Merge tag 'm68knommu-for-v5.12' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / fs / f2fs / data.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/data.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/buffer_head.h>
11 #include <linux/mpage.h>
12 #include <linux/writeback.h>
13 #include <linux/backing-dev.h>
14 #include <linux/pagevec.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/blk-crypto.h>
18 #include <linux/swap.h>
19 #include <linux/prefetch.h>
20 #include <linux/uio.h>
21 #include <linux/cleancache.h>
22 #include <linux/sched/signal.h>
23 #include <linux/fiemap.h>
24
25 #include "f2fs.h"
26 #include "node.h"
27 #include "segment.h"
28 #include <trace/events/f2fs.h>
29
30 #define NUM_PREALLOC_POST_READ_CTXS     128
31
32 static struct kmem_cache *bio_post_read_ctx_cache;
33 static struct kmem_cache *bio_entry_slab;
34 static mempool_t *bio_post_read_ctx_pool;
35 static struct bio_set f2fs_bioset;
36
37 #define F2FS_BIO_POOL_SIZE      NR_CURSEG_TYPE
38
39 int __init f2fs_init_bioset(void)
40 {
41         if (bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE,
42                                         0, BIOSET_NEED_BVECS))
43                 return -ENOMEM;
44         return 0;
45 }
46
47 void f2fs_destroy_bioset(void)
48 {
49         bioset_exit(&f2fs_bioset);
50 }
51
52 static bool __is_cp_guaranteed(struct page *page)
53 {
54         struct address_space *mapping = page->mapping;
55         struct inode *inode;
56         struct f2fs_sb_info *sbi;
57
58         if (!mapping)
59                 return false;
60
61         if (f2fs_is_compressed_page(page))
62                 return false;
63
64         inode = mapping->host;
65         sbi = F2FS_I_SB(inode);
66
67         if (inode->i_ino == F2FS_META_INO(sbi) ||
68                         inode->i_ino == F2FS_NODE_INO(sbi) ||
69                         S_ISDIR(inode->i_mode) ||
70                         (S_ISREG(inode->i_mode) &&
71                         (f2fs_is_atomic_file(inode) || IS_NOQUOTA(inode))) ||
72                         is_cold_data(page))
73                 return true;
74         return false;
75 }
76
77 static enum count_type __read_io_type(struct page *page)
78 {
79         struct address_space *mapping = page_file_mapping(page);
80
81         if (mapping) {
82                 struct inode *inode = mapping->host;
83                 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
84
85                 if (inode->i_ino == F2FS_META_INO(sbi))
86                         return F2FS_RD_META;
87
88                 if (inode->i_ino == F2FS_NODE_INO(sbi))
89                         return F2FS_RD_NODE;
90         }
91         return F2FS_RD_DATA;
92 }
93
94 /* postprocessing steps for read bios */
95 enum bio_post_read_step {
96 #ifdef CONFIG_FS_ENCRYPTION
97         STEP_DECRYPT    = 1 << 0,
98 #else
99         STEP_DECRYPT    = 0,    /* compile out the decryption-related code */
100 #endif
101 #ifdef CONFIG_F2FS_FS_COMPRESSION
102         STEP_DECOMPRESS = 1 << 1,
103 #else
104         STEP_DECOMPRESS = 0,    /* compile out the decompression-related code */
105 #endif
106 #ifdef CONFIG_FS_VERITY
107         STEP_VERITY     = 1 << 2,
108 #else
109         STEP_VERITY     = 0,    /* compile out the verity-related code */
110 #endif
111 };
112
113 struct bio_post_read_ctx {
114         struct bio *bio;
115         struct f2fs_sb_info *sbi;
116         struct work_struct work;
117         unsigned int enabled_steps;
118 };
119
120 static void f2fs_finish_read_bio(struct bio *bio)
121 {
122         struct bio_vec *bv;
123         struct bvec_iter_all iter_all;
124
125         /*
126          * Update and unlock the bio's pagecache pages, and put the
127          * decompression context for any compressed pages.
128          */
129         bio_for_each_segment_all(bv, bio, iter_all) {
130                 struct page *page = bv->bv_page;
131
132                 if (f2fs_is_compressed_page(page)) {
133                         if (bio->bi_status)
134                                 f2fs_end_read_compressed_page(page, true);
135                         f2fs_put_page_dic(page);
136                         continue;
137                 }
138
139                 /* PG_error was set if decryption or verity failed. */
140                 if (bio->bi_status || PageError(page)) {
141                         ClearPageUptodate(page);
142                         /* will re-read again later */
143                         ClearPageError(page);
144                 } else {
145                         SetPageUptodate(page);
146                 }
147                 dec_page_count(F2FS_P_SB(page), __read_io_type(page));
148                 unlock_page(page);
149         }
150
151         if (bio->bi_private)
152                 mempool_free(bio->bi_private, bio_post_read_ctx_pool);
153         bio_put(bio);
154 }
155
156 static void f2fs_verify_bio(struct work_struct *work)
157 {
158         struct bio_post_read_ctx *ctx =
159                 container_of(work, struct bio_post_read_ctx, work);
160         struct bio *bio = ctx->bio;
161         bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS);
162
163         /*
164          * fsverity_verify_bio() may call readpages() again, and while verity
165          * will be disabled for this, decryption and/or decompression may still
166          * be needed, resulting in another bio_post_read_ctx being allocated.
167          * So to prevent deadlocks we need to release the current ctx to the
168          * mempool first.  This assumes that verity is the last post-read step.
169          */
170         mempool_free(ctx, bio_post_read_ctx_pool);
171         bio->bi_private = NULL;
172
173         /*
174          * Verify the bio's pages with fs-verity.  Exclude compressed pages,
175          * as those were handled separately by f2fs_end_read_compressed_page().
176          */
177         if (may_have_compressed_pages) {
178                 struct bio_vec *bv;
179                 struct bvec_iter_all iter_all;
180
181                 bio_for_each_segment_all(bv, bio, iter_all) {
182                         struct page *page = bv->bv_page;
183
184                         if (!f2fs_is_compressed_page(page) &&
185                             !PageError(page) && !fsverity_verify_page(page))
186                                 SetPageError(page);
187                 }
188         } else {
189                 fsverity_verify_bio(bio);
190         }
191
192         f2fs_finish_read_bio(bio);
193 }
194
195 /*
196  * If the bio's data needs to be verified with fs-verity, then enqueue the
197  * verity work for the bio.  Otherwise finish the bio now.
198  *
199  * Note that to avoid deadlocks, the verity work can't be done on the
200  * decryption/decompression workqueue.  This is because verifying the data pages
201  * can involve reading verity metadata pages from the file, and these verity
202  * metadata pages may be encrypted and/or compressed.
203  */
204 static void f2fs_verify_and_finish_bio(struct bio *bio)
205 {
206         struct bio_post_read_ctx *ctx = bio->bi_private;
207
208         if (ctx && (ctx->enabled_steps & STEP_VERITY)) {
209                 INIT_WORK(&ctx->work, f2fs_verify_bio);
210                 fsverity_enqueue_verify_work(&ctx->work);
211         } else {
212                 f2fs_finish_read_bio(bio);
213         }
214 }
215
216 /*
217  * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last
218  * remaining page was read by @ctx->bio.
219  *
220  * Note that a bio may span clusters (even a mix of compressed and uncompressed
221  * clusters) or be for just part of a cluster.  STEP_DECOMPRESS just indicates
222  * that the bio includes at least one compressed page.  The actual decompression
223  * is done on a per-cluster basis, not a per-bio basis.
224  */
225 static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx)
226 {
227         struct bio_vec *bv;
228         struct bvec_iter_all iter_all;
229         bool all_compressed = true;
230
231         bio_for_each_segment_all(bv, ctx->bio, iter_all) {
232                 struct page *page = bv->bv_page;
233
234                 /* PG_error was set if decryption failed. */
235                 if (f2fs_is_compressed_page(page))
236                         f2fs_end_read_compressed_page(page, PageError(page));
237                 else
238                         all_compressed = false;
239         }
240
241         /*
242          * Optimization: if all the bio's pages are compressed, then scheduling
243          * the per-bio verity work is unnecessary, as verity will be fully
244          * handled at the compression cluster level.
245          */
246         if (all_compressed)
247                 ctx->enabled_steps &= ~STEP_VERITY;
248 }
249
250 static void f2fs_post_read_work(struct work_struct *work)
251 {
252         struct bio_post_read_ctx *ctx =
253                 container_of(work, struct bio_post_read_ctx, work);
254
255         if (ctx->enabled_steps & STEP_DECRYPT)
256                 fscrypt_decrypt_bio(ctx->bio);
257
258         if (ctx->enabled_steps & STEP_DECOMPRESS)
259                 f2fs_handle_step_decompress(ctx);
260
261         f2fs_verify_and_finish_bio(ctx->bio);
262 }
263
264 static void f2fs_read_end_io(struct bio *bio)
265 {
266         struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio));
267         struct bio_post_read_ctx *ctx = bio->bi_private;
268
269         if (time_to_inject(sbi, FAULT_READ_IO)) {
270                 f2fs_show_injection_info(sbi, FAULT_READ_IO);
271                 bio->bi_status = BLK_STS_IOERR;
272         }
273
274         if (bio->bi_status) {
275                 f2fs_finish_read_bio(bio);
276                 return;
277         }
278
279         if (ctx && (ctx->enabled_steps & (STEP_DECRYPT | STEP_DECOMPRESS))) {
280                 INIT_WORK(&ctx->work, f2fs_post_read_work);
281                 queue_work(ctx->sbi->post_read_wq, &ctx->work);
282         } else {
283                 f2fs_verify_and_finish_bio(bio);
284         }
285 }
286
287 static void f2fs_write_end_io(struct bio *bio)
288 {
289         struct f2fs_sb_info *sbi = bio->bi_private;
290         struct bio_vec *bvec;
291         struct bvec_iter_all iter_all;
292
293         if (time_to_inject(sbi, FAULT_WRITE_IO)) {
294                 f2fs_show_injection_info(sbi, FAULT_WRITE_IO);
295                 bio->bi_status = BLK_STS_IOERR;
296         }
297
298         bio_for_each_segment_all(bvec, bio, iter_all) {
299                 struct page *page = bvec->bv_page;
300                 enum count_type type = WB_DATA_TYPE(page);
301
302                 if (IS_DUMMY_WRITTEN_PAGE(page)) {
303                         set_page_private(page, (unsigned long)NULL);
304                         ClearPagePrivate(page);
305                         unlock_page(page);
306                         mempool_free(page, sbi->write_io_dummy);
307
308                         if (unlikely(bio->bi_status))
309                                 f2fs_stop_checkpoint(sbi, true);
310                         continue;
311                 }
312
313                 fscrypt_finalize_bounce_page(&page);
314
315 #ifdef CONFIG_F2FS_FS_COMPRESSION
316                 if (f2fs_is_compressed_page(page)) {
317                         f2fs_compress_write_end_io(bio, page);
318                         continue;
319                 }
320 #endif
321
322                 if (unlikely(bio->bi_status)) {
323                         mapping_set_error(page->mapping, -EIO);
324                         if (type == F2FS_WB_CP_DATA)
325                                 f2fs_stop_checkpoint(sbi, true);
326                 }
327
328                 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
329                                         page->index != nid_of_node(page));
330
331                 dec_page_count(sbi, type);
332                 if (f2fs_in_warm_node_list(sbi, page))
333                         f2fs_del_fsync_node_entry(sbi, page);
334                 clear_cold_data(page);
335                 end_page_writeback(page);
336         }
337         if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
338                                 wq_has_sleeper(&sbi->cp_wait))
339                 wake_up(&sbi->cp_wait);
340
341         bio_put(bio);
342 }
343
344 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
345                                 block_t blk_addr, struct bio *bio)
346 {
347         struct block_device *bdev = sbi->sb->s_bdev;
348         int i;
349
350         if (f2fs_is_multi_device(sbi)) {
351                 for (i = 0; i < sbi->s_ndevs; i++) {
352                         if (FDEV(i).start_blk <= blk_addr &&
353                             FDEV(i).end_blk >= blk_addr) {
354                                 blk_addr -= FDEV(i).start_blk;
355                                 bdev = FDEV(i).bdev;
356                                 break;
357                         }
358                 }
359         }
360         if (bio) {
361                 bio_set_dev(bio, bdev);
362                 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
363         }
364         return bdev;
365 }
366
367 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
368 {
369         int i;
370
371         if (!f2fs_is_multi_device(sbi))
372                 return 0;
373
374         for (i = 0; i < sbi->s_ndevs; i++)
375                 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
376                         return i;
377         return 0;
378 }
379
380 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages)
381 {
382         struct f2fs_sb_info *sbi = fio->sbi;
383         struct bio *bio;
384
385         bio = bio_alloc_bioset(GFP_NOIO, npages, &f2fs_bioset);
386
387         f2fs_target_device(sbi, fio->new_blkaddr, bio);
388         if (is_read_io(fio->op)) {
389                 bio->bi_end_io = f2fs_read_end_io;
390                 bio->bi_private = NULL;
391         } else {
392                 bio->bi_end_io = f2fs_write_end_io;
393                 bio->bi_private = sbi;
394                 bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi,
395                                                 fio->type, fio->temp);
396         }
397         if (fio->io_wbc)
398                 wbc_init_bio(fio->io_wbc, bio);
399
400         return bio;
401 }
402
403 static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode,
404                                   pgoff_t first_idx,
405                                   const struct f2fs_io_info *fio,
406                                   gfp_t gfp_mask)
407 {
408         /*
409          * The f2fs garbage collector sets ->encrypted_page when it wants to
410          * read/write raw data without encryption.
411          */
412         if (!fio || !fio->encrypted_page)
413                 fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask);
414 }
415
416 static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode,
417                                      pgoff_t next_idx,
418                                      const struct f2fs_io_info *fio)
419 {
420         /*
421          * The f2fs garbage collector sets ->encrypted_page when it wants to
422          * read/write raw data without encryption.
423          */
424         if (fio && fio->encrypted_page)
425                 return !bio_has_crypt_ctx(bio);
426
427         return fscrypt_mergeable_bio(bio, inode, next_idx);
428 }
429
430 static inline void __submit_bio(struct f2fs_sb_info *sbi,
431                                 struct bio *bio, enum page_type type)
432 {
433         if (!is_read_io(bio_op(bio))) {
434                 unsigned int start;
435
436                 if (type != DATA && type != NODE)
437                         goto submit_io;
438
439                 if (f2fs_lfs_mode(sbi) && current->plug)
440                         blk_finish_plug(current->plug);
441
442                 if (!F2FS_IO_ALIGNED(sbi))
443                         goto submit_io;
444
445                 start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
446                 start %= F2FS_IO_SIZE(sbi);
447
448                 if (start == 0)
449                         goto submit_io;
450
451                 /* fill dummy pages */
452                 for (; start < F2FS_IO_SIZE(sbi); start++) {
453                         struct page *page =
454                                 mempool_alloc(sbi->write_io_dummy,
455                                               GFP_NOIO | __GFP_NOFAIL);
456                         f2fs_bug_on(sbi, !page);
457
458                         zero_user_segment(page, 0, PAGE_SIZE);
459                         SetPagePrivate(page);
460                         set_page_private(page, DUMMY_WRITTEN_PAGE);
461                         lock_page(page);
462                         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
463                                 f2fs_bug_on(sbi, 1);
464                 }
465                 /*
466                  * In the NODE case, we lose next block address chain. So, we
467                  * need to do checkpoint in f2fs_sync_file.
468                  */
469                 if (type == NODE)
470                         set_sbi_flag(sbi, SBI_NEED_CP);
471         }
472 submit_io:
473         if (is_read_io(bio_op(bio)))
474                 trace_f2fs_submit_read_bio(sbi->sb, type, bio);
475         else
476                 trace_f2fs_submit_write_bio(sbi->sb, type, bio);
477         submit_bio(bio);
478 }
479
480 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
481                                 struct bio *bio, enum page_type type)
482 {
483         __submit_bio(sbi, bio, type);
484 }
485
486 static void __attach_io_flag(struct f2fs_io_info *fio)
487 {
488         struct f2fs_sb_info *sbi = fio->sbi;
489         unsigned int temp_mask = (1 << NR_TEMP_TYPE) - 1;
490         unsigned int io_flag, fua_flag, meta_flag;
491
492         if (fio->type == DATA)
493                 io_flag = sbi->data_io_flag;
494         else if (fio->type == NODE)
495                 io_flag = sbi->node_io_flag;
496         else
497                 return;
498
499         fua_flag = io_flag & temp_mask;
500         meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask;
501
502         /*
503          * data/node io flag bits per temp:
504          *      REQ_META     |      REQ_FUA      |
505          *    5 |    4 |   3 |    2 |    1 |   0 |
506          * Cold | Warm | Hot | Cold | Warm | Hot |
507          */
508         if ((1 << fio->temp) & meta_flag)
509                 fio->op_flags |= REQ_META;
510         if ((1 << fio->temp) & fua_flag)
511                 fio->op_flags |= REQ_FUA;
512 }
513
514 static void __submit_merged_bio(struct f2fs_bio_info *io)
515 {
516         struct f2fs_io_info *fio = &io->fio;
517
518         if (!io->bio)
519                 return;
520
521         __attach_io_flag(fio);
522         bio_set_op_attrs(io->bio, fio->op, fio->op_flags);
523
524         if (is_read_io(fio->op))
525                 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
526         else
527                 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
528
529         __submit_bio(io->sbi, io->bio, fio->type);
530         io->bio = NULL;
531 }
532
533 static bool __has_merged_page(struct bio *bio, struct inode *inode,
534                                                 struct page *page, nid_t ino)
535 {
536         struct bio_vec *bvec;
537         struct bvec_iter_all iter_all;
538
539         if (!bio)
540                 return false;
541
542         if (!inode && !page && !ino)
543                 return true;
544
545         bio_for_each_segment_all(bvec, bio, iter_all) {
546                 struct page *target = bvec->bv_page;
547
548                 if (fscrypt_is_bounce_page(target)) {
549                         target = fscrypt_pagecache_page(target);
550                         if (IS_ERR(target))
551                                 continue;
552                 }
553                 if (f2fs_is_compressed_page(target)) {
554                         target = f2fs_compress_control_page(target);
555                         if (IS_ERR(target))
556                                 continue;
557                 }
558
559                 if (inode && inode == target->mapping->host)
560                         return true;
561                 if (page && page == target)
562                         return true;
563                 if (ino && ino == ino_of_node(target))
564                         return true;
565         }
566
567         return false;
568 }
569
570 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
571                                 enum page_type type, enum temp_type temp)
572 {
573         enum page_type btype = PAGE_TYPE_OF_BIO(type);
574         struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
575
576         down_write(&io->io_rwsem);
577
578         /* change META to META_FLUSH in the checkpoint procedure */
579         if (type >= META_FLUSH) {
580                 io->fio.type = META_FLUSH;
581                 io->fio.op = REQ_OP_WRITE;
582                 io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC;
583                 if (!test_opt(sbi, NOBARRIER))
584                         io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
585         }
586         __submit_merged_bio(io);
587         up_write(&io->io_rwsem);
588 }
589
590 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
591                                 struct inode *inode, struct page *page,
592                                 nid_t ino, enum page_type type, bool force)
593 {
594         enum temp_type temp;
595         bool ret = true;
596
597         for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
598                 if (!force)     {
599                         enum page_type btype = PAGE_TYPE_OF_BIO(type);
600                         struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
601
602                         down_read(&io->io_rwsem);
603                         ret = __has_merged_page(io->bio, inode, page, ino);
604                         up_read(&io->io_rwsem);
605                 }
606                 if (ret)
607                         __f2fs_submit_merged_write(sbi, type, temp);
608
609                 /* TODO: use HOT temp only for meta pages now. */
610                 if (type >= META)
611                         break;
612         }
613 }
614
615 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
616 {
617         __submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
618 }
619
620 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
621                                 struct inode *inode, struct page *page,
622                                 nid_t ino, enum page_type type)
623 {
624         __submit_merged_write_cond(sbi, inode, page, ino, type, false);
625 }
626
627 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
628 {
629         f2fs_submit_merged_write(sbi, DATA);
630         f2fs_submit_merged_write(sbi, NODE);
631         f2fs_submit_merged_write(sbi, META);
632 }
633
634 /*
635  * Fill the locked page with data located in the block address.
636  * A caller needs to unlock the page on failure.
637  */
638 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
639 {
640         struct bio *bio;
641         struct page *page = fio->encrypted_page ?
642                         fio->encrypted_page : fio->page;
643
644         if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
645                         fio->is_por ? META_POR : (__is_meta_io(fio) ?
646                         META_GENERIC : DATA_GENERIC_ENHANCE)))
647                 return -EFSCORRUPTED;
648
649         trace_f2fs_submit_page_bio(page, fio);
650
651         /* Allocate a new bio */
652         bio = __bio_alloc(fio, 1);
653
654         f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
655                                fio->page->index, fio, GFP_NOIO);
656
657         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
658                 bio_put(bio);
659                 return -EFAULT;
660         }
661
662         if (fio->io_wbc && !is_read_io(fio->op))
663                 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
664
665         __attach_io_flag(fio);
666         bio_set_op_attrs(bio, fio->op, fio->op_flags);
667
668         inc_page_count(fio->sbi, is_read_io(fio->op) ?
669                         __read_io_type(page): WB_DATA_TYPE(fio->page));
670
671         __submit_bio(fio->sbi, bio, fio->type);
672         return 0;
673 }
674
675 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
676                                 block_t last_blkaddr, block_t cur_blkaddr)
677 {
678         if (unlikely(sbi->max_io_bytes &&
679                         bio->bi_iter.bi_size >= sbi->max_io_bytes))
680                 return false;
681         if (last_blkaddr + 1 != cur_blkaddr)
682                 return false;
683         return bio->bi_bdev == f2fs_target_device(sbi, cur_blkaddr, NULL);
684 }
685
686 static bool io_type_is_mergeable(struct f2fs_bio_info *io,
687                                                 struct f2fs_io_info *fio)
688 {
689         if (io->fio.op != fio->op)
690                 return false;
691         return io->fio.op_flags == fio->op_flags;
692 }
693
694 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
695                                         struct f2fs_bio_info *io,
696                                         struct f2fs_io_info *fio,
697                                         block_t last_blkaddr,
698                                         block_t cur_blkaddr)
699 {
700         if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) {
701                 unsigned int filled_blocks =
702                                 F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size);
703                 unsigned int io_size = F2FS_IO_SIZE(sbi);
704                 unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt;
705
706                 /* IOs in bio is aligned and left space of vectors is not enough */
707                 if (!(filled_blocks % io_size) && left_vecs < io_size)
708                         return false;
709         }
710         if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr))
711                 return false;
712         return io_type_is_mergeable(io, fio);
713 }
714
715 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio,
716                                 struct page *page, enum temp_type temp)
717 {
718         struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
719         struct bio_entry *be;
720
721         be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS);
722         be->bio = bio;
723         bio_get(bio);
724
725         if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE)
726                 f2fs_bug_on(sbi, 1);
727
728         down_write(&io->bio_list_lock);
729         list_add_tail(&be->list, &io->bio_list);
730         up_write(&io->bio_list_lock);
731 }
732
733 static void del_bio_entry(struct bio_entry *be)
734 {
735         list_del(&be->list);
736         kmem_cache_free(bio_entry_slab, be);
737 }
738
739 static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio,
740                                                         struct page *page)
741 {
742         struct f2fs_sb_info *sbi = fio->sbi;
743         enum temp_type temp;
744         bool found = false;
745         int ret = -EAGAIN;
746
747         for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
748                 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
749                 struct list_head *head = &io->bio_list;
750                 struct bio_entry *be;
751
752                 down_write(&io->bio_list_lock);
753                 list_for_each_entry(be, head, list) {
754                         if (be->bio != *bio)
755                                 continue;
756
757                         found = true;
758
759                         f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio,
760                                                             *fio->last_block,
761                                                             fio->new_blkaddr));
762                         if (f2fs_crypt_mergeable_bio(*bio,
763                                         fio->page->mapping->host,
764                                         fio->page->index, fio) &&
765                             bio_add_page(*bio, page, PAGE_SIZE, 0) ==
766                                         PAGE_SIZE) {
767                                 ret = 0;
768                                 break;
769                         }
770
771                         /* page can't be merged into bio; submit the bio */
772                         del_bio_entry(be);
773                         __submit_bio(sbi, *bio, DATA);
774                         break;
775                 }
776                 up_write(&io->bio_list_lock);
777         }
778
779         if (ret) {
780                 bio_put(*bio);
781                 *bio = NULL;
782         }
783
784         return ret;
785 }
786
787 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
788                                         struct bio **bio, struct page *page)
789 {
790         enum temp_type temp;
791         bool found = false;
792         struct bio *target = bio ? *bio : NULL;
793
794         for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
795                 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
796                 struct list_head *head = &io->bio_list;
797                 struct bio_entry *be;
798
799                 if (list_empty(head))
800                         continue;
801
802                 down_read(&io->bio_list_lock);
803                 list_for_each_entry(be, head, list) {
804                         if (target)
805                                 found = (target == be->bio);
806                         else
807                                 found = __has_merged_page(be->bio, NULL,
808                                                                 page, 0);
809                         if (found)
810                                 break;
811                 }
812                 up_read(&io->bio_list_lock);
813
814                 if (!found)
815                         continue;
816
817                 found = false;
818
819                 down_write(&io->bio_list_lock);
820                 list_for_each_entry(be, head, list) {
821                         if (target)
822                                 found = (target == be->bio);
823                         else
824                                 found = __has_merged_page(be->bio, NULL,
825                                                                 page, 0);
826                         if (found) {
827                                 target = be->bio;
828                                 del_bio_entry(be);
829                                 break;
830                         }
831                 }
832                 up_write(&io->bio_list_lock);
833         }
834
835         if (found)
836                 __submit_bio(sbi, target, DATA);
837         if (bio && *bio) {
838                 bio_put(*bio);
839                 *bio = NULL;
840         }
841 }
842
843 int f2fs_merge_page_bio(struct f2fs_io_info *fio)
844 {
845         struct bio *bio = *fio->bio;
846         struct page *page = fio->encrypted_page ?
847                         fio->encrypted_page : fio->page;
848
849         if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
850                         __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC))
851                 return -EFSCORRUPTED;
852
853         trace_f2fs_submit_page_bio(page, fio);
854
855         if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block,
856                                                 fio->new_blkaddr))
857                 f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL);
858 alloc_new:
859         if (!bio) {
860                 bio = __bio_alloc(fio, BIO_MAX_PAGES);
861                 __attach_io_flag(fio);
862                 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
863                                        fio->page->index, fio, GFP_NOIO);
864                 bio_set_op_attrs(bio, fio->op, fio->op_flags);
865
866                 add_bio_entry(fio->sbi, bio, page, fio->temp);
867         } else {
868                 if (add_ipu_page(fio, &bio, page))
869                         goto alloc_new;
870         }
871
872         if (fio->io_wbc)
873                 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
874
875         inc_page_count(fio->sbi, WB_DATA_TYPE(page));
876
877         *fio->last_block = fio->new_blkaddr;
878         *fio->bio = bio;
879
880         return 0;
881 }
882
883 void f2fs_submit_page_write(struct f2fs_io_info *fio)
884 {
885         struct f2fs_sb_info *sbi = fio->sbi;
886         enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
887         struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
888         struct page *bio_page;
889
890         f2fs_bug_on(sbi, is_read_io(fio->op));
891
892         down_write(&io->io_rwsem);
893 next:
894         if (fio->in_list) {
895                 spin_lock(&io->io_lock);
896                 if (list_empty(&io->io_list)) {
897                         spin_unlock(&io->io_lock);
898                         goto out;
899                 }
900                 fio = list_first_entry(&io->io_list,
901                                                 struct f2fs_io_info, list);
902                 list_del(&fio->list);
903                 spin_unlock(&io->io_lock);
904         }
905
906         verify_fio_blkaddr(fio);
907
908         if (fio->encrypted_page)
909                 bio_page = fio->encrypted_page;
910         else if (fio->compressed_page)
911                 bio_page = fio->compressed_page;
912         else
913                 bio_page = fio->page;
914
915         /* set submitted = true as a return value */
916         fio->submitted = true;
917
918         inc_page_count(sbi, WB_DATA_TYPE(bio_page));
919
920         if (io->bio &&
921             (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio,
922                               fio->new_blkaddr) ||
923              !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host,
924                                        bio_page->index, fio)))
925                 __submit_merged_bio(io);
926 alloc_new:
927         if (io->bio == NULL) {
928                 if (F2FS_IO_ALIGNED(sbi) &&
929                                 (fio->type == DATA || fio->type == NODE) &&
930                                 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
931                         dec_page_count(sbi, WB_DATA_TYPE(bio_page));
932                         fio->retry = true;
933                         goto skip;
934                 }
935                 io->bio = __bio_alloc(fio, BIO_MAX_PAGES);
936                 f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host,
937                                        bio_page->index, fio, GFP_NOIO);
938                 io->fio = *fio;
939         }
940
941         if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
942                 __submit_merged_bio(io);
943                 goto alloc_new;
944         }
945
946         if (fio->io_wbc)
947                 wbc_account_cgroup_owner(fio->io_wbc, bio_page, PAGE_SIZE);
948
949         io->last_block_in_bio = fio->new_blkaddr;
950
951         trace_f2fs_submit_page_write(fio->page, fio);
952 skip:
953         if (fio->in_list)
954                 goto next;
955 out:
956         if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
957                                 !f2fs_is_checkpoint_ready(sbi))
958                 __submit_merged_bio(io);
959         up_write(&io->io_rwsem);
960 }
961
962 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
963                                       unsigned nr_pages, unsigned op_flag,
964                                       pgoff_t first_idx, bool for_write)
965 {
966         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
967         struct bio *bio;
968         struct bio_post_read_ctx *ctx;
969         unsigned int post_read_steps = 0;
970
971         bio = bio_alloc_bioset(for_write ? GFP_NOIO : GFP_KERNEL,
972                                min_t(int, nr_pages, BIO_MAX_PAGES),
973                                &f2fs_bioset);
974         if (!bio)
975                 return ERR_PTR(-ENOMEM);
976
977         f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS);
978
979         f2fs_target_device(sbi, blkaddr, bio);
980         bio->bi_end_io = f2fs_read_end_io;
981         bio_set_op_attrs(bio, REQ_OP_READ, op_flag);
982
983         if (fscrypt_inode_uses_fs_layer_crypto(inode))
984                 post_read_steps |= STEP_DECRYPT;
985
986         if (f2fs_need_verity(inode, first_idx))
987                 post_read_steps |= STEP_VERITY;
988
989         /*
990          * STEP_DECOMPRESS is handled specially, since a compressed file might
991          * contain both compressed and uncompressed clusters.  We'll allocate a
992          * bio_post_read_ctx if the file is compressed, but the caller is
993          * responsible for enabling STEP_DECOMPRESS if it's actually needed.
994          */
995
996         if (post_read_steps || f2fs_compressed_file(inode)) {
997                 /* Due to the mempool, this never fails. */
998                 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
999                 ctx->bio = bio;
1000                 ctx->sbi = sbi;
1001                 ctx->enabled_steps = post_read_steps;
1002                 bio->bi_private = ctx;
1003         }
1004
1005         return bio;
1006 }
1007
1008 /* This can handle encryption stuffs */
1009 static int f2fs_submit_page_read(struct inode *inode, struct page *page,
1010                                  block_t blkaddr, int op_flags, bool for_write)
1011 {
1012         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1013         struct bio *bio;
1014
1015         bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags,
1016                                         page->index, for_write);
1017         if (IS_ERR(bio))
1018                 return PTR_ERR(bio);
1019
1020         /* wait for GCed page writeback via META_MAPPING */
1021         f2fs_wait_on_block_writeback(inode, blkaddr);
1022
1023         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
1024                 bio_put(bio);
1025                 return -EFAULT;
1026         }
1027         ClearPageError(page);
1028         inc_page_count(sbi, F2FS_RD_DATA);
1029         f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE);
1030         __submit_bio(sbi, bio, DATA);
1031         return 0;
1032 }
1033
1034 static void __set_data_blkaddr(struct dnode_of_data *dn)
1035 {
1036         struct f2fs_node *rn = F2FS_NODE(dn->node_page);
1037         __le32 *addr_array;
1038         int base = 0;
1039
1040         if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
1041                 base = get_extra_isize(dn->inode);
1042
1043         /* Get physical address of data block */
1044         addr_array = blkaddr_in_node(rn);
1045         addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
1046 }
1047
1048 /*
1049  * Lock ordering for the change of data block address:
1050  * ->data_page
1051  *  ->node_page
1052  *    update block addresses in the node page
1053  */
1054 void f2fs_set_data_blkaddr(struct dnode_of_data *dn)
1055 {
1056         f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1057         __set_data_blkaddr(dn);
1058         if (set_page_dirty(dn->node_page))
1059                 dn->node_changed = true;
1060 }
1061
1062 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1063 {
1064         dn->data_blkaddr = blkaddr;
1065         f2fs_set_data_blkaddr(dn);
1066         f2fs_update_extent_cache(dn);
1067 }
1068
1069 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
1070 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
1071 {
1072         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1073         int err;
1074
1075         if (!count)
1076                 return 0;
1077
1078         if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1079                 return -EPERM;
1080         if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1081                 return err;
1082
1083         trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
1084                                                 dn->ofs_in_node, count);
1085
1086         f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1087
1088         for (; count > 0; dn->ofs_in_node++) {
1089                 block_t blkaddr = f2fs_data_blkaddr(dn);
1090                 if (blkaddr == NULL_ADDR) {
1091                         dn->data_blkaddr = NEW_ADDR;
1092                         __set_data_blkaddr(dn);
1093                         count--;
1094                 }
1095         }
1096
1097         if (set_page_dirty(dn->node_page))
1098                 dn->node_changed = true;
1099         return 0;
1100 }
1101
1102 /* Should keep dn->ofs_in_node unchanged */
1103 int f2fs_reserve_new_block(struct dnode_of_data *dn)
1104 {
1105         unsigned int ofs_in_node = dn->ofs_in_node;
1106         int ret;
1107
1108         ret = f2fs_reserve_new_blocks(dn, 1);
1109         dn->ofs_in_node = ofs_in_node;
1110         return ret;
1111 }
1112
1113 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
1114 {
1115         bool need_put = dn->inode_page ? false : true;
1116         int err;
1117
1118         err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
1119         if (err)
1120                 return err;
1121
1122         if (dn->data_blkaddr == NULL_ADDR)
1123                 err = f2fs_reserve_new_block(dn);
1124         if (err || need_put)
1125                 f2fs_put_dnode(dn);
1126         return err;
1127 }
1128
1129 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
1130 {
1131         struct extent_info ei = {0, 0, 0};
1132         struct inode *inode = dn->inode;
1133
1134         if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1135                 dn->data_blkaddr = ei.blk + index - ei.fofs;
1136                 return 0;
1137         }
1138
1139         return f2fs_reserve_block(dn, index);
1140 }
1141
1142 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
1143                                                 int op_flags, bool for_write)
1144 {
1145         struct address_space *mapping = inode->i_mapping;
1146         struct dnode_of_data dn;
1147         struct page *page;
1148         struct extent_info ei = {0,0,0};
1149         int err;
1150
1151         page = f2fs_grab_cache_page(mapping, index, for_write);
1152         if (!page)
1153                 return ERR_PTR(-ENOMEM);
1154
1155         if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1156                 dn.data_blkaddr = ei.blk + index - ei.fofs;
1157                 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
1158                                                 DATA_GENERIC_ENHANCE_READ)) {
1159                         err = -EFSCORRUPTED;
1160                         goto put_err;
1161                 }
1162                 goto got_it;
1163         }
1164
1165         set_new_dnode(&dn, inode, NULL, NULL, 0);
1166         err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1167         if (err)
1168                 goto put_err;
1169         f2fs_put_dnode(&dn);
1170
1171         if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1172                 err = -ENOENT;
1173                 goto put_err;
1174         }
1175         if (dn.data_blkaddr != NEW_ADDR &&
1176                         !f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
1177                                                 dn.data_blkaddr,
1178                                                 DATA_GENERIC_ENHANCE)) {
1179                 err = -EFSCORRUPTED;
1180                 goto put_err;
1181         }
1182 got_it:
1183         if (PageUptodate(page)) {
1184                 unlock_page(page);
1185                 return page;
1186         }
1187
1188         /*
1189          * A new dentry page is allocated but not able to be written, since its
1190          * new inode page couldn't be allocated due to -ENOSPC.
1191          * In such the case, its blkaddr can be remained as NEW_ADDR.
1192          * see, f2fs_add_link -> f2fs_get_new_data_page ->
1193          * f2fs_init_inode_metadata.
1194          */
1195         if (dn.data_blkaddr == NEW_ADDR) {
1196                 zero_user_segment(page, 0, PAGE_SIZE);
1197                 if (!PageUptodate(page))
1198                         SetPageUptodate(page);
1199                 unlock_page(page);
1200                 return page;
1201         }
1202
1203         err = f2fs_submit_page_read(inode, page, dn.data_blkaddr,
1204                                                 op_flags, for_write);
1205         if (err)
1206                 goto put_err;
1207         return page;
1208
1209 put_err:
1210         f2fs_put_page(page, 1);
1211         return ERR_PTR(err);
1212 }
1213
1214 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index)
1215 {
1216         struct address_space *mapping = inode->i_mapping;
1217         struct page *page;
1218
1219         page = find_get_page(mapping, index);
1220         if (page && PageUptodate(page))
1221                 return page;
1222         f2fs_put_page(page, 0);
1223
1224         page = f2fs_get_read_data_page(inode, index, 0, false);
1225         if (IS_ERR(page))
1226                 return page;
1227
1228         if (PageUptodate(page))
1229                 return page;
1230
1231         wait_on_page_locked(page);
1232         if (unlikely(!PageUptodate(page))) {
1233                 f2fs_put_page(page, 0);
1234                 return ERR_PTR(-EIO);
1235         }
1236         return page;
1237 }
1238
1239 /*
1240  * If it tries to access a hole, return an error.
1241  * Because, the callers, functions in dir.c and GC, should be able to know
1242  * whether this page exists or not.
1243  */
1244 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
1245                                                         bool for_write)
1246 {
1247         struct address_space *mapping = inode->i_mapping;
1248         struct page *page;
1249 repeat:
1250         page = f2fs_get_read_data_page(inode, index, 0, for_write);
1251         if (IS_ERR(page))
1252                 return page;
1253
1254         /* wait for read completion */
1255         lock_page(page);
1256         if (unlikely(page->mapping != mapping)) {
1257                 f2fs_put_page(page, 1);
1258                 goto repeat;
1259         }
1260         if (unlikely(!PageUptodate(page))) {
1261                 f2fs_put_page(page, 1);
1262                 return ERR_PTR(-EIO);
1263         }
1264         return page;
1265 }
1266
1267 /*
1268  * Caller ensures that this data page is never allocated.
1269  * A new zero-filled data page is allocated in the page cache.
1270  *
1271  * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1272  * f2fs_unlock_op().
1273  * Note that, ipage is set only by make_empty_dir, and if any error occur,
1274  * ipage should be released by this function.
1275  */
1276 struct page *f2fs_get_new_data_page(struct inode *inode,
1277                 struct page *ipage, pgoff_t index, bool new_i_size)
1278 {
1279         struct address_space *mapping = inode->i_mapping;
1280         struct page *page;
1281         struct dnode_of_data dn;
1282         int err;
1283
1284         page = f2fs_grab_cache_page(mapping, index, true);
1285         if (!page) {
1286                 /*
1287                  * before exiting, we should make sure ipage will be released
1288                  * if any error occur.
1289                  */
1290                 f2fs_put_page(ipage, 1);
1291                 return ERR_PTR(-ENOMEM);
1292         }
1293
1294         set_new_dnode(&dn, inode, ipage, NULL, 0);
1295         err = f2fs_reserve_block(&dn, index);
1296         if (err) {
1297                 f2fs_put_page(page, 1);
1298                 return ERR_PTR(err);
1299         }
1300         if (!ipage)
1301                 f2fs_put_dnode(&dn);
1302
1303         if (PageUptodate(page))
1304                 goto got_it;
1305
1306         if (dn.data_blkaddr == NEW_ADDR) {
1307                 zero_user_segment(page, 0, PAGE_SIZE);
1308                 if (!PageUptodate(page))
1309                         SetPageUptodate(page);
1310         } else {
1311                 f2fs_put_page(page, 1);
1312
1313                 /* if ipage exists, blkaddr should be NEW_ADDR */
1314                 f2fs_bug_on(F2FS_I_SB(inode), ipage);
1315                 page = f2fs_get_lock_data_page(inode, index, true);
1316                 if (IS_ERR(page))
1317                         return page;
1318         }
1319 got_it:
1320         if (new_i_size && i_size_read(inode) <
1321                                 ((loff_t)(index + 1) << PAGE_SHIFT))
1322                 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
1323         return page;
1324 }
1325
1326 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
1327 {
1328         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1329         struct f2fs_summary sum;
1330         struct node_info ni;
1331         block_t old_blkaddr;
1332         blkcnt_t count = 1;
1333         int err;
1334
1335         if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1336                 return -EPERM;
1337
1338         err = f2fs_get_node_info(sbi, dn->nid, &ni);
1339         if (err)
1340                 return err;
1341
1342         dn->data_blkaddr = f2fs_data_blkaddr(dn);
1343         if (dn->data_blkaddr != NULL_ADDR)
1344                 goto alloc;
1345
1346         if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1347                 return err;
1348
1349 alloc:
1350         set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1351         old_blkaddr = dn->data_blkaddr;
1352         f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr,
1353                                 &sum, seg_type, NULL);
1354         if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
1355                 invalidate_mapping_pages(META_MAPPING(sbi),
1356                                         old_blkaddr, old_blkaddr);
1357         f2fs_update_data_blkaddr(dn, dn->data_blkaddr);
1358
1359         /*
1360          * i_size will be updated by direct_IO. Otherwise, we'll get stale
1361          * data from unwritten block via dio_read.
1362          */
1363         return 0;
1364 }
1365
1366 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
1367 {
1368         struct inode *inode = file_inode(iocb->ki_filp);
1369         struct f2fs_map_blocks map;
1370         int flag;
1371         int err = 0;
1372         bool direct_io = iocb->ki_flags & IOCB_DIRECT;
1373
1374         map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
1375         map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from));
1376         if (map.m_len > map.m_lblk)
1377                 map.m_len -= map.m_lblk;
1378         else
1379                 map.m_len = 0;
1380
1381         map.m_next_pgofs = NULL;
1382         map.m_next_extent = NULL;
1383         map.m_seg_type = NO_CHECK_TYPE;
1384         map.m_may_create = true;
1385
1386         if (direct_io) {
1387                 map.m_seg_type = f2fs_rw_hint_to_seg_type(iocb->ki_hint);
1388                 flag = f2fs_force_buffered_io(inode, iocb, from) ?
1389                                         F2FS_GET_BLOCK_PRE_AIO :
1390                                         F2FS_GET_BLOCK_PRE_DIO;
1391                 goto map_blocks;
1392         }
1393         if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA(inode)) {
1394                 err = f2fs_convert_inline_inode(inode);
1395                 if (err)
1396                         return err;
1397         }
1398         if (f2fs_has_inline_data(inode))
1399                 return err;
1400
1401         flag = F2FS_GET_BLOCK_PRE_AIO;
1402
1403 map_blocks:
1404         err = f2fs_map_blocks(inode, &map, 1, flag);
1405         if (map.m_len > 0 && err == -ENOSPC) {
1406                 if (!direct_io)
1407                         set_inode_flag(inode, FI_NO_PREALLOC);
1408                 err = 0;
1409         }
1410         return err;
1411 }
1412
1413 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock)
1414 {
1415         if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1416                 if (lock)
1417                         down_read(&sbi->node_change);
1418                 else
1419                         up_read(&sbi->node_change);
1420         } else {
1421                 if (lock)
1422                         f2fs_lock_op(sbi);
1423                 else
1424                         f2fs_unlock_op(sbi);
1425         }
1426 }
1427
1428 /*
1429  * f2fs_map_blocks() tries to find or build mapping relationship which
1430  * maps continuous logical blocks to physical blocks, and return such
1431  * info via f2fs_map_blocks structure.
1432  */
1433 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
1434                                                 int create, int flag)
1435 {
1436         unsigned int maxblocks = map->m_len;
1437         struct dnode_of_data dn;
1438         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1439         int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1440         pgoff_t pgofs, end_offset, end;
1441         int err = 0, ofs = 1;
1442         unsigned int ofs_in_node, last_ofs_in_node;
1443         blkcnt_t prealloc;
1444         struct extent_info ei = {0,0,0};
1445         block_t blkaddr;
1446         unsigned int start_pgofs;
1447
1448         if (!maxblocks)
1449                 return 0;
1450
1451         map->m_len = 0;
1452         map->m_flags = 0;
1453
1454         /* it only supports block size == page size */
1455         pgofs = (pgoff_t)map->m_lblk;
1456         end = pgofs + maxblocks;
1457
1458         if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
1459                 if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO &&
1460                                                         map->m_may_create)
1461                         goto next_dnode;
1462
1463                 map->m_pblk = ei.blk + pgofs - ei.fofs;
1464                 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
1465                 map->m_flags = F2FS_MAP_MAPPED;
1466                 if (map->m_next_extent)
1467                         *map->m_next_extent = pgofs + map->m_len;
1468
1469                 /* for hardware encryption, but to avoid potential issue in future */
1470                 if (flag == F2FS_GET_BLOCK_DIO)
1471                         f2fs_wait_on_block_writeback_range(inode,
1472                                                 map->m_pblk, map->m_len);
1473                 goto out;
1474         }
1475
1476 next_dnode:
1477         if (map->m_may_create)
1478                 f2fs_do_map_lock(sbi, flag, true);
1479
1480         /* When reading holes, we need its node page */
1481         set_new_dnode(&dn, inode, NULL, NULL, 0);
1482         err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1483         if (err) {
1484                 if (flag == F2FS_GET_BLOCK_BMAP)
1485                         map->m_pblk = 0;
1486                 if (err == -ENOENT) {
1487                         err = 0;
1488                         if (map->m_next_pgofs)
1489                                 *map->m_next_pgofs =
1490                                         f2fs_get_next_page_offset(&dn, pgofs);
1491                         if (map->m_next_extent)
1492                                 *map->m_next_extent =
1493                                         f2fs_get_next_page_offset(&dn, pgofs);
1494                 }
1495                 goto unlock_out;
1496         }
1497
1498         start_pgofs = pgofs;
1499         prealloc = 0;
1500         last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1501         end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1502
1503 next_block:
1504         blkaddr = f2fs_data_blkaddr(&dn);
1505
1506         if (__is_valid_data_blkaddr(blkaddr) &&
1507                 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1508                 err = -EFSCORRUPTED;
1509                 goto sync_out;
1510         }
1511
1512         if (__is_valid_data_blkaddr(blkaddr)) {
1513                 /* use out-place-update for driect IO under LFS mode */
1514                 if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO &&
1515                                                         map->m_may_create) {
1516                         err = __allocate_data_block(&dn, map->m_seg_type);
1517                         if (err)
1518                                 goto sync_out;
1519                         blkaddr = dn.data_blkaddr;
1520                         set_inode_flag(inode, FI_APPEND_WRITE);
1521                 }
1522         } else {
1523                 if (create) {
1524                         if (unlikely(f2fs_cp_error(sbi))) {
1525                                 err = -EIO;
1526                                 goto sync_out;
1527                         }
1528                         if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1529                                 if (blkaddr == NULL_ADDR) {
1530                                         prealloc++;
1531                                         last_ofs_in_node = dn.ofs_in_node;
1532                                 }
1533                         } else {
1534                                 WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO &&
1535                                         flag != F2FS_GET_BLOCK_DIO);
1536                                 err = __allocate_data_block(&dn,
1537                                                         map->m_seg_type);
1538                                 if (!err)
1539                                         set_inode_flag(inode, FI_APPEND_WRITE);
1540                         }
1541                         if (err)
1542                                 goto sync_out;
1543                         map->m_flags |= F2FS_MAP_NEW;
1544                         blkaddr = dn.data_blkaddr;
1545                 } else {
1546                         if (flag == F2FS_GET_BLOCK_BMAP) {
1547                                 map->m_pblk = 0;
1548                                 goto sync_out;
1549                         }
1550                         if (flag == F2FS_GET_BLOCK_PRECACHE)
1551                                 goto sync_out;
1552                         if (flag == F2FS_GET_BLOCK_FIEMAP &&
1553                                                 blkaddr == NULL_ADDR) {
1554                                 if (map->m_next_pgofs)
1555                                         *map->m_next_pgofs = pgofs + 1;
1556                                 goto sync_out;
1557                         }
1558                         if (flag != F2FS_GET_BLOCK_FIEMAP) {
1559                                 /* for defragment case */
1560                                 if (map->m_next_pgofs)
1561                                         *map->m_next_pgofs = pgofs + 1;
1562                                 goto sync_out;
1563                         }
1564                 }
1565         }
1566
1567         if (flag == F2FS_GET_BLOCK_PRE_AIO)
1568                 goto skip;
1569
1570         if (map->m_len == 0) {
1571                 /* preallocated unwritten block should be mapped for fiemap. */
1572                 if (blkaddr == NEW_ADDR)
1573                         map->m_flags |= F2FS_MAP_UNWRITTEN;
1574                 map->m_flags |= F2FS_MAP_MAPPED;
1575
1576                 map->m_pblk = blkaddr;
1577                 map->m_len = 1;
1578         } else if ((map->m_pblk != NEW_ADDR &&
1579                         blkaddr == (map->m_pblk + ofs)) ||
1580                         (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1581                         flag == F2FS_GET_BLOCK_PRE_DIO) {
1582                 ofs++;
1583                 map->m_len++;
1584         } else {
1585                 goto sync_out;
1586         }
1587
1588 skip:
1589         dn.ofs_in_node++;
1590         pgofs++;
1591
1592         /* preallocate blocks in batch for one dnode page */
1593         if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1594                         (pgofs == end || dn.ofs_in_node == end_offset)) {
1595
1596                 dn.ofs_in_node = ofs_in_node;
1597                 err = f2fs_reserve_new_blocks(&dn, prealloc);
1598                 if (err)
1599                         goto sync_out;
1600
1601                 map->m_len += dn.ofs_in_node - ofs_in_node;
1602                 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1603                         err = -ENOSPC;
1604                         goto sync_out;
1605                 }
1606                 dn.ofs_in_node = end_offset;
1607         }
1608
1609         if (pgofs >= end)
1610                 goto sync_out;
1611         else if (dn.ofs_in_node < end_offset)
1612                 goto next_block;
1613
1614         if (flag == F2FS_GET_BLOCK_PRECACHE) {
1615                 if (map->m_flags & F2FS_MAP_MAPPED) {
1616                         unsigned int ofs = start_pgofs - map->m_lblk;
1617
1618                         f2fs_update_extent_cache_range(&dn,
1619                                 start_pgofs, map->m_pblk + ofs,
1620                                 map->m_len - ofs);
1621                 }
1622         }
1623
1624         f2fs_put_dnode(&dn);
1625
1626         if (map->m_may_create) {
1627                 f2fs_do_map_lock(sbi, flag, false);
1628                 f2fs_balance_fs(sbi, dn.node_changed);
1629         }
1630         goto next_dnode;
1631
1632 sync_out:
1633
1634         /* for hardware encryption, but to avoid potential issue in future */
1635         if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED)
1636                 f2fs_wait_on_block_writeback_range(inode,
1637                                                 map->m_pblk, map->m_len);
1638
1639         if (flag == F2FS_GET_BLOCK_PRECACHE) {
1640                 if (map->m_flags & F2FS_MAP_MAPPED) {
1641                         unsigned int ofs = start_pgofs - map->m_lblk;
1642
1643                         f2fs_update_extent_cache_range(&dn,
1644                                 start_pgofs, map->m_pblk + ofs,
1645                                 map->m_len - ofs);
1646                 }
1647                 if (map->m_next_extent)
1648                         *map->m_next_extent = pgofs + 1;
1649         }
1650         f2fs_put_dnode(&dn);
1651 unlock_out:
1652         if (map->m_may_create) {
1653                 f2fs_do_map_lock(sbi, flag, false);
1654                 f2fs_balance_fs(sbi, dn.node_changed);
1655         }
1656 out:
1657         trace_f2fs_map_blocks(inode, map, err);
1658         return err;
1659 }
1660
1661 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1662 {
1663         struct f2fs_map_blocks map;
1664         block_t last_lblk;
1665         int err;
1666
1667         if (pos + len > i_size_read(inode))
1668                 return false;
1669
1670         map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1671         map.m_next_pgofs = NULL;
1672         map.m_next_extent = NULL;
1673         map.m_seg_type = NO_CHECK_TYPE;
1674         map.m_may_create = false;
1675         last_lblk = F2FS_BLK_ALIGN(pos + len);
1676
1677         while (map.m_lblk < last_lblk) {
1678                 map.m_len = last_lblk - map.m_lblk;
1679                 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
1680                 if (err || map.m_len == 0)
1681                         return false;
1682                 map.m_lblk += map.m_len;
1683         }
1684         return true;
1685 }
1686
1687 static inline u64 bytes_to_blks(struct inode *inode, u64 bytes)
1688 {
1689         return (bytes >> inode->i_blkbits);
1690 }
1691
1692 static inline u64 blks_to_bytes(struct inode *inode, u64 blks)
1693 {
1694         return (blks << inode->i_blkbits);
1695 }
1696
1697 static int __get_data_block(struct inode *inode, sector_t iblock,
1698                         struct buffer_head *bh, int create, int flag,
1699                         pgoff_t *next_pgofs, int seg_type, bool may_write)
1700 {
1701         struct f2fs_map_blocks map;
1702         int err;
1703
1704         map.m_lblk = iblock;
1705         map.m_len = bytes_to_blks(inode, bh->b_size);
1706         map.m_next_pgofs = next_pgofs;
1707         map.m_next_extent = NULL;
1708         map.m_seg_type = seg_type;
1709         map.m_may_create = may_write;
1710
1711         err = f2fs_map_blocks(inode, &map, create, flag);
1712         if (!err) {
1713                 map_bh(bh, inode->i_sb, map.m_pblk);
1714                 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
1715                 bh->b_size = blks_to_bytes(inode, map.m_len);
1716         }
1717         return err;
1718 }
1719
1720 static int get_data_block_dio_write(struct inode *inode, sector_t iblock,
1721                         struct buffer_head *bh_result, int create)
1722 {
1723         return __get_data_block(inode, iblock, bh_result, create,
1724                                 F2FS_GET_BLOCK_DIO, NULL,
1725                                 f2fs_rw_hint_to_seg_type(inode->i_write_hint),
1726                                 IS_SWAPFILE(inode) ? false : true);
1727 }
1728
1729 static int get_data_block_dio(struct inode *inode, sector_t iblock,
1730                         struct buffer_head *bh_result, int create)
1731 {
1732         return __get_data_block(inode, iblock, bh_result, create,
1733                                 F2FS_GET_BLOCK_DIO, NULL,
1734                                 f2fs_rw_hint_to_seg_type(inode->i_write_hint),
1735                                 false);
1736 }
1737
1738 static int f2fs_xattr_fiemap(struct inode *inode,
1739                                 struct fiemap_extent_info *fieinfo)
1740 {
1741         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1742         struct page *page;
1743         struct node_info ni;
1744         __u64 phys = 0, len;
1745         __u32 flags;
1746         nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1747         int err = 0;
1748
1749         if (f2fs_has_inline_xattr(inode)) {
1750                 int offset;
1751
1752                 page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1753                                                 inode->i_ino, false);
1754                 if (!page)
1755                         return -ENOMEM;
1756
1757                 err = f2fs_get_node_info(sbi, inode->i_ino, &ni);
1758                 if (err) {
1759                         f2fs_put_page(page, 1);
1760                         return err;
1761                 }
1762
1763                 phys = blks_to_bytes(inode, ni.blk_addr);
1764                 offset = offsetof(struct f2fs_inode, i_addr) +
1765                                         sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1766                                         get_inline_xattr_addrs(inode));
1767
1768                 phys += offset;
1769                 len = inline_xattr_size(inode);
1770
1771                 f2fs_put_page(page, 1);
1772
1773                 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1774
1775                 if (!xnid)
1776                         flags |= FIEMAP_EXTENT_LAST;
1777
1778                 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1779                 trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1780                 if (err || err == 1)
1781                         return err;
1782         }
1783
1784         if (xnid) {
1785                 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1786                 if (!page)
1787                         return -ENOMEM;
1788
1789                 err = f2fs_get_node_info(sbi, xnid, &ni);
1790                 if (err) {
1791                         f2fs_put_page(page, 1);
1792                         return err;
1793                 }
1794
1795                 phys = blks_to_bytes(inode, ni.blk_addr);
1796                 len = inode->i_sb->s_blocksize;
1797
1798                 f2fs_put_page(page, 1);
1799
1800                 flags = FIEMAP_EXTENT_LAST;
1801         }
1802
1803         if (phys) {
1804                 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1805                 trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1806         }
1807
1808         return (err < 0 ? err : 0);
1809 }
1810
1811 static loff_t max_inode_blocks(struct inode *inode)
1812 {
1813         loff_t result = ADDRS_PER_INODE(inode);
1814         loff_t leaf_count = ADDRS_PER_BLOCK(inode);
1815
1816         /* two direct node blocks */
1817         result += (leaf_count * 2);
1818
1819         /* two indirect node blocks */
1820         leaf_count *= NIDS_PER_BLOCK;
1821         result += (leaf_count * 2);
1822
1823         /* one double indirect node block */
1824         leaf_count *= NIDS_PER_BLOCK;
1825         result += leaf_count;
1826
1827         return result;
1828 }
1829
1830 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1831                 u64 start, u64 len)
1832 {
1833         struct f2fs_map_blocks map;
1834         sector_t start_blk, last_blk;
1835         pgoff_t next_pgofs;
1836         u64 logical = 0, phys = 0, size = 0;
1837         u32 flags = 0;
1838         int ret = 0;
1839         bool compr_cluster = false;
1840         unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
1841
1842         if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1843                 ret = f2fs_precache_extents(inode);
1844                 if (ret)
1845                         return ret;
1846         }
1847
1848         ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR);
1849         if (ret)
1850                 return ret;
1851
1852         inode_lock(inode);
1853
1854         if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1855                 ret = f2fs_xattr_fiemap(inode, fieinfo);
1856                 goto out;
1857         }
1858
1859         if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
1860                 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1861                 if (ret != -EAGAIN)
1862                         goto out;
1863         }
1864
1865         if (bytes_to_blks(inode, len) == 0)
1866                 len = blks_to_bytes(inode, 1);
1867
1868         start_blk = bytes_to_blks(inode, start);
1869         last_blk = bytes_to_blks(inode, start + len - 1);
1870
1871 next:
1872         memset(&map, 0, sizeof(map));
1873         map.m_lblk = start_blk;
1874         map.m_len = bytes_to_blks(inode, len);
1875         map.m_next_pgofs = &next_pgofs;
1876         map.m_seg_type = NO_CHECK_TYPE;
1877
1878         if (compr_cluster)
1879                 map.m_len = cluster_size - 1;
1880
1881         ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP);
1882         if (ret)
1883                 goto out;
1884
1885         /* HOLE */
1886         if (!(map.m_flags & F2FS_MAP_FLAGS)) {
1887                 start_blk = next_pgofs;
1888
1889                 if (blks_to_bytes(inode, start_blk) < blks_to_bytes(inode,
1890                                                 max_inode_blocks(inode)))
1891                         goto prep_next;
1892
1893                 flags |= FIEMAP_EXTENT_LAST;
1894         }
1895
1896         if (size) {
1897                 flags |= FIEMAP_EXTENT_MERGED;
1898                 if (IS_ENCRYPTED(inode))
1899                         flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1900
1901                 ret = fiemap_fill_next_extent(fieinfo, logical,
1902                                 phys, size, flags);
1903                 trace_f2fs_fiemap(inode, logical, phys, size, flags, ret);
1904                 if (ret)
1905                         goto out;
1906                 size = 0;
1907         }
1908
1909         if (start_blk > last_blk)
1910                 goto out;
1911
1912         if (compr_cluster) {
1913                 compr_cluster = false;
1914
1915
1916                 logical = blks_to_bytes(inode, start_blk - 1);
1917                 phys = blks_to_bytes(inode, map.m_pblk);
1918                 size = blks_to_bytes(inode, cluster_size);
1919
1920                 flags |= FIEMAP_EXTENT_ENCODED;
1921
1922                 start_blk += cluster_size - 1;
1923
1924                 if (start_blk > last_blk)
1925                         goto out;
1926
1927                 goto prep_next;
1928         }
1929
1930         if (map.m_pblk == COMPRESS_ADDR) {
1931                 compr_cluster = true;
1932                 start_blk++;
1933                 goto prep_next;
1934         }
1935
1936         logical = blks_to_bytes(inode, start_blk);
1937         phys = blks_to_bytes(inode, map.m_pblk);
1938         size = blks_to_bytes(inode, map.m_len);
1939         flags = 0;
1940         if (map.m_flags & F2FS_MAP_UNWRITTEN)
1941                 flags = FIEMAP_EXTENT_UNWRITTEN;
1942
1943         start_blk += bytes_to_blks(inode, size);
1944
1945 prep_next:
1946         cond_resched();
1947         if (fatal_signal_pending(current))
1948                 ret = -EINTR;
1949         else
1950                 goto next;
1951 out:
1952         if (ret == 1)
1953                 ret = 0;
1954
1955         inode_unlock(inode);
1956         return ret;
1957 }
1958
1959 static inline loff_t f2fs_readpage_limit(struct inode *inode)
1960 {
1961         if (IS_ENABLED(CONFIG_FS_VERITY) &&
1962             (IS_VERITY(inode) || f2fs_verity_in_progress(inode)))
1963                 return inode->i_sb->s_maxbytes;
1964
1965         return i_size_read(inode);
1966 }
1967
1968 static int f2fs_read_single_page(struct inode *inode, struct page *page,
1969                                         unsigned nr_pages,
1970                                         struct f2fs_map_blocks *map,
1971                                         struct bio **bio_ret,
1972                                         sector_t *last_block_in_bio,
1973                                         bool is_readahead)
1974 {
1975         struct bio *bio = *bio_ret;
1976         const unsigned blocksize = blks_to_bytes(inode, 1);
1977         sector_t block_in_file;
1978         sector_t last_block;
1979         sector_t last_block_in_file;
1980         sector_t block_nr;
1981         int ret = 0;
1982
1983         block_in_file = (sector_t)page_index(page);
1984         last_block = block_in_file + nr_pages;
1985         last_block_in_file = bytes_to_blks(inode,
1986                         f2fs_readpage_limit(inode) + blocksize - 1);
1987         if (last_block > last_block_in_file)
1988                 last_block = last_block_in_file;
1989
1990         /* just zeroing out page which is beyond EOF */
1991         if (block_in_file >= last_block)
1992                 goto zero_out;
1993         /*
1994          * Map blocks using the previous result first.
1995          */
1996         if ((map->m_flags & F2FS_MAP_MAPPED) &&
1997                         block_in_file > map->m_lblk &&
1998                         block_in_file < (map->m_lblk + map->m_len))
1999                 goto got_it;
2000
2001         /*
2002          * Then do more f2fs_map_blocks() calls until we are
2003          * done with this page.
2004          */
2005         map->m_lblk = block_in_file;
2006         map->m_len = last_block - block_in_file;
2007
2008         ret = f2fs_map_blocks(inode, map, 0, F2FS_GET_BLOCK_DEFAULT);
2009         if (ret)
2010                 goto out;
2011 got_it:
2012         if ((map->m_flags & F2FS_MAP_MAPPED)) {
2013                 block_nr = map->m_pblk + block_in_file - map->m_lblk;
2014                 SetPageMappedToDisk(page);
2015
2016                 if (!PageUptodate(page) && (!PageSwapCache(page) &&
2017                                         !cleancache_get_page(page))) {
2018                         SetPageUptodate(page);
2019                         goto confused;
2020                 }
2021
2022                 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
2023                                                 DATA_GENERIC_ENHANCE_READ)) {
2024                         ret = -EFSCORRUPTED;
2025                         goto out;
2026                 }
2027         } else {
2028 zero_out:
2029                 zero_user_segment(page, 0, PAGE_SIZE);
2030                 if (f2fs_need_verity(inode, page->index) &&
2031                     !fsverity_verify_page(page)) {
2032                         ret = -EIO;
2033                         goto out;
2034                 }
2035                 if (!PageUptodate(page))
2036                         SetPageUptodate(page);
2037                 unlock_page(page);
2038                 goto out;
2039         }
2040
2041         /*
2042          * This page will go to BIO.  Do we need to send this
2043          * BIO off first?
2044          */
2045         if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio,
2046                                        *last_block_in_bio, block_nr) ||
2047                     !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2048 submit_and_realloc:
2049                 __submit_bio(F2FS_I_SB(inode), bio, DATA);
2050                 bio = NULL;
2051         }
2052         if (bio == NULL) {
2053                 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
2054                                 is_readahead ? REQ_RAHEAD : 0, page->index,
2055                                 false);
2056                 if (IS_ERR(bio)) {
2057                         ret = PTR_ERR(bio);
2058                         bio = NULL;
2059                         goto out;
2060                 }
2061         }
2062
2063         /*
2064          * If the page is under writeback, we need to wait for
2065          * its completion to see the correct decrypted data.
2066          */
2067         f2fs_wait_on_block_writeback(inode, block_nr);
2068
2069         if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2070                 goto submit_and_realloc;
2071
2072         inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
2073         f2fs_update_iostat(F2FS_I_SB(inode), FS_DATA_READ_IO, F2FS_BLKSIZE);
2074         ClearPageError(page);
2075         *last_block_in_bio = block_nr;
2076         goto out;
2077 confused:
2078         if (bio) {
2079                 __submit_bio(F2FS_I_SB(inode), bio, DATA);
2080                 bio = NULL;
2081         }
2082         unlock_page(page);
2083 out:
2084         *bio_ret = bio;
2085         return ret;
2086 }
2087
2088 #ifdef CONFIG_F2FS_FS_COMPRESSION
2089 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
2090                                 unsigned nr_pages, sector_t *last_block_in_bio,
2091                                 bool is_readahead, bool for_write)
2092 {
2093         struct dnode_of_data dn;
2094         struct inode *inode = cc->inode;
2095         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2096         struct bio *bio = *bio_ret;
2097         unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size;
2098         sector_t last_block_in_file;
2099         const unsigned blocksize = blks_to_bytes(inode, 1);
2100         struct decompress_io_ctx *dic = NULL;
2101         int i;
2102         int ret = 0;
2103
2104         f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc));
2105
2106         last_block_in_file = bytes_to_blks(inode,
2107                         f2fs_readpage_limit(inode) + blocksize - 1);
2108
2109         /* get rid of pages beyond EOF */
2110         for (i = 0; i < cc->cluster_size; i++) {
2111                 struct page *page = cc->rpages[i];
2112
2113                 if (!page)
2114                         continue;
2115                 if ((sector_t)page->index >= last_block_in_file) {
2116                         zero_user_segment(page, 0, PAGE_SIZE);
2117                         if (!PageUptodate(page))
2118                                 SetPageUptodate(page);
2119                 } else if (!PageUptodate(page)) {
2120                         continue;
2121                 }
2122                 unlock_page(page);
2123                 cc->rpages[i] = NULL;
2124                 cc->nr_rpages--;
2125         }
2126
2127         /* we are done since all pages are beyond EOF */
2128         if (f2fs_cluster_is_empty(cc))
2129                 goto out;
2130
2131         set_new_dnode(&dn, inode, NULL, NULL, 0);
2132         ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
2133         if (ret)
2134                 goto out;
2135
2136         f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR);
2137
2138         for (i = 1; i < cc->cluster_size; i++) {
2139                 block_t blkaddr;
2140
2141                 blkaddr = data_blkaddr(dn.inode, dn.node_page,
2142                                                 dn.ofs_in_node + i);
2143
2144                 if (!__is_valid_data_blkaddr(blkaddr))
2145                         break;
2146
2147                 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
2148                         ret = -EFAULT;
2149                         goto out_put_dnode;
2150                 }
2151                 cc->nr_cpages++;
2152         }
2153
2154         /* nothing to decompress */
2155         if (cc->nr_cpages == 0) {
2156                 ret = 0;
2157                 goto out_put_dnode;
2158         }
2159
2160         dic = f2fs_alloc_dic(cc);
2161         if (IS_ERR(dic)) {
2162                 ret = PTR_ERR(dic);
2163                 goto out_put_dnode;
2164         }
2165
2166         for (i = 0; i < dic->nr_cpages; i++) {
2167                 struct page *page = dic->cpages[i];
2168                 block_t blkaddr;
2169                 struct bio_post_read_ctx *ctx;
2170
2171                 blkaddr = data_blkaddr(dn.inode, dn.node_page,
2172                                                 dn.ofs_in_node + i + 1);
2173
2174                 if (bio && (!page_is_mergeable(sbi, bio,
2175                                         *last_block_in_bio, blkaddr) ||
2176                     !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2177 submit_and_realloc:
2178                         __submit_bio(sbi, bio, DATA);
2179                         bio = NULL;
2180                 }
2181
2182                 if (!bio) {
2183                         bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages,
2184                                         is_readahead ? REQ_RAHEAD : 0,
2185                                         page->index, for_write);
2186                         if (IS_ERR(bio)) {
2187                                 ret = PTR_ERR(bio);
2188                                 f2fs_decompress_end_io(dic, ret);
2189                                 f2fs_put_dnode(&dn);
2190                                 *bio_ret = NULL;
2191                                 return ret;
2192                         }
2193                 }
2194
2195                 f2fs_wait_on_block_writeback(inode, blkaddr);
2196
2197                 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2198                         goto submit_and_realloc;
2199
2200                 ctx = bio->bi_private;
2201                 ctx->enabled_steps |= STEP_DECOMPRESS;
2202                 refcount_inc(&dic->refcnt);
2203
2204                 inc_page_count(sbi, F2FS_RD_DATA);
2205                 f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE);
2206                 f2fs_update_iostat(sbi, FS_CDATA_READ_IO, F2FS_BLKSIZE);
2207                 ClearPageError(page);
2208                 *last_block_in_bio = blkaddr;
2209         }
2210
2211         f2fs_put_dnode(&dn);
2212
2213         *bio_ret = bio;
2214         return 0;
2215
2216 out_put_dnode:
2217         f2fs_put_dnode(&dn);
2218 out:
2219         for (i = 0; i < cc->cluster_size; i++) {
2220                 if (cc->rpages[i]) {
2221                         ClearPageUptodate(cc->rpages[i]);
2222                         ClearPageError(cc->rpages[i]);
2223                         unlock_page(cc->rpages[i]);
2224                 }
2225         }
2226         *bio_ret = bio;
2227         return ret;
2228 }
2229 #endif
2230
2231 /*
2232  * This function was originally taken from fs/mpage.c, and customized for f2fs.
2233  * Major change was from block_size == page_size in f2fs by default.
2234  */
2235 static int f2fs_mpage_readpages(struct inode *inode,
2236                 struct readahead_control *rac, struct page *page)
2237 {
2238         struct bio *bio = NULL;
2239         sector_t last_block_in_bio = 0;
2240         struct f2fs_map_blocks map;
2241 #ifdef CONFIG_F2FS_FS_COMPRESSION
2242         struct compress_ctx cc = {
2243                 .inode = inode,
2244                 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2245                 .cluster_size = F2FS_I(inode)->i_cluster_size,
2246                 .cluster_idx = NULL_CLUSTER,
2247                 .rpages = NULL,
2248                 .cpages = NULL,
2249                 .nr_rpages = 0,
2250                 .nr_cpages = 0,
2251         };
2252 #endif
2253         unsigned nr_pages = rac ? readahead_count(rac) : 1;
2254         unsigned max_nr_pages = nr_pages;
2255         int ret = 0;
2256
2257         map.m_pblk = 0;
2258         map.m_lblk = 0;
2259         map.m_len = 0;
2260         map.m_flags = 0;
2261         map.m_next_pgofs = NULL;
2262         map.m_next_extent = NULL;
2263         map.m_seg_type = NO_CHECK_TYPE;
2264         map.m_may_create = false;
2265
2266         for (; nr_pages; nr_pages--) {
2267                 if (rac) {
2268                         page = readahead_page(rac);
2269                         prefetchw(&page->flags);
2270                 }
2271
2272 #ifdef CONFIG_F2FS_FS_COMPRESSION
2273                 if (f2fs_compressed_file(inode)) {
2274                         /* there are remained comressed pages, submit them */
2275                         if (!f2fs_cluster_can_merge_page(&cc, page->index)) {
2276                                 ret = f2fs_read_multi_pages(&cc, &bio,
2277                                                         max_nr_pages,
2278                                                         &last_block_in_bio,
2279                                                         rac != NULL, false);
2280                                 f2fs_destroy_compress_ctx(&cc);
2281                                 if (ret)
2282                                         goto set_error_page;
2283                         }
2284                         ret = f2fs_is_compressed_cluster(inode, page->index);
2285                         if (ret < 0)
2286                                 goto set_error_page;
2287                         else if (!ret)
2288                                 goto read_single_page;
2289
2290                         ret = f2fs_init_compress_ctx(&cc);
2291                         if (ret)
2292                                 goto set_error_page;
2293
2294                         f2fs_compress_ctx_add_page(&cc, page);
2295
2296                         goto next_page;
2297                 }
2298 read_single_page:
2299 #endif
2300
2301                 ret = f2fs_read_single_page(inode, page, max_nr_pages, &map,
2302                                         &bio, &last_block_in_bio, rac);
2303                 if (ret) {
2304 #ifdef CONFIG_F2FS_FS_COMPRESSION
2305 set_error_page:
2306 #endif
2307                         SetPageError(page);
2308                         zero_user_segment(page, 0, PAGE_SIZE);
2309                         unlock_page(page);
2310                 }
2311 #ifdef CONFIG_F2FS_FS_COMPRESSION
2312 next_page:
2313 #endif
2314                 if (rac)
2315                         put_page(page);
2316
2317 #ifdef CONFIG_F2FS_FS_COMPRESSION
2318                 if (f2fs_compressed_file(inode)) {
2319                         /* last page */
2320                         if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) {
2321                                 ret = f2fs_read_multi_pages(&cc, &bio,
2322                                                         max_nr_pages,
2323                                                         &last_block_in_bio,
2324                                                         rac != NULL, false);
2325                                 f2fs_destroy_compress_ctx(&cc);
2326                         }
2327                 }
2328 #endif
2329         }
2330         if (bio)
2331                 __submit_bio(F2FS_I_SB(inode), bio, DATA);
2332         return ret;
2333 }
2334
2335 static int f2fs_read_data_page(struct file *file, struct page *page)
2336 {
2337         struct inode *inode = page_file_mapping(page)->host;
2338         int ret = -EAGAIN;
2339
2340         trace_f2fs_readpage(page, DATA);
2341
2342         if (!f2fs_is_compress_backend_ready(inode)) {
2343                 unlock_page(page);
2344                 return -EOPNOTSUPP;
2345         }
2346
2347         /* If the file has inline data, try to read it directly */
2348         if (f2fs_has_inline_data(inode))
2349                 ret = f2fs_read_inline_data(inode, page);
2350         if (ret == -EAGAIN)
2351                 ret = f2fs_mpage_readpages(inode, NULL, page);
2352         return ret;
2353 }
2354
2355 static void f2fs_readahead(struct readahead_control *rac)
2356 {
2357         struct inode *inode = rac->mapping->host;
2358
2359         trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac));
2360
2361         if (!f2fs_is_compress_backend_ready(inode))
2362                 return;
2363
2364         /* If the file has inline data, skip readpages */
2365         if (f2fs_has_inline_data(inode))
2366                 return;
2367
2368         f2fs_mpage_readpages(inode, rac, NULL);
2369 }
2370
2371 int f2fs_encrypt_one_page(struct f2fs_io_info *fio)
2372 {
2373         struct inode *inode = fio->page->mapping->host;
2374         struct page *mpage, *page;
2375         gfp_t gfp_flags = GFP_NOFS;
2376
2377         if (!f2fs_encrypted_file(inode))
2378                 return 0;
2379
2380         page = fio->compressed_page ? fio->compressed_page : fio->page;
2381
2382         /* wait for GCed page writeback via META_MAPPING */
2383         f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
2384
2385         if (fscrypt_inode_uses_inline_crypto(inode))
2386                 return 0;
2387
2388 retry_encrypt:
2389         fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page,
2390                                         PAGE_SIZE, 0, gfp_flags);
2391         if (IS_ERR(fio->encrypted_page)) {
2392                 /* flush pending IOs and wait for a while in the ENOMEM case */
2393                 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
2394                         f2fs_flush_merged_writes(fio->sbi);
2395                         congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
2396                         gfp_flags |= __GFP_NOFAIL;
2397                         goto retry_encrypt;
2398                 }
2399                 return PTR_ERR(fio->encrypted_page);
2400         }
2401
2402         mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
2403         if (mpage) {
2404                 if (PageUptodate(mpage))
2405                         memcpy(page_address(mpage),
2406                                 page_address(fio->encrypted_page), PAGE_SIZE);
2407                 f2fs_put_page(mpage, 1);
2408         }
2409         return 0;
2410 }
2411
2412 static inline bool check_inplace_update_policy(struct inode *inode,
2413                                 struct f2fs_io_info *fio)
2414 {
2415         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2416         unsigned int policy = SM_I(sbi)->ipu_policy;
2417
2418         if (policy & (0x1 << F2FS_IPU_FORCE))
2419                 return true;
2420         if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi))
2421                 return true;
2422         if (policy & (0x1 << F2FS_IPU_UTIL) &&
2423                         utilization(sbi) > SM_I(sbi)->min_ipu_util)
2424                 return true;
2425         if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) &&
2426                         utilization(sbi) > SM_I(sbi)->min_ipu_util)
2427                 return true;
2428
2429         /*
2430          * IPU for rewrite async pages
2431          */
2432         if (policy & (0x1 << F2FS_IPU_ASYNC) &&
2433                         fio && fio->op == REQ_OP_WRITE &&
2434                         !(fio->op_flags & REQ_SYNC) &&
2435                         !IS_ENCRYPTED(inode))
2436                 return true;
2437
2438         /* this is only set during fdatasync */
2439         if (policy & (0x1 << F2FS_IPU_FSYNC) &&
2440                         is_inode_flag_set(inode, FI_NEED_IPU))
2441                 return true;
2442
2443         if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2444                         !f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2445                 return true;
2446
2447         return false;
2448 }
2449
2450 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
2451 {
2452         if (f2fs_is_pinned_file(inode))
2453                 return true;
2454
2455         /* if this is cold file, we should overwrite to avoid fragmentation */
2456         if (file_is_cold(inode))
2457                 return true;
2458
2459         return check_inplace_update_policy(inode, fio);
2460 }
2461
2462 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
2463 {
2464         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2465
2466         if (f2fs_lfs_mode(sbi))
2467                 return true;
2468         if (S_ISDIR(inode->i_mode))
2469                 return true;
2470         if (IS_NOQUOTA(inode))
2471                 return true;
2472         if (f2fs_is_atomic_file(inode))
2473                 return true;
2474         if (fio) {
2475                 if (is_cold_data(fio->page))
2476                         return true;
2477                 if (IS_ATOMIC_WRITTEN_PAGE(fio->page))
2478                         return true;
2479                 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2480                         f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2481                         return true;
2482         }
2483         return false;
2484 }
2485
2486 static inline bool need_inplace_update(struct f2fs_io_info *fio)
2487 {
2488         struct inode *inode = fio->page->mapping->host;
2489
2490         if (f2fs_should_update_outplace(inode, fio))
2491                 return false;
2492
2493         return f2fs_should_update_inplace(inode, fio);
2494 }
2495
2496 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
2497 {
2498         struct page *page = fio->page;
2499         struct inode *inode = page->mapping->host;
2500         struct dnode_of_data dn;
2501         struct extent_info ei = {0,0,0};
2502         struct node_info ni;
2503         bool ipu_force = false;
2504         int err = 0;
2505
2506         set_new_dnode(&dn, inode, NULL, NULL, 0);
2507         if (need_inplace_update(fio) &&
2508                         f2fs_lookup_extent_cache(inode, page->index, &ei)) {
2509                 fio->old_blkaddr = ei.blk + page->index - ei.fofs;
2510
2511                 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2512                                                 DATA_GENERIC_ENHANCE))
2513                         return -EFSCORRUPTED;
2514
2515                 ipu_force = true;
2516                 fio->need_lock = LOCK_DONE;
2517                 goto got_it;
2518         }
2519
2520         /* Deadlock due to between page->lock and f2fs_lock_op */
2521         if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
2522                 return -EAGAIN;
2523
2524         err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
2525         if (err)
2526                 goto out;
2527
2528         fio->old_blkaddr = dn.data_blkaddr;
2529
2530         /* This page is already truncated */
2531         if (fio->old_blkaddr == NULL_ADDR) {
2532                 ClearPageUptodate(page);
2533                 clear_cold_data(page);
2534                 goto out_writepage;
2535         }
2536 got_it:
2537         if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2538                 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2539                                                 DATA_GENERIC_ENHANCE)) {
2540                 err = -EFSCORRUPTED;
2541                 goto out_writepage;
2542         }
2543         /*
2544          * If current allocation needs SSR,
2545          * it had better in-place writes for updated data.
2546          */
2547         if (ipu_force ||
2548                 (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2549                                         need_inplace_update(fio))) {
2550                 err = f2fs_encrypt_one_page(fio);
2551                 if (err)
2552                         goto out_writepage;
2553
2554                 set_page_writeback(page);
2555                 ClearPageError(page);
2556                 f2fs_put_dnode(&dn);
2557                 if (fio->need_lock == LOCK_REQ)
2558                         f2fs_unlock_op(fio->sbi);
2559                 err = f2fs_inplace_write_data(fio);
2560                 if (err) {
2561                         if (fscrypt_inode_uses_fs_layer_crypto(inode))
2562                                 fscrypt_finalize_bounce_page(&fio->encrypted_page);
2563                         if (PageWriteback(page))
2564                                 end_page_writeback(page);
2565                 } else {
2566                         set_inode_flag(inode, FI_UPDATE_WRITE);
2567                 }
2568                 trace_f2fs_do_write_data_page(fio->page, IPU);
2569                 return err;
2570         }
2571
2572         if (fio->need_lock == LOCK_RETRY) {
2573                 if (!f2fs_trylock_op(fio->sbi)) {
2574                         err = -EAGAIN;
2575                         goto out_writepage;
2576                 }
2577                 fio->need_lock = LOCK_REQ;
2578         }
2579
2580         err = f2fs_get_node_info(fio->sbi, dn.nid, &ni);
2581         if (err)
2582                 goto out_writepage;
2583
2584         fio->version = ni.version;
2585
2586         err = f2fs_encrypt_one_page(fio);
2587         if (err)
2588                 goto out_writepage;
2589
2590         set_page_writeback(page);
2591         ClearPageError(page);
2592
2593         if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR)
2594                 f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false);
2595
2596         /* LFS mode write path */
2597         f2fs_outplace_write_data(&dn, fio);
2598         trace_f2fs_do_write_data_page(page, OPU);
2599         set_inode_flag(inode, FI_APPEND_WRITE);
2600         if (page->index == 0)
2601                 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
2602 out_writepage:
2603         f2fs_put_dnode(&dn);
2604 out:
2605         if (fio->need_lock == LOCK_REQ)
2606                 f2fs_unlock_op(fio->sbi);
2607         return err;
2608 }
2609
2610 int f2fs_write_single_data_page(struct page *page, int *submitted,
2611                                 struct bio **bio,
2612                                 sector_t *last_block,
2613                                 struct writeback_control *wbc,
2614                                 enum iostat_type io_type,
2615                                 int compr_blocks,
2616                                 bool allow_balance)
2617 {
2618         struct inode *inode = page->mapping->host;
2619         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2620         loff_t i_size = i_size_read(inode);
2621         const pgoff_t end_index = ((unsigned long long)i_size)
2622                                                         >> PAGE_SHIFT;
2623         loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT;
2624         unsigned offset = 0;
2625         bool need_balance_fs = false;
2626         int err = 0;
2627         struct f2fs_io_info fio = {
2628                 .sbi = sbi,
2629                 .ino = inode->i_ino,
2630                 .type = DATA,
2631                 .op = REQ_OP_WRITE,
2632                 .op_flags = wbc_to_write_flags(wbc),
2633                 .old_blkaddr = NULL_ADDR,
2634                 .page = page,
2635                 .encrypted_page = NULL,
2636                 .submitted = false,
2637                 .compr_blocks = compr_blocks,
2638                 .need_lock = LOCK_RETRY,
2639                 .io_type = io_type,
2640                 .io_wbc = wbc,
2641                 .bio = bio,
2642                 .last_block = last_block,
2643         };
2644
2645         trace_f2fs_writepage(page, DATA);
2646
2647         /* we should bypass data pages to proceed the kworkder jobs */
2648         if (unlikely(f2fs_cp_error(sbi))) {
2649                 mapping_set_error(page->mapping, -EIO);
2650                 /*
2651                  * don't drop any dirty dentry pages for keeping lastest
2652                  * directory structure.
2653                  */
2654                 if (S_ISDIR(inode->i_mode))
2655                         goto redirty_out;
2656                 goto out;
2657         }
2658
2659         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2660                 goto redirty_out;
2661
2662         if (page->index < end_index ||
2663                         f2fs_verity_in_progress(inode) ||
2664                         compr_blocks)
2665                 goto write;
2666
2667         /*
2668          * If the offset is out-of-range of file size,
2669          * this page does not have to be written to disk.
2670          */
2671         offset = i_size & (PAGE_SIZE - 1);
2672         if ((page->index >= end_index + 1) || !offset)
2673                 goto out;
2674
2675         zero_user_segment(page, offset, PAGE_SIZE);
2676 write:
2677         if (f2fs_is_drop_cache(inode))
2678                 goto out;
2679         /* we should not write 0'th page having journal header */
2680         if (f2fs_is_volatile_file(inode) && (!page->index ||
2681                         (!wbc->for_reclaim &&
2682                         f2fs_available_free_memory(sbi, BASE_CHECK))))
2683                 goto redirty_out;
2684
2685         /* Dentry/quota blocks are controlled by checkpoint */
2686         if (S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) {
2687                 /*
2688                  * We need to wait for node_write to avoid block allocation during
2689                  * checkpoint. This can only happen to quota writes which can cause
2690                  * the below discard race condition.
2691                  */
2692                 if (IS_NOQUOTA(inode))
2693                         down_read(&sbi->node_write);
2694
2695                 fio.need_lock = LOCK_DONE;
2696                 err = f2fs_do_write_data_page(&fio);
2697
2698                 if (IS_NOQUOTA(inode))
2699                         up_read(&sbi->node_write);
2700
2701                 goto done;
2702         }
2703
2704         if (!wbc->for_reclaim)
2705                 need_balance_fs = true;
2706         else if (has_not_enough_free_secs(sbi, 0, 0))
2707                 goto redirty_out;
2708         else
2709                 set_inode_flag(inode, FI_HOT_DATA);
2710
2711         err = -EAGAIN;
2712         if (f2fs_has_inline_data(inode)) {
2713                 err = f2fs_write_inline_data(inode, page);
2714                 if (!err)
2715                         goto out;
2716         }
2717
2718         if (err == -EAGAIN) {
2719                 err = f2fs_do_write_data_page(&fio);
2720                 if (err == -EAGAIN) {
2721                         fio.need_lock = LOCK_REQ;
2722                         err = f2fs_do_write_data_page(&fio);
2723                 }
2724         }
2725
2726         if (err) {
2727                 file_set_keep_isize(inode);
2728         } else {
2729                 spin_lock(&F2FS_I(inode)->i_size_lock);
2730                 if (F2FS_I(inode)->last_disk_size < psize)
2731                         F2FS_I(inode)->last_disk_size = psize;
2732                 spin_unlock(&F2FS_I(inode)->i_size_lock);
2733         }
2734
2735 done:
2736         if (err && err != -ENOENT)
2737                 goto redirty_out;
2738
2739 out:
2740         inode_dec_dirty_pages(inode);
2741         if (err) {
2742                 ClearPageUptodate(page);
2743                 clear_cold_data(page);
2744         }
2745
2746         if (wbc->for_reclaim) {
2747                 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2748                 clear_inode_flag(inode, FI_HOT_DATA);
2749                 f2fs_remove_dirty_inode(inode);
2750                 submitted = NULL;
2751         }
2752         unlock_page(page);
2753         if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2754                         !F2FS_I(inode)->cp_task && allow_balance)
2755                 f2fs_balance_fs(sbi, need_balance_fs);
2756
2757         if (unlikely(f2fs_cp_error(sbi))) {
2758                 f2fs_submit_merged_write(sbi, DATA);
2759                 f2fs_submit_merged_ipu_write(sbi, bio, NULL);
2760                 submitted = NULL;
2761         }
2762
2763         if (submitted)
2764                 *submitted = fio.submitted ? 1 : 0;
2765
2766         return 0;
2767
2768 redirty_out:
2769         redirty_page_for_writepage(wbc, page);
2770         /*
2771          * pageout() in MM traslates EAGAIN, so calls handle_write_error()
2772          * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2773          * file_write_and_wait_range() will see EIO error, which is critical
2774          * to return value of fsync() followed by atomic_write failure to user.
2775          */
2776         if (!err || wbc->for_reclaim)
2777                 return AOP_WRITEPAGE_ACTIVATE;
2778         unlock_page(page);
2779         return err;
2780 }
2781
2782 static int f2fs_write_data_page(struct page *page,
2783                                         struct writeback_control *wbc)
2784 {
2785 #ifdef CONFIG_F2FS_FS_COMPRESSION
2786         struct inode *inode = page->mapping->host;
2787
2788         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
2789                 goto out;
2790
2791         if (f2fs_compressed_file(inode)) {
2792                 if (f2fs_is_compressed_cluster(inode, page->index)) {
2793                         redirty_page_for_writepage(wbc, page);
2794                         return AOP_WRITEPAGE_ACTIVATE;
2795                 }
2796         }
2797 out:
2798 #endif
2799
2800         return f2fs_write_single_data_page(page, NULL, NULL, NULL,
2801                                                 wbc, FS_DATA_IO, 0, true);
2802 }
2803
2804 /*
2805  * This function was copied from write_cche_pages from mm/page-writeback.c.
2806  * The major change is making write step of cold data page separately from
2807  * warm/hot data page.
2808  */
2809 static int f2fs_write_cache_pages(struct address_space *mapping,
2810                                         struct writeback_control *wbc,
2811                                         enum iostat_type io_type)
2812 {
2813         int ret = 0;
2814         int done = 0, retry = 0;
2815         struct pagevec pvec;
2816         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2817         struct bio *bio = NULL;
2818         sector_t last_block;
2819 #ifdef CONFIG_F2FS_FS_COMPRESSION
2820         struct inode *inode = mapping->host;
2821         struct compress_ctx cc = {
2822                 .inode = inode,
2823                 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2824                 .cluster_size = F2FS_I(inode)->i_cluster_size,
2825                 .cluster_idx = NULL_CLUSTER,
2826                 .rpages = NULL,
2827                 .nr_rpages = 0,
2828                 .cpages = NULL,
2829                 .rbuf = NULL,
2830                 .cbuf = NULL,
2831                 .rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size,
2832                 .private = NULL,
2833         };
2834 #endif
2835         int nr_pages;
2836         pgoff_t index;
2837         pgoff_t end;            /* Inclusive */
2838         pgoff_t done_index;
2839         int range_whole = 0;
2840         xa_mark_t tag;
2841         int nwritten = 0;
2842         int submitted = 0;
2843         int i;
2844
2845         pagevec_init(&pvec);
2846
2847         if (get_dirty_pages(mapping->host) <=
2848                                 SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
2849                 set_inode_flag(mapping->host, FI_HOT_DATA);
2850         else
2851                 clear_inode_flag(mapping->host, FI_HOT_DATA);
2852
2853         if (wbc->range_cyclic) {
2854                 index = mapping->writeback_index; /* prev offset */
2855                 end = -1;
2856         } else {
2857                 index = wbc->range_start >> PAGE_SHIFT;
2858                 end = wbc->range_end >> PAGE_SHIFT;
2859                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2860                         range_whole = 1;
2861         }
2862         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2863                 tag = PAGECACHE_TAG_TOWRITE;
2864         else
2865                 tag = PAGECACHE_TAG_DIRTY;
2866 retry:
2867         retry = 0;
2868         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2869                 tag_pages_for_writeback(mapping, index, end);
2870         done_index = index;
2871         while (!done && !retry && (index <= end)) {
2872                 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2873                                 tag);
2874                 if (nr_pages == 0)
2875                         break;
2876
2877                 for (i = 0; i < nr_pages; i++) {
2878                         struct page *page = pvec.pages[i];
2879                         bool need_readd;
2880 readd:
2881                         need_readd = false;
2882 #ifdef CONFIG_F2FS_FS_COMPRESSION
2883                         if (f2fs_compressed_file(inode)) {
2884                                 ret = f2fs_init_compress_ctx(&cc);
2885                                 if (ret) {
2886                                         done = 1;
2887                                         break;
2888                                 }
2889
2890                                 if (!f2fs_cluster_can_merge_page(&cc,
2891                                                                 page->index)) {
2892                                         ret = f2fs_write_multi_pages(&cc,
2893                                                 &submitted, wbc, io_type);
2894                                         if (!ret)
2895                                                 need_readd = true;
2896                                         goto result;
2897                                 }
2898
2899                                 if (unlikely(f2fs_cp_error(sbi)))
2900                                         goto lock_page;
2901
2902                                 if (f2fs_cluster_is_empty(&cc)) {
2903                                         void *fsdata = NULL;
2904                                         struct page *pagep;
2905                                         int ret2;
2906
2907                                         ret2 = f2fs_prepare_compress_overwrite(
2908                                                         inode, &pagep,
2909                                                         page->index, &fsdata);
2910                                         if (ret2 < 0) {
2911                                                 ret = ret2;
2912                                                 done = 1;
2913                                                 break;
2914                                         } else if (ret2 &&
2915                                                 !f2fs_compress_write_end(inode,
2916                                                                 fsdata, page->index,
2917                                                                 1)) {
2918                                                 retry = 1;
2919                                                 break;
2920                                         }
2921                                 } else {
2922                                         goto lock_page;
2923                                 }
2924                         }
2925 #endif
2926                         /* give a priority to WB_SYNC threads */
2927                         if (atomic_read(&sbi->wb_sync_req[DATA]) &&
2928                                         wbc->sync_mode == WB_SYNC_NONE) {
2929                                 done = 1;
2930                                 break;
2931                         }
2932 #ifdef CONFIG_F2FS_FS_COMPRESSION
2933 lock_page:
2934 #endif
2935                         done_index = page->index;
2936 retry_write:
2937                         lock_page(page);
2938
2939                         if (unlikely(page->mapping != mapping)) {
2940 continue_unlock:
2941                                 unlock_page(page);
2942                                 continue;
2943                         }
2944
2945                         if (!PageDirty(page)) {
2946                                 /* someone wrote it for us */
2947                                 goto continue_unlock;
2948                         }
2949
2950                         if (PageWriteback(page)) {
2951                                 if (wbc->sync_mode != WB_SYNC_NONE)
2952                                         f2fs_wait_on_page_writeback(page,
2953                                                         DATA, true, true);
2954                                 else
2955                                         goto continue_unlock;
2956                         }
2957
2958                         if (!clear_page_dirty_for_io(page))
2959                                 goto continue_unlock;
2960
2961 #ifdef CONFIG_F2FS_FS_COMPRESSION
2962                         if (f2fs_compressed_file(inode)) {
2963                                 get_page(page);
2964                                 f2fs_compress_ctx_add_page(&cc, page);
2965                                 continue;
2966                         }
2967 #endif
2968                         ret = f2fs_write_single_data_page(page, &submitted,
2969                                         &bio, &last_block, wbc, io_type,
2970                                         0, true);
2971                         if (ret == AOP_WRITEPAGE_ACTIVATE)
2972                                 unlock_page(page);
2973 #ifdef CONFIG_F2FS_FS_COMPRESSION
2974 result:
2975 #endif
2976                         nwritten += submitted;
2977                         wbc->nr_to_write -= submitted;
2978
2979                         if (unlikely(ret)) {
2980                                 /*
2981                                  * keep nr_to_write, since vfs uses this to
2982                                  * get # of written pages.
2983                                  */
2984                                 if (ret == AOP_WRITEPAGE_ACTIVATE) {
2985                                         ret = 0;
2986                                         goto next;
2987                                 } else if (ret == -EAGAIN) {
2988                                         ret = 0;
2989                                         if (wbc->sync_mode == WB_SYNC_ALL) {
2990                                                 cond_resched();
2991                                                 congestion_wait(BLK_RW_ASYNC,
2992                                                         DEFAULT_IO_TIMEOUT);
2993                                                 goto retry_write;
2994                                         }
2995                                         goto next;
2996                                 }
2997                                 done_index = page->index + 1;
2998                                 done = 1;
2999                                 break;
3000                         }
3001
3002                         if (wbc->nr_to_write <= 0 &&
3003                                         wbc->sync_mode == WB_SYNC_NONE) {
3004                                 done = 1;
3005                                 break;
3006                         }
3007 next:
3008                         if (need_readd)
3009                                 goto readd;
3010                 }
3011                 pagevec_release(&pvec);
3012                 cond_resched();
3013         }
3014 #ifdef CONFIG_F2FS_FS_COMPRESSION
3015         /* flush remained pages in compress cluster */
3016         if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) {
3017                 ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type);
3018                 nwritten += submitted;
3019                 wbc->nr_to_write -= submitted;
3020                 if (ret) {
3021                         done = 1;
3022                         retry = 0;
3023                 }
3024         }
3025         if (f2fs_compressed_file(inode))
3026                 f2fs_destroy_compress_ctx(&cc);
3027 #endif
3028         if (retry) {
3029                 index = 0;
3030                 end = -1;
3031                 goto retry;
3032         }
3033         if (wbc->range_cyclic && !done)
3034                 done_index = 0;
3035         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3036                 mapping->writeback_index = done_index;
3037
3038         if (nwritten)
3039                 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
3040                                                                 NULL, 0, DATA);
3041         /* submit cached bio of IPU write */
3042         if (bio)
3043                 f2fs_submit_merged_ipu_write(sbi, &bio, NULL);
3044
3045         return ret;
3046 }
3047
3048 static inline bool __should_serialize_io(struct inode *inode,
3049                                         struct writeback_control *wbc)
3050 {
3051         /* to avoid deadlock in path of data flush */
3052         if (F2FS_I(inode)->cp_task)
3053                 return false;
3054
3055         if (!S_ISREG(inode->i_mode))
3056                 return false;
3057         if (IS_NOQUOTA(inode))
3058                 return false;
3059
3060         if (f2fs_need_compress_data(inode))
3061                 return true;
3062         if (wbc->sync_mode != WB_SYNC_ALL)
3063                 return true;
3064         if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
3065                 return true;
3066         return false;
3067 }
3068
3069 static int __f2fs_write_data_pages(struct address_space *mapping,
3070                                                 struct writeback_control *wbc,
3071                                                 enum iostat_type io_type)
3072 {
3073         struct inode *inode = mapping->host;
3074         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3075         struct blk_plug plug;
3076         int ret;
3077         bool locked = false;
3078
3079         /* deal with chardevs and other special file */
3080         if (!mapping->a_ops->writepage)
3081                 return 0;
3082
3083         /* skip writing if there is no dirty page in this inode */
3084         if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
3085                 return 0;
3086
3087         /* during POR, we don't need to trigger writepage at all. */
3088         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
3089                 goto skip_write;
3090
3091         if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
3092                         wbc->sync_mode == WB_SYNC_NONE &&
3093                         get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
3094                         f2fs_available_free_memory(sbi, DIRTY_DENTS))
3095                 goto skip_write;
3096
3097         /* skip writing during file defragment */
3098         if (is_inode_flag_set(inode, FI_DO_DEFRAG))
3099                 goto skip_write;
3100
3101         trace_f2fs_writepages(mapping->host, wbc, DATA);
3102
3103         /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
3104         if (wbc->sync_mode == WB_SYNC_ALL)
3105                 atomic_inc(&sbi->wb_sync_req[DATA]);
3106         else if (atomic_read(&sbi->wb_sync_req[DATA]))
3107                 goto skip_write;
3108
3109         if (__should_serialize_io(inode, wbc)) {
3110                 mutex_lock(&sbi->writepages);
3111                 locked = true;
3112         }
3113
3114         blk_start_plug(&plug);
3115         ret = f2fs_write_cache_pages(mapping, wbc, io_type);
3116         blk_finish_plug(&plug);
3117
3118         if (locked)
3119                 mutex_unlock(&sbi->writepages);
3120
3121         if (wbc->sync_mode == WB_SYNC_ALL)
3122                 atomic_dec(&sbi->wb_sync_req[DATA]);
3123         /*
3124          * if some pages were truncated, we cannot guarantee its mapping->host
3125          * to detect pending bios.
3126          */
3127
3128         f2fs_remove_dirty_inode(inode);
3129         return ret;
3130
3131 skip_write:
3132         wbc->pages_skipped += get_dirty_pages(inode);
3133         trace_f2fs_writepages(mapping->host, wbc, DATA);
3134         return 0;
3135 }
3136
3137 static int f2fs_write_data_pages(struct address_space *mapping,
3138                             struct writeback_control *wbc)
3139 {
3140         struct inode *inode = mapping->host;
3141
3142         return __f2fs_write_data_pages(mapping, wbc,
3143                         F2FS_I(inode)->cp_task == current ?
3144                         FS_CP_DATA_IO : FS_DATA_IO);
3145 }
3146
3147 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
3148 {
3149         struct inode *inode = mapping->host;
3150         loff_t i_size = i_size_read(inode);
3151
3152         if (IS_NOQUOTA(inode))
3153                 return;
3154
3155         /* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
3156         if (to > i_size && !f2fs_verity_in_progress(inode)) {
3157                 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3158                 down_write(&F2FS_I(inode)->i_mmap_sem);
3159
3160                 truncate_pagecache(inode, i_size);
3161                 f2fs_truncate_blocks(inode, i_size, true);
3162
3163                 up_write(&F2FS_I(inode)->i_mmap_sem);
3164                 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3165         }
3166 }
3167
3168 static int prepare_write_begin(struct f2fs_sb_info *sbi,
3169                         struct page *page, loff_t pos, unsigned len,
3170                         block_t *blk_addr, bool *node_changed)
3171 {
3172         struct inode *inode = page->mapping->host;
3173         pgoff_t index = page->index;
3174         struct dnode_of_data dn;
3175         struct page *ipage;
3176         bool locked = false;
3177         struct extent_info ei = {0,0,0};
3178         int err = 0;
3179         int flag;
3180
3181         /*
3182          * we already allocated all the blocks, so we don't need to get
3183          * the block addresses when there is no need to fill the page.
3184          */
3185         if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE &&
3186             !is_inode_flag_set(inode, FI_NO_PREALLOC) &&
3187             !f2fs_verity_in_progress(inode))
3188                 return 0;
3189
3190         /* f2fs_lock_op avoids race between write CP and convert_inline_page */
3191         if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode))
3192                 flag = F2FS_GET_BLOCK_DEFAULT;
3193         else
3194                 flag = F2FS_GET_BLOCK_PRE_AIO;
3195
3196         if (f2fs_has_inline_data(inode) ||
3197                         (pos & PAGE_MASK) >= i_size_read(inode)) {
3198                 f2fs_do_map_lock(sbi, flag, true);
3199                 locked = true;
3200         }
3201
3202 restart:
3203         /* check inline_data */
3204         ipage = f2fs_get_node_page(sbi, inode->i_ino);
3205         if (IS_ERR(ipage)) {
3206                 err = PTR_ERR(ipage);
3207                 goto unlock_out;
3208         }
3209
3210         set_new_dnode(&dn, inode, ipage, ipage, 0);
3211
3212         if (f2fs_has_inline_data(inode)) {
3213                 if (pos + len <= MAX_INLINE_DATA(inode)) {
3214                         f2fs_do_read_inline_data(page, ipage);
3215                         set_inode_flag(inode, FI_DATA_EXIST);
3216                         if (inode->i_nlink)
3217                                 set_inline_node(ipage);
3218                 } else {
3219                         err = f2fs_convert_inline_page(&dn, page);
3220                         if (err)
3221                                 goto out;
3222                         if (dn.data_blkaddr == NULL_ADDR)
3223                                 err = f2fs_get_block(&dn, index);
3224                 }
3225         } else if (locked) {
3226                 err = f2fs_get_block(&dn, index);
3227         } else {
3228                 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
3229                         dn.data_blkaddr = ei.blk + index - ei.fofs;
3230                 } else {
3231                         /* hole case */
3232                         err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3233                         if (err || dn.data_blkaddr == NULL_ADDR) {
3234                                 f2fs_put_dnode(&dn);
3235                                 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO,
3236                                                                 true);
3237                                 WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
3238                                 locked = true;
3239                                 goto restart;
3240                         }
3241                 }
3242         }
3243
3244         /* convert_inline_page can make node_changed */
3245         *blk_addr = dn.data_blkaddr;
3246         *node_changed = dn.node_changed;
3247 out:
3248         f2fs_put_dnode(&dn);
3249 unlock_out:
3250         if (locked)
3251                 f2fs_do_map_lock(sbi, flag, false);
3252         return err;
3253 }
3254
3255 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
3256                 loff_t pos, unsigned len, unsigned flags,
3257                 struct page **pagep, void **fsdata)
3258 {
3259         struct inode *inode = mapping->host;
3260         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3261         struct page *page = NULL;
3262         pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
3263         bool need_balance = false, drop_atomic = false;
3264         block_t blkaddr = NULL_ADDR;
3265         int err = 0;
3266
3267         trace_f2fs_write_begin(inode, pos, len, flags);
3268
3269         if (!f2fs_is_checkpoint_ready(sbi)) {
3270                 err = -ENOSPC;
3271                 goto fail;
3272         }
3273
3274         if ((f2fs_is_atomic_file(inode) &&
3275                         !f2fs_available_free_memory(sbi, INMEM_PAGES)) ||
3276                         is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
3277                 err = -ENOMEM;
3278                 drop_atomic = true;
3279                 goto fail;
3280         }
3281
3282         /*
3283          * We should check this at this moment to avoid deadlock on inode page
3284          * and #0 page. The locking rule for inline_data conversion should be:
3285          * lock_page(page #0) -> lock_page(inode_page)
3286          */
3287         if (index != 0) {
3288                 err = f2fs_convert_inline_inode(inode);
3289                 if (err)
3290                         goto fail;
3291         }
3292
3293 #ifdef CONFIG_F2FS_FS_COMPRESSION
3294         if (f2fs_compressed_file(inode)) {
3295                 int ret;
3296
3297                 *fsdata = NULL;
3298
3299                 ret = f2fs_prepare_compress_overwrite(inode, pagep,
3300                                                         index, fsdata);
3301                 if (ret < 0) {
3302                         err = ret;
3303                         goto fail;
3304                 } else if (ret) {
3305                         return 0;
3306                 }
3307         }
3308 #endif
3309
3310 repeat:
3311         /*
3312          * Do not use grab_cache_page_write_begin() to avoid deadlock due to
3313          * wait_for_stable_page. Will wait that below with our IO control.
3314          */
3315         page = f2fs_pagecache_get_page(mapping, index,
3316                                 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
3317         if (!page) {
3318                 err = -ENOMEM;
3319                 goto fail;
3320         }
3321
3322         /* TODO: cluster can be compressed due to race with .writepage */
3323
3324         *pagep = page;
3325
3326         err = prepare_write_begin(sbi, page, pos, len,
3327                                         &blkaddr, &need_balance);
3328         if (err)
3329                 goto fail;
3330
3331         if (need_balance && !IS_NOQUOTA(inode) &&
3332                         has_not_enough_free_secs(sbi, 0, 0)) {
3333                 unlock_page(page);
3334                 f2fs_balance_fs(sbi, true);
3335                 lock_page(page);
3336                 if (page->mapping != mapping) {
3337                         /* The page got truncated from under us */
3338                         f2fs_put_page(page, 1);
3339                         goto repeat;
3340                 }
3341         }
3342
3343         f2fs_wait_on_page_writeback(page, DATA, false, true);
3344
3345         if (len == PAGE_SIZE || PageUptodate(page))
3346                 return 0;
3347
3348         if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) &&
3349             !f2fs_verity_in_progress(inode)) {
3350                 zero_user_segment(page, len, PAGE_SIZE);
3351                 return 0;
3352         }
3353
3354         if (blkaddr == NEW_ADDR) {
3355                 zero_user_segment(page, 0, PAGE_SIZE);
3356                 SetPageUptodate(page);
3357         } else {
3358                 if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3359                                 DATA_GENERIC_ENHANCE_READ)) {
3360                         err = -EFSCORRUPTED;
3361                         goto fail;
3362                 }
3363                 err = f2fs_submit_page_read(inode, page, blkaddr, 0, true);
3364                 if (err)
3365                         goto fail;
3366
3367                 lock_page(page);
3368                 if (unlikely(page->mapping != mapping)) {
3369                         f2fs_put_page(page, 1);
3370                         goto repeat;
3371                 }
3372                 if (unlikely(!PageUptodate(page))) {
3373                         err = -EIO;
3374                         goto fail;
3375                 }
3376         }
3377         return 0;
3378
3379 fail:
3380         f2fs_put_page(page, 1);
3381         f2fs_write_failed(mapping, pos + len);
3382         if (drop_atomic)
3383                 f2fs_drop_inmem_pages_all(sbi, false);
3384         return err;
3385 }
3386
3387 static int f2fs_write_end(struct file *file,
3388                         struct address_space *mapping,
3389                         loff_t pos, unsigned len, unsigned copied,
3390                         struct page *page, void *fsdata)
3391 {
3392         struct inode *inode = page->mapping->host;
3393
3394         trace_f2fs_write_end(inode, pos, len, copied);
3395
3396         /*
3397          * This should be come from len == PAGE_SIZE, and we expect copied
3398          * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
3399          * let generic_perform_write() try to copy data again through copied=0.
3400          */
3401         if (!PageUptodate(page)) {
3402                 if (unlikely(copied != len))
3403                         copied = 0;
3404                 else
3405                         SetPageUptodate(page);
3406         }
3407
3408 #ifdef CONFIG_F2FS_FS_COMPRESSION
3409         /* overwrite compressed file */
3410         if (f2fs_compressed_file(inode) && fsdata) {
3411                 f2fs_compress_write_end(inode, fsdata, page->index, copied);
3412                 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3413
3414                 if (pos + copied > i_size_read(inode) &&
3415                                 !f2fs_verity_in_progress(inode))
3416                         f2fs_i_size_write(inode, pos + copied);
3417                 return copied;
3418         }
3419 #endif
3420
3421         if (!copied)
3422                 goto unlock_out;
3423
3424         set_page_dirty(page);
3425
3426         if (pos + copied > i_size_read(inode) &&
3427             !f2fs_verity_in_progress(inode))
3428                 f2fs_i_size_write(inode, pos + copied);
3429 unlock_out:
3430         f2fs_put_page(page, 1);
3431         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3432         return copied;
3433 }
3434
3435 static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
3436                            loff_t offset)
3437 {
3438         unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
3439         unsigned blkbits = i_blkbits;
3440         unsigned blocksize_mask = (1 << blkbits) - 1;
3441         unsigned long align = offset | iov_iter_alignment(iter);
3442         struct block_device *bdev = inode->i_sb->s_bdev;
3443
3444         if (iov_iter_rw(iter) == READ && offset >= i_size_read(inode))
3445                 return 1;
3446
3447         if (align & blocksize_mask) {
3448                 if (bdev)
3449                         blkbits = blksize_bits(bdev_logical_block_size(bdev));
3450                 blocksize_mask = (1 << blkbits) - 1;
3451                 if (align & blocksize_mask)
3452                         return -EINVAL;
3453                 return 1;
3454         }
3455         return 0;
3456 }
3457
3458 static void f2fs_dio_end_io(struct bio *bio)
3459 {
3460         struct f2fs_private_dio *dio = bio->bi_private;
3461
3462         dec_page_count(F2FS_I_SB(dio->inode),
3463                         dio->write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
3464
3465         bio->bi_private = dio->orig_private;
3466         bio->bi_end_io = dio->orig_end_io;
3467
3468         kfree(dio);
3469
3470         bio_endio(bio);
3471 }
3472
3473 static void f2fs_dio_submit_bio(struct bio *bio, struct inode *inode,
3474                                                         loff_t file_offset)
3475 {
3476         struct f2fs_private_dio *dio;
3477         bool write = (bio_op(bio) == REQ_OP_WRITE);
3478
3479         dio = f2fs_kzalloc(F2FS_I_SB(inode),
3480                         sizeof(struct f2fs_private_dio), GFP_NOFS);
3481         if (!dio)
3482                 goto out;
3483
3484         dio->inode = inode;
3485         dio->orig_end_io = bio->bi_end_io;
3486         dio->orig_private = bio->bi_private;
3487         dio->write = write;
3488
3489         bio->bi_end_io = f2fs_dio_end_io;
3490         bio->bi_private = dio;
3491
3492         inc_page_count(F2FS_I_SB(inode),
3493                         write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
3494
3495         submit_bio(bio);
3496         return;
3497 out:
3498         bio->bi_status = BLK_STS_IOERR;
3499         bio_endio(bio);
3500 }
3501
3502 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3503 {
3504         struct address_space *mapping = iocb->ki_filp->f_mapping;
3505         struct inode *inode = mapping->host;
3506         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3507         struct f2fs_inode_info *fi = F2FS_I(inode);
3508         size_t count = iov_iter_count(iter);
3509         loff_t offset = iocb->ki_pos;
3510         int rw = iov_iter_rw(iter);
3511         int err;
3512         enum rw_hint hint = iocb->ki_hint;
3513         int whint_mode = F2FS_OPTION(sbi).whint_mode;
3514         bool do_opu;
3515
3516         err = check_direct_IO(inode, iter, offset);
3517         if (err)
3518                 return err < 0 ? err : 0;
3519
3520         if (f2fs_force_buffered_io(inode, iocb, iter))
3521                 return 0;
3522
3523         do_opu = allow_outplace_dio(inode, iocb, iter);
3524
3525         trace_f2fs_direct_IO_enter(inode, offset, count, rw);
3526
3527         if (rw == WRITE && whint_mode == WHINT_MODE_OFF)
3528                 iocb->ki_hint = WRITE_LIFE_NOT_SET;
3529
3530         if (iocb->ki_flags & IOCB_NOWAIT) {
3531                 if (!down_read_trylock(&fi->i_gc_rwsem[rw])) {
3532                         iocb->ki_hint = hint;
3533                         err = -EAGAIN;
3534                         goto out;
3535                 }
3536                 if (do_opu && !down_read_trylock(&fi->i_gc_rwsem[READ])) {
3537                         up_read(&fi->i_gc_rwsem[rw]);
3538                         iocb->ki_hint = hint;
3539                         err = -EAGAIN;
3540                         goto out;
3541                 }
3542         } else {
3543                 down_read(&fi->i_gc_rwsem[rw]);
3544                 if (do_opu)
3545                         down_read(&fi->i_gc_rwsem[READ]);
3546         }
3547
3548         err = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3549                         iter, rw == WRITE ? get_data_block_dio_write :
3550                         get_data_block_dio, NULL, f2fs_dio_submit_bio,
3551                         rw == WRITE ? DIO_LOCKING | DIO_SKIP_HOLES :
3552                         DIO_SKIP_HOLES);
3553
3554         if (do_opu)
3555                 up_read(&fi->i_gc_rwsem[READ]);
3556
3557         up_read(&fi->i_gc_rwsem[rw]);
3558
3559         if (rw == WRITE) {
3560                 if (whint_mode == WHINT_MODE_OFF)
3561                         iocb->ki_hint = hint;
3562                 if (err > 0) {
3563                         f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO,
3564                                                                         err);
3565                         if (!do_opu)
3566                                 set_inode_flag(inode, FI_UPDATE_WRITE);
3567                 } else if (err == -EIOCBQUEUED) {
3568                         f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO,
3569                                                 count - iov_iter_count(iter));
3570                 } else if (err < 0) {
3571                         f2fs_write_failed(mapping, offset + count);
3572                 }
3573         } else {
3574                 if (err > 0)
3575                         f2fs_update_iostat(sbi, APP_DIRECT_READ_IO, err);
3576                 else if (err == -EIOCBQUEUED)
3577                         f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_READ_IO,
3578                                                 count - iov_iter_count(iter));
3579         }
3580
3581 out:
3582         trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
3583
3584         return err;
3585 }
3586
3587 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3588                                                         unsigned int length)
3589 {
3590         struct inode *inode = page->mapping->host;
3591         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3592
3593         if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
3594                 (offset % PAGE_SIZE || length != PAGE_SIZE))
3595                 return;
3596
3597         if (PageDirty(page)) {
3598                 if (inode->i_ino == F2FS_META_INO(sbi)) {
3599                         dec_page_count(sbi, F2FS_DIRTY_META);
3600                 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
3601                         dec_page_count(sbi, F2FS_DIRTY_NODES);
3602                 } else {
3603                         inode_dec_dirty_pages(inode);
3604                         f2fs_remove_dirty_inode(inode);
3605                 }
3606         }
3607
3608         clear_cold_data(page);
3609
3610         if (IS_ATOMIC_WRITTEN_PAGE(page))
3611                 return f2fs_drop_inmem_page(inode, page);
3612
3613         f2fs_clear_page_private(page);
3614 }
3615
3616 int f2fs_release_page(struct page *page, gfp_t wait)
3617 {
3618         /* If this is dirty page, keep PagePrivate */
3619         if (PageDirty(page))
3620                 return 0;
3621
3622         /* This is atomic written page, keep Private */
3623         if (IS_ATOMIC_WRITTEN_PAGE(page))
3624                 return 0;
3625
3626         clear_cold_data(page);
3627         f2fs_clear_page_private(page);
3628         return 1;
3629 }
3630
3631 static int f2fs_set_data_page_dirty(struct page *page)
3632 {
3633         struct inode *inode = page_file_mapping(page)->host;
3634
3635         trace_f2fs_set_page_dirty(page, DATA);
3636
3637         if (!PageUptodate(page))
3638                 SetPageUptodate(page);
3639         if (PageSwapCache(page))
3640                 return __set_page_dirty_nobuffers(page);
3641
3642         if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) {
3643                 if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
3644                         f2fs_register_inmem_page(inode, page);
3645                         return 1;
3646                 }
3647                 /*
3648                  * Previously, this page has been registered, we just
3649                  * return here.
3650                  */
3651                 return 0;
3652         }
3653
3654         if (!PageDirty(page)) {
3655                 __set_page_dirty_nobuffers(page);
3656                 f2fs_update_dirty_page(inode, page);
3657                 return 1;
3658         }
3659         return 0;
3660 }
3661
3662
3663 static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block)
3664 {
3665 #ifdef CONFIG_F2FS_FS_COMPRESSION
3666         struct dnode_of_data dn;
3667         sector_t start_idx, blknr = 0;
3668         int ret;
3669
3670         start_idx = round_down(block, F2FS_I(inode)->i_cluster_size);
3671
3672         set_new_dnode(&dn, inode, NULL, NULL, 0);
3673         ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
3674         if (ret)
3675                 return 0;
3676
3677         if (dn.data_blkaddr != COMPRESS_ADDR) {
3678                 dn.ofs_in_node += block - start_idx;
3679                 blknr = f2fs_data_blkaddr(&dn);
3680                 if (!__is_valid_data_blkaddr(blknr))
3681                         blknr = 0;
3682         }
3683
3684         f2fs_put_dnode(&dn);
3685         return blknr;
3686 #else
3687         return 0;
3688 #endif
3689 }
3690
3691
3692 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
3693 {
3694         struct inode *inode = mapping->host;
3695         sector_t blknr = 0;
3696
3697         if (f2fs_has_inline_data(inode))
3698                 goto out;
3699
3700         /* make sure allocating whole blocks */
3701         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
3702                 filemap_write_and_wait(mapping);
3703
3704         /* Block number less than F2FS MAX BLOCKS */
3705         if (unlikely(block >= max_file_blocks(inode)))
3706                 goto out;
3707
3708         if (f2fs_compressed_file(inode)) {
3709                 blknr = f2fs_bmap_compress(inode, block);
3710         } else {
3711                 struct f2fs_map_blocks map;
3712
3713                 memset(&map, 0, sizeof(map));
3714                 map.m_lblk = block;
3715                 map.m_len = 1;
3716                 map.m_next_pgofs = NULL;
3717                 map.m_seg_type = NO_CHECK_TYPE;
3718
3719                 if (!f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_BMAP))
3720                         blknr = map.m_pblk;
3721         }
3722 out:
3723         trace_f2fs_bmap(inode, block, blknr);
3724         return blknr;
3725 }
3726
3727 #ifdef CONFIG_MIGRATION
3728 #include <linux/migrate.h>
3729
3730 int f2fs_migrate_page(struct address_space *mapping,
3731                 struct page *newpage, struct page *page, enum migrate_mode mode)
3732 {
3733         int rc, extra_count;
3734         struct f2fs_inode_info *fi = F2FS_I(mapping->host);
3735         bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page);
3736
3737         BUG_ON(PageWriteback(page));
3738
3739         /* migrating an atomic written page is safe with the inmem_lock hold */
3740         if (atomic_written) {
3741                 if (mode != MIGRATE_SYNC)
3742                         return -EBUSY;
3743                 if (!mutex_trylock(&fi->inmem_lock))
3744                         return -EAGAIN;
3745         }
3746
3747         /* one extra reference was held for atomic_write page */
3748         extra_count = atomic_written ? 1 : 0;
3749         rc = migrate_page_move_mapping(mapping, newpage,
3750                                 page, extra_count);
3751         if (rc != MIGRATEPAGE_SUCCESS) {
3752                 if (atomic_written)
3753                         mutex_unlock(&fi->inmem_lock);
3754                 return rc;
3755         }
3756
3757         if (atomic_written) {
3758                 struct inmem_pages *cur;
3759                 list_for_each_entry(cur, &fi->inmem_pages, list)
3760                         if (cur->page == page) {
3761                                 cur->page = newpage;
3762                                 break;
3763                         }
3764                 mutex_unlock(&fi->inmem_lock);
3765                 put_page(page);
3766                 get_page(newpage);
3767         }
3768
3769         if (PagePrivate(page)) {
3770                 f2fs_set_page_private(newpage, page_private(page));
3771                 f2fs_clear_page_private(page);
3772         }
3773
3774         if (mode != MIGRATE_SYNC_NO_COPY)
3775                 migrate_page_copy(newpage, page);
3776         else
3777                 migrate_page_states(newpage, page);
3778
3779         return MIGRATEPAGE_SUCCESS;
3780 }
3781 #endif
3782
3783 #ifdef CONFIG_SWAP
3784 static int check_swap_activate_fast(struct swap_info_struct *sis,
3785                                 struct file *swap_file, sector_t *span)
3786 {
3787         struct address_space *mapping = swap_file->f_mapping;
3788         struct inode *inode = mapping->host;
3789         sector_t cur_lblock;
3790         sector_t last_lblock;
3791         sector_t pblock;
3792         sector_t lowest_pblock = -1;
3793         sector_t highest_pblock = 0;
3794         int nr_extents = 0;
3795         unsigned long nr_pblocks;
3796         u64 len;
3797         int ret;
3798
3799         /*
3800          * Map all the blocks into the extent list.  This code doesn't try
3801          * to be very smart.
3802          */
3803         cur_lblock = 0;
3804         last_lblock = bytes_to_blks(inode, i_size_read(inode));
3805         len = i_size_read(inode);
3806
3807         while (cur_lblock <= last_lblock && cur_lblock < sis->max) {
3808                 struct f2fs_map_blocks map;
3809                 pgoff_t next_pgofs;
3810
3811                 cond_resched();
3812
3813                 memset(&map, 0, sizeof(map));
3814                 map.m_lblk = cur_lblock;
3815                 map.m_len = bytes_to_blks(inode, len) - cur_lblock;
3816                 map.m_next_pgofs = &next_pgofs;
3817                 map.m_seg_type = NO_CHECK_TYPE;
3818
3819                 ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP);
3820                 if (ret)
3821                         goto err_out;
3822
3823                 /* hole */
3824                 if (!(map.m_flags & F2FS_MAP_FLAGS))
3825                         goto err_out;
3826
3827                 pblock = map.m_pblk;
3828                 nr_pblocks = map.m_len;
3829
3830                 if (cur_lblock + nr_pblocks >= sis->max)
3831                         nr_pblocks = sis->max - cur_lblock;
3832
3833                 if (cur_lblock) {       /* exclude the header page */
3834                         if (pblock < lowest_pblock)
3835                                 lowest_pblock = pblock;
3836                         if (pblock + nr_pblocks - 1 > highest_pblock)
3837                                 highest_pblock = pblock + nr_pblocks - 1;
3838                 }
3839
3840                 /*
3841                  * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
3842                  */
3843                 ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock);
3844                 if (ret < 0)
3845                         goto out;
3846                 nr_extents += ret;
3847                 cur_lblock += nr_pblocks;
3848         }
3849         ret = nr_extents;
3850         *span = 1 + highest_pblock - lowest_pblock;
3851         if (cur_lblock == 0)
3852                 cur_lblock = 1; /* force Empty message */
3853         sis->max = cur_lblock;
3854         sis->pages = cur_lblock - 1;
3855         sis->highest_bit = cur_lblock - 1;
3856 out:
3857         return ret;
3858 err_out:
3859         pr_err("swapon: swapfile has holes\n");
3860         return -EINVAL;
3861 }
3862
3863 /* Copied from generic_swapfile_activate() to check any holes */
3864 static int check_swap_activate(struct swap_info_struct *sis,
3865                                 struct file *swap_file, sector_t *span)
3866 {
3867         struct address_space *mapping = swap_file->f_mapping;
3868         struct inode *inode = mapping->host;
3869         unsigned blocks_per_page;
3870         unsigned long page_no;
3871         sector_t probe_block;
3872         sector_t last_block;
3873         sector_t lowest_block = -1;
3874         sector_t highest_block = 0;
3875         int nr_extents = 0;
3876         int ret;
3877
3878         if (PAGE_SIZE == F2FS_BLKSIZE)
3879                 return check_swap_activate_fast(sis, swap_file, span);
3880
3881         blocks_per_page = bytes_to_blks(inode, PAGE_SIZE);
3882
3883         /*
3884          * Map all the blocks into the extent list.  This code doesn't try
3885          * to be very smart.
3886          */
3887         probe_block = 0;
3888         page_no = 0;
3889         last_block = bytes_to_blks(inode, i_size_read(inode));
3890         while ((probe_block + blocks_per_page) <= last_block &&
3891                         page_no < sis->max) {
3892                 unsigned block_in_page;
3893                 sector_t first_block;
3894                 sector_t block = 0;
3895                 int      err = 0;
3896
3897                 cond_resched();
3898
3899                 block = probe_block;
3900                 err = bmap(inode, &block);
3901                 if (err || !block)
3902                         goto bad_bmap;
3903                 first_block = block;
3904
3905                 /*
3906                  * It must be PAGE_SIZE aligned on-disk
3907                  */
3908                 if (first_block & (blocks_per_page - 1)) {
3909                         probe_block++;
3910                         goto reprobe;
3911                 }
3912
3913                 for (block_in_page = 1; block_in_page < blocks_per_page;
3914                                         block_in_page++) {
3915
3916                         block = probe_block + block_in_page;
3917                         err = bmap(inode, &block);
3918
3919                         if (err || !block)
3920                                 goto bad_bmap;
3921
3922                         if (block != first_block + block_in_page) {
3923                                 /* Discontiguity */
3924                                 probe_block++;
3925                                 goto reprobe;
3926                         }
3927                 }
3928
3929                 first_block >>= (PAGE_SHIFT - inode->i_blkbits);
3930                 if (page_no) {  /* exclude the header page */
3931                         if (first_block < lowest_block)
3932                                 lowest_block = first_block;
3933                         if (first_block > highest_block)
3934                                 highest_block = first_block;
3935                 }
3936
3937                 /*
3938                  * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
3939                  */
3940                 ret = add_swap_extent(sis, page_no, 1, first_block);
3941                 if (ret < 0)
3942                         goto out;
3943                 nr_extents += ret;
3944                 page_no++;
3945                 probe_block += blocks_per_page;
3946 reprobe:
3947                 continue;
3948         }
3949         ret = nr_extents;
3950         *span = 1 + highest_block - lowest_block;
3951         if (page_no == 0)
3952                 page_no = 1;    /* force Empty message */
3953         sis->max = page_no;
3954         sis->pages = page_no - 1;
3955         sis->highest_bit = page_no - 1;
3956 out:
3957         return ret;
3958 bad_bmap:
3959         pr_err("swapon: swapfile has holes\n");
3960         return -EINVAL;
3961 }
3962
3963 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
3964                                 sector_t *span)
3965 {
3966         struct inode *inode = file_inode(file);
3967         int ret;
3968
3969         if (!S_ISREG(inode->i_mode))
3970                 return -EINVAL;
3971
3972         if (f2fs_readonly(F2FS_I_SB(inode)->sb))
3973                 return -EROFS;
3974
3975         ret = f2fs_convert_inline_inode(inode);
3976         if (ret)
3977                 return ret;
3978
3979         if (!f2fs_disable_compressed_file(inode))
3980                 return -EINVAL;
3981
3982         f2fs_precache_extents(inode);
3983
3984         ret = check_swap_activate(sis, file, span);
3985         if (ret < 0)
3986                 return ret;
3987
3988         set_inode_flag(inode, FI_PIN_FILE);
3989         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3990         return ret;
3991 }
3992
3993 static void f2fs_swap_deactivate(struct file *file)
3994 {
3995         struct inode *inode = file_inode(file);
3996
3997         clear_inode_flag(inode, FI_PIN_FILE);
3998 }
3999 #else
4000 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4001                                 sector_t *span)
4002 {
4003         return -EOPNOTSUPP;
4004 }
4005
4006 static void f2fs_swap_deactivate(struct file *file)
4007 {
4008 }
4009 #endif
4010
4011 const struct address_space_operations f2fs_dblock_aops = {
4012         .readpage       = f2fs_read_data_page,
4013         .readahead      = f2fs_readahead,
4014         .writepage      = f2fs_write_data_page,
4015         .writepages     = f2fs_write_data_pages,
4016         .write_begin    = f2fs_write_begin,
4017         .write_end      = f2fs_write_end,
4018         .set_page_dirty = f2fs_set_data_page_dirty,
4019         .invalidatepage = f2fs_invalidate_page,
4020         .releasepage    = f2fs_release_page,
4021         .direct_IO      = f2fs_direct_IO,
4022         .bmap           = f2fs_bmap,
4023         .swap_activate  = f2fs_swap_activate,
4024         .swap_deactivate = f2fs_swap_deactivate,
4025 #ifdef CONFIG_MIGRATION
4026         .migratepage    = f2fs_migrate_page,
4027 #endif
4028 };
4029
4030 void f2fs_clear_page_cache_dirty_tag(struct page *page)
4031 {
4032         struct address_space *mapping = page_mapping(page);
4033         unsigned long flags;
4034
4035         xa_lock_irqsave(&mapping->i_pages, flags);
4036         __xa_clear_mark(&mapping->i_pages, page_index(page),
4037                                                 PAGECACHE_TAG_DIRTY);
4038         xa_unlock_irqrestore(&mapping->i_pages, flags);
4039 }
4040
4041 int __init f2fs_init_post_read_processing(void)
4042 {
4043         bio_post_read_ctx_cache =
4044                 kmem_cache_create("f2fs_bio_post_read_ctx",
4045                                   sizeof(struct bio_post_read_ctx), 0, 0, NULL);
4046         if (!bio_post_read_ctx_cache)
4047                 goto fail;
4048         bio_post_read_ctx_pool =
4049                 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
4050                                          bio_post_read_ctx_cache);
4051         if (!bio_post_read_ctx_pool)
4052                 goto fail_free_cache;
4053         return 0;
4054
4055 fail_free_cache:
4056         kmem_cache_destroy(bio_post_read_ctx_cache);
4057 fail:
4058         return -ENOMEM;
4059 }
4060
4061 void f2fs_destroy_post_read_processing(void)
4062 {
4063         mempool_destroy(bio_post_read_ctx_pool);
4064         kmem_cache_destroy(bio_post_read_ctx_cache);
4065 }
4066
4067 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi)
4068 {
4069         if (!f2fs_sb_has_encrypt(sbi) &&
4070                 !f2fs_sb_has_verity(sbi) &&
4071                 !f2fs_sb_has_compression(sbi))
4072                 return 0;
4073
4074         sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq",
4075                                                  WQ_UNBOUND | WQ_HIGHPRI,
4076                                                  num_online_cpus());
4077         if (!sbi->post_read_wq)
4078                 return -ENOMEM;
4079         return 0;
4080 }
4081
4082 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi)
4083 {
4084         if (sbi->post_read_wq)
4085                 destroy_workqueue(sbi->post_read_wq);
4086 }
4087
4088 int __init f2fs_init_bio_entry_cache(void)
4089 {
4090         bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab",
4091                         sizeof(struct bio_entry));
4092         if (!bio_entry_slab)
4093                 return -ENOMEM;
4094         return 0;
4095 }
4096
4097 void f2fs_destroy_bio_entry_cache(void)
4098 {
4099         kmem_cache_destroy(bio_entry_slab);
4100 }