f2fs crypto: fix racing of accessing encrypted page among
[linux-2.6-microblaze.git] / fs / f2fs / data.c
1 /*
2  * fs/f2fs/data.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/buffer_head.h>
14 #include <linux/mpage.h>
15 #include <linux/writeback.h>
16 #include <linux/backing-dev.h>
17 #include <linux/pagevec.h>
18 #include <linux/blkdev.h>
19 #include <linux/bio.h>
20 #include <linux/prefetch.h>
21 #include <linux/uio.h>
22 #include <linux/cleancache.h>
23
24 #include "f2fs.h"
25 #include "node.h"
26 #include "segment.h"
27 #include "trace.h"
28 #include <trace/events/f2fs.h>
29
30 static void f2fs_read_end_io(struct bio *bio)
31 {
32         struct bio_vec *bvec;
33         int i;
34
35         if (f2fs_bio_encrypted(bio)) {
36                 if (bio->bi_error) {
37                         f2fs_release_crypto_ctx(bio->bi_private);
38                 } else {
39                         f2fs_end_io_crypto_work(bio->bi_private, bio);
40                         return;
41                 }
42         }
43
44         bio_for_each_segment_all(bvec, bio, i) {
45                 struct page *page = bvec->bv_page;
46
47                 if (!bio->bi_error) {
48                         SetPageUptodate(page);
49                 } else {
50                         ClearPageUptodate(page);
51                         SetPageError(page);
52                 }
53                 unlock_page(page);
54         }
55         bio_put(bio);
56 }
57
58 static void f2fs_write_end_io(struct bio *bio)
59 {
60         struct f2fs_sb_info *sbi = bio->bi_private;
61         struct bio_vec *bvec;
62         int i;
63
64         bio_for_each_segment_all(bvec, bio, i) {
65                 struct page *page = bvec->bv_page;
66
67                 f2fs_restore_and_release_control_page(&page);
68
69                 if (unlikely(bio->bi_error)) {
70                         set_page_dirty(page);
71                         set_bit(AS_EIO, &page->mapping->flags);
72                         f2fs_stop_checkpoint(sbi);
73                 }
74                 end_page_writeback(page);
75                 dec_page_count(sbi, F2FS_WRITEBACK);
76         }
77
78         if (!get_pages(sbi, F2FS_WRITEBACK) &&
79                         !list_empty(&sbi->cp_wait.task_list))
80                 wake_up(&sbi->cp_wait);
81
82         bio_put(bio);
83 }
84
85 /*
86  * Low-level block read/write IO operations.
87  */
88 static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
89                                 int npages, bool is_read)
90 {
91         struct bio *bio;
92
93         bio = f2fs_bio_alloc(npages);
94
95         bio->bi_bdev = sbi->sb->s_bdev;
96         bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
97         bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io;
98         bio->bi_private = is_read ? NULL : sbi;
99
100         return bio;
101 }
102
103 static void __submit_merged_bio(struct f2fs_bio_info *io)
104 {
105         struct f2fs_io_info *fio = &io->fio;
106
107         if (!io->bio)
108                 return;
109
110         if (is_read_io(fio->rw))
111                 trace_f2fs_submit_read_bio(io->sbi->sb, fio, io->bio);
112         else
113                 trace_f2fs_submit_write_bio(io->sbi->sb, fio, io->bio);
114
115         submit_bio(fio->rw, io->bio);
116         io->bio = NULL;
117 }
118
119 void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi,
120                                 enum page_type type, int rw)
121 {
122         enum page_type btype = PAGE_TYPE_OF_BIO(type);
123         struct f2fs_bio_info *io;
124
125         io = is_read_io(rw) ? &sbi->read_io : &sbi->write_io[btype];
126
127         down_write(&io->io_rwsem);
128
129         /* change META to META_FLUSH in the checkpoint procedure */
130         if (type >= META_FLUSH) {
131                 io->fio.type = META_FLUSH;
132                 if (test_opt(sbi, NOBARRIER))
133                         io->fio.rw = WRITE_FLUSH | REQ_META | REQ_PRIO;
134                 else
135                         io->fio.rw = WRITE_FLUSH_FUA | REQ_META | REQ_PRIO;
136         }
137         __submit_merged_bio(io);
138         up_write(&io->io_rwsem);
139 }
140
141 /*
142  * Fill the locked page with data located in the block address.
143  * Return unlocked page.
144  */
145 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
146 {
147         struct bio *bio;
148         struct page *page = fio->encrypted_page ? fio->encrypted_page : fio->page;
149
150         trace_f2fs_submit_page_bio(page, fio);
151         f2fs_trace_ios(fio, 0);
152
153         /* Allocate a new bio */
154         bio = __bio_alloc(fio->sbi, fio->blk_addr, 1, is_read_io(fio->rw));
155
156         if (bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) < PAGE_CACHE_SIZE) {
157                 bio_put(bio);
158                 return -EFAULT;
159         }
160
161         submit_bio(fio->rw, bio);
162         return 0;
163 }
164
165 void f2fs_submit_page_mbio(struct f2fs_io_info *fio)
166 {
167         struct f2fs_sb_info *sbi = fio->sbi;
168         enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
169         struct f2fs_bio_info *io;
170         bool is_read = is_read_io(fio->rw);
171         struct page *bio_page;
172
173         io = is_read ? &sbi->read_io : &sbi->write_io[btype];
174
175         verify_block_addr(sbi, fio->blk_addr);
176
177         down_write(&io->io_rwsem);
178
179         if (!is_read)
180                 inc_page_count(sbi, F2FS_WRITEBACK);
181
182         if (io->bio && (io->last_block_in_bio != fio->blk_addr - 1 ||
183                                                 io->fio.rw != fio->rw))
184                 __submit_merged_bio(io);
185 alloc_new:
186         if (io->bio == NULL) {
187                 int bio_blocks = MAX_BIO_BLOCKS(sbi);
188
189                 io->bio = __bio_alloc(sbi, fio->blk_addr, bio_blocks, is_read);
190                 io->fio = *fio;
191         }
192
193         bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page;
194
195         if (bio_add_page(io->bio, bio_page, PAGE_CACHE_SIZE, 0) <
196                                                         PAGE_CACHE_SIZE) {
197                 __submit_merged_bio(io);
198                 goto alloc_new;
199         }
200
201         io->last_block_in_bio = fio->blk_addr;
202         f2fs_trace_ios(fio, 0);
203
204         up_write(&io->io_rwsem);
205         trace_f2fs_submit_page_mbio(fio->page, fio);
206 }
207
208 /*
209  * Lock ordering for the change of data block address:
210  * ->data_page
211  *  ->node_page
212  *    update block addresses in the node page
213  */
214 void set_data_blkaddr(struct dnode_of_data *dn)
215 {
216         struct f2fs_node *rn;
217         __le32 *addr_array;
218         struct page *node_page = dn->node_page;
219         unsigned int ofs_in_node = dn->ofs_in_node;
220
221         f2fs_wait_on_page_writeback(node_page, NODE);
222
223         rn = F2FS_NODE(node_page);
224
225         /* Get physical address of data block */
226         addr_array = blkaddr_in_node(rn);
227         addr_array[ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
228         set_page_dirty(node_page);
229 }
230
231 int reserve_new_block(struct dnode_of_data *dn)
232 {
233         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
234
235         if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
236                 return -EPERM;
237         if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
238                 return -ENOSPC;
239
240         trace_f2fs_reserve_new_block(dn->inode, dn->nid, dn->ofs_in_node);
241
242         dn->data_blkaddr = NEW_ADDR;
243         set_data_blkaddr(dn);
244         mark_inode_dirty(dn->inode);
245         sync_inode_page(dn);
246         return 0;
247 }
248
249 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
250 {
251         bool need_put = dn->inode_page ? false : true;
252         int err;
253
254         err = get_dnode_of_data(dn, index, ALLOC_NODE);
255         if (err)
256                 return err;
257
258         if (dn->data_blkaddr == NULL_ADDR)
259                 err = reserve_new_block(dn);
260         if (err || need_put)
261                 f2fs_put_dnode(dn);
262         return err;
263 }
264
265 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
266 {
267         struct extent_info ei;
268         struct inode *inode = dn->inode;
269
270         if (f2fs_lookup_extent_cache(inode, index, &ei)) {
271                 dn->data_blkaddr = ei.blk + index - ei.fofs;
272                 return 0;
273         }
274
275         return f2fs_reserve_block(dn, index);
276 }
277
278 struct page *get_read_data_page(struct inode *inode, pgoff_t index,
279                                                 int rw, bool for_write)
280 {
281         struct address_space *mapping = inode->i_mapping;
282         struct dnode_of_data dn;
283         struct page *page;
284         struct extent_info ei;
285         int err;
286         struct f2fs_io_info fio = {
287                 .sbi = F2FS_I_SB(inode),
288                 .type = DATA,
289                 .rw = rw,
290                 .encrypted_page = NULL,
291         };
292
293         if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
294                 return read_mapping_page(mapping, index, NULL);
295
296         page = f2fs_grab_cache_page(mapping, index, for_write);
297         if (!page)
298                 return ERR_PTR(-ENOMEM);
299
300         if (f2fs_lookup_extent_cache(inode, index, &ei)) {
301                 dn.data_blkaddr = ei.blk + index - ei.fofs;
302                 goto got_it;
303         }
304
305         set_new_dnode(&dn, inode, NULL, NULL, 0);
306         err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
307         if (err)
308                 goto put_err;
309         f2fs_put_dnode(&dn);
310
311         if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
312                 err = -ENOENT;
313                 goto put_err;
314         }
315 got_it:
316         if (PageUptodate(page)) {
317                 unlock_page(page);
318                 return page;
319         }
320
321         /*
322          * A new dentry page is allocated but not able to be written, since its
323          * new inode page couldn't be allocated due to -ENOSPC.
324          * In such the case, its blkaddr can be remained as NEW_ADDR.
325          * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
326          */
327         if (dn.data_blkaddr == NEW_ADDR) {
328                 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
329                 SetPageUptodate(page);
330                 unlock_page(page);
331                 return page;
332         }
333
334         fio.blk_addr = dn.data_blkaddr;
335         fio.page = page;
336         err = f2fs_submit_page_bio(&fio);
337         if (err)
338                 goto put_err;
339         return page;
340
341 put_err:
342         f2fs_put_page(page, 1);
343         return ERR_PTR(err);
344 }
345
346 struct page *find_data_page(struct inode *inode, pgoff_t index)
347 {
348         struct address_space *mapping = inode->i_mapping;
349         struct page *page;
350
351         page = find_get_page(mapping, index);
352         if (page && PageUptodate(page))
353                 return page;
354         f2fs_put_page(page, 0);
355
356         page = get_read_data_page(inode, index, READ_SYNC, false);
357         if (IS_ERR(page))
358                 return page;
359
360         if (PageUptodate(page))
361                 return page;
362
363         wait_on_page_locked(page);
364         if (unlikely(!PageUptodate(page))) {
365                 f2fs_put_page(page, 0);
366                 return ERR_PTR(-EIO);
367         }
368         return page;
369 }
370
371 /*
372  * If it tries to access a hole, return an error.
373  * Because, the callers, functions in dir.c and GC, should be able to know
374  * whether this page exists or not.
375  */
376 struct page *get_lock_data_page(struct inode *inode, pgoff_t index,
377                                                         bool for_write)
378 {
379         struct address_space *mapping = inode->i_mapping;
380         struct page *page;
381 repeat:
382         page = get_read_data_page(inode, index, READ_SYNC, for_write);
383         if (IS_ERR(page))
384                 return page;
385
386         /* wait for read completion */
387         lock_page(page);
388         if (unlikely(!PageUptodate(page))) {
389                 f2fs_put_page(page, 1);
390                 return ERR_PTR(-EIO);
391         }
392         if (unlikely(page->mapping != mapping)) {
393                 f2fs_put_page(page, 1);
394                 goto repeat;
395         }
396         return page;
397 }
398
399 /*
400  * Caller ensures that this data page is never allocated.
401  * A new zero-filled data page is allocated in the page cache.
402  *
403  * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
404  * f2fs_unlock_op().
405  * Note that, ipage is set only by make_empty_dir, and if any error occur,
406  * ipage should be released by this function.
407  */
408 struct page *get_new_data_page(struct inode *inode,
409                 struct page *ipage, pgoff_t index, bool new_i_size)
410 {
411         struct address_space *mapping = inode->i_mapping;
412         struct page *page;
413         struct dnode_of_data dn;
414         int err;
415 repeat:
416         page = f2fs_grab_cache_page(mapping, index, true);
417         if (!page) {
418                 /*
419                  * before exiting, we should make sure ipage will be released
420                  * if any error occur.
421                  */
422                 f2fs_put_page(ipage, 1);
423                 return ERR_PTR(-ENOMEM);
424         }
425
426         set_new_dnode(&dn, inode, ipage, NULL, 0);
427         err = f2fs_reserve_block(&dn, index);
428         if (err) {
429                 f2fs_put_page(page, 1);
430                 return ERR_PTR(err);
431         }
432         if (!ipage)
433                 f2fs_put_dnode(&dn);
434
435         if (PageUptodate(page))
436                 goto got_it;
437
438         if (dn.data_blkaddr == NEW_ADDR) {
439                 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
440                 SetPageUptodate(page);
441         } else {
442                 f2fs_put_page(page, 1);
443
444                 page = get_read_data_page(inode, index, READ_SYNC, true);
445                 if (IS_ERR(page))
446                         goto repeat;
447
448                 /* wait for read completion */
449                 lock_page(page);
450         }
451 got_it:
452         if (new_i_size && i_size_read(inode) <
453                                 ((loff_t)(index + 1) << PAGE_CACHE_SHIFT)) {
454                 i_size_write(inode, ((loff_t)(index + 1) << PAGE_CACHE_SHIFT));
455                 /* Only the directory inode sets new_i_size */
456                 set_inode_flag(F2FS_I(inode), FI_UPDATE_DIR);
457         }
458         return page;
459 }
460
461 static int __allocate_data_block(struct dnode_of_data *dn)
462 {
463         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
464         struct f2fs_inode_info *fi = F2FS_I(dn->inode);
465         struct f2fs_summary sum;
466         struct node_info ni;
467         int seg = CURSEG_WARM_DATA;
468         pgoff_t fofs;
469
470         if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
471                 return -EPERM;
472
473         dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
474         if (dn->data_blkaddr == NEW_ADDR)
475                 goto alloc;
476
477         if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
478                 return -ENOSPC;
479
480 alloc:
481         get_node_info(sbi, dn->nid, &ni);
482         set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
483
484         if (dn->ofs_in_node == 0 && dn->inode_page == dn->node_page)
485                 seg = CURSEG_DIRECT_IO;
486
487         allocate_data_block(sbi, NULL, dn->data_blkaddr, &dn->data_blkaddr,
488                                                                 &sum, seg);
489         set_data_blkaddr(dn);
490
491         /* update i_size */
492         fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) +
493                                                         dn->ofs_in_node;
494         if (i_size_read(dn->inode) < ((loff_t)(fofs + 1) << PAGE_CACHE_SHIFT))
495                 i_size_write(dn->inode,
496                                 ((loff_t)(fofs + 1) << PAGE_CACHE_SHIFT));
497
498         /* direct IO doesn't use extent cache to maximize the performance */
499         f2fs_drop_largest_extent(dn->inode, fofs);
500
501         return 0;
502 }
503
504 static void __allocate_data_blocks(struct inode *inode, loff_t offset,
505                                                         size_t count)
506 {
507         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
508         struct dnode_of_data dn;
509         u64 start = F2FS_BYTES_TO_BLK(offset);
510         u64 len = F2FS_BYTES_TO_BLK(count);
511         bool allocated;
512         u64 end_offset;
513
514         while (len) {
515                 f2fs_balance_fs(sbi);
516                 f2fs_lock_op(sbi);
517
518                 /* When reading holes, we need its node page */
519                 set_new_dnode(&dn, inode, NULL, NULL, 0);
520                 if (get_dnode_of_data(&dn, start, ALLOC_NODE))
521                         goto out;
522
523                 allocated = false;
524                 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
525
526                 while (dn.ofs_in_node < end_offset && len) {
527                         block_t blkaddr;
528
529                         if (unlikely(f2fs_cp_error(sbi)))
530                                 goto sync_out;
531
532                         blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
533                         if (blkaddr == NULL_ADDR || blkaddr == NEW_ADDR) {
534                                 if (__allocate_data_block(&dn))
535                                         goto sync_out;
536                                 allocated = true;
537                         }
538                         len--;
539                         start++;
540                         dn.ofs_in_node++;
541                 }
542
543                 if (allocated)
544                         sync_inode_page(&dn);
545
546                 f2fs_put_dnode(&dn);
547                 f2fs_unlock_op(sbi);
548         }
549         return;
550
551 sync_out:
552         if (allocated)
553                 sync_inode_page(&dn);
554         f2fs_put_dnode(&dn);
555 out:
556         f2fs_unlock_op(sbi);
557         return;
558 }
559
560 /*
561  * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
562  * f2fs_map_blocks structure.
563  * If original data blocks are allocated, then give them to blockdev.
564  * Otherwise,
565  *     a. preallocate requested block addresses
566  *     b. do not use extent cache for better performance
567  *     c. give the block addresses to blockdev
568  */
569 static int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
570                                                 int create, int flag)
571 {
572         unsigned int maxblocks = map->m_len;
573         struct dnode_of_data dn;
574         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
575         int mode = create ? ALLOC_NODE : LOOKUP_NODE_RA;
576         pgoff_t pgofs, end_offset;
577         int err = 0, ofs = 1;
578         struct extent_info ei;
579         bool allocated = false;
580
581         map->m_len = 0;
582         map->m_flags = 0;
583
584         /* it only supports block size == page size */
585         pgofs = (pgoff_t)map->m_lblk;
586
587         if (f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
588                 map->m_pblk = ei.blk + pgofs - ei.fofs;
589                 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
590                 map->m_flags = F2FS_MAP_MAPPED;
591                 goto out;
592         }
593
594         if (create)
595                 f2fs_lock_op(F2FS_I_SB(inode));
596
597         /* When reading holes, we need its node page */
598         set_new_dnode(&dn, inode, NULL, NULL, 0);
599         err = get_dnode_of_data(&dn, pgofs, mode);
600         if (err) {
601                 if (err == -ENOENT)
602                         err = 0;
603                 goto unlock_out;
604         }
605
606         if (dn.data_blkaddr == NEW_ADDR || dn.data_blkaddr == NULL_ADDR) {
607                 if (create) {
608                         if (unlikely(f2fs_cp_error(sbi))) {
609                                 err = -EIO;
610                                 goto put_out;
611                         }
612                         err = __allocate_data_block(&dn);
613                         if (err)
614                                 goto put_out;
615                         allocated = true;
616                         map->m_flags = F2FS_MAP_NEW;
617                 } else {
618                         if (flag != F2FS_GET_BLOCK_FIEMAP ||
619                                                 dn.data_blkaddr != NEW_ADDR) {
620                                 if (flag == F2FS_GET_BLOCK_BMAP)
621                                         err = -ENOENT;
622                                 goto put_out;
623                         }
624
625                         /*
626                          * preallocated unwritten block should be mapped
627                          * for fiemap.
628                          */
629                         if (dn.data_blkaddr == NEW_ADDR)
630                                 map->m_flags = F2FS_MAP_UNWRITTEN;
631                 }
632         }
633
634         map->m_flags |= F2FS_MAP_MAPPED;
635         map->m_pblk = dn.data_blkaddr;
636         map->m_len = 1;
637
638         end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
639         dn.ofs_in_node++;
640         pgofs++;
641
642 get_next:
643         if (dn.ofs_in_node >= end_offset) {
644                 if (allocated)
645                         sync_inode_page(&dn);
646                 allocated = false;
647                 f2fs_put_dnode(&dn);
648
649                 set_new_dnode(&dn, inode, NULL, NULL, 0);
650                 err = get_dnode_of_data(&dn, pgofs, mode);
651                 if (err) {
652                         if (err == -ENOENT)
653                                 err = 0;
654                         goto unlock_out;
655                 }
656
657                 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
658         }
659
660         if (maxblocks > map->m_len) {
661                 block_t blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
662
663                 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) {
664                         if (create) {
665                                 if (unlikely(f2fs_cp_error(sbi))) {
666                                         err = -EIO;
667                                         goto sync_out;
668                                 }
669                                 err = __allocate_data_block(&dn);
670                                 if (err)
671                                         goto sync_out;
672                                 allocated = true;
673                                 map->m_flags |= F2FS_MAP_NEW;
674                                 blkaddr = dn.data_blkaddr;
675                         } else {
676                                 /*
677                                  * we only merge preallocated unwritten blocks
678                                  * for fiemap.
679                                  */
680                                 if (flag != F2FS_GET_BLOCK_FIEMAP ||
681                                                 blkaddr != NEW_ADDR)
682                                         goto sync_out;
683                         }
684                 }
685
686                 /* Give more consecutive addresses for the readahead */
687                 if ((map->m_pblk != NEW_ADDR &&
688                                 blkaddr == (map->m_pblk + ofs)) ||
689                                 (map->m_pblk == NEW_ADDR &&
690                                 blkaddr == NEW_ADDR)) {
691                         ofs++;
692                         dn.ofs_in_node++;
693                         pgofs++;
694                         map->m_len++;
695                         goto get_next;
696                 }
697         }
698 sync_out:
699         if (allocated)
700                 sync_inode_page(&dn);
701 put_out:
702         f2fs_put_dnode(&dn);
703 unlock_out:
704         if (create)
705                 f2fs_unlock_op(F2FS_I_SB(inode));
706 out:
707         trace_f2fs_map_blocks(inode, map, err);
708         return err;
709 }
710
711 static int __get_data_block(struct inode *inode, sector_t iblock,
712                         struct buffer_head *bh, int create, int flag)
713 {
714         struct f2fs_map_blocks map;
715         int ret;
716
717         map.m_lblk = iblock;
718         map.m_len = bh->b_size >> inode->i_blkbits;
719
720         ret = f2fs_map_blocks(inode, &map, create, flag);
721         if (!ret) {
722                 map_bh(bh, inode->i_sb, map.m_pblk);
723                 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
724                 bh->b_size = map.m_len << inode->i_blkbits;
725         }
726         return ret;
727 }
728
729 static int get_data_block(struct inode *inode, sector_t iblock,
730                         struct buffer_head *bh_result, int create, int flag)
731 {
732         return __get_data_block(inode, iblock, bh_result, create, flag);
733 }
734
735 static int get_data_block_dio(struct inode *inode, sector_t iblock,
736                         struct buffer_head *bh_result, int create)
737 {
738         return __get_data_block(inode, iblock, bh_result, create,
739                                                 F2FS_GET_BLOCK_DIO);
740 }
741
742 static int get_data_block_bmap(struct inode *inode, sector_t iblock,
743                         struct buffer_head *bh_result, int create)
744 {
745         return __get_data_block(inode, iblock, bh_result, create,
746                                                 F2FS_GET_BLOCK_BMAP);
747 }
748
749 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
750 {
751         return (offset >> inode->i_blkbits);
752 }
753
754 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
755 {
756         return (blk << inode->i_blkbits);
757 }
758
759 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
760                 u64 start, u64 len)
761 {
762         struct buffer_head map_bh;
763         sector_t start_blk, last_blk;
764         loff_t isize = i_size_read(inode);
765         u64 logical = 0, phys = 0, size = 0;
766         u32 flags = 0;
767         bool past_eof = false, whole_file = false;
768         int ret = 0;
769
770         ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC);
771         if (ret)
772                 return ret;
773
774         mutex_lock(&inode->i_mutex);
775
776         if (len >= isize) {
777                 whole_file = true;
778                 len = isize;
779         }
780
781         if (logical_to_blk(inode, len) == 0)
782                 len = blk_to_logical(inode, 1);
783
784         start_blk = logical_to_blk(inode, start);
785         last_blk = logical_to_blk(inode, start + len - 1);
786 next:
787         memset(&map_bh, 0, sizeof(struct buffer_head));
788         map_bh.b_size = len;
789
790         ret = get_data_block(inode, start_blk, &map_bh, 0,
791                                         F2FS_GET_BLOCK_FIEMAP);
792         if (ret)
793                 goto out;
794
795         /* HOLE */
796         if (!buffer_mapped(&map_bh)) {
797                 start_blk++;
798
799                 if (!past_eof && blk_to_logical(inode, start_blk) >= isize)
800                         past_eof = 1;
801
802                 if (past_eof && size) {
803                         flags |= FIEMAP_EXTENT_LAST;
804                         ret = fiemap_fill_next_extent(fieinfo, logical,
805                                         phys, size, flags);
806                 } else if (size) {
807                         ret = fiemap_fill_next_extent(fieinfo, logical,
808                                         phys, size, flags);
809                         size = 0;
810                 }
811
812                 /* if we have holes up to/past EOF then we're done */
813                 if (start_blk > last_blk || past_eof || ret)
814                         goto out;
815         } else {
816                 if (start_blk > last_blk && !whole_file) {
817                         ret = fiemap_fill_next_extent(fieinfo, logical,
818                                         phys, size, flags);
819                         goto out;
820                 }
821
822                 /*
823                  * if size != 0 then we know we already have an extent
824                  * to add, so add it.
825                  */
826                 if (size) {
827                         ret = fiemap_fill_next_extent(fieinfo, logical,
828                                         phys, size, flags);
829                         if (ret)
830                                 goto out;
831                 }
832
833                 logical = blk_to_logical(inode, start_blk);
834                 phys = blk_to_logical(inode, map_bh.b_blocknr);
835                 size = map_bh.b_size;
836                 flags = 0;
837                 if (buffer_unwritten(&map_bh))
838                         flags = FIEMAP_EXTENT_UNWRITTEN;
839
840                 start_blk += logical_to_blk(inode, size);
841
842                 /*
843                  * If we are past the EOF, then we need to make sure as
844                  * soon as we find a hole that the last extent we found
845                  * is marked with FIEMAP_EXTENT_LAST
846                  */
847                 if (!past_eof && logical + size >= isize)
848                         past_eof = true;
849         }
850         cond_resched();
851         if (fatal_signal_pending(current))
852                 ret = -EINTR;
853         else
854                 goto next;
855 out:
856         if (ret == 1)
857                 ret = 0;
858
859         mutex_unlock(&inode->i_mutex);
860         return ret;
861 }
862
863 /*
864  * This function was originally taken from fs/mpage.c, and customized for f2fs.
865  * Major change was from block_size == page_size in f2fs by default.
866  */
867 static int f2fs_mpage_readpages(struct address_space *mapping,
868                         struct list_head *pages, struct page *page,
869                         unsigned nr_pages)
870 {
871         struct bio *bio = NULL;
872         unsigned page_idx;
873         sector_t last_block_in_bio = 0;
874         struct inode *inode = mapping->host;
875         const unsigned blkbits = inode->i_blkbits;
876         const unsigned blocksize = 1 << blkbits;
877         sector_t block_in_file;
878         sector_t last_block;
879         sector_t last_block_in_file;
880         sector_t block_nr;
881         struct block_device *bdev = inode->i_sb->s_bdev;
882         struct f2fs_map_blocks map;
883
884         map.m_pblk = 0;
885         map.m_lblk = 0;
886         map.m_len = 0;
887         map.m_flags = 0;
888
889         for (page_idx = 0; nr_pages; page_idx++, nr_pages--) {
890
891                 prefetchw(&page->flags);
892                 if (pages) {
893                         page = list_entry(pages->prev, struct page, lru);
894                         list_del(&page->lru);
895                         if (add_to_page_cache_lru(page, mapping,
896                                                   page->index, GFP_KERNEL))
897                                 goto next_page;
898                 }
899
900                 block_in_file = (sector_t)page->index;
901                 last_block = block_in_file + nr_pages;
902                 last_block_in_file = (i_size_read(inode) + blocksize - 1) >>
903                                                                 blkbits;
904                 if (last_block > last_block_in_file)
905                         last_block = last_block_in_file;
906
907                 /*
908                  * Map blocks using the previous result first.
909                  */
910                 if ((map.m_flags & F2FS_MAP_MAPPED) &&
911                                 block_in_file > map.m_lblk &&
912                                 block_in_file < (map.m_lblk + map.m_len))
913                         goto got_it;
914
915                 /*
916                  * Then do more f2fs_map_blocks() calls until we are
917                  * done with this page.
918                  */
919                 map.m_flags = 0;
920
921                 if (block_in_file < last_block) {
922                         map.m_lblk = block_in_file;
923                         map.m_len = last_block - block_in_file;
924
925                         if (f2fs_map_blocks(inode, &map, 0,
926                                                         F2FS_GET_BLOCK_READ))
927                                 goto set_error_page;
928                 }
929 got_it:
930                 if ((map.m_flags & F2FS_MAP_MAPPED)) {
931                         block_nr = map.m_pblk + block_in_file - map.m_lblk;
932                         SetPageMappedToDisk(page);
933
934                         if (!PageUptodate(page) && !cleancache_get_page(page)) {
935                                 SetPageUptodate(page);
936                                 goto confused;
937                         }
938                 } else {
939                         zero_user_segment(page, 0, PAGE_CACHE_SIZE);
940                         SetPageUptodate(page);
941                         unlock_page(page);
942                         goto next_page;
943                 }
944
945                 /*
946                  * This page will go to BIO.  Do we need to send this
947                  * BIO off first?
948                  */
949                 if (bio && (last_block_in_bio != block_nr - 1)) {
950 submit_and_realloc:
951                         submit_bio(READ, bio);
952                         bio = NULL;
953                 }
954                 if (bio == NULL) {
955                         struct f2fs_crypto_ctx *ctx = NULL;
956
957                         if (f2fs_encrypted_inode(inode) &&
958                                         S_ISREG(inode->i_mode)) {
959
960                                 ctx = f2fs_get_crypto_ctx(inode);
961                                 if (IS_ERR(ctx))
962                                         goto set_error_page;
963
964                                 /* wait the page to be moved by cleaning */
965                                 f2fs_wait_on_encrypted_page_writeback(
966                                                 F2FS_I_SB(inode), block_nr);
967                         }
968
969                         bio = bio_alloc(GFP_KERNEL,
970                                 min_t(int, nr_pages, BIO_MAX_PAGES));
971                         if (!bio) {
972                                 if (ctx)
973                                         f2fs_release_crypto_ctx(ctx);
974                                 goto set_error_page;
975                         }
976                         bio->bi_bdev = bdev;
977                         bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(block_nr);
978                         bio->bi_end_io = f2fs_read_end_io;
979                         bio->bi_private = ctx;
980                 }
981
982                 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
983                         goto submit_and_realloc;
984
985                 last_block_in_bio = block_nr;
986                 goto next_page;
987 set_error_page:
988                 SetPageError(page);
989                 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
990                 unlock_page(page);
991                 goto next_page;
992 confused:
993                 if (bio) {
994                         submit_bio(READ, bio);
995                         bio = NULL;
996                 }
997                 unlock_page(page);
998 next_page:
999                 if (pages)
1000                         page_cache_release(page);
1001         }
1002         BUG_ON(pages && !list_empty(pages));
1003         if (bio)
1004                 submit_bio(READ, bio);
1005         return 0;
1006 }
1007
1008 static int f2fs_read_data_page(struct file *file, struct page *page)
1009 {
1010         struct inode *inode = page->mapping->host;
1011         int ret = -EAGAIN;
1012
1013         trace_f2fs_readpage(page, DATA);
1014
1015         /* If the file has inline data, try to read it directly */
1016         if (f2fs_has_inline_data(inode))
1017                 ret = f2fs_read_inline_data(inode, page);
1018         if (ret == -EAGAIN)
1019                 ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1);
1020         return ret;
1021 }
1022
1023 static int f2fs_read_data_pages(struct file *file,
1024                         struct address_space *mapping,
1025                         struct list_head *pages, unsigned nr_pages)
1026 {
1027         struct inode *inode = file->f_mapping->host;
1028         struct page *page = list_entry(pages->prev, struct page, lru);
1029
1030         trace_f2fs_readpages(inode, page, nr_pages);
1031
1032         /* If the file has inline data, skip readpages */
1033         if (f2fs_has_inline_data(inode))
1034                 return 0;
1035
1036         return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages);
1037 }
1038
1039 int do_write_data_page(struct f2fs_io_info *fio)
1040 {
1041         struct page *page = fio->page;
1042         struct inode *inode = page->mapping->host;
1043         struct dnode_of_data dn;
1044         int err = 0;
1045
1046         set_new_dnode(&dn, inode, NULL, NULL, 0);
1047         err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
1048         if (err)
1049                 return err;
1050
1051         fio->blk_addr = dn.data_blkaddr;
1052
1053         /* This page is already truncated */
1054         if (fio->blk_addr == NULL_ADDR) {
1055                 ClearPageUptodate(page);
1056                 goto out_writepage;
1057         }
1058
1059         if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
1060
1061                 /* wait for GCed encrypted page writeback */
1062                 f2fs_wait_on_encrypted_page_writeback(F2FS_I_SB(inode),
1063                                                         fio->blk_addr);
1064
1065                 fio->encrypted_page = f2fs_encrypt(inode, fio->page);
1066                 if (IS_ERR(fio->encrypted_page)) {
1067                         err = PTR_ERR(fio->encrypted_page);
1068                         goto out_writepage;
1069                 }
1070         }
1071
1072         set_page_writeback(page);
1073
1074         /*
1075          * If current allocation needs SSR,
1076          * it had better in-place writes for updated data.
1077          */
1078         if (unlikely(fio->blk_addr != NEW_ADDR &&
1079                         !is_cold_data(page) &&
1080                         need_inplace_update(inode))) {
1081                 rewrite_data_page(fio);
1082                 set_inode_flag(F2FS_I(inode), FI_UPDATE_WRITE);
1083                 trace_f2fs_do_write_data_page(page, IPU);
1084         } else {
1085                 write_data_page(&dn, fio);
1086                 set_data_blkaddr(&dn);
1087                 f2fs_update_extent_cache(&dn);
1088                 trace_f2fs_do_write_data_page(page, OPU);
1089                 set_inode_flag(F2FS_I(inode), FI_APPEND_WRITE);
1090                 if (page->index == 0)
1091                         set_inode_flag(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN);
1092         }
1093 out_writepage:
1094         f2fs_put_dnode(&dn);
1095         return err;
1096 }
1097
1098 static int f2fs_write_data_page(struct page *page,
1099                                         struct writeback_control *wbc)
1100 {
1101         struct inode *inode = page->mapping->host;
1102         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1103         loff_t i_size = i_size_read(inode);
1104         const pgoff_t end_index = ((unsigned long long) i_size)
1105                                                         >> PAGE_CACHE_SHIFT;
1106         unsigned offset = 0;
1107         bool need_balance_fs = false;
1108         int err = 0;
1109         struct f2fs_io_info fio = {
1110                 .sbi = sbi,
1111                 .type = DATA,
1112                 .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
1113                 .page = page,
1114                 .encrypted_page = NULL,
1115         };
1116
1117         trace_f2fs_writepage(page, DATA);
1118
1119         if (page->index < end_index)
1120                 goto write;
1121
1122         /*
1123          * If the offset is out-of-range of file size,
1124          * this page does not have to be written to disk.
1125          */
1126         offset = i_size & (PAGE_CACHE_SIZE - 1);
1127         if ((page->index >= end_index + 1) || !offset)
1128                 goto out;
1129
1130         zero_user_segment(page, offset, PAGE_CACHE_SIZE);
1131 write:
1132         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1133                 goto redirty_out;
1134         if (f2fs_is_drop_cache(inode))
1135                 goto out;
1136         if (f2fs_is_volatile_file(inode) && !wbc->for_reclaim &&
1137                         available_free_memory(sbi, BASE_CHECK))
1138                 goto redirty_out;
1139
1140         /* Dentry blocks are controlled by checkpoint */
1141         if (S_ISDIR(inode->i_mode)) {
1142                 if (unlikely(f2fs_cp_error(sbi)))
1143                         goto redirty_out;
1144                 err = do_write_data_page(&fio);
1145                 goto done;
1146         }
1147
1148         /* we should bypass data pages to proceed the kworkder jobs */
1149         if (unlikely(f2fs_cp_error(sbi))) {
1150                 SetPageError(page);
1151                 goto out;
1152         }
1153
1154         if (!wbc->for_reclaim)
1155                 need_balance_fs = true;
1156         else if (has_not_enough_free_secs(sbi, 0))
1157                 goto redirty_out;
1158
1159         err = -EAGAIN;
1160         f2fs_lock_op(sbi);
1161         if (f2fs_has_inline_data(inode))
1162                 err = f2fs_write_inline_data(inode, page);
1163         if (err == -EAGAIN)
1164                 err = do_write_data_page(&fio);
1165         f2fs_unlock_op(sbi);
1166 done:
1167         if (err && err != -ENOENT)
1168                 goto redirty_out;
1169
1170         clear_cold_data(page);
1171 out:
1172         inode_dec_dirty_pages(inode);
1173         if (err)
1174                 ClearPageUptodate(page);
1175         unlock_page(page);
1176         if (need_balance_fs)
1177                 f2fs_balance_fs(sbi);
1178         if (wbc->for_reclaim)
1179                 f2fs_submit_merged_bio(sbi, DATA, WRITE);
1180         return 0;
1181
1182 redirty_out:
1183         redirty_page_for_writepage(wbc, page);
1184         return AOP_WRITEPAGE_ACTIVATE;
1185 }
1186
1187 static int __f2fs_writepage(struct page *page, struct writeback_control *wbc,
1188                         void *data)
1189 {
1190         struct address_space *mapping = data;
1191         int ret = mapping->a_ops->writepage(page, wbc);
1192         mapping_set_error(mapping, ret);
1193         return ret;
1194 }
1195
1196 /*
1197  * This function was copied from write_cche_pages from mm/page-writeback.c.
1198  * The major change is making write step of cold data page separately from
1199  * warm/hot data page.
1200  */
1201 static int f2fs_write_cache_pages(struct address_space *mapping,
1202                         struct writeback_control *wbc, writepage_t writepage,
1203                         void *data)
1204 {
1205         int ret = 0;
1206         int done = 0;
1207         struct pagevec pvec;
1208         int nr_pages;
1209         pgoff_t uninitialized_var(writeback_index);
1210         pgoff_t index;
1211         pgoff_t end;            /* Inclusive */
1212         pgoff_t done_index;
1213         int cycled;
1214         int range_whole = 0;
1215         int tag;
1216         int step = 0;
1217
1218         pagevec_init(&pvec, 0);
1219 next:
1220         if (wbc->range_cyclic) {
1221                 writeback_index = mapping->writeback_index; /* prev offset */
1222                 index = writeback_index;
1223                 if (index == 0)
1224                         cycled = 1;
1225                 else
1226                         cycled = 0;
1227                 end = -1;
1228         } else {
1229                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
1230                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
1231                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1232                         range_whole = 1;
1233                 cycled = 1; /* ignore range_cyclic tests */
1234         }
1235         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1236                 tag = PAGECACHE_TAG_TOWRITE;
1237         else
1238                 tag = PAGECACHE_TAG_DIRTY;
1239 retry:
1240         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1241                 tag_pages_for_writeback(mapping, index, end);
1242         done_index = index;
1243         while (!done && (index <= end)) {
1244                 int i;
1245
1246                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1247                               min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1);
1248                 if (nr_pages == 0)
1249                         break;
1250
1251                 for (i = 0; i < nr_pages; i++) {
1252                         struct page *page = pvec.pages[i];
1253
1254                         if (page->index > end) {
1255                                 done = 1;
1256                                 break;
1257                         }
1258
1259                         done_index = page->index;
1260
1261                         lock_page(page);
1262
1263                         if (unlikely(page->mapping != mapping)) {
1264 continue_unlock:
1265                                 unlock_page(page);
1266                                 continue;
1267                         }
1268
1269                         if (!PageDirty(page)) {
1270                                 /* someone wrote it for us */
1271                                 goto continue_unlock;
1272                         }
1273
1274                         if (step == is_cold_data(page))
1275                                 goto continue_unlock;
1276
1277                         if (PageWriteback(page)) {
1278                                 if (wbc->sync_mode != WB_SYNC_NONE)
1279                                         f2fs_wait_on_page_writeback(page, DATA);
1280                                 else
1281                                         goto continue_unlock;
1282                         }
1283
1284                         BUG_ON(PageWriteback(page));
1285                         if (!clear_page_dirty_for_io(page))
1286                                 goto continue_unlock;
1287
1288                         ret = (*writepage)(page, wbc, data);
1289                         if (unlikely(ret)) {
1290                                 if (ret == AOP_WRITEPAGE_ACTIVATE) {
1291                                         unlock_page(page);
1292                                         ret = 0;
1293                                 } else {
1294                                         done_index = page->index + 1;
1295                                         done = 1;
1296                                         break;
1297                                 }
1298                         }
1299
1300                         if (--wbc->nr_to_write <= 0 &&
1301                             wbc->sync_mode == WB_SYNC_NONE) {
1302                                 done = 1;
1303                                 break;
1304                         }
1305                 }
1306                 pagevec_release(&pvec);
1307                 cond_resched();
1308         }
1309
1310         if (step < 1) {
1311                 step++;
1312                 goto next;
1313         }
1314
1315         if (!cycled && !done) {
1316                 cycled = 1;
1317                 index = 0;
1318                 end = writeback_index - 1;
1319                 goto retry;
1320         }
1321         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1322                 mapping->writeback_index = done_index;
1323
1324         return ret;
1325 }
1326
1327 static int f2fs_write_data_pages(struct address_space *mapping,
1328                             struct writeback_control *wbc)
1329 {
1330         struct inode *inode = mapping->host;
1331         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1332         bool locked = false;
1333         int ret;
1334         long diff;
1335
1336         trace_f2fs_writepages(mapping->host, wbc, DATA);
1337
1338         /* deal with chardevs and other special file */
1339         if (!mapping->a_ops->writepage)
1340                 return 0;
1341
1342         /* skip writing if there is no dirty page in this inode */
1343         if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
1344                 return 0;
1345
1346         if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
1347                         get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
1348                         available_free_memory(sbi, DIRTY_DENTS))
1349                 goto skip_write;
1350
1351         /* during POR, we don't need to trigger writepage at all. */
1352         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1353                 goto skip_write;
1354
1355         diff = nr_pages_to_write(sbi, DATA, wbc);
1356
1357         if (!S_ISDIR(inode->i_mode)) {
1358                 mutex_lock(&sbi->writepages);
1359                 locked = true;
1360         }
1361         ret = f2fs_write_cache_pages(mapping, wbc, __f2fs_writepage, mapping);
1362         f2fs_submit_merged_bio(sbi, DATA, WRITE);
1363         if (locked)
1364                 mutex_unlock(&sbi->writepages);
1365
1366         remove_dirty_dir_inode(inode);
1367
1368         wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1369         return ret;
1370
1371 skip_write:
1372         wbc->pages_skipped += get_dirty_pages(inode);
1373         return 0;
1374 }
1375
1376 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
1377 {
1378         struct inode *inode = mapping->host;
1379
1380         if (to > inode->i_size) {
1381                 truncate_pagecache(inode, inode->i_size);
1382                 truncate_blocks(inode, inode->i_size, true);
1383         }
1384 }
1385
1386 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
1387                 loff_t pos, unsigned len, unsigned flags,
1388                 struct page **pagep, void **fsdata)
1389 {
1390         struct inode *inode = mapping->host;
1391         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1392         struct page *page = NULL;
1393         struct page *ipage;
1394         pgoff_t index = ((unsigned long long) pos) >> PAGE_CACHE_SHIFT;
1395         struct dnode_of_data dn;
1396         int err = 0;
1397
1398         trace_f2fs_write_begin(inode, pos, len, flags);
1399
1400         f2fs_balance_fs(sbi);
1401
1402         /*
1403          * We should check this at this moment to avoid deadlock on inode page
1404          * and #0 page. The locking rule for inline_data conversion should be:
1405          * lock_page(page #0) -> lock_page(inode_page)
1406          */
1407         if (index != 0) {
1408                 err = f2fs_convert_inline_inode(inode);
1409                 if (err)
1410                         goto fail;
1411         }
1412 repeat:
1413         page = grab_cache_page_write_begin(mapping, index, flags);
1414         if (!page) {
1415                 err = -ENOMEM;
1416                 goto fail;
1417         }
1418
1419         *pagep = page;
1420
1421         f2fs_lock_op(sbi);
1422
1423         /* check inline_data */
1424         ipage = get_node_page(sbi, inode->i_ino);
1425         if (IS_ERR(ipage)) {
1426                 err = PTR_ERR(ipage);
1427                 goto unlock_fail;
1428         }
1429
1430         set_new_dnode(&dn, inode, ipage, ipage, 0);
1431
1432         if (f2fs_has_inline_data(inode)) {
1433                 if (pos + len <= MAX_INLINE_DATA) {
1434                         read_inline_data(page, ipage);
1435                         set_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
1436                         sync_inode_page(&dn);
1437                         goto put_next;
1438                 }
1439                 err = f2fs_convert_inline_page(&dn, page);
1440                 if (err)
1441                         goto put_fail;
1442         }
1443
1444         err = f2fs_get_block(&dn, index);
1445         if (err)
1446                 goto put_fail;
1447 put_next:
1448         f2fs_put_dnode(&dn);
1449         f2fs_unlock_op(sbi);
1450
1451         f2fs_wait_on_page_writeback(page, DATA);
1452
1453         /* wait for GCed encrypted page writeback */
1454         if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
1455                 f2fs_wait_on_encrypted_page_writeback(sbi, dn.data_blkaddr);
1456
1457         if (len == PAGE_CACHE_SIZE)
1458                 goto out_update;
1459         if (PageUptodate(page))
1460                 goto out_clear;
1461
1462         if ((pos & PAGE_CACHE_MASK) >= i_size_read(inode)) {
1463                 unsigned start = pos & (PAGE_CACHE_SIZE - 1);
1464                 unsigned end = start + len;
1465
1466                 /* Reading beyond i_size is simple: memset to zero */
1467                 zero_user_segments(page, 0, start, end, PAGE_CACHE_SIZE);
1468                 goto out_update;
1469         }
1470
1471         if (dn.data_blkaddr == NEW_ADDR) {
1472                 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
1473         } else {
1474                 struct f2fs_io_info fio = {
1475                         .sbi = sbi,
1476                         .type = DATA,
1477                         .rw = READ_SYNC,
1478                         .blk_addr = dn.data_blkaddr,
1479                         .page = page,
1480                         .encrypted_page = NULL,
1481                 };
1482                 err = f2fs_submit_page_bio(&fio);
1483                 if (err)
1484                         goto fail;
1485
1486                 lock_page(page);
1487                 if (unlikely(!PageUptodate(page))) {
1488                         err = -EIO;
1489                         goto fail;
1490                 }
1491                 if (unlikely(page->mapping != mapping)) {
1492                         f2fs_put_page(page, 1);
1493                         goto repeat;
1494                 }
1495
1496                 /* avoid symlink page */
1497                 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
1498                         err = f2fs_decrypt_one(inode, page);
1499                         if (err)
1500                                 goto fail;
1501                 }
1502         }
1503 out_update:
1504         SetPageUptodate(page);
1505 out_clear:
1506         clear_cold_data(page);
1507         return 0;
1508
1509 put_fail:
1510         f2fs_put_dnode(&dn);
1511 unlock_fail:
1512         f2fs_unlock_op(sbi);
1513 fail:
1514         f2fs_put_page(page, 1);
1515         f2fs_write_failed(mapping, pos + len);
1516         return err;
1517 }
1518
1519 static int f2fs_write_end(struct file *file,
1520                         struct address_space *mapping,
1521                         loff_t pos, unsigned len, unsigned copied,
1522                         struct page *page, void *fsdata)
1523 {
1524         struct inode *inode = page->mapping->host;
1525
1526         trace_f2fs_write_end(inode, pos, len, copied);
1527
1528         set_page_dirty(page);
1529
1530         if (pos + copied > i_size_read(inode)) {
1531                 i_size_write(inode, pos + copied);
1532                 mark_inode_dirty(inode);
1533                 update_inode_page(inode);
1534         }
1535
1536         f2fs_put_page(page, 1);
1537         return copied;
1538 }
1539
1540 static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
1541                            loff_t offset)
1542 {
1543         unsigned blocksize_mask = inode->i_sb->s_blocksize - 1;
1544
1545         if (offset & blocksize_mask)
1546                 return -EINVAL;
1547
1548         if (iov_iter_alignment(iter) & blocksize_mask)
1549                 return -EINVAL;
1550
1551         return 0;
1552 }
1553
1554 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
1555                               loff_t offset)
1556 {
1557         struct file *file = iocb->ki_filp;
1558         struct address_space *mapping = file->f_mapping;
1559         struct inode *inode = mapping->host;
1560         size_t count = iov_iter_count(iter);
1561         int err;
1562
1563         /* we don't need to use inline_data strictly */
1564         if (f2fs_has_inline_data(inode)) {
1565                 err = f2fs_convert_inline_inode(inode);
1566                 if (err)
1567                         return err;
1568         }
1569
1570         if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
1571                 return 0;
1572
1573         err = check_direct_IO(inode, iter, offset);
1574         if (err)
1575                 return err;
1576
1577         trace_f2fs_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
1578
1579         if (iov_iter_rw(iter) == WRITE) {
1580                 __allocate_data_blocks(inode, offset, count);
1581                 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1582                         err = -EIO;
1583                         goto out;
1584                 }
1585         }
1586
1587         err = blockdev_direct_IO(iocb, inode, iter, offset, get_data_block_dio);
1588 out:
1589         if (err < 0 && iov_iter_rw(iter) == WRITE)
1590                 f2fs_write_failed(mapping, offset + count);
1591
1592         trace_f2fs_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), err);
1593
1594         return err;
1595 }
1596
1597 void f2fs_invalidate_page(struct page *page, unsigned int offset,
1598                                                         unsigned int length)
1599 {
1600         struct inode *inode = page->mapping->host;
1601         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1602
1603         if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
1604                 (offset % PAGE_CACHE_SIZE || length != PAGE_CACHE_SIZE))
1605                 return;
1606
1607         if (PageDirty(page)) {
1608                 if (inode->i_ino == F2FS_META_INO(sbi))
1609                         dec_page_count(sbi, F2FS_DIRTY_META);
1610                 else if (inode->i_ino == F2FS_NODE_INO(sbi))
1611                         dec_page_count(sbi, F2FS_DIRTY_NODES);
1612                 else
1613                         inode_dec_dirty_pages(inode);
1614         }
1615
1616         /* This is atomic written page, keep Private */
1617         if (IS_ATOMIC_WRITTEN_PAGE(page))
1618                 return;
1619
1620         ClearPagePrivate(page);
1621 }
1622
1623 int f2fs_release_page(struct page *page, gfp_t wait)
1624 {
1625         /* If this is dirty page, keep PagePrivate */
1626         if (PageDirty(page))
1627                 return 0;
1628
1629         /* This is atomic written page, keep Private */
1630         if (IS_ATOMIC_WRITTEN_PAGE(page))
1631                 return 0;
1632
1633         ClearPagePrivate(page);
1634         return 1;
1635 }
1636
1637 static int f2fs_set_data_page_dirty(struct page *page)
1638 {
1639         struct address_space *mapping = page->mapping;
1640         struct inode *inode = mapping->host;
1641
1642         trace_f2fs_set_page_dirty(page, DATA);
1643
1644         SetPageUptodate(page);
1645
1646         if (f2fs_is_atomic_file(inode)) {
1647                 if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
1648                         register_inmem_page(inode, page);
1649                         return 1;
1650                 }
1651                 /*
1652                  * Previously, this page has been registered, we just
1653                  * return here.
1654                  */
1655                 return 0;
1656         }
1657
1658         if (!PageDirty(page)) {
1659                 __set_page_dirty_nobuffers(page);
1660                 update_dirty_page(inode, page);
1661                 return 1;
1662         }
1663         return 0;
1664 }
1665
1666 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
1667 {
1668         struct inode *inode = mapping->host;
1669
1670         /* we don't need to use inline_data strictly */
1671         if (f2fs_has_inline_data(inode)) {
1672                 int err = f2fs_convert_inline_inode(inode);
1673                 if (err)
1674                         return err;
1675         }
1676         return generic_block_bmap(mapping, block, get_data_block_bmap);
1677 }
1678
1679 const struct address_space_operations f2fs_dblock_aops = {
1680         .readpage       = f2fs_read_data_page,
1681         .readpages      = f2fs_read_data_pages,
1682         .writepage      = f2fs_write_data_page,
1683         .writepages     = f2fs_write_data_pages,
1684         .write_begin    = f2fs_write_begin,
1685         .write_end      = f2fs_write_end,
1686         .set_page_dirty = f2fs_set_data_page_dirty,
1687         .invalidatepage = f2fs_invalidate_page,
1688         .releasepage    = f2fs_release_page,
1689         .direct_IO      = f2fs_direct_IO,
1690         .bmap           = f2fs_bmap,
1691 };