sticon: remove no-op sticon_set_origin()
[linux-2.6-microblaze.git] / fs / f2fs / data.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/data.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/buffer_head.h>
11 #include <linux/mpage.h>
12 #include <linux/writeback.h>
13 #include <linux/backing-dev.h>
14 #include <linux/pagevec.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/blk-crypto.h>
18 #include <linux/swap.h>
19 #include <linux/prefetch.h>
20 #include <linux/uio.h>
21 #include <linux/cleancache.h>
22 #include <linux/sched/signal.h>
23 #include <linux/fiemap.h>
24
25 #include "f2fs.h"
26 #include "node.h"
27 #include "segment.h"
28 #include "trace.h"
29 #include <trace/events/f2fs.h>
30
31 #define NUM_PREALLOC_POST_READ_CTXS     128
32
33 static struct kmem_cache *bio_post_read_ctx_cache;
34 static struct kmem_cache *bio_entry_slab;
35 static mempool_t *bio_post_read_ctx_pool;
36 static struct bio_set f2fs_bioset;
37
38 #define F2FS_BIO_POOL_SIZE      NR_CURSEG_TYPE
39
40 int __init f2fs_init_bioset(void)
41 {
42         if (bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE,
43                                         0, BIOSET_NEED_BVECS))
44                 return -ENOMEM;
45         return 0;
46 }
47
48 void f2fs_destroy_bioset(void)
49 {
50         bioset_exit(&f2fs_bioset);
51 }
52
53 static inline struct bio *__f2fs_bio_alloc(gfp_t gfp_mask,
54                                                 unsigned int nr_iovecs)
55 {
56         return bio_alloc_bioset(gfp_mask, nr_iovecs, &f2fs_bioset);
57 }
58
59 struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi, int npages, bool noio)
60 {
61         if (noio) {
62                 /* No failure on bio allocation */
63                 return __f2fs_bio_alloc(GFP_NOIO, npages);
64         }
65
66         if (time_to_inject(sbi, FAULT_ALLOC_BIO)) {
67                 f2fs_show_injection_info(sbi, FAULT_ALLOC_BIO);
68                 return NULL;
69         }
70
71         return __f2fs_bio_alloc(GFP_KERNEL, npages);
72 }
73
74 static bool __is_cp_guaranteed(struct page *page)
75 {
76         struct address_space *mapping = page->mapping;
77         struct inode *inode;
78         struct f2fs_sb_info *sbi;
79
80         if (!mapping)
81                 return false;
82
83         if (f2fs_is_compressed_page(page))
84                 return false;
85
86         inode = mapping->host;
87         sbi = F2FS_I_SB(inode);
88
89         if (inode->i_ino == F2FS_META_INO(sbi) ||
90                         inode->i_ino == F2FS_NODE_INO(sbi) ||
91                         S_ISDIR(inode->i_mode) ||
92                         (S_ISREG(inode->i_mode) &&
93                         (f2fs_is_atomic_file(inode) || IS_NOQUOTA(inode))) ||
94                         is_cold_data(page))
95                 return true;
96         return false;
97 }
98
99 static enum count_type __read_io_type(struct page *page)
100 {
101         struct address_space *mapping = page_file_mapping(page);
102
103         if (mapping) {
104                 struct inode *inode = mapping->host;
105                 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
106
107                 if (inode->i_ino == F2FS_META_INO(sbi))
108                         return F2FS_RD_META;
109
110                 if (inode->i_ino == F2FS_NODE_INO(sbi))
111                         return F2FS_RD_NODE;
112         }
113         return F2FS_RD_DATA;
114 }
115
116 /* postprocessing steps for read bios */
117 enum bio_post_read_step {
118         STEP_DECRYPT,
119         STEP_DECOMPRESS_NOWQ,           /* handle normal cluster data inplace */
120         STEP_DECOMPRESS,                /* handle compressed cluster data in workqueue */
121         STEP_VERITY,
122 };
123
124 struct bio_post_read_ctx {
125         struct bio *bio;
126         struct f2fs_sb_info *sbi;
127         struct work_struct work;
128         unsigned int enabled_steps;
129 };
130
131 static void __read_end_io(struct bio *bio, bool compr, bool verity)
132 {
133         struct page *page;
134         struct bio_vec *bv;
135         struct bvec_iter_all iter_all;
136
137         bio_for_each_segment_all(bv, bio, iter_all) {
138                 page = bv->bv_page;
139
140 #ifdef CONFIG_F2FS_FS_COMPRESSION
141                 if (compr && f2fs_is_compressed_page(page)) {
142                         f2fs_decompress_pages(bio, page, verity);
143                         continue;
144                 }
145                 if (verity)
146                         continue;
147 #endif
148
149                 /* PG_error was set if any post_read step failed */
150                 if (bio->bi_status || PageError(page)) {
151                         ClearPageUptodate(page);
152                         /* will re-read again later */
153                         ClearPageError(page);
154                 } else {
155                         SetPageUptodate(page);
156                 }
157                 dec_page_count(F2FS_P_SB(page), __read_io_type(page));
158                 unlock_page(page);
159         }
160 }
161
162 static void f2fs_release_read_bio(struct bio *bio);
163 static void __f2fs_read_end_io(struct bio *bio, bool compr, bool verity)
164 {
165         if (!compr)
166                 __read_end_io(bio, false, verity);
167         f2fs_release_read_bio(bio);
168 }
169
170 static void f2fs_decompress_bio(struct bio *bio, bool verity)
171 {
172         __read_end_io(bio, true, verity);
173 }
174
175 static void bio_post_read_processing(struct bio_post_read_ctx *ctx);
176
177 static void f2fs_decrypt_work(struct bio_post_read_ctx *ctx)
178 {
179         fscrypt_decrypt_bio(ctx->bio);
180 }
181
182 static void f2fs_decompress_work(struct bio_post_read_ctx *ctx)
183 {
184         f2fs_decompress_bio(ctx->bio, ctx->enabled_steps & (1 << STEP_VERITY));
185 }
186
187 #ifdef CONFIG_F2FS_FS_COMPRESSION
188 static void f2fs_verify_pages(struct page **rpages, unsigned int cluster_size)
189 {
190         f2fs_decompress_end_io(rpages, cluster_size, false, true);
191 }
192
193 static void f2fs_verify_bio(struct bio *bio)
194 {
195         struct bio_vec *bv;
196         struct bvec_iter_all iter_all;
197
198         bio_for_each_segment_all(bv, bio, iter_all) {
199                 struct page *page = bv->bv_page;
200                 struct decompress_io_ctx *dic;
201
202                 dic = (struct decompress_io_ctx *)page_private(page);
203
204                 if (dic) {
205                         if (refcount_dec_not_one(&dic->ref))
206                                 continue;
207                         f2fs_verify_pages(dic->rpages,
208                                                 dic->cluster_size);
209                         f2fs_free_dic(dic);
210                         continue;
211                 }
212
213                 if (bio->bi_status || PageError(page))
214                         goto clear_uptodate;
215
216                 if (fsverity_verify_page(page)) {
217                         SetPageUptodate(page);
218                         goto unlock;
219                 }
220 clear_uptodate:
221                 ClearPageUptodate(page);
222                 ClearPageError(page);
223 unlock:
224                 dec_page_count(F2FS_P_SB(page), __read_io_type(page));
225                 unlock_page(page);
226         }
227 }
228 #endif
229
230 static void f2fs_verity_work(struct work_struct *work)
231 {
232         struct bio_post_read_ctx *ctx =
233                 container_of(work, struct bio_post_read_ctx, work);
234         struct bio *bio = ctx->bio;
235 #ifdef CONFIG_F2FS_FS_COMPRESSION
236         unsigned int enabled_steps = ctx->enabled_steps;
237 #endif
238
239         /*
240          * fsverity_verify_bio() may call readpages() again, and while verity
241          * will be disabled for this, decryption may still be needed, resulting
242          * in another bio_post_read_ctx being allocated.  So to prevent
243          * deadlocks we need to release the current ctx to the mempool first.
244          * This assumes that verity is the last post-read step.
245          */
246         mempool_free(ctx, bio_post_read_ctx_pool);
247         bio->bi_private = NULL;
248
249 #ifdef CONFIG_F2FS_FS_COMPRESSION
250         /* previous step is decompression */
251         if (enabled_steps & (1 << STEP_DECOMPRESS)) {
252                 f2fs_verify_bio(bio);
253                 f2fs_release_read_bio(bio);
254                 return;
255         }
256 #endif
257
258         fsverity_verify_bio(bio);
259         __f2fs_read_end_io(bio, false, false);
260 }
261
262 static void f2fs_post_read_work(struct work_struct *work)
263 {
264         struct bio_post_read_ctx *ctx =
265                 container_of(work, struct bio_post_read_ctx, work);
266
267         if (ctx->enabled_steps & (1 << STEP_DECRYPT))
268                 f2fs_decrypt_work(ctx);
269
270         if (ctx->enabled_steps & (1 << STEP_DECOMPRESS))
271                 f2fs_decompress_work(ctx);
272
273         if (ctx->enabled_steps & (1 << STEP_VERITY)) {
274                 INIT_WORK(&ctx->work, f2fs_verity_work);
275                 fsverity_enqueue_verify_work(&ctx->work);
276                 return;
277         }
278
279         __f2fs_read_end_io(ctx->bio,
280                 ctx->enabled_steps & (1 << STEP_DECOMPRESS), false);
281 }
282
283 static void f2fs_enqueue_post_read_work(struct f2fs_sb_info *sbi,
284                                                 struct work_struct *work)
285 {
286         queue_work(sbi->post_read_wq, work);
287 }
288
289 static void bio_post_read_processing(struct bio_post_read_ctx *ctx)
290 {
291         /*
292          * We use different work queues for decryption and for verity because
293          * verity may require reading metadata pages that need decryption, and
294          * we shouldn't recurse to the same workqueue.
295          */
296
297         if (ctx->enabled_steps & (1 << STEP_DECRYPT) ||
298                 ctx->enabled_steps & (1 << STEP_DECOMPRESS)) {
299                 INIT_WORK(&ctx->work, f2fs_post_read_work);
300                 f2fs_enqueue_post_read_work(ctx->sbi, &ctx->work);
301                 return;
302         }
303
304         if (ctx->enabled_steps & (1 << STEP_VERITY)) {
305                 INIT_WORK(&ctx->work, f2fs_verity_work);
306                 fsverity_enqueue_verify_work(&ctx->work);
307                 return;
308         }
309
310         __f2fs_read_end_io(ctx->bio, false, false);
311 }
312
313 static bool f2fs_bio_post_read_required(struct bio *bio)
314 {
315         return bio->bi_private;
316 }
317
318 static void f2fs_read_end_io(struct bio *bio)
319 {
320         struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio));
321
322         if (time_to_inject(sbi, FAULT_READ_IO)) {
323                 f2fs_show_injection_info(sbi, FAULT_READ_IO);
324                 bio->bi_status = BLK_STS_IOERR;
325         }
326
327         if (f2fs_bio_post_read_required(bio)) {
328                 struct bio_post_read_ctx *ctx = bio->bi_private;
329
330                 bio_post_read_processing(ctx);
331                 return;
332         }
333
334         __f2fs_read_end_io(bio, false, false);
335 }
336
337 static void f2fs_write_end_io(struct bio *bio)
338 {
339         struct f2fs_sb_info *sbi = bio->bi_private;
340         struct bio_vec *bvec;
341         struct bvec_iter_all iter_all;
342
343         if (time_to_inject(sbi, FAULT_WRITE_IO)) {
344                 f2fs_show_injection_info(sbi, FAULT_WRITE_IO);
345                 bio->bi_status = BLK_STS_IOERR;
346         }
347
348         bio_for_each_segment_all(bvec, bio, iter_all) {
349                 struct page *page = bvec->bv_page;
350                 enum count_type type = WB_DATA_TYPE(page);
351
352                 if (IS_DUMMY_WRITTEN_PAGE(page)) {
353                         set_page_private(page, (unsigned long)NULL);
354                         ClearPagePrivate(page);
355                         unlock_page(page);
356                         mempool_free(page, sbi->write_io_dummy);
357
358                         if (unlikely(bio->bi_status))
359                                 f2fs_stop_checkpoint(sbi, true);
360                         continue;
361                 }
362
363                 fscrypt_finalize_bounce_page(&page);
364
365 #ifdef CONFIG_F2FS_FS_COMPRESSION
366                 if (f2fs_is_compressed_page(page)) {
367                         f2fs_compress_write_end_io(bio, page);
368                         continue;
369                 }
370 #endif
371
372                 if (unlikely(bio->bi_status)) {
373                         mapping_set_error(page->mapping, -EIO);
374                         if (type == F2FS_WB_CP_DATA)
375                                 f2fs_stop_checkpoint(sbi, true);
376                 }
377
378                 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
379                                         page->index != nid_of_node(page));
380
381                 dec_page_count(sbi, type);
382                 if (f2fs_in_warm_node_list(sbi, page))
383                         f2fs_del_fsync_node_entry(sbi, page);
384                 clear_cold_data(page);
385                 end_page_writeback(page);
386         }
387         if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
388                                 wq_has_sleeper(&sbi->cp_wait))
389                 wake_up(&sbi->cp_wait);
390
391         bio_put(bio);
392 }
393
394 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
395                                 block_t blk_addr, struct bio *bio)
396 {
397         struct block_device *bdev = sbi->sb->s_bdev;
398         int i;
399
400         if (f2fs_is_multi_device(sbi)) {
401                 for (i = 0; i < sbi->s_ndevs; i++) {
402                         if (FDEV(i).start_blk <= blk_addr &&
403                             FDEV(i).end_blk >= blk_addr) {
404                                 blk_addr -= FDEV(i).start_blk;
405                                 bdev = FDEV(i).bdev;
406                                 break;
407                         }
408                 }
409         }
410         if (bio) {
411                 bio_set_dev(bio, bdev);
412                 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
413         }
414         return bdev;
415 }
416
417 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
418 {
419         int i;
420
421         if (!f2fs_is_multi_device(sbi))
422                 return 0;
423
424         for (i = 0; i < sbi->s_ndevs; i++)
425                 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
426                         return i;
427         return 0;
428 }
429
430 /*
431  * Return true, if pre_bio's bdev is same as its target device.
432  */
433 static bool __same_bdev(struct f2fs_sb_info *sbi,
434                                 block_t blk_addr, struct bio *bio)
435 {
436         struct block_device *b = f2fs_target_device(sbi, blk_addr, NULL);
437         return bio->bi_disk == b->bd_disk && bio->bi_partno == b->bd_partno;
438 }
439
440 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages)
441 {
442         struct f2fs_sb_info *sbi = fio->sbi;
443         struct bio *bio;
444
445         bio = f2fs_bio_alloc(sbi, npages, true);
446
447         f2fs_target_device(sbi, fio->new_blkaddr, bio);
448         if (is_read_io(fio->op)) {
449                 bio->bi_end_io = f2fs_read_end_io;
450                 bio->bi_private = NULL;
451         } else {
452                 bio->bi_end_io = f2fs_write_end_io;
453                 bio->bi_private = sbi;
454                 bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi,
455                                                 fio->type, fio->temp);
456         }
457         if (fio->io_wbc)
458                 wbc_init_bio(fio->io_wbc, bio);
459
460         return bio;
461 }
462
463 static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode,
464                                   pgoff_t first_idx,
465                                   const struct f2fs_io_info *fio,
466                                   gfp_t gfp_mask)
467 {
468         /*
469          * The f2fs garbage collector sets ->encrypted_page when it wants to
470          * read/write raw data without encryption.
471          */
472         if (!fio || !fio->encrypted_page)
473                 fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask);
474 }
475
476 static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode,
477                                      pgoff_t next_idx,
478                                      const struct f2fs_io_info *fio)
479 {
480         /*
481          * The f2fs garbage collector sets ->encrypted_page when it wants to
482          * read/write raw data without encryption.
483          */
484         if (fio && fio->encrypted_page)
485                 return !bio_has_crypt_ctx(bio);
486
487         return fscrypt_mergeable_bio(bio, inode, next_idx);
488 }
489
490 static inline void __submit_bio(struct f2fs_sb_info *sbi,
491                                 struct bio *bio, enum page_type type)
492 {
493         if (!is_read_io(bio_op(bio))) {
494                 unsigned int start;
495
496                 if (type != DATA && type != NODE)
497                         goto submit_io;
498
499                 if (f2fs_lfs_mode(sbi) && current->plug)
500                         blk_finish_plug(current->plug);
501
502                 if (F2FS_IO_ALIGNED(sbi))
503                         goto submit_io;
504
505                 start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
506                 start %= F2FS_IO_SIZE(sbi);
507
508                 if (start == 0)
509                         goto submit_io;
510
511                 /* fill dummy pages */
512                 for (; start < F2FS_IO_SIZE(sbi); start++) {
513                         struct page *page =
514                                 mempool_alloc(sbi->write_io_dummy,
515                                               GFP_NOIO | __GFP_NOFAIL);
516                         f2fs_bug_on(sbi, !page);
517
518                         zero_user_segment(page, 0, PAGE_SIZE);
519                         SetPagePrivate(page);
520                         set_page_private(page, (unsigned long)DUMMY_WRITTEN_PAGE);
521                         lock_page(page);
522                         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
523                                 f2fs_bug_on(sbi, 1);
524                 }
525                 /*
526                  * In the NODE case, we lose next block address chain. So, we
527                  * need to do checkpoint in f2fs_sync_file.
528                  */
529                 if (type == NODE)
530                         set_sbi_flag(sbi, SBI_NEED_CP);
531         }
532 submit_io:
533         if (is_read_io(bio_op(bio)))
534                 trace_f2fs_submit_read_bio(sbi->sb, type, bio);
535         else
536                 trace_f2fs_submit_write_bio(sbi->sb, type, bio);
537         submit_bio(bio);
538 }
539
540 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
541                                 struct bio *bio, enum page_type type)
542 {
543         __submit_bio(sbi, bio, type);
544 }
545
546 static void __attach_io_flag(struct f2fs_io_info *fio)
547 {
548         struct f2fs_sb_info *sbi = fio->sbi;
549         unsigned int temp_mask = (1 << NR_TEMP_TYPE) - 1;
550         unsigned int io_flag, fua_flag, meta_flag;
551
552         if (fio->type == DATA)
553                 io_flag = sbi->data_io_flag;
554         else if (fio->type == NODE)
555                 io_flag = sbi->node_io_flag;
556         else
557                 return;
558
559         fua_flag = io_flag & temp_mask;
560         meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask;
561
562         /*
563          * data/node io flag bits per temp:
564          *      REQ_META     |      REQ_FUA      |
565          *    5 |    4 |   3 |    2 |    1 |   0 |
566          * Cold | Warm | Hot | Cold | Warm | Hot |
567          */
568         if ((1 << fio->temp) & meta_flag)
569                 fio->op_flags |= REQ_META;
570         if ((1 << fio->temp) & fua_flag)
571                 fio->op_flags |= REQ_FUA;
572 }
573
574 static void __submit_merged_bio(struct f2fs_bio_info *io)
575 {
576         struct f2fs_io_info *fio = &io->fio;
577
578         if (!io->bio)
579                 return;
580
581         __attach_io_flag(fio);
582         bio_set_op_attrs(io->bio, fio->op, fio->op_flags);
583
584         if (is_read_io(fio->op))
585                 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
586         else
587                 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
588
589         __submit_bio(io->sbi, io->bio, fio->type);
590         io->bio = NULL;
591 }
592
593 static bool __has_merged_page(struct bio *bio, struct inode *inode,
594                                                 struct page *page, nid_t ino)
595 {
596         struct bio_vec *bvec;
597         struct bvec_iter_all iter_all;
598
599         if (!bio)
600                 return false;
601
602         if (!inode && !page && !ino)
603                 return true;
604
605         bio_for_each_segment_all(bvec, bio, iter_all) {
606                 struct page *target = bvec->bv_page;
607
608                 if (fscrypt_is_bounce_page(target)) {
609                         target = fscrypt_pagecache_page(target);
610                         if (IS_ERR(target))
611                                 continue;
612                 }
613                 if (f2fs_is_compressed_page(target)) {
614                         target = f2fs_compress_control_page(target);
615                         if (IS_ERR(target))
616                                 continue;
617                 }
618
619                 if (inode && inode == target->mapping->host)
620                         return true;
621                 if (page && page == target)
622                         return true;
623                 if (ino && ino == ino_of_node(target))
624                         return true;
625         }
626
627         return false;
628 }
629
630 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
631                                 enum page_type type, enum temp_type temp)
632 {
633         enum page_type btype = PAGE_TYPE_OF_BIO(type);
634         struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
635
636         down_write(&io->io_rwsem);
637
638         /* change META to META_FLUSH in the checkpoint procedure */
639         if (type >= META_FLUSH) {
640                 io->fio.type = META_FLUSH;
641                 io->fio.op = REQ_OP_WRITE;
642                 io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC;
643                 if (!test_opt(sbi, NOBARRIER))
644                         io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
645         }
646         __submit_merged_bio(io);
647         up_write(&io->io_rwsem);
648 }
649
650 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
651                                 struct inode *inode, struct page *page,
652                                 nid_t ino, enum page_type type, bool force)
653 {
654         enum temp_type temp;
655         bool ret = true;
656
657         for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
658                 if (!force)     {
659                         enum page_type btype = PAGE_TYPE_OF_BIO(type);
660                         struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
661
662                         down_read(&io->io_rwsem);
663                         ret = __has_merged_page(io->bio, inode, page, ino);
664                         up_read(&io->io_rwsem);
665                 }
666                 if (ret)
667                         __f2fs_submit_merged_write(sbi, type, temp);
668
669                 /* TODO: use HOT temp only for meta pages now. */
670                 if (type >= META)
671                         break;
672         }
673 }
674
675 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
676 {
677         __submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
678 }
679
680 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
681                                 struct inode *inode, struct page *page,
682                                 nid_t ino, enum page_type type)
683 {
684         __submit_merged_write_cond(sbi, inode, page, ino, type, false);
685 }
686
687 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
688 {
689         f2fs_submit_merged_write(sbi, DATA);
690         f2fs_submit_merged_write(sbi, NODE);
691         f2fs_submit_merged_write(sbi, META);
692 }
693
694 /*
695  * Fill the locked page with data located in the block address.
696  * A caller needs to unlock the page on failure.
697  */
698 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
699 {
700         struct bio *bio;
701         struct page *page = fio->encrypted_page ?
702                         fio->encrypted_page : fio->page;
703
704         if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
705                         fio->is_por ? META_POR : (__is_meta_io(fio) ?
706                         META_GENERIC : DATA_GENERIC_ENHANCE)))
707                 return -EFSCORRUPTED;
708
709         trace_f2fs_submit_page_bio(page, fio);
710         f2fs_trace_ios(fio, 0);
711
712         /* Allocate a new bio */
713         bio = __bio_alloc(fio, 1);
714
715         f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
716                                fio->page->index, fio, GFP_NOIO);
717
718         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
719                 bio_put(bio);
720                 return -EFAULT;
721         }
722
723         if (fio->io_wbc && !is_read_io(fio->op))
724                 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
725
726         __attach_io_flag(fio);
727         bio_set_op_attrs(bio, fio->op, fio->op_flags);
728
729         inc_page_count(fio->sbi, is_read_io(fio->op) ?
730                         __read_io_type(page): WB_DATA_TYPE(fio->page));
731
732         __submit_bio(fio->sbi, bio, fio->type);
733         return 0;
734 }
735
736 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
737                                 block_t last_blkaddr, block_t cur_blkaddr)
738 {
739         if (last_blkaddr + 1 != cur_blkaddr)
740                 return false;
741         return __same_bdev(sbi, cur_blkaddr, bio);
742 }
743
744 static bool io_type_is_mergeable(struct f2fs_bio_info *io,
745                                                 struct f2fs_io_info *fio)
746 {
747         if (io->fio.op != fio->op)
748                 return false;
749         return io->fio.op_flags == fio->op_flags;
750 }
751
752 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
753                                         struct f2fs_bio_info *io,
754                                         struct f2fs_io_info *fio,
755                                         block_t last_blkaddr,
756                                         block_t cur_blkaddr)
757 {
758         if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) {
759                 unsigned int filled_blocks =
760                                 F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size);
761                 unsigned int io_size = F2FS_IO_SIZE(sbi);
762                 unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt;
763
764                 /* IOs in bio is aligned and left space of vectors is not enough */
765                 if (!(filled_blocks % io_size) && left_vecs < io_size)
766                         return false;
767         }
768         if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr))
769                 return false;
770         return io_type_is_mergeable(io, fio);
771 }
772
773 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio,
774                                 struct page *page, enum temp_type temp)
775 {
776         struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
777         struct bio_entry *be;
778
779         be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS);
780         be->bio = bio;
781         bio_get(bio);
782
783         if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE)
784                 f2fs_bug_on(sbi, 1);
785
786         down_write(&io->bio_list_lock);
787         list_add_tail(&be->list, &io->bio_list);
788         up_write(&io->bio_list_lock);
789 }
790
791 static void del_bio_entry(struct bio_entry *be)
792 {
793         list_del(&be->list);
794         kmem_cache_free(bio_entry_slab, be);
795 }
796
797 static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio,
798                                                         struct page *page)
799 {
800         struct f2fs_sb_info *sbi = fio->sbi;
801         enum temp_type temp;
802         bool found = false;
803         int ret = -EAGAIN;
804
805         for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
806                 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
807                 struct list_head *head = &io->bio_list;
808                 struct bio_entry *be;
809
810                 down_write(&io->bio_list_lock);
811                 list_for_each_entry(be, head, list) {
812                         if (be->bio != *bio)
813                                 continue;
814
815                         found = true;
816
817                         f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio,
818                                                             *fio->last_block,
819                                                             fio->new_blkaddr));
820                         if (f2fs_crypt_mergeable_bio(*bio,
821                                         fio->page->mapping->host,
822                                         fio->page->index, fio) &&
823                             bio_add_page(*bio, page, PAGE_SIZE, 0) ==
824                                         PAGE_SIZE) {
825                                 ret = 0;
826                                 break;
827                         }
828
829                         /* page can't be merged into bio; submit the bio */
830                         del_bio_entry(be);
831                         __submit_bio(sbi, *bio, DATA);
832                         break;
833                 }
834                 up_write(&io->bio_list_lock);
835         }
836
837         if (ret) {
838                 bio_put(*bio);
839                 *bio = NULL;
840         }
841
842         return ret;
843 }
844
845 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
846                                         struct bio **bio, struct page *page)
847 {
848         enum temp_type temp;
849         bool found = false;
850         struct bio *target = bio ? *bio : NULL;
851
852         for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
853                 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
854                 struct list_head *head = &io->bio_list;
855                 struct bio_entry *be;
856
857                 if (list_empty(head))
858                         continue;
859
860                 down_read(&io->bio_list_lock);
861                 list_for_each_entry(be, head, list) {
862                         if (target)
863                                 found = (target == be->bio);
864                         else
865                                 found = __has_merged_page(be->bio, NULL,
866                                                                 page, 0);
867                         if (found)
868                                 break;
869                 }
870                 up_read(&io->bio_list_lock);
871
872                 if (!found)
873                         continue;
874
875                 found = false;
876
877                 down_write(&io->bio_list_lock);
878                 list_for_each_entry(be, head, list) {
879                         if (target)
880                                 found = (target == be->bio);
881                         else
882                                 found = __has_merged_page(be->bio, NULL,
883                                                                 page, 0);
884                         if (found) {
885                                 target = be->bio;
886                                 del_bio_entry(be);
887                                 break;
888                         }
889                 }
890                 up_write(&io->bio_list_lock);
891         }
892
893         if (found)
894                 __submit_bio(sbi, target, DATA);
895         if (bio && *bio) {
896                 bio_put(*bio);
897                 *bio = NULL;
898         }
899 }
900
901 int f2fs_merge_page_bio(struct f2fs_io_info *fio)
902 {
903         struct bio *bio = *fio->bio;
904         struct page *page = fio->encrypted_page ?
905                         fio->encrypted_page : fio->page;
906
907         if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
908                         __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC))
909                 return -EFSCORRUPTED;
910
911         trace_f2fs_submit_page_bio(page, fio);
912         f2fs_trace_ios(fio, 0);
913
914         if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block,
915                                                 fio->new_blkaddr))
916                 f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL);
917 alloc_new:
918         if (!bio) {
919                 bio = __bio_alloc(fio, BIO_MAX_PAGES);
920                 __attach_io_flag(fio);
921                 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
922                                        fio->page->index, fio, GFP_NOIO);
923                 bio_set_op_attrs(bio, fio->op, fio->op_flags);
924
925                 add_bio_entry(fio->sbi, bio, page, fio->temp);
926         } else {
927                 if (add_ipu_page(fio, &bio, page))
928                         goto alloc_new;
929         }
930
931         if (fio->io_wbc)
932                 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
933
934         inc_page_count(fio->sbi, WB_DATA_TYPE(page));
935
936         *fio->last_block = fio->new_blkaddr;
937         *fio->bio = bio;
938
939         return 0;
940 }
941
942 void f2fs_submit_page_write(struct f2fs_io_info *fio)
943 {
944         struct f2fs_sb_info *sbi = fio->sbi;
945         enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
946         struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
947         struct page *bio_page;
948
949         f2fs_bug_on(sbi, is_read_io(fio->op));
950
951         down_write(&io->io_rwsem);
952 next:
953         if (fio->in_list) {
954                 spin_lock(&io->io_lock);
955                 if (list_empty(&io->io_list)) {
956                         spin_unlock(&io->io_lock);
957                         goto out;
958                 }
959                 fio = list_first_entry(&io->io_list,
960                                                 struct f2fs_io_info, list);
961                 list_del(&fio->list);
962                 spin_unlock(&io->io_lock);
963         }
964
965         verify_fio_blkaddr(fio);
966
967         if (fio->encrypted_page)
968                 bio_page = fio->encrypted_page;
969         else if (fio->compressed_page)
970                 bio_page = fio->compressed_page;
971         else
972                 bio_page = fio->page;
973
974         /* set submitted = true as a return value */
975         fio->submitted = true;
976
977         inc_page_count(sbi, WB_DATA_TYPE(bio_page));
978
979         if (io->bio &&
980             (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio,
981                               fio->new_blkaddr) ||
982              !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host,
983                                        bio_page->index, fio)))
984                 __submit_merged_bio(io);
985 alloc_new:
986         if (io->bio == NULL) {
987                 if (F2FS_IO_ALIGNED(sbi) &&
988                                 (fio->type == DATA || fio->type == NODE) &&
989                                 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
990                         dec_page_count(sbi, WB_DATA_TYPE(bio_page));
991                         fio->retry = true;
992                         goto skip;
993                 }
994                 io->bio = __bio_alloc(fio, BIO_MAX_PAGES);
995                 f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host,
996                                        bio_page->index, fio, GFP_NOIO);
997                 io->fio = *fio;
998         }
999
1000         if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
1001                 __submit_merged_bio(io);
1002                 goto alloc_new;
1003         }
1004
1005         if (fio->io_wbc)
1006                 wbc_account_cgroup_owner(fio->io_wbc, bio_page, PAGE_SIZE);
1007
1008         io->last_block_in_bio = fio->new_blkaddr;
1009         f2fs_trace_ios(fio, 0);
1010
1011         trace_f2fs_submit_page_write(fio->page, fio);
1012 skip:
1013         if (fio->in_list)
1014                 goto next;
1015 out:
1016         if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
1017                                 !f2fs_is_checkpoint_ready(sbi))
1018                 __submit_merged_bio(io);
1019         up_write(&io->io_rwsem);
1020 }
1021
1022 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
1023 {
1024         return fsverity_active(inode) &&
1025                idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
1026 }
1027
1028 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
1029                                       unsigned nr_pages, unsigned op_flag,
1030                                       pgoff_t first_idx, bool for_write)
1031 {
1032         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1033         struct bio *bio;
1034         struct bio_post_read_ctx *ctx;
1035         unsigned int post_read_steps = 0;
1036
1037         bio = f2fs_bio_alloc(sbi, min_t(int, nr_pages, BIO_MAX_PAGES),
1038                                                                 for_write);
1039         if (!bio)
1040                 return ERR_PTR(-ENOMEM);
1041
1042         f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS);
1043
1044         f2fs_target_device(sbi, blkaddr, bio);
1045         bio->bi_end_io = f2fs_read_end_io;
1046         bio_set_op_attrs(bio, REQ_OP_READ, op_flag);
1047
1048         if (fscrypt_inode_uses_fs_layer_crypto(inode))
1049                 post_read_steps |= 1 << STEP_DECRYPT;
1050         if (f2fs_compressed_file(inode))
1051                 post_read_steps |= 1 << STEP_DECOMPRESS_NOWQ;
1052         if (f2fs_need_verity(inode, first_idx))
1053                 post_read_steps |= 1 << STEP_VERITY;
1054
1055         if (post_read_steps) {
1056                 /* Due to the mempool, this never fails. */
1057                 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
1058                 ctx->bio = bio;
1059                 ctx->sbi = sbi;
1060                 ctx->enabled_steps = post_read_steps;
1061                 bio->bi_private = ctx;
1062         }
1063
1064         return bio;
1065 }
1066
1067 static void f2fs_release_read_bio(struct bio *bio)
1068 {
1069         if (bio->bi_private)
1070                 mempool_free(bio->bi_private, bio_post_read_ctx_pool);
1071         bio_put(bio);
1072 }
1073
1074 /* This can handle encryption stuffs */
1075 static int f2fs_submit_page_read(struct inode *inode, struct page *page,
1076                                  block_t blkaddr, int op_flags, bool for_write)
1077 {
1078         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1079         struct bio *bio;
1080
1081         bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags,
1082                                         page->index, for_write);
1083         if (IS_ERR(bio))
1084                 return PTR_ERR(bio);
1085
1086         /* wait for GCed page writeback via META_MAPPING */
1087         f2fs_wait_on_block_writeback(inode, blkaddr);
1088
1089         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
1090                 bio_put(bio);
1091                 return -EFAULT;
1092         }
1093         ClearPageError(page);
1094         inc_page_count(sbi, F2FS_RD_DATA);
1095         f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE);
1096         __submit_bio(sbi, bio, DATA);
1097         return 0;
1098 }
1099
1100 static void __set_data_blkaddr(struct dnode_of_data *dn)
1101 {
1102         struct f2fs_node *rn = F2FS_NODE(dn->node_page);
1103         __le32 *addr_array;
1104         int base = 0;
1105
1106         if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
1107                 base = get_extra_isize(dn->inode);
1108
1109         /* Get physical address of data block */
1110         addr_array = blkaddr_in_node(rn);
1111         addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
1112 }
1113
1114 /*
1115  * Lock ordering for the change of data block address:
1116  * ->data_page
1117  *  ->node_page
1118  *    update block addresses in the node page
1119  */
1120 void f2fs_set_data_blkaddr(struct dnode_of_data *dn)
1121 {
1122         f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1123         __set_data_blkaddr(dn);
1124         if (set_page_dirty(dn->node_page))
1125                 dn->node_changed = true;
1126 }
1127
1128 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1129 {
1130         dn->data_blkaddr = blkaddr;
1131         f2fs_set_data_blkaddr(dn);
1132         f2fs_update_extent_cache(dn);
1133 }
1134
1135 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
1136 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
1137 {
1138         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1139         int err;
1140
1141         if (!count)
1142                 return 0;
1143
1144         if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1145                 return -EPERM;
1146         if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1147                 return err;
1148
1149         trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
1150                                                 dn->ofs_in_node, count);
1151
1152         f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1153
1154         for (; count > 0; dn->ofs_in_node++) {
1155                 block_t blkaddr = f2fs_data_blkaddr(dn);
1156                 if (blkaddr == NULL_ADDR) {
1157                         dn->data_blkaddr = NEW_ADDR;
1158                         __set_data_blkaddr(dn);
1159                         count--;
1160                 }
1161         }
1162
1163         if (set_page_dirty(dn->node_page))
1164                 dn->node_changed = true;
1165         return 0;
1166 }
1167
1168 /* Should keep dn->ofs_in_node unchanged */
1169 int f2fs_reserve_new_block(struct dnode_of_data *dn)
1170 {
1171         unsigned int ofs_in_node = dn->ofs_in_node;
1172         int ret;
1173
1174         ret = f2fs_reserve_new_blocks(dn, 1);
1175         dn->ofs_in_node = ofs_in_node;
1176         return ret;
1177 }
1178
1179 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
1180 {
1181         bool need_put = dn->inode_page ? false : true;
1182         int err;
1183
1184         err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
1185         if (err)
1186                 return err;
1187
1188         if (dn->data_blkaddr == NULL_ADDR)
1189                 err = f2fs_reserve_new_block(dn);
1190         if (err || need_put)
1191                 f2fs_put_dnode(dn);
1192         return err;
1193 }
1194
1195 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
1196 {
1197         struct extent_info ei = {0, 0, 0};
1198         struct inode *inode = dn->inode;
1199
1200         if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1201                 dn->data_blkaddr = ei.blk + index - ei.fofs;
1202                 return 0;
1203         }
1204
1205         return f2fs_reserve_block(dn, index);
1206 }
1207
1208 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
1209                                                 int op_flags, bool for_write)
1210 {
1211         struct address_space *mapping = inode->i_mapping;
1212         struct dnode_of_data dn;
1213         struct page *page;
1214         struct extent_info ei = {0,0,0};
1215         int err;
1216
1217         page = f2fs_grab_cache_page(mapping, index, for_write);
1218         if (!page)
1219                 return ERR_PTR(-ENOMEM);
1220
1221         if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1222                 dn.data_blkaddr = ei.blk + index - ei.fofs;
1223                 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
1224                                                 DATA_GENERIC_ENHANCE_READ)) {
1225                         err = -EFSCORRUPTED;
1226                         goto put_err;
1227                 }
1228                 goto got_it;
1229         }
1230
1231         set_new_dnode(&dn, inode, NULL, NULL, 0);
1232         err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1233         if (err)
1234                 goto put_err;
1235         f2fs_put_dnode(&dn);
1236
1237         if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1238                 err = -ENOENT;
1239                 goto put_err;
1240         }
1241         if (dn.data_blkaddr != NEW_ADDR &&
1242                         !f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
1243                                                 dn.data_blkaddr,
1244                                                 DATA_GENERIC_ENHANCE)) {
1245                 err = -EFSCORRUPTED;
1246                 goto put_err;
1247         }
1248 got_it:
1249         if (PageUptodate(page)) {
1250                 unlock_page(page);
1251                 return page;
1252         }
1253
1254         /*
1255          * A new dentry page is allocated but not able to be written, since its
1256          * new inode page couldn't be allocated due to -ENOSPC.
1257          * In such the case, its blkaddr can be remained as NEW_ADDR.
1258          * see, f2fs_add_link -> f2fs_get_new_data_page ->
1259          * f2fs_init_inode_metadata.
1260          */
1261         if (dn.data_blkaddr == NEW_ADDR) {
1262                 zero_user_segment(page, 0, PAGE_SIZE);
1263                 if (!PageUptodate(page))
1264                         SetPageUptodate(page);
1265                 unlock_page(page);
1266                 return page;
1267         }
1268
1269         err = f2fs_submit_page_read(inode, page, dn.data_blkaddr,
1270                                                 op_flags, for_write);
1271         if (err)
1272                 goto put_err;
1273         return page;
1274
1275 put_err:
1276         f2fs_put_page(page, 1);
1277         return ERR_PTR(err);
1278 }
1279
1280 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index)
1281 {
1282         struct address_space *mapping = inode->i_mapping;
1283         struct page *page;
1284
1285         page = find_get_page(mapping, index);
1286         if (page && PageUptodate(page))
1287                 return page;
1288         f2fs_put_page(page, 0);
1289
1290         page = f2fs_get_read_data_page(inode, index, 0, false);
1291         if (IS_ERR(page))
1292                 return page;
1293
1294         if (PageUptodate(page))
1295                 return page;
1296
1297         wait_on_page_locked(page);
1298         if (unlikely(!PageUptodate(page))) {
1299                 f2fs_put_page(page, 0);
1300                 return ERR_PTR(-EIO);
1301         }
1302         return page;
1303 }
1304
1305 /*
1306  * If it tries to access a hole, return an error.
1307  * Because, the callers, functions in dir.c and GC, should be able to know
1308  * whether this page exists or not.
1309  */
1310 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
1311                                                         bool for_write)
1312 {
1313         struct address_space *mapping = inode->i_mapping;
1314         struct page *page;
1315 repeat:
1316         page = f2fs_get_read_data_page(inode, index, 0, for_write);
1317         if (IS_ERR(page))
1318                 return page;
1319
1320         /* wait for read completion */
1321         lock_page(page);
1322         if (unlikely(page->mapping != mapping)) {
1323                 f2fs_put_page(page, 1);
1324                 goto repeat;
1325         }
1326         if (unlikely(!PageUptodate(page))) {
1327                 f2fs_put_page(page, 1);
1328                 return ERR_PTR(-EIO);
1329         }
1330         return page;
1331 }
1332
1333 /*
1334  * Caller ensures that this data page is never allocated.
1335  * A new zero-filled data page is allocated in the page cache.
1336  *
1337  * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1338  * f2fs_unlock_op().
1339  * Note that, ipage is set only by make_empty_dir, and if any error occur,
1340  * ipage should be released by this function.
1341  */
1342 struct page *f2fs_get_new_data_page(struct inode *inode,
1343                 struct page *ipage, pgoff_t index, bool new_i_size)
1344 {
1345         struct address_space *mapping = inode->i_mapping;
1346         struct page *page;
1347         struct dnode_of_data dn;
1348         int err;
1349
1350         page = f2fs_grab_cache_page(mapping, index, true);
1351         if (!page) {
1352                 /*
1353                  * before exiting, we should make sure ipage will be released
1354                  * if any error occur.
1355                  */
1356                 f2fs_put_page(ipage, 1);
1357                 return ERR_PTR(-ENOMEM);
1358         }
1359
1360         set_new_dnode(&dn, inode, ipage, NULL, 0);
1361         err = f2fs_reserve_block(&dn, index);
1362         if (err) {
1363                 f2fs_put_page(page, 1);
1364                 return ERR_PTR(err);
1365         }
1366         if (!ipage)
1367                 f2fs_put_dnode(&dn);
1368
1369         if (PageUptodate(page))
1370                 goto got_it;
1371
1372         if (dn.data_blkaddr == NEW_ADDR) {
1373                 zero_user_segment(page, 0, PAGE_SIZE);
1374                 if (!PageUptodate(page))
1375                         SetPageUptodate(page);
1376         } else {
1377                 f2fs_put_page(page, 1);
1378
1379                 /* if ipage exists, blkaddr should be NEW_ADDR */
1380                 f2fs_bug_on(F2FS_I_SB(inode), ipage);
1381                 page = f2fs_get_lock_data_page(inode, index, true);
1382                 if (IS_ERR(page))
1383                         return page;
1384         }
1385 got_it:
1386         if (new_i_size && i_size_read(inode) <
1387                                 ((loff_t)(index + 1) << PAGE_SHIFT))
1388                 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
1389         return page;
1390 }
1391
1392 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
1393 {
1394         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1395         struct f2fs_summary sum;
1396         struct node_info ni;
1397         block_t old_blkaddr;
1398         blkcnt_t count = 1;
1399         int err;
1400
1401         if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1402                 return -EPERM;
1403
1404         err = f2fs_get_node_info(sbi, dn->nid, &ni);
1405         if (err)
1406                 return err;
1407
1408         dn->data_blkaddr = f2fs_data_blkaddr(dn);
1409         if (dn->data_blkaddr != NULL_ADDR)
1410                 goto alloc;
1411
1412         if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1413                 return err;
1414
1415 alloc:
1416         set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1417         old_blkaddr = dn->data_blkaddr;
1418         f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr,
1419                                         &sum, seg_type, NULL);
1420         if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
1421                 invalidate_mapping_pages(META_MAPPING(sbi),
1422                                         old_blkaddr, old_blkaddr);
1423         f2fs_update_data_blkaddr(dn, dn->data_blkaddr);
1424
1425         /*
1426          * i_size will be updated by direct_IO. Otherwise, we'll get stale
1427          * data from unwritten block via dio_read.
1428          */
1429         return 0;
1430 }
1431
1432 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
1433 {
1434         struct inode *inode = file_inode(iocb->ki_filp);
1435         struct f2fs_map_blocks map;
1436         int flag;
1437         int err = 0;
1438         bool direct_io = iocb->ki_flags & IOCB_DIRECT;
1439
1440         map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
1441         map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from));
1442         if (map.m_len > map.m_lblk)
1443                 map.m_len -= map.m_lblk;
1444         else
1445                 map.m_len = 0;
1446
1447         map.m_next_pgofs = NULL;
1448         map.m_next_extent = NULL;
1449         map.m_seg_type = NO_CHECK_TYPE;
1450         map.m_may_create = true;
1451
1452         if (direct_io) {
1453                 map.m_seg_type = f2fs_rw_hint_to_seg_type(iocb->ki_hint);
1454                 flag = f2fs_force_buffered_io(inode, iocb, from) ?
1455                                         F2FS_GET_BLOCK_PRE_AIO :
1456                                         F2FS_GET_BLOCK_PRE_DIO;
1457                 goto map_blocks;
1458         }
1459         if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA(inode)) {
1460                 err = f2fs_convert_inline_inode(inode);
1461                 if (err)
1462                         return err;
1463         }
1464         if (f2fs_has_inline_data(inode))
1465                 return err;
1466
1467         flag = F2FS_GET_BLOCK_PRE_AIO;
1468
1469 map_blocks:
1470         err = f2fs_map_blocks(inode, &map, 1, flag);
1471         if (map.m_len > 0 && err == -ENOSPC) {
1472                 if (!direct_io)
1473                         set_inode_flag(inode, FI_NO_PREALLOC);
1474                 err = 0;
1475         }
1476         return err;
1477 }
1478
1479 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock)
1480 {
1481         if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1482                 if (lock)
1483                         down_read(&sbi->node_change);
1484                 else
1485                         up_read(&sbi->node_change);
1486         } else {
1487                 if (lock)
1488                         f2fs_lock_op(sbi);
1489                 else
1490                         f2fs_unlock_op(sbi);
1491         }
1492 }
1493
1494 /*
1495  * f2fs_map_blocks() tries to find or build mapping relationship which
1496  * maps continuous logical blocks to physical blocks, and return such
1497  * info via f2fs_map_blocks structure.
1498  */
1499 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
1500                                                 int create, int flag)
1501 {
1502         unsigned int maxblocks = map->m_len;
1503         struct dnode_of_data dn;
1504         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1505         int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1506         pgoff_t pgofs, end_offset, end;
1507         int err = 0, ofs = 1;
1508         unsigned int ofs_in_node, last_ofs_in_node;
1509         blkcnt_t prealloc;
1510         struct extent_info ei = {0,0,0};
1511         block_t blkaddr;
1512         unsigned int start_pgofs;
1513
1514         if (!maxblocks)
1515                 return 0;
1516
1517         map->m_len = 0;
1518         map->m_flags = 0;
1519
1520         /* it only supports block size == page size */
1521         pgofs = (pgoff_t)map->m_lblk;
1522         end = pgofs + maxblocks;
1523
1524         if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
1525                 if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO &&
1526                                                         map->m_may_create)
1527                         goto next_dnode;
1528
1529                 map->m_pblk = ei.blk + pgofs - ei.fofs;
1530                 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
1531                 map->m_flags = F2FS_MAP_MAPPED;
1532                 if (map->m_next_extent)
1533                         *map->m_next_extent = pgofs + map->m_len;
1534
1535                 /* for hardware encryption, but to avoid potential issue in future */
1536                 if (flag == F2FS_GET_BLOCK_DIO)
1537                         f2fs_wait_on_block_writeback_range(inode,
1538                                                 map->m_pblk, map->m_len);
1539                 goto out;
1540         }
1541
1542 next_dnode:
1543         if (map->m_may_create)
1544                 f2fs_do_map_lock(sbi, flag, true);
1545
1546         /* When reading holes, we need its node page */
1547         set_new_dnode(&dn, inode, NULL, NULL, 0);
1548         err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1549         if (err) {
1550                 if (flag == F2FS_GET_BLOCK_BMAP)
1551                         map->m_pblk = 0;
1552                 if (err == -ENOENT) {
1553                         err = 0;
1554                         if (map->m_next_pgofs)
1555                                 *map->m_next_pgofs =
1556                                         f2fs_get_next_page_offset(&dn, pgofs);
1557                         if (map->m_next_extent)
1558                                 *map->m_next_extent =
1559                                         f2fs_get_next_page_offset(&dn, pgofs);
1560                 }
1561                 goto unlock_out;
1562         }
1563
1564         start_pgofs = pgofs;
1565         prealloc = 0;
1566         last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1567         end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1568
1569 next_block:
1570         blkaddr = f2fs_data_blkaddr(&dn);
1571
1572         if (__is_valid_data_blkaddr(blkaddr) &&
1573                 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1574                 err = -EFSCORRUPTED;
1575                 goto sync_out;
1576         }
1577
1578         if (__is_valid_data_blkaddr(blkaddr)) {
1579                 /* use out-place-update for driect IO under LFS mode */
1580                 if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO &&
1581                                                         map->m_may_create) {
1582                         err = __allocate_data_block(&dn, map->m_seg_type);
1583                         if (err)
1584                                 goto sync_out;
1585                         blkaddr = dn.data_blkaddr;
1586                         set_inode_flag(inode, FI_APPEND_WRITE);
1587                 }
1588         } else {
1589                 if (create) {
1590                         if (unlikely(f2fs_cp_error(sbi))) {
1591                                 err = -EIO;
1592                                 goto sync_out;
1593                         }
1594                         if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1595                                 if (blkaddr == NULL_ADDR) {
1596                                         prealloc++;
1597                                         last_ofs_in_node = dn.ofs_in_node;
1598                                 }
1599                         } else {
1600                                 WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO &&
1601                                         flag != F2FS_GET_BLOCK_DIO);
1602                                 err = __allocate_data_block(&dn,
1603                                                         map->m_seg_type);
1604                                 if (!err)
1605                                         set_inode_flag(inode, FI_APPEND_WRITE);
1606                         }
1607                         if (err)
1608                                 goto sync_out;
1609                         map->m_flags |= F2FS_MAP_NEW;
1610                         blkaddr = dn.data_blkaddr;
1611                 } else {
1612                         if (flag == F2FS_GET_BLOCK_BMAP) {
1613                                 map->m_pblk = 0;
1614                                 goto sync_out;
1615                         }
1616                         if (flag == F2FS_GET_BLOCK_PRECACHE)
1617                                 goto sync_out;
1618                         if (flag == F2FS_GET_BLOCK_FIEMAP &&
1619                                                 blkaddr == NULL_ADDR) {
1620                                 if (map->m_next_pgofs)
1621                                         *map->m_next_pgofs = pgofs + 1;
1622                                 goto sync_out;
1623                         }
1624                         if (flag != F2FS_GET_BLOCK_FIEMAP) {
1625                                 /* for defragment case */
1626                                 if (map->m_next_pgofs)
1627                                         *map->m_next_pgofs = pgofs + 1;
1628                                 goto sync_out;
1629                         }
1630                 }
1631         }
1632
1633         if (flag == F2FS_GET_BLOCK_PRE_AIO)
1634                 goto skip;
1635
1636         if (map->m_len == 0) {
1637                 /* preallocated unwritten block should be mapped for fiemap. */
1638                 if (blkaddr == NEW_ADDR)
1639                         map->m_flags |= F2FS_MAP_UNWRITTEN;
1640                 map->m_flags |= F2FS_MAP_MAPPED;
1641
1642                 map->m_pblk = blkaddr;
1643                 map->m_len = 1;
1644         } else if ((map->m_pblk != NEW_ADDR &&
1645                         blkaddr == (map->m_pblk + ofs)) ||
1646                         (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1647                         flag == F2FS_GET_BLOCK_PRE_DIO) {
1648                 ofs++;
1649                 map->m_len++;
1650         } else {
1651                 goto sync_out;
1652         }
1653
1654 skip:
1655         dn.ofs_in_node++;
1656         pgofs++;
1657
1658         /* preallocate blocks in batch for one dnode page */
1659         if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1660                         (pgofs == end || dn.ofs_in_node == end_offset)) {
1661
1662                 dn.ofs_in_node = ofs_in_node;
1663                 err = f2fs_reserve_new_blocks(&dn, prealloc);
1664                 if (err)
1665                         goto sync_out;
1666
1667                 map->m_len += dn.ofs_in_node - ofs_in_node;
1668                 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1669                         err = -ENOSPC;
1670                         goto sync_out;
1671                 }
1672                 dn.ofs_in_node = end_offset;
1673         }
1674
1675         if (pgofs >= end)
1676                 goto sync_out;
1677         else if (dn.ofs_in_node < end_offset)
1678                 goto next_block;
1679
1680         if (flag == F2FS_GET_BLOCK_PRECACHE) {
1681                 if (map->m_flags & F2FS_MAP_MAPPED) {
1682                         unsigned int ofs = start_pgofs - map->m_lblk;
1683
1684                         f2fs_update_extent_cache_range(&dn,
1685                                 start_pgofs, map->m_pblk + ofs,
1686                                 map->m_len - ofs);
1687                 }
1688         }
1689
1690         f2fs_put_dnode(&dn);
1691
1692         if (map->m_may_create) {
1693                 f2fs_do_map_lock(sbi, flag, false);
1694                 f2fs_balance_fs(sbi, dn.node_changed);
1695         }
1696         goto next_dnode;
1697
1698 sync_out:
1699
1700         /* for hardware encryption, but to avoid potential issue in future */
1701         if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED)
1702                 f2fs_wait_on_block_writeback_range(inode,
1703                                                 map->m_pblk, map->m_len);
1704
1705         if (flag == F2FS_GET_BLOCK_PRECACHE) {
1706                 if (map->m_flags & F2FS_MAP_MAPPED) {
1707                         unsigned int ofs = start_pgofs - map->m_lblk;
1708
1709                         f2fs_update_extent_cache_range(&dn,
1710                                 start_pgofs, map->m_pblk + ofs,
1711                                 map->m_len - ofs);
1712                 }
1713                 if (map->m_next_extent)
1714                         *map->m_next_extent = pgofs + 1;
1715         }
1716         f2fs_put_dnode(&dn);
1717 unlock_out:
1718         if (map->m_may_create) {
1719                 f2fs_do_map_lock(sbi, flag, false);
1720                 f2fs_balance_fs(sbi, dn.node_changed);
1721         }
1722 out:
1723         trace_f2fs_map_blocks(inode, map, err);
1724         return err;
1725 }
1726
1727 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1728 {
1729         struct f2fs_map_blocks map;
1730         block_t last_lblk;
1731         int err;
1732
1733         if (pos + len > i_size_read(inode))
1734                 return false;
1735
1736         map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1737         map.m_next_pgofs = NULL;
1738         map.m_next_extent = NULL;
1739         map.m_seg_type = NO_CHECK_TYPE;
1740         map.m_may_create = false;
1741         last_lblk = F2FS_BLK_ALIGN(pos + len);
1742
1743         while (map.m_lblk < last_lblk) {
1744                 map.m_len = last_lblk - map.m_lblk;
1745                 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
1746                 if (err || map.m_len == 0)
1747                         return false;
1748                 map.m_lblk += map.m_len;
1749         }
1750         return true;
1751 }
1752
1753 static int __get_data_block(struct inode *inode, sector_t iblock,
1754                         struct buffer_head *bh, int create, int flag,
1755                         pgoff_t *next_pgofs, int seg_type, bool may_write)
1756 {
1757         struct f2fs_map_blocks map;
1758         int err;
1759
1760         map.m_lblk = iblock;
1761         map.m_len = bh->b_size >> inode->i_blkbits;
1762         map.m_next_pgofs = next_pgofs;
1763         map.m_next_extent = NULL;
1764         map.m_seg_type = seg_type;
1765         map.m_may_create = may_write;
1766
1767         err = f2fs_map_blocks(inode, &map, create, flag);
1768         if (!err) {
1769                 map_bh(bh, inode->i_sb, map.m_pblk);
1770                 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
1771                 bh->b_size = (u64)map.m_len << inode->i_blkbits;
1772         }
1773         return err;
1774 }
1775
1776 static int get_data_block(struct inode *inode, sector_t iblock,
1777                         struct buffer_head *bh_result, int create, int flag,
1778                         pgoff_t *next_pgofs)
1779 {
1780         return __get_data_block(inode, iblock, bh_result, create,
1781                                                         flag, next_pgofs,
1782                                                         NO_CHECK_TYPE, create);
1783 }
1784
1785 static int get_data_block_dio_write(struct inode *inode, sector_t iblock,
1786                         struct buffer_head *bh_result, int create)
1787 {
1788         return __get_data_block(inode, iblock, bh_result, create,
1789                                 F2FS_GET_BLOCK_DIO, NULL,
1790                                 f2fs_rw_hint_to_seg_type(inode->i_write_hint),
1791                                 IS_SWAPFILE(inode) ? false : true);
1792 }
1793
1794 static int get_data_block_dio(struct inode *inode, sector_t iblock,
1795                         struct buffer_head *bh_result, int create)
1796 {
1797         return __get_data_block(inode, iblock, bh_result, create,
1798                                 F2FS_GET_BLOCK_DIO, NULL,
1799                                 f2fs_rw_hint_to_seg_type(inode->i_write_hint),
1800                                 false);
1801 }
1802
1803 static int get_data_block_bmap(struct inode *inode, sector_t iblock,
1804                         struct buffer_head *bh_result, int create)
1805 {
1806         /* Block number less than F2FS MAX BLOCKS */
1807         if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks))
1808                 return -EFBIG;
1809
1810         return __get_data_block(inode, iblock, bh_result, create,
1811                                                 F2FS_GET_BLOCK_BMAP, NULL,
1812                                                 NO_CHECK_TYPE, create);
1813 }
1814
1815 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
1816 {
1817         return (offset >> inode->i_blkbits);
1818 }
1819
1820 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
1821 {
1822         return (blk << inode->i_blkbits);
1823 }
1824
1825 static int f2fs_xattr_fiemap(struct inode *inode,
1826                                 struct fiemap_extent_info *fieinfo)
1827 {
1828         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1829         struct page *page;
1830         struct node_info ni;
1831         __u64 phys = 0, len;
1832         __u32 flags;
1833         nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1834         int err = 0;
1835
1836         if (f2fs_has_inline_xattr(inode)) {
1837                 int offset;
1838
1839                 page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1840                                                 inode->i_ino, false);
1841                 if (!page)
1842                         return -ENOMEM;
1843
1844                 err = f2fs_get_node_info(sbi, inode->i_ino, &ni);
1845                 if (err) {
1846                         f2fs_put_page(page, 1);
1847                         return err;
1848                 }
1849
1850                 phys = (__u64)blk_to_logical(inode, ni.blk_addr);
1851                 offset = offsetof(struct f2fs_inode, i_addr) +
1852                                         sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1853                                         get_inline_xattr_addrs(inode));
1854
1855                 phys += offset;
1856                 len = inline_xattr_size(inode);
1857
1858                 f2fs_put_page(page, 1);
1859
1860                 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1861
1862                 if (!xnid)
1863                         flags |= FIEMAP_EXTENT_LAST;
1864
1865                 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1866                 trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1867                 if (err || err == 1)
1868                         return err;
1869         }
1870
1871         if (xnid) {
1872                 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1873                 if (!page)
1874                         return -ENOMEM;
1875
1876                 err = f2fs_get_node_info(sbi, xnid, &ni);
1877                 if (err) {
1878                         f2fs_put_page(page, 1);
1879                         return err;
1880                 }
1881
1882                 phys = (__u64)blk_to_logical(inode, ni.blk_addr);
1883                 len = inode->i_sb->s_blocksize;
1884
1885                 f2fs_put_page(page, 1);
1886
1887                 flags = FIEMAP_EXTENT_LAST;
1888         }
1889
1890         if (phys) {
1891                 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1892                 trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1893         }
1894
1895         return (err < 0 ? err : 0);
1896 }
1897
1898 static loff_t max_inode_blocks(struct inode *inode)
1899 {
1900         loff_t result = ADDRS_PER_INODE(inode);
1901         loff_t leaf_count = ADDRS_PER_BLOCK(inode);
1902
1903         /* two direct node blocks */
1904         result += (leaf_count * 2);
1905
1906         /* two indirect node blocks */
1907         leaf_count *= NIDS_PER_BLOCK;
1908         result += (leaf_count * 2);
1909
1910         /* one double indirect node block */
1911         leaf_count *= NIDS_PER_BLOCK;
1912         result += leaf_count;
1913
1914         return result;
1915 }
1916
1917 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1918                 u64 start, u64 len)
1919 {
1920         struct buffer_head map_bh;
1921         sector_t start_blk, last_blk;
1922         pgoff_t next_pgofs;
1923         u64 logical = 0, phys = 0, size = 0;
1924         u32 flags = 0;
1925         int ret = 0;
1926         bool compr_cluster = false;
1927         unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
1928
1929         if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1930                 ret = f2fs_precache_extents(inode);
1931                 if (ret)
1932                         return ret;
1933         }
1934
1935         ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR);
1936         if (ret)
1937                 return ret;
1938
1939         inode_lock(inode);
1940
1941         if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1942                 ret = f2fs_xattr_fiemap(inode, fieinfo);
1943                 goto out;
1944         }
1945
1946         if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
1947                 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1948                 if (ret != -EAGAIN)
1949                         goto out;
1950         }
1951
1952         if (logical_to_blk(inode, len) == 0)
1953                 len = blk_to_logical(inode, 1);
1954
1955         start_blk = logical_to_blk(inode, start);
1956         last_blk = logical_to_blk(inode, start + len - 1);
1957
1958 next:
1959         memset(&map_bh, 0, sizeof(struct buffer_head));
1960         map_bh.b_size = len;
1961
1962         if (compr_cluster)
1963                 map_bh.b_size = blk_to_logical(inode, cluster_size - 1);
1964
1965         ret = get_data_block(inode, start_blk, &map_bh, 0,
1966                                         F2FS_GET_BLOCK_FIEMAP, &next_pgofs);
1967         if (ret)
1968                 goto out;
1969
1970         /* HOLE */
1971         if (!buffer_mapped(&map_bh)) {
1972                 start_blk = next_pgofs;
1973
1974                 if (blk_to_logical(inode, start_blk) < blk_to_logical(inode,
1975                                                 max_inode_blocks(inode)))
1976                         goto prep_next;
1977
1978                 flags |= FIEMAP_EXTENT_LAST;
1979         }
1980
1981         if (size) {
1982                 if (IS_ENCRYPTED(inode))
1983                         flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1984
1985                 ret = fiemap_fill_next_extent(fieinfo, logical,
1986                                 phys, size, flags);
1987                 trace_f2fs_fiemap(inode, logical, phys, size, flags, ret);
1988                 if (ret)
1989                         goto out;
1990                 size = 0;
1991         }
1992
1993         if (start_blk > last_blk)
1994                 goto out;
1995
1996         if (compr_cluster) {
1997                 compr_cluster = false;
1998
1999
2000                 logical = blk_to_logical(inode, start_blk - 1);
2001                 phys = blk_to_logical(inode, map_bh.b_blocknr);
2002                 size = blk_to_logical(inode, cluster_size);
2003
2004                 flags |= FIEMAP_EXTENT_ENCODED;
2005
2006                 start_blk += cluster_size - 1;
2007
2008                 if (start_blk > last_blk)
2009                         goto out;
2010
2011                 goto prep_next;
2012         }
2013
2014         if (map_bh.b_blocknr == COMPRESS_ADDR) {
2015                 compr_cluster = true;
2016                 start_blk++;
2017                 goto prep_next;
2018         }
2019
2020         logical = blk_to_logical(inode, start_blk);
2021         phys = blk_to_logical(inode, map_bh.b_blocknr);
2022         size = map_bh.b_size;
2023         flags = 0;
2024         if (buffer_unwritten(&map_bh))
2025                 flags = FIEMAP_EXTENT_UNWRITTEN;
2026
2027         start_blk += logical_to_blk(inode, size);
2028
2029 prep_next:
2030         cond_resched();
2031         if (fatal_signal_pending(current))
2032                 ret = -EINTR;
2033         else
2034                 goto next;
2035 out:
2036         if (ret == 1)
2037                 ret = 0;
2038
2039         inode_unlock(inode);
2040         return ret;
2041 }
2042
2043 static inline loff_t f2fs_readpage_limit(struct inode *inode)
2044 {
2045         if (IS_ENABLED(CONFIG_FS_VERITY) &&
2046             (IS_VERITY(inode) || f2fs_verity_in_progress(inode)))
2047                 return inode->i_sb->s_maxbytes;
2048
2049         return i_size_read(inode);
2050 }
2051
2052 static int f2fs_read_single_page(struct inode *inode, struct page *page,
2053                                         unsigned nr_pages,
2054                                         struct f2fs_map_blocks *map,
2055                                         struct bio **bio_ret,
2056                                         sector_t *last_block_in_bio,
2057                                         bool is_readahead)
2058 {
2059         struct bio *bio = *bio_ret;
2060         const unsigned blkbits = inode->i_blkbits;
2061         const unsigned blocksize = 1 << blkbits;
2062         sector_t block_in_file;
2063         sector_t last_block;
2064         sector_t last_block_in_file;
2065         sector_t block_nr;
2066         int ret = 0;
2067
2068         block_in_file = (sector_t)page_index(page);
2069         last_block = block_in_file + nr_pages;
2070         last_block_in_file = (f2fs_readpage_limit(inode) + blocksize - 1) >>
2071                                                         blkbits;
2072         if (last_block > last_block_in_file)
2073                 last_block = last_block_in_file;
2074
2075         /* just zeroing out page which is beyond EOF */
2076         if (block_in_file >= last_block)
2077                 goto zero_out;
2078         /*
2079          * Map blocks using the previous result first.
2080          */
2081         if ((map->m_flags & F2FS_MAP_MAPPED) &&
2082                         block_in_file > map->m_lblk &&
2083                         block_in_file < (map->m_lblk + map->m_len))
2084                 goto got_it;
2085
2086         /*
2087          * Then do more f2fs_map_blocks() calls until we are
2088          * done with this page.
2089          */
2090         map->m_lblk = block_in_file;
2091         map->m_len = last_block - block_in_file;
2092
2093         ret = f2fs_map_blocks(inode, map, 0, F2FS_GET_BLOCK_DEFAULT);
2094         if (ret)
2095                 goto out;
2096 got_it:
2097         if ((map->m_flags & F2FS_MAP_MAPPED)) {
2098                 block_nr = map->m_pblk + block_in_file - map->m_lblk;
2099                 SetPageMappedToDisk(page);
2100
2101                 if (!PageUptodate(page) && (!PageSwapCache(page) &&
2102                                         !cleancache_get_page(page))) {
2103                         SetPageUptodate(page);
2104                         goto confused;
2105                 }
2106
2107                 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
2108                                                 DATA_GENERIC_ENHANCE_READ)) {
2109                         ret = -EFSCORRUPTED;
2110                         goto out;
2111                 }
2112         } else {
2113 zero_out:
2114                 zero_user_segment(page, 0, PAGE_SIZE);
2115                 if (f2fs_need_verity(inode, page->index) &&
2116                     !fsverity_verify_page(page)) {
2117                         ret = -EIO;
2118                         goto out;
2119                 }
2120                 if (!PageUptodate(page))
2121                         SetPageUptodate(page);
2122                 unlock_page(page);
2123                 goto out;
2124         }
2125
2126         /*
2127          * This page will go to BIO.  Do we need to send this
2128          * BIO off first?
2129          */
2130         if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio,
2131                                        *last_block_in_bio, block_nr) ||
2132                     !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2133 submit_and_realloc:
2134                 __submit_bio(F2FS_I_SB(inode), bio, DATA);
2135                 bio = NULL;
2136         }
2137         if (bio == NULL) {
2138                 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
2139                                 is_readahead ? REQ_RAHEAD : 0, page->index,
2140                                 false);
2141                 if (IS_ERR(bio)) {
2142                         ret = PTR_ERR(bio);
2143                         bio = NULL;
2144                         goto out;
2145                 }
2146         }
2147
2148         /*
2149          * If the page is under writeback, we need to wait for
2150          * its completion to see the correct decrypted data.
2151          */
2152         f2fs_wait_on_block_writeback(inode, block_nr);
2153
2154         if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2155                 goto submit_and_realloc;
2156
2157         inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
2158         f2fs_update_iostat(F2FS_I_SB(inode), FS_DATA_READ_IO, F2FS_BLKSIZE);
2159         ClearPageError(page);
2160         *last_block_in_bio = block_nr;
2161         goto out;
2162 confused:
2163         if (bio) {
2164                 __submit_bio(F2FS_I_SB(inode), bio, DATA);
2165                 bio = NULL;
2166         }
2167         unlock_page(page);
2168 out:
2169         *bio_ret = bio;
2170         return ret;
2171 }
2172
2173 #ifdef CONFIG_F2FS_FS_COMPRESSION
2174 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
2175                                 unsigned nr_pages, sector_t *last_block_in_bio,
2176                                 bool is_readahead, bool for_write)
2177 {
2178         struct dnode_of_data dn;
2179         struct inode *inode = cc->inode;
2180         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2181         struct bio *bio = *bio_ret;
2182         unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size;
2183         sector_t last_block_in_file;
2184         const unsigned blkbits = inode->i_blkbits;
2185         const unsigned blocksize = 1 << blkbits;
2186         struct decompress_io_ctx *dic = NULL;
2187         int i;
2188         int ret = 0;
2189
2190         f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc));
2191
2192         last_block_in_file = (f2fs_readpage_limit(inode) +
2193                                         blocksize - 1) >> blkbits;
2194
2195         /* get rid of pages beyond EOF */
2196         for (i = 0; i < cc->cluster_size; i++) {
2197                 struct page *page = cc->rpages[i];
2198
2199                 if (!page)
2200                         continue;
2201                 if ((sector_t)page->index >= last_block_in_file) {
2202                         zero_user_segment(page, 0, PAGE_SIZE);
2203                         if (!PageUptodate(page))
2204                                 SetPageUptodate(page);
2205                 } else if (!PageUptodate(page)) {
2206                         continue;
2207                 }
2208                 unlock_page(page);
2209                 cc->rpages[i] = NULL;
2210                 cc->nr_rpages--;
2211         }
2212
2213         /* we are done since all pages are beyond EOF */
2214         if (f2fs_cluster_is_empty(cc))
2215                 goto out;
2216
2217         set_new_dnode(&dn, inode, NULL, NULL, 0);
2218         ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
2219         if (ret)
2220                 goto out;
2221
2222         f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR);
2223
2224         for (i = 1; i < cc->cluster_size; i++) {
2225                 block_t blkaddr;
2226
2227                 blkaddr = data_blkaddr(dn.inode, dn.node_page,
2228                                                 dn.ofs_in_node + i);
2229
2230                 if (!__is_valid_data_blkaddr(blkaddr))
2231                         break;
2232
2233                 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
2234                         ret = -EFAULT;
2235                         goto out_put_dnode;
2236                 }
2237                 cc->nr_cpages++;
2238         }
2239
2240         /* nothing to decompress */
2241         if (cc->nr_cpages == 0) {
2242                 ret = 0;
2243                 goto out_put_dnode;
2244         }
2245
2246         dic = f2fs_alloc_dic(cc);
2247         if (IS_ERR(dic)) {
2248                 ret = PTR_ERR(dic);
2249                 goto out_put_dnode;
2250         }
2251
2252         for (i = 0; i < dic->nr_cpages; i++) {
2253                 struct page *page = dic->cpages[i];
2254                 block_t blkaddr;
2255                 struct bio_post_read_ctx *ctx;
2256
2257                 blkaddr = data_blkaddr(dn.inode, dn.node_page,
2258                                                 dn.ofs_in_node + i + 1);
2259
2260                 if (bio && (!page_is_mergeable(sbi, bio,
2261                                         *last_block_in_bio, blkaddr) ||
2262                     !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2263 submit_and_realloc:
2264                         __submit_bio(sbi, bio, DATA);
2265                         bio = NULL;
2266                 }
2267
2268                 if (!bio) {
2269                         bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages,
2270                                         is_readahead ? REQ_RAHEAD : 0,
2271                                         page->index, for_write);
2272                         if (IS_ERR(bio)) {
2273                                 ret = PTR_ERR(bio);
2274                                 dic->failed = true;
2275                                 if (refcount_sub_and_test(dic->nr_cpages - i,
2276                                                         &dic->ref)) {
2277                                         f2fs_decompress_end_io(dic->rpages,
2278                                                         cc->cluster_size, true,
2279                                                         false);
2280                                         f2fs_free_dic(dic);
2281                                 }
2282                                 f2fs_put_dnode(&dn);
2283                                 *bio_ret = NULL;
2284                                 return ret;
2285                         }
2286                 }
2287
2288                 f2fs_wait_on_block_writeback(inode, blkaddr);
2289
2290                 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2291                         goto submit_and_realloc;
2292
2293                 /* tag STEP_DECOMPRESS to handle IO in wq */
2294                 ctx = bio->bi_private;
2295                 if (!(ctx->enabled_steps & (1 << STEP_DECOMPRESS)))
2296                         ctx->enabled_steps |= 1 << STEP_DECOMPRESS;
2297
2298                 inc_page_count(sbi, F2FS_RD_DATA);
2299                 f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE);
2300                 f2fs_update_iostat(sbi, FS_CDATA_READ_IO, F2FS_BLKSIZE);
2301                 ClearPageError(page);
2302                 *last_block_in_bio = blkaddr;
2303         }
2304
2305         f2fs_put_dnode(&dn);
2306
2307         *bio_ret = bio;
2308         return 0;
2309
2310 out_put_dnode:
2311         f2fs_put_dnode(&dn);
2312 out:
2313         f2fs_decompress_end_io(cc->rpages, cc->cluster_size, true, false);
2314         *bio_ret = bio;
2315         return ret;
2316 }
2317 #endif
2318
2319 /*
2320  * This function was originally taken from fs/mpage.c, and customized for f2fs.
2321  * Major change was from block_size == page_size in f2fs by default.
2322  *
2323  * Note that the aops->readpages() function is ONLY used for read-ahead. If
2324  * this function ever deviates from doing just read-ahead, it should either
2325  * use ->readpage() or do the necessary surgery to decouple ->readpages()
2326  * from read-ahead.
2327  */
2328 static int f2fs_mpage_readpages(struct inode *inode,
2329                 struct readahead_control *rac, struct page *page)
2330 {
2331         struct bio *bio = NULL;
2332         sector_t last_block_in_bio = 0;
2333         struct f2fs_map_blocks map;
2334 #ifdef CONFIG_F2FS_FS_COMPRESSION
2335         struct compress_ctx cc = {
2336                 .inode = inode,
2337                 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2338                 .cluster_size = F2FS_I(inode)->i_cluster_size,
2339                 .cluster_idx = NULL_CLUSTER,
2340                 .rpages = NULL,
2341                 .cpages = NULL,
2342                 .nr_rpages = 0,
2343                 .nr_cpages = 0,
2344         };
2345 #endif
2346         unsigned nr_pages = rac ? readahead_count(rac) : 1;
2347         unsigned max_nr_pages = nr_pages;
2348         int ret = 0;
2349         bool drop_ra = false;
2350
2351         map.m_pblk = 0;
2352         map.m_lblk = 0;
2353         map.m_len = 0;
2354         map.m_flags = 0;
2355         map.m_next_pgofs = NULL;
2356         map.m_next_extent = NULL;
2357         map.m_seg_type = NO_CHECK_TYPE;
2358         map.m_may_create = false;
2359
2360         /*
2361          * Two readahead threads for same address range can cause race condition
2362          * which fragments sequential read IOs. So let's avoid each other.
2363          */
2364         if (rac && readahead_count(rac)) {
2365                 if (READ_ONCE(F2FS_I(inode)->ra_offset) == readahead_index(rac))
2366                         drop_ra = true;
2367                 else
2368                         WRITE_ONCE(F2FS_I(inode)->ra_offset,
2369                                                 readahead_index(rac));
2370         }
2371
2372         for (; nr_pages; nr_pages--) {
2373                 if (rac) {
2374                         page = readahead_page(rac);
2375                         prefetchw(&page->flags);
2376                         if (drop_ra) {
2377                                 f2fs_put_page(page, 1);
2378                                 continue;
2379                         }
2380                 }
2381
2382 #ifdef CONFIG_F2FS_FS_COMPRESSION
2383                 if (f2fs_compressed_file(inode)) {
2384                         /* there are remained comressed pages, submit them */
2385                         if (!f2fs_cluster_can_merge_page(&cc, page->index)) {
2386                                 ret = f2fs_read_multi_pages(&cc, &bio,
2387                                                         max_nr_pages,
2388                                                         &last_block_in_bio,
2389                                                         rac != NULL, false);
2390                                 f2fs_destroy_compress_ctx(&cc);
2391                                 if (ret)
2392                                         goto set_error_page;
2393                         }
2394                         ret = f2fs_is_compressed_cluster(inode, page->index);
2395                         if (ret < 0)
2396                                 goto set_error_page;
2397                         else if (!ret)
2398                                 goto read_single_page;
2399
2400                         ret = f2fs_init_compress_ctx(&cc);
2401                         if (ret)
2402                                 goto set_error_page;
2403
2404                         f2fs_compress_ctx_add_page(&cc, page);
2405
2406                         goto next_page;
2407                 }
2408 read_single_page:
2409 #endif
2410
2411                 ret = f2fs_read_single_page(inode, page, max_nr_pages, &map,
2412                                         &bio, &last_block_in_bio, rac);
2413                 if (ret) {
2414 #ifdef CONFIG_F2FS_FS_COMPRESSION
2415 set_error_page:
2416 #endif
2417                         SetPageError(page);
2418                         zero_user_segment(page, 0, PAGE_SIZE);
2419                         unlock_page(page);
2420                 }
2421 #ifdef CONFIG_F2FS_FS_COMPRESSION
2422 next_page:
2423 #endif
2424                 if (rac)
2425                         put_page(page);
2426
2427 #ifdef CONFIG_F2FS_FS_COMPRESSION
2428                 if (f2fs_compressed_file(inode)) {
2429                         /* last page */
2430                         if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) {
2431                                 ret = f2fs_read_multi_pages(&cc, &bio,
2432                                                         max_nr_pages,
2433                                                         &last_block_in_bio,
2434                                                         rac != NULL, false);
2435                                 f2fs_destroy_compress_ctx(&cc);
2436                         }
2437                 }
2438 #endif
2439         }
2440         if (bio)
2441                 __submit_bio(F2FS_I_SB(inode), bio, DATA);
2442
2443         if (rac && readahead_count(rac) && !drop_ra)
2444                 WRITE_ONCE(F2FS_I(inode)->ra_offset, -1);
2445         return ret;
2446 }
2447
2448 static int f2fs_read_data_page(struct file *file, struct page *page)
2449 {
2450         struct inode *inode = page_file_mapping(page)->host;
2451         int ret = -EAGAIN;
2452
2453         trace_f2fs_readpage(page, DATA);
2454
2455         if (!f2fs_is_compress_backend_ready(inode)) {
2456                 unlock_page(page);
2457                 return -EOPNOTSUPP;
2458         }
2459
2460         /* If the file has inline data, try to read it directly */
2461         if (f2fs_has_inline_data(inode))
2462                 ret = f2fs_read_inline_data(inode, page);
2463         if (ret == -EAGAIN)
2464                 ret = f2fs_mpage_readpages(inode, NULL, page);
2465         return ret;
2466 }
2467
2468 static void f2fs_readahead(struct readahead_control *rac)
2469 {
2470         struct inode *inode = rac->mapping->host;
2471
2472         trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac));
2473
2474         if (!f2fs_is_compress_backend_ready(inode))
2475                 return;
2476
2477         /* If the file has inline data, skip readpages */
2478         if (f2fs_has_inline_data(inode))
2479                 return;
2480
2481         f2fs_mpage_readpages(inode, rac, NULL);
2482 }
2483
2484 int f2fs_encrypt_one_page(struct f2fs_io_info *fio)
2485 {
2486         struct inode *inode = fio->page->mapping->host;
2487         struct page *mpage, *page;
2488         gfp_t gfp_flags = GFP_NOFS;
2489
2490         if (!f2fs_encrypted_file(inode))
2491                 return 0;
2492
2493         page = fio->compressed_page ? fio->compressed_page : fio->page;
2494
2495         /* wait for GCed page writeback via META_MAPPING */
2496         f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
2497
2498         if (fscrypt_inode_uses_inline_crypto(inode))
2499                 return 0;
2500
2501 retry_encrypt:
2502         fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page,
2503                                         PAGE_SIZE, 0, gfp_flags);
2504         if (IS_ERR(fio->encrypted_page)) {
2505                 /* flush pending IOs and wait for a while in the ENOMEM case */
2506                 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
2507                         f2fs_flush_merged_writes(fio->sbi);
2508                         congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
2509                         gfp_flags |= __GFP_NOFAIL;
2510                         goto retry_encrypt;
2511                 }
2512                 return PTR_ERR(fio->encrypted_page);
2513         }
2514
2515         mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
2516         if (mpage) {
2517                 if (PageUptodate(mpage))
2518                         memcpy(page_address(mpage),
2519                                 page_address(fio->encrypted_page), PAGE_SIZE);
2520                 f2fs_put_page(mpage, 1);
2521         }
2522         return 0;
2523 }
2524
2525 static inline bool check_inplace_update_policy(struct inode *inode,
2526                                 struct f2fs_io_info *fio)
2527 {
2528         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2529         unsigned int policy = SM_I(sbi)->ipu_policy;
2530
2531         if (policy & (0x1 << F2FS_IPU_FORCE))
2532                 return true;
2533         if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi))
2534                 return true;
2535         if (policy & (0x1 << F2FS_IPU_UTIL) &&
2536                         utilization(sbi) > SM_I(sbi)->min_ipu_util)
2537                 return true;
2538         if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) &&
2539                         utilization(sbi) > SM_I(sbi)->min_ipu_util)
2540                 return true;
2541
2542         /*
2543          * IPU for rewrite async pages
2544          */
2545         if (policy & (0x1 << F2FS_IPU_ASYNC) &&
2546                         fio && fio->op == REQ_OP_WRITE &&
2547                         !(fio->op_flags & REQ_SYNC) &&
2548                         !IS_ENCRYPTED(inode))
2549                 return true;
2550
2551         /* this is only set during fdatasync */
2552         if (policy & (0x1 << F2FS_IPU_FSYNC) &&
2553                         is_inode_flag_set(inode, FI_NEED_IPU))
2554                 return true;
2555
2556         if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2557                         !f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2558                 return true;
2559
2560         return false;
2561 }
2562
2563 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
2564 {
2565         if (f2fs_is_pinned_file(inode))
2566                 return true;
2567
2568         /* if this is cold file, we should overwrite to avoid fragmentation */
2569         if (file_is_cold(inode))
2570                 return true;
2571
2572         return check_inplace_update_policy(inode, fio);
2573 }
2574
2575 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
2576 {
2577         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2578
2579         if (f2fs_lfs_mode(sbi))
2580                 return true;
2581         if (S_ISDIR(inode->i_mode))
2582                 return true;
2583         if (IS_NOQUOTA(inode))
2584                 return true;
2585         if (f2fs_is_atomic_file(inode))
2586                 return true;
2587         if (fio) {
2588                 if (is_cold_data(fio->page))
2589                         return true;
2590                 if (IS_ATOMIC_WRITTEN_PAGE(fio->page))
2591                         return true;
2592                 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2593                         f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2594                         return true;
2595         }
2596         return false;
2597 }
2598
2599 static inline bool need_inplace_update(struct f2fs_io_info *fio)
2600 {
2601         struct inode *inode = fio->page->mapping->host;
2602
2603         if (f2fs_should_update_outplace(inode, fio))
2604                 return false;
2605
2606         return f2fs_should_update_inplace(inode, fio);
2607 }
2608
2609 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
2610 {
2611         struct page *page = fio->page;
2612         struct inode *inode = page->mapping->host;
2613         struct dnode_of_data dn;
2614         struct extent_info ei = {0,0,0};
2615         struct node_info ni;
2616         bool ipu_force = false;
2617         int err = 0;
2618
2619         set_new_dnode(&dn, inode, NULL, NULL, 0);
2620         if (need_inplace_update(fio) &&
2621                         f2fs_lookup_extent_cache(inode, page->index, &ei)) {
2622                 fio->old_blkaddr = ei.blk + page->index - ei.fofs;
2623
2624                 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2625                                                 DATA_GENERIC_ENHANCE))
2626                         return -EFSCORRUPTED;
2627
2628                 ipu_force = true;
2629                 fio->need_lock = LOCK_DONE;
2630                 goto got_it;
2631         }
2632
2633         /* Deadlock due to between page->lock and f2fs_lock_op */
2634         if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
2635                 return -EAGAIN;
2636
2637         err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
2638         if (err)
2639                 goto out;
2640
2641         fio->old_blkaddr = dn.data_blkaddr;
2642
2643         /* This page is already truncated */
2644         if (fio->old_blkaddr == NULL_ADDR) {
2645                 ClearPageUptodate(page);
2646                 clear_cold_data(page);
2647                 goto out_writepage;
2648         }
2649 got_it:
2650         if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2651                 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2652                                                 DATA_GENERIC_ENHANCE)) {
2653                 err = -EFSCORRUPTED;
2654                 goto out_writepage;
2655         }
2656         /*
2657          * If current allocation needs SSR,
2658          * it had better in-place writes for updated data.
2659          */
2660         if (ipu_force ||
2661                 (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2662                                         need_inplace_update(fio))) {
2663                 err = f2fs_encrypt_one_page(fio);
2664                 if (err)
2665                         goto out_writepage;
2666
2667                 set_page_writeback(page);
2668                 ClearPageError(page);
2669                 f2fs_put_dnode(&dn);
2670                 if (fio->need_lock == LOCK_REQ)
2671                         f2fs_unlock_op(fio->sbi);
2672                 err = f2fs_inplace_write_data(fio);
2673                 if (err) {
2674                         if (fscrypt_inode_uses_fs_layer_crypto(inode))
2675                                 fscrypt_finalize_bounce_page(&fio->encrypted_page);
2676                         if (PageWriteback(page))
2677                                 end_page_writeback(page);
2678                 } else {
2679                         set_inode_flag(inode, FI_UPDATE_WRITE);
2680                 }
2681                 trace_f2fs_do_write_data_page(fio->page, IPU);
2682                 return err;
2683         }
2684
2685         if (fio->need_lock == LOCK_RETRY) {
2686                 if (!f2fs_trylock_op(fio->sbi)) {
2687                         err = -EAGAIN;
2688                         goto out_writepage;
2689                 }
2690                 fio->need_lock = LOCK_REQ;
2691         }
2692
2693         err = f2fs_get_node_info(fio->sbi, dn.nid, &ni);
2694         if (err)
2695                 goto out_writepage;
2696
2697         fio->version = ni.version;
2698
2699         err = f2fs_encrypt_one_page(fio);
2700         if (err)
2701                 goto out_writepage;
2702
2703         set_page_writeback(page);
2704         ClearPageError(page);
2705
2706         if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR)
2707                 f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false);
2708
2709         /* LFS mode write path */
2710         f2fs_outplace_write_data(&dn, fio);
2711         trace_f2fs_do_write_data_page(page, OPU);
2712         set_inode_flag(inode, FI_APPEND_WRITE);
2713         if (page->index == 0)
2714                 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
2715 out_writepage:
2716         f2fs_put_dnode(&dn);
2717 out:
2718         if (fio->need_lock == LOCK_REQ)
2719                 f2fs_unlock_op(fio->sbi);
2720         return err;
2721 }
2722
2723 int f2fs_write_single_data_page(struct page *page, int *submitted,
2724                                 struct bio **bio,
2725                                 sector_t *last_block,
2726                                 struct writeback_control *wbc,
2727                                 enum iostat_type io_type,
2728                                 int compr_blocks)
2729 {
2730         struct inode *inode = page->mapping->host;
2731         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2732         loff_t i_size = i_size_read(inode);
2733         const pgoff_t end_index = ((unsigned long long)i_size)
2734                                                         >> PAGE_SHIFT;
2735         loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT;
2736         unsigned offset = 0;
2737         bool need_balance_fs = false;
2738         int err = 0;
2739         struct f2fs_io_info fio = {
2740                 .sbi = sbi,
2741                 .ino = inode->i_ino,
2742                 .type = DATA,
2743                 .op = REQ_OP_WRITE,
2744                 .op_flags = wbc_to_write_flags(wbc),
2745                 .old_blkaddr = NULL_ADDR,
2746                 .page = page,
2747                 .encrypted_page = NULL,
2748                 .submitted = false,
2749                 .compr_blocks = compr_blocks,
2750                 .need_lock = LOCK_RETRY,
2751                 .io_type = io_type,
2752                 .io_wbc = wbc,
2753                 .bio = bio,
2754                 .last_block = last_block,
2755         };
2756
2757         trace_f2fs_writepage(page, DATA);
2758
2759         /* we should bypass data pages to proceed the kworkder jobs */
2760         if (unlikely(f2fs_cp_error(sbi))) {
2761                 mapping_set_error(page->mapping, -EIO);
2762                 /*
2763                  * don't drop any dirty dentry pages for keeping lastest
2764                  * directory structure.
2765                  */
2766                 if (S_ISDIR(inode->i_mode))
2767                         goto redirty_out;
2768                 goto out;
2769         }
2770
2771         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2772                 goto redirty_out;
2773
2774         if (page->index < end_index ||
2775                         f2fs_verity_in_progress(inode) ||
2776                         compr_blocks)
2777                 goto write;
2778
2779         /*
2780          * If the offset is out-of-range of file size,
2781          * this page does not have to be written to disk.
2782          */
2783         offset = i_size & (PAGE_SIZE - 1);
2784         if ((page->index >= end_index + 1) || !offset)
2785                 goto out;
2786
2787         zero_user_segment(page, offset, PAGE_SIZE);
2788 write:
2789         if (f2fs_is_drop_cache(inode))
2790                 goto out;
2791         /* we should not write 0'th page having journal header */
2792         if (f2fs_is_volatile_file(inode) && (!page->index ||
2793                         (!wbc->for_reclaim &&
2794                         f2fs_available_free_memory(sbi, BASE_CHECK))))
2795                 goto redirty_out;
2796
2797         /* Dentry/quota blocks are controlled by checkpoint */
2798         if (S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) {
2799                 /*
2800                  * We need to wait for node_write to avoid block allocation during
2801                  * checkpoint. This can only happen to quota writes which can cause
2802                  * the below discard race condition.
2803                  */
2804                 if (IS_NOQUOTA(inode))
2805                         down_read(&sbi->node_write);
2806
2807                 fio.need_lock = LOCK_DONE;
2808                 err = f2fs_do_write_data_page(&fio);
2809
2810                 if (IS_NOQUOTA(inode))
2811                         up_read(&sbi->node_write);
2812
2813                 goto done;
2814         }
2815
2816         if (!wbc->for_reclaim)
2817                 need_balance_fs = true;
2818         else if (has_not_enough_free_secs(sbi, 0, 0))
2819                 goto redirty_out;
2820         else
2821                 set_inode_flag(inode, FI_HOT_DATA);
2822
2823         err = -EAGAIN;
2824         if (f2fs_has_inline_data(inode)) {
2825                 err = f2fs_write_inline_data(inode, page);
2826                 if (!err)
2827                         goto out;
2828         }
2829
2830         if (err == -EAGAIN) {
2831                 err = f2fs_do_write_data_page(&fio);
2832                 if (err == -EAGAIN) {
2833                         fio.need_lock = LOCK_REQ;
2834                         err = f2fs_do_write_data_page(&fio);
2835                 }
2836         }
2837
2838         if (err) {
2839                 file_set_keep_isize(inode);
2840         } else {
2841                 spin_lock(&F2FS_I(inode)->i_size_lock);
2842                 if (F2FS_I(inode)->last_disk_size < psize)
2843                         F2FS_I(inode)->last_disk_size = psize;
2844                 spin_unlock(&F2FS_I(inode)->i_size_lock);
2845         }
2846
2847 done:
2848         if (err && err != -ENOENT)
2849                 goto redirty_out;
2850
2851 out:
2852         inode_dec_dirty_pages(inode);
2853         if (err) {
2854                 ClearPageUptodate(page);
2855                 clear_cold_data(page);
2856         }
2857
2858         if (wbc->for_reclaim) {
2859                 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2860                 clear_inode_flag(inode, FI_HOT_DATA);
2861                 f2fs_remove_dirty_inode(inode);
2862                 submitted = NULL;
2863         }
2864         unlock_page(page);
2865         if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2866                                         !F2FS_I(inode)->cp_task)
2867                 f2fs_balance_fs(sbi, need_balance_fs);
2868
2869         if (unlikely(f2fs_cp_error(sbi))) {
2870                 f2fs_submit_merged_write(sbi, DATA);
2871                 f2fs_submit_merged_ipu_write(sbi, bio, NULL);
2872                 submitted = NULL;
2873         }
2874
2875         if (submitted)
2876                 *submitted = fio.submitted ? 1 : 0;
2877
2878         return 0;
2879
2880 redirty_out:
2881         redirty_page_for_writepage(wbc, page);
2882         /*
2883          * pageout() in MM traslates EAGAIN, so calls handle_write_error()
2884          * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2885          * file_write_and_wait_range() will see EIO error, which is critical
2886          * to return value of fsync() followed by atomic_write failure to user.
2887          */
2888         if (!err || wbc->for_reclaim)
2889                 return AOP_WRITEPAGE_ACTIVATE;
2890         unlock_page(page);
2891         return err;
2892 }
2893
2894 static int f2fs_write_data_page(struct page *page,
2895                                         struct writeback_control *wbc)
2896 {
2897 #ifdef CONFIG_F2FS_FS_COMPRESSION
2898         struct inode *inode = page->mapping->host;
2899
2900         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
2901                 goto out;
2902
2903         if (f2fs_compressed_file(inode)) {
2904                 if (f2fs_is_compressed_cluster(inode, page->index)) {
2905                         redirty_page_for_writepage(wbc, page);
2906                         return AOP_WRITEPAGE_ACTIVATE;
2907                 }
2908         }
2909 out:
2910 #endif
2911
2912         return f2fs_write_single_data_page(page, NULL, NULL, NULL,
2913                                                 wbc, FS_DATA_IO, 0);
2914 }
2915
2916 /*
2917  * This function was copied from write_cche_pages from mm/page-writeback.c.
2918  * The major change is making write step of cold data page separately from
2919  * warm/hot data page.
2920  */
2921 static int f2fs_write_cache_pages(struct address_space *mapping,
2922                                         struct writeback_control *wbc,
2923                                         enum iostat_type io_type)
2924 {
2925         int ret = 0;
2926         int done = 0, retry = 0;
2927         struct pagevec pvec;
2928         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2929         struct bio *bio = NULL;
2930         sector_t last_block;
2931 #ifdef CONFIG_F2FS_FS_COMPRESSION
2932         struct inode *inode = mapping->host;
2933         struct compress_ctx cc = {
2934                 .inode = inode,
2935                 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2936                 .cluster_size = F2FS_I(inode)->i_cluster_size,
2937                 .cluster_idx = NULL_CLUSTER,
2938                 .rpages = NULL,
2939                 .nr_rpages = 0,
2940                 .cpages = NULL,
2941                 .rbuf = NULL,
2942                 .cbuf = NULL,
2943                 .rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size,
2944                 .private = NULL,
2945         };
2946 #endif
2947         int nr_pages;
2948         pgoff_t index;
2949         pgoff_t end;            /* Inclusive */
2950         pgoff_t done_index;
2951         int range_whole = 0;
2952         xa_mark_t tag;
2953         int nwritten = 0;
2954         int submitted = 0;
2955         int i;
2956
2957         pagevec_init(&pvec);
2958
2959         if (get_dirty_pages(mapping->host) <=
2960                                 SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
2961                 set_inode_flag(mapping->host, FI_HOT_DATA);
2962         else
2963                 clear_inode_flag(mapping->host, FI_HOT_DATA);
2964
2965         if (wbc->range_cyclic) {
2966                 index = mapping->writeback_index; /* prev offset */
2967                 end = -1;
2968         } else {
2969                 index = wbc->range_start >> PAGE_SHIFT;
2970                 end = wbc->range_end >> PAGE_SHIFT;
2971                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2972                         range_whole = 1;
2973         }
2974         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2975                 tag = PAGECACHE_TAG_TOWRITE;
2976         else
2977                 tag = PAGECACHE_TAG_DIRTY;
2978 retry:
2979         retry = 0;
2980         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2981                 tag_pages_for_writeback(mapping, index, end);
2982         done_index = index;
2983         while (!done && !retry && (index <= end)) {
2984                 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2985                                 tag);
2986                 if (nr_pages == 0)
2987                         break;
2988
2989                 for (i = 0; i < nr_pages; i++) {
2990                         struct page *page = pvec.pages[i];
2991                         bool need_readd;
2992 readd:
2993                         need_readd = false;
2994 #ifdef CONFIG_F2FS_FS_COMPRESSION
2995                         if (f2fs_compressed_file(inode)) {
2996                                 ret = f2fs_init_compress_ctx(&cc);
2997                                 if (ret) {
2998                                         done = 1;
2999                                         break;
3000                                 }
3001
3002                                 if (!f2fs_cluster_can_merge_page(&cc,
3003                                                                 page->index)) {
3004                                         ret = f2fs_write_multi_pages(&cc,
3005                                                 &submitted, wbc, io_type);
3006                                         if (!ret)
3007                                                 need_readd = true;
3008                                         goto result;
3009                                 }
3010
3011                                 if (unlikely(f2fs_cp_error(sbi)))
3012                                         goto lock_page;
3013
3014                                 if (f2fs_cluster_is_empty(&cc)) {
3015                                         void *fsdata = NULL;
3016                                         struct page *pagep;
3017                                         int ret2;
3018
3019                                         ret2 = f2fs_prepare_compress_overwrite(
3020                                                         inode, &pagep,
3021                                                         page->index, &fsdata);
3022                                         if (ret2 < 0) {
3023                                                 ret = ret2;
3024                                                 done = 1;
3025                                                 break;
3026                                         } else if (ret2 &&
3027                                                 !f2fs_compress_write_end(inode,
3028                                                                 fsdata, page->index,
3029                                                                 1)) {
3030                                                 retry = 1;
3031                                                 break;
3032                                         }
3033                                 } else {
3034                                         goto lock_page;
3035                                 }
3036                         }
3037 #endif
3038                         /* give a priority to WB_SYNC threads */
3039                         if (atomic_read(&sbi->wb_sync_req[DATA]) &&
3040                                         wbc->sync_mode == WB_SYNC_NONE) {
3041                                 done = 1;
3042                                 break;
3043                         }
3044 #ifdef CONFIG_F2FS_FS_COMPRESSION
3045 lock_page:
3046 #endif
3047                         done_index = page->index;
3048 retry_write:
3049                         lock_page(page);
3050
3051                         if (unlikely(page->mapping != mapping)) {
3052 continue_unlock:
3053                                 unlock_page(page);
3054                                 continue;
3055                         }
3056
3057                         if (!PageDirty(page)) {
3058                                 /* someone wrote it for us */
3059                                 goto continue_unlock;
3060                         }
3061
3062                         if (PageWriteback(page)) {
3063                                 if (wbc->sync_mode != WB_SYNC_NONE)
3064                                         f2fs_wait_on_page_writeback(page,
3065                                                         DATA, true, true);
3066                                 else
3067                                         goto continue_unlock;
3068                         }
3069
3070                         if (!clear_page_dirty_for_io(page))
3071                                 goto continue_unlock;
3072
3073 #ifdef CONFIG_F2FS_FS_COMPRESSION
3074                         if (f2fs_compressed_file(inode)) {
3075                                 get_page(page);
3076                                 f2fs_compress_ctx_add_page(&cc, page);
3077                                 continue;
3078                         }
3079 #endif
3080                         ret = f2fs_write_single_data_page(page, &submitted,
3081                                         &bio, &last_block, wbc, io_type, 0);
3082                         if (ret == AOP_WRITEPAGE_ACTIVATE)
3083                                 unlock_page(page);
3084 #ifdef CONFIG_F2FS_FS_COMPRESSION
3085 result:
3086 #endif
3087                         nwritten += submitted;
3088                         wbc->nr_to_write -= submitted;
3089
3090                         if (unlikely(ret)) {
3091                                 /*
3092                                  * keep nr_to_write, since vfs uses this to
3093                                  * get # of written pages.
3094                                  */
3095                                 if (ret == AOP_WRITEPAGE_ACTIVATE) {
3096                                         ret = 0;
3097                                         goto next;
3098                                 } else if (ret == -EAGAIN) {
3099                                         ret = 0;
3100                                         if (wbc->sync_mode == WB_SYNC_ALL) {
3101                                                 cond_resched();
3102                                                 congestion_wait(BLK_RW_ASYNC,
3103                                                         DEFAULT_IO_TIMEOUT);
3104                                                 goto retry_write;
3105                                         }
3106                                         goto next;
3107                                 }
3108                                 done_index = page->index + 1;
3109                                 done = 1;
3110                                 break;
3111                         }
3112
3113                         if (wbc->nr_to_write <= 0 &&
3114                                         wbc->sync_mode == WB_SYNC_NONE) {
3115                                 done = 1;
3116                                 break;
3117                         }
3118 next:
3119                         if (need_readd)
3120                                 goto readd;
3121                 }
3122                 pagevec_release(&pvec);
3123                 cond_resched();
3124         }
3125 #ifdef CONFIG_F2FS_FS_COMPRESSION
3126         /* flush remained pages in compress cluster */
3127         if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) {
3128                 ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type);
3129                 nwritten += submitted;
3130                 wbc->nr_to_write -= submitted;
3131                 if (ret) {
3132                         done = 1;
3133                         retry = 0;
3134                 }
3135         }
3136 #endif
3137         if (retry) {
3138                 index = 0;
3139                 end = -1;
3140                 goto retry;
3141         }
3142         if (wbc->range_cyclic && !done)
3143                 done_index = 0;
3144         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3145                 mapping->writeback_index = done_index;
3146
3147         if (nwritten)
3148                 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
3149                                                                 NULL, 0, DATA);
3150         /* submit cached bio of IPU write */
3151         if (bio)
3152                 f2fs_submit_merged_ipu_write(sbi, &bio, NULL);
3153
3154         return ret;
3155 }
3156
3157 static inline bool __should_serialize_io(struct inode *inode,
3158                                         struct writeback_control *wbc)
3159 {
3160         /* to avoid deadlock in path of data flush */
3161         if (F2FS_I(inode)->cp_task)
3162                 return false;
3163
3164         if (!S_ISREG(inode->i_mode))
3165                 return false;
3166         if (IS_NOQUOTA(inode))
3167                 return false;
3168
3169         if (f2fs_compressed_file(inode))
3170                 return true;
3171         if (wbc->sync_mode != WB_SYNC_ALL)
3172                 return true;
3173         if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
3174                 return true;
3175         return false;
3176 }
3177
3178 static int __f2fs_write_data_pages(struct address_space *mapping,
3179                                                 struct writeback_control *wbc,
3180                                                 enum iostat_type io_type)
3181 {
3182         struct inode *inode = mapping->host;
3183         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3184         struct blk_plug plug;
3185         int ret;
3186         bool locked = false;
3187
3188         /* deal with chardevs and other special file */
3189         if (!mapping->a_ops->writepage)
3190                 return 0;
3191
3192         /* skip writing if there is no dirty page in this inode */
3193         if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
3194                 return 0;
3195
3196         /* during POR, we don't need to trigger writepage at all. */
3197         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
3198                 goto skip_write;
3199
3200         if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
3201                         wbc->sync_mode == WB_SYNC_NONE &&
3202                         get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
3203                         f2fs_available_free_memory(sbi, DIRTY_DENTS))
3204                 goto skip_write;
3205
3206         /* skip writing during file defragment */
3207         if (is_inode_flag_set(inode, FI_DO_DEFRAG))
3208                 goto skip_write;
3209
3210         trace_f2fs_writepages(mapping->host, wbc, DATA);
3211
3212         /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
3213         if (wbc->sync_mode == WB_SYNC_ALL)
3214                 atomic_inc(&sbi->wb_sync_req[DATA]);
3215         else if (atomic_read(&sbi->wb_sync_req[DATA]))
3216                 goto skip_write;
3217
3218         if (__should_serialize_io(inode, wbc)) {
3219                 mutex_lock(&sbi->writepages);
3220                 locked = true;
3221         }
3222
3223         blk_start_plug(&plug);
3224         ret = f2fs_write_cache_pages(mapping, wbc, io_type);
3225         blk_finish_plug(&plug);
3226
3227         if (locked)
3228                 mutex_unlock(&sbi->writepages);
3229
3230         if (wbc->sync_mode == WB_SYNC_ALL)
3231                 atomic_dec(&sbi->wb_sync_req[DATA]);
3232         /*
3233          * if some pages were truncated, we cannot guarantee its mapping->host
3234          * to detect pending bios.
3235          */
3236
3237         f2fs_remove_dirty_inode(inode);
3238         return ret;
3239
3240 skip_write:
3241         wbc->pages_skipped += get_dirty_pages(inode);
3242         trace_f2fs_writepages(mapping->host, wbc, DATA);
3243         return 0;
3244 }
3245
3246 static int f2fs_write_data_pages(struct address_space *mapping,
3247                             struct writeback_control *wbc)
3248 {
3249         struct inode *inode = mapping->host;
3250
3251         return __f2fs_write_data_pages(mapping, wbc,
3252                         F2FS_I(inode)->cp_task == current ?
3253                         FS_CP_DATA_IO : FS_DATA_IO);
3254 }
3255
3256 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
3257 {
3258         struct inode *inode = mapping->host;
3259         loff_t i_size = i_size_read(inode);
3260
3261         if (IS_NOQUOTA(inode))
3262                 return;
3263
3264         /* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
3265         if (to > i_size && !f2fs_verity_in_progress(inode)) {
3266                 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3267                 down_write(&F2FS_I(inode)->i_mmap_sem);
3268
3269                 truncate_pagecache(inode, i_size);
3270                 f2fs_truncate_blocks(inode, i_size, true);
3271
3272                 up_write(&F2FS_I(inode)->i_mmap_sem);
3273                 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3274         }
3275 }
3276
3277 static int prepare_write_begin(struct f2fs_sb_info *sbi,
3278                         struct page *page, loff_t pos, unsigned len,
3279                         block_t *blk_addr, bool *node_changed)
3280 {
3281         struct inode *inode = page->mapping->host;
3282         pgoff_t index = page->index;
3283         struct dnode_of_data dn;
3284         struct page *ipage;
3285         bool locked = false;
3286         struct extent_info ei = {0,0,0};
3287         int err = 0;
3288         int flag;
3289
3290         /*
3291          * we already allocated all the blocks, so we don't need to get
3292          * the block addresses when there is no need to fill the page.
3293          */
3294         if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE &&
3295             !is_inode_flag_set(inode, FI_NO_PREALLOC) &&
3296             !f2fs_verity_in_progress(inode))
3297                 return 0;
3298
3299         /* f2fs_lock_op avoids race between write CP and convert_inline_page */
3300         if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode))
3301                 flag = F2FS_GET_BLOCK_DEFAULT;
3302         else
3303                 flag = F2FS_GET_BLOCK_PRE_AIO;
3304
3305         if (f2fs_has_inline_data(inode) ||
3306                         (pos & PAGE_MASK) >= i_size_read(inode)) {
3307                 f2fs_do_map_lock(sbi, flag, true);
3308                 locked = true;
3309         }
3310
3311 restart:
3312         /* check inline_data */
3313         ipage = f2fs_get_node_page(sbi, inode->i_ino);
3314         if (IS_ERR(ipage)) {
3315                 err = PTR_ERR(ipage);
3316                 goto unlock_out;
3317         }
3318
3319         set_new_dnode(&dn, inode, ipage, ipage, 0);
3320
3321         if (f2fs_has_inline_data(inode)) {
3322                 if (pos + len <= MAX_INLINE_DATA(inode)) {
3323                         f2fs_do_read_inline_data(page, ipage);
3324                         set_inode_flag(inode, FI_DATA_EXIST);
3325                         if (inode->i_nlink)
3326                                 set_inline_node(ipage);
3327                 } else {
3328                         err = f2fs_convert_inline_page(&dn, page);
3329                         if (err)
3330                                 goto out;
3331                         if (dn.data_blkaddr == NULL_ADDR)
3332                                 err = f2fs_get_block(&dn, index);
3333                 }
3334         } else if (locked) {
3335                 err = f2fs_get_block(&dn, index);
3336         } else {
3337                 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
3338                         dn.data_blkaddr = ei.blk + index - ei.fofs;
3339                 } else {
3340                         /* hole case */
3341                         err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3342                         if (err || dn.data_blkaddr == NULL_ADDR) {
3343                                 f2fs_put_dnode(&dn);
3344                                 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO,
3345                                                                 true);
3346                                 WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
3347                                 locked = true;
3348                                 goto restart;
3349                         }
3350                 }
3351         }
3352
3353         /* convert_inline_page can make node_changed */
3354         *blk_addr = dn.data_blkaddr;
3355         *node_changed = dn.node_changed;
3356 out:
3357         f2fs_put_dnode(&dn);
3358 unlock_out:
3359         if (locked)
3360                 f2fs_do_map_lock(sbi, flag, false);
3361         return err;
3362 }
3363
3364 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
3365                 loff_t pos, unsigned len, unsigned flags,
3366                 struct page **pagep, void **fsdata)
3367 {
3368         struct inode *inode = mapping->host;
3369         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3370         struct page *page = NULL;
3371         pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
3372         bool need_balance = false, drop_atomic = false;
3373         block_t blkaddr = NULL_ADDR;
3374         int err = 0;
3375
3376         trace_f2fs_write_begin(inode, pos, len, flags);
3377
3378         if (!f2fs_is_checkpoint_ready(sbi)) {
3379                 err = -ENOSPC;
3380                 goto fail;
3381         }
3382
3383         if ((f2fs_is_atomic_file(inode) &&
3384                         !f2fs_available_free_memory(sbi, INMEM_PAGES)) ||
3385                         is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
3386                 err = -ENOMEM;
3387                 drop_atomic = true;
3388                 goto fail;
3389         }
3390
3391         /*
3392          * We should check this at this moment to avoid deadlock on inode page
3393          * and #0 page. The locking rule for inline_data conversion should be:
3394          * lock_page(page #0) -> lock_page(inode_page)
3395          */
3396         if (index != 0) {
3397                 err = f2fs_convert_inline_inode(inode);
3398                 if (err)
3399                         goto fail;
3400         }
3401
3402 #ifdef CONFIG_F2FS_FS_COMPRESSION
3403         if (f2fs_compressed_file(inode)) {
3404                 int ret;
3405
3406                 *fsdata = NULL;
3407
3408                 ret = f2fs_prepare_compress_overwrite(inode, pagep,
3409                                                         index, fsdata);
3410                 if (ret < 0) {
3411                         err = ret;
3412                         goto fail;
3413                 } else if (ret) {
3414                         return 0;
3415                 }
3416         }
3417 #endif
3418
3419 repeat:
3420         /*
3421          * Do not use grab_cache_page_write_begin() to avoid deadlock due to
3422          * wait_for_stable_page. Will wait that below with our IO control.
3423          */
3424         page = f2fs_pagecache_get_page(mapping, index,
3425                                 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
3426         if (!page) {
3427                 err = -ENOMEM;
3428                 goto fail;
3429         }
3430
3431         /* TODO: cluster can be compressed due to race with .writepage */
3432
3433         *pagep = page;
3434
3435         err = prepare_write_begin(sbi, page, pos, len,
3436                                         &blkaddr, &need_balance);
3437         if (err)
3438                 goto fail;
3439
3440         if (need_balance && !IS_NOQUOTA(inode) &&
3441                         has_not_enough_free_secs(sbi, 0, 0)) {
3442                 unlock_page(page);
3443                 f2fs_balance_fs(sbi, true);
3444                 lock_page(page);
3445                 if (page->mapping != mapping) {
3446                         /* The page got truncated from under us */
3447                         f2fs_put_page(page, 1);
3448                         goto repeat;
3449                 }
3450         }
3451
3452         f2fs_wait_on_page_writeback(page, DATA, false, true);
3453
3454         if (len == PAGE_SIZE || PageUptodate(page))
3455                 return 0;
3456
3457         if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) &&
3458             !f2fs_verity_in_progress(inode)) {
3459                 zero_user_segment(page, len, PAGE_SIZE);
3460                 return 0;
3461         }
3462
3463         if (blkaddr == NEW_ADDR) {
3464                 zero_user_segment(page, 0, PAGE_SIZE);
3465                 SetPageUptodate(page);
3466         } else {
3467                 if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3468                                 DATA_GENERIC_ENHANCE_READ)) {
3469                         err = -EFSCORRUPTED;
3470                         goto fail;
3471                 }
3472                 err = f2fs_submit_page_read(inode, page, blkaddr, 0, true);
3473                 if (err)
3474                         goto fail;
3475
3476                 lock_page(page);
3477                 if (unlikely(page->mapping != mapping)) {
3478                         f2fs_put_page(page, 1);
3479                         goto repeat;
3480                 }
3481                 if (unlikely(!PageUptodate(page))) {
3482                         err = -EIO;
3483                         goto fail;
3484                 }
3485         }
3486         return 0;
3487
3488 fail:
3489         f2fs_put_page(page, 1);
3490         f2fs_write_failed(mapping, pos + len);
3491         if (drop_atomic)
3492                 f2fs_drop_inmem_pages_all(sbi, false);
3493         return err;
3494 }
3495
3496 static int f2fs_write_end(struct file *file,
3497                         struct address_space *mapping,
3498                         loff_t pos, unsigned len, unsigned copied,
3499                         struct page *page, void *fsdata)
3500 {
3501         struct inode *inode = page->mapping->host;
3502
3503         trace_f2fs_write_end(inode, pos, len, copied);
3504
3505         /*
3506          * This should be come from len == PAGE_SIZE, and we expect copied
3507          * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
3508          * let generic_perform_write() try to copy data again through copied=0.
3509          */
3510         if (!PageUptodate(page)) {
3511                 if (unlikely(copied != len))
3512                         copied = 0;
3513                 else
3514                         SetPageUptodate(page);
3515         }
3516
3517 #ifdef CONFIG_F2FS_FS_COMPRESSION
3518         /* overwrite compressed file */
3519         if (f2fs_compressed_file(inode) && fsdata) {
3520                 f2fs_compress_write_end(inode, fsdata, page->index, copied);
3521                 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3522
3523                 if (pos + copied > i_size_read(inode) &&
3524                                 !f2fs_verity_in_progress(inode))
3525                         f2fs_i_size_write(inode, pos + copied);
3526                 return copied;
3527         }
3528 #endif
3529
3530         if (!copied)
3531                 goto unlock_out;
3532
3533         set_page_dirty(page);
3534
3535         if (pos + copied > i_size_read(inode) &&
3536             !f2fs_verity_in_progress(inode))
3537                 f2fs_i_size_write(inode, pos + copied);
3538 unlock_out:
3539         f2fs_put_page(page, 1);
3540         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3541         return copied;
3542 }
3543
3544 static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
3545                            loff_t offset)
3546 {
3547         unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
3548         unsigned blkbits = i_blkbits;
3549         unsigned blocksize_mask = (1 << blkbits) - 1;
3550         unsigned long align = offset | iov_iter_alignment(iter);
3551         struct block_device *bdev = inode->i_sb->s_bdev;
3552
3553         if (align & blocksize_mask) {
3554                 if (bdev)
3555                         blkbits = blksize_bits(bdev_logical_block_size(bdev));
3556                 blocksize_mask = (1 << blkbits) - 1;
3557                 if (align & blocksize_mask)
3558                         return -EINVAL;
3559                 return 1;
3560         }
3561         return 0;
3562 }
3563
3564 static void f2fs_dio_end_io(struct bio *bio)
3565 {
3566         struct f2fs_private_dio *dio = bio->bi_private;
3567
3568         dec_page_count(F2FS_I_SB(dio->inode),
3569                         dio->write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
3570
3571         bio->bi_private = dio->orig_private;
3572         bio->bi_end_io = dio->orig_end_io;
3573
3574         kvfree(dio);
3575
3576         bio_endio(bio);
3577 }
3578
3579 static void f2fs_dio_submit_bio(struct bio *bio, struct inode *inode,
3580                                                         loff_t file_offset)
3581 {
3582         struct f2fs_private_dio *dio;
3583         bool write = (bio_op(bio) == REQ_OP_WRITE);
3584
3585         dio = f2fs_kzalloc(F2FS_I_SB(inode),
3586                         sizeof(struct f2fs_private_dio), GFP_NOFS);
3587         if (!dio)
3588                 goto out;
3589
3590         dio->inode = inode;
3591         dio->orig_end_io = bio->bi_end_io;
3592         dio->orig_private = bio->bi_private;
3593         dio->write = write;
3594
3595         bio->bi_end_io = f2fs_dio_end_io;
3596         bio->bi_private = dio;
3597
3598         inc_page_count(F2FS_I_SB(inode),
3599                         write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
3600
3601         submit_bio(bio);
3602         return;
3603 out:
3604         bio->bi_status = BLK_STS_IOERR;
3605         bio_endio(bio);
3606 }
3607
3608 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3609 {
3610         struct address_space *mapping = iocb->ki_filp->f_mapping;
3611         struct inode *inode = mapping->host;
3612         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3613         struct f2fs_inode_info *fi = F2FS_I(inode);
3614         size_t count = iov_iter_count(iter);
3615         loff_t offset = iocb->ki_pos;
3616         int rw = iov_iter_rw(iter);
3617         int err;
3618         enum rw_hint hint = iocb->ki_hint;
3619         int whint_mode = F2FS_OPTION(sbi).whint_mode;
3620         bool do_opu;
3621
3622         err = check_direct_IO(inode, iter, offset);
3623         if (err)
3624                 return err < 0 ? err : 0;
3625
3626         if (f2fs_force_buffered_io(inode, iocb, iter))
3627                 return 0;
3628
3629         do_opu = allow_outplace_dio(inode, iocb, iter);
3630
3631         trace_f2fs_direct_IO_enter(inode, offset, count, rw);
3632
3633         if (rw == WRITE && whint_mode == WHINT_MODE_OFF)
3634                 iocb->ki_hint = WRITE_LIFE_NOT_SET;
3635
3636         if (iocb->ki_flags & IOCB_NOWAIT) {
3637                 if (!down_read_trylock(&fi->i_gc_rwsem[rw])) {
3638                         iocb->ki_hint = hint;
3639                         err = -EAGAIN;
3640                         goto out;
3641                 }
3642                 if (do_opu && !down_read_trylock(&fi->i_gc_rwsem[READ])) {
3643                         up_read(&fi->i_gc_rwsem[rw]);
3644                         iocb->ki_hint = hint;
3645                         err = -EAGAIN;
3646                         goto out;
3647                 }
3648         } else {
3649                 down_read(&fi->i_gc_rwsem[rw]);
3650                 if (do_opu)
3651                         down_read(&fi->i_gc_rwsem[READ]);
3652         }
3653
3654         err = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3655                         iter, rw == WRITE ? get_data_block_dio_write :
3656                         get_data_block_dio, NULL, f2fs_dio_submit_bio,
3657                         rw == WRITE ? DIO_LOCKING | DIO_SKIP_HOLES :
3658                         DIO_SKIP_HOLES);
3659
3660         if (do_opu)
3661                 up_read(&fi->i_gc_rwsem[READ]);
3662
3663         up_read(&fi->i_gc_rwsem[rw]);
3664
3665         if (rw == WRITE) {
3666                 if (whint_mode == WHINT_MODE_OFF)
3667                         iocb->ki_hint = hint;
3668                 if (err > 0) {
3669                         f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO,
3670                                                                         err);
3671                         if (!do_opu)
3672                                 set_inode_flag(inode, FI_UPDATE_WRITE);
3673                 } else if (err < 0) {
3674                         f2fs_write_failed(mapping, offset + count);
3675                 }
3676         } else {
3677                 if (err > 0)
3678                         f2fs_update_iostat(sbi, APP_DIRECT_READ_IO, err);
3679         }
3680
3681 out:
3682         trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
3683
3684         return err;
3685 }
3686
3687 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3688                                                         unsigned int length)
3689 {
3690         struct inode *inode = page->mapping->host;
3691         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3692
3693         if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
3694                 (offset % PAGE_SIZE || length != PAGE_SIZE))
3695                 return;
3696
3697         if (PageDirty(page)) {
3698                 if (inode->i_ino == F2FS_META_INO(sbi)) {
3699                         dec_page_count(sbi, F2FS_DIRTY_META);
3700                 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
3701                         dec_page_count(sbi, F2FS_DIRTY_NODES);
3702                 } else {
3703                         inode_dec_dirty_pages(inode);
3704                         f2fs_remove_dirty_inode(inode);
3705                 }
3706         }
3707
3708         clear_cold_data(page);
3709
3710         if (IS_ATOMIC_WRITTEN_PAGE(page))
3711                 return f2fs_drop_inmem_page(inode, page);
3712
3713         f2fs_clear_page_private(page);
3714 }
3715
3716 int f2fs_release_page(struct page *page, gfp_t wait)
3717 {
3718         /* If this is dirty page, keep PagePrivate */
3719         if (PageDirty(page))
3720                 return 0;
3721
3722         /* This is atomic written page, keep Private */
3723         if (IS_ATOMIC_WRITTEN_PAGE(page))
3724                 return 0;
3725
3726         clear_cold_data(page);
3727         f2fs_clear_page_private(page);
3728         return 1;
3729 }
3730
3731 static int f2fs_set_data_page_dirty(struct page *page)
3732 {
3733         struct inode *inode = page_file_mapping(page)->host;
3734
3735         trace_f2fs_set_page_dirty(page, DATA);
3736
3737         if (!PageUptodate(page))
3738                 SetPageUptodate(page);
3739         if (PageSwapCache(page))
3740                 return __set_page_dirty_nobuffers(page);
3741
3742         if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) {
3743                 if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
3744                         f2fs_register_inmem_page(inode, page);
3745                         return 1;
3746                 }
3747                 /*
3748                  * Previously, this page has been registered, we just
3749                  * return here.
3750                  */
3751                 return 0;
3752         }
3753
3754         if (!PageDirty(page)) {
3755                 __set_page_dirty_nobuffers(page);
3756                 f2fs_update_dirty_page(inode, page);
3757                 return 1;
3758         }
3759         return 0;
3760 }
3761
3762
3763 static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block)
3764 {
3765 #ifdef CONFIG_F2FS_FS_COMPRESSION
3766         struct dnode_of_data dn;
3767         sector_t start_idx, blknr = 0;
3768         int ret;
3769
3770         start_idx = round_down(block, F2FS_I(inode)->i_cluster_size);
3771
3772         set_new_dnode(&dn, inode, NULL, NULL, 0);
3773         ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
3774         if (ret)
3775                 return 0;
3776
3777         if (dn.data_blkaddr != COMPRESS_ADDR) {
3778                 dn.ofs_in_node += block - start_idx;
3779                 blknr = f2fs_data_blkaddr(&dn);
3780                 if (!__is_valid_data_blkaddr(blknr))
3781                         blknr = 0;
3782         }
3783
3784         f2fs_put_dnode(&dn);
3785         return blknr;
3786 #else
3787         return 0;
3788 #endif
3789 }
3790
3791
3792 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
3793 {
3794         struct inode *inode = mapping->host;
3795         struct buffer_head tmp = {
3796                 .b_size = i_blocksize(inode),
3797         };
3798         sector_t blknr = 0;
3799
3800         if (f2fs_has_inline_data(inode))
3801                 goto out;
3802
3803         /* make sure allocating whole blocks */
3804         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
3805                 filemap_write_and_wait(mapping);
3806
3807         if (f2fs_compressed_file(inode))
3808                 blknr = f2fs_bmap_compress(inode, block);
3809
3810         if (!get_data_block_bmap(inode, block, &tmp, 0))
3811                 blknr = tmp.b_blocknr;
3812 out:
3813         trace_f2fs_bmap(inode, block, blknr);
3814         return blknr;
3815 }
3816
3817 #ifdef CONFIG_MIGRATION
3818 #include <linux/migrate.h>
3819
3820 int f2fs_migrate_page(struct address_space *mapping,
3821                 struct page *newpage, struct page *page, enum migrate_mode mode)
3822 {
3823         int rc, extra_count;
3824         struct f2fs_inode_info *fi = F2FS_I(mapping->host);
3825         bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page);
3826
3827         BUG_ON(PageWriteback(page));
3828
3829         /* migrating an atomic written page is safe with the inmem_lock hold */
3830         if (atomic_written) {
3831                 if (mode != MIGRATE_SYNC)
3832                         return -EBUSY;
3833                 if (!mutex_trylock(&fi->inmem_lock))
3834                         return -EAGAIN;
3835         }
3836
3837         /* one extra reference was held for atomic_write page */
3838         extra_count = atomic_written ? 1 : 0;
3839         rc = migrate_page_move_mapping(mapping, newpage,
3840                                 page, extra_count);
3841         if (rc != MIGRATEPAGE_SUCCESS) {
3842                 if (atomic_written)
3843                         mutex_unlock(&fi->inmem_lock);
3844                 return rc;
3845         }
3846
3847         if (atomic_written) {
3848                 struct inmem_pages *cur;
3849                 list_for_each_entry(cur, &fi->inmem_pages, list)
3850                         if (cur->page == page) {
3851                                 cur->page = newpage;
3852                                 break;
3853                         }
3854                 mutex_unlock(&fi->inmem_lock);
3855                 put_page(page);
3856                 get_page(newpage);
3857         }
3858
3859         if (PagePrivate(page)) {
3860                 f2fs_set_page_private(newpage, page_private(page));
3861                 f2fs_clear_page_private(page);
3862         }
3863
3864         if (mode != MIGRATE_SYNC_NO_COPY)
3865                 migrate_page_copy(newpage, page);
3866         else
3867                 migrate_page_states(newpage, page);
3868
3869         return MIGRATEPAGE_SUCCESS;
3870 }
3871 #endif
3872
3873 #ifdef CONFIG_SWAP
3874 /* Copied from generic_swapfile_activate() to check any holes */
3875 static int check_swap_activate(struct swap_info_struct *sis,
3876                                 struct file *swap_file, sector_t *span)
3877 {
3878         struct address_space *mapping = swap_file->f_mapping;
3879         struct inode *inode = mapping->host;
3880         unsigned blocks_per_page;
3881         unsigned long page_no;
3882         unsigned blkbits;
3883         sector_t probe_block;
3884         sector_t last_block;
3885         sector_t lowest_block = -1;
3886         sector_t highest_block = 0;
3887         int nr_extents = 0;
3888         int ret;
3889
3890         blkbits = inode->i_blkbits;
3891         blocks_per_page = PAGE_SIZE >> blkbits;
3892
3893         /*
3894          * Map all the blocks into the extent list.  This code doesn't try
3895          * to be very smart.
3896          */
3897         probe_block = 0;
3898         page_no = 0;
3899         last_block = i_size_read(inode) >> blkbits;
3900         while ((probe_block + blocks_per_page) <= last_block &&
3901                         page_no < sis->max) {
3902                 unsigned block_in_page;
3903                 sector_t first_block;
3904                 sector_t block = 0;
3905                 int      err = 0;
3906
3907                 cond_resched();
3908
3909                 block = probe_block;
3910                 err = bmap(inode, &block);
3911                 if (err || !block)
3912                         goto bad_bmap;
3913                 first_block = block;
3914
3915                 /*
3916                  * It must be PAGE_SIZE aligned on-disk
3917                  */
3918                 if (first_block & (blocks_per_page - 1)) {
3919                         probe_block++;
3920                         goto reprobe;
3921                 }
3922
3923                 for (block_in_page = 1; block_in_page < blocks_per_page;
3924                                         block_in_page++) {
3925
3926                         block = probe_block + block_in_page;
3927                         err = bmap(inode, &block);
3928
3929                         if (err || !block)
3930                                 goto bad_bmap;
3931
3932                         if (block != first_block + block_in_page) {
3933                                 /* Discontiguity */
3934                                 probe_block++;
3935                                 goto reprobe;
3936                         }
3937                 }
3938
3939                 first_block >>= (PAGE_SHIFT - blkbits);
3940                 if (page_no) {  /* exclude the header page */
3941                         if (first_block < lowest_block)
3942                                 lowest_block = first_block;
3943                         if (first_block > highest_block)
3944                                 highest_block = first_block;
3945                 }
3946
3947                 /*
3948                  * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
3949                  */
3950                 ret = add_swap_extent(sis, page_no, 1, first_block);
3951                 if (ret < 0)
3952                         goto out;
3953                 nr_extents += ret;
3954                 page_no++;
3955                 probe_block += blocks_per_page;
3956 reprobe:
3957                 continue;
3958         }
3959         ret = nr_extents;
3960         *span = 1 + highest_block - lowest_block;
3961         if (page_no == 0)
3962                 page_no = 1;    /* force Empty message */
3963         sis->max = page_no;
3964         sis->pages = page_no - 1;
3965         sis->highest_bit = page_no - 1;
3966 out:
3967         return ret;
3968 bad_bmap:
3969         pr_err("swapon: swapfile has holes\n");
3970         return -EINVAL;
3971 }
3972
3973 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
3974                                 sector_t *span)
3975 {
3976         struct inode *inode = file_inode(file);
3977         int ret;
3978
3979         if (!S_ISREG(inode->i_mode))
3980                 return -EINVAL;
3981
3982         if (f2fs_readonly(F2FS_I_SB(inode)->sb))
3983                 return -EROFS;
3984
3985         ret = f2fs_convert_inline_inode(inode);
3986         if (ret)
3987                 return ret;
3988
3989         if (f2fs_disable_compressed_file(inode))
3990                 return -EINVAL;
3991
3992         ret = check_swap_activate(sis, file, span);
3993         if (ret < 0)
3994                 return ret;
3995
3996         set_inode_flag(inode, FI_PIN_FILE);
3997         f2fs_precache_extents(inode);
3998         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3999         return ret;
4000 }
4001
4002 static void f2fs_swap_deactivate(struct file *file)
4003 {
4004         struct inode *inode = file_inode(file);
4005
4006         clear_inode_flag(inode, FI_PIN_FILE);
4007 }
4008 #else
4009 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4010                                 sector_t *span)
4011 {
4012         return -EOPNOTSUPP;
4013 }
4014
4015 static void f2fs_swap_deactivate(struct file *file)
4016 {
4017 }
4018 #endif
4019
4020 const struct address_space_operations f2fs_dblock_aops = {
4021         .readpage       = f2fs_read_data_page,
4022         .readahead      = f2fs_readahead,
4023         .writepage      = f2fs_write_data_page,
4024         .writepages     = f2fs_write_data_pages,
4025         .write_begin    = f2fs_write_begin,
4026         .write_end      = f2fs_write_end,
4027         .set_page_dirty = f2fs_set_data_page_dirty,
4028         .invalidatepage = f2fs_invalidate_page,
4029         .releasepage    = f2fs_release_page,
4030         .direct_IO      = f2fs_direct_IO,
4031         .bmap           = f2fs_bmap,
4032         .swap_activate  = f2fs_swap_activate,
4033         .swap_deactivate = f2fs_swap_deactivate,
4034 #ifdef CONFIG_MIGRATION
4035         .migratepage    = f2fs_migrate_page,
4036 #endif
4037 };
4038
4039 void f2fs_clear_page_cache_dirty_tag(struct page *page)
4040 {
4041         struct address_space *mapping = page_mapping(page);
4042         unsigned long flags;
4043
4044         xa_lock_irqsave(&mapping->i_pages, flags);
4045         __xa_clear_mark(&mapping->i_pages, page_index(page),
4046                                                 PAGECACHE_TAG_DIRTY);
4047         xa_unlock_irqrestore(&mapping->i_pages, flags);
4048 }
4049
4050 int __init f2fs_init_post_read_processing(void)
4051 {
4052         bio_post_read_ctx_cache =
4053                 kmem_cache_create("f2fs_bio_post_read_ctx",
4054                                   sizeof(struct bio_post_read_ctx), 0, 0, NULL);
4055         if (!bio_post_read_ctx_cache)
4056                 goto fail;
4057         bio_post_read_ctx_pool =
4058                 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
4059                                          bio_post_read_ctx_cache);
4060         if (!bio_post_read_ctx_pool)
4061                 goto fail_free_cache;
4062         return 0;
4063
4064 fail_free_cache:
4065         kmem_cache_destroy(bio_post_read_ctx_cache);
4066 fail:
4067         return -ENOMEM;
4068 }
4069
4070 void f2fs_destroy_post_read_processing(void)
4071 {
4072         mempool_destroy(bio_post_read_ctx_pool);
4073         kmem_cache_destroy(bio_post_read_ctx_cache);
4074 }
4075
4076 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi)
4077 {
4078         if (!f2fs_sb_has_encrypt(sbi) &&
4079                 !f2fs_sb_has_verity(sbi) &&
4080                 !f2fs_sb_has_compression(sbi))
4081                 return 0;
4082
4083         sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq",
4084                                                  WQ_UNBOUND | WQ_HIGHPRI,
4085                                                  num_online_cpus());
4086         if (!sbi->post_read_wq)
4087                 return -ENOMEM;
4088         return 0;
4089 }
4090
4091 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi)
4092 {
4093         if (sbi->post_read_wq)
4094                 destroy_workqueue(sbi->post_read_wq);
4095 }
4096
4097 int __init f2fs_init_bio_entry_cache(void)
4098 {
4099         bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab",
4100                         sizeof(struct bio_entry));
4101         if (!bio_entry_slab)
4102                 return -ENOMEM;
4103         return 0;
4104 }
4105
4106 void f2fs_destroy_bio_entry_cache(void)
4107 {
4108         kmem_cache_destroy(bio_entry_slab);
4109 }