Merge tag 'drm-intel-next-fixes-2017-09-07' of git://anongit.freedesktop.org/git...
[linux-2.6-microblaze.git] / fs / f2fs / data.c
1 /*
2  * fs/f2fs/data.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/buffer_head.h>
14 #include <linux/mpage.h>
15 #include <linux/writeback.h>
16 #include <linux/backing-dev.h>
17 #include <linux/pagevec.h>
18 #include <linux/blkdev.h>
19 #include <linux/bio.h>
20 #include <linux/prefetch.h>
21 #include <linux/uio.h>
22 #include <linux/mm.h>
23 #include <linux/memcontrol.h>
24 #include <linux/cleancache.h>
25 #include <linux/sched/signal.h>
26
27 #include "f2fs.h"
28 #include "node.h"
29 #include "segment.h"
30 #include "trace.h"
31 #include <trace/events/f2fs.h>
32
33 static bool __is_cp_guaranteed(struct page *page)
34 {
35         struct address_space *mapping = page->mapping;
36         struct inode *inode;
37         struct f2fs_sb_info *sbi;
38
39         if (!mapping)
40                 return false;
41
42         inode = mapping->host;
43         sbi = F2FS_I_SB(inode);
44
45         if (inode->i_ino == F2FS_META_INO(sbi) ||
46                         inode->i_ino ==  F2FS_NODE_INO(sbi) ||
47                         S_ISDIR(inode->i_mode) ||
48                         is_cold_data(page))
49                 return true;
50         return false;
51 }
52
53 static void f2fs_read_end_io(struct bio *bio)
54 {
55         struct bio_vec *bvec;
56         int i;
57
58 #ifdef CONFIG_F2FS_FAULT_INJECTION
59         if (time_to_inject(F2FS_P_SB(bio->bi_io_vec->bv_page), FAULT_IO)) {
60                 f2fs_show_injection_info(FAULT_IO);
61                 bio->bi_status = BLK_STS_IOERR;
62         }
63 #endif
64
65         if (f2fs_bio_encrypted(bio)) {
66                 if (bio->bi_status) {
67                         fscrypt_release_ctx(bio->bi_private);
68                 } else {
69                         fscrypt_decrypt_bio_pages(bio->bi_private, bio);
70                         return;
71                 }
72         }
73
74         bio_for_each_segment_all(bvec, bio, i) {
75                 struct page *page = bvec->bv_page;
76
77                 if (!bio->bi_status) {
78                         if (!PageUptodate(page))
79                                 SetPageUptodate(page);
80                 } else {
81                         ClearPageUptodate(page);
82                         SetPageError(page);
83                 }
84                 unlock_page(page);
85         }
86         bio_put(bio);
87 }
88
89 static void f2fs_write_end_io(struct bio *bio)
90 {
91         struct f2fs_sb_info *sbi = bio->bi_private;
92         struct bio_vec *bvec;
93         int i;
94
95         bio_for_each_segment_all(bvec, bio, i) {
96                 struct page *page = bvec->bv_page;
97                 enum count_type type = WB_DATA_TYPE(page);
98
99                 if (IS_DUMMY_WRITTEN_PAGE(page)) {
100                         set_page_private(page, (unsigned long)NULL);
101                         ClearPagePrivate(page);
102                         unlock_page(page);
103                         mempool_free(page, sbi->write_io_dummy);
104
105                         if (unlikely(bio->bi_status))
106                                 f2fs_stop_checkpoint(sbi, true);
107                         continue;
108                 }
109
110                 fscrypt_pullback_bio_page(&page, true);
111
112                 if (unlikely(bio->bi_status)) {
113                         mapping_set_error(page->mapping, -EIO);
114                         f2fs_stop_checkpoint(sbi, true);
115                 }
116                 dec_page_count(sbi, type);
117                 clear_cold_data(page);
118                 end_page_writeback(page);
119         }
120         if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
121                                 wq_has_sleeper(&sbi->cp_wait))
122                 wake_up(&sbi->cp_wait);
123
124         bio_put(bio);
125 }
126
127 /*
128  * Return true, if pre_bio's bdev is same as its target device.
129  */
130 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
131                                 block_t blk_addr, struct bio *bio)
132 {
133         struct block_device *bdev = sbi->sb->s_bdev;
134         int i;
135
136         for (i = 0; i < sbi->s_ndevs; i++) {
137                 if (FDEV(i).start_blk <= blk_addr &&
138                                         FDEV(i).end_blk >= blk_addr) {
139                         blk_addr -= FDEV(i).start_blk;
140                         bdev = FDEV(i).bdev;
141                         break;
142                 }
143         }
144         if (bio) {
145                 bio_set_dev(bio, bdev);
146                 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
147         }
148         return bdev;
149 }
150
151 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
152 {
153         int i;
154
155         for (i = 0; i < sbi->s_ndevs; i++)
156                 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
157                         return i;
158         return 0;
159 }
160
161 static bool __same_bdev(struct f2fs_sb_info *sbi,
162                                 block_t blk_addr, struct bio *bio)
163 {
164         struct block_device *b = f2fs_target_device(sbi, blk_addr, NULL);
165         return bio->bi_disk == b->bd_disk && bio->bi_partno == b->bd_partno;
166 }
167
168 /*
169  * Low-level block read/write IO operations.
170  */
171 static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
172                                 int npages, bool is_read)
173 {
174         struct bio *bio;
175
176         bio = f2fs_bio_alloc(npages);
177
178         f2fs_target_device(sbi, blk_addr, bio);
179         bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io;
180         bio->bi_private = is_read ? NULL : sbi;
181
182         return bio;
183 }
184
185 static inline void __submit_bio(struct f2fs_sb_info *sbi,
186                                 struct bio *bio, enum page_type type)
187 {
188         if (!is_read_io(bio_op(bio))) {
189                 unsigned int start;
190
191                 if (f2fs_sb_mounted_blkzoned(sbi->sb) &&
192                         current->plug && (type == DATA || type == NODE))
193                         blk_finish_plug(current->plug);
194
195                 if (type != DATA && type != NODE)
196                         goto submit_io;
197
198                 start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
199                 start %= F2FS_IO_SIZE(sbi);
200
201                 if (start == 0)
202                         goto submit_io;
203
204                 /* fill dummy pages */
205                 for (; start < F2FS_IO_SIZE(sbi); start++) {
206                         struct page *page =
207                                 mempool_alloc(sbi->write_io_dummy,
208                                         GFP_NOIO | __GFP_ZERO | __GFP_NOFAIL);
209                         f2fs_bug_on(sbi, !page);
210
211                         SetPagePrivate(page);
212                         set_page_private(page, (unsigned long)DUMMY_WRITTEN_PAGE);
213                         lock_page(page);
214                         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
215                                 f2fs_bug_on(sbi, 1);
216                 }
217                 /*
218                  * In the NODE case, we lose next block address chain. So, we
219                  * need to do checkpoint in f2fs_sync_file.
220                  */
221                 if (type == NODE)
222                         set_sbi_flag(sbi, SBI_NEED_CP);
223         }
224 submit_io:
225         if (is_read_io(bio_op(bio)))
226                 trace_f2fs_submit_read_bio(sbi->sb, type, bio);
227         else
228                 trace_f2fs_submit_write_bio(sbi->sb, type, bio);
229         submit_bio(bio);
230 }
231
232 static void __submit_merged_bio(struct f2fs_bio_info *io)
233 {
234         struct f2fs_io_info *fio = &io->fio;
235
236         if (!io->bio)
237                 return;
238
239         bio_set_op_attrs(io->bio, fio->op, fio->op_flags);
240
241         if (is_read_io(fio->op))
242                 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
243         else
244                 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
245
246         __submit_bio(io->sbi, io->bio, fio->type);
247         io->bio = NULL;
248 }
249
250 static bool __has_merged_page(struct f2fs_bio_info *io,
251                                 struct inode *inode, nid_t ino, pgoff_t idx)
252 {
253         struct bio_vec *bvec;
254         struct page *target;
255         int i;
256
257         if (!io->bio)
258                 return false;
259
260         if (!inode && !ino)
261                 return true;
262
263         bio_for_each_segment_all(bvec, io->bio, i) {
264
265                 if (bvec->bv_page->mapping)
266                         target = bvec->bv_page;
267                 else
268                         target = fscrypt_control_page(bvec->bv_page);
269
270                 if (idx != target->index)
271                         continue;
272
273                 if (inode && inode == target->mapping->host)
274                         return true;
275                 if (ino && ino == ino_of_node(target))
276                         return true;
277         }
278
279         return false;
280 }
281
282 static bool has_merged_page(struct f2fs_sb_info *sbi, struct inode *inode,
283                                 nid_t ino, pgoff_t idx, enum page_type type)
284 {
285         enum page_type btype = PAGE_TYPE_OF_BIO(type);
286         enum temp_type temp;
287         struct f2fs_bio_info *io;
288         bool ret = false;
289
290         for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
291                 io = sbi->write_io[btype] + temp;
292
293                 down_read(&io->io_rwsem);
294                 ret = __has_merged_page(io, inode, ino, idx);
295                 up_read(&io->io_rwsem);
296
297                 /* TODO: use HOT temp only for meta pages now. */
298                 if (ret || btype == META)
299                         break;
300         }
301         return ret;
302 }
303
304 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
305                                 enum page_type type, enum temp_type temp)
306 {
307         enum page_type btype = PAGE_TYPE_OF_BIO(type);
308         struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
309
310         down_write(&io->io_rwsem);
311
312         /* change META to META_FLUSH in the checkpoint procedure */
313         if (type >= META_FLUSH) {
314                 io->fio.type = META_FLUSH;
315                 io->fio.op = REQ_OP_WRITE;
316                 io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC;
317                 if (!test_opt(sbi, NOBARRIER))
318                         io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
319         }
320         __submit_merged_bio(io);
321         up_write(&io->io_rwsem);
322 }
323
324 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
325                                 struct inode *inode, nid_t ino, pgoff_t idx,
326                                 enum page_type type, bool force)
327 {
328         enum temp_type temp;
329
330         if (!force && !has_merged_page(sbi, inode, ino, idx, type))
331                 return;
332
333         for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
334
335                 __f2fs_submit_merged_write(sbi, type, temp);
336
337                 /* TODO: use HOT temp only for meta pages now. */
338                 if (type >= META)
339                         break;
340         }
341 }
342
343 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
344 {
345         __submit_merged_write_cond(sbi, NULL, 0, 0, type, true);
346 }
347
348 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
349                                 struct inode *inode, nid_t ino, pgoff_t idx,
350                                 enum page_type type)
351 {
352         __submit_merged_write_cond(sbi, inode, ino, idx, type, false);
353 }
354
355 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
356 {
357         f2fs_submit_merged_write(sbi, DATA);
358         f2fs_submit_merged_write(sbi, NODE);
359         f2fs_submit_merged_write(sbi, META);
360 }
361
362 /*
363  * Fill the locked page with data located in the block address.
364  * A caller needs to unlock the page on failure.
365  */
366 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
367 {
368         struct bio *bio;
369         struct page *page = fio->encrypted_page ?
370                         fio->encrypted_page : fio->page;
371
372         trace_f2fs_submit_page_bio(page, fio);
373         f2fs_trace_ios(fio, 0);
374
375         /* Allocate a new bio */
376         bio = __bio_alloc(fio->sbi, fio->new_blkaddr, 1, is_read_io(fio->op));
377
378         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
379                 bio_put(bio);
380                 return -EFAULT;
381         }
382         bio_set_op_attrs(bio, fio->op, fio->op_flags);
383
384         __submit_bio(fio->sbi, bio, fio->type);
385
386         if (!is_read_io(fio->op))
387                 inc_page_count(fio->sbi, WB_DATA_TYPE(fio->page));
388         return 0;
389 }
390
391 int f2fs_submit_page_write(struct f2fs_io_info *fio)
392 {
393         struct f2fs_sb_info *sbi = fio->sbi;
394         enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
395         struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
396         struct page *bio_page;
397         int err = 0;
398
399         f2fs_bug_on(sbi, is_read_io(fio->op));
400
401         down_write(&io->io_rwsem);
402 next:
403         if (fio->in_list) {
404                 spin_lock(&io->io_lock);
405                 if (list_empty(&io->io_list)) {
406                         spin_unlock(&io->io_lock);
407                         goto out_fail;
408                 }
409                 fio = list_first_entry(&io->io_list,
410                                                 struct f2fs_io_info, list);
411                 list_del(&fio->list);
412                 spin_unlock(&io->io_lock);
413         }
414
415         if (fio->old_blkaddr != NEW_ADDR)
416                 verify_block_addr(sbi, fio->old_blkaddr);
417         verify_block_addr(sbi, fio->new_blkaddr);
418
419         bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page;
420
421         /* set submitted = 1 as a return value */
422         fio->submitted = 1;
423
424         inc_page_count(sbi, WB_DATA_TYPE(bio_page));
425
426         if (io->bio && (io->last_block_in_bio != fio->new_blkaddr - 1 ||
427             (io->fio.op != fio->op || io->fio.op_flags != fio->op_flags) ||
428                         !__same_bdev(sbi, fio->new_blkaddr, io->bio)))
429                 __submit_merged_bio(io);
430 alloc_new:
431         if (io->bio == NULL) {
432                 if ((fio->type == DATA || fio->type == NODE) &&
433                                 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
434                         err = -EAGAIN;
435                         dec_page_count(sbi, WB_DATA_TYPE(bio_page));
436                         goto out_fail;
437                 }
438                 io->bio = __bio_alloc(sbi, fio->new_blkaddr,
439                                                 BIO_MAX_PAGES, false);
440                 io->fio = *fio;
441         }
442
443         if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
444                 __submit_merged_bio(io);
445                 goto alloc_new;
446         }
447
448         io->last_block_in_bio = fio->new_blkaddr;
449         f2fs_trace_ios(fio, 0);
450
451         trace_f2fs_submit_page_write(fio->page, fio);
452
453         if (fio->in_list)
454                 goto next;
455 out_fail:
456         up_write(&io->io_rwsem);
457         return err;
458 }
459
460 static void __set_data_blkaddr(struct dnode_of_data *dn)
461 {
462         struct f2fs_node *rn = F2FS_NODE(dn->node_page);
463         __le32 *addr_array;
464
465         /* Get physical address of data block */
466         addr_array = blkaddr_in_node(rn);
467         addr_array[dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
468 }
469
470 /*
471  * Lock ordering for the change of data block address:
472  * ->data_page
473  *  ->node_page
474  *    update block addresses in the node page
475  */
476 void set_data_blkaddr(struct dnode_of_data *dn)
477 {
478         f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
479         __set_data_blkaddr(dn);
480         if (set_page_dirty(dn->node_page))
481                 dn->node_changed = true;
482 }
483
484 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
485 {
486         dn->data_blkaddr = blkaddr;
487         set_data_blkaddr(dn);
488         f2fs_update_extent_cache(dn);
489 }
490
491 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
492 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
493 {
494         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
495         int err;
496
497         if (!count)
498                 return 0;
499
500         if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
501                 return -EPERM;
502         if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
503                 return err;
504
505         trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
506                                                 dn->ofs_in_node, count);
507
508         f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
509
510         for (; count > 0; dn->ofs_in_node++) {
511                 block_t blkaddr =
512                         datablock_addr(dn->node_page, dn->ofs_in_node);
513                 if (blkaddr == NULL_ADDR) {
514                         dn->data_blkaddr = NEW_ADDR;
515                         __set_data_blkaddr(dn);
516                         count--;
517                 }
518         }
519
520         if (set_page_dirty(dn->node_page))
521                 dn->node_changed = true;
522         return 0;
523 }
524
525 /* Should keep dn->ofs_in_node unchanged */
526 int reserve_new_block(struct dnode_of_data *dn)
527 {
528         unsigned int ofs_in_node = dn->ofs_in_node;
529         int ret;
530
531         ret = reserve_new_blocks(dn, 1);
532         dn->ofs_in_node = ofs_in_node;
533         return ret;
534 }
535
536 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
537 {
538         bool need_put = dn->inode_page ? false : true;
539         int err;
540
541         err = get_dnode_of_data(dn, index, ALLOC_NODE);
542         if (err)
543                 return err;
544
545         if (dn->data_blkaddr == NULL_ADDR)
546                 err = reserve_new_block(dn);
547         if (err || need_put)
548                 f2fs_put_dnode(dn);
549         return err;
550 }
551
552 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
553 {
554         struct extent_info ei  = {0,0,0};
555         struct inode *inode = dn->inode;
556
557         if (f2fs_lookup_extent_cache(inode, index, &ei)) {
558                 dn->data_blkaddr = ei.blk + index - ei.fofs;
559                 return 0;
560         }
561
562         return f2fs_reserve_block(dn, index);
563 }
564
565 struct page *get_read_data_page(struct inode *inode, pgoff_t index,
566                                                 int op_flags, bool for_write)
567 {
568         struct address_space *mapping = inode->i_mapping;
569         struct dnode_of_data dn;
570         struct page *page;
571         struct extent_info ei = {0,0,0};
572         int err;
573         struct f2fs_io_info fio = {
574                 .sbi = F2FS_I_SB(inode),
575                 .type = DATA,
576                 .op = REQ_OP_READ,
577                 .op_flags = op_flags,
578                 .encrypted_page = NULL,
579         };
580
581         if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
582                 return read_mapping_page(mapping, index, NULL);
583
584         page = f2fs_grab_cache_page(mapping, index, for_write);
585         if (!page)
586                 return ERR_PTR(-ENOMEM);
587
588         if (f2fs_lookup_extent_cache(inode, index, &ei)) {
589                 dn.data_blkaddr = ei.blk + index - ei.fofs;
590                 goto got_it;
591         }
592
593         set_new_dnode(&dn, inode, NULL, NULL, 0);
594         err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
595         if (err)
596                 goto put_err;
597         f2fs_put_dnode(&dn);
598
599         if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
600                 err = -ENOENT;
601                 goto put_err;
602         }
603 got_it:
604         if (PageUptodate(page)) {
605                 unlock_page(page);
606                 return page;
607         }
608
609         /*
610          * A new dentry page is allocated but not able to be written, since its
611          * new inode page couldn't be allocated due to -ENOSPC.
612          * In such the case, its blkaddr can be remained as NEW_ADDR.
613          * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
614          */
615         if (dn.data_blkaddr == NEW_ADDR) {
616                 zero_user_segment(page, 0, PAGE_SIZE);
617                 if (!PageUptodate(page))
618                         SetPageUptodate(page);
619                 unlock_page(page);
620                 return page;
621         }
622
623         fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr;
624         fio.page = page;
625         err = f2fs_submit_page_bio(&fio);
626         if (err)
627                 goto put_err;
628         return page;
629
630 put_err:
631         f2fs_put_page(page, 1);
632         return ERR_PTR(err);
633 }
634
635 struct page *find_data_page(struct inode *inode, pgoff_t index)
636 {
637         struct address_space *mapping = inode->i_mapping;
638         struct page *page;
639
640         page = find_get_page(mapping, index);
641         if (page && PageUptodate(page))
642                 return page;
643         f2fs_put_page(page, 0);
644
645         page = get_read_data_page(inode, index, 0, false);
646         if (IS_ERR(page))
647                 return page;
648
649         if (PageUptodate(page))
650                 return page;
651
652         wait_on_page_locked(page);
653         if (unlikely(!PageUptodate(page))) {
654                 f2fs_put_page(page, 0);
655                 return ERR_PTR(-EIO);
656         }
657         return page;
658 }
659
660 /*
661  * If it tries to access a hole, return an error.
662  * Because, the callers, functions in dir.c and GC, should be able to know
663  * whether this page exists or not.
664  */
665 struct page *get_lock_data_page(struct inode *inode, pgoff_t index,
666                                                         bool for_write)
667 {
668         struct address_space *mapping = inode->i_mapping;
669         struct page *page;
670 repeat:
671         page = get_read_data_page(inode, index, 0, for_write);
672         if (IS_ERR(page))
673                 return page;
674
675         /* wait for read completion */
676         lock_page(page);
677         if (unlikely(page->mapping != mapping)) {
678                 f2fs_put_page(page, 1);
679                 goto repeat;
680         }
681         if (unlikely(!PageUptodate(page))) {
682                 f2fs_put_page(page, 1);
683                 return ERR_PTR(-EIO);
684         }
685         return page;
686 }
687
688 /*
689  * Caller ensures that this data page is never allocated.
690  * A new zero-filled data page is allocated in the page cache.
691  *
692  * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
693  * f2fs_unlock_op().
694  * Note that, ipage is set only by make_empty_dir, and if any error occur,
695  * ipage should be released by this function.
696  */
697 struct page *get_new_data_page(struct inode *inode,
698                 struct page *ipage, pgoff_t index, bool new_i_size)
699 {
700         struct address_space *mapping = inode->i_mapping;
701         struct page *page;
702         struct dnode_of_data dn;
703         int err;
704
705         page = f2fs_grab_cache_page(mapping, index, true);
706         if (!page) {
707                 /*
708                  * before exiting, we should make sure ipage will be released
709                  * if any error occur.
710                  */
711                 f2fs_put_page(ipage, 1);
712                 return ERR_PTR(-ENOMEM);
713         }
714
715         set_new_dnode(&dn, inode, ipage, NULL, 0);
716         err = f2fs_reserve_block(&dn, index);
717         if (err) {
718                 f2fs_put_page(page, 1);
719                 return ERR_PTR(err);
720         }
721         if (!ipage)
722                 f2fs_put_dnode(&dn);
723
724         if (PageUptodate(page))
725                 goto got_it;
726
727         if (dn.data_blkaddr == NEW_ADDR) {
728                 zero_user_segment(page, 0, PAGE_SIZE);
729                 if (!PageUptodate(page))
730                         SetPageUptodate(page);
731         } else {
732                 f2fs_put_page(page, 1);
733
734                 /* if ipage exists, blkaddr should be NEW_ADDR */
735                 f2fs_bug_on(F2FS_I_SB(inode), ipage);
736                 page = get_lock_data_page(inode, index, true);
737                 if (IS_ERR(page))
738                         return page;
739         }
740 got_it:
741         if (new_i_size && i_size_read(inode) <
742                                 ((loff_t)(index + 1) << PAGE_SHIFT))
743                 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
744         return page;
745 }
746
747 static int __allocate_data_block(struct dnode_of_data *dn)
748 {
749         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
750         struct f2fs_summary sum;
751         struct node_info ni;
752         pgoff_t fofs;
753         blkcnt_t count = 1;
754         int err;
755
756         if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
757                 return -EPERM;
758
759         dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
760         if (dn->data_blkaddr == NEW_ADDR)
761                 goto alloc;
762
763         if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
764                 return err;
765
766 alloc:
767         get_node_info(sbi, dn->nid, &ni);
768         set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
769
770         allocate_data_block(sbi, NULL, dn->data_blkaddr, &dn->data_blkaddr,
771                                         &sum, CURSEG_WARM_DATA, NULL, false);
772         set_data_blkaddr(dn);
773
774         /* update i_size */
775         fofs = start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) +
776                                                         dn->ofs_in_node;
777         if (i_size_read(dn->inode) < ((loff_t)(fofs + 1) << PAGE_SHIFT))
778                 f2fs_i_size_write(dn->inode,
779                                 ((loff_t)(fofs + 1) << PAGE_SHIFT));
780         return 0;
781 }
782
783 static inline bool __force_buffered_io(struct inode *inode, int rw)
784 {
785         return ((f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) ||
786                         (rw == WRITE && test_opt(F2FS_I_SB(inode), LFS)) ||
787                         F2FS_I_SB(inode)->s_ndevs);
788 }
789
790 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
791 {
792         struct inode *inode = file_inode(iocb->ki_filp);
793         struct f2fs_map_blocks map;
794         int err = 0;
795
796         if (is_inode_flag_set(inode, FI_NO_PREALLOC))
797                 return 0;
798
799         map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
800         map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from));
801         if (map.m_len > map.m_lblk)
802                 map.m_len -= map.m_lblk;
803         else
804                 map.m_len = 0;
805
806         map.m_next_pgofs = NULL;
807
808         if (iocb->ki_flags & IOCB_DIRECT) {
809                 err = f2fs_convert_inline_inode(inode);
810                 if (err)
811                         return err;
812                 return f2fs_map_blocks(inode, &map, 1,
813                         __force_buffered_io(inode, WRITE) ?
814                                 F2FS_GET_BLOCK_PRE_AIO :
815                                 F2FS_GET_BLOCK_PRE_DIO);
816         }
817         if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA) {
818                 err = f2fs_convert_inline_inode(inode);
819                 if (err)
820                         return err;
821         }
822         if (!f2fs_has_inline_data(inode))
823                 return f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
824         return err;
825 }
826
827 static inline void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock)
828 {
829         if (flag == F2FS_GET_BLOCK_PRE_AIO) {
830                 if (lock)
831                         down_read(&sbi->node_change);
832                 else
833                         up_read(&sbi->node_change);
834         } else {
835                 if (lock)
836                         f2fs_lock_op(sbi);
837                 else
838                         f2fs_unlock_op(sbi);
839         }
840 }
841
842 /*
843  * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
844  * f2fs_map_blocks structure.
845  * If original data blocks are allocated, then give them to blockdev.
846  * Otherwise,
847  *     a. preallocate requested block addresses
848  *     b. do not use extent cache for better performance
849  *     c. give the block addresses to blockdev
850  */
851 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
852                                                 int create, int flag)
853 {
854         unsigned int maxblocks = map->m_len;
855         struct dnode_of_data dn;
856         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
857         int mode = create ? ALLOC_NODE : LOOKUP_NODE;
858         pgoff_t pgofs, end_offset, end;
859         int err = 0, ofs = 1;
860         unsigned int ofs_in_node, last_ofs_in_node;
861         blkcnt_t prealloc;
862         struct extent_info ei = {0,0,0};
863         block_t blkaddr;
864
865         if (!maxblocks)
866                 return 0;
867
868         map->m_len = 0;
869         map->m_flags = 0;
870
871         /* it only supports block size == page size */
872         pgofs = (pgoff_t)map->m_lblk;
873         end = pgofs + maxblocks;
874
875         if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
876                 map->m_pblk = ei.blk + pgofs - ei.fofs;
877                 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
878                 map->m_flags = F2FS_MAP_MAPPED;
879                 goto out;
880         }
881
882 next_dnode:
883         if (create)
884                 __do_map_lock(sbi, flag, true);
885
886         /* When reading holes, we need its node page */
887         set_new_dnode(&dn, inode, NULL, NULL, 0);
888         err = get_dnode_of_data(&dn, pgofs, mode);
889         if (err) {
890                 if (flag == F2FS_GET_BLOCK_BMAP)
891                         map->m_pblk = 0;
892                 if (err == -ENOENT) {
893                         err = 0;
894                         if (map->m_next_pgofs)
895                                 *map->m_next_pgofs =
896                                         get_next_page_offset(&dn, pgofs);
897                 }
898                 goto unlock_out;
899         }
900
901         prealloc = 0;
902         last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
903         end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
904
905 next_block:
906         blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
907
908         if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) {
909                 if (create) {
910                         if (unlikely(f2fs_cp_error(sbi))) {
911                                 err = -EIO;
912                                 goto sync_out;
913                         }
914                         if (flag == F2FS_GET_BLOCK_PRE_AIO) {
915                                 if (blkaddr == NULL_ADDR) {
916                                         prealloc++;
917                                         last_ofs_in_node = dn.ofs_in_node;
918                                 }
919                         } else {
920                                 err = __allocate_data_block(&dn);
921                                 if (!err)
922                                         set_inode_flag(inode, FI_APPEND_WRITE);
923                         }
924                         if (err)
925                                 goto sync_out;
926                         map->m_flags |= F2FS_MAP_NEW;
927                         blkaddr = dn.data_blkaddr;
928                 } else {
929                         if (flag == F2FS_GET_BLOCK_BMAP) {
930                                 map->m_pblk = 0;
931                                 goto sync_out;
932                         }
933                         if (flag == F2FS_GET_BLOCK_FIEMAP &&
934                                                 blkaddr == NULL_ADDR) {
935                                 if (map->m_next_pgofs)
936                                         *map->m_next_pgofs = pgofs + 1;
937                         }
938                         if (flag != F2FS_GET_BLOCK_FIEMAP ||
939                                                 blkaddr != NEW_ADDR)
940                                 goto sync_out;
941                 }
942         }
943
944         if (flag == F2FS_GET_BLOCK_PRE_AIO)
945                 goto skip;
946
947         if (map->m_len == 0) {
948                 /* preallocated unwritten block should be mapped for fiemap. */
949                 if (blkaddr == NEW_ADDR)
950                         map->m_flags |= F2FS_MAP_UNWRITTEN;
951                 map->m_flags |= F2FS_MAP_MAPPED;
952
953                 map->m_pblk = blkaddr;
954                 map->m_len = 1;
955         } else if ((map->m_pblk != NEW_ADDR &&
956                         blkaddr == (map->m_pblk + ofs)) ||
957                         (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
958                         flag == F2FS_GET_BLOCK_PRE_DIO) {
959                 ofs++;
960                 map->m_len++;
961         } else {
962                 goto sync_out;
963         }
964
965 skip:
966         dn.ofs_in_node++;
967         pgofs++;
968
969         /* preallocate blocks in batch for one dnode page */
970         if (flag == F2FS_GET_BLOCK_PRE_AIO &&
971                         (pgofs == end || dn.ofs_in_node == end_offset)) {
972
973                 dn.ofs_in_node = ofs_in_node;
974                 err = reserve_new_blocks(&dn, prealloc);
975                 if (err)
976                         goto sync_out;
977
978                 map->m_len += dn.ofs_in_node - ofs_in_node;
979                 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
980                         err = -ENOSPC;
981                         goto sync_out;
982                 }
983                 dn.ofs_in_node = end_offset;
984         }
985
986         if (pgofs >= end)
987                 goto sync_out;
988         else if (dn.ofs_in_node < end_offset)
989                 goto next_block;
990
991         f2fs_put_dnode(&dn);
992
993         if (create) {
994                 __do_map_lock(sbi, flag, false);
995                 f2fs_balance_fs(sbi, dn.node_changed);
996         }
997         goto next_dnode;
998
999 sync_out:
1000         f2fs_put_dnode(&dn);
1001 unlock_out:
1002         if (create) {
1003                 __do_map_lock(sbi, flag, false);
1004                 f2fs_balance_fs(sbi, dn.node_changed);
1005         }
1006 out:
1007         trace_f2fs_map_blocks(inode, map, err);
1008         return err;
1009 }
1010
1011 static int __get_data_block(struct inode *inode, sector_t iblock,
1012                         struct buffer_head *bh, int create, int flag,
1013                         pgoff_t *next_pgofs)
1014 {
1015         struct f2fs_map_blocks map;
1016         int err;
1017
1018         map.m_lblk = iblock;
1019         map.m_len = bh->b_size >> inode->i_blkbits;
1020         map.m_next_pgofs = next_pgofs;
1021
1022         err = f2fs_map_blocks(inode, &map, create, flag);
1023         if (!err) {
1024                 map_bh(bh, inode->i_sb, map.m_pblk);
1025                 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
1026                 bh->b_size = (u64)map.m_len << inode->i_blkbits;
1027         }
1028         return err;
1029 }
1030
1031 static int get_data_block(struct inode *inode, sector_t iblock,
1032                         struct buffer_head *bh_result, int create, int flag,
1033                         pgoff_t *next_pgofs)
1034 {
1035         return __get_data_block(inode, iblock, bh_result, create,
1036                                                         flag, next_pgofs);
1037 }
1038
1039 static int get_data_block_dio(struct inode *inode, sector_t iblock,
1040                         struct buffer_head *bh_result, int create)
1041 {
1042         return __get_data_block(inode, iblock, bh_result, create,
1043                                                 F2FS_GET_BLOCK_DIO, NULL);
1044 }
1045
1046 static int get_data_block_bmap(struct inode *inode, sector_t iblock,
1047                         struct buffer_head *bh_result, int create)
1048 {
1049         /* Block number less than F2FS MAX BLOCKS */
1050         if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks))
1051                 return -EFBIG;
1052
1053         return __get_data_block(inode, iblock, bh_result, create,
1054                                                 F2FS_GET_BLOCK_BMAP, NULL);
1055 }
1056
1057 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
1058 {
1059         return (offset >> inode->i_blkbits);
1060 }
1061
1062 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
1063 {
1064         return (blk << inode->i_blkbits);
1065 }
1066
1067 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1068                 u64 start, u64 len)
1069 {
1070         struct buffer_head map_bh;
1071         sector_t start_blk, last_blk;
1072         pgoff_t next_pgofs;
1073         u64 logical = 0, phys = 0, size = 0;
1074         u32 flags = 0;
1075         int ret = 0;
1076
1077         ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC);
1078         if (ret)
1079                 return ret;
1080
1081         if (f2fs_has_inline_data(inode)) {
1082                 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1083                 if (ret != -EAGAIN)
1084                         return ret;
1085         }
1086
1087         inode_lock(inode);
1088
1089         if (logical_to_blk(inode, len) == 0)
1090                 len = blk_to_logical(inode, 1);
1091
1092         start_blk = logical_to_blk(inode, start);
1093         last_blk = logical_to_blk(inode, start + len - 1);
1094
1095 next:
1096         memset(&map_bh, 0, sizeof(struct buffer_head));
1097         map_bh.b_size = len;
1098
1099         ret = get_data_block(inode, start_blk, &map_bh, 0,
1100                                         F2FS_GET_BLOCK_FIEMAP, &next_pgofs);
1101         if (ret)
1102                 goto out;
1103
1104         /* HOLE */
1105         if (!buffer_mapped(&map_bh)) {
1106                 start_blk = next_pgofs;
1107
1108                 if (blk_to_logical(inode, start_blk) < blk_to_logical(inode,
1109                                         F2FS_I_SB(inode)->max_file_blocks))
1110                         goto prep_next;
1111
1112                 flags |= FIEMAP_EXTENT_LAST;
1113         }
1114
1115         if (size) {
1116                 if (f2fs_encrypted_inode(inode))
1117                         flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1118
1119                 ret = fiemap_fill_next_extent(fieinfo, logical,
1120                                 phys, size, flags);
1121         }
1122
1123         if (start_blk > last_blk || ret)
1124                 goto out;
1125
1126         logical = blk_to_logical(inode, start_blk);
1127         phys = blk_to_logical(inode, map_bh.b_blocknr);
1128         size = map_bh.b_size;
1129         flags = 0;
1130         if (buffer_unwritten(&map_bh))
1131                 flags = FIEMAP_EXTENT_UNWRITTEN;
1132
1133         start_blk += logical_to_blk(inode, size);
1134
1135 prep_next:
1136         cond_resched();
1137         if (fatal_signal_pending(current))
1138                 ret = -EINTR;
1139         else
1140                 goto next;
1141 out:
1142         if (ret == 1)
1143                 ret = 0;
1144
1145         inode_unlock(inode);
1146         return ret;
1147 }
1148
1149 static struct bio *f2fs_grab_bio(struct inode *inode, block_t blkaddr,
1150                                  unsigned nr_pages)
1151 {
1152         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1153         struct fscrypt_ctx *ctx = NULL;
1154         struct bio *bio;
1155
1156         if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
1157                 ctx = fscrypt_get_ctx(inode, GFP_NOFS);
1158                 if (IS_ERR(ctx))
1159                         return ERR_CAST(ctx);
1160
1161                 /* wait the page to be moved by cleaning */
1162                 f2fs_wait_on_encrypted_page_writeback(sbi, blkaddr);
1163         }
1164
1165         bio = bio_alloc(GFP_KERNEL, min_t(int, nr_pages, BIO_MAX_PAGES));
1166         if (!bio) {
1167                 if (ctx)
1168                         fscrypt_release_ctx(ctx);
1169                 return ERR_PTR(-ENOMEM);
1170         }
1171         f2fs_target_device(sbi, blkaddr, bio);
1172         bio->bi_end_io = f2fs_read_end_io;
1173         bio->bi_private = ctx;
1174
1175         return bio;
1176 }
1177
1178 /*
1179  * This function was originally taken from fs/mpage.c, and customized for f2fs.
1180  * Major change was from block_size == page_size in f2fs by default.
1181  */
1182 static int f2fs_mpage_readpages(struct address_space *mapping,
1183                         struct list_head *pages, struct page *page,
1184                         unsigned nr_pages)
1185 {
1186         struct bio *bio = NULL;
1187         unsigned page_idx;
1188         sector_t last_block_in_bio = 0;
1189         struct inode *inode = mapping->host;
1190         const unsigned blkbits = inode->i_blkbits;
1191         const unsigned blocksize = 1 << blkbits;
1192         sector_t block_in_file;
1193         sector_t last_block;
1194         sector_t last_block_in_file;
1195         sector_t block_nr;
1196         struct f2fs_map_blocks map;
1197
1198         map.m_pblk = 0;
1199         map.m_lblk = 0;
1200         map.m_len = 0;
1201         map.m_flags = 0;
1202         map.m_next_pgofs = NULL;
1203
1204         for (page_idx = 0; nr_pages; page_idx++, nr_pages--) {
1205
1206                 if (pages) {
1207                         page = list_last_entry(pages, struct page, lru);
1208
1209                         prefetchw(&page->flags);
1210                         list_del(&page->lru);
1211                         if (add_to_page_cache_lru(page, mapping,
1212                                                   page->index,
1213                                                   readahead_gfp_mask(mapping)))
1214                                 goto next_page;
1215                 }
1216
1217                 block_in_file = (sector_t)page->index;
1218                 last_block = block_in_file + nr_pages;
1219                 last_block_in_file = (i_size_read(inode) + blocksize - 1) >>
1220                                                                 blkbits;
1221                 if (last_block > last_block_in_file)
1222                         last_block = last_block_in_file;
1223
1224                 /*
1225                  * Map blocks using the previous result first.
1226                  */
1227                 if ((map.m_flags & F2FS_MAP_MAPPED) &&
1228                                 block_in_file > map.m_lblk &&
1229                                 block_in_file < (map.m_lblk + map.m_len))
1230                         goto got_it;
1231
1232                 /*
1233                  * Then do more f2fs_map_blocks() calls until we are
1234                  * done with this page.
1235                  */
1236                 map.m_flags = 0;
1237
1238                 if (block_in_file < last_block) {
1239                         map.m_lblk = block_in_file;
1240                         map.m_len = last_block - block_in_file;
1241
1242                         if (f2fs_map_blocks(inode, &map, 0,
1243                                                 F2FS_GET_BLOCK_READ))
1244                                 goto set_error_page;
1245                 }
1246 got_it:
1247                 if ((map.m_flags & F2FS_MAP_MAPPED)) {
1248                         block_nr = map.m_pblk + block_in_file - map.m_lblk;
1249                         SetPageMappedToDisk(page);
1250
1251                         if (!PageUptodate(page) && !cleancache_get_page(page)) {
1252                                 SetPageUptodate(page);
1253                                 goto confused;
1254                         }
1255                 } else {
1256                         zero_user_segment(page, 0, PAGE_SIZE);
1257                         if (!PageUptodate(page))
1258                                 SetPageUptodate(page);
1259                         unlock_page(page);
1260                         goto next_page;
1261                 }
1262
1263                 /*
1264                  * This page will go to BIO.  Do we need to send this
1265                  * BIO off first?
1266                  */
1267                 if (bio && (last_block_in_bio != block_nr - 1 ||
1268                         !__same_bdev(F2FS_I_SB(inode), block_nr, bio))) {
1269 submit_and_realloc:
1270                         __submit_bio(F2FS_I_SB(inode), bio, DATA);
1271                         bio = NULL;
1272                 }
1273                 if (bio == NULL) {
1274                         bio = f2fs_grab_bio(inode, block_nr, nr_pages);
1275                         if (IS_ERR(bio)) {
1276                                 bio = NULL;
1277                                 goto set_error_page;
1278                         }
1279                         bio_set_op_attrs(bio, REQ_OP_READ, 0);
1280                 }
1281
1282                 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
1283                         goto submit_and_realloc;
1284
1285                 last_block_in_bio = block_nr;
1286                 goto next_page;
1287 set_error_page:
1288                 SetPageError(page);
1289                 zero_user_segment(page, 0, PAGE_SIZE);
1290                 unlock_page(page);
1291                 goto next_page;
1292 confused:
1293                 if (bio) {
1294                         __submit_bio(F2FS_I_SB(inode), bio, DATA);
1295                         bio = NULL;
1296                 }
1297                 unlock_page(page);
1298 next_page:
1299                 if (pages)
1300                         put_page(page);
1301         }
1302         BUG_ON(pages && !list_empty(pages));
1303         if (bio)
1304                 __submit_bio(F2FS_I_SB(inode), bio, DATA);
1305         return 0;
1306 }
1307
1308 static int f2fs_read_data_page(struct file *file, struct page *page)
1309 {
1310         struct inode *inode = page->mapping->host;
1311         int ret = -EAGAIN;
1312
1313         trace_f2fs_readpage(page, DATA);
1314
1315         /* If the file has inline data, try to read it directly */
1316         if (f2fs_has_inline_data(inode))
1317                 ret = f2fs_read_inline_data(inode, page);
1318         if (ret == -EAGAIN)
1319                 ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1);
1320         return ret;
1321 }
1322
1323 static int f2fs_read_data_pages(struct file *file,
1324                         struct address_space *mapping,
1325                         struct list_head *pages, unsigned nr_pages)
1326 {
1327         struct inode *inode = file->f_mapping->host;
1328         struct page *page = list_last_entry(pages, struct page, lru);
1329
1330         trace_f2fs_readpages(inode, page, nr_pages);
1331
1332         /* If the file has inline data, skip readpages */
1333         if (f2fs_has_inline_data(inode))
1334                 return 0;
1335
1336         return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages);
1337 }
1338
1339 static int encrypt_one_page(struct f2fs_io_info *fio)
1340 {
1341         struct inode *inode = fio->page->mapping->host;
1342         gfp_t gfp_flags = GFP_NOFS;
1343
1344         if (!f2fs_encrypted_inode(inode) || !S_ISREG(inode->i_mode))
1345                 return 0;
1346
1347         /* wait for GCed encrypted page writeback */
1348         f2fs_wait_on_encrypted_page_writeback(fio->sbi, fio->old_blkaddr);
1349
1350 retry_encrypt:
1351         fio->encrypted_page = fscrypt_encrypt_page(inode, fio->page,
1352                         PAGE_SIZE, 0, fio->page->index, gfp_flags);
1353         if (!IS_ERR(fio->encrypted_page))
1354                 return 0;
1355
1356         /* flush pending IOs and wait for a while in the ENOMEM case */
1357         if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
1358                 f2fs_flush_merged_writes(fio->sbi);
1359                 congestion_wait(BLK_RW_ASYNC, HZ/50);
1360                 gfp_flags |= __GFP_NOFAIL;
1361                 goto retry_encrypt;
1362         }
1363         return PTR_ERR(fio->encrypted_page);
1364 }
1365
1366 static inline bool need_inplace_update(struct f2fs_io_info *fio)
1367 {
1368         struct inode *inode = fio->page->mapping->host;
1369
1370         if (S_ISDIR(inode->i_mode) || f2fs_is_atomic_file(inode))
1371                 return false;
1372         if (is_cold_data(fio->page))
1373                 return false;
1374         if (IS_ATOMIC_WRITTEN_PAGE(fio->page))
1375                 return false;
1376
1377         return need_inplace_update_policy(inode, fio);
1378 }
1379
1380 static inline bool valid_ipu_blkaddr(struct f2fs_io_info *fio)
1381 {
1382         if (fio->old_blkaddr == NEW_ADDR)
1383                 return false;
1384         if (fio->old_blkaddr == NULL_ADDR)
1385                 return false;
1386         return true;
1387 }
1388
1389 int do_write_data_page(struct f2fs_io_info *fio)
1390 {
1391         struct page *page = fio->page;
1392         struct inode *inode = page->mapping->host;
1393         struct dnode_of_data dn;
1394         struct extent_info ei = {0,0,0};
1395         bool ipu_force = false;
1396         int err = 0;
1397
1398         set_new_dnode(&dn, inode, NULL, NULL, 0);
1399         if (need_inplace_update(fio) &&
1400                         f2fs_lookup_extent_cache(inode, page->index, &ei)) {
1401                 fio->old_blkaddr = ei.blk + page->index - ei.fofs;
1402
1403                 if (valid_ipu_blkaddr(fio)) {
1404                         ipu_force = true;
1405                         fio->need_lock = LOCK_DONE;
1406                         goto got_it;
1407                 }
1408         }
1409
1410         /* Deadlock due to between page->lock and f2fs_lock_op */
1411         if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
1412                 return -EAGAIN;
1413
1414         err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
1415         if (err)
1416                 goto out;
1417
1418         fio->old_blkaddr = dn.data_blkaddr;
1419
1420         /* This page is already truncated */
1421         if (fio->old_blkaddr == NULL_ADDR) {
1422                 ClearPageUptodate(page);
1423                 goto out_writepage;
1424         }
1425 got_it:
1426         /*
1427          * If current allocation needs SSR,
1428          * it had better in-place writes for updated data.
1429          */
1430         if (ipu_force || (valid_ipu_blkaddr(fio) && need_inplace_update(fio))) {
1431                 err = encrypt_one_page(fio);
1432                 if (err)
1433                         goto out_writepage;
1434
1435                 set_page_writeback(page);
1436                 f2fs_put_dnode(&dn);
1437                 if (fio->need_lock == LOCK_REQ)
1438                         f2fs_unlock_op(fio->sbi);
1439                 err = rewrite_data_page(fio);
1440                 trace_f2fs_do_write_data_page(fio->page, IPU);
1441                 set_inode_flag(inode, FI_UPDATE_WRITE);
1442                 return err;
1443         }
1444
1445         if (fio->need_lock == LOCK_RETRY) {
1446                 if (!f2fs_trylock_op(fio->sbi)) {
1447                         err = -EAGAIN;
1448                         goto out_writepage;
1449                 }
1450                 fio->need_lock = LOCK_REQ;
1451         }
1452
1453         err = encrypt_one_page(fio);
1454         if (err)
1455                 goto out_writepage;
1456
1457         set_page_writeback(page);
1458
1459         /* LFS mode write path */
1460         write_data_page(&dn, fio);
1461         trace_f2fs_do_write_data_page(page, OPU);
1462         set_inode_flag(inode, FI_APPEND_WRITE);
1463         if (page->index == 0)
1464                 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
1465 out_writepage:
1466         f2fs_put_dnode(&dn);
1467 out:
1468         if (fio->need_lock == LOCK_REQ)
1469                 f2fs_unlock_op(fio->sbi);
1470         return err;
1471 }
1472
1473 static int __write_data_page(struct page *page, bool *submitted,
1474                                 struct writeback_control *wbc)
1475 {
1476         struct inode *inode = page->mapping->host;
1477         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1478         loff_t i_size = i_size_read(inode);
1479         const pgoff_t end_index = ((unsigned long long) i_size)
1480                                                         >> PAGE_SHIFT;
1481         loff_t psize = (page->index + 1) << PAGE_SHIFT;
1482         unsigned offset = 0;
1483         bool need_balance_fs = false;
1484         int err = 0;
1485         struct f2fs_io_info fio = {
1486                 .sbi = sbi,
1487                 .type = DATA,
1488                 .op = REQ_OP_WRITE,
1489                 .op_flags = wbc_to_write_flags(wbc),
1490                 .old_blkaddr = NULL_ADDR,
1491                 .page = page,
1492                 .encrypted_page = NULL,
1493                 .submitted = false,
1494                 .need_lock = LOCK_RETRY,
1495         };
1496
1497         trace_f2fs_writepage(page, DATA);
1498
1499         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1500                 goto redirty_out;
1501
1502         if (page->index < end_index)
1503                 goto write;
1504
1505         /*
1506          * If the offset is out-of-range of file size,
1507          * this page does not have to be written to disk.
1508          */
1509         offset = i_size & (PAGE_SIZE - 1);
1510         if ((page->index >= end_index + 1) || !offset)
1511                 goto out;
1512
1513         zero_user_segment(page, offset, PAGE_SIZE);
1514 write:
1515         if (f2fs_is_drop_cache(inode))
1516                 goto out;
1517         /* we should not write 0'th page having journal header */
1518         if (f2fs_is_volatile_file(inode) && (!page->index ||
1519                         (!wbc->for_reclaim &&
1520                         available_free_memory(sbi, BASE_CHECK))))
1521                 goto redirty_out;
1522
1523         /* we should bypass data pages to proceed the kworkder jobs */
1524         if (unlikely(f2fs_cp_error(sbi))) {
1525                 mapping_set_error(page->mapping, -EIO);
1526                 goto out;
1527         }
1528
1529         /* Dentry blocks are controlled by checkpoint */
1530         if (S_ISDIR(inode->i_mode)) {
1531                 fio.need_lock = LOCK_DONE;
1532                 err = do_write_data_page(&fio);
1533                 goto done;
1534         }
1535
1536         if (!wbc->for_reclaim)
1537                 need_balance_fs = true;
1538         else if (has_not_enough_free_secs(sbi, 0, 0))
1539                 goto redirty_out;
1540         else
1541                 set_inode_flag(inode, FI_HOT_DATA);
1542
1543         err = -EAGAIN;
1544         if (f2fs_has_inline_data(inode)) {
1545                 err = f2fs_write_inline_data(inode, page);
1546                 if (!err)
1547                         goto out;
1548         }
1549
1550         if (err == -EAGAIN) {
1551                 err = do_write_data_page(&fio);
1552                 if (err == -EAGAIN) {
1553                         fio.need_lock = LOCK_REQ;
1554                         err = do_write_data_page(&fio);
1555                 }
1556         }
1557         if (F2FS_I(inode)->last_disk_size < psize)
1558                 F2FS_I(inode)->last_disk_size = psize;
1559
1560 done:
1561         if (err && err != -ENOENT)
1562                 goto redirty_out;
1563
1564 out:
1565         inode_dec_dirty_pages(inode);
1566         if (err)
1567                 ClearPageUptodate(page);
1568
1569         if (wbc->for_reclaim) {
1570                 f2fs_submit_merged_write_cond(sbi, inode, 0, page->index, DATA);
1571                 clear_inode_flag(inode, FI_HOT_DATA);
1572                 remove_dirty_inode(inode);
1573                 submitted = NULL;
1574         }
1575
1576         unlock_page(page);
1577         if (!S_ISDIR(inode->i_mode))
1578                 f2fs_balance_fs(sbi, need_balance_fs);
1579
1580         if (unlikely(f2fs_cp_error(sbi))) {
1581                 f2fs_submit_merged_write(sbi, DATA);
1582                 submitted = NULL;
1583         }
1584
1585         if (submitted)
1586                 *submitted = fio.submitted;
1587
1588         return 0;
1589
1590 redirty_out:
1591         redirty_page_for_writepage(wbc, page);
1592         if (!err)
1593                 return AOP_WRITEPAGE_ACTIVATE;
1594         unlock_page(page);
1595         return err;
1596 }
1597
1598 static int f2fs_write_data_page(struct page *page,
1599                                         struct writeback_control *wbc)
1600 {
1601         return __write_data_page(page, NULL, wbc);
1602 }
1603
1604 /*
1605  * This function was copied from write_cche_pages from mm/page-writeback.c.
1606  * The major change is making write step of cold data page separately from
1607  * warm/hot data page.
1608  */
1609 static int f2fs_write_cache_pages(struct address_space *mapping,
1610                                         struct writeback_control *wbc)
1611 {
1612         int ret = 0;
1613         int done = 0;
1614         struct pagevec pvec;
1615         int nr_pages;
1616         pgoff_t uninitialized_var(writeback_index);
1617         pgoff_t index;
1618         pgoff_t end;            /* Inclusive */
1619         pgoff_t done_index;
1620         pgoff_t last_idx = ULONG_MAX;
1621         int cycled;
1622         int range_whole = 0;
1623         int tag;
1624
1625         pagevec_init(&pvec, 0);
1626
1627         if (get_dirty_pages(mapping->host) <=
1628                                 SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
1629                 set_inode_flag(mapping->host, FI_HOT_DATA);
1630         else
1631                 clear_inode_flag(mapping->host, FI_HOT_DATA);
1632
1633         if (wbc->range_cyclic) {
1634                 writeback_index = mapping->writeback_index; /* prev offset */
1635                 index = writeback_index;
1636                 if (index == 0)
1637                         cycled = 1;
1638                 else
1639                         cycled = 0;
1640                 end = -1;
1641         } else {
1642                 index = wbc->range_start >> PAGE_SHIFT;
1643                 end = wbc->range_end >> PAGE_SHIFT;
1644                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1645                         range_whole = 1;
1646                 cycled = 1; /* ignore range_cyclic tests */
1647         }
1648         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1649                 tag = PAGECACHE_TAG_TOWRITE;
1650         else
1651                 tag = PAGECACHE_TAG_DIRTY;
1652 retry:
1653         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1654                 tag_pages_for_writeback(mapping, index, end);
1655         done_index = index;
1656         while (!done && (index <= end)) {
1657                 int i;
1658
1659                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1660                               min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1);
1661                 if (nr_pages == 0)
1662                         break;
1663
1664                 for (i = 0; i < nr_pages; i++) {
1665                         struct page *page = pvec.pages[i];
1666                         bool submitted = false;
1667
1668                         if (page->index > end) {
1669                                 done = 1;
1670                                 break;
1671                         }
1672
1673                         done_index = page->index;
1674 retry_write:
1675                         lock_page(page);
1676
1677                         if (unlikely(page->mapping != mapping)) {
1678 continue_unlock:
1679                                 unlock_page(page);
1680                                 continue;
1681                         }
1682
1683                         if (!PageDirty(page)) {
1684                                 /* someone wrote it for us */
1685                                 goto continue_unlock;
1686                         }
1687
1688                         if (PageWriteback(page)) {
1689                                 if (wbc->sync_mode != WB_SYNC_NONE)
1690                                         f2fs_wait_on_page_writeback(page,
1691                                                                 DATA, true);
1692                                 else
1693                                         goto continue_unlock;
1694                         }
1695
1696                         BUG_ON(PageWriteback(page));
1697                         if (!clear_page_dirty_for_io(page))
1698                                 goto continue_unlock;
1699
1700                         ret = __write_data_page(page, &submitted, wbc);
1701                         if (unlikely(ret)) {
1702                                 /*
1703                                  * keep nr_to_write, since vfs uses this to
1704                                  * get # of written pages.
1705                                  */
1706                                 if (ret == AOP_WRITEPAGE_ACTIVATE) {
1707                                         unlock_page(page);
1708                                         ret = 0;
1709                                         continue;
1710                                 } else if (ret == -EAGAIN) {
1711                                         ret = 0;
1712                                         if (wbc->sync_mode == WB_SYNC_ALL) {
1713                                                 cond_resched();
1714                                                 congestion_wait(BLK_RW_ASYNC,
1715                                                                         HZ/50);
1716                                                 goto retry_write;
1717                                         }
1718                                         continue;
1719                                 }
1720                                 done_index = page->index + 1;
1721                                 done = 1;
1722                                 break;
1723                         } else if (submitted) {
1724                                 last_idx = page->index;
1725                         }
1726
1727                         /* give a priority to WB_SYNC threads */
1728                         if ((atomic_read(&F2FS_M_SB(mapping)->wb_sync_req) ||
1729                                         --wbc->nr_to_write <= 0) &&
1730                                         wbc->sync_mode == WB_SYNC_NONE) {
1731                                 done = 1;
1732                                 break;
1733                         }
1734                 }
1735                 pagevec_release(&pvec);
1736                 cond_resched();
1737         }
1738
1739         if (!cycled && !done) {
1740                 cycled = 1;
1741                 index = 0;
1742                 end = writeback_index - 1;
1743                 goto retry;
1744         }
1745         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1746                 mapping->writeback_index = done_index;
1747
1748         if (last_idx != ULONG_MAX)
1749                 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
1750                                                 0, last_idx, DATA);
1751
1752         return ret;
1753 }
1754
1755 static int f2fs_write_data_pages(struct address_space *mapping,
1756                             struct writeback_control *wbc)
1757 {
1758         struct inode *inode = mapping->host;
1759         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1760         struct blk_plug plug;
1761         int ret;
1762
1763         /* deal with chardevs and other special file */
1764         if (!mapping->a_ops->writepage)
1765                 return 0;
1766
1767         /* skip writing if there is no dirty page in this inode */
1768         if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
1769                 return 0;
1770
1771         /* during POR, we don't need to trigger writepage at all. */
1772         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1773                 goto skip_write;
1774
1775         if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
1776                         get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
1777                         available_free_memory(sbi, DIRTY_DENTS))
1778                 goto skip_write;
1779
1780         /* skip writing during file defragment */
1781         if (is_inode_flag_set(inode, FI_DO_DEFRAG))
1782                 goto skip_write;
1783
1784         trace_f2fs_writepages(mapping->host, wbc, DATA);
1785
1786         /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
1787         if (wbc->sync_mode == WB_SYNC_ALL)
1788                 atomic_inc(&sbi->wb_sync_req);
1789         else if (atomic_read(&sbi->wb_sync_req))
1790                 goto skip_write;
1791
1792         blk_start_plug(&plug);
1793         ret = f2fs_write_cache_pages(mapping, wbc);
1794         blk_finish_plug(&plug);
1795
1796         if (wbc->sync_mode == WB_SYNC_ALL)
1797                 atomic_dec(&sbi->wb_sync_req);
1798         /*
1799          * if some pages were truncated, we cannot guarantee its mapping->host
1800          * to detect pending bios.
1801          */
1802
1803         remove_dirty_inode(inode);
1804         return ret;
1805
1806 skip_write:
1807         wbc->pages_skipped += get_dirty_pages(inode);
1808         trace_f2fs_writepages(mapping->host, wbc, DATA);
1809         return 0;
1810 }
1811
1812 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
1813 {
1814         struct inode *inode = mapping->host;
1815         loff_t i_size = i_size_read(inode);
1816
1817         if (to > i_size) {
1818                 down_write(&F2FS_I(inode)->i_mmap_sem);
1819                 truncate_pagecache(inode, i_size);
1820                 truncate_blocks(inode, i_size, true);
1821                 up_write(&F2FS_I(inode)->i_mmap_sem);
1822         }
1823 }
1824
1825 static int prepare_write_begin(struct f2fs_sb_info *sbi,
1826                         struct page *page, loff_t pos, unsigned len,
1827                         block_t *blk_addr, bool *node_changed)
1828 {
1829         struct inode *inode = page->mapping->host;
1830         pgoff_t index = page->index;
1831         struct dnode_of_data dn;
1832         struct page *ipage;
1833         bool locked = false;
1834         struct extent_info ei = {0,0,0};
1835         int err = 0;
1836
1837         /*
1838          * we already allocated all the blocks, so we don't need to get
1839          * the block addresses when there is no need to fill the page.
1840          */
1841         if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE &&
1842                         !is_inode_flag_set(inode, FI_NO_PREALLOC))
1843                 return 0;
1844
1845         if (f2fs_has_inline_data(inode) ||
1846                         (pos & PAGE_MASK) >= i_size_read(inode)) {
1847                 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true);
1848                 locked = true;
1849         }
1850 restart:
1851         /* check inline_data */
1852         ipage = get_node_page(sbi, inode->i_ino);
1853         if (IS_ERR(ipage)) {
1854                 err = PTR_ERR(ipage);
1855                 goto unlock_out;
1856         }
1857
1858         set_new_dnode(&dn, inode, ipage, ipage, 0);
1859
1860         if (f2fs_has_inline_data(inode)) {
1861                 if (pos + len <= MAX_INLINE_DATA) {
1862                         read_inline_data(page, ipage);
1863                         set_inode_flag(inode, FI_DATA_EXIST);
1864                         if (inode->i_nlink)
1865                                 set_inline_node(ipage);
1866                 } else {
1867                         err = f2fs_convert_inline_page(&dn, page);
1868                         if (err)
1869                                 goto out;
1870                         if (dn.data_blkaddr == NULL_ADDR)
1871                                 err = f2fs_get_block(&dn, index);
1872                 }
1873         } else if (locked) {
1874                 err = f2fs_get_block(&dn, index);
1875         } else {
1876                 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1877                         dn.data_blkaddr = ei.blk + index - ei.fofs;
1878                 } else {
1879                         /* hole case */
1880                         err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
1881                         if (err || dn.data_blkaddr == NULL_ADDR) {
1882                                 f2fs_put_dnode(&dn);
1883                                 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO,
1884                                                                 true);
1885                                 locked = true;
1886                                 goto restart;
1887                         }
1888                 }
1889         }
1890
1891         /* convert_inline_page can make node_changed */
1892         *blk_addr = dn.data_blkaddr;
1893         *node_changed = dn.node_changed;
1894 out:
1895         f2fs_put_dnode(&dn);
1896 unlock_out:
1897         if (locked)
1898                 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false);
1899         return err;
1900 }
1901
1902 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
1903                 loff_t pos, unsigned len, unsigned flags,
1904                 struct page **pagep, void **fsdata)
1905 {
1906         struct inode *inode = mapping->host;
1907         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1908         struct page *page = NULL;
1909         pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
1910         bool need_balance = false;
1911         block_t blkaddr = NULL_ADDR;
1912         int err = 0;
1913
1914         trace_f2fs_write_begin(inode, pos, len, flags);
1915
1916         /*
1917          * We should check this at this moment to avoid deadlock on inode page
1918          * and #0 page. The locking rule for inline_data conversion should be:
1919          * lock_page(page #0) -> lock_page(inode_page)
1920          */
1921         if (index != 0) {
1922                 err = f2fs_convert_inline_inode(inode);
1923                 if (err)
1924                         goto fail;
1925         }
1926 repeat:
1927         /*
1928          * Do not use grab_cache_page_write_begin() to avoid deadlock due to
1929          * wait_for_stable_page. Will wait that below with our IO control.
1930          */
1931         page = pagecache_get_page(mapping, index,
1932                                 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
1933         if (!page) {
1934                 err = -ENOMEM;
1935                 goto fail;
1936         }
1937
1938         *pagep = page;
1939
1940         err = prepare_write_begin(sbi, page, pos, len,
1941                                         &blkaddr, &need_balance);
1942         if (err)
1943                 goto fail;
1944
1945         if (need_balance && has_not_enough_free_secs(sbi, 0, 0)) {
1946                 unlock_page(page);
1947                 f2fs_balance_fs(sbi, true);
1948                 lock_page(page);
1949                 if (page->mapping != mapping) {
1950                         /* The page got truncated from under us */
1951                         f2fs_put_page(page, 1);
1952                         goto repeat;
1953                 }
1954         }
1955
1956         f2fs_wait_on_page_writeback(page, DATA, false);
1957
1958         /* wait for GCed encrypted page writeback */
1959         if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
1960                 f2fs_wait_on_encrypted_page_writeback(sbi, blkaddr);
1961
1962         if (len == PAGE_SIZE || PageUptodate(page))
1963                 return 0;
1964
1965         if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode)) {
1966                 zero_user_segment(page, len, PAGE_SIZE);
1967                 return 0;
1968         }
1969
1970         if (blkaddr == NEW_ADDR) {
1971                 zero_user_segment(page, 0, PAGE_SIZE);
1972                 SetPageUptodate(page);
1973         } else {
1974                 struct bio *bio;
1975
1976                 bio = f2fs_grab_bio(inode, blkaddr, 1);
1977                 if (IS_ERR(bio)) {
1978                         err = PTR_ERR(bio);
1979                         goto fail;
1980                 }
1981                 bio->bi_opf = REQ_OP_READ;
1982                 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
1983                         bio_put(bio);
1984                         err = -EFAULT;
1985                         goto fail;
1986                 }
1987
1988                 __submit_bio(sbi, bio, DATA);
1989
1990                 lock_page(page);
1991                 if (unlikely(page->mapping != mapping)) {
1992                         f2fs_put_page(page, 1);
1993                         goto repeat;
1994                 }
1995                 if (unlikely(!PageUptodate(page))) {
1996                         err = -EIO;
1997                         goto fail;
1998                 }
1999         }
2000         return 0;
2001
2002 fail:
2003         f2fs_put_page(page, 1);
2004         f2fs_write_failed(mapping, pos + len);
2005         return err;
2006 }
2007
2008 static int f2fs_write_end(struct file *file,
2009                         struct address_space *mapping,
2010                         loff_t pos, unsigned len, unsigned copied,
2011                         struct page *page, void *fsdata)
2012 {
2013         struct inode *inode = page->mapping->host;
2014
2015         trace_f2fs_write_end(inode, pos, len, copied);
2016
2017         /*
2018          * This should be come from len == PAGE_SIZE, and we expect copied
2019          * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
2020          * let generic_perform_write() try to copy data again through copied=0.
2021          */
2022         if (!PageUptodate(page)) {
2023                 if (unlikely(copied != len))
2024                         copied = 0;
2025                 else
2026                         SetPageUptodate(page);
2027         }
2028         if (!copied)
2029                 goto unlock_out;
2030
2031         set_page_dirty(page);
2032
2033         if (pos + copied > i_size_read(inode))
2034                 f2fs_i_size_write(inode, pos + copied);
2035 unlock_out:
2036         f2fs_put_page(page, 1);
2037         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2038         return copied;
2039 }
2040
2041 static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
2042                            loff_t offset)
2043 {
2044         unsigned blocksize_mask = inode->i_sb->s_blocksize - 1;
2045
2046         if (offset & blocksize_mask)
2047                 return -EINVAL;
2048
2049         if (iov_iter_alignment(iter) & blocksize_mask)
2050                 return -EINVAL;
2051
2052         return 0;
2053 }
2054
2055 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2056 {
2057         struct address_space *mapping = iocb->ki_filp->f_mapping;
2058         struct inode *inode = mapping->host;
2059         size_t count = iov_iter_count(iter);
2060         loff_t offset = iocb->ki_pos;
2061         int rw = iov_iter_rw(iter);
2062         int err;
2063
2064         err = check_direct_IO(inode, iter, offset);
2065         if (err)
2066                 return err;
2067
2068         if (__force_buffered_io(inode, rw))
2069                 return 0;
2070
2071         trace_f2fs_direct_IO_enter(inode, offset, count, rw);
2072
2073         down_read(&F2FS_I(inode)->dio_rwsem[rw]);
2074         err = blockdev_direct_IO(iocb, inode, iter, get_data_block_dio);
2075         up_read(&F2FS_I(inode)->dio_rwsem[rw]);
2076
2077         if (rw == WRITE) {
2078                 if (err > 0)
2079                         set_inode_flag(inode, FI_UPDATE_WRITE);
2080                 else if (err < 0)
2081                         f2fs_write_failed(mapping, offset + count);
2082         }
2083
2084         trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
2085
2086         return err;
2087 }
2088
2089 void f2fs_invalidate_page(struct page *page, unsigned int offset,
2090                                                         unsigned int length)
2091 {
2092         struct inode *inode = page->mapping->host;
2093         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2094
2095         if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
2096                 (offset % PAGE_SIZE || length != PAGE_SIZE))
2097                 return;
2098
2099         if (PageDirty(page)) {
2100                 if (inode->i_ino == F2FS_META_INO(sbi)) {
2101                         dec_page_count(sbi, F2FS_DIRTY_META);
2102                 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
2103                         dec_page_count(sbi, F2FS_DIRTY_NODES);
2104                 } else {
2105                         inode_dec_dirty_pages(inode);
2106                         remove_dirty_inode(inode);
2107                 }
2108         }
2109
2110         /* This is atomic written page, keep Private */
2111         if (IS_ATOMIC_WRITTEN_PAGE(page))
2112                 return drop_inmem_page(inode, page);
2113
2114         set_page_private(page, 0);
2115         ClearPagePrivate(page);
2116 }
2117
2118 int f2fs_release_page(struct page *page, gfp_t wait)
2119 {
2120         /* If this is dirty page, keep PagePrivate */
2121         if (PageDirty(page))
2122                 return 0;
2123
2124         /* This is atomic written page, keep Private */
2125         if (IS_ATOMIC_WRITTEN_PAGE(page))
2126                 return 0;
2127
2128         set_page_private(page, 0);
2129         ClearPagePrivate(page);
2130         return 1;
2131 }
2132
2133 /*
2134  * This was copied from __set_page_dirty_buffers which gives higher performance
2135  * in very high speed storages. (e.g., pmem)
2136  */
2137 void f2fs_set_page_dirty_nobuffers(struct page *page)
2138 {
2139         struct address_space *mapping = page->mapping;
2140         unsigned long flags;
2141
2142         if (unlikely(!mapping))
2143                 return;
2144
2145         spin_lock(&mapping->private_lock);
2146         lock_page_memcg(page);
2147         SetPageDirty(page);
2148         spin_unlock(&mapping->private_lock);
2149
2150         spin_lock_irqsave(&mapping->tree_lock, flags);
2151         WARN_ON_ONCE(!PageUptodate(page));
2152         account_page_dirtied(page, mapping);
2153         radix_tree_tag_set(&mapping->page_tree,
2154                         page_index(page), PAGECACHE_TAG_DIRTY);
2155         spin_unlock_irqrestore(&mapping->tree_lock, flags);
2156         unlock_page_memcg(page);
2157
2158         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2159         return;
2160 }
2161
2162 static int f2fs_set_data_page_dirty(struct page *page)
2163 {
2164         struct address_space *mapping = page->mapping;
2165         struct inode *inode = mapping->host;
2166
2167         trace_f2fs_set_page_dirty(page, DATA);
2168
2169         if (!PageUptodate(page))
2170                 SetPageUptodate(page);
2171
2172         if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) {
2173                 if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
2174                         register_inmem_page(inode, page);
2175                         return 1;
2176                 }
2177                 /*
2178                  * Previously, this page has been registered, we just
2179                  * return here.
2180                  */
2181                 return 0;
2182         }
2183
2184         if (!PageDirty(page)) {
2185                 f2fs_set_page_dirty_nobuffers(page);
2186                 update_dirty_page(inode, page);
2187                 return 1;
2188         }
2189         return 0;
2190 }
2191
2192 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
2193 {
2194         struct inode *inode = mapping->host;
2195
2196         if (f2fs_has_inline_data(inode))
2197                 return 0;
2198
2199         /* make sure allocating whole blocks */
2200         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2201                 filemap_write_and_wait(mapping);
2202
2203         return generic_block_bmap(mapping, block, get_data_block_bmap);
2204 }
2205
2206 #ifdef CONFIG_MIGRATION
2207 #include <linux/migrate.h>
2208
2209 int f2fs_migrate_page(struct address_space *mapping,
2210                 struct page *newpage, struct page *page, enum migrate_mode mode)
2211 {
2212         int rc, extra_count;
2213         struct f2fs_inode_info *fi = F2FS_I(mapping->host);
2214         bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page);
2215
2216         BUG_ON(PageWriteback(page));
2217
2218         /* migrating an atomic written page is safe with the inmem_lock hold */
2219         if (atomic_written) {
2220                 if (mode != MIGRATE_SYNC)
2221                         return -EBUSY;
2222                 if (!mutex_trylock(&fi->inmem_lock))
2223                         return -EAGAIN;
2224         }
2225
2226         /*
2227          * A reference is expected if PagePrivate set when move mapping,
2228          * however F2FS breaks this for maintaining dirty page counts when
2229          * truncating pages. So here adjusting the 'extra_count' make it work.
2230          */
2231         extra_count = (atomic_written ? 1 : 0) - page_has_private(page);
2232         rc = migrate_page_move_mapping(mapping, newpage,
2233                                 page, NULL, mode, extra_count);
2234         if (rc != MIGRATEPAGE_SUCCESS) {
2235                 if (atomic_written)
2236                         mutex_unlock(&fi->inmem_lock);
2237                 return rc;
2238         }
2239
2240         if (atomic_written) {
2241                 struct inmem_pages *cur;
2242                 list_for_each_entry(cur, &fi->inmem_pages, list)
2243                         if (cur->page == page) {
2244                                 cur->page = newpage;
2245                                 break;
2246                         }
2247                 mutex_unlock(&fi->inmem_lock);
2248                 put_page(page);
2249                 get_page(newpage);
2250         }
2251
2252         if (PagePrivate(page))
2253                 SetPagePrivate(newpage);
2254         set_page_private(newpage, page_private(page));
2255
2256         migrate_page_copy(newpage, page);
2257
2258         return MIGRATEPAGE_SUCCESS;
2259 }
2260 #endif
2261
2262 const struct address_space_operations f2fs_dblock_aops = {
2263         .readpage       = f2fs_read_data_page,
2264         .readpages      = f2fs_read_data_pages,
2265         .writepage      = f2fs_write_data_page,
2266         .writepages     = f2fs_write_data_pages,
2267         .write_begin    = f2fs_write_begin,
2268         .write_end      = f2fs_write_end,
2269         .set_page_dirty = f2fs_set_data_page_dirty,
2270         .invalidatepage = f2fs_invalidate_page,
2271         .releasepage    = f2fs_release_page,
2272         .direct_IO      = f2fs_direct_IO,
2273         .bmap           = f2fs_bmap,
2274 #ifdef CONFIG_MIGRATION
2275         .migratepage    = f2fs_migrate_page,
2276 #endif
2277 };