Merge branches 'acpi-pm', 'acpi-pci', 'acpi-sysfs' and 'acpi-tables'
[linux-2.6-microblaze.git] / fs / f2fs / data.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/data.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/buffer_head.h>
11 #include <linux/sched/mm.h>
12 #include <linux/mpage.h>
13 #include <linux/writeback.h>
14 #include <linux/pagevec.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/blk-crypto.h>
18 #include <linux/swap.h>
19 #include <linux/prefetch.h>
20 #include <linux/uio.h>
21 #include <linux/sched/signal.h>
22 #include <linux/fiemap.h>
23 #include <linux/iomap.h>
24
25 #include "f2fs.h"
26 #include "node.h"
27 #include "segment.h"
28 #include "iostat.h"
29 #include <trace/events/f2fs.h>
30
31 #define NUM_PREALLOC_POST_READ_CTXS     128
32
33 static struct kmem_cache *bio_post_read_ctx_cache;
34 static struct kmem_cache *bio_entry_slab;
35 static mempool_t *bio_post_read_ctx_pool;
36 static struct bio_set f2fs_bioset;
37
38 #define F2FS_BIO_POOL_SIZE      NR_CURSEG_TYPE
39
40 int __init f2fs_init_bioset(void)
41 {
42         if (bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE,
43                                         0, BIOSET_NEED_BVECS))
44                 return -ENOMEM;
45         return 0;
46 }
47
48 void f2fs_destroy_bioset(void)
49 {
50         bioset_exit(&f2fs_bioset);
51 }
52
53 static bool __is_cp_guaranteed(struct page *page)
54 {
55         struct address_space *mapping = page->mapping;
56         struct inode *inode;
57         struct f2fs_sb_info *sbi;
58
59         if (!mapping)
60                 return false;
61
62         inode = mapping->host;
63         sbi = F2FS_I_SB(inode);
64
65         if (inode->i_ino == F2FS_META_INO(sbi) ||
66                         inode->i_ino == F2FS_NODE_INO(sbi) ||
67                         S_ISDIR(inode->i_mode))
68                 return true;
69
70         if (f2fs_is_compressed_page(page))
71                 return false;
72         if ((S_ISREG(inode->i_mode) &&
73                         (f2fs_is_atomic_file(inode) || IS_NOQUOTA(inode))) ||
74                         page_private_gcing(page))
75                 return true;
76         return false;
77 }
78
79 static enum count_type __read_io_type(struct page *page)
80 {
81         struct address_space *mapping = page_file_mapping(page);
82
83         if (mapping) {
84                 struct inode *inode = mapping->host;
85                 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
86
87                 if (inode->i_ino == F2FS_META_INO(sbi))
88                         return F2FS_RD_META;
89
90                 if (inode->i_ino == F2FS_NODE_INO(sbi))
91                         return F2FS_RD_NODE;
92         }
93         return F2FS_RD_DATA;
94 }
95
96 /* postprocessing steps for read bios */
97 enum bio_post_read_step {
98 #ifdef CONFIG_FS_ENCRYPTION
99         STEP_DECRYPT    = 1 << 0,
100 #else
101         STEP_DECRYPT    = 0,    /* compile out the decryption-related code */
102 #endif
103 #ifdef CONFIG_F2FS_FS_COMPRESSION
104         STEP_DECOMPRESS = 1 << 1,
105 #else
106         STEP_DECOMPRESS = 0,    /* compile out the decompression-related code */
107 #endif
108 #ifdef CONFIG_FS_VERITY
109         STEP_VERITY     = 1 << 2,
110 #else
111         STEP_VERITY     = 0,    /* compile out the verity-related code */
112 #endif
113 };
114
115 struct bio_post_read_ctx {
116         struct bio *bio;
117         struct f2fs_sb_info *sbi;
118         struct work_struct work;
119         unsigned int enabled_steps;
120         block_t fs_blkaddr;
121 };
122
123 static void f2fs_finish_read_bio(struct bio *bio)
124 {
125         struct bio_vec *bv;
126         struct bvec_iter_all iter_all;
127
128         /*
129          * Update and unlock the bio's pagecache pages, and put the
130          * decompression context for any compressed pages.
131          */
132         bio_for_each_segment_all(bv, bio, iter_all) {
133                 struct page *page = bv->bv_page;
134
135                 if (f2fs_is_compressed_page(page)) {
136                         if (bio->bi_status)
137                                 f2fs_end_read_compressed_page(page, true, 0);
138                         f2fs_put_page_dic(page);
139                         continue;
140                 }
141
142                 /* PG_error was set if decryption or verity failed. */
143                 if (bio->bi_status || PageError(page)) {
144                         ClearPageUptodate(page);
145                         /* will re-read again later */
146                         ClearPageError(page);
147                 } else {
148                         SetPageUptodate(page);
149                 }
150                 dec_page_count(F2FS_P_SB(page), __read_io_type(page));
151                 unlock_page(page);
152         }
153
154         if (bio->bi_private)
155                 mempool_free(bio->bi_private, bio_post_read_ctx_pool);
156         bio_put(bio);
157 }
158
159 static void f2fs_verify_bio(struct work_struct *work)
160 {
161         struct bio_post_read_ctx *ctx =
162                 container_of(work, struct bio_post_read_ctx, work);
163         struct bio *bio = ctx->bio;
164         bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS);
165
166         /*
167          * fsverity_verify_bio() may call readahead() again, and while verity
168          * will be disabled for this, decryption and/or decompression may still
169          * be needed, resulting in another bio_post_read_ctx being allocated.
170          * So to prevent deadlocks we need to release the current ctx to the
171          * mempool first.  This assumes that verity is the last post-read step.
172          */
173         mempool_free(ctx, bio_post_read_ctx_pool);
174         bio->bi_private = NULL;
175
176         /*
177          * Verify the bio's pages with fs-verity.  Exclude compressed pages,
178          * as those were handled separately by f2fs_end_read_compressed_page().
179          */
180         if (may_have_compressed_pages) {
181                 struct bio_vec *bv;
182                 struct bvec_iter_all iter_all;
183
184                 bio_for_each_segment_all(bv, bio, iter_all) {
185                         struct page *page = bv->bv_page;
186
187                         if (!f2fs_is_compressed_page(page) &&
188                             !PageError(page) && !fsverity_verify_page(page))
189                                 SetPageError(page);
190                 }
191         } else {
192                 fsverity_verify_bio(bio);
193         }
194
195         f2fs_finish_read_bio(bio);
196 }
197
198 /*
199  * If the bio's data needs to be verified with fs-verity, then enqueue the
200  * verity work for the bio.  Otherwise finish the bio now.
201  *
202  * Note that to avoid deadlocks, the verity work can't be done on the
203  * decryption/decompression workqueue.  This is because verifying the data pages
204  * can involve reading verity metadata pages from the file, and these verity
205  * metadata pages may be encrypted and/or compressed.
206  */
207 static void f2fs_verify_and_finish_bio(struct bio *bio)
208 {
209         struct bio_post_read_ctx *ctx = bio->bi_private;
210
211         if (ctx && (ctx->enabled_steps & STEP_VERITY)) {
212                 INIT_WORK(&ctx->work, f2fs_verify_bio);
213                 fsverity_enqueue_verify_work(&ctx->work);
214         } else {
215                 f2fs_finish_read_bio(bio);
216         }
217 }
218
219 /*
220  * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last
221  * remaining page was read by @ctx->bio.
222  *
223  * Note that a bio may span clusters (even a mix of compressed and uncompressed
224  * clusters) or be for just part of a cluster.  STEP_DECOMPRESS just indicates
225  * that the bio includes at least one compressed page.  The actual decompression
226  * is done on a per-cluster basis, not a per-bio basis.
227  */
228 static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx)
229 {
230         struct bio_vec *bv;
231         struct bvec_iter_all iter_all;
232         bool all_compressed = true;
233         block_t blkaddr = ctx->fs_blkaddr;
234
235         bio_for_each_segment_all(bv, ctx->bio, iter_all) {
236                 struct page *page = bv->bv_page;
237
238                 /* PG_error was set if decryption failed. */
239                 if (f2fs_is_compressed_page(page))
240                         f2fs_end_read_compressed_page(page, PageError(page),
241                                                 blkaddr);
242                 else
243                         all_compressed = false;
244
245                 blkaddr++;
246         }
247
248         /*
249          * Optimization: if all the bio's pages are compressed, then scheduling
250          * the per-bio verity work is unnecessary, as verity will be fully
251          * handled at the compression cluster level.
252          */
253         if (all_compressed)
254                 ctx->enabled_steps &= ~STEP_VERITY;
255 }
256
257 static void f2fs_post_read_work(struct work_struct *work)
258 {
259         struct bio_post_read_ctx *ctx =
260                 container_of(work, struct bio_post_read_ctx, work);
261
262         if (ctx->enabled_steps & STEP_DECRYPT)
263                 fscrypt_decrypt_bio(ctx->bio);
264
265         if (ctx->enabled_steps & STEP_DECOMPRESS)
266                 f2fs_handle_step_decompress(ctx);
267
268         f2fs_verify_and_finish_bio(ctx->bio);
269 }
270
271 static void f2fs_read_end_io(struct bio *bio)
272 {
273         struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio));
274         struct bio_post_read_ctx *ctx;
275
276         iostat_update_and_unbind_ctx(bio, 0);
277         ctx = bio->bi_private;
278
279         if (time_to_inject(sbi, FAULT_READ_IO)) {
280                 f2fs_show_injection_info(sbi, FAULT_READ_IO);
281                 bio->bi_status = BLK_STS_IOERR;
282         }
283
284         if (bio->bi_status) {
285                 f2fs_finish_read_bio(bio);
286                 return;
287         }
288
289         if (ctx && (ctx->enabled_steps & (STEP_DECRYPT | STEP_DECOMPRESS))) {
290                 INIT_WORK(&ctx->work, f2fs_post_read_work);
291                 queue_work(ctx->sbi->post_read_wq, &ctx->work);
292         } else {
293                 f2fs_verify_and_finish_bio(bio);
294         }
295 }
296
297 static void f2fs_write_end_io(struct bio *bio)
298 {
299         struct f2fs_sb_info *sbi;
300         struct bio_vec *bvec;
301         struct bvec_iter_all iter_all;
302
303         iostat_update_and_unbind_ctx(bio, 1);
304         sbi = bio->bi_private;
305
306         if (time_to_inject(sbi, FAULT_WRITE_IO)) {
307                 f2fs_show_injection_info(sbi, FAULT_WRITE_IO);
308                 bio->bi_status = BLK_STS_IOERR;
309         }
310
311         bio_for_each_segment_all(bvec, bio, iter_all) {
312                 struct page *page = bvec->bv_page;
313                 enum count_type type = WB_DATA_TYPE(page);
314
315                 if (page_private_dummy(page)) {
316                         clear_page_private_dummy(page);
317                         unlock_page(page);
318                         mempool_free(page, sbi->write_io_dummy);
319
320                         if (unlikely(bio->bi_status))
321                                 f2fs_stop_checkpoint(sbi, true);
322                         continue;
323                 }
324
325                 fscrypt_finalize_bounce_page(&page);
326
327 #ifdef CONFIG_F2FS_FS_COMPRESSION
328                 if (f2fs_is_compressed_page(page)) {
329                         f2fs_compress_write_end_io(bio, page);
330                         continue;
331                 }
332 #endif
333
334                 if (unlikely(bio->bi_status)) {
335                         mapping_set_error(page->mapping, -EIO);
336                         if (type == F2FS_WB_CP_DATA)
337                                 f2fs_stop_checkpoint(sbi, true);
338                 }
339
340                 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
341                                         page->index != nid_of_node(page));
342
343                 dec_page_count(sbi, type);
344                 if (f2fs_in_warm_node_list(sbi, page))
345                         f2fs_del_fsync_node_entry(sbi, page);
346                 clear_page_private_gcing(page);
347                 end_page_writeback(page);
348         }
349         if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
350                                 wq_has_sleeper(&sbi->cp_wait))
351                 wake_up(&sbi->cp_wait);
352
353         bio_put(bio);
354 }
355
356 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
357                 block_t blk_addr, sector_t *sector)
358 {
359         struct block_device *bdev = sbi->sb->s_bdev;
360         int i;
361
362         if (f2fs_is_multi_device(sbi)) {
363                 for (i = 0; i < sbi->s_ndevs; i++) {
364                         if (FDEV(i).start_blk <= blk_addr &&
365                             FDEV(i).end_blk >= blk_addr) {
366                                 blk_addr -= FDEV(i).start_blk;
367                                 bdev = FDEV(i).bdev;
368                                 break;
369                         }
370                 }
371         }
372
373         if (sector)
374                 *sector = SECTOR_FROM_BLOCK(blk_addr);
375         return bdev;
376 }
377
378 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
379 {
380         int i;
381
382         if (!f2fs_is_multi_device(sbi))
383                 return 0;
384
385         for (i = 0; i < sbi->s_ndevs; i++)
386                 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
387                         return i;
388         return 0;
389 }
390
391 static unsigned int f2fs_io_flags(struct f2fs_io_info *fio)
392 {
393         unsigned int temp_mask = (1 << NR_TEMP_TYPE) - 1;
394         unsigned int fua_flag, meta_flag, io_flag;
395         unsigned int op_flags = 0;
396
397         if (fio->op != REQ_OP_WRITE)
398                 return 0;
399         if (fio->type == DATA)
400                 io_flag = fio->sbi->data_io_flag;
401         else if (fio->type == NODE)
402                 io_flag = fio->sbi->node_io_flag;
403         else
404                 return 0;
405
406         fua_flag = io_flag & temp_mask;
407         meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask;
408
409         /*
410          * data/node io flag bits per temp:
411          *      REQ_META     |      REQ_FUA      |
412          *    5 |    4 |   3 |    2 |    1 |   0 |
413          * Cold | Warm | Hot | Cold | Warm | Hot |
414          */
415         if ((1 << fio->temp) & meta_flag)
416                 op_flags |= REQ_META;
417         if ((1 << fio->temp) & fua_flag)
418                 op_flags |= REQ_FUA;
419         return op_flags;
420 }
421
422 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages)
423 {
424         struct f2fs_sb_info *sbi = fio->sbi;
425         struct block_device *bdev;
426         sector_t sector;
427         struct bio *bio;
428
429         bdev = f2fs_target_device(sbi, fio->new_blkaddr, &sector);
430         bio = bio_alloc_bioset(bdev, npages,
431                                 fio->op | fio->op_flags | f2fs_io_flags(fio),
432                                 GFP_NOIO, &f2fs_bioset);
433         bio->bi_iter.bi_sector = sector;
434         if (is_read_io(fio->op)) {
435                 bio->bi_end_io = f2fs_read_end_io;
436                 bio->bi_private = NULL;
437         } else {
438                 bio->bi_end_io = f2fs_write_end_io;
439                 bio->bi_private = sbi;
440         }
441         iostat_alloc_and_bind_ctx(sbi, bio, NULL);
442
443         if (fio->io_wbc)
444                 wbc_init_bio(fio->io_wbc, bio);
445
446         return bio;
447 }
448
449 static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode,
450                                   pgoff_t first_idx,
451                                   const struct f2fs_io_info *fio,
452                                   gfp_t gfp_mask)
453 {
454         /*
455          * The f2fs garbage collector sets ->encrypted_page when it wants to
456          * read/write raw data without encryption.
457          */
458         if (!fio || !fio->encrypted_page)
459                 fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask);
460 }
461
462 static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode,
463                                      pgoff_t next_idx,
464                                      const struct f2fs_io_info *fio)
465 {
466         /*
467          * The f2fs garbage collector sets ->encrypted_page when it wants to
468          * read/write raw data without encryption.
469          */
470         if (fio && fio->encrypted_page)
471                 return !bio_has_crypt_ctx(bio);
472
473         return fscrypt_mergeable_bio(bio, inode, next_idx);
474 }
475
476 static inline void __submit_bio(struct f2fs_sb_info *sbi,
477                                 struct bio *bio, enum page_type type)
478 {
479         if (!is_read_io(bio_op(bio))) {
480                 unsigned int start;
481
482                 if (type != DATA && type != NODE)
483                         goto submit_io;
484
485                 if (f2fs_lfs_mode(sbi) && current->plug)
486                         blk_finish_plug(current->plug);
487
488                 if (!F2FS_IO_ALIGNED(sbi))
489                         goto submit_io;
490
491                 start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
492                 start %= F2FS_IO_SIZE(sbi);
493
494                 if (start == 0)
495                         goto submit_io;
496
497                 /* fill dummy pages */
498                 for (; start < F2FS_IO_SIZE(sbi); start++) {
499                         struct page *page =
500                                 mempool_alloc(sbi->write_io_dummy,
501                                               GFP_NOIO | __GFP_NOFAIL);
502                         f2fs_bug_on(sbi, !page);
503
504                         lock_page(page);
505
506                         zero_user_segment(page, 0, PAGE_SIZE);
507                         set_page_private_dummy(page);
508
509                         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
510                                 f2fs_bug_on(sbi, 1);
511                 }
512                 /*
513                  * In the NODE case, we lose next block address chain. So, we
514                  * need to do checkpoint in f2fs_sync_file.
515                  */
516                 if (type == NODE)
517                         set_sbi_flag(sbi, SBI_NEED_CP);
518         }
519 submit_io:
520         if (is_read_io(bio_op(bio)))
521                 trace_f2fs_submit_read_bio(sbi->sb, type, bio);
522         else
523                 trace_f2fs_submit_write_bio(sbi->sb, type, bio);
524
525         iostat_update_submit_ctx(bio, type);
526         submit_bio(bio);
527 }
528
529 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
530                                 struct bio *bio, enum page_type type)
531 {
532         __submit_bio(sbi, bio, type);
533 }
534
535 static void __submit_merged_bio(struct f2fs_bio_info *io)
536 {
537         struct f2fs_io_info *fio = &io->fio;
538
539         if (!io->bio)
540                 return;
541
542         if (is_read_io(fio->op))
543                 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
544         else
545                 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
546
547         __submit_bio(io->sbi, io->bio, fio->type);
548         io->bio = NULL;
549 }
550
551 static bool __has_merged_page(struct bio *bio, struct inode *inode,
552                                                 struct page *page, nid_t ino)
553 {
554         struct bio_vec *bvec;
555         struct bvec_iter_all iter_all;
556
557         if (!bio)
558                 return false;
559
560         if (!inode && !page && !ino)
561                 return true;
562
563         bio_for_each_segment_all(bvec, bio, iter_all) {
564                 struct page *target = bvec->bv_page;
565
566                 if (fscrypt_is_bounce_page(target)) {
567                         target = fscrypt_pagecache_page(target);
568                         if (IS_ERR(target))
569                                 continue;
570                 }
571                 if (f2fs_is_compressed_page(target)) {
572                         target = f2fs_compress_control_page(target);
573                         if (IS_ERR(target))
574                                 continue;
575                 }
576
577                 if (inode && inode == target->mapping->host)
578                         return true;
579                 if (page && page == target)
580                         return true;
581                 if (ino && ino == ino_of_node(target))
582                         return true;
583         }
584
585         return false;
586 }
587
588 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
589                                 enum page_type type, enum temp_type temp)
590 {
591         enum page_type btype = PAGE_TYPE_OF_BIO(type);
592         struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
593
594         f2fs_down_write(&io->io_rwsem);
595
596         /* change META to META_FLUSH in the checkpoint procedure */
597         if (type >= META_FLUSH) {
598                 io->fio.type = META_FLUSH;
599                 io->bio->bi_opf |= REQ_META | REQ_PRIO | REQ_SYNC;
600                 if (!test_opt(sbi, NOBARRIER))
601                         io->bio->bi_opf |= REQ_PREFLUSH | REQ_FUA;
602         }
603         __submit_merged_bio(io);
604         f2fs_up_write(&io->io_rwsem);
605 }
606
607 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
608                                 struct inode *inode, struct page *page,
609                                 nid_t ino, enum page_type type, bool force)
610 {
611         enum temp_type temp;
612         bool ret = true;
613
614         for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
615                 if (!force)     {
616                         enum page_type btype = PAGE_TYPE_OF_BIO(type);
617                         struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
618
619                         f2fs_down_read(&io->io_rwsem);
620                         ret = __has_merged_page(io->bio, inode, page, ino);
621                         f2fs_up_read(&io->io_rwsem);
622                 }
623                 if (ret)
624                         __f2fs_submit_merged_write(sbi, type, temp);
625
626                 /* TODO: use HOT temp only for meta pages now. */
627                 if (type >= META)
628                         break;
629         }
630 }
631
632 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
633 {
634         __submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
635 }
636
637 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
638                                 struct inode *inode, struct page *page,
639                                 nid_t ino, enum page_type type)
640 {
641         __submit_merged_write_cond(sbi, inode, page, ino, type, false);
642 }
643
644 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
645 {
646         f2fs_submit_merged_write(sbi, DATA);
647         f2fs_submit_merged_write(sbi, NODE);
648         f2fs_submit_merged_write(sbi, META);
649 }
650
651 /*
652  * Fill the locked page with data located in the block address.
653  * A caller needs to unlock the page on failure.
654  */
655 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
656 {
657         struct bio *bio;
658         struct page *page = fio->encrypted_page ?
659                         fio->encrypted_page : fio->page;
660
661         if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
662                         fio->is_por ? META_POR : (__is_meta_io(fio) ?
663                         META_GENERIC : DATA_GENERIC_ENHANCE)))
664                 return -EFSCORRUPTED;
665
666         trace_f2fs_submit_page_bio(page, fio);
667
668         /* Allocate a new bio */
669         bio = __bio_alloc(fio, 1);
670
671         f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
672                                fio->page->index, fio, GFP_NOIO);
673
674         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
675                 bio_put(bio);
676                 return -EFAULT;
677         }
678
679         if (fio->io_wbc && !is_read_io(fio->op))
680                 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
681
682         inc_page_count(fio->sbi, is_read_io(fio->op) ?
683                         __read_io_type(page): WB_DATA_TYPE(fio->page));
684
685         __submit_bio(fio->sbi, bio, fio->type);
686         return 0;
687 }
688
689 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
690                                 block_t last_blkaddr, block_t cur_blkaddr)
691 {
692         if (unlikely(sbi->max_io_bytes &&
693                         bio->bi_iter.bi_size >= sbi->max_io_bytes))
694                 return false;
695         if (last_blkaddr + 1 != cur_blkaddr)
696                 return false;
697         return bio->bi_bdev == f2fs_target_device(sbi, cur_blkaddr, NULL);
698 }
699
700 static bool io_type_is_mergeable(struct f2fs_bio_info *io,
701                                                 struct f2fs_io_info *fio)
702 {
703         if (io->fio.op != fio->op)
704                 return false;
705         return io->fio.op_flags == fio->op_flags;
706 }
707
708 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
709                                         struct f2fs_bio_info *io,
710                                         struct f2fs_io_info *fio,
711                                         block_t last_blkaddr,
712                                         block_t cur_blkaddr)
713 {
714         if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) {
715                 unsigned int filled_blocks =
716                                 F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size);
717                 unsigned int io_size = F2FS_IO_SIZE(sbi);
718                 unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt;
719
720                 /* IOs in bio is aligned and left space of vectors is not enough */
721                 if (!(filled_blocks % io_size) && left_vecs < io_size)
722                         return false;
723         }
724         if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr))
725                 return false;
726         return io_type_is_mergeable(io, fio);
727 }
728
729 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio,
730                                 struct page *page, enum temp_type temp)
731 {
732         struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
733         struct bio_entry *be;
734
735         be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS, true, NULL);
736         be->bio = bio;
737         bio_get(bio);
738
739         if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE)
740                 f2fs_bug_on(sbi, 1);
741
742         f2fs_down_write(&io->bio_list_lock);
743         list_add_tail(&be->list, &io->bio_list);
744         f2fs_up_write(&io->bio_list_lock);
745 }
746
747 static void del_bio_entry(struct bio_entry *be)
748 {
749         list_del(&be->list);
750         kmem_cache_free(bio_entry_slab, be);
751 }
752
753 static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio,
754                                                         struct page *page)
755 {
756         struct f2fs_sb_info *sbi = fio->sbi;
757         enum temp_type temp;
758         bool found = false;
759         int ret = -EAGAIN;
760
761         for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
762                 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
763                 struct list_head *head = &io->bio_list;
764                 struct bio_entry *be;
765
766                 f2fs_down_write(&io->bio_list_lock);
767                 list_for_each_entry(be, head, list) {
768                         if (be->bio != *bio)
769                                 continue;
770
771                         found = true;
772
773                         f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio,
774                                                             *fio->last_block,
775                                                             fio->new_blkaddr));
776                         if (f2fs_crypt_mergeable_bio(*bio,
777                                         fio->page->mapping->host,
778                                         fio->page->index, fio) &&
779                             bio_add_page(*bio, page, PAGE_SIZE, 0) ==
780                                         PAGE_SIZE) {
781                                 ret = 0;
782                                 break;
783                         }
784
785                         /* page can't be merged into bio; submit the bio */
786                         del_bio_entry(be);
787                         __submit_bio(sbi, *bio, DATA);
788                         break;
789                 }
790                 f2fs_up_write(&io->bio_list_lock);
791         }
792
793         if (ret) {
794                 bio_put(*bio);
795                 *bio = NULL;
796         }
797
798         return ret;
799 }
800
801 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
802                                         struct bio **bio, struct page *page)
803 {
804         enum temp_type temp;
805         bool found = false;
806         struct bio *target = bio ? *bio : NULL;
807
808         for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
809                 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
810                 struct list_head *head = &io->bio_list;
811                 struct bio_entry *be;
812
813                 if (list_empty(head))
814                         continue;
815
816                 f2fs_down_read(&io->bio_list_lock);
817                 list_for_each_entry(be, head, list) {
818                         if (target)
819                                 found = (target == be->bio);
820                         else
821                                 found = __has_merged_page(be->bio, NULL,
822                                                                 page, 0);
823                         if (found)
824                                 break;
825                 }
826                 f2fs_up_read(&io->bio_list_lock);
827
828                 if (!found)
829                         continue;
830
831                 found = false;
832
833                 f2fs_down_write(&io->bio_list_lock);
834                 list_for_each_entry(be, head, list) {
835                         if (target)
836                                 found = (target == be->bio);
837                         else
838                                 found = __has_merged_page(be->bio, NULL,
839                                                                 page, 0);
840                         if (found) {
841                                 target = be->bio;
842                                 del_bio_entry(be);
843                                 break;
844                         }
845                 }
846                 f2fs_up_write(&io->bio_list_lock);
847         }
848
849         if (found)
850                 __submit_bio(sbi, target, DATA);
851         if (bio && *bio) {
852                 bio_put(*bio);
853                 *bio = NULL;
854         }
855 }
856
857 int f2fs_merge_page_bio(struct f2fs_io_info *fio)
858 {
859         struct bio *bio = *fio->bio;
860         struct page *page = fio->encrypted_page ?
861                         fio->encrypted_page : fio->page;
862
863         if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
864                         __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC))
865                 return -EFSCORRUPTED;
866
867         trace_f2fs_submit_page_bio(page, fio);
868
869         if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block,
870                                                 fio->new_blkaddr))
871                 f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL);
872 alloc_new:
873         if (!bio) {
874                 bio = __bio_alloc(fio, BIO_MAX_VECS);
875                 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
876                                        fio->page->index, fio, GFP_NOIO);
877
878                 add_bio_entry(fio->sbi, bio, page, fio->temp);
879         } else {
880                 if (add_ipu_page(fio, &bio, page))
881                         goto alloc_new;
882         }
883
884         if (fio->io_wbc)
885                 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
886
887         inc_page_count(fio->sbi, WB_DATA_TYPE(page));
888
889         *fio->last_block = fio->new_blkaddr;
890         *fio->bio = bio;
891
892         return 0;
893 }
894
895 void f2fs_submit_page_write(struct f2fs_io_info *fio)
896 {
897         struct f2fs_sb_info *sbi = fio->sbi;
898         enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
899         struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
900         struct page *bio_page;
901
902         f2fs_bug_on(sbi, is_read_io(fio->op));
903
904         f2fs_down_write(&io->io_rwsem);
905 next:
906         if (fio->in_list) {
907                 spin_lock(&io->io_lock);
908                 if (list_empty(&io->io_list)) {
909                         spin_unlock(&io->io_lock);
910                         goto out;
911                 }
912                 fio = list_first_entry(&io->io_list,
913                                                 struct f2fs_io_info, list);
914                 list_del(&fio->list);
915                 spin_unlock(&io->io_lock);
916         }
917
918         verify_fio_blkaddr(fio);
919
920         if (fio->encrypted_page)
921                 bio_page = fio->encrypted_page;
922         else if (fio->compressed_page)
923                 bio_page = fio->compressed_page;
924         else
925                 bio_page = fio->page;
926
927         /* set submitted = true as a return value */
928         fio->submitted = true;
929
930         inc_page_count(sbi, WB_DATA_TYPE(bio_page));
931
932         if (io->bio &&
933             (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio,
934                               fio->new_blkaddr) ||
935              !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host,
936                                        bio_page->index, fio)))
937                 __submit_merged_bio(io);
938 alloc_new:
939         if (io->bio == NULL) {
940                 if (F2FS_IO_ALIGNED(sbi) &&
941                                 (fio->type == DATA || fio->type == NODE) &&
942                                 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
943                         dec_page_count(sbi, WB_DATA_TYPE(bio_page));
944                         fio->retry = true;
945                         goto skip;
946                 }
947                 io->bio = __bio_alloc(fio, BIO_MAX_VECS);
948                 f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host,
949                                        bio_page->index, fio, GFP_NOIO);
950                 io->fio = *fio;
951         }
952
953         if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
954                 __submit_merged_bio(io);
955                 goto alloc_new;
956         }
957
958         if (fio->io_wbc)
959                 wbc_account_cgroup_owner(fio->io_wbc, bio_page, PAGE_SIZE);
960
961         io->last_block_in_bio = fio->new_blkaddr;
962
963         trace_f2fs_submit_page_write(fio->page, fio);
964 skip:
965         if (fio->in_list)
966                 goto next;
967 out:
968         if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
969                                 !f2fs_is_checkpoint_ready(sbi))
970                 __submit_merged_bio(io);
971         f2fs_up_write(&io->io_rwsem);
972 }
973
974 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
975                                       unsigned nr_pages, unsigned op_flag,
976                                       pgoff_t first_idx, bool for_write)
977 {
978         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
979         struct bio *bio;
980         struct bio_post_read_ctx *ctx = NULL;
981         unsigned int post_read_steps = 0;
982         sector_t sector;
983         struct block_device *bdev = f2fs_target_device(sbi, blkaddr, &sector);
984
985         bio = bio_alloc_bioset(bdev, bio_max_segs(nr_pages),
986                                REQ_OP_READ | op_flag,
987                                for_write ? GFP_NOIO : GFP_KERNEL, &f2fs_bioset);
988         if (!bio)
989                 return ERR_PTR(-ENOMEM);
990         bio->bi_iter.bi_sector = sector;
991         f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS);
992         bio->bi_end_io = f2fs_read_end_io;
993
994         if (fscrypt_inode_uses_fs_layer_crypto(inode))
995                 post_read_steps |= STEP_DECRYPT;
996
997         if (f2fs_need_verity(inode, first_idx))
998                 post_read_steps |= STEP_VERITY;
999
1000         /*
1001          * STEP_DECOMPRESS is handled specially, since a compressed file might
1002          * contain both compressed and uncompressed clusters.  We'll allocate a
1003          * bio_post_read_ctx if the file is compressed, but the caller is
1004          * responsible for enabling STEP_DECOMPRESS if it's actually needed.
1005          */
1006
1007         if (post_read_steps || f2fs_compressed_file(inode)) {
1008                 /* Due to the mempool, this never fails. */
1009                 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
1010                 ctx->bio = bio;
1011                 ctx->sbi = sbi;
1012                 ctx->enabled_steps = post_read_steps;
1013                 ctx->fs_blkaddr = blkaddr;
1014                 bio->bi_private = ctx;
1015         }
1016         iostat_alloc_and_bind_ctx(sbi, bio, ctx);
1017
1018         return bio;
1019 }
1020
1021 /* This can handle encryption stuffs */
1022 static int f2fs_submit_page_read(struct inode *inode, struct page *page,
1023                                  block_t blkaddr, int op_flags, bool for_write)
1024 {
1025         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1026         struct bio *bio;
1027
1028         bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags,
1029                                         page->index, for_write);
1030         if (IS_ERR(bio))
1031                 return PTR_ERR(bio);
1032
1033         /* wait for GCed page writeback via META_MAPPING */
1034         f2fs_wait_on_block_writeback(inode, blkaddr);
1035
1036         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
1037                 bio_put(bio);
1038                 return -EFAULT;
1039         }
1040         ClearPageError(page);
1041         inc_page_count(sbi, F2FS_RD_DATA);
1042         f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE);
1043         __submit_bio(sbi, bio, DATA);
1044         return 0;
1045 }
1046
1047 static void __set_data_blkaddr(struct dnode_of_data *dn)
1048 {
1049         struct f2fs_node *rn = F2FS_NODE(dn->node_page);
1050         __le32 *addr_array;
1051         int base = 0;
1052
1053         if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
1054                 base = get_extra_isize(dn->inode);
1055
1056         /* Get physical address of data block */
1057         addr_array = blkaddr_in_node(rn);
1058         addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
1059 }
1060
1061 /*
1062  * Lock ordering for the change of data block address:
1063  * ->data_page
1064  *  ->node_page
1065  *    update block addresses in the node page
1066  */
1067 void f2fs_set_data_blkaddr(struct dnode_of_data *dn)
1068 {
1069         f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1070         __set_data_blkaddr(dn);
1071         if (set_page_dirty(dn->node_page))
1072                 dn->node_changed = true;
1073 }
1074
1075 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1076 {
1077         dn->data_blkaddr = blkaddr;
1078         f2fs_set_data_blkaddr(dn);
1079         f2fs_update_extent_cache(dn);
1080 }
1081
1082 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
1083 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
1084 {
1085         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1086         int err;
1087
1088         if (!count)
1089                 return 0;
1090
1091         if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1092                 return -EPERM;
1093         if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1094                 return err;
1095
1096         trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
1097                                                 dn->ofs_in_node, count);
1098
1099         f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1100
1101         for (; count > 0; dn->ofs_in_node++) {
1102                 block_t blkaddr = f2fs_data_blkaddr(dn);
1103
1104                 if (blkaddr == NULL_ADDR) {
1105                         dn->data_blkaddr = NEW_ADDR;
1106                         __set_data_blkaddr(dn);
1107                         count--;
1108                 }
1109         }
1110
1111         if (set_page_dirty(dn->node_page))
1112                 dn->node_changed = true;
1113         return 0;
1114 }
1115
1116 /* Should keep dn->ofs_in_node unchanged */
1117 int f2fs_reserve_new_block(struct dnode_of_data *dn)
1118 {
1119         unsigned int ofs_in_node = dn->ofs_in_node;
1120         int ret;
1121
1122         ret = f2fs_reserve_new_blocks(dn, 1);
1123         dn->ofs_in_node = ofs_in_node;
1124         return ret;
1125 }
1126
1127 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
1128 {
1129         bool need_put = dn->inode_page ? false : true;
1130         int err;
1131
1132         err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
1133         if (err)
1134                 return err;
1135
1136         if (dn->data_blkaddr == NULL_ADDR)
1137                 err = f2fs_reserve_new_block(dn);
1138         if (err || need_put)
1139                 f2fs_put_dnode(dn);
1140         return err;
1141 }
1142
1143 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
1144 {
1145         struct extent_info ei = {0, };
1146         struct inode *inode = dn->inode;
1147
1148         if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1149                 dn->data_blkaddr = ei.blk + index - ei.fofs;
1150                 return 0;
1151         }
1152
1153         return f2fs_reserve_block(dn, index);
1154 }
1155
1156 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
1157                                                 int op_flags, bool for_write)
1158 {
1159         struct address_space *mapping = inode->i_mapping;
1160         struct dnode_of_data dn;
1161         struct page *page;
1162         struct extent_info ei = {0, };
1163         int err;
1164
1165         page = f2fs_grab_cache_page(mapping, index, for_write);
1166         if (!page)
1167                 return ERR_PTR(-ENOMEM);
1168
1169         if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1170                 dn.data_blkaddr = ei.blk + index - ei.fofs;
1171                 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
1172                                                 DATA_GENERIC_ENHANCE_READ)) {
1173                         err = -EFSCORRUPTED;
1174                         goto put_err;
1175                 }
1176                 goto got_it;
1177         }
1178
1179         set_new_dnode(&dn, inode, NULL, NULL, 0);
1180         err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1181         if (err)
1182                 goto put_err;
1183         f2fs_put_dnode(&dn);
1184
1185         if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1186                 err = -ENOENT;
1187                 goto put_err;
1188         }
1189         if (dn.data_blkaddr != NEW_ADDR &&
1190                         !f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
1191                                                 dn.data_blkaddr,
1192                                                 DATA_GENERIC_ENHANCE)) {
1193                 err = -EFSCORRUPTED;
1194                 goto put_err;
1195         }
1196 got_it:
1197         if (PageUptodate(page)) {
1198                 unlock_page(page);
1199                 return page;
1200         }
1201
1202         /*
1203          * A new dentry page is allocated but not able to be written, since its
1204          * new inode page couldn't be allocated due to -ENOSPC.
1205          * In such the case, its blkaddr can be remained as NEW_ADDR.
1206          * see, f2fs_add_link -> f2fs_get_new_data_page ->
1207          * f2fs_init_inode_metadata.
1208          */
1209         if (dn.data_blkaddr == NEW_ADDR) {
1210                 zero_user_segment(page, 0, PAGE_SIZE);
1211                 if (!PageUptodate(page))
1212                         SetPageUptodate(page);
1213                 unlock_page(page);
1214                 return page;
1215         }
1216
1217         err = f2fs_submit_page_read(inode, page, dn.data_blkaddr,
1218                                                 op_flags, for_write);
1219         if (err)
1220                 goto put_err;
1221         return page;
1222
1223 put_err:
1224         f2fs_put_page(page, 1);
1225         return ERR_PTR(err);
1226 }
1227
1228 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index)
1229 {
1230         struct address_space *mapping = inode->i_mapping;
1231         struct page *page;
1232
1233         page = find_get_page(mapping, index);
1234         if (page && PageUptodate(page))
1235                 return page;
1236         f2fs_put_page(page, 0);
1237
1238         page = f2fs_get_read_data_page(inode, index, 0, false);
1239         if (IS_ERR(page))
1240                 return page;
1241
1242         if (PageUptodate(page))
1243                 return page;
1244
1245         wait_on_page_locked(page);
1246         if (unlikely(!PageUptodate(page))) {
1247                 f2fs_put_page(page, 0);
1248                 return ERR_PTR(-EIO);
1249         }
1250         return page;
1251 }
1252
1253 /*
1254  * If it tries to access a hole, return an error.
1255  * Because, the callers, functions in dir.c and GC, should be able to know
1256  * whether this page exists or not.
1257  */
1258 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
1259                                                         bool for_write)
1260 {
1261         struct address_space *mapping = inode->i_mapping;
1262         struct page *page;
1263 repeat:
1264         page = f2fs_get_read_data_page(inode, index, 0, for_write);
1265         if (IS_ERR(page))
1266                 return page;
1267
1268         /* wait for read completion */
1269         lock_page(page);
1270         if (unlikely(page->mapping != mapping)) {
1271                 f2fs_put_page(page, 1);
1272                 goto repeat;
1273         }
1274         if (unlikely(!PageUptodate(page))) {
1275                 f2fs_put_page(page, 1);
1276                 return ERR_PTR(-EIO);
1277         }
1278         return page;
1279 }
1280
1281 /*
1282  * Caller ensures that this data page is never allocated.
1283  * A new zero-filled data page is allocated in the page cache.
1284  *
1285  * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1286  * f2fs_unlock_op().
1287  * Note that, ipage is set only by make_empty_dir, and if any error occur,
1288  * ipage should be released by this function.
1289  */
1290 struct page *f2fs_get_new_data_page(struct inode *inode,
1291                 struct page *ipage, pgoff_t index, bool new_i_size)
1292 {
1293         struct address_space *mapping = inode->i_mapping;
1294         struct page *page;
1295         struct dnode_of_data dn;
1296         int err;
1297
1298         page = f2fs_grab_cache_page(mapping, index, true);
1299         if (!page) {
1300                 /*
1301                  * before exiting, we should make sure ipage will be released
1302                  * if any error occur.
1303                  */
1304                 f2fs_put_page(ipage, 1);
1305                 return ERR_PTR(-ENOMEM);
1306         }
1307
1308         set_new_dnode(&dn, inode, ipage, NULL, 0);
1309         err = f2fs_reserve_block(&dn, index);
1310         if (err) {
1311                 f2fs_put_page(page, 1);
1312                 return ERR_PTR(err);
1313         }
1314         if (!ipage)
1315                 f2fs_put_dnode(&dn);
1316
1317         if (PageUptodate(page))
1318                 goto got_it;
1319
1320         if (dn.data_blkaddr == NEW_ADDR) {
1321                 zero_user_segment(page, 0, PAGE_SIZE);
1322                 if (!PageUptodate(page))
1323                         SetPageUptodate(page);
1324         } else {
1325                 f2fs_put_page(page, 1);
1326
1327                 /* if ipage exists, blkaddr should be NEW_ADDR */
1328                 f2fs_bug_on(F2FS_I_SB(inode), ipage);
1329                 page = f2fs_get_lock_data_page(inode, index, true);
1330                 if (IS_ERR(page))
1331                         return page;
1332         }
1333 got_it:
1334         if (new_i_size && i_size_read(inode) <
1335                                 ((loff_t)(index + 1) << PAGE_SHIFT))
1336                 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
1337         return page;
1338 }
1339
1340 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
1341 {
1342         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1343         struct f2fs_summary sum;
1344         struct node_info ni;
1345         block_t old_blkaddr;
1346         blkcnt_t count = 1;
1347         int err;
1348
1349         if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1350                 return -EPERM;
1351
1352         err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
1353         if (err)
1354                 return err;
1355
1356         dn->data_blkaddr = f2fs_data_blkaddr(dn);
1357         if (dn->data_blkaddr != NULL_ADDR)
1358                 goto alloc;
1359
1360         if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1361                 return err;
1362
1363 alloc:
1364         set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1365         old_blkaddr = dn->data_blkaddr;
1366         f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr,
1367                                 &sum, seg_type, NULL);
1368         if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
1369                 invalidate_mapping_pages(META_MAPPING(sbi),
1370                                         old_blkaddr, old_blkaddr);
1371                 f2fs_invalidate_compress_page(sbi, old_blkaddr);
1372         }
1373         f2fs_update_data_blkaddr(dn, dn->data_blkaddr);
1374         return 0;
1375 }
1376
1377 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock)
1378 {
1379         if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1380                 if (lock)
1381                         f2fs_down_read(&sbi->node_change);
1382                 else
1383                         f2fs_up_read(&sbi->node_change);
1384         } else {
1385                 if (lock)
1386                         f2fs_lock_op(sbi);
1387                 else
1388                         f2fs_unlock_op(sbi);
1389         }
1390 }
1391
1392 /*
1393  * f2fs_map_blocks() tries to find or build mapping relationship which
1394  * maps continuous logical blocks to physical blocks, and return such
1395  * info via f2fs_map_blocks structure.
1396  */
1397 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
1398                                                 int create, int flag)
1399 {
1400         unsigned int maxblocks = map->m_len;
1401         struct dnode_of_data dn;
1402         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1403         int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1404         pgoff_t pgofs, end_offset, end;
1405         int err = 0, ofs = 1;
1406         unsigned int ofs_in_node, last_ofs_in_node;
1407         blkcnt_t prealloc;
1408         struct extent_info ei = {0, };
1409         block_t blkaddr;
1410         unsigned int start_pgofs;
1411         int bidx = 0;
1412
1413         if (!maxblocks)
1414                 return 0;
1415
1416         map->m_bdev = inode->i_sb->s_bdev;
1417         map->m_multidev_dio =
1418                 f2fs_allow_multi_device_dio(F2FS_I_SB(inode), flag);
1419
1420         map->m_len = 0;
1421         map->m_flags = 0;
1422
1423         /* it only supports block size == page size */
1424         pgofs = (pgoff_t)map->m_lblk;
1425         end = pgofs + maxblocks;
1426
1427         if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
1428                 if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO &&
1429                                                         map->m_may_create)
1430                         goto next_dnode;
1431
1432                 map->m_pblk = ei.blk + pgofs - ei.fofs;
1433                 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
1434                 map->m_flags = F2FS_MAP_MAPPED;
1435                 if (map->m_next_extent)
1436                         *map->m_next_extent = pgofs + map->m_len;
1437
1438                 /* for hardware encryption, but to avoid potential issue in future */
1439                 if (flag == F2FS_GET_BLOCK_DIO)
1440                         f2fs_wait_on_block_writeback_range(inode,
1441                                                 map->m_pblk, map->m_len);
1442
1443                 if (map->m_multidev_dio) {
1444                         block_t blk_addr = map->m_pblk;
1445
1446                         bidx = f2fs_target_device_index(sbi, map->m_pblk);
1447
1448                         map->m_bdev = FDEV(bidx).bdev;
1449                         map->m_pblk -= FDEV(bidx).start_blk;
1450                         map->m_len = min(map->m_len,
1451                                 FDEV(bidx).end_blk + 1 - map->m_pblk);
1452
1453                         if (map->m_may_create)
1454                                 f2fs_update_device_state(sbi, inode->i_ino,
1455                                                         blk_addr, map->m_len);
1456                 }
1457                 goto out;
1458         }
1459
1460 next_dnode:
1461         if (map->m_may_create)
1462                 f2fs_do_map_lock(sbi, flag, true);
1463
1464         /* When reading holes, we need its node page */
1465         set_new_dnode(&dn, inode, NULL, NULL, 0);
1466         err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1467         if (err) {
1468                 if (flag == F2FS_GET_BLOCK_BMAP)
1469                         map->m_pblk = 0;
1470
1471                 if (err == -ENOENT) {
1472                         /*
1473                          * There is one exceptional case that read_node_page()
1474                          * may return -ENOENT due to filesystem has been
1475                          * shutdown or cp_error, so force to convert error
1476                          * number to EIO for such case.
1477                          */
1478                         if (map->m_may_create &&
1479                                 (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
1480                                 f2fs_cp_error(sbi))) {
1481                                 err = -EIO;
1482                                 goto unlock_out;
1483                         }
1484
1485                         err = 0;
1486                         if (map->m_next_pgofs)
1487                                 *map->m_next_pgofs =
1488                                         f2fs_get_next_page_offset(&dn, pgofs);
1489                         if (map->m_next_extent)
1490                                 *map->m_next_extent =
1491                                         f2fs_get_next_page_offset(&dn, pgofs);
1492                 }
1493                 goto unlock_out;
1494         }
1495
1496         start_pgofs = pgofs;
1497         prealloc = 0;
1498         last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1499         end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1500
1501 next_block:
1502         blkaddr = f2fs_data_blkaddr(&dn);
1503
1504         if (__is_valid_data_blkaddr(blkaddr) &&
1505                 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1506                 err = -EFSCORRUPTED;
1507                 goto sync_out;
1508         }
1509
1510         if (__is_valid_data_blkaddr(blkaddr)) {
1511                 /* use out-place-update for driect IO under LFS mode */
1512                 if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO &&
1513                                                         map->m_may_create) {
1514                         err = __allocate_data_block(&dn, map->m_seg_type);
1515                         if (err)
1516                                 goto sync_out;
1517                         blkaddr = dn.data_blkaddr;
1518                         set_inode_flag(inode, FI_APPEND_WRITE);
1519                 }
1520         } else {
1521                 if (create) {
1522                         if (unlikely(f2fs_cp_error(sbi))) {
1523                                 err = -EIO;
1524                                 goto sync_out;
1525                         }
1526                         if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1527                                 if (blkaddr == NULL_ADDR) {
1528                                         prealloc++;
1529                                         last_ofs_in_node = dn.ofs_in_node;
1530                                 }
1531                         } else {
1532                                 WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO &&
1533                                         flag != F2FS_GET_BLOCK_DIO);
1534                                 err = __allocate_data_block(&dn,
1535                                                         map->m_seg_type);
1536                                 if (!err) {
1537                                         if (flag == F2FS_GET_BLOCK_PRE_DIO)
1538                                                 file_need_truncate(inode);
1539                                         set_inode_flag(inode, FI_APPEND_WRITE);
1540                                 }
1541                         }
1542                         if (err)
1543                                 goto sync_out;
1544                         map->m_flags |= F2FS_MAP_NEW;
1545                         blkaddr = dn.data_blkaddr;
1546                 } else {
1547                         if (f2fs_compressed_file(inode) &&
1548                                         f2fs_sanity_check_cluster(&dn) &&
1549                                         (flag != F2FS_GET_BLOCK_FIEMAP ||
1550                                         IS_ENABLED(CONFIG_F2FS_CHECK_FS))) {
1551                                 err = -EFSCORRUPTED;
1552                                 goto sync_out;
1553                         }
1554                         if (flag == F2FS_GET_BLOCK_BMAP) {
1555                                 map->m_pblk = 0;
1556                                 goto sync_out;
1557                         }
1558                         if (flag == F2FS_GET_BLOCK_PRECACHE)
1559                                 goto sync_out;
1560                         if (flag == F2FS_GET_BLOCK_FIEMAP &&
1561                                                 blkaddr == NULL_ADDR) {
1562                                 if (map->m_next_pgofs)
1563                                         *map->m_next_pgofs = pgofs + 1;
1564                                 goto sync_out;
1565                         }
1566                         if (flag != F2FS_GET_BLOCK_FIEMAP) {
1567                                 /* for defragment case */
1568                                 if (map->m_next_pgofs)
1569                                         *map->m_next_pgofs = pgofs + 1;
1570                                 goto sync_out;
1571                         }
1572                 }
1573         }
1574
1575         if (flag == F2FS_GET_BLOCK_PRE_AIO)
1576                 goto skip;
1577
1578         if (map->m_multidev_dio)
1579                 bidx = f2fs_target_device_index(sbi, blkaddr);
1580
1581         if (map->m_len == 0) {
1582                 /* preallocated unwritten block should be mapped for fiemap. */
1583                 if (blkaddr == NEW_ADDR)
1584                         map->m_flags |= F2FS_MAP_UNWRITTEN;
1585                 map->m_flags |= F2FS_MAP_MAPPED;
1586
1587                 map->m_pblk = blkaddr;
1588                 map->m_len = 1;
1589
1590                 if (map->m_multidev_dio)
1591                         map->m_bdev = FDEV(bidx).bdev;
1592         } else if ((map->m_pblk != NEW_ADDR &&
1593                         blkaddr == (map->m_pblk + ofs)) ||
1594                         (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1595                         flag == F2FS_GET_BLOCK_PRE_DIO) {
1596                 if (map->m_multidev_dio && map->m_bdev != FDEV(bidx).bdev)
1597                         goto sync_out;
1598                 ofs++;
1599                 map->m_len++;
1600         } else {
1601                 goto sync_out;
1602         }
1603
1604 skip:
1605         dn.ofs_in_node++;
1606         pgofs++;
1607
1608         /* preallocate blocks in batch for one dnode page */
1609         if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1610                         (pgofs == end || dn.ofs_in_node == end_offset)) {
1611
1612                 dn.ofs_in_node = ofs_in_node;
1613                 err = f2fs_reserve_new_blocks(&dn, prealloc);
1614                 if (err)
1615                         goto sync_out;
1616
1617                 map->m_len += dn.ofs_in_node - ofs_in_node;
1618                 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1619                         err = -ENOSPC;
1620                         goto sync_out;
1621                 }
1622                 dn.ofs_in_node = end_offset;
1623         }
1624
1625         if (pgofs >= end)
1626                 goto sync_out;
1627         else if (dn.ofs_in_node < end_offset)
1628                 goto next_block;
1629
1630         if (flag == F2FS_GET_BLOCK_PRECACHE) {
1631                 if (map->m_flags & F2FS_MAP_MAPPED) {
1632                         unsigned int ofs = start_pgofs - map->m_lblk;
1633
1634                         f2fs_update_extent_cache_range(&dn,
1635                                 start_pgofs, map->m_pblk + ofs,
1636                                 map->m_len - ofs);
1637                 }
1638         }
1639
1640         f2fs_put_dnode(&dn);
1641
1642         if (map->m_may_create) {
1643                 f2fs_do_map_lock(sbi, flag, false);
1644                 f2fs_balance_fs(sbi, dn.node_changed);
1645         }
1646         goto next_dnode;
1647
1648 sync_out:
1649
1650         if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED) {
1651                 /*
1652                  * for hardware encryption, but to avoid potential issue
1653                  * in future
1654                  */
1655                 f2fs_wait_on_block_writeback_range(inode,
1656                                                 map->m_pblk, map->m_len);
1657                 invalidate_mapping_pages(META_MAPPING(sbi),
1658                                                 map->m_pblk, map->m_pblk);
1659
1660                 if (map->m_multidev_dio) {
1661                         block_t blk_addr = map->m_pblk;
1662
1663                         bidx = f2fs_target_device_index(sbi, map->m_pblk);
1664
1665                         map->m_bdev = FDEV(bidx).bdev;
1666                         map->m_pblk -= FDEV(bidx).start_blk;
1667
1668                         if (map->m_may_create)
1669                                 f2fs_update_device_state(sbi, inode->i_ino,
1670                                                         blk_addr, map->m_len);
1671
1672                         f2fs_bug_on(sbi, blk_addr + map->m_len >
1673                                                 FDEV(bidx).end_blk + 1);
1674                 }
1675         }
1676
1677         if (flag == F2FS_GET_BLOCK_PRECACHE) {
1678                 if (map->m_flags & F2FS_MAP_MAPPED) {
1679                         unsigned int ofs = start_pgofs - map->m_lblk;
1680
1681                         f2fs_update_extent_cache_range(&dn,
1682                                 start_pgofs, map->m_pblk + ofs,
1683                                 map->m_len - ofs);
1684                 }
1685                 if (map->m_next_extent)
1686                         *map->m_next_extent = pgofs + 1;
1687         }
1688         f2fs_put_dnode(&dn);
1689 unlock_out:
1690         if (map->m_may_create) {
1691                 f2fs_do_map_lock(sbi, flag, false);
1692                 f2fs_balance_fs(sbi, dn.node_changed);
1693         }
1694 out:
1695         trace_f2fs_map_blocks(inode, map, create, flag, err);
1696         return err;
1697 }
1698
1699 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1700 {
1701         struct f2fs_map_blocks map;
1702         block_t last_lblk;
1703         int err;
1704
1705         if (pos + len > i_size_read(inode))
1706                 return false;
1707
1708         map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1709         map.m_next_pgofs = NULL;
1710         map.m_next_extent = NULL;
1711         map.m_seg_type = NO_CHECK_TYPE;
1712         map.m_may_create = false;
1713         last_lblk = F2FS_BLK_ALIGN(pos + len);
1714
1715         while (map.m_lblk < last_lblk) {
1716                 map.m_len = last_lblk - map.m_lblk;
1717                 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
1718                 if (err || map.m_len == 0)
1719                         return false;
1720                 map.m_lblk += map.m_len;
1721         }
1722         return true;
1723 }
1724
1725 static inline u64 bytes_to_blks(struct inode *inode, u64 bytes)
1726 {
1727         return (bytes >> inode->i_blkbits);
1728 }
1729
1730 static inline u64 blks_to_bytes(struct inode *inode, u64 blks)
1731 {
1732         return (blks << inode->i_blkbits);
1733 }
1734
1735 static int f2fs_xattr_fiemap(struct inode *inode,
1736                                 struct fiemap_extent_info *fieinfo)
1737 {
1738         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1739         struct page *page;
1740         struct node_info ni;
1741         __u64 phys = 0, len;
1742         __u32 flags;
1743         nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1744         int err = 0;
1745
1746         if (f2fs_has_inline_xattr(inode)) {
1747                 int offset;
1748
1749                 page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1750                                                 inode->i_ino, false);
1751                 if (!page)
1752                         return -ENOMEM;
1753
1754                 err = f2fs_get_node_info(sbi, inode->i_ino, &ni, false);
1755                 if (err) {
1756                         f2fs_put_page(page, 1);
1757                         return err;
1758                 }
1759
1760                 phys = blks_to_bytes(inode, ni.blk_addr);
1761                 offset = offsetof(struct f2fs_inode, i_addr) +
1762                                         sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1763                                         get_inline_xattr_addrs(inode));
1764
1765                 phys += offset;
1766                 len = inline_xattr_size(inode);
1767
1768                 f2fs_put_page(page, 1);
1769
1770                 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1771
1772                 if (!xnid)
1773                         flags |= FIEMAP_EXTENT_LAST;
1774
1775                 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1776                 trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1777                 if (err || err == 1)
1778                         return err;
1779         }
1780
1781         if (xnid) {
1782                 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1783                 if (!page)
1784                         return -ENOMEM;
1785
1786                 err = f2fs_get_node_info(sbi, xnid, &ni, false);
1787                 if (err) {
1788                         f2fs_put_page(page, 1);
1789                         return err;
1790                 }
1791
1792                 phys = blks_to_bytes(inode, ni.blk_addr);
1793                 len = inode->i_sb->s_blocksize;
1794
1795                 f2fs_put_page(page, 1);
1796
1797                 flags = FIEMAP_EXTENT_LAST;
1798         }
1799
1800         if (phys) {
1801                 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1802                 trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1803         }
1804
1805         return (err < 0 ? err : 0);
1806 }
1807
1808 static loff_t max_inode_blocks(struct inode *inode)
1809 {
1810         loff_t result = ADDRS_PER_INODE(inode);
1811         loff_t leaf_count = ADDRS_PER_BLOCK(inode);
1812
1813         /* two direct node blocks */
1814         result += (leaf_count * 2);
1815
1816         /* two indirect node blocks */
1817         leaf_count *= NIDS_PER_BLOCK;
1818         result += (leaf_count * 2);
1819
1820         /* one double indirect node block */
1821         leaf_count *= NIDS_PER_BLOCK;
1822         result += leaf_count;
1823
1824         return result;
1825 }
1826
1827 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1828                 u64 start, u64 len)
1829 {
1830         struct f2fs_map_blocks map;
1831         sector_t start_blk, last_blk;
1832         pgoff_t next_pgofs;
1833         u64 logical = 0, phys = 0, size = 0;
1834         u32 flags = 0;
1835         int ret = 0;
1836         bool compr_cluster = false, compr_appended;
1837         unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
1838         unsigned int count_in_cluster = 0;
1839         loff_t maxbytes;
1840
1841         if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1842                 ret = f2fs_precache_extents(inode);
1843                 if (ret)
1844                         return ret;
1845         }
1846
1847         ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR);
1848         if (ret)
1849                 return ret;
1850
1851         inode_lock(inode);
1852
1853         maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
1854         if (start > maxbytes) {
1855                 ret = -EFBIG;
1856                 goto out;
1857         }
1858
1859         if (len > maxbytes || (maxbytes - len) < start)
1860                 len = maxbytes - start;
1861
1862         if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1863                 ret = f2fs_xattr_fiemap(inode, fieinfo);
1864                 goto out;
1865         }
1866
1867         if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
1868                 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1869                 if (ret != -EAGAIN)
1870                         goto out;
1871         }
1872
1873         if (bytes_to_blks(inode, len) == 0)
1874                 len = blks_to_bytes(inode, 1);
1875
1876         start_blk = bytes_to_blks(inode, start);
1877         last_blk = bytes_to_blks(inode, start + len - 1);
1878
1879 next:
1880         memset(&map, 0, sizeof(map));
1881         map.m_lblk = start_blk;
1882         map.m_len = bytes_to_blks(inode, len);
1883         map.m_next_pgofs = &next_pgofs;
1884         map.m_seg_type = NO_CHECK_TYPE;
1885
1886         if (compr_cluster) {
1887                 map.m_lblk += 1;
1888                 map.m_len = cluster_size - count_in_cluster;
1889         }
1890
1891         ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP);
1892         if (ret)
1893                 goto out;
1894
1895         /* HOLE */
1896         if (!compr_cluster && !(map.m_flags & F2FS_MAP_FLAGS)) {
1897                 start_blk = next_pgofs;
1898
1899                 if (blks_to_bytes(inode, start_blk) < blks_to_bytes(inode,
1900                                                 max_inode_blocks(inode)))
1901                         goto prep_next;
1902
1903                 flags |= FIEMAP_EXTENT_LAST;
1904         }
1905
1906         compr_appended = false;
1907         /* In a case of compressed cluster, append this to the last extent */
1908         if (compr_cluster && ((map.m_flags & F2FS_MAP_UNWRITTEN) ||
1909                         !(map.m_flags & F2FS_MAP_FLAGS))) {
1910                 compr_appended = true;
1911                 goto skip_fill;
1912         }
1913
1914         if (size) {
1915                 flags |= FIEMAP_EXTENT_MERGED;
1916                 if (IS_ENCRYPTED(inode))
1917                         flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1918
1919                 ret = fiemap_fill_next_extent(fieinfo, logical,
1920                                 phys, size, flags);
1921                 trace_f2fs_fiemap(inode, logical, phys, size, flags, ret);
1922                 if (ret)
1923                         goto out;
1924                 size = 0;
1925         }
1926
1927         if (start_blk > last_blk)
1928                 goto out;
1929
1930 skip_fill:
1931         if (map.m_pblk == COMPRESS_ADDR) {
1932                 compr_cluster = true;
1933                 count_in_cluster = 1;
1934         } else if (compr_appended) {
1935                 unsigned int appended_blks = cluster_size -
1936                                                 count_in_cluster + 1;
1937                 size += blks_to_bytes(inode, appended_blks);
1938                 start_blk += appended_blks;
1939                 compr_cluster = false;
1940         } else {
1941                 logical = blks_to_bytes(inode, start_blk);
1942                 phys = __is_valid_data_blkaddr(map.m_pblk) ?
1943                         blks_to_bytes(inode, map.m_pblk) : 0;
1944                 size = blks_to_bytes(inode, map.m_len);
1945                 flags = 0;
1946
1947                 if (compr_cluster) {
1948                         flags = FIEMAP_EXTENT_ENCODED;
1949                         count_in_cluster += map.m_len;
1950                         if (count_in_cluster == cluster_size) {
1951                                 compr_cluster = false;
1952                                 size += blks_to_bytes(inode, 1);
1953                         }
1954                 } else if (map.m_flags & F2FS_MAP_UNWRITTEN) {
1955                         flags = FIEMAP_EXTENT_UNWRITTEN;
1956                 }
1957
1958                 start_blk += bytes_to_blks(inode, size);
1959         }
1960
1961 prep_next:
1962         cond_resched();
1963         if (fatal_signal_pending(current))
1964                 ret = -EINTR;
1965         else
1966                 goto next;
1967 out:
1968         if (ret == 1)
1969                 ret = 0;
1970
1971         inode_unlock(inode);
1972         return ret;
1973 }
1974
1975 static inline loff_t f2fs_readpage_limit(struct inode *inode)
1976 {
1977         if (IS_ENABLED(CONFIG_FS_VERITY) &&
1978             (IS_VERITY(inode) || f2fs_verity_in_progress(inode)))
1979                 return inode->i_sb->s_maxbytes;
1980
1981         return i_size_read(inode);
1982 }
1983
1984 static int f2fs_read_single_page(struct inode *inode, struct page *page,
1985                                         unsigned nr_pages,
1986                                         struct f2fs_map_blocks *map,
1987                                         struct bio **bio_ret,
1988                                         sector_t *last_block_in_bio,
1989                                         bool is_readahead)
1990 {
1991         struct bio *bio = *bio_ret;
1992         const unsigned blocksize = blks_to_bytes(inode, 1);
1993         sector_t block_in_file;
1994         sector_t last_block;
1995         sector_t last_block_in_file;
1996         sector_t block_nr;
1997         int ret = 0;
1998
1999         block_in_file = (sector_t)page_index(page);
2000         last_block = block_in_file + nr_pages;
2001         last_block_in_file = bytes_to_blks(inode,
2002                         f2fs_readpage_limit(inode) + blocksize - 1);
2003         if (last_block > last_block_in_file)
2004                 last_block = last_block_in_file;
2005
2006         /* just zeroing out page which is beyond EOF */
2007         if (block_in_file >= last_block)
2008                 goto zero_out;
2009         /*
2010          * Map blocks using the previous result first.
2011          */
2012         if ((map->m_flags & F2FS_MAP_MAPPED) &&
2013                         block_in_file > map->m_lblk &&
2014                         block_in_file < (map->m_lblk + map->m_len))
2015                 goto got_it;
2016
2017         /*
2018          * Then do more f2fs_map_blocks() calls until we are
2019          * done with this page.
2020          */
2021         map->m_lblk = block_in_file;
2022         map->m_len = last_block - block_in_file;
2023
2024         ret = f2fs_map_blocks(inode, map, 0, F2FS_GET_BLOCK_DEFAULT);
2025         if (ret)
2026                 goto out;
2027 got_it:
2028         if ((map->m_flags & F2FS_MAP_MAPPED)) {
2029                 block_nr = map->m_pblk + block_in_file - map->m_lblk;
2030                 SetPageMappedToDisk(page);
2031
2032                 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
2033                                                 DATA_GENERIC_ENHANCE_READ)) {
2034                         ret = -EFSCORRUPTED;
2035                         goto out;
2036                 }
2037         } else {
2038 zero_out:
2039                 zero_user_segment(page, 0, PAGE_SIZE);
2040                 if (f2fs_need_verity(inode, page->index) &&
2041                     !fsverity_verify_page(page)) {
2042                         ret = -EIO;
2043                         goto out;
2044                 }
2045                 if (!PageUptodate(page))
2046                         SetPageUptodate(page);
2047                 unlock_page(page);
2048                 goto out;
2049         }
2050
2051         /*
2052          * This page will go to BIO.  Do we need to send this
2053          * BIO off first?
2054          */
2055         if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio,
2056                                        *last_block_in_bio, block_nr) ||
2057                     !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2058 submit_and_realloc:
2059                 __submit_bio(F2FS_I_SB(inode), bio, DATA);
2060                 bio = NULL;
2061         }
2062         if (bio == NULL) {
2063                 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
2064                                 is_readahead ? REQ_RAHEAD : 0, page->index,
2065                                 false);
2066                 if (IS_ERR(bio)) {
2067                         ret = PTR_ERR(bio);
2068                         bio = NULL;
2069                         goto out;
2070                 }
2071         }
2072
2073         /*
2074          * If the page is under writeback, we need to wait for
2075          * its completion to see the correct decrypted data.
2076          */
2077         f2fs_wait_on_block_writeback(inode, block_nr);
2078
2079         if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2080                 goto submit_and_realloc;
2081
2082         inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
2083         f2fs_update_iostat(F2FS_I_SB(inode), FS_DATA_READ_IO, F2FS_BLKSIZE);
2084         ClearPageError(page);
2085         *last_block_in_bio = block_nr;
2086         goto out;
2087 out:
2088         *bio_ret = bio;
2089         return ret;
2090 }
2091
2092 #ifdef CONFIG_F2FS_FS_COMPRESSION
2093 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
2094                                 unsigned nr_pages, sector_t *last_block_in_bio,
2095                                 bool is_readahead, bool for_write)
2096 {
2097         struct dnode_of_data dn;
2098         struct inode *inode = cc->inode;
2099         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2100         struct bio *bio = *bio_ret;
2101         unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size;
2102         sector_t last_block_in_file;
2103         const unsigned blocksize = blks_to_bytes(inode, 1);
2104         struct decompress_io_ctx *dic = NULL;
2105         struct extent_info ei = {0, };
2106         bool from_dnode = true;
2107         int i;
2108         int ret = 0;
2109
2110         f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc));
2111
2112         last_block_in_file = bytes_to_blks(inode,
2113                         f2fs_readpage_limit(inode) + blocksize - 1);
2114
2115         /* get rid of pages beyond EOF */
2116         for (i = 0; i < cc->cluster_size; i++) {
2117                 struct page *page = cc->rpages[i];
2118
2119                 if (!page)
2120                         continue;
2121                 if ((sector_t)page->index >= last_block_in_file) {
2122                         zero_user_segment(page, 0, PAGE_SIZE);
2123                         if (!PageUptodate(page))
2124                                 SetPageUptodate(page);
2125                 } else if (!PageUptodate(page)) {
2126                         continue;
2127                 }
2128                 unlock_page(page);
2129                 if (for_write)
2130                         put_page(page);
2131                 cc->rpages[i] = NULL;
2132                 cc->nr_rpages--;
2133         }
2134
2135         /* we are done since all pages are beyond EOF */
2136         if (f2fs_cluster_is_empty(cc))
2137                 goto out;
2138
2139         if (f2fs_lookup_extent_cache(inode, start_idx, &ei))
2140                 from_dnode = false;
2141
2142         if (!from_dnode)
2143                 goto skip_reading_dnode;
2144
2145         set_new_dnode(&dn, inode, NULL, NULL, 0);
2146         ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
2147         if (ret)
2148                 goto out;
2149
2150         f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR);
2151
2152 skip_reading_dnode:
2153         for (i = 1; i < cc->cluster_size; i++) {
2154                 block_t blkaddr;
2155
2156                 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2157                                         dn.ofs_in_node + i) :
2158                                         ei.blk + i - 1;
2159
2160                 if (!__is_valid_data_blkaddr(blkaddr))
2161                         break;
2162
2163                 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
2164                         ret = -EFAULT;
2165                         goto out_put_dnode;
2166                 }
2167                 cc->nr_cpages++;
2168
2169                 if (!from_dnode && i >= ei.c_len)
2170                         break;
2171         }
2172
2173         /* nothing to decompress */
2174         if (cc->nr_cpages == 0) {
2175                 ret = 0;
2176                 goto out_put_dnode;
2177         }
2178
2179         dic = f2fs_alloc_dic(cc);
2180         if (IS_ERR(dic)) {
2181                 ret = PTR_ERR(dic);
2182                 goto out_put_dnode;
2183         }
2184
2185         for (i = 0; i < cc->nr_cpages; i++) {
2186                 struct page *page = dic->cpages[i];
2187                 block_t blkaddr;
2188                 struct bio_post_read_ctx *ctx;
2189
2190                 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2191                                         dn.ofs_in_node + i + 1) :
2192                                         ei.blk + i;
2193
2194                 f2fs_wait_on_block_writeback(inode, blkaddr);
2195
2196                 if (f2fs_load_compressed_page(sbi, page, blkaddr)) {
2197                         if (atomic_dec_and_test(&dic->remaining_pages))
2198                                 f2fs_decompress_cluster(dic);
2199                         continue;
2200                 }
2201
2202                 if (bio && (!page_is_mergeable(sbi, bio,
2203                                         *last_block_in_bio, blkaddr) ||
2204                     !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2205 submit_and_realloc:
2206                         __submit_bio(sbi, bio, DATA);
2207                         bio = NULL;
2208                 }
2209
2210                 if (!bio) {
2211                         bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages,
2212                                         is_readahead ? REQ_RAHEAD : 0,
2213                                         page->index, for_write);
2214                         if (IS_ERR(bio)) {
2215                                 ret = PTR_ERR(bio);
2216                                 f2fs_decompress_end_io(dic, ret);
2217                                 f2fs_put_dnode(&dn);
2218                                 *bio_ret = NULL;
2219                                 return ret;
2220                         }
2221                 }
2222
2223                 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2224                         goto submit_and_realloc;
2225
2226                 ctx = get_post_read_ctx(bio);
2227                 ctx->enabled_steps |= STEP_DECOMPRESS;
2228                 refcount_inc(&dic->refcnt);
2229
2230                 inc_page_count(sbi, F2FS_RD_DATA);
2231                 f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE);
2232                 f2fs_update_iostat(sbi, FS_CDATA_READ_IO, F2FS_BLKSIZE);
2233                 ClearPageError(page);
2234                 *last_block_in_bio = blkaddr;
2235         }
2236
2237         if (from_dnode)
2238                 f2fs_put_dnode(&dn);
2239
2240         *bio_ret = bio;
2241         return 0;
2242
2243 out_put_dnode:
2244         if (from_dnode)
2245                 f2fs_put_dnode(&dn);
2246 out:
2247         for (i = 0; i < cc->cluster_size; i++) {
2248                 if (cc->rpages[i]) {
2249                         ClearPageUptodate(cc->rpages[i]);
2250                         ClearPageError(cc->rpages[i]);
2251                         unlock_page(cc->rpages[i]);
2252                 }
2253         }
2254         *bio_ret = bio;
2255         return ret;
2256 }
2257 #endif
2258
2259 /*
2260  * This function was originally taken from fs/mpage.c, and customized for f2fs.
2261  * Major change was from block_size == page_size in f2fs by default.
2262  */
2263 static int f2fs_mpage_readpages(struct inode *inode,
2264                 struct readahead_control *rac, struct page *page)
2265 {
2266         struct bio *bio = NULL;
2267         sector_t last_block_in_bio = 0;
2268         struct f2fs_map_blocks map;
2269 #ifdef CONFIG_F2FS_FS_COMPRESSION
2270         struct compress_ctx cc = {
2271                 .inode = inode,
2272                 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2273                 .cluster_size = F2FS_I(inode)->i_cluster_size,
2274                 .cluster_idx = NULL_CLUSTER,
2275                 .rpages = NULL,
2276                 .cpages = NULL,
2277                 .nr_rpages = 0,
2278                 .nr_cpages = 0,
2279         };
2280         pgoff_t nc_cluster_idx = NULL_CLUSTER;
2281 #endif
2282         unsigned nr_pages = rac ? readahead_count(rac) : 1;
2283         unsigned max_nr_pages = nr_pages;
2284         int ret = 0;
2285
2286         map.m_pblk = 0;
2287         map.m_lblk = 0;
2288         map.m_len = 0;
2289         map.m_flags = 0;
2290         map.m_next_pgofs = NULL;
2291         map.m_next_extent = NULL;
2292         map.m_seg_type = NO_CHECK_TYPE;
2293         map.m_may_create = false;
2294
2295         for (; nr_pages; nr_pages--) {
2296                 if (rac) {
2297                         page = readahead_page(rac);
2298                         prefetchw(&page->flags);
2299                 }
2300
2301 #ifdef CONFIG_F2FS_FS_COMPRESSION
2302                 if (f2fs_compressed_file(inode)) {
2303                         /* there are remained comressed pages, submit them */
2304                         if (!f2fs_cluster_can_merge_page(&cc, page->index)) {
2305                                 ret = f2fs_read_multi_pages(&cc, &bio,
2306                                                         max_nr_pages,
2307                                                         &last_block_in_bio,
2308                                                         rac != NULL, false);
2309                                 f2fs_destroy_compress_ctx(&cc, false);
2310                                 if (ret)
2311                                         goto set_error_page;
2312                         }
2313                         if (cc.cluster_idx == NULL_CLUSTER) {
2314                                 if (nc_cluster_idx ==
2315                                         page->index >> cc.log_cluster_size) {
2316                                         goto read_single_page;
2317                                 }
2318
2319                                 ret = f2fs_is_compressed_cluster(inode, page->index);
2320                                 if (ret < 0)
2321                                         goto set_error_page;
2322                                 else if (!ret) {
2323                                         nc_cluster_idx =
2324                                                 page->index >> cc.log_cluster_size;
2325                                         goto read_single_page;
2326                                 }
2327
2328                                 nc_cluster_idx = NULL_CLUSTER;
2329                         }
2330                         ret = f2fs_init_compress_ctx(&cc);
2331                         if (ret)
2332                                 goto set_error_page;
2333
2334                         f2fs_compress_ctx_add_page(&cc, page);
2335
2336                         goto next_page;
2337                 }
2338 read_single_page:
2339 #endif
2340
2341                 ret = f2fs_read_single_page(inode, page, max_nr_pages, &map,
2342                                         &bio, &last_block_in_bio, rac);
2343                 if (ret) {
2344 #ifdef CONFIG_F2FS_FS_COMPRESSION
2345 set_error_page:
2346 #endif
2347                         SetPageError(page);
2348                         zero_user_segment(page, 0, PAGE_SIZE);
2349                         unlock_page(page);
2350                 }
2351 #ifdef CONFIG_F2FS_FS_COMPRESSION
2352 next_page:
2353 #endif
2354                 if (rac)
2355                         put_page(page);
2356
2357 #ifdef CONFIG_F2FS_FS_COMPRESSION
2358                 if (f2fs_compressed_file(inode)) {
2359                         /* last page */
2360                         if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) {
2361                                 ret = f2fs_read_multi_pages(&cc, &bio,
2362                                                         max_nr_pages,
2363                                                         &last_block_in_bio,
2364                                                         rac != NULL, false);
2365                                 f2fs_destroy_compress_ctx(&cc, false);
2366                         }
2367                 }
2368 #endif
2369         }
2370         if (bio)
2371                 __submit_bio(F2FS_I_SB(inode), bio, DATA);
2372         return ret;
2373 }
2374
2375 static int f2fs_read_data_page(struct file *file, struct page *page)
2376 {
2377         struct inode *inode = page_file_mapping(page)->host;
2378         int ret = -EAGAIN;
2379
2380         trace_f2fs_readpage(page, DATA);
2381
2382         if (!f2fs_is_compress_backend_ready(inode)) {
2383                 unlock_page(page);
2384                 return -EOPNOTSUPP;
2385         }
2386
2387         /* If the file has inline data, try to read it directly */
2388         if (f2fs_has_inline_data(inode))
2389                 ret = f2fs_read_inline_data(inode, page);
2390         if (ret == -EAGAIN)
2391                 ret = f2fs_mpage_readpages(inode, NULL, page);
2392         return ret;
2393 }
2394
2395 static void f2fs_readahead(struct readahead_control *rac)
2396 {
2397         struct inode *inode = rac->mapping->host;
2398
2399         trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac));
2400
2401         if (!f2fs_is_compress_backend_ready(inode))
2402                 return;
2403
2404         /* If the file has inline data, skip readahead */
2405         if (f2fs_has_inline_data(inode))
2406                 return;
2407
2408         f2fs_mpage_readpages(inode, rac, NULL);
2409 }
2410
2411 int f2fs_encrypt_one_page(struct f2fs_io_info *fio)
2412 {
2413         struct inode *inode = fio->page->mapping->host;
2414         struct page *mpage, *page;
2415         gfp_t gfp_flags = GFP_NOFS;
2416
2417         if (!f2fs_encrypted_file(inode))
2418                 return 0;
2419
2420         page = fio->compressed_page ? fio->compressed_page : fio->page;
2421
2422         /* wait for GCed page writeback via META_MAPPING */
2423         f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
2424
2425         if (fscrypt_inode_uses_inline_crypto(inode))
2426                 return 0;
2427
2428 retry_encrypt:
2429         fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page,
2430                                         PAGE_SIZE, 0, gfp_flags);
2431         if (IS_ERR(fio->encrypted_page)) {
2432                 /* flush pending IOs and wait for a while in the ENOMEM case */
2433                 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
2434                         f2fs_flush_merged_writes(fio->sbi);
2435                         memalloc_retry_wait(GFP_NOFS);
2436                         gfp_flags |= __GFP_NOFAIL;
2437                         goto retry_encrypt;
2438                 }
2439                 return PTR_ERR(fio->encrypted_page);
2440         }
2441
2442         mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
2443         if (mpage) {
2444                 if (PageUptodate(mpage))
2445                         memcpy(page_address(mpage),
2446                                 page_address(fio->encrypted_page), PAGE_SIZE);
2447                 f2fs_put_page(mpage, 1);
2448         }
2449         return 0;
2450 }
2451
2452 static inline bool check_inplace_update_policy(struct inode *inode,
2453                                 struct f2fs_io_info *fio)
2454 {
2455         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2456         unsigned int policy = SM_I(sbi)->ipu_policy;
2457
2458         if (policy & (0x1 << F2FS_IPU_HONOR_OPU_WRITE) &&
2459                         is_inode_flag_set(inode, FI_OPU_WRITE))
2460                 return false;
2461         if (policy & (0x1 << F2FS_IPU_FORCE))
2462                 return true;
2463         if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi))
2464                 return true;
2465         if (policy & (0x1 << F2FS_IPU_UTIL) &&
2466                         utilization(sbi) > SM_I(sbi)->min_ipu_util)
2467                 return true;
2468         if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) &&
2469                         utilization(sbi) > SM_I(sbi)->min_ipu_util)
2470                 return true;
2471
2472         /*
2473          * IPU for rewrite async pages
2474          */
2475         if (policy & (0x1 << F2FS_IPU_ASYNC) &&
2476                         fio && fio->op == REQ_OP_WRITE &&
2477                         !(fio->op_flags & REQ_SYNC) &&
2478                         !IS_ENCRYPTED(inode))
2479                 return true;
2480
2481         /* this is only set during fdatasync */
2482         if (policy & (0x1 << F2FS_IPU_FSYNC) &&
2483                         is_inode_flag_set(inode, FI_NEED_IPU))
2484                 return true;
2485
2486         if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2487                         !f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2488                 return true;
2489
2490         return false;
2491 }
2492
2493 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
2494 {
2495         /* swap file is migrating in aligned write mode */
2496         if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2497                 return false;
2498
2499         if (f2fs_is_pinned_file(inode))
2500                 return true;
2501
2502         /* if this is cold file, we should overwrite to avoid fragmentation */
2503         if (file_is_cold(inode))
2504                 return true;
2505
2506         return check_inplace_update_policy(inode, fio);
2507 }
2508
2509 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
2510 {
2511         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2512
2513         /* The below cases were checked when setting it. */
2514         if (f2fs_is_pinned_file(inode))
2515                 return false;
2516         if (fio && is_sbi_flag_set(sbi, SBI_NEED_FSCK))
2517                 return true;
2518         if (f2fs_lfs_mode(sbi))
2519                 return true;
2520         if (S_ISDIR(inode->i_mode))
2521                 return true;
2522         if (IS_NOQUOTA(inode))
2523                 return true;
2524         if (f2fs_is_atomic_file(inode))
2525                 return true;
2526
2527         /* swap file is migrating in aligned write mode */
2528         if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2529                 return true;
2530
2531         if (is_inode_flag_set(inode, FI_OPU_WRITE))
2532                 return true;
2533
2534         if (fio) {
2535                 if (page_private_gcing(fio->page))
2536                         return true;
2537                 if (page_private_dummy(fio->page))
2538                         return true;
2539                 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2540                         f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2541                         return true;
2542         }
2543         return false;
2544 }
2545
2546 static inline bool need_inplace_update(struct f2fs_io_info *fio)
2547 {
2548         struct inode *inode = fio->page->mapping->host;
2549
2550         if (f2fs_should_update_outplace(inode, fio))
2551                 return false;
2552
2553         return f2fs_should_update_inplace(inode, fio);
2554 }
2555
2556 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
2557 {
2558         struct page *page = fio->page;
2559         struct inode *inode = page->mapping->host;
2560         struct dnode_of_data dn;
2561         struct extent_info ei = {0, };
2562         struct node_info ni;
2563         bool ipu_force = false;
2564         int err = 0;
2565
2566         set_new_dnode(&dn, inode, NULL, NULL, 0);
2567         if (need_inplace_update(fio) &&
2568                         f2fs_lookup_extent_cache(inode, page->index, &ei)) {
2569                 fio->old_blkaddr = ei.blk + page->index - ei.fofs;
2570
2571                 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2572                                                 DATA_GENERIC_ENHANCE))
2573                         return -EFSCORRUPTED;
2574
2575                 ipu_force = true;
2576                 fio->need_lock = LOCK_DONE;
2577                 goto got_it;
2578         }
2579
2580         /* Deadlock due to between page->lock and f2fs_lock_op */
2581         if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
2582                 return -EAGAIN;
2583
2584         err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
2585         if (err)
2586                 goto out;
2587
2588         fio->old_blkaddr = dn.data_blkaddr;
2589
2590         /* This page is already truncated */
2591         if (fio->old_blkaddr == NULL_ADDR) {
2592                 ClearPageUptodate(page);
2593                 clear_page_private_gcing(page);
2594                 goto out_writepage;
2595         }
2596 got_it:
2597         if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2598                 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2599                                                 DATA_GENERIC_ENHANCE)) {
2600                 err = -EFSCORRUPTED;
2601                 goto out_writepage;
2602         }
2603         /*
2604          * If current allocation needs SSR,
2605          * it had better in-place writes for updated data.
2606          */
2607         if (ipu_force ||
2608                 (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2609                                         need_inplace_update(fio))) {
2610                 err = f2fs_encrypt_one_page(fio);
2611                 if (err)
2612                         goto out_writepage;
2613
2614                 set_page_writeback(page);
2615                 ClearPageError(page);
2616                 f2fs_put_dnode(&dn);
2617                 if (fio->need_lock == LOCK_REQ)
2618                         f2fs_unlock_op(fio->sbi);
2619                 err = f2fs_inplace_write_data(fio);
2620                 if (err) {
2621                         if (fscrypt_inode_uses_fs_layer_crypto(inode))
2622                                 fscrypt_finalize_bounce_page(&fio->encrypted_page);
2623                         if (PageWriteback(page))
2624                                 end_page_writeback(page);
2625                 } else {
2626                         set_inode_flag(inode, FI_UPDATE_WRITE);
2627                 }
2628                 trace_f2fs_do_write_data_page(fio->page, IPU);
2629                 return err;
2630         }
2631
2632         if (fio->need_lock == LOCK_RETRY) {
2633                 if (!f2fs_trylock_op(fio->sbi)) {
2634                         err = -EAGAIN;
2635                         goto out_writepage;
2636                 }
2637                 fio->need_lock = LOCK_REQ;
2638         }
2639
2640         err = f2fs_get_node_info(fio->sbi, dn.nid, &ni, false);
2641         if (err)
2642                 goto out_writepage;
2643
2644         fio->version = ni.version;
2645
2646         err = f2fs_encrypt_one_page(fio);
2647         if (err)
2648                 goto out_writepage;
2649
2650         set_page_writeback(page);
2651         ClearPageError(page);
2652
2653         if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR)
2654                 f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false);
2655
2656         /* LFS mode write path */
2657         f2fs_outplace_write_data(&dn, fio);
2658         trace_f2fs_do_write_data_page(page, OPU);
2659         set_inode_flag(inode, FI_APPEND_WRITE);
2660         if (page->index == 0)
2661                 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
2662 out_writepage:
2663         f2fs_put_dnode(&dn);
2664 out:
2665         if (fio->need_lock == LOCK_REQ)
2666                 f2fs_unlock_op(fio->sbi);
2667         return err;
2668 }
2669
2670 int f2fs_write_single_data_page(struct page *page, int *submitted,
2671                                 struct bio **bio,
2672                                 sector_t *last_block,
2673                                 struct writeback_control *wbc,
2674                                 enum iostat_type io_type,
2675                                 int compr_blocks,
2676                                 bool allow_balance)
2677 {
2678         struct inode *inode = page->mapping->host;
2679         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2680         loff_t i_size = i_size_read(inode);
2681         const pgoff_t end_index = ((unsigned long long)i_size)
2682                                                         >> PAGE_SHIFT;
2683         loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT;
2684         unsigned offset = 0;
2685         bool need_balance_fs = false;
2686         int err = 0;
2687         struct f2fs_io_info fio = {
2688                 .sbi = sbi,
2689                 .ino = inode->i_ino,
2690                 .type = DATA,
2691                 .op = REQ_OP_WRITE,
2692                 .op_flags = wbc_to_write_flags(wbc),
2693                 .old_blkaddr = NULL_ADDR,
2694                 .page = page,
2695                 .encrypted_page = NULL,
2696                 .submitted = false,
2697                 .compr_blocks = compr_blocks,
2698                 .need_lock = LOCK_RETRY,
2699                 .io_type = io_type,
2700                 .io_wbc = wbc,
2701                 .bio = bio,
2702                 .last_block = last_block,
2703         };
2704
2705         trace_f2fs_writepage(page, DATA);
2706
2707         /* we should bypass data pages to proceed the kworkder jobs */
2708         if (unlikely(f2fs_cp_error(sbi))) {
2709                 mapping_set_error(page->mapping, -EIO);
2710                 /*
2711                  * don't drop any dirty dentry pages for keeping lastest
2712                  * directory structure.
2713                  */
2714                 if (S_ISDIR(inode->i_mode))
2715                         goto redirty_out;
2716                 goto out;
2717         }
2718
2719         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2720                 goto redirty_out;
2721
2722         if (page->index < end_index ||
2723                         f2fs_verity_in_progress(inode) ||
2724                         compr_blocks)
2725                 goto write;
2726
2727         /*
2728          * If the offset is out-of-range of file size,
2729          * this page does not have to be written to disk.
2730          */
2731         offset = i_size & (PAGE_SIZE - 1);
2732         if ((page->index >= end_index + 1) || !offset)
2733                 goto out;
2734
2735         zero_user_segment(page, offset, PAGE_SIZE);
2736 write:
2737         if (f2fs_is_drop_cache(inode))
2738                 goto out;
2739         /* we should not write 0'th page having journal header */
2740         if (f2fs_is_volatile_file(inode) && (!page->index ||
2741                         (!wbc->for_reclaim &&
2742                         f2fs_available_free_memory(sbi, BASE_CHECK))))
2743                 goto redirty_out;
2744
2745         /* Dentry/quota blocks are controlled by checkpoint */
2746         if (S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) {
2747                 /*
2748                  * We need to wait for node_write to avoid block allocation during
2749                  * checkpoint. This can only happen to quota writes which can cause
2750                  * the below discard race condition.
2751                  */
2752                 if (IS_NOQUOTA(inode))
2753                         f2fs_down_read(&sbi->node_write);
2754
2755                 fio.need_lock = LOCK_DONE;
2756                 err = f2fs_do_write_data_page(&fio);
2757
2758                 if (IS_NOQUOTA(inode))
2759                         f2fs_up_read(&sbi->node_write);
2760
2761                 goto done;
2762         }
2763
2764         if (!wbc->for_reclaim)
2765                 need_balance_fs = true;
2766         else if (has_not_enough_free_secs(sbi, 0, 0))
2767                 goto redirty_out;
2768         else
2769                 set_inode_flag(inode, FI_HOT_DATA);
2770
2771         err = -EAGAIN;
2772         if (f2fs_has_inline_data(inode)) {
2773                 err = f2fs_write_inline_data(inode, page);
2774                 if (!err)
2775                         goto out;
2776         }
2777
2778         if (err == -EAGAIN) {
2779                 err = f2fs_do_write_data_page(&fio);
2780                 if (err == -EAGAIN) {
2781                         fio.need_lock = LOCK_REQ;
2782                         err = f2fs_do_write_data_page(&fio);
2783                 }
2784         }
2785
2786         if (err) {
2787                 file_set_keep_isize(inode);
2788         } else {
2789                 spin_lock(&F2FS_I(inode)->i_size_lock);
2790                 if (F2FS_I(inode)->last_disk_size < psize)
2791                         F2FS_I(inode)->last_disk_size = psize;
2792                 spin_unlock(&F2FS_I(inode)->i_size_lock);
2793         }
2794
2795 done:
2796         if (err && err != -ENOENT)
2797                 goto redirty_out;
2798
2799 out:
2800         inode_dec_dirty_pages(inode);
2801         if (err) {
2802                 ClearPageUptodate(page);
2803                 clear_page_private_gcing(page);
2804         }
2805
2806         if (wbc->for_reclaim) {
2807                 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2808                 clear_inode_flag(inode, FI_HOT_DATA);
2809                 f2fs_remove_dirty_inode(inode);
2810                 submitted = NULL;
2811         }
2812         unlock_page(page);
2813         if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2814                         !F2FS_I(inode)->cp_task && allow_balance)
2815                 f2fs_balance_fs(sbi, need_balance_fs);
2816
2817         if (unlikely(f2fs_cp_error(sbi))) {
2818                 f2fs_submit_merged_write(sbi, DATA);
2819                 f2fs_submit_merged_ipu_write(sbi, bio, NULL);
2820                 submitted = NULL;
2821         }
2822
2823         if (submitted)
2824                 *submitted = fio.submitted ? 1 : 0;
2825
2826         return 0;
2827
2828 redirty_out:
2829         redirty_page_for_writepage(wbc, page);
2830         /*
2831          * pageout() in MM traslates EAGAIN, so calls handle_write_error()
2832          * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2833          * file_write_and_wait_range() will see EIO error, which is critical
2834          * to return value of fsync() followed by atomic_write failure to user.
2835          */
2836         if (!err || wbc->for_reclaim)
2837                 return AOP_WRITEPAGE_ACTIVATE;
2838         unlock_page(page);
2839         return err;
2840 }
2841
2842 static int f2fs_write_data_page(struct page *page,
2843                                         struct writeback_control *wbc)
2844 {
2845 #ifdef CONFIG_F2FS_FS_COMPRESSION
2846         struct inode *inode = page->mapping->host;
2847
2848         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
2849                 goto out;
2850
2851         if (f2fs_compressed_file(inode)) {
2852                 if (f2fs_is_compressed_cluster(inode, page->index)) {
2853                         redirty_page_for_writepage(wbc, page);
2854                         return AOP_WRITEPAGE_ACTIVATE;
2855                 }
2856         }
2857 out:
2858 #endif
2859
2860         return f2fs_write_single_data_page(page, NULL, NULL, NULL,
2861                                                 wbc, FS_DATA_IO, 0, true);
2862 }
2863
2864 /*
2865  * This function was copied from write_cche_pages from mm/page-writeback.c.
2866  * The major change is making write step of cold data page separately from
2867  * warm/hot data page.
2868  */
2869 static int f2fs_write_cache_pages(struct address_space *mapping,
2870                                         struct writeback_control *wbc,
2871                                         enum iostat_type io_type)
2872 {
2873         int ret = 0;
2874         int done = 0, retry = 0;
2875         struct pagevec pvec;
2876         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2877         struct bio *bio = NULL;
2878         sector_t last_block;
2879 #ifdef CONFIG_F2FS_FS_COMPRESSION
2880         struct inode *inode = mapping->host;
2881         struct compress_ctx cc = {
2882                 .inode = inode,
2883                 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2884                 .cluster_size = F2FS_I(inode)->i_cluster_size,
2885                 .cluster_idx = NULL_CLUSTER,
2886                 .rpages = NULL,
2887                 .nr_rpages = 0,
2888                 .cpages = NULL,
2889                 .valid_nr_cpages = 0,
2890                 .rbuf = NULL,
2891                 .cbuf = NULL,
2892                 .rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size,
2893                 .private = NULL,
2894         };
2895 #endif
2896         int nr_pages;
2897         pgoff_t index;
2898         pgoff_t end;            /* Inclusive */
2899         pgoff_t done_index;
2900         int range_whole = 0;
2901         xa_mark_t tag;
2902         int nwritten = 0;
2903         int submitted = 0;
2904         int i;
2905
2906         pagevec_init(&pvec);
2907
2908         if (get_dirty_pages(mapping->host) <=
2909                                 SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
2910                 set_inode_flag(mapping->host, FI_HOT_DATA);
2911         else
2912                 clear_inode_flag(mapping->host, FI_HOT_DATA);
2913
2914         if (wbc->range_cyclic) {
2915                 index = mapping->writeback_index; /* prev offset */
2916                 end = -1;
2917         } else {
2918                 index = wbc->range_start >> PAGE_SHIFT;
2919                 end = wbc->range_end >> PAGE_SHIFT;
2920                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2921                         range_whole = 1;
2922         }
2923         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2924                 tag = PAGECACHE_TAG_TOWRITE;
2925         else
2926                 tag = PAGECACHE_TAG_DIRTY;
2927 retry:
2928         retry = 0;
2929         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2930                 tag_pages_for_writeback(mapping, index, end);
2931         done_index = index;
2932         while (!done && !retry && (index <= end)) {
2933                 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2934                                 tag);
2935                 if (nr_pages == 0)
2936                         break;
2937
2938                 for (i = 0; i < nr_pages; i++) {
2939                         struct page *page = pvec.pages[i];
2940                         bool need_readd;
2941 readd:
2942                         need_readd = false;
2943 #ifdef CONFIG_F2FS_FS_COMPRESSION
2944                         if (f2fs_compressed_file(inode)) {
2945                                 void *fsdata = NULL;
2946                                 struct page *pagep;
2947                                 int ret2;
2948
2949                                 ret = f2fs_init_compress_ctx(&cc);
2950                                 if (ret) {
2951                                         done = 1;
2952                                         break;
2953                                 }
2954
2955                                 if (!f2fs_cluster_can_merge_page(&cc,
2956                                                                 page->index)) {
2957                                         ret = f2fs_write_multi_pages(&cc,
2958                                                 &submitted, wbc, io_type);
2959                                         if (!ret)
2960                                                 need_readd = true;
2961                                         goto result;
2962                                 }
2963
2964                                 if (unlikely(f2fs_cp_error(sbi)))
2965                                         goto lock_page;
2966
2967                                 if (!f2fs_cluster_is_empty(&cc))
2968                                         goto lock_page;
2969
2970                                 ret2 = f2fs_prepare_compress_overwrite(
2971                                                         inode, &pagep,
2972                                                         page->index, &fsdata);
2973                                 if (ret2 < 0) {
2974                                         ret = ret2;
2975                                         done = 1;
2976                                         break;
2977                                 } else if (ret2 &&
2978                                         (!f2fs_compress_write_end(inode,
2979                                                 fsdata, page->index, 1) ||
2980                                          !f2fs_all_cluster_page_loaded(&cc,
2981                                                 &pvec, i, nr_pages))) {
2982                                         retry = 1;
2983                                         break;
2984                                 }
2985                         }
2986 #endif
2987                         /* give a priority to WB_SYNC threads */
2988                         if (atomic_read(&sbi->wb_sync_req[DATA]) &&
2989                                         wbc->sync_mode == WB_SYNC_NONE) {
2990                                 done = 1;
2991                                 break;
2992                         }
2993 #ifdef CONFIG_F2FS_FS_COMPRESSION
2994 lock_page:
2995 #endif
2996                         done_index = page->index;
2997 retry_write:
2998                         lock_page(page);
2999
3000                         if (unlikely(page->mapping != mapping)) {
3001 continue_unlock:
3002                                 unlock_page(page);
3003                                 continue;
3004                         }
3005
3006                         if (!PageDirty(page)) {
3007                                 /* someone wrote it for us */
3008                                 goto continue_unlock;
3009                         }
3010
3011                         if (PageWriteback(page)) {
3012                                 if (wbc->sync_mode != WB_SYNC_NONE)
3013                                         f2fs_wait_on_page_writeback(page,
3014                                                         DATA, true, true);
3015                                 else
3016                                         goto continue_unlock;
3017                         }
3018
3019                         if (!clear_page_dirty_for_io(page))
3020                                 goto continue_unlock;
3021
3022 #ifdef CONFIG_F2FS_FS_COMPRESSION
3023                         if (f2fs_compressed_file(inode)) {
3024                                 get_page(page);
3025                                 f2fs_compress_ctx_add_page(&cc, page);
3026                                 continue;
3027                         }
3028 #endif
3029                         ret = f2fs_write_single_data_page(page, &submitted,
3030                                         &bio, &last_block, wbc, io_type,
3031                                         0, true);
3032                         if (ret == AOP_WRITEPAGE_ACTIVATE)
3033                                 unlock_page(page);
3034 #ifdef CONFIG_F2FS_FS_COMPRESSION
3035 result:
3036 #endif
3037                         nwritten += submitted;
3038                         wbc->nr_to_write -= submitted;
3039
3040                         if (unlikely(ret)) {
3041                                 /*
3042                                  * keep nr_to_write, since vfs uses this to
3043                                  * get # of written pages.
3044                                  */
3045                                 if (ret == AOP_WRITEPAGE_ACTIVATE) {
3046                                         ret = 0;
3047                                         goto next;
3048                                 } else if (ret == -EAGAIN) {
3049                                         ret = 0;
3050                                         if (wbc->sync_mode == WB_SYNC_ALL) {
3051                                                 f2fs_io_schedule_timeout(
3052                                                         DEFAULT_IO_TIMEOUT);
3053                                                 goto retry_write;
3054                                         }
3055                                         goto next;
3056                                 }
3057                                 done_index = page->index + 1;
3058                                 done = 1;
3059                                 break;
3060                         }
3061
3062                         if (wbc->nr_to_write <= 0 &&
3063                                         wbc->sync_mode == WB_SYNC_NONE) {
3064                                 done = 1;
3065                                 break;
3066                         }
3067 next:
3068                         if (need_readd)
3069                                 goto readd;
3070                 }
3071                 pagevec_release(&pvec);
3072                 cond_resched();
3073         }
3074 #ifdef CONFIG_F2FS_FS_COMPRESSION
3075         /* flush remained pages in compress cluster */
3076         if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) {
3077                 ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type);
3078                 nwritten += submitted;
3079                 wbc->nr_to_write -= submitted;
3080                 if (ret) {
3081                         done = 1;
3082                         retry = 0;
3083                 }
3084         }
3085         if (f2fs_compressed_file(inode))
3086                 f2fs_destroy_compress_ctx(&cc, false);
3087 #endif
3088         if (retry) {
3089                 index = 0;
3090                 end = -1;
3091                 goto retry;
3092         }
3093         if (wbc->range_cyclic && !done)
3094                 done_index = 0;
3095         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3096                 mapping->writeback_index = done_index;
3097
3098         if (nwritten)
3099                 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
3100                                                                 NULL, 0, DATA);
3101         /* submit cached bio of IPU write */
3102         if (bio)
3103                 f2fs_submit_merged_ipu_write(sbi, &bio, NULL);
3104
3105         return ret;
3106 }
3107
3108 static inline bool __should_serialize_io(struct inode *inode,
3109                                         struct writeback_control *wbc)
3110 {
3111         /* to avoid deadlock in path of data flush */
3112         if (F2FS_I(inode)->cp_task)
3113                 return false;
3114
3115         if (!S_ISREG(inode->i_mode))
3116                 return false;
3117         if (IS_NOQUOTA(inode))
3118                 return false;
3119
3120         if (f2fs_need_compress_data(inode))
3121                 return true;
3122         if (wbc->sync_mode != WB_SYNC_ALL)
3123                 return true;
3124         if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
3125                 return true;
3126         return false;
3127 }
3128
3129 static int __f2fs_write_data_pages(struct address_space *mapping,
3130                                                 struct writeback_control *wbc,
3131                                                 enum iostat_type io_type)
3132 {
3133         struct inode *inode = mapping->host;
3134         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3135         struct blk_plug plug;
3136         int ret;
3137         bool locked = false;
3138
3139         /* deal with chardevs and other special file */
3140         if (!mapping->a_ops->writepage)
3141                 return 0;
3142
3143         /* skip writing if there is no dirty page in this inode */
3144         if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
3145                 return 0;
3146
3147         /* during POR, we don't need to trigger writepage at all. */
3148         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
3149                 goto skip_write;
3150
3151         if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
3152                         wbc->sync_mode == WB_SYNC_NONE &&
3153                         get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
3154                         f2fs_available_free_memory(sbi, DIRTY_DENTS))
3155                 goto skip_write;
3156
3157         /* skip writing in file defragment preparing stage */
3158         if (is_inode_flag_set(inode, FI_SKIP_WRITES))
3159                 goto skip_write;
3160
3161         trace_f2fs_writepages(mapping->host, wbc, DATA);
3162
3163         /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
3164         if (wbc->sync_mode == WB_SYNC_ALL)
3165                 atomic_inc(&sbi->wb_sync_req[DATA]);
3166         else if (atomic_read(&sbi->wb_sync_req[DATA])) {
3167                 /* to avoid potential deadlock */
3168                 if (current->plug)
3169                         blk_finish_plug(current->plug);
3170                 goto skip_write;
3171         }
3172
3173         if (__should_serialize_io(inode, wbc)) {
3174                 mutex_lock(&sbi->writepages);
3175                 locked = true;
3176         }
3177
3178         blk_start_plug(&plug);
3179         ret = f2fs_write_cache_pages(mapping, wbc, io_type);
3180         blk_finish_plug(&plug);
3181
3182         if (locked)
3183                 mutex_unlock(&sbi->writepages);
3184
3185         if (wbc->sync_mode == WB_SYNC_ALL)
3186                 atomic_dec(&sbi->wb_sync_req[DATA]);
3187         /*
3188          * if some pages were truncated, we cannot guarantee its mapping->host
3189          * to detect pending bios.
3190          */
3191
3192         f2fs_remove_dirty_inode(inode);
3193         return ret;
3194
3195 skip_write:
3196         wbc->pages_skipped += get_dirty_pages(inode);
3197         trace_f2fs_writepages(mapping->host, wbc, DATA);
3198         return 0;
3199 }
3200
3201 static int f2fs_write_data_pages(struct address_space *mapping,
3202                             struct writeback_control *wbc)
3203 {
3204         struct inode *inode = mapping->host;
3205
3206         return __f2fs_write_data_pages(mapping, wbc,
3207                         F2FS_I(inode)->cp_task == current ?
3208                         FS_CP_DATA_IO : FS_DATA_IO);
3209 }
3210
3211 void f2fs_write_failed(struct inode *inode, loff_t to)
3212 {
3213         loff_t i_size = i_size_read(inode);
3214
3215         if (IS_NOQUOTA(inode))
3216                 return;
3217
3218         /* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
3219         if (to > i_size && !f2fs_verity_in_progress(inode)) {
3220                 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3221                 filemap_invalidate_lock(inode->i_mapping);
3222
3223                 truncate_pagecache(inode, i_size);
3224                 f2fs_truncate_blocks(inode, i_size, true);
3225
3226                 filemap_invalidate_unlock(inode->i_mapping);
3227                 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3228         }
3229 }
3230
3231 static int prepare_write_begin(struct f2fs_sb_info *sbi,
3232                         struct page *page, loff_t pos, unsigned len,
3233                         block_t *blk_addr, bool *node_changed)
3234 {
3235         struct inode *inode = page->mapping->host;
3236         pgoff_t index = page->index;
3237         struct dnode_of_data dn;
3238         struct page *ipage;
3239         bool locked = false;
3240         struct extent_info ei = {0, };
3241         int err = 0;
3242         int flag;
3243
3244         /*
3245          * If a whole page is being written and we already preallocated all the
3246          * blocks, then there is no need to get a block address now.
3247          */
3248         if (len == PAGE_SIZE && is_inode_flag_set(inode, FI_PREALLOCATED_ALL))
3249                 return 0;
3250
3251         /* f2fs_lock_op avoids race between write CP and convert_inline_page */
3252         if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode))
3253                 flag = F2FS_GET_BLOCK_DEFAULT;
3254         else
3255                 flag = F2FS_GET_BLOCK_PRE_AIO;
3256
3257         if (f2fs_has_inline_data(inode) ||
3258                         (pos & PAGE_MASK) >= i_size_read(inode)) {
3259                 f2fs_do_map_lock(sbi, flag, true);
3260                 locked = true;
3261         }
3262
3263 restart:
3264         /* check inline_data */
3265         ipage = f2fs_get_node_page(sbi, inode->i_ino);
3266         if (IS_ERR(ipage)) {
3267                 err = PTR_ERR(ipage);
3268                 goto unlock_out;
3269         }
3270
3271         set_new_dnode(&dn, inode, ipage, ipage, 0);
3272
3273         if (f2fs_has_inline_data(inode)) {
3274                 if (pos + len <= MAX_INLINE_DATA(inode)) {
3275                         f2fs_do_read_inline_data(page, ipage);
3276                         set_inode_flag(inode, FI_DATA_EXIST);
3277                         if (inode->i_nlink)
3278                                 set_page_private_inline(ipage);
3279                 } else {
3280                         err = f2fs_convert_inline_page(&dn, page);
3281                         if (err)
3282                                 goto out;
3283                         if (dn.data_blkaddr == NULL_ADDR)
3284                                 err = f2fs_get_block(&dn, index);
3285                 }
3286         } else if (locked) {
3287                 err = f2fs_get_block(&dn, index);
3288         } else {
3289                 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
3290                         dn.data_blkaddr = ei.blk + index - ei.fofs;
3291                 } else {
3292                         /* hole case */
3293                         err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3294                         if (err || dn.data_blkaddr == NULL_ADDR) {
3295                                 f2fs_put_dnode(&dn);
3296                                 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO,
3297                                                                 true);
3298                                 WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
3299                                 locked = true;
3300                                 goto restart;
3301                         }
3302                 }
3303         }
3304
3305         /* convert_inline_page can make node_changed */
3306         *blk_addr = dn.data_blkaddr;
3307         *node_changed = dn.node_changed;
3308 out:
3309         f2fs_put_dnode(&dn);
3310 unlock_out:
3311         if (locked)
3312                 f2fs_do_map_lock(sbi, flag, false);
3313         return err;
3314 }
3315
3316 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
3317                 loff_t pos, unsigned len, unsigned flags,
3318                 struct page **pagep, void **fsdata)
3319 {
3320         struct inode *inode = mapping->host;
3321         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3322         struct page *page = NULL;
3323         pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
3324         bool need_balance = false, drop_atomic = false;
3325         block_t blkaddr = NULL_ADDR;
3326         int err = 0;
3327
3328         trace_f2fs_write_begin(inode, pos, len, flags);
3329
3330         if (!f2fs_is_checkpoint_ready(sbi)) {
3331                 err = -ENOSPC;
3332                 goto fail;
3333         }
3334
3335         if ((f2fs_is_atomic_file(inode) &&
3336                         !f2fs_available_free_memory(sbi, INMEM_PAGES)) ||
3337                         is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
3338                 err = -ENOMEM;
3339                 drop_atomic = true;
3340                 goto fail;
3341         }
3342
3343         /*
3344          * We should check this at this moment to avoid deadlock on inode page
3345          * and #0 page. The locking rule for inline_data conversion should be:
3346          * lock_page(page #0) -> lock_page(inode_page)
3347          */
3348         if (index != 0) {
3349                 err = f2fs_convert_inline_inode(inode);
3350                 if (err)
3351                         goto fail;
3352         }
3353
3354 #ifdef CONFIG_F2FS_FS_COMPRESSION
3355         if (f2fs_compressed_file(inode)) {
3356                 int ret;
3357
3358                 *fsdata = NULL;
3359
3360                 if (len == PAGE_SIZE && !(f2fs_is_atomic_file(inode)))
3361                         goto repeat;
3362
3363                 ret = f2fs_prepare_compress_overwrite(inode, pagep,
3364                                                         index, fsdata);
3365                 if (ret < 0) {
3366                         err = ret;
3367                         goto fail;
3368                 } else if (ret) {
3369                         return 0;
3370                 }
3371         }
3372 #endif
3373
3374 repeat:
3375         /*
3376          * Do not use grab_cache_page_write_begin() to avoid deadlock due to
3377          * wait_for_stable_page. Will wait that below with our IO control.
3378          */
3379         page = f2fs_pagecache_get_page(mapping, index,
3380                                 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
3381         if (!page) {
3382                 err = -ENOMEM;
3383                 goto fail;
3384         }
3385
3386         /* TODO: cluster can be compressed due to race with .writepage */
3387
3388         *pagep = page;
3389
3390         err = prepare_write_begin(sbi, page, pos, len,
3391                                         &blkaddr, &need_balance);
3392         if (err)
3393                 goto fail;
3394
3395         if (need_balance && !IS_NOQUOTA(inode) &&
3396                         has_not_enough_free_secs(sbi, 0, 0)) {
3397                 unlock_page(page);
3398                 f2fs_balance_fs(sbi, true);
3399                 lock_page(page);
3400                 if (page->mapping != mapping) {
3401                         /* The page got truncated from under us */
3402                         f2fs_put_page(page, 1);
3403                         goto repeat;
3404                 }
3405         }
3406
3407         f2fs_wait_on_page_writeback(page, DATA, false, true);
3408
3409         if (len == PAGE_SIZE || PageUptodate(page))
3410                 return 0;
3411
3412         if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) &&
3413             !f2fs_verity_in_progress(inode)) {
3414                 zero_user_segment(page, len, PAGE_SIZE);
3415                 return 0;
3416         }
3417
3418         if (blkaddr == NEW_ADDR) {
3419                 zero_user_segment(page, 0, PAGE_SIZE);
3420                 SetPageUptodate(page);
3421         } else {
3422                 if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3423                                 DATA_GENERIC_ENHANCE_READ)) {
3424                         err = -EFSCORRUPTED;
3425                         goto fail;
3426                 }
3427                 err = f2fs_submit_page_read(inode, page, blkaddr, 0, true);
3428                 if (err)
3429                         goto fail;
3430
3431                 lock_page(page);
3432                 if (unlikely(page->mapping != mapping)) {
3433                         f2fs_put_page(page, 1);
3434                         goto repeat;
3435                 }
3436                 if (unlikely(!PageUptodate(page))) {
3437                         err = -EIO;
3438                         goto fail;
3439                 }
3440         }
3441         return 0;
3442
3443 fail:
3444         f2fs_put_page(page, 1);
3445         f2fs_write_failed(inode, pos + len);
3446         if (drop_atomic)
3447                 f2fs_drop_inmem_pages_all(sbi, false);
3448         return err;
3449 }
3450
3451 static int f2fs_write_end(struct file *file,
3452                         struct address_space *mapping,
3453                         loff_t pos, unsigned len, unsigned copied,
3454                         struct page *page, void *fsdata)
3455 {
3456         struct inode *inode = page->mapping->host;
3457
3458         trace_f2fs_write_end(inode, pos, len, copied);
3459
3460         /*
3461          * This should be come from len == PAGE_SIZE, and we expect copied
3462          * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
3463          * let generic_perform_write() try to copy data again through copied=0.
3464          */
3465         if (!PageUptodate(page)) {
3466                 if (unlikely(copied != len))
3467                         copied = 0;
3468                 else
3469                         SetPageUptodate(page);
3470         }
3471
3472 #ifdef CONFIG_F2FS_FS_COMPRESSION
3473         /* overwrite compressed file */
3474         if (f2fs_compressed_file(inode) && fsdata) {
3475                 f2fs_compress_write_end(inode, fsdata, page->index, copied);
3476                 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3477
3478                 if (pos + copied > i_size_read(inode) &&
3479                                 !f2fs_verity_in_progress(inode))
3480                         f2fs_i_size_write(inode, pos + copied);
3481                 return copied;
3482         }
3483 #endif
3484
3485         if (!copied)
3486                 goto unlock_out;
3487
3488         set_page_dirty(page);
3489
3490         if (pos + copied > i_size_read(inode) &&
3491             !f2fs_verity_in_progress(inode))
3492                 f2fs_i_size_write(inode, pos + copied);
3493 unlock_out:
3494         f2fs_put_page(page, 1);
3495         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3496         return copied;
3497 }
3498
3499 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length)
3500 {
3501         struct inode *inode = folio->mapping->host;
3502         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3503
3504         if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
3505                                 (offset || length != folio_size(folio)))
3506                 return;
3507
3508         if (folio_test_dirty(folio)) {
3509                 if (inode->i_ino == F2FS_META_INO(sbi)) {
3510                         dec_page_count(sbi, F2FS_DIRTY_META);
3511                 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
3512                         dec_page_count(sbi, F2FS_DIRTY_NODES);
3513                 } else {
3514                         inode_dec_dirty_pages(inode);
3515                         f2fs_remove_dirty_inode(inode);
3516                 }
3517         }
3518
3519         clear_page_private_gcing(&folio->page);
3520
3521         if (test_opt(sbi, COMPRESS_CACHE) &&
3522                         inode->i_ino == F2FS_COMPRESS_INO(sbi))
3523                 clear_page_private_data(&folio->page);
3524
3525         if (page_private_atomic(&folio->page))
3526                 return f2fs_drop_inmem_page(inode, &folio->page);
3527
3528         folio_detach_private(folio);
3529 }
3530
3531 int f2fs_release_page(struct page *page, gfp_t wait)
3532 {
3533         /* If this is dirty page, keep PagePrivate */
3534         if (PageDirty(page))
3535                 return 0;
3536
3537         /* This is atomic written page, keep Private */
3538         if (page_private_atomic(page))
3539                 return 0;
3540
3541         if (test_opt(F2FS_P_SB(page), COMPRESS_CACHE)) {
3542                 struct inode *inode = page->mapping->host;
3543
3544                 if (inode->i_ino == F2FS_COMPRESS_INO(F2FS_I_SB(inode)))
3545                         clear_page_private_data(page);
3546         }
3547
3548         clear_page_private_gcing(page);
3549
3550         detach_page_private(page);
3551         set_page_private(page, 0);
3552         return 1;
3553 }
3554
3555 static bool f2fs_dirty_data_folio(struct address_space *mapping,
3556                 struct folio *folio)
3557 {
3558         struct inode *inode = mapping->host;
3559
3560         trace_f2fs_set_page_dirty(&folio->page, DATA);
3561
3562         if (!folio_test_uptodate(folio))
3563                 folio_mark_uptodate(folio);
3564         BUG_ON(folio_test_swapcache(folio));
3565
3566         if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) {
3567                 if (!page_private_atomic(&folio->page)) {
3568                         f2fs_register_inmem_page(inode, &folio->page);
3569                         return true;
3570                 }
3571                 /*
3572                  * Previously, this page has been registered, we just
3573                  * return here.
3574                  */
3575                 return false;
3576         }
3577
3578         if (!folio_test_dirty(folio)) {
3579                 filemap_dirty_folio(mapping, folio);
3580                 f2fs_update_dirty_folio(inode, folio);
3581                 return true;
3582         }
3583         return false;
3584 }
3585
3586
3587 static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block)
3588 {
3589 #ifdef CONFIG_F2FS_FS_COMPRESSION
3590         struct dnode_of_data dn;
3591         sector_t start_idx, blknr = 0;
3592         int ret;
3593
3594         start_idx = round_down(block, F2FS_I(inode)->i_cluster_size);
3595
3596         set_new_dnode(&dn, inode, NULL, NULL, 0);
3597         ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
3598         if (ret)
3599                 return 0;
3600
3601         if (dn.data_blkaddr != COMPRESS_ADDR) {
3602                 dn.ofs_in_node += block - start_idx;
3603                 blknr = f2fs_data_blkaddr(&dn);
3604                 if (!__is_valid_data_blkaddr(blknr))
3605                         blknr = 0;
3606         }
3607
3608         f2fs_put_dnode(&dn);
3609         return blknr;
3610 #else
3611         return 0;
3612 #endif
3613 }
3614
3615
3616 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
3617 {
3618         struct inode *inode = mapping->host;
3619         sector_t blknr = 0;
3620
3621         if (f2fs_has_inline_data(inode))
3622                 goto out;
3623
3624         /* make sure allocating whole blocks */
3625         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
3626                 filemap_write_and_wait(mapping);
3627
3628         /* Block number less than F2FS MAX BLOCKS */
3629         if (unlikely(block >= max_file_blocks(inode)))
3630                 goto out;
3631
3632         if (f2fs_compressed_file(inode)) {
3633                 blknr = f2fs_bmap_compress(inode, block);
3634         } else {
3635                 struct f2fs_map_blocks map;
3636
3637                 memset(&map, 0, sizeof(map));
3638                 map.m_lblk = block;
3639                 map.m_len = 1;
3640                 map.m_next_pgofs = NULL;
3641                 map.m_seg_type = NO_CHECK_TYPE;
3642
3643                 if (!f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_BMAP))
3644                         blknr = map.m_pblk;
3645         }
3646 out:
3647         trace_f2fs_bmap(inode, block, blknr);
3648         return blknr;
3649 }
3650
3651 #ifdef CONFIG_MIGRATION
3652 #include <linux/migrate.h>
3653
3654 int f2fs_migrate_page(struct address_space *mapping,
3655                 struct page *newpage, struct page *page, enum migrate_mode mode)
3656 {
3657         int rc, extra_count;
3658         struct f2fs_inode_info *fi = F2FS_I(mapping->host);
3659         bool atomic_written = page_private_atomic(page);
3660
3661         BUG_ON(PageWriteback(page));
3662
3663         /* migrating an atomic written page is safe with the inmem_lock hold */
3664         if (atomic_written) {
3665                 if (mode != MIGRATE_SYNC)
3666                         return -EBUSY;
3667                 if (!mutex_trylock(&fi->inmem_lock))
3668                         return -EAGAIN;
3669         }
3670
3671         /* one extra reference was held for atomic_write page */
3672         extra_count = atomic_written ? 1 : 0;
3673         rc = migrate_page_move_mapping(mapping, newpage,
3674                                 page, extra_count);
3675         if (rc != MIGRATEPAGE_SUCCESS) {
3676                 if (atomic_written)
3677                         mutex_unlock(&fi->inmem_lock);
3678                 return rc;
3679         }
3680
3681         if (atomic_written) {
3682                 struct inmem_pages *cur;
3683
3684                 list_for_each_entry(cur, &fi->inmem_pages, list)
3685                         if (cur->page == page) {
3686                                 cur->page = newpage;
3687                                 break;
3688                         }
3689                 mutex_unlock(&fi->inmem_lock);
3690                 put_page(page);
3691                 get_page(newpage);
3692         }
3693
3694         /* guarantee to start from no stale private field */
3695         set_page_private(newpage, 0);
3696         if (PagePrivate(page)) {
3697                 set_page_private(newpage, page_private(page));
3698                 SetPagePrivate(newpage);
3699                 get_page(newpage);
3700
3701                 set_page_private(page, 0);
3702                 ClearPagePrivate(page);
3703                 put_page(page);
3704         }
3705
3706         if (mode != MIGRATE_SYNC_NO_COPY)
3707                 migrate_page_copy(newpage, page);
3708         else
3709                 migrate_page_states(newpage, page);
3710
3711         return MIGRATEPAGE_SUCCESS;
3712 }
3713 #endif
3714
3715 #ifdef CONFIG_SWAP
3716 static int f2fs_migrate_blocks(struct inode *inode, block_t start_blk,
3717                                                         unsigned int blkcnt)
3718 {
3719         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3720         unsigned int blkofs;
3721         unsigned int blk_per_sec = BLKS_PER_SEC(sbi);
3722         unsigned int secidx = start_blk / blk_per_sec;
3723         unsigned int end_sec = secidx + blkcnt / blk_per_sec;
3724         int ret = 0;
3725
3726         f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3727         filemap_invalidate_lock(inode->i_mapping);
3728
3729         set_inode_flag(inode, FI_ALIGNED_WRITE);
3730         set_inode_flag(inode, FI_OPU_WRITE);
3731
3732         for (; secidx < end_sec; secidx++) {
3733                 f2fs_down_write(&sbi->pin_sem);
3734
3735                 f2fs_lock_op(sbi);
3736                 f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
3737                 f2fs_unlock_op(sbi);
3738
3739                 set_inode_flag(inode, FI_SKIP_WRITES);
3740
3741                 for (blkofs = 0; blkofs < blk_per_sec; blkofs++) {
3742                         struct page *page;
3743                         unsigned int blkidx = secidx * blk_per_sec + blkofs;
3744
3745                         page = f2fs_get_lock_data_page(inode, blkidx, true);
3746                         if (IS_ERR(page)) {
3747                                 f2fs_up_write(&sbi->pin_sem);
3748                                 ret = PTR_ERR(page);
3749                                 goto done;
3750                         }
3751
3752                         set_page_dirty(page);
3753                         f2fs_put_page(page, 1);
3754                 }
3755
3756                 clear_inode_flag(inode, FI_SKIP_WRITES);
3757
3758                 ret = filemap_fdatawrite(inode->i_mapping);
3759
3760                 f2fs_up_write(&sbi->pin_sem);
3761
3762                 if (ret)
3763                         break;
3764         }
3765
3766 done:
3767         clear_inode_flag(inode, FI_SKIP_WRITES);
3768         clear_inode_flag(inode, FI_OPU_WRITE);
3769         clear_inode_flag(inode, FI_ALIGNED_WRITE);
3770
3771         filemap_invalidate_unlock(inode->i_mapping);
3772         f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3773
3774         return ret;
3775 }
3776
3777 static int check_swap_activate(struct swap_info_struct *sis,
3778                                 struct file *swap_file, sector_t *span)
3779 {
3780         struct address_space *mapping = swap_file->f_mapping;
3781         struct inode *inode = mapping->host;
3782         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3783         sector_t cur_lblock;
3784         sector_t last_lblock;
3785         sector_t pblock;
3786         sector_t lowest_pblock = -1;
3787         sector_t highest_pblock = 0;
3788         int nr_extents = 0;
3789         unsigned long nr_pblocks;
3790         unsigned int blks_per_sec = BLKS_PER_SEC(sbi);
3791         unsigned int sec_blks_mask = BLKS_PER_SEC(sbi) - 1;
3792         unsigned int not_aligned = 0;
3793         int ret = 0;
3794
3795         /*
3796          * Map all the blocks into the extent list.  This code doesn't try
3797          * to be very smart.
3798          */
3799         cur_lblock = 0;
3800         last_lblock = bytes_to_blks(inode, i_size_read(inode));
3801
3802         while (cur_lblock < last_lblock && cur_lblock < sis->max) {
3803                 struct f2fs_map_blocks map;
3804 retry:
3805                 cond_resched();
3806
3807                 memset(&map, 0, sizeof(map));
3808                 map.m_lblk = cur_lblock;
3809                 map.m_len = last_lblock - cur_lblock;
3810                 map.m_next_pgofs = NULL;
3811                 map.m_next_extent = NULL;
3812                 map.m_seg_type = NO_CHECK_TYPE;
3813                 map.m_may_create = false;
3814
3815                 ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP);
3816                 if (ret)
3817                         goto out;
3818
3819                 /* hole */
3820                 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
3821                         f2fs_err(sbi, "Swapfile has holes");
3822                         ret = -EINVAL;
3823                         goto out;
3824                 }
3825
3826                 pblock = map.m_pblk;
3827                 nr_pblocks = map.m_len;
3828
3829                 if ((pblock - SM_I(sbi)->main_blkaddr) & sec_blks_mask ||
3830                                 nr_pblocks & sec_blks_mask) {
3831                         not_aligned++;
3832
3833                         nr_pblocks = roundup(nr_pblocks, blks_per_sec);
3834                         if (cur_lblock + nr_pblocks > sis->max)
3835                                 nr_pblocks -= blks_per_sec;
3836
3837                         if (!nr_pblocks) {
3838                                 /* this extent is last one */
3839                                 nr_pblocks = map.m_len;
3840                                 f2fs_warn(sbi, "Swapfile: last extent is not aligned to section");
3841                                 goto next;
3842                         }
3843
3844                         ret = f2fs_migrate_blocks(inode, cur_lblock,
3845                                                         nr_pblocks);
3846                         if (ret)
3847                                 goto out;
3848                         goto retry;
3849                 }
3850 next:
3851                 if (cur_lblock + nr_pblocks >= sis->max)
3852                         nr_pblocks = sis->max - cur_lblock;
3853
3854                 if (cur_lblock) {       /* exclude the header page */
3855                         if (pblock < lowest_pblock)
3856                                 lowest_pblock = pblock;
3857                         if (pblock + nr_pblocks - 1 > highest_pblock)
3858                                 highest_pblock = pblock + nr_pblocks - 1;
3859                 }
3860
3861                 /*
3862                  * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
3863                  */
3864                 ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock);
3865                 if (ret < 0)
3866                         goto out;
3867                 nr_extents += ret;
3868                 cur_lblock += nr_pblocks;
3869         }
3870         ret = nr_extents;
3871         *span = 1 + highest_pblock - lowest_pblock;
3872         if (cur_lblock == 0)
3873                 cur_lblock = 1; /* force Empty message */
3874         sis->max = cur_lblock;
3875         sis->pages = cur_lblock - 1;
3876         sis->highest_bit = cur_lblock - 1;
3877 out:
3878         if (not_aligned)
3879                 f2fs_warn(sbi, "Swapfile (%u) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate(%u * N)",
3880                           not_aligned, blks_per_sec * F2FS_BLKSIZE);
3881         return ret;
3882 }
3883
3884 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
3885                                 sector_t *span)
3886 {
3887         struct inode *inode = file_inode(file);
3888         int ret;
3889
3890         if (!S_ISREG(inode->i_mode))
3891                 return -EINVAL;
3892
3893         if (f2fs_readonly(F2FS_I_SB(inode)->sb))
3894                 return -EROFS;
3895
3896         if (f2fs_lfs_mode(F2FS_I_SB(inode))) {
3897                 f2fs_err(F2FS_I_SB(inode),
3898                         "Swapfile not supported in LFS mode");
3899                 return -EINVAL;
3900         }
3901
3902         ret = f2fs_convert_inline_inode(inode);
3903         if (ret)
3904                 return ret;
3905
3906         if (!f2fs_disable_compressed_file(inode))
3907                 return -EINVAL;
3908
3909         f2fs_precache_extents(inode);
3910
3911         ret = check_swap_activate(sis, file, span);
3912         if (ret < 0)
3913                 return ret;
3914
3915         set_inode_flag(inode, FI_PIN_FILE);
3916         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3917         return ret;
3918 }
3919
3920 static void f2fs_swap_deactivate(struct file *file)
3921 {
3922         struct inode *inode = file_inode(file);
3923
3924         clear_inode_flag(inode, FI_PIN_FILE);
3925 }
3926 #else
3927 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
3928                                 sector_t *span)
3929 {
3930         return -EOPNOTSUPP;
3931 }
3932
3933 static void f2fs_swap_deactivate(struct file *file)
3934 {
3935 }
3936 #endif
3937
3938 const struct address_space_operations f2fs_dblock_aops = {
3939         .readpage       = f2fs_read_data_page,
3940         .readahead      = f2fs_readahead,
3941         .writepage      = f2fs_write_data_page,
3942         .writepages     = f2fs_write_data_pages,
3943         .write_begin    = f2fs_write_begin,
3944         .write_end      = f2fs_write_end,
3945         .dirty_folio    = f2fs_dirty_data_folio,
3946         .invalidate_folio = f2fs_invalidate_folio,
3947         .releasepage    = f2fs_release_page,
3948         .direct_IO      = noop_direct_IO,
3949         .bmap           = f2fs_bmap,
3950         .swap_activate  = f2fs_swap_activate,
3951         .swap_deactivate = f2fs_swap_deactivate,
3952 #ifdef CONFIG_MIGRATION
3953         .migratepage    = f2fs_migrate_page,
3954 #endif
3955 };
3956
3957 void f2fs_clear_page_cache_dirty_tag(struct page *page)
3958 {
3959         struct address_space *mapping = page_mapping(page);
3960         unsigned long flags;
3961
3962         xa_lock_irqsave(&mapping->i_pages, flags);
3963         __xa_clear_mark(&mapping->i_pages, page_index(page),
3964                                                 PAGECACHE_TAG_DIRTY);
3965         xa_unlock_irqrestore(&mapping->i_pages, flags);
3966 }
3967
3968 int __init f2fs_init_post_read_processing(void)
3969 {
3970         bio_post_read_ctx_cache =
3971                 kmem_cache_create("f2fs_bio_post_read_ctx",
3972                                   sizeof(struct bio_post_read_ctx), 0, 0, NULL);
3973         if (!bio_post_read_ctx_cache)
3974                 goto fail;
3975         bio_post_read_ctx_pool =
3976                 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
3977                                          bio_post_read_ctx_cache);
3978         if (!bio_post_read_ctx_pool)
3979                 goto fail_free_cache;
3980         return 0;
3981
3982 fail_free_cache:
3983         kmem_cache_destroy(bio_post_read_ctx_cache);
3984 fail:
3985         return -ENOMEM;
3986 }
3987
3988 void f2fs_destroy_post_read_processing(void)
3989 {
3990         mempool_destroy(bio_post_read_ctx_pool);
3991         kmem_cache_destroy(bio_post_read_ctx_cache);
3992 }
3993
3994 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi)
3995 {
3996         if (!f2fs_sb_has_encrypt(sbi) &&
3997                 !f2fs_sb_has_verity(sbi) &&
3998                 !f2fs_sb_has_compression(sbi))
3999                 return 0;
4000
4001         sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq",
4002                                                  WQ_UNBOUND | WQ_HIGHPRI,
4003                                                  num_online_cpus());
4004         if (!sbi->post_read_wq)
4005                 return -ENOMEM;
4006         return 0;
4007 }
4008
4009 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi)
4010 {
4011         if (sbi->post_read_wq)
4012                 destroy_workqueue(sbi->post_read_wq);
4013 }
4014
4015 int __init f2fs_init_bio_entry_cache(void)
4016 {
4017         bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab",
4018                         sizeof(struct bio_entry));
4019         if (!bio_entry_slab)
4020                 return -ENOMEM;
4021         return 0;
4022 }
4023
4024 void f2fs_destroy_bio_entry_cache(void)
4025 {
4026         kmem_cache_destroy(bio_entry_slab);
4027 }
4028
4029 static int f2fs_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
4030                             unsigned int flags, struct iomap *iomap,
4031                             struct iomap *srcmap)
4032 {
4033         struct f2fs_map_blocks map = {};
4034         pgoff_t next_pgofs = 0;
4035         int err;
4036
4037         map.m_lblk = bytes_to_blks(inode, offset);
4038         map.m_len = bytes_to_blks(inode, offset + length - 1) - map.m_lblk + 1;
4039         map.m_next_pgofs = &next_pgofs;
4040         map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint);
4041         if (flags & IOMAP_WRITE)
4042                 map.m_may_create = true;
4043
4044         err = f2fs_map_blocks(inode, &map, flags & IOMAP_WRITE,
4045                               F2FS_GET_BLOCK_DIO);
4046         if (err)
4047                 return err;
4048
4049         iomap->offset = blks_to_bytes(inode, map.m_lblk);
4050
4051         /*
4052          * When inline encryption is enabled, sometimes I/O to an encrypted file
4053          * has to be broken up to guarantee DUN contiguity.  Handle this by
4054          * limiting the length of the mapping returned.
4055          */
4056         map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
4057
4058         if (map.m_flags & (F2FS_MAP_MAPPED | F2FS_MAP_UNWRITTEN)) {
4059                 iomap->length = blks_to_bytes(inode, map.m_len);
4060                 if (map.m_flags & F2FS_MAP_MAPPED) {
4061                         iomap->type = IOMAP_MAPPED;
4062                         iomap->flags |= IOMAP_F_MERGED;
4063                 } else {
4064                         iomap->type = IOMAP_UNWRITTEN;
4065                 }
4066                 if (WARN_ON_ONCE(!__is_valid_data_blkaddr(map.m_pblk)))
4067                         return -EINVAL;
4068
4069                 iomap->bdev = map.m_bdev;
4070                 iomap->addr = blks_to_bytes(inode, map.m_pblk);
4071         } else {
4072                 iomap->length = blks_to_bytes(inode, next_pgofs) -
4073                                 iomap->offset;
4074                 iomap->type = IOMAP_HOLE;
4075                 iomap->addr = IOMAP_NULL_ADDR;
4076         }
4077
4078         if (map.m_flags & F2FS_MAP_NEW)
4079                 iomap->flags |= IOMAP_F_NEW;
4080         if ((inode->i_state & I_DIRTY_DATASYNC) ||
4081             offset + length > i_size_read(inode))
4082                 iomap->flags |= IOMAP_F_DIRTY;
4083
4084         return 0;
4085 }
4086
4087 const struct iomap_ops f2fs_iomap_ops = {
4088         .iomap_begin    = f2fs_iomap_begin,
4089 };