;
3480         }
3481
3482         if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3483                 ret = -EINVAL;
3484                 goto out;
3485         }
3486
3487         ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
3488         if (ret)
3489                 goto out;
3490
3491         set_inode_flag(inode, FI_COMPRESS_RELEASED);
3492         inode->i_ctime = current_time(inode);
3493         f2fs_mark_inode_dirty_sync(inode, true);
3494
3495         if (!atomic_read(&F2FS_I(inode)->i_compr_blocks))
3496                 goto out;
3497
3498         f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3499         filemap_invalidate_lock(inode->i_mapping);
3500
3501         last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3502
3503         while (page_idx < last_idx) {
3504                 struct dnode_of_data dn;
3505                 pgoff_t end_offset, count;
3506
3507                 set_new_dnode(&dn, inode, NULL, NULL, 0);
3508                 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3509                 if (ret) {
3510                         if (ret == -ENOENT) {
3511                                 page_idx = f2fs_get_next_page_offset(&dn,
3512                                                                 page_idx);
3513                                 ret = 0;
3514                                 continue;
3515                         }
3516                         break;
3517                 }
3518
3519                 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3520                 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3521                 count = round_up(count, F2FS_I(inode)->i_cluster_size);
3522
3523                 ret = release_compress_blocks(&dn, count);
3524
3525                 f2fs_put_dnode(&dn);
3526
3527                 if (ret < 0)
3528                         break;
3529
3530                 page_idx += count;
3531                 released_blocks += ret;
3532         }
3533
3534         filemap_invalidate_unlock(inode->i_mapping);
3535         f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3536 out:
3537         inode_unlock(inode);
3538
3539         mnt_drop_write_file(filp);
3540
3541         if (ret >= 0) {
3542                 ret = put_user(released_blocks, (u64 __user *)arg);
3543         } else if (released_blocks &&
3544                         atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3545                 set_sbi_flag(sbi, SBI_NEED_FSCK);
3546                 f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3547                         "iblocks=%llu, released=%u, compr_blocks=%u, "
3548                         "run fsck to fix.",
3549                         __func__, inode->i_ino, inode->i_blocks,
3550                         released_blocks,
3551                         atomic_read(&F2FS_I(inode)->i_compr_blocks));
3552         }
3553
3554         return ret;
3555 }
3556
3557 static int reserve_compress_blocks(struct dnode_of_data *dn, pgoff_t count)
3558 {
3559         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3560         unsigned int reserved_blocks = 0;
3561         int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3562         block_t blkaddr;
3563         int i;
3564
3565         for (i = 0; i < count; i++) {
3566                 blkaddr = data_blkaddr(dn->inode, dn->node_page,
3567                                                 dn->ofs_in_node + i);
3568
3569                 if (!__is_valid_data_blkaddr(blkaddr))
3570                         continue;
3571                 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3572                                         DATA_GENERIC_ENHANCE))) {
3573                         f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
3574                         return -EFSCORRUPTED;
3575                 }
3576         }
3577
3578         while (count) {
3579                 int compr_blocks = 0;
3580                 blkcnt_t reserved;
3581                 int ret;
3582
3583                 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3584                         blkaddr = f2fs_data_blkaddr(dn);
3585
3586                         if (i == 0) {
3587                                 if (blkaddr == COMPRESS_ADDR)
3588                                         continue;
3589                                 dn->ofs_in_node += cluster_size;
3590                                 goto next;
3591                         }
3592
3593                         if (__is_valid_data_blkaddr(blkaddr)) {
3594                                 compr_blocks++;
3595                                 continue;
3596                         }
3597
3598                         dn->data_blkaddr = NEW_ADDR;
3599                         f2fs_set_data_blkaddr(dn);
3600                 }
3601
3602                 reserved = cluster_size - compr_blocks;
3603                 ret = inc_valid_block_count(sbi, dn->inode, &reserved);
3604                 if (ret)
3605                         return ret;
3606
3607                 if (reserved != cluster_size - compr_blocks)
3608                         return -ENOSPC;
3609
3610                 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, true);
3611
3612                 reserved_blocks += reserved;
3613 next:
3614                 count -= cluster_size;
3615         }
3616
3617         return reserved_blocks;
3618 }
3619
3620 static int f2fs_reserve_compress_blocks(struct file *filp, unsigned long arg)
3621 {
3622         struct inode *inode = file_inode(filp);
3623         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3624         pgoff_t page_idx = 0, last_idx;
3625         unsigned int reserved_blocks = 0;
3626         int ret;
3627
3628         if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3629                 return -EOPNOTSUPP;
3630
3631         if (!f2fs_compressed_file(inode))
3632                 return -EINVAL;
3633
3634         if (f2fs_readonly(sbi->sb))
3635                 return -EROFS;
3636
3637         ret = mnt_want_write_file(filp);
3638         if (ret)
3639                 return ret;
3640
3641         if (atomic_read(&F2FS_I(inode)->i_compr_blocks))
3642                 goto out;
3643
3644         f2fs_balance_fs(F2FS_I_SB(inode), true);
3645
3646         inode_lock(inode);
3647
3648         if (!is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3649                 ret = -EINVAL;
3650                 goto unlock_inode;
3651         }
3652
3653         f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3654         filemap_invalidate_lock(inode->i_mapping);
3655
3656         last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3657
3658         while (page_idx < last_idx) {
3659                 struct dnode_of_data dn;
3660                 pgoff_t end_offset, count;
3661
3662                 set_new_dnode(&dn, inode, NULL, NULL, 0);
3663                 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3664                 if (ret) {
3665                         if (ret == -ENOENT) {
3666                                 page_idx = f2fs_get_next_page_offset(&dn,
3667                                                                 page_idx);
3668                                 ret = 0;
3669                                 continue;
3670                         }
3671                         break;
3672                 }
3673
3674                 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3675                 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3676                 count = round_up(count, F2FS_I(inode)->i_cluster_size);
3677
3678                 ret = reserve_compress_blocks(&dn, count);
3679
3680                 f2fs_put_dnode(&dn);
3681
3682                 if (ret < 0)
3683                         break;
3684
3685                 page_idx += count;
3686                 reserved_blocks += ret;
3687         }
3688
3689         filemap_invalidate_unlock(inode->i_mapping);
3690         f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3691
3692         if (ret >= 0) {
3693                 clear_inode_flag(inode, FI_COMPRESS_RELEASED);
3694                 inode->i_ctime = current_time(inode);
3695                 f2fs_mark_inode_dirty_sync(inode, true);
3696         }
3697 unlock_inode:
3698         inode_unlock(inode);
3699 out:
3700         mnt_drop_write_file(filp);
3701
3702         if (ret >= 0) {
3703                 ret = put_user(reserved_blocks, (u64 __user *)arg);
3704         } else if (reserved_blocks &&
3705                         atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3706                 set_sbi_flag(sbi, SBI_NEED_FSCK);
3707                 f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3708                         "iblocks=%llu, reserved=%u, compr_blocks=%u, "
3709                         "run fsck to fix.",
3710                         __func__, inode->i_ino, inode->i_blocks,
3711                         reserved_blocks,
3712                         atomic_read(&F2FS_I(inode)->i_compr_blocks));
3713         }
3714
3715         return ret;
3716 }
3717
3718 static int f2fs_secure_erase(struct block_device *bdev, struct inode *inode,
3719                 pgoff_t off, block_t block, block_t len, u32 flags)
3720 {
3721         sector_t sector = SECTOR_FROM_BLOCK(block);
3722         sector_t nr_sects = SECTOR_FROM_BLOCK(len);
3723         int ret = 0;
3724
3725         if (flags & F2FS_TRIM_FILE_DISCARD) {
3726                 if (bdev_max_secure_erase_sectors(bdev))
3727                         ret = blkdev_issue_secure_erase(bdev, sector, nr_sects,
3728                                         GFP_NOFS);
3729                 else
3730                         ret = blkdev_issue_discard(bdev, sector, nr_sects,
3731                                         GFP_NOFS);
3732         }
3733
3734         if (!ret && (flags & F2FS_TRIM_FILE_ZEROOUT)) {
3735                 if (IS_ENCRYPTED(inode))
3736                         ret = fscrypt_zeroout_range(inode, off, block, len);
3737                 else
3738                         ret = blkdev_issue_zeroout(bdev, sector, nr_sects,
3739                                         GFP_NOFS, 0);
3740         }
3741
3742         return ret;
3743 }
3744
3745 static int f2fs_sec_trim_file(struct file *filp, unsigned long arg)
3746 {
3747         struct inode *inode = file_inode(filp);
3748         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3749         struct address_space *mapping = inode->i_mapping;
3750         struct block_device *prev_bdev = NULL;
3751         struct f2fs_sectrim_range range;
3752         pgoff_t index, pg_end, prev_index = 0;
3753         block_t prev_block = 0, len = 0;
3754         loff_t end_addr;
3755         bool to_end = false;
3756         int ret = 0;
3757
3758         if (!(filp->f_mode & FMODE_WRITE))
3759                 return -EBADF;
3760
3761         if (copy_from_user(&range, (struct f2fs_sectrim_range __user *)arg,
3762                                 sizeof(range)))
3763                 return -EFAULT;
3764
3765         if (range.flags == 0 || (range.flags & ~F2FS_TRIM_FILE_MASK) ||
3766                         !S_ISREG(inode->i_mode))
3767                 return -EINVAL;
3768
3769         if (((range.flags & F2FS_TRIM_FILE_DISCARD) &&
3770                         !f2fs_hw_support_discard(sbi)) ||
3771                         ((range.flags & F2FS_TRIM_FILE_ZEROOUT) &&
3772                          IS_ENCRYPTED(inode) && f2fs_is_multi_device(sbi)))
3773                 return -EOPNOTSUPP;
3774
3775         file_start_write(filp);
3776         inode_lock(inode);
3777
3778         if (f2fs_is_atomic_file(inode) || f2fs_compressed_file(inode) ||
3779                         range.start >= inode->i_size) {
3780                 ret = -EINVAL;
3781                 goto err;
3782         }
3783
3784         if (range.len == 0)
3785                 goto err;
3786
3787         if (inode->i_size - range.start > range.len) {
3788                 end_addr = range.start + range.len;
3789         } else {
3790                 end_addr = range.len == (u64)-1 ?
3791                         sbi->sb->s_maxbytes : inode->i_size;
3792                 to_end = true;
3793         }
3794
3795         if (!IS_ALIGNED(range.start, F2FS_BLKSIZE) ||
3796                         (!to_end && !IS_ALIGNED(end_addr, F2FS_BLKSIZE))) {
3797                 ret = -EINVAL;
3798                 goto err;
3799         }
3800
3801         index = F2FS_BYTES_TO_BLK(range.start);
3802         pg_end = DIV_ROUND_UP(end_addr, F2FS_BLKSIZE);
3803
3804         ret = f2fs_convert_inline_inode(inode);
3805         if (ret)
3806                 goto err;
3807
3808         f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3809         filemap_invalidate_lock(mapping);
3810
3811         ret = filemap_write_and_wait_range(mapping, range.start,
3812                         to_end ? LLONG_MAX : end_addr - 1);
3813         if (ret)
3814                 goto out;
3815
3816         truncate_inode_pages_range(mapping, range.start,
3817                         to_end ? -1 : end_addr - 1);
3818
3819         while (index < pg_end) {
3820                 struct dnode_of_data dn;
3821                 pgoff_t end_offset, count;
3822                 int i;
3823
3824                 set_new_dnode(&dn, inode, NULL, NULL, 0);
3825                 ret = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3826                 if (ret) {
3827                         if (ret == -ENOENT) {
3828                                 index = f2fs_get_next_page_offset(&dn, index);
3829                                 continue;
3830                         }
3831                         goto out;
3832                 }
3833
3834                 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3835                 count = min(end_offset - dn.ofs_in_node, pg_end - index);
3836                 for (i = 0; i < count; i++, index++, dn.ofs_in_node++) {
3837                         struct block_device *cur_bdev;
3838                         block_t blkaddr = f2fs_data_blkaddr(&dn);
3839
3840                         if (!__is_valid_data_blkaddr(blkaddr))
3841                                 continue;
3842
3843                         if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3844                                                 DATA_GENERIC_ENHANCE)) {
3845                                 ret = -EFSCORRUPTED;
3846                                 f2fs_put_dnode(&dn);
3847                                 f2fs_handle_error(sbi,
3848                                                 ERROR_INVALID_BLKADDR);
3849                                 goto out;
3850                         }
3851
3852                         cur_bdev = f2fs_target_device(sbi, blkaddr, NULL);
3853                         if (f2fs_is_multi_device(sbi)) {
3854                                 int di = f2fs_target_device_index(sbi, blkaddr);
3855
3856                                 blkaddr -= FDEV(di).start_blk;
3857                         }
3858
3859                         if (len) {
3860                                 if (prev_bdev == cur_bdev &&
3861                                                 index == prev_index + len &&
3862                                                 blkaddr == prev_block + len) {
3863                                         len++;
3864                                 } else {
3865                                         ret = f2fs_secure_erase(prev_bdev,
3866                                                 inode, prev_index, prev_block,
3867                                                 len, range.flags);
3868                                         if (ret) {
3869                                                 f2fs_put_dnode(&dn);
3870                                                 goto out;
3871                                         }
3872
3873                                         len = 0;
3874                                 }
3875                         }
3876
3877                         if (!len) {
3878                                 prev_bdev = cur_bdev;
3879                                 prev_index = index;
3880                                 prev_block = blkaddr;
3881                                 len = 1;
3882                         }
3883                 }
3884
3885                 f2fs_put_dnode(&dn);
3886
3887                 if (fatal_signal_pending(current)) {
3888                         ret = -EINTR;
3889                         goto out;
3890                 }
3891                 cond_resched();
3892         }
3893
3894         if (len)
3895                 ret = f2fs_secure_erase(prev_bdev, inode, prev_index,
3896                                 prev_block, len, range.flags);
3897 out:
3898         filemap_invalidate_unlock(mapping);
3899         f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3900 err:
3901         inode_unlock(inode);
3902         file_end_write(filp);
3903
3904         return ret;
3905 }
3906
3907 static int f2fs_ioc_get_compress_option(struct file *filp, unsigned long arg)
3908 {
3909         struct inode *inode = file_inode(filp);
3910         struct f2fs_comp_option option;
3911
3912         if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3913                 return -EOPNOTSUPP;
3914
3915         inode_lock_shared(inode);
3916
3917         if (!f2fs_compressed_file(inode)) {
3918                 inode_unlock_shared(inode);
3919                 return -ENODATA;
3920         }
3921
3922         option.algorithm = F2FS_I(inode)->i_compress_algorithm;
3923         option.log_cluster_size = F2FS_I(inode)->i_log_cluster_size;
3924
3925         inode_unlock_shared(inode);
3926
3927         if (copy_to_user((struct f2fs_comp_option __user *)arg, &option,
3928                                 sizeof(option)))
3929                 return -EFAULT;
3930
3931         return 0;
3932 }
3933
3934 static int f2fs_ioc_set_compress_option(struct file *filp, unsigned long arg)
3935 {
3936         struct inode *inode = file_inode(filp);
3937         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3938         struct f2fs_comp_option option;
3939         int ret = 0;
3940
3941         if (!f2fs_sb_has_compression(sbi))
3942                 return -EOPNOTSUPP;
3943
3944         if (!(filp->f_mode & FMODE_WRITE))
3945                 return -EBADF;
3946
3947         if (copy_from_user(&option, (struct f2fs_comp_option __user *)arg,
3948                                 sizeof(option)))
3949                 return -EFAULT;
3950
3951         if (!f2fs_compressed_file(inode) ||
3952                         option.log_cluster_size < MIN_COMPRESS_LOG_SIZE ||
3953                         option.log_cluster_size > MAX_COMPRESS_LOG_SIZE ||
3954                         option.algorithm >= COMPRESS_MAX)
3955                 return -EINVAL;
3956
3957         file_start_write(filp);
3958         inode_lock(inode);
3959
3960         if (f2fs_is_mmap_file(inode) || get_dirty_pages(inode)) {
3961                 ret = -EBUSY;
3962                 goto out;
3963         }
3964
3965         if (F2FS_HAS_BLOCKS(inode)) {
3966                 ret = -EFBIG;
3967                 goto out;
3968         }
3969
3970         F2FS_I(inode)->i_compress_algorithm = option.algorithm;
3971         F2FS_I(inode)->i_log_cluster_size = option.log_cluster_size;
3972         F2FS_I(inode)->i_cluster_size = BIT(option.log_cluster_size);
3973         f2fs_mark_inode_dirty_sync(inode, true);
3974
3975         if (!f2fs_is_compress_backend_ready(inode))
3976                 f2fs_warn(sbi, "compression algorithm is successfully set, "
3977                         "but current kernel doesn't support this algorithm.");
3978 out:
3979         inode_unlock(inode);
3980         file_end_write(filp);
3981
3982         return ret;
3983 }
3984
3985 static int redirty_blocks(struct inode *inode, pgoff_t page_idx, int len)
3986 {
3987         DEFINE_READAHEAD(ractl, NULL, NULL, inode->i_mapping, page_idx);
3988         struct address_space *mapping = inode->i_mapping;
3989         struct page *page;
3990         pgoff_t redirty_idx = page_idx;
3991         int i, page_len = 0, ret = 0;
3992
3993         page_cache_ra_unbounded(&ractl, len, 0);
3994
3995         for (i = 0; i < len; i++, page_idx++) {
3996                 page = read_cache_page(mapping, page_idx, NULL, NULL);
3997                 if (IS_ERR(page)) {
3998                         ret = PTR_ERR(page);
3999                         break;
4000                 }
4001                 page_len++;
4002         }
4003
4004         for (i = 0; i < page_len; i++, redirty_idx++) {
4005                 page = find_lock_page(mapping, redirty_idx);
4006
4007                 /* It will never fail, when page has pinned above */
4008                 f2fs_bug_on(F2FS_I_SB(inode), !page);
4009
4010                 set_page_dirty(page);
4011                 f2fs_put_page(page, 1);
4012                 f2fs_put_page(page, 0);
4013         }
4014
4015         return ret;
4016 }
4017
4018 static int f2fs_ioc_decompress_file(struct file *filp)
4019 {
4020         struct inode *inode = file_inode(filp);
4021         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4022         struct f2fs_inode_info *fi = F2FS_I(inode);
4023         pgoff_t page_idx = 0, last_idx;
4024         unsigned int blk_per_seg = sbi->blocks_per_seg;
4025         int cluster_size = fi->i_cluster_size;
4026         int count, ret;
4027
4028         if (!f2fs_sb_has_compression(sbi) ||
4029                         F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
4030                 return -EOPNOTSUPP;
4031
4032         if (!(filp->f_mode & FMODE_WRITE))
4033                 return -EBADF;
4034
4035         if (!f2fs_compressed_file(inode))
4036                 return -EINVAL;
4037
4038         f2fs_balance_fs(F2FS_I_SB(inode), true);
4039
4040         file_start_write(filp);
4041         inode_lock(inode);
4042
4043         if (!f2fs_is_compress_backend_ready(inode)) {
4044                 ret = -EOPNOTSUPP;
4045                 goto out;
4046         }
4047
4048         if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4049                 ret = -EINVAL;
4050                 goto out;
4051         }
4052
4053         ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4054         if (ret)
4055                 goto out;
4056
4057         if (!atomic_read(&fi->i_compr_blocks))
4058                 goto out;
4059
4060         last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4061
4062         count = last_idx - page_idx;
4063         while (count) {
4064                 int len = min(cluster_size, count);
4065
4066                 ret = redirty_blocks(inode, page_idx, len);
4067                 if (ret < 0)
4068                         break;
4069
4070                 if (get_dirty_pages(inode) >= blk_per_seg) {
4071                         ret = filemap_fdatawrite(inode->i_mapping);
4072                         if (ret < 0)
4073                                 break;
4074                 }
4075
4076                 count -= len;
4077                 page_idx += len;
4078         }
4079
4080         if (!ret)
4081                 ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4082                                                         LLONG_MAX);
4083
4084         if (ret)
4085                 f2fs_warn(sbi, "%s: The file might be partially decompressed (errno=%d). Please delete the file.",
4086                           __func__, ret);
4087 out:
4088         inode_unlock(inode);
4089         file_end_write(filp);
4090
4091         return ret;
4092 }
4093
4094 static int f2fs_ioc_compress_file(struct file *filp)
4095 {
4096         struct inode *inode = file_inode(filp);
4097         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4098         pgoff_t page_idx = 0, last_idx;
4099         unsigned int blk_per_seg = sbi->blocks_per_seg;
4100         int cluster_size = F2FS_I(inode)->i_cluster_size;
4101         int count, ret;
4102
4103         if (!f2fs_sb_has_compression(sbi) ||
4104                         F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
4105                 return -EOPNOTSUPP;
4106
4107         if (!(filp->f_mode & FMODE_WRITE))
4108                 return -EBADF;
4109
4110         if (!f2fs_compressed_file(inode))
4111                 return -EINVAL;
4112
4113         f2fs_balance_fs(F2FS_I_SB(inode), true);
4114
4115         file_start_write(filp);
4116         inode_lock(inode);
4117
4118         if (!f2fs_is_compress_backend_ready(inode)) {
4119                 ret = -EOPNOTSUPP;
4120                 goto out;
4121         }
4122
4123         if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4124                 ret = -EINVAL;
4125                 goto out;
4126         }
4127
4128         ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4129         if (ret)
4130                 goto out;
4131
4132         set_inode_flag(inode, FI_ENABLE_COMPRESS);
4133
4134         last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4135
4136         count = last_idx - page_idx;
4137         while (count) {
4138                 int len = min(cluster_size, count);
4139
4140                 ret = redirty_blocks(inode, page_idx, len);
4141                 if (ret < 0)
4142                         break;
4143
4144                 if (get_dirty_pages(inode) >= blk_per_seg) {
4145                         ret = filemap_fdatawrite(inode->i_mapping);
4146                         if (ret < 0)
4147                                 break;
4148                 }
4149
4150                 count -= len;
4151                 page_idx += len;
4152         }
4153
4154         if (!ret)
4155                 ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4156                                                         LLONG_MAX);
4157
4158         clear_inode_flag(inode, FI_ENABLE_COMPRESS);
4159
4160         if (ret)
4161                 f2fs_warn(sbi, "%s: The file might be partially compressed (errno=%d). Please delete the file.",
4162                           __func__, ret);
4163 out:
4164         inode_unlock(inode);
4165         file_end_write(filp);
4166
4167         return ret;
4168 }
4169
4170 static long __f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4171 {
4172         switch (cmd) {
4173         case FS_IOC_GETVERSION:
4174                 return f2fs_ioc_getversion(filp, arg);
4175         case F2FS_IOC_START_ATOMIC_WRITE:
4176                 return f2fs_ioc_start_atomic_write(filp, false);
4177         case F2FS_IOC_START_ATOMIC_REPLACE:
4178                 return f2fs_ioc_start_atomic_write(filp, true);
4179         case F2FS_IOC_COMMIT_ATOMIC_WRITE:
4180                 return f2fs_ioc_commit_atomic_write(filp);
4181         case F2FS_IOC_ABORT_ATOMIC_WRITE:
4182                 return f2fs_ioc_abort_atomic_write(filp);
4183         case F2FS_IOC_START_VOLATILE_WRITE:
4184         case F2FS_IOC_RELEASE_VOLATILE_WRITE:
4185                 return -EOPNOTSUPP;
4186         case F2FS_IOC_SHUTDOWN:
4187                 return f2fs_ioc_shutdown(filp, arg);
4188         case FITRIM:
4189                 return f2fs_ioc_fitrim(filp, arg);
4190         case FS_IOC_SET_ENCRYPTION_POLICY:
4191                 return f2fs_ioc_set_encryption_policy(filp, arg);
4192         case FS_IOC_GET_ENCRYPTION_POLICY:
4193                 return f2fs_ioc_get_encryption_policy(filp, arg);
4194         case FS_IOC_GET_ENCRYPTION_PWSALT:
4195                 return f2fs_ioc_get_encryption_pwsalt(filp, arg);
4196         case FS_IOC_GET_ENCRYPTION_POLICY_EX:
4197                 return f2fs_ioc_get_encryption_policy_ex(filp, arg);
4198         case FS_IOC_ADD_ENCRYPTION_KEY:
4199                 return f2fs_ioc_add_encryption_key(filp, arg);
4200         case FS_IOC_REMOVE_ENCRYPTION_KEY:
4201                 return f2fs_ioc_remove_encryption_key(filp, arg);
4202         case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
4203                 return f2fs_ioc_remove_encryption_key_all_users(filp, arg);
4204         case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
4205                 return f2fs_ioc_get_encryption_key_status(filp, arg);
4206         case FS_IOC_GET_ENCRYPTION_NONCE:
4207                 return f2fs_ioc_get_encryption_nonce(filp, arg);
4208         case F2FS_IOC_GARBAGE_COLLECT:
4209                 return f2fs_ioc_gc(filp, arg);
4210         case F2FS_IOC_GARBAGE_COLLECT_RANGE:
4211                 return f2fs_ioc_gc_range(filp, arg);
4212         case F2FS_IOC_WRITE_CHECKPOINT:
4213                 return f2fs_ioc_write_checkpoint(filp);
4214         case F2FS_IOC_DEFRAGMENT:
4215                 return f2fs_ioc_defragment(filp, arg);
4216         case F2FS_IOC_MOVE_RANGE:
4217                 return f2fs_ioc_move_range(filp, arg);
4218         case F2FS_IOC_FLUSH_DEVICE:
4219                 return f2fs_ioc_flush_device(filp, arg);
4220         case F2FS_IOC_GET_FEATURES:
4221                 return f2fs_ioc_get_features(filp, arg);
4222         case F2FS_IOC_GET_PIN_FILE:
4223                 return f2fs_ioc_get_pin_file(filp, arg);
4224         case F2FS_IOC_SET_PIN_FILE:
4225                 return f2fs_ioc_set_pin_file(filp, arg);
4226         case F2FS_IOC_PRECACHE_EXTENTS:
4227                 return f2fs_ioc_precache_extents(filp);
4228         case F2FS_IOC_RESIZE_FS:
4229                 return f2fs_ioc_resize_fs(filp, arg);
4230         case FS_IOC_ENABLE_VERITY:
4231                 return f2fs_ioc_enable_verity(filp, arg);
4232         case FS_IOC_MEASURE_VERITY:
4233                 return f2fs_ioc_measure_verity(filp, arg);
4234         case FS_IOC_READ_VERITY_METADATA:
4235                 return f2fs_ioc_read_verity_metadata(filp, arg);
4236         case FS_IOC_GETFSLABEL:
4237                 return f2fs_ioc_getfslabel(filp, arg);
4238         case FS_IOC_SETFSLABEL:
4239                 return f2fs_ioc_setfslabel(filp, arg);
4240         case F2FS_IOC_GET_COMPRESS_BLOCKS:
4241                 return f2fs_get_compress_blocks(filp, arg);
4242         case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
4243                 return f2fs_release_compress_blocks(filp, arg);
4244         case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
4245                 return f2fs_reserve_compress_blocks(filp, arg);
4246         case F2FS_IOC_SEC_TRIM_FILE:
4247                 return f2fs_sec_trim_file(filp, arg);
4248         case F2FS_IOC_GET_COMPRESS_OPTION:
4249                 return f2fs_ioc_get_compress_option(filp, arg);
4250         case F2FS_IOC_SET_COMPRESS_OPTION:
4251                 return f2fs_ioc_set_compress_option(filp, arg);
4252         case F2FS_IOC_DECOMPRESS_FILE:
4253                 return f2fs_ioc_decompress_file(filp);
4254         case F2FS_IOC_COMPRESS_FILE:
4255                 return f2fs_ioc_compress_file(filp);
4256         default:
4257                 return -ENOTTY;
4258         }
4259 }
4260
4261 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4262 {
4263         if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp)))))
4264                 return -EIO;
4265         if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(filp))))
4266                 return -ENOSPC;
4267
4268         return __f2fs_ioctl(filp, cmd, arg);
4269 }
4270
4271 /*
4272  * Return %true if the given read or write request should use direct I/O, or
4273  * %false if it should use buffered I/O.
4274  */
4275 static bool f2fs_should_use_dio(struct inode *inode, struct kiocb *iocb,
4276                                 struct iov_iter *iter)
4277 {
4278         unsigned int align;
4279
4280         if (!(iocb->ki_flags & IOCB_DIRECT))
4281                 return false;
4282
4283         if (f2fs_force_buffered_io(inode, iov_iter_rw(iter)))
4284                 return false;
4285
4286         /*
4287          * Direct I/O not aligned to the disk's logical_block_size will be
4288          * attempted, but will fail with -EINVAL.
4289          *
4290          * f2fs additionally requires that direct I/O be aligned to the
4291          * filesystem block size, which is often a stricter requirement.
4292          * However, f2fs traditionally falls back to buffered I/O on requests
4293          * that are logical_block_size-aligned but not fs-block aligned.
4294          *
4295          * The below logic implements this behavior.
4296          */
4297         align = iocb->ki_pos | iov_iter_alignment(iter);
4298         if (!IS_ALIGNED(align, i_blocksize(inode)) &&
4299             IS_ALIGNED(align, bdev_logical_block_size(inode->i_sb->s_bdev)))
4300                 return false;
4301
4302         return true;
4303 }
4304
4305 static int f2fs_dio_read_end_io(struct kiocb *iocb, ssize_t size, int error,
4306                                 unsigned int flags)
4307 {
4308         struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp));
4309
4310         dec_page_count(sbi, F2FS_DIO_READ);
4311         if (error)
4312                 return error;
4313         f2fs_update_iostat(sbi, NULL, APP_DIRECT_READ_IO, size);
4314         return 0;
4315 }
4316
4317 static const struct iomap_dio_ops f2fs_iomap_dio_read_ops = {
4318         .end_io = f2fs_dio_read_end_io,
4319 };
4320
4321 static ssize_t f2fs_dio_read_iter(struct kiocb *iocb, struct iov_iter *to)
4322 {
4323         struct file *file = iocb->ki_filp;
4324         struct inode *inode = file_inode(file);
4325         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4326         struct f2fs_inode_info *fi = F2FS_I(inode);
4327         const loff_t pos = iocb->ki_pos;
4328         const size_t count = iov_iter_count(to);
4329         struct iomap_dio *dio;
4330         ssize_t ret;
4331
4332         if (count == 0)
4333                 return 0; /* skip atime update */
4334
4335         trace_f2fs_direct_IO_enter(inode, iocb, count, READ);
4336
4337         if (iocb->ki_flags & IOCB_NOWAIT) {
4338                 if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) {
4339                         ret = -EAGAIN;
4340                         goto out;
4341                 }
4342         } else {
4343                 f2fs_down_read(&fi->i_gc_rwsem[READ]);
4344         }
4345
4346         /*
4347          * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of
4348          * the higher-level function iomap_dio_rw() in order to ensure that the
4349          * F2FS_DIO_READ counter will be decremented correctly in all cases.
4350          */
4351         inc_page_count(sbi, F2FS_DIO_READ);
4352         dio = __iomap_dio_rw(iocb, to, &f2fs_iomap_ops,
4353                              &f2fs_iomap_dio_read_ops, 0, NULL, 0);
4354         if (IS_ERR_OR_NULL(dio)) {
4355                 ret = PTR_ERR_OR_ZERO(dio);
4356                 if (ret != -EIOCBQUEUED)
4357                         dec_page_count(sbi, F2FS_DIO_READ);
4358         } else {
4359                 ret = iomap_dio_complete(dio);
4360         }
4361
4362         f2fs_up_read(&fi->i_gc_rwsem[READ]);
4363
4364         file_accessed(file);
4365 out:
4366         trace_f2fs_direct_IO_exit(inode, pos, count, READ, ret);
4367         return ret;
4368 }
4369
4370 static void f2fs_trace_rw_file_path(struct file *file, loff_t pos, size_t count,
4371                                     int rw)
4372 {
4373         struct inode *inode = file_inode(file);
4374         char *buf, *path;
4375
4376         buf = f2fs_getname(F2FS_I_SB(inode));
4377         if (!buf)
4378                 return;
4379         path = dentry_path_raw(file_dentry(file), buf, PATH_MAX);
4380         if (IS_ERR(path))
4381                 goto free_buf;
4382         if (rw == WRITE)
4383                 trace_f2fs_datawrite_start(inode, pos, count,
4384                                 current->pid, path, current->comm);
4385         else
4386                 trace_f2fs_dataread_start(inode, pos, count,
4387                                 current->pid, path, current->comm);
4388 free_buf:
4389         f2fs_putname(buf);
4390 }
4391
4392 static ssize_t f2fs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
4393 {
4394         struct inode *inode = file_inode(iocb->ki_filp);
4395         const loff_t pos = iocb->ki_pos;
4396         ssize_t ret;
4397
4398         if (!f2fs_is_compress_backend_ready(inode))
4399                 return -EOPNOTSUPP;
4400
4401         if (trace_f2fs_dataread_start_enabled())
4402                 f2fs_trace_rw_file_path(iocb->ki_filp, iocb->ki_pos,
4403                                         iov_iter_count(to), READ);
4404
4405         if (f2fs_should_use_dio(inode, iocb, to)) {
4406                 ret = f2fs_dio_read_iter(iocb, to);
4407         } else {
4408                 ret = filemap_read(iocb, to, 0);
4409                 if (ret > 0)
4410                         f2fs_update_iostat(F2FS_I_SB(inode), inode,
4411                                                 APP_BUFFERED_READ_IO, ret);
4412         }
4413         if (trace_f2fs_dataread_end_enabled())
4414                 trace_f2fs_dataread_end(inode, pos, ret);
4415         return ret;
4416 }
4417
4418 static ssize_t f2fs_file_splice_read(struct file *in, loff_t *ppos,
4419                                      struct pipe_inode_info *pipe,
4420                                      size_t len, unsigned int flags)
4421 {
4422         struct inode *inode = file_inode(in);
4423         const loff_t pos = *ppos;
4424         ssize_t ret;
4425
4426         if (!f2fs_is_compress_backend_ready(inode))
4427                 return -EOPNOTSUPP;
4428
4429         if (trace_f2fs_dataread_start_enabled())
4430                 f2fs_trace_rw_file_path(in, pos, len, READ);
4431
4432         ret = filemap_splice_read(in, ppos, pipe, len, flags);
4433         if (ret > 0)
4434                 f2fs_update_iostat(F2FS_I_SB(inode), inode,
4435                                    APP_BUFFERED_READ_IO, ret);
4436
4437         if (trace_f2fs_dataread_end_enabled())
4438                 trace_f2fs_dataread_end(inode, pos, ret);
4439         return ret;
4440 }
4441
4442 static ssize_t f2fs_write_checks(struct kiocb *iocb, struct iov_iter *from)
4443 {
4444         struct file *file = iocb->ki_filp;
4445         struct inode *inode = file_inode(file);
4446         ssize_t count;
4447         int err;
4448
4449         if (IS_IMMUTABLE(inode))
4450                 return -EPERM;
4451
4452         if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
4453                 return -EPERM;
4454
4455         count = generic_write_checks(iocb, from);
4456         if (count <= 0)
4457                 return count;
4458
4459         err = file_modified(file);
4460         if (err)
4461                 return err;
4462         return count;
4463 }
4464
4465 /*
4466  * Preallocate blocks for a write request, if it is possible and helpful to do
4467  * so.  Returns a positive number if blocks may have been preallocated, 0 if no
4468  * blocks were preallocated, or a negative errno value if something went
4469  * seriously wrong.  Also sets FI_PREALLOCATED_ALL on the inode if *all* the
4470  * requested blocks (not just some of them) have been allocated.
4471  */
4472 static int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *iter,
4473                                    bool dio)
4474 {
4475         struct inode *inode = file_inode(iocb->ki_filp);
4476         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4477         const loff_t pos = iocb->ki_pos;
4478         const size_t count = iov_iter_count(iter);
4479         struct f2fs_map_blocks map = {};
4480         int flag;
4481         int ret;
4482
4483         /* If it will be an out-of-place direct write, don't bother. */
4484         if (dio && f2fs_lfs_mode(sbi))
4485                 return 0;
4486         /*
4487          * Don't preallocate holes aligned to DIO_SKIP_HOLES which turns into
4488          * buffered IO, if DIO meets any holes.
4489          */
4490         if (dio && i_size_read(inode) &&
4491                 (F2FS_BYTES_TO_BLK(pos) < F2FS_BLK_ALIGN(i_size_read(inode))))
4492                 return 0;
4493
4494         /* No-wait I/O can't allocate blocks. */
4495         if (iocb->ki_flags & IOCB_NOWAIT)
4496                 return 0;
4497
4498         /* If it will be a short write, don't bother. */
4499         if (fault_in_iov_iter_readable(iter, count))
4500                 return 0;
4501
4502         if (f2fs_has_inline_data(inode)) {
4503                 /* If the data will fit inline, don't bother. */
4504                 if (pos + count <= MAX_INLINE_DATA(inode))
4505                         return 0;
4506                 ret = f2fs_convert_inline_inode(inode);
4507                 if (ret)
4508                         return ret;
4509         }
4510
4511         /* Do not preallocate blocks that will be written partially in 4KB. */
4512         map.m_lblk = F2FS_BLK_ALIGN(pos);
4513         map.m_len = F2FS_BYTES_TO_BLK(pos + count);
4514         if (map.m_len > map.m_lblk)
4515                 map.m_len -= map.m_lblk;
4516         else
4517                 map.m_len = 0;
4518         map.m_may_create = true;
4519         if (dio) {
4520                 map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint);
4521                 flag = F2FS_GET_BLOCK_PRE_DIO;
4522         } else {
4523                 map.m_seg_type = NO_CHECK_TYPE;
4524                 flag = F2FS_GET_BLOCK_PRE_AIO;
4525         }
4526
4527         ret = f2fs_map_blocks(inode, &map, flag);
4528         /* -ENOSPC|-EDQUOT are fine to report the number of allocated blocks. */
4529         if (ret < 0 && !((ret == -ENOSPC || ret == -EDQUOT) && map.m_len > 0))
4530                 return ret;
4531         if (ret == 0)
4532                 set_inode_flag(inode, FI_PREALLOCATED_ALL);
4533         return map.m_len;
4534 }
4535
4536 static ssize_t f2fs_buffered_write_iter(struct kiocb *iocb,
4537                                         struct iov_iter *from)
4538 {
4539         struct file *file = iocb->ki_filp;
4540         struct inode *inode = file_inode(file);
4541         ssize_t ret;
4542
4543         if (iocb->ki_flags & IOCB_NOWAIT)
4544                 return -EOPNOTSUPP;
4545
4546         ret = generic_perform_write(iocb, from);
4547
4548         if (ret > 0) {
4549                 f2fs_update_iostat(F2FS_I_SB(inode), inode,
4550                                                 APP_BUFFERED_IO, ret);
4551         }
4552         return ret;
4553 }
4554
4555 static int f2fs_dio_write_end_io(struct kiocb *iocb, ssize_t size, int error,
4556                                  unsigned int flags)
4557 {
4558         struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp));
4559
4560         dec_page_count(sbi, F2FS_DIO_WRITE);
4561         if (error)
4562                 return error;
4563         f2fs_update_iostat(sbi, NULL, APP_DIRECT_IO, size);
4564         return 0;
4565 }
4566
4567 static const struct iomap_dio_ops f2fs_iomap_dio_write_ops = {
4568         .end_io = f2fs_dio_write_end_io,
4569 };
4570
4571 static void f2fs_flush_buffered_write(struct address_space *mapping,
4572                                       loff_t start_pos, loff_t end_pos)
4573 {
4574         int ret;
4575
4576         ret = filemap_write_and_wait_range(mapping, start_pos, end_pos);
4577         if (ret < 0)
4578                 return;
4579         invalidate_mapping_pages(mapping,
4580                                  start_pos >> PAGE_SHIFT,
4581                                  end_pos >> PAGE_SHIFT);
4582 }
4583
4584 static ssize_t f2fs_dio_write_iter(struct kiocb *iocb, struct iov_iter *from,
4585                                    bool *may_need_sync)
4586 {
4587         struct file *file = iocb->ki_filp;
4588         struct inode *inode = file_inode(file);
4589         struct f2fs_inode_info *fi = F2FS_I(inode);
4590         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4591         const bool do_opu = f2fs_lfs_mode(sbi);
4592         const loff_t pos = iocb->ki_pos;
4593         const ssize_t count = iov_iter_count(from);
4594         unsigned int dio_flags;
4595         struct iomap_dio *dio;
4596         ssize_t ret;
4597
4598         trace_f2fs_direct_IO_enter(inode, iocb, count, WRITE);
4599
4600         if (iocb->ki_flags & IOCB_NOWAIT) {
4601                 /* f2fs_convert_inline_inode() and block allocation can block */
4602                 if (f2fs_has_inline_data(inode) ||
4603                     !f2fs_overwrite_io(inode, pos, count)) {
4604                         ret = -EAGAIN;
4605                         goto out;
4606                 }
4607
4608                 if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[WRITE])) {
4609                         ret = -EAGAIN;
4610                         goto out;
4611                 }
4612                 if (do_opu && !f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) {
4613                         f2fs_up_read(&fi->i_gc_rwsem[WRITE]);
4614                         ret = -EAGAIN;
4615                         goto out;
4616                 }
4617         } else {
4618                 ret = f2fs_convert_inline_inode(inode);
4619                 if (ret)
4620                         goto out;
4621
4622                 f2fs_down_read(&fi->i_gc_rwsem[WRITE]);
4623                 if (do_opu)
4624                         f2fs_down_read(&fi->i_gc_rwsem[READ]);
4625         }
4626
4627         /*
4628          * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of
4629          * the higher-level function iomap_dio_rw() in order to ensure that the
4630          * F2FS_DIO_WRITE counter will be decremented correctly in all cases.
4631          */
4632         inc_page_count(sbi, F2FS_DIO_WRITE);
4633         dio_flags = 0;
4634         if (pos + count > inode->i_size)
4635                 dio_flags |= IOMAP_DIO_FORCE_WAIT;
4636         dio = __iomap_dio_rw(iocb, from, &f2fs_iomap_ops,
4637                              &f2fs_iomap_dio_write_ops, dio_flags, NULL, 0);
4638         if (IS_ERR_OR_NULL(dio)) {
4639                 ret = PTR_ERR_OR_ZERO(dio);
4640                 if (ret == -ENOTBLK)
4641                         ret = 0;
4642                 if (ret != -EIOCBQUEUED)
4643                         dec_page_count(sbi, F2FS_DIO_WRITE);
4644         } else {
4645                 ret = iomap_dio_complete(dio);
4646         }
4647
4648         if (do_opu)
4649                 f2fs_up_read(&fi->i_gc_rwsem[READ]);
4650         f2fs_up_read(&fi->i_gc_rwsem[WRITE]);
4651
4652         if (ret < 0)
4653                 goto out;
4654         if (pos + ret > inode->i_size)
4655                 f2fs_i_size_write(inode, pos + ret);
4656         if (!do_opu)
4657                 set_inode_flag(inode, FI_UPDATE_WRITE);
4658
4659         if (iov_iter_count(from)) {
4660                 ssize_t ret2;
4661                 loff_t bufio_start_pos = iocb->ki_pos;
4662
4663                 /*
4664                  * The direct write was partial, so we need to fall back to a
4665                  * buffered write for the remainder.
4666                  */
4667
4668                 ret2 = f2fs_buffered_write_iter(iocb, from);
4669                 if (iov_iter_count(from))
4670                         f2fs_write_failed(inode, iocb->ki_pos);
4671                 if (ret2 < 0)
4672                         goto out;
4673
4674                 /*
4675                  * Ensure that the pagecache pages are written to disk and
4676                  * invalidated to preserve the expected O_DIRECT semantics.
4677                  */
4678                 if (ret2 > 0) {
4679                         loff_t bufio_end_pos = bufio_start_pos + ret2 - 1;
4680
4681                         ret += ret2;
4682
4683                         f2fs_flush_buffered_write(file->f_mapping,
4684                                                   bufio_start_pos,
4685                                                   bufio_end_pos);
4686                 }
4687         } else {
4688                 /* iomap_dio_rw() already handled the generic_write_sync(). */
4689                 *may_need_sync = false;
4690         }
4691 out:
4692         trace_f2fs_direct_IO_exit(inode, pos, count, WRITE, ret);
4693         return ret;
4694 }
4695
4696 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4697 {
4698         struct inode *inode = file_inode(iocb->ki_filp);
4699         const loff_t orig_pos = iocb->ki_pos;
4700         const size_t orig_count = iov_iter_count(from);
4701         loff_t target_size;
4702         bool dio;
4703         bool may_need_sync = true;
4704         int preallocated;
4705         ssize_t ret;
4706
4707         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
4708                 ret = -EIO;
4709                 goto out;
4710         }
4711
4712         if (!f2fs_is_compress_backend_ready(inode)) {
4713                 ret = -EOPNOTSUPP;
4714                 goto out;
4715         }
4716
4717         if (iocb->ki_flags & IOCB_NOWAIT) {
4718                 if (!inode_trylock(inode)) {
4719                         ret = -EAGAIN;
4720                         goto out;
4721                 }
4722         } else {
4723                 inode_lock(inode);
4724         }
4725
4726         ret = f2fs_write_checks(iocb, from);
4727         if (ret <= 0)
4728                 goto out_unlock;
4729
4730         /* Determine whether we will do a direct write or a buffered write. */
4731         dio = f2fs_should_use_dio(inode, iocb, from);
4732
4733         /* Possibly preallocate the blocks for the write. */
4734         target_size = iocb->ki_pos + iov_iter_count(from);
4735         preallocated = f2fs_preallocate_blocks(iocb, from, dio);
4736         if (preallocated < 0) {
4737                 ret = preallocated;
4738         } else {
4739                 if (trace_f2fs_datawrite_start_enabled())
4740                         f2fs_trace_rw_file_path(iocb->ki_filp, iocb->ki_pos,
4741                                                 orig_count, WRITE);
4742
4743                 /* Do the actual write. */
4744                 ret = dio ?
4745                         f2fs_dio_write_iter(iocb, from, &may_need_sync) :
4746                         f2fs_buffered_write_iter(iocb, from);
4747
4748                 if (trace_f2fs_datawrite_end_enabled())
4749                         trace_f2fs_datawrite_end(inode, orig_pos, ret);
4750         }
4751
4752         /* Don't leave any preallocated blocks around past i_size. */
4753         if (preallocated && i_size_read(inode) < target_size) {
4754                 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4755                 filemap_invalidate_lock(inode->i_mapping);
4756                 if (!f2fs_truncate(inode))
4757                         file_dont_truncate(inode);
4758                 filemap_invalidate_unlock(inode->i_mapping);
4759                 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4760         } else {
4761                 file_dont_truncate(inode);
4762         }
4763
4764         clear_inode_flag(inode, FI_PREALLOCATED_ALL);
4765 out_unlock:
4766         inode_unlock(inode);
4767 out:
4768         trace_f2fs_file_write_iter(inode, orig_pos, orig_count, ret);
4769
4770         if (ret > 0 && may_need_sync)
4771                 ret = generic_write_sync(iocb, ret);
4772
4773         /* If buffered IO was forced, flush and drop the data from
4774          * the page cache to preserve O_DIRECT semantics
4775          */
4776         if (ret > 0 && !dio && (iocb->ki_flags & IOCB_DIRECT))
4777                 f2fs_flush_buffered_write(iocb->ki_filp->f_mapping,
4778                                           orig_pos,
4779                                           orig_pos + ret - 1);
4780
4781         return ret;
4782 }
4783
4784 static int f2fs_file_fadvise(struct file *filp, loff_t offset, loff_t len,
4785                 int advice)
4786 {
4787         struct address_space *mapping;
4788         struct backing_dev_info *bdi;
4789         struct inode *inode = file_inode(filp);
4790         int err;
4791
4792         if (advice == POSIX_FADV_SEQUENTIAL) {
4793                 if (S_ISFIFO(inode->i_mode))
4794                         return -ESPIPE;
4795
4796                 mapping = filp->f_mapping;
4797                 if (!mapping || len < 0)
4798                         return -EINVAL;
4799
4800                 bdi = inode_to_bdi(mapping->host);
4801                 filp->f_ra.ra_pages = bdi->ra_pages *
4802                         F2FS_I_SB(inode)->seq_file_ra_mul;
4803                 spin_lock(&filp->f_lock);
4804                 filp->f_mode &= ~FMODE_RANDOM;
4805                 spin_unlock(&filp->f_lock);
4806                 return 0;
4807         }
4808
4809         err = generic_fadvise(filp, offset, len, advice);
4810         if (!err && advice == POSIX_FADV_DONTNEED &&
4811                 test_opt(F2FS_I_SB(inode), COMPRESS_CACHE) &&
4812                 f2fs_compressed_file(inode))
4813                 f2fs_invalidate_compress_pages(F2FS_I_SB(inode), inode->i_ino);
4814
4815         return err;
4816 }
4817
4818 #ifdef CONFIG_COMPAT
4819 struct compat_f2fs_gc_range {
4820         u32 sync;
4821         compat_u64 start;
4822         compat_u64 len;
4823 };
4824 #define F2FS_IOC32_GARBAGE_COLLECT_RANGE        _IOW(F2FS_IOCTL_MAGIC, 11,\
4825                                                 struct compat_f2fs_gc_range)
4826
4827 static int f2fs_compat_ioc_gc_range(struct file *file, unsigned long arg)
4828 {
4829         struct compat_f2fs_gc_range __user *urange;
4830         struct f2fs_gc_range range;
4831         int err;
4832
4833         urange = compat_ptr(arg);
4834         err = get_user(range.sync, &urange->sync);
4835         err |= get_user(range.start, &urange->start);
4836         err |= get_user(range.len, &urange->len);
4837         if (err)
4838                 return -EFAULT;
4839
4840         return __f2fs_ioc_gc_range(file, &range);
4841 }
4842
4843 struct compat_f2fs_move_range {
4844         u32 dst_fd;
4845         compat_u64 pos_in;
4846         compat_u64 pos_out;
4847         compat_u64 len;
4848 };
4849 #define F2FS_IOC32_MOVE_RANGE           _IOWR(F2FS_IOCTL_MAGIC, 9,      \
4850                                         struct compat_f2fs_move_range)
4851
4852 static int f2fs_compat_ioc_move_range(struct file *file, unsigned long arg)
4853 {
4854         struct compat_f2fs_move_range __user *urange;
4855         struct f2fs_move_range range;
4856         int err;
4857
4858         urange = compat_ptr(arg);
4859         err = get_user(range.dst_fd, &urange->dst_fd);
4860         err |= get_user(range.pos_in, &urange->pos_in);
4861         err |= get_user(range.pos_out, &urange->pos_out);
4862         err |= get_user(range.len, &urange->len);
4863         if (err)
4864                 return -EFAULT;
4865
4866         return __f2fs_ioc_move_range(file, &range);
4867 }
4868
4869 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4870 {
4871         if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
4872                 return -EIO;
4873         if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(file))))
4874                 return -ENOSPC;
4875
4876         switch (cmd) {
4877         case FS_IOC32_GETVERSION:
4878                 cmd = FS_IOC_GETVERSION;
4879                 break;
4880         case F2FS_IOC32_GARBAGE_COLLECT_RANGE:
4881                 return f2fs_compat_ioc_gc_range(file, arg);
4882         case F2FS_IOC32_MOVE_RANGE:
4883                 return f2fs_compat_ioc_move_range(file, arg);
4884         case F2FS_IOC_START_ATOMIC_WRITE:
4885         case F2FS_IOC_START_ATOMIC_REPLACE:
4886         case F2FS_IOC_COMMIT_ATOMIC_WRITE:
4887         case F2FS_IOC_START_VOLATILE_WRITE:
4888         case F2FS_IOC_RELEASE_VOLATILE_WRITE:
4889         case F2FS_IOC_ABORT_ATOMIC_WRITE:
4890         case F2FS_IOC_SHUTDOWN:
4891         case FITRIM:
4892         case FS_IOC_SET_ENCRYPTION_POLICY:
4893         case FS_IOC_GET_ENCRYPTION_PWSALT:
4894         case FS_IOC_GET_ENCRYPTION_POLICY:
4895         case FS_IOC_GET_ENCRYPTION_POLICY_EX:
4896         case FS_IOC_ADD_ENCRYPTION_KEY:
4897         case FS_IOC_REMOVE_ENCRYPTION_KEY:
4898         case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
4899         case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
4900         case FS_IOC_GET_ENCRYPTION_NONCE:
4901         case F2FS_IOC_GARBAGE_COLLECT:
4902         case F2FS_IOC_WRITE_CHECKPOINT:
4903         case F2FS_IOC_DEFRAGMENT:
4904         case F2FS_IOC_FLUSH_DEVICE:
4905         case F2FS_IOC_GET_FEATURES:
4906         case F2FS_IOC_GET_PIN_FILE:
4907         case F2FS_IOC_SET_PIN_FILE:
4908         case F2FS_IOC_PRECACHE_EXTENTS:
4909         case F2FS_IOC_RESIZE_FS:
4910         case FS_IOC_ENABLE_VERITY:
4911         case FS_IOC_MEASURE_VERITY:
4912         case FS_IOC_READ_VERITY_METADATA:
4913         case FS_IOC_GETFSLABEL:
4914         case FS_IOC_SETFSLABEL:
4915         case F2FS_IOC_GET_COMPRESS_BLOCKS:
4916         case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
4917         case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
4918         case F2FS_IOC_SEC_TRIM_FILE:
4919         case F2FS_IOC_GET_COMPRESS_OPTION:
4920         case F2FS_IOC_SET_COMPRESS_OPTION:
4921         case F2FS_IOC_DECOMPRESS_FILE:
4922         case F2FS_IOC_COMPRESS_FILE:
4923                 break;
4924         default:
4925                 return -ENOIOCTLCMD;
4926         }
4927         return __f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
4928 }
4929 #endif
4930
4931 const struct file_operations f2fs_file_operations = {
4932         .llseek         = f2fs_llseek,
4933         .read_iter      = f2fs_file_read_iter,
4934         .write_iter     = f2fs_file_write_iter,
4935         .iopoll         = iocb_bio_iopoll,
4936         .open           = f2fs_file_open,
4937         .release        = f2fs_release_file,
4938         .mmap           = f2fs_file_mmap,
4939         .flush          = f2fs_file_flush,
4940         .fsync          = f2fs_sync_file,
4941         .fallocate      = f2fs_fallocate,
4942         .unlocked_ioctl = f2fs_ioctl,
4943 #ifdef CONFIG_COMPAT
4944         .compat_ioctl   = f2fs_compat_ioctl,
4945 #endif
4946         .splice_read    = f2fs_file_splice_read,
4947         .splice_write   = iter_file_splice_write,
4948         .fadvise        = f2fs_file_fadvise,
4949 };