f2fs: compress: fix overwrite may reduce compress ratio unproperly
[linux-2.6-microblaze.git] / fs / f2fs / data.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/data.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/buffer_head.h>
11 #include <linux/mpage.h>
12 #include <linux/writeback.h>
13 #include <linux/backing-dev.h>
14 #include <linux/pagevec.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/blk-crypto.h>
18 #include <linux/swap.h>
19 #include <linux/prefetch.h>
20 #include <linux/uio.h>
21 #include <linux/cleancache.h>
22 #include <linux/sched/signal.h>
23 #include <linux/fiemap.h>
24
25 #include "f2fs.h"
26 #include "node.h"
27 #include "segment.h"
28 #include "iostat.h"
29 #include <trace/events/f2fs.h>
30
31 #define NUM_PREALLOC_POST_READ_CTXS     128
32
33 static struct kmem_cache *bio_post_read_ctx_cache;
34 static struct kmem_cache *bio_entry_slab;
35 static mempool_t *bio_post_read_ctx_pool;
36 static struct bio_set f2fs_bioset;
37
38 #define F2FS_BIO_POOL_SIZE      NR_CURSEG_TYPE
39
40 int __init f2fs_init_bioset(void)
41 {
42         if (bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE,
43                                         0, BIOSET_NEED_BVECS))
44                 return -ENOMEM;
45         return 0;
46 }
47
48 void f2fs_destroy_bioset(void)
49 {
50         bioset_exit(&f2fs_bioset);
51 }
52
53 static bool __is_cp_guaranteed(struct page *page)
54 {
55         struct address_space *mapping = page->mapping;
56         struct inode *inode;
57         struct f2fs_sb_info *sbi;
58
59         if (!mapping)
60                 return false;
61
62         inode = mapping->host;
63         sbi = F2FS_I_SB(inode);
64
65         if (inode->i_ino == F2FS_META_INO(sbi) ||
66                         inode->i_ino == F2FS_NODE_INO(sbi) ||
67                         S_ISDIR(inode->i_mode))
68                 return true;
69
70         if (f2fs_is_compressed_page(page))
71                 return false;
72         if ((S_ISREG(inode->i_mode) &&
73                         (f2fs_is_atomic_file(inode) || IS_NOQUOTA(inode))) ||
74                         page_private_gcing(page))
75                 return true;
76         return false;
77 }
78
79 static enum count_type __read_io_type(struct page *page)
80 {
81         struct address_space *mapping = page_file_mapping(page);
82
83         if (mapping) {
84                 struct inode *inode = mapping->host;
85                 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
86
87                 if (inode->i_ino == F2FS_META_INO(sbi))
88                         return F2FS_RD_META;
89
90                 if (inode->i_ino == F2FS_NODE_INO(sbi))
91                         return F2FS_RD_NODE;
92         }
93         return F2FS_RD_DATA;
94 }
95
96 /* postprocessing steps for read bios */
97 enum bio_post_read_step {
98 #ifdef CONFIG_FS_ENCRYPTION
99         STEP_DECRYPT    = 1 << 0,
100 #else
101         STEP_DECRYPT    = 0,    /* compile out the decryption-related code */
102 #endif
103 #ifdef CONFIG_F2FS_FS_COMPRESSION
104         STEP_DECOMPRESS = 1 << 1,
105 #else
106         STEP_DECOMPRESS = 0,    /* compile out the decompression-related code */
107 #endif
108 #ifdef CONFIG_FS_VERITY
109         STEP_VERITY     = 1 << 2,
110 #else
111         STEP_VERITY     = 0,    /* compile out the verity-related code */
112 #endif
113 };
114
115 struct bio_post_read_ctx {
116         struct bio *bio;
117         struct f2fs_sb_info *sbi;
118         struct work_struct work;
119         unsigned int enabled_steps;
120         block_t fs_blkaddr;
121 };
122
123 static void f2fs_finish_read_bio(struct bio *bio)
124 {
125         struct bio_vec *bv;
126         struct bvec_iter_all iter_all;
127
128         /*
129          * Update and unlock the bio's pagecache pages, and put the
130          * decompression context for any compressed pages.
131          */
132         bio_for_each_segment_all(bv, bio, iter_all) {
133                 struct page *page = bv->bv_page;
134
135                 if (f2fs_is_compressed_page(page)) {
136                         if (bio->bi_status)
137                                 f2fs_end_read_compressed_page(page, true, 0);
138                         f2fs_put_page_dic(page);
139                         continue;
140                 }
141
142                 /* PG_error was set if decryption or verity failed. */
143                 if (bio->bi_status || PageError(page)) {
144                         ClearPageUptodate(page);
145                         /* will re-read again later */
146                         ClearPageError(page);
147                 } else {
148                         SetPageUptodate(page);
149                 }
150                 dec_page_count(F2FS_P_SB(page), __read_io_type(page));
151                 unlock_page(page);
152         }
153
154         if (bio->bi_private)
155                 mempool_free(bio->bi_private, bio_post_read_ctx_pool);
156         bio_put(bio);
157 }
158
159 static void f2fs_verify_bio(struct work_struct *work)
160 {
161         struct bio_post_read_ctx *ctx =
162                 container_of(work, struct bio_post_read_ctx, work);
163         struct bio *bio = ctx->bio;
164         bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS);
165
166         /*
167          * fsverity_verify_bio() may call readpages() again, and while verity
168          * will be disabled for this, decryption and/or decompression may still
169          * be needed, resulting in another bio_post_read_ctx being allocated.
170          * So to prevent deadlocks we need to release the current ctx to the
171          * mempool first.  This assumes that verity is the last post-read step.
172          */
173         mempool_free(ctx, bio_post_read_ctx_pool);
174         bio->bi_private = NULL;
175
176         /*
177          * Verify the bio's pages with fs-verity.  Exclude compressed pages,
178          * as those were handled separately by f2fs_end_read_compressed_page().
179          */
180         if (may_have_compressed_pages) {
181                 struct bio_vec *bv;
182                 struct bvec_iter_all iter_all;
183
184                 bio_for_each_segment_all(bv, bio, iter_all) {
185                         struct page *page = bv->bv_page;
186
187                         if (!f2fs_is_compressed_page(page) &&
188                             !PageError(page) && !fsverity_verify_page(page))
189                                 SetPageError(page);
190                 }
191         } else {
192                 fsverity_verify_bio(bio);
193         }
194
195         f2fs_finish_read_bio(bio);
196 }
197
198 /*
199  * If the bio's data needs to be verified with fs-verity, then enqueue the
200  * verity work for the bio.  Otherwise finish the bio now.
201  *
202  * Note that to avoid deadlocks, the verity work can't be done on the
203  * decryption/decompression workqueue.  This is because verifying the data pages
204  * can involve reading verity metadata pages from the file, and these verity
205  * metadata pages may be encrypted and/or compressed.
206  */
207 static void f2fs_verify_and_finish_bio(struct bio *bio)
208 {
209         struct bio_post_read_ctx *ctx = bio->bi_private;
210
211         if (ctx && (ctx->enabled_steps & STEP_VERITY)) {
212                 INIT_WORK(&ctx->work, f2fs_verify_bio);
213                 fsverity_enqueue_verify_work(&ctx->work);
214         } else {
215                 f2fs_finish_read_bio(bio);
216         }
217 }
218
219 /*
220  * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last
221  * remaining page was read by @ctx->bio.
222  *
223  * Note that a bio may span clusters (even a mix of compressed and uncompressed
224  * clusters) or be for just part of a cluster.  STEP_DECOMPRESS just indicates
225  * that the bio includes at least one compressed page.  The actual decompression
226  * is done on a per-cluster basis, not a per-bio basis.
227  */
228 static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx)
229 {
230         struct bio_vec *bv;
231         struct bvec_iter_all iter_all;
232         bool all_compressed = true;
233         block_t blkaddr = ctx->fs_blkaddr;
234
235         bio_for_each_segment_all(bv, ctx->bio, iter_all) {
236                 struct page *page = bv->bv_page;
237
238                 /* PG_error was set if decryption failed. */
239                 if (f2fs_is_compressed_page(page))
240                         f2fs_end_read_compressed_page(page, PageError(page),
241                                                 blkaddr);
242                 else
243                         all_compressed = false;
244
245                 blkaddr++;
246         }
247
248         /*
249          * Optimization: if all the bio's pages are compressed, then scheduling
250          * the per-bio verity work is unnecessary, as verity will be fully
251          * handled at the compression cluster level.
252          */
253         if (all_compressed)
254                 ctx->enabled_steps &= ~STEP_VERITY;
255 }
256
257 static void f2fs_post_read_work(struct work_struct *work)
258 {
259         struct bio_post_read_ctx *ctx =
260                 container_of(work, struct bio_post_read_ctx, work);
261
262         if (ctx->enabled_steps & STEP_DECRYPT)
263                 fscrypt_decrypt_bio(ctx->bio);
264
265         if (ctx->enabled_steps & STEP_DECOMPRESS)
266                 f2fs_handle_step_decompress(ctx);
267
268         f2fs_verify_and_finish_bio(ctx->bio);
269 }
270
271 static void f2fs_read_end_io(struct bio *bio)
272 {
273         struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio));
274         struct bio_post_read_ctx *ctx;
275
276         iostat_update_and_unbind_ctx(bio, 0);
277         ctx = bio->bi_private;
278
279         if (time_to_inject(sbi, FAULT_READ_IO)) {
280                 f2fs_show_injection_info(sbi, FAULT_READ_IO);
281                 bio->bi_status = BLK_STS_IOERR;
282         }
283
284         if (bio->bi_status) {
285                 f2fs_finish_read_bio(bio);
286                 return;
287         }
288
289         if (ctx && (ctx->enabled_steps & (STEP_DECRYPT | STEP_DECOMPRESS))) {
290                 INIT_WORK(&ctx->work, f2fs_post_read_work);
291                 queue_work(ctx->sbi->post_read_wq, &ctx->work);
292         } else {
293                 f2fs_verify_and_finish_bio(bio);
294         }
295 }
296
297 static void f2fs_write_end_io(struct bio *bio)
298 {
299         struct f2fs_sb_info *sbi;
300         struct bio_vec *bvec;
301         struct bvec_iter_all iter_all;
302
303         iostat_update_and_unbind_ctx(bio, 1);
304         sbi = bio->bi_private;
305
306         if (time_to_inject(sbi, FAULT_WRITE_IO)) {
307                 f2fs_show_injection_info(sbi, FAULT_WRITE_IO);
308                 bio->bi_status = BLK_STS_IOERR;
309         }
310
311         bio_for_each_segment_all(bvec, bio, iter_all) {
312                 struct page *page = bvec->bv_page;
313                 enum count_type type = WB_DATA_TYPE(page);
314
315                 if (page_private_dummy(page)) {
316                         clear_page_private_dummy(page);
317                         unlock_page(page);
318                         mempool_free(page, sbi->write_io_dummy);
319
320                         if (unlikely(bio->bi_status))
321                                 f2fs_stop_checkpoint(sbi, true);
322                         continue;
323                 }
324
325                 fscrypt_finalize_bounce_page(&page);
326
327 #ifdef CONFIG_F2FS_FS_COMPRESSION
328                 if (f2fs_is_compressed_page(page)) {
329                         f2fs_compress_write_end_io(bio, page);
330                         continue;
331                 }
332 #endif
333
334                 if (unlikely(bio->bi_status)) {
335                         mapping_set_error(page->mapping, -EIO);
336                         if (type == F2FS_WB_CP_DATA)
337                                 f2fs_stop_checkpoint(sbi, true);
338                 }
339
340                 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
341                                         page->index != nid_of_node(page));
342
343                 dec_page_count(sbi, type);
344                 if (f2fs_in_warm_node_list(sbi, page))
345                         f2fs_del_fsync_node_entry(sbi, page);
346                 clear_page_private_gcing(page);
347                 end_page_writeback(page);
348         }
349         if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
350                                 wq_has_sleeper(&sbi->cp_wait))
351                 wake_up(&sbi->cp_wait);
352
353         bio_put(bio);
354 }
355
356 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
357                                 block_t blk_addr, struct bio *bio)
358 {
359         struct block_device *bdev = sbi->sb->s_bdev;
360         int i;
361
362         if (f2fs_is_multi_device(sbi)) {
363                 for (i = 0; i < sbi->s_ndevs; i++) {
364                         if (FDEV(i).start_blk <= blk_addr &&
365                             FDEV(i).end_blk >= blk_addr) {
366                                 blk_addr -= FDEV(i).start_blk;
367                                 bdev = FDEV(i).bdev;
368                                 break;
369                         }
370                 }
371         }
372         if (bio) {
373                 bio_set_dev(bio, bdev);
374                 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
375         }
376         return bdev;
377 }
378
379 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
380 {
381         int i;
382
383         if (!f2fs_is_multi_device(sbi))
384                 return 0;
385
386         for (i = 0; i < sbi->s_ndevs; i++)
387                 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
388                         return i;
389         return 0;
390 }
391
392 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages)
393 {
394         struct f2fs_sb_info *sbi = fio->sbi;
395         struct bio *bio;
396
397         bio = bio_alloc_bioset(GFP_NOIO, npages, &f2fs_bioset);
398
399         f2fs_target_device(sbi, fio->new_blkaddr, bio);
400         if (is_read_io(fio->op)) {
401                 bio->bi_end_io = f2fs_read_end_io;
402                 bio->bi_private = NULL;
403         } else {
404                 bio->bi_end_io = f2fs_write_end_io;
405                 bio->bi_private = sbi;
406                 bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi,
407                                                 fio->type, fio->temp);
408         }
409         iostat_alloc_and_bind_ctx(sbi, bio, NULL);
410
411         if (fio->io_wbc)
412                 wbc_init_bio(fio->io_wbc, bio);
413
414         return bio;
415 }
416
417 static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode,
418                                   pgoff_t first_idx,
419                                   const struct f2fs_io_info *fio,
420                                   gfp_t gfp_mask)
421 {
422         /*
423          * The f2fs garbage collector sets ->encrypted_page when it wants to
424          * read/write raw data without encryption.
425          */
426         if (!fio || !fio->encrypted_page)
427                 fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask);
428 }
429
430 static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode,
431                                      pgoff_t next_idx,
432                                      const struct f2fs_io_info *fio)
433 {
434         /*
435          * The f2fs garbage collector sets ->encrypted_page when it wants to
436          * read/write raw data without encryption.
437          */
438         if (fio && fio->encrypted_page)
439                 return !bio_has_crypt_ctx(bio);
440
441         return fscrypt_mergeable_bio(bio, inode, next_idx);
442 }
443
444 static inline void __submit_bio(struct f2fs_sb_info *sbi,
445                                 struct bio *bio, enum page_type type)
446 {
447         if (!is_read_io(bio_op(bio))) {
448                 unsigned int start;
449
450                 if (type != DATA && type != NODE)
451                         goto submit_io;
452
453                 if (f2fs_lfs_mode(sbi) && current->plug)
454                         blk_finish_plug(current->plug);
455
456                 if (!F2FS_IO_ALIGNED(sbi))
457                         goto submit_io;
458
459                 start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
460                 start %= F2FS_IO_SIZE(sbi);
461
462                 if (start == 0)
463                         goto submit_io;
464
465                 /* fill dummy pages */
466                 for (; start < F2FS_IO_SIZE(sbi); start++) {
467                         struct page *page =
468                                 mempool_alloc(sbi->write_io_dummy,
469                                               GFP_NOIO | __GFP_NOFAIL);
470                         f2fs_bug_on(sbi, !page);
471
472                         lock_page(page);
473
474                         zero_user_segment(page, 0, PAGE_SIZE);
475                         set_page_private_dummy(page);
476
477                         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
478                                 f2fs_bug_on(sbi, 1);
479                 }
480                 /*
481                  * In the NODE case, we lose next block address chain. So, we
482                  * need to do checkpoint in f2fs_sync_file.
483                  */
484                 if (type == NODE)
485                         set_sbi_flag(sbi, SBI_NEED_CP);
486         }
487 submit_io:
488         if (is_read_io(bio_op(bio)))
489                 trace_f2fs_submit_read_bio(sbi->sb, type, bio);
490         else
491                 trace_f2fs_submit_write_bio(sbi->sb, type, bio);
492
493         iostat_update_submit_ctx(bio, type);
494         submit_bio(bio);
495 }
496
497 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
498                                 struct bio *bio, enum page_type type)
499 {
500         __submit_bio(sbi, bio, type);
501 }
502
503 static void __attach_io_flag(struct f2fs_io_info *fio)
504 {
505         struct f2fs_sb_info *sbi = fio->sbi;
506         unsigned int temp_mask = (1 << NR_TEMP_TYPE) - 1;
507         unsigned int io_flag, fua_flag, meta_flag;
508
509         if (fio->type == DATA)
510                 io_flag = sbi->data_io_flag;
511         else if (fio->type == NODE)
512                 io_flag = sbi->node_io_flag;
513         else
514                 return;
515
516         fua_flag = io_flag & temp_mask;
517         meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask;
518
519         /*
520          * data/node io flag bits per temp:
521          *      REQ_META     |      REQ_FUA      |
522          *    5 |    4 |   3 |    2 |    1 |   0 |
523          * Cold | Warm | Hot | Cold | Warm | Hot |
524          */
525         if ((1 << fio->temp) & meta_flag)
526                 fio->op_flags |= REQ_META;
527         if ((1 << fio->temp) & fua_flag)
528                 fio->op_flags |= REQ_FUA;
529 }
530
531 static void __submit_merged_bio(struct f2fs_bio_info *io)
532 {
533         struct f2fs_io_info *fio = &io->fio;
534
535         if (!io->bio)
536                 return;
537
538         __attach_io_flag(fio);
539         bio_set_op_attrs(io->bio, fio->op, fio->op_flags);
540
541         if (is_read_io(fio->op))
542                 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
543         else
544                 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
545
546         __submit_bio(io->sbi, io->bio, fio->type);
547         io->bio = NULL;
548 }
549
550 static bool __has_merged_page(struct bio *bio, struct inode *inode,
551                                                 struct page *page, nid_t ino)
552 {
553         struct bio_vec *bvec;
554         struct bvec_iter_all iter_all;
555
556         if (!bio)
557                 return false;
558
559         if (!inode && !page && !ino)
560                 return true;
561
562         bio_for_each_segment_all(bvec, bio, iter_all) {
563                 struct page *target = bvec->bv_page;
564
565                 if (fscrypt_is_bounce_page(target)) {
566                         target = fscrypt_pagecache_page(target);
567                         if (IS_ERR(target))
568                                 continue;
569                 }
570                 if (f2fs_is_compressed_page(target)) {
571                         target = f2fs_compress_control_page(target);
572                         if (IS_ERR(target))
573                                 continue;
574                 }
575
576                 if (inode && inode == target->mapping->host)
577                         return true;
578                 if (page && page == target)
579                         return true;
580                 if (ino && ino == ino_of_node(target))
581                         return true;
582         }
583
584         return false;
585 }
586
587 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
588                                 enum page_type type, enum temp_type temp)
589 {
590         enum page_type btype = PAGE_TYPE_OF_BIO(type);
591         struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
592
593         down_write(&io->io_rwsem);
594
595         /* change META to META_FLUSH in the checkpoint procedure */
596         if (type >= META_FLUSH) {
597                 io->fio.type = META_FLUSH;
598                 io->fio.op = REQ_OP_WRITE;
599                 io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC;
600                 if (!test_opt(sbi, NOBARRIER))
601                         io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
602         }
603         __submit_merged_bio(io);
604         up_write(&io->io_rwsem);
605 }
606
607 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
608                                 struct inode *inode, struct page *page,
609                                 nid_t ino, enum page_type type, bool force)
610 {
611         enum temp_type temp;
612         bool ret = true;
613
614         for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
615                 if (!force)     {
616                         enum page_type btype = PAGE_TYPE_OF_BIO(type);
617                         struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
618
619                         down_read(&io->io_rwsem);
620                         ret = __has_merged_page(io->bio, inode, page, ino);
621                         up_read(&io->io_rwsem);
622                 }
623                 if (ret)
624                         __f2fs_submit_merged_write(sbi, type, temp);
625
626                 /* TODO: use HOT temp only for meta pages now. */
627                 if (type >= META)
628                         break;
629         }
630 }
631
632 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
633 {
634         __submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
635 }
636
637 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
638                                 struct inode *inode, struct page *page,
639                                 nid_t ino, enum page_type type)
640 {
641         __submit_merged_write_cond(sbi, inode, page, ino, type, false);
642 }
643
644 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
645 {
646         f2fs_submit_merged_write(sbi, DATA);
647         f2fs_submit_merged_write(sbi, NODE);
648         f2fs_submit_merged_write(sbi, META);
649 }
650
651 /*
652  * Fill the locked page with data located in the block address.
653  * A caller needs to unlock the page on failure.
654  */
655 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
656 {
657         struct bio *bio;
658         struct page *page = fio->encrypted_page ?
659                         fio->encrypted_page : fio->page;
660
661         if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
662                         fio->is_por ? META_POR : (__is_meta_io(fio) ?
663                         META_GENERIC : DATA_GENERIC_ENHANCE)))
664                 return -EFSCORRUPTED;
665
666         trace_f2fs_submit_page_bio(page, fio);
667
668         /* Allocate a new bio */
669         bio = __bio_alloc(fio, 1);
670
671         f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
672                                fio->page->index, fio, GFP_NOIO);
673
674         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
675                 bio_put(bio);
676                 return -EFAULT;
677         }
678
679         if (fio->io_wbc && !is_read_io(fio->op))
680                 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
681
682         __attach_io_flag(fio);
683         bio_set_op_attrs(bio, fio->op, fio->op_flags);
684
685         inc_page_count(fio->sbi, is_read_io(fio->op) ?
686                         __read_io_type(page): WB_DATA_TYPE(fio->page));
687
688         __submit_bio(fio->sbi, bio, fio->type);
689         return 0;
690 }
691
692 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
693                                 block_t last_blkaddr, block_t cur_blkaddr)
694 {
695         if (unlikely(sbi->max_io_bytes &&
696                         bio->bi_iter.bi_size >= sbi->max_io_bytes))
697                 return false;
698         if (last_blkaddr + 1 != cur_blkaddr)
699                 return false;
700         return bio->bi_bdev == f2fs_target_device(sbi, cur_blkaddr, NULL);
701 }
702
703 static bool io_type_is_mergeable(struct f2fs_bio_info *io,
704                                                 struct f2fs_io_info *fio)
705 {
706         if (io->fio.op != fio->op)
707                 return false;
708         return io->fio.op_flags == fio->op_flags;
709 }
710
711 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
712                                         struct f2fs_bio_info *io,
713                                         struct f2fs_io_info *fio,
714                                         block_t last_blkaddr,
715                                         block_t cur_blkaddr)
716 {
717         if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) {
718                 unsigned int filled_blocks =
719                                 F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size);
720                 unsigned int io_size = F2FS_IO_SIZE(sbi);
721                 unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt;
722
723                 /* IOs in bio is aligned and left space of vectors is not enough */
724                 if (!(filled_blocks % io_size) && left_vecs < io_size)
725                         return false;
726         }
727         if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr))
728                 return false;
729         return io_type_is_mergeable(io, fio);
730 }
731
732 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio,
733                                 struct page *page, enum temp_type temp)
734 {
735         struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
736         struct bio_entry *be;
737
738         be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS, true, NULL);
739         be->bio = bio;
740         bio_get(bio);
741
742         if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE)
743                 f2fs_bug_on(sbi, 1);
744
745         down_write(&io->bio_list_lock);
746         list_add_tail(&be->list, &io->bio_list);
747         up_write(&io->bio_list_lock);
748 }
749
750 static void del_bio_entry(struct bio_entry *be)
751 {
752         list_del(&be->list);
753         kmem_cache_free(bio_entry_slab, be);
754 }
755
756 static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio,
757                                                         struct page *page)
758 {
759         struct f2fs_sb_info *sbi = fio->sbi;
760         enum temp_type temp;
761         bool found = false;
762         int ret = -EAGAIN;
763
764         for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
765                 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
766                 struct list_head *head = &io->bio_list;
767                 struct bio_entry *be;
768
769                 down_write(&io->bio_list_lock);
770                 list_for_each_entry(be, head, list) {
771                         if (be->bio != *bio)
772                                 continue;
773
774                         found = true;
775
776                         f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio,
777                                                             *fio->last_block,
778                                                             fio->new_blkaddr));
779                         if (f2fs_crypt_mergeable_bio(*bio,
780                                         fio->page->mapping->host,
781                                         fio->page->index, fio) &&
782                             bio_add_page(*bio, page, PAGE_SIZE, 0) ==
783                                         PAGE_SIZE) {
784                                 ret = 0;
785                                 break;
786                         }
787
788                         /* page can't be merged into bio; submit the bio */
789                         del_bio_entry(be);
790                         __submit_bio(sbi, *bio, DATA);
791                         break;
792                 }
793                 up_write(&io->bio_list_lock);
794         }
795
796         if (ret) {
797                 bio_put(*bio);
798                 *bio = NULL;
799         }
800
801         return ret;
802 }
803
804 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
805                                         struct bio **bio, struct page *page)
806 {
807         enum temp_type temp;
808         bool found = false;
809         struct bio *target = bio ? *bio : NULL;
810
811         for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
812                 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
813                 struct list_head *head = &io->bio_list;
814                 struct bio_entry *be;
815
816                 if (list_empty(head))
817                         continue;
818
819                 down_read(&io->bio_list_lock);
820                 list_for_each_entry(be, head, list) {
821                         if (target)
822                                 found = (target == be->bio);
823                         else
824                                 found = __has_merged_page(be->bio, NULL,
825                                                                 page, 0);
826                         if (found)
827                                 break;
828                 }
829                 up_read(&io->bio_list_lock);
830
831                 if (!found)
832                         continue;
833
834                 found = false;
835
836                 down_write(&io->bio_list_lock);
837                 list_for_each_entry(be, head, list) {
838                         if (target)
839                                 found = (target == be->bio);
840                         else
841                                 found = __has_merged_page(be->bio, NULL,
842                                                                 page, 0);
843                         if (found) {
844                                 target = be->bio;
845                                 del_bio_entry(be);
846                                 break;
847                         }
848                 }
849                 up_write(&io->bio_list_lock);
850         }
851
852         if (found)
853                 __submit_bio(sbi, target, DATA);
854         if (bio && *bio) {
855                 bio_put(*bio);
856                 *bio = NULL;
857         }
858 }
859
860 int f2fs_merge_page_bio(struct f2fs_io_info *fio)
861 {
862         struct bio *bio = *fio->bio;
863         struct page *page = fio->encrypted_page ?
864                         fio->encrypted_page : fio->page;
865
866         if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
867                         __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC))
868                 return -EFSCORRUPTED;
869
870         trace_f2fs_submit_page_bio(page, fio);
871
872         if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block,
873                                                 fio->new_blkaddr))
874                 f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL);
875 alloc_new:
876         if (!bio) {
877                 bio = __bio_alloc(fio, BIO_MAX_VECS);
878                 __attach_io_flag(fio);
879                 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
880                                        fio->page->index, fio, GFP_NOIO);
881                 bio_set_op_attrs(bio, fio->op, fio->op_flags);
882
883                 add_bio_entry(fio->sbi, bio, page, fio->temp);
884         } else {
885                 if (add_ipu_page(fio, &bio, page))
886                         goto alloc_new;
887         }
888
889         if (fio->io_wbc)
890                 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
891
892         inc_page_count(fio->sbi, WB_DATA_TYPE(page));
893
894         *fio->last_block = fio->new_blkaddr;
895         *fio->bio = bio;
896
897         return 0;
898 }
899
900 void f2fs_submit_page_write(struct f2fs_io_info *fio)
901 {
902         struct f2fs_sb_info *sbi = fio->sbi;
903         enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
904         struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
905         struct page *bio_page;
906
907         f2fs_bug_on(sbi, is_read_io(fio->op));
908
909         down_write(&io->io_rwsem);
910 next:
911         if (fio->in_list) {
912                 spin_lock(&io->io_lock);
913                 if (list_empty(&io->io_list)) {
914                         spin_unlock(&io->io_lock);
915                         goto out;
916                 }
917                 fio = list_first_entry(&io->io_list,
918                                                 struct f2fs_io_info, list);
919                 list_del(&fio->list);
920                 spin_unlock(&io->io_lock);
921         }
922
923         verify_fio_blkaddr(fio);
924
925         if (fio->encrypted_page)
926                 bio_page = fio->encrypted_page;
927         else if (fio->compressed_page)
928                 bio_page = fio->compressed_page;
929         else
930                 bio_page = fio->page;
931
932         /* set submitted = true as a return value */
933         fio->submitted = true;
934
935         inc_page_count(sbi, WB_DATA_TYPE(bio_page));
936
937         if (io->bio &&
938             (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio,
939                               fio->new_blkaddr) ||
940              !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host,
941                                        bio_page->index, fio)))
942                 __submit_merged_bio(io);
943 alloc_new:
944         if (io->bio == NULL) {
945                 if (F2FS_IO_ALIGNED(sbi) &&
946                                 (fio->type == DATA || fio->type == NODE) &&
947                                 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
948                         dec_page_count(sbi, WB_DATA_TYPE(bio_page));
949                         fio->retry = true;
950                         goto skip;
951                 }
952                 io->bio = __bio_alloc(fio, BIO_MAX_VECS);
953                 f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host,
954                                        bio_page->index, fio, GFP_NOIO);
955                 io->fio = *fio;
956         }
957
958         if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
959                 __submit_merged_bio(io);
960                 goto alloc_new;
961         }
962
963         if (fio->io_wbc)
964                 wbc_account_cgroup_owner(fio->io_wbc, bio_page, PAGE_SIZE);
965
966         io->last_block_in_bio = fio->new_blkaddr;
967
968         trace_f2fs_submit_page_write(fio->page, fio);
969 skip:
970         if (fio->in_list)
971                 goto next;
972 out:
973         if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
974                                 !f2fs_is_checkpoint_ready(sbi))
975                 __submit_merged_bio(io);
976         up_write(&io->io_rwsem);
977 }
978
979 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
980                                       unsigned nr_pages, unsigned op_flag,
981                                       pgoff_t first_idx, bool for_write)
982 {
983         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
984         struct bio *bio;
985         struct bio_post_read_ctx *ctx = NULL;
986         unsigned int post_read_steps = 0;
987
988         bio = bio_alloc_bioset(for_write ? GFP_NOIO : GFP_KERNEL,
989                                bio_max_segs(nr_pages), &f2fs_bioset);
990         if (!bio)
991                 return ERR_PTR(-ENOMEM);
992
993         f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS);
994
995         f2fs_target_device(sbi, blkaddr, bio);
996         bio->bi_end_io = f2fs_read_end_io;
997         bio_set_op_attrs(bio, REQ_OP_READ, op_flag);
998
999         if (fscrypt_inode_uses_fs_layer_crypto(inode))
1000                 post_read_steps |= STEP_DECRYPT;
1001
1002         if (f2fs_need_verity(inode, first_idx))
1003                 post_read_steps |= STEP_VERITY;
1004
1005         /*
1006          * STEP_DECOMPRESS is handled specially, since a compressed file might
1007          * contain both compressed and uncompressed clusters.  We'll allocate a
1008          * bio_post_read_ctx if the file is compressed, but the caller is
1009          * responsible for enabling STEP_DECOMPRESS if it's actually needed.
1010          */
1011
1012         if (post_read_steps || f2fs_compressed_file(inode)) {
1013                 /* Due to the mempool, this never fails. */
1014                 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
1015                 ctx->bio = bio;
1016                 ctx->sbi = sbi;
1017                 ctx->enabled_steps = post_read_steps;
1018                 ctx->fs_blkaddr = blkaddr;
1019                 bio->bi_private = ctx;
1020         }
1021         iostat_alloc_and_bind_ctx(sbi, bio, ctx);
1022
1023         return bio;
1024 }
1025
1026 /* This can handle encryption stuffs */
1027 static int f2fs_submit_page_read(struct inode *inode, struct page *page,
1028                                  block_t blkaddr, int op_flags, bool for_write)
1029 {
1030         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1031         struct bio *bio;
1032
1033         bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags,
1034                                         page->index, for_write);
1035         if (IS_ERR(bio))
1036                 return PTR_ERR(bio);
1037
1038         /* wait for GCed page writeback via META_MAPPING */
1039         f2fs_wait_on_block_writeback(inode, blkaddr);
1040
1041         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
1042                 bio_put(bio);
1043                 return -EFAULT;
1044         }
1045         ClearPageError(page);
1046         inc_page_count(sbi, F2FS_RD_DATA);
1047         f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE);
1048         __submit_bio(sbi, bio, DATA);
1049         return 0;
1050 }
1051
1052 static void __set_data_blkaddr(struct dnode_of_data *dn)
1053 {
1054         struct f2fs_node *rn = F2FS_NODE(dn->node_page);
1055         __le32 *addr_array;
1056         int base = 0;
1057
1058         if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
1059                 base = get_extra_isize(dn->inode);
1060
1061         /* Get physical address of data block */
1062         addr_array = blkaddr_in_node(rn);
1063         addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
1064 }
1065
1066 /*
1067  * Lock ordering for the change of data block address:
1068  * ->data_page
1069  *  ->node_page
1070  *    update block addresses in the node page
1071  */
1072 void f2fs_set_data_blkaddr(struct dnode_of_data *dn)
1073 {
1074         f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1075         __set_data_blkaddr(dn);
1076         if (set_page_dirty(dn->node_page))
1077                 dn->node_changed = true;
1078 }
1079
1080 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1081 {
1082         dn->data_blkaddr = blkaddr;
1083         f2fs_set_data_blkaddr(dn);
1084         f2fs_update_extent_cache(dn);
1085 }
1086
1087 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
1088 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
1089 {
1090         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1091         int err;
1092
1093         if (!count)
1094                 return 0;
1095
1096         if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1097                 return -EPERM;
1098         if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1099                 return err;
1100
1101         trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
1102                                                 dn->ofs_in_node, count);
1103
1104         f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1105
1106         for (; count > 0; dn->ofs_in_node++) {
1107                 block_t blkaddr = f2fs_data_blkaddr(dn);
1108
1109                 if (blkaddr == NULL_ADDR) {
1110                         dn->data_blkaddr = NEW_ADDR;
1111                         __set_data_blkaddr(dn);
1112                         count--;
1113                 }
1114         }
1115
1116         if (set_page_dirty(dn->node_page))
1117                 dn->node_changed = true;
1118         return 0;
1119 }
1120
1121 /* Should keep dn->ofs_in_node unchanged */
1122 int f2fs_reserve_new_block(struct dnode_of_data *dn)
1123 {
1124         unsigned int ofs_in_node = dn->ofs_in_node;
1125         int ret;
1126
1127         ret = f2fs_reserve_new_blocks(dn, 1);
1128         dn->ofs_in_node = ofs_in_node;
1129         return ret;
1130 }
1131
1132 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
1133 {
1134         bool need_put = dn->inode_page ? false : true;
1135         int err;
1136
1137         err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
1138         if (err)
1139                 return err;
1140
1141         if (dn->data_blkaddr == NULL_ADDR)
1142                 err = f2fs_reserve_new_block(dn);
1143         if (err || need_put)
1144                 f2fs_put_dnode(dn);
1145         return err;
1146 }
1147
1148 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
1149 {
1150         struct extent_info ei = {0, };
1151         struct inode *inode = dn->inode;
1152
1153         if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1154                 dn->data_blkaddr = ei.blk + index - ei.fofs;
1155                 return 0;
1156         }
1157
1158         return f2fs_reserve_block(dn, index);
1159 }
1160
1161 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
1162                                                 int op_flags, bool for_write)
1163 {
1164         struct address_space *mapping = inode->i_mapping;
1165         struct dnode_of_data dn;
1166         struct page *page;
1167         struct extent_info ei = {0, };
1168         int err;
1169
1170         page = f2fs_grab_cache_page(mapping, index, for_write);
1171         if (!page)
1172                 return ERR_PTR(-ENOMEM);
1173
1174         if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1175                 dn.data_blkaddr = ei.blk + index - ei.fofs;
1176                 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
1177                                                 DATA_GENERIC_ENHANCE_READ)) {
1178                         err = -EFSCORRUPTED;
1179                         goto put_err;
1180                 }
1181                 goto got_it;
1182         }
1183
1184         set_new_dnode(&dn, inode, NULL, NULL, 0);
1185         err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1186         if (err)
1187                 goto put_err;
1188         f2fs_put_dnode(&dn);
1189
1190         if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1191                 err = -ENOENT;
1192                 goto put_err;
1193         }
1194         if (dn.data_blkaddr != NEW_ADDR &&
1195                         !f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
1196                                                 dn.data_blkaddr,
1197                                                 DATA_GENERIC_ENHANCE)) {
1198                 err = -EFSCORRUPTED;
1199                 goto put_err;
1200         }
1201 got_it:
1202         if (PageUptodate(page)) {
1203                 unlock_page(page);
1204                 return page;
1205         }
1206
1207         /*
1208          * A new dentry page is allocated but not able to be written, since its
1209          * new inode page couldn't be allocated due to -ENOSPC.
1210          * In such the case, its blkaddr can be remained as NEW_ADDR.
1211          * see, f2fs_add_link -> f2fs_get_new_data_page ->
1212          * f2fs_init_inode_metadata.
1213          */
1214         if (dn.data_blkaddr == NEW_ADDR) {
1215                 zero_user_segment(page, 0, PAGE_SIZE);
1216                 if (!PageUptodate(page))
1217                         SetPageUptodate(page);
1218                 unlock_page(page);
1219                 return page;
1220         }
1221
1222         err = f2fs_submit_page_read(inode, page, dn.data_blkaddr,
1223                                                 op_flags, for_write);
1224         if (err)
1225                 goto put_err;
1226         return page;
1227
1228 put_err:
1229         f2fs_put_page(page, 1);
1230         return ERR_PTR(err);
1231 }
1232
1233 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index)
1234 {
1235         struct address_space *mapping = inode->i_mapping;
1236         struct page *page;
1237
1238         page = find_get_page(mapping, index);
1239         if (page && PageUptodate(page))
1240                 return page;
1241         f2fs_put_page(page, 0);
1242
1243         page = f2fs_get_read_data_page(inode, index, 0, false);
1244         if (IS_ERR(page))
1245                 return page;
1246
1247         if (PageUptodate(page))
1248                 return page;
1249
1250         wait_on_page_locked(page);
1251         if (unlikely(!PageUptodate(page))) {
1252                 f2fs_put_page(page, 0);
1253                 return ERR_PTR(-EIO);
1254         }
1255         return page;
1256 }
1257
1258 /*
1259  * If it tries to access a hole, return an error.
1260  * Because, the callers, functions in dir.c and GC, should be able to know
1261  * whether this page exists or not.
1262  */
1263 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
1264                                                         bool for_write)
1265 {
1266         struct address_space *mapping = inode->i_mapping;
1267         struct page *page;
1268 repeat:
1269         page = f2fs_get_read_data_page(inode, index, 0, for_write);
1270         if (IS_ERR(page))
1271                 return page;
1272
1273         /* wait for read completion */
1274         lock_page(page);
1275         if (unlikely(page->mapping != mapping)) {
1276                 f2fs_put_page(page, 1);
1277                 goto repeat;
1278         }
1279         if (unlikely(!PageUptodate(page))) {
1280                 f2fs_put_page(page, 1);
1281                 return ERR_PTR(-EIO);
1282         }
1283         return page;
1284 }
1285
1286 /*
1287  * Caller ensures that this data page is never allocated.
1288  * A new zero-filled data page is allocated in the page cache.
1289  *
1290  * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1291  * f2fs_unlock_op().
1292  * Note that, ipage is set only by make_empty_dir, and if any error occur,
1293  * ipage should be released by this function.
1294  */
1295 struct page *f2fs_get_new_data_page(struct inode *inode,
1296                 struct page *ipage, pgoff_t index, bool new_i_size)
1297 {
1298         struct address_space *mapping = inode->i_mapping;
1299         struct page *page;
1300         struct dnode_of_data dn;
1301         int err;
1302
1303         page = f2fs_grab_cache_page(mapping, index, true);
1304         if (!page) {
1305                 /*
1306                  * before exiting, we should make sure ipage will be released
1307                  * if any error occur.
1308                  */
1309                 f2fs_put_page(ipage, 1);
1310                 return ERR_PTR(-ENOMEM);
1311         }
1312
1313         set_new_dnode(&dn, inode, ipage, NULL, 0);
1314         err = f2fs_reserve_block(&dn, index);
1315         if (err) {
1316                 f2fs_put_page(page, 1);
1317                 return ERR_PTR(err);
1318         }
1319         if (!ipage)
1320                 f2fs_put_dnode(&dn);
1321
1322         if (PageUptodate(page))
1323                 goto got_it;
1324
1325         if (dn.data_blkaddr == NEW_ADDR) {
1326                 zero_user_segment(page, 0, PAGE_SIZE);
1327                 if (!PageUptodate(page))
1328                         SetPageUptodate(page);
1329         } else {
1330                 f2fs_put_page(page, 1);
1331
1332                 /* if ipage exists, blkaddr should be NEW_ADDR */
1333                 f2fs_bug_on(F2FS_I_SB(inode), ipage);
1334                 page = f2fs_get_lock_data_page(inode, index, true);
1335                 if (IS_ERR(page))
1336                         return page;
1337         }
1338 got_it:
1339         if (new_i_size && i_size_read(inode) <
1340                                 ((loff_t)(index + 1) << PAGE_SHIFT))
1341                 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
1342         return page;
1343 }
1344
1345 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
1346 {
1347         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1348         struct f2fs_summary sum;
1349         struct node_info ni;
1350         block_t old_blkaddr;
1351         blkcnt_t count = 1;
1352         int err;
1353
1354         if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1355                 return -EPERM;
1356
1357         err = f2fs_get_node_info(sbi, dn->nid, &ni);
1358         if (err)
1359                 return err;
1360
1361         dn->data_blkaddr = f2fs_data_blkaddr(dn);
1362         if (dn->data_blkaddr != NULL_ADDR)
1363                 goto alloc;
1364
1365         if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1366                 return err;
1367
1368 alloc:
1369         set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1370         old_blkaddr = dn->data_blkaddr;
1371         f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr,
1372                                 &sum, seg_type, NULL);
1373         if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
1374                 invalidate_mapping_pages(META_MAPPING(sbi),
1375                                         old_blkaddr, old_blkaddr);
1376                 f2fs_invalidate_compress_page(sbi, old_blkaddr);
1377         }
1378         f2fs_update_data_blkaddr(dn, dn->data_blkaddr);
1379
1380         /*
1381          * i_size will be updated by direct_IO. Otherwise, we'll get stale
1382          * data from unwritten block via dio_read.
1383          */
1384         return 0;
1385 }
1386
1387 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
1388 {
1389         struct inode *inode = file_inode(iocb->ki_filp);
1390         struct f2fs_map_blocks map;
1391         int flag;
1392         int err = 0;
1393         bool direct_io = iocb->ki_flags & IOCB_DIRECT;
1394
1395         map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
1396         map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from));
1397         if (map.m_len > map.m_lblk)
1398                 map.m_len -= map.m_lblk;
1399         else
1400                 map.m_len = 0;
1401
1402         map.m_next_pgofs = NULL;
1403         map.m_next_extent = NULL;
1404         map.m_seg_type = NO_CHECK_TYPE;
1405         map.m_may_create = true;
1406
1407         if (direct_io) {
1408                 map.m_seg_type = f2fs_rw_hint_to_seg_type(iocb->ki_hint);
1409                 flag = f2fs_force_buffered_io(inode, iocb, from) ?
1410                                         F2FS_GET_BLOCK_PRE_AIO :
1411                                         F2FS_GET_BLOCK_PRE_DIO;
1412                 goto map_blocks;
1413         }
1414         if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA(inode)) {
1415                 err = f2fs_convert_inline_inode(inode);
1416                 if (err)
1417                         return err;
1418         }
1419         if (f2fs_has_inline_data(inode))
1420                 return err;
1421
1422         flag = F2FS_GET_BLOCK_PRE_AIO;
1423
1424 map_blocks:
1425         err = f2fs_map_blocks(inode, &map, 1, flag);
1426         if (map.m_len > 0 && err == -ENOSPC) {
1427                 if (!direct_io)
1428                         set_inode_flag(inode, FI_NO_PREALLOC);
1429                 err = 0;
1430         }
1431         return err;
1432 }
1433
1434 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock)
1435 {
1436         if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1437                 if (lock)
1438                         down_read(&sbi->node_change);
1439                 else
1440                         up_read(&sbi->node_change);
1441         } else {
1442                 if (lock)
1443                         f2fs_lock_op(sbi);
1444                 else
1445                         f2fs_unlock_op(sbi);
1446         }
1447 }
1448
1449 /*
1450  * f2fs_map_blocks() tries to find or build mapping relationship which
1451  * maps continuous logical blocks to physical blocks, and return such
1452  * info via f2fs_map_blocks structure.
1453  */
1454 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
1455                                                 int create, int flag)
1456 {
1457         unsigned int maxblocks = map->m_len;
1458         struct dnode_of_data dn;
1459         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1460         int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1461         pgoff_t pgofs, end_offset, end;
1462         int err = 0, ofs = 1;
1463         unsigned int ofs_in_node, last_ofs_in_node;
1464         blkcnt_t prealloc;
1465         struct extent_info ei = {0, };
1466         block_t blkaddr;
1467         unsigned int start_pgofs;
1468         int bidx = 0;
1469
1470         if (!maxblocks)
1471                 return 0;
1472
1473         map->m_bdev = inode->i_sb->s_bdev;
1474         map->m_multidev_dio =
1475                 f2fs_allow_multi_device_dio(F2FS_I_SB(inode), flag);
1476
1477         map->m_len = 0;
1478         map->m_flags = 0;
1479
1480         /* it only supports block size == page size */
1481         pgofs = (pgoff_t)map->m_lblk;
1482         end = pgofs + maxblocks;
1483
1484         if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
1485                 if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO &&
1486                                                         map->m_may_create)
1487                         goto next_dnode;
1488
1489                 map->m_pblk = ei.blk + pgofs - ei.fofs;
1490                 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
1491                 map->m_flags = F2FS_MAP_MAPPED;
1492                 if (map->m_next_extent)
1493                         *map->m_next_extent = pgofs + map->m_len;
1494
1495                 /* for hardware encryption, but to avoid potential issue in future */
1496                 if (flag == F2FS_GET_BLOCK_DIO)
1497                         f2fs_wait_on_block_writeback_range(inode,
1498                                                 map->m_pblk, map->m_len);
1499
1500                 if (map->m_multidev_dio) {
1501                         block_t blk_addr = map->m_pblk;
1502
1503                         bidx = f2fs_target_device_index(sbi, map->m_pblk);
1504
1505                         map->m_bdev = FDEV(bidx).bdev;
1506                         map->m_pblk -= FDEV(bidx).start_blk;
1507                         map->m_len = min(map->m_len,
1508                                 FDEV(bidx).end_blk + 1 - map->m_pblk);
1509
1510                         if (map->m_may_create)
1511                                 f2fs_update_device_state(sbi, inode->i_ino,
1512                                                         blk_addr, map->m_len);
1513                 }
1514                 goto out;
1515         }
1516
1517 next_dnode:
1518         if (map->m_may_create)
1519                 f2fs_do_map_lock(sbi, flag, true);
1520
1521         /* When reading holes, we need its node page */
1522         set_new_dnode(&dn, inode, NULL, NULL, 0);
1523         err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1524         if (err) {
1525                 if (flag == F2FS_GET_BLOCK_BMAP)
1526                         map->m_pblk = 0;
1527
1528                 if (err == -ENOENT) {
1529                         /*
1530                          * There is one exceptional case that read_node_page()
1531                          * may return -ENOENT due to filesystem has been
1532                          * shutdown or cp_error, so force to convert error
1533                          * number to EIO for such case.
1534                          */
1535                         if (map->m_may_create &&
1536                                 (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
1537                                 f2fs_cp_error(sbi))) {
1538                                 err = -EIO;
1539                                 goto unlock_out;
1540                         }
1541
1542                         err = 0;
1543                         if (map->m_next_pgofs)
1544                                 *map->m_next_pgofs =
1545                                         f2fs_get_next_page_offset(&dn, pgofs);
1546                         if (map->m_next_extent)
1547                                 *map->m_next_extent =
1548                                         f2fs_get_next_page_offset(&dn, pgofs);
1549                 }
1550                 goto unlock_out;
1551         }
1552
1553         start_pgofs = pgofs;
1554         prealloc = 0;
1555         last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1556         end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1557
1558 next_block:
1559         blkaddr = f2fs_data_blkaddr(&dn);
1560
1561         if (__is_valid_data_blkaddr(blkaddr) &&
1562                 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1563                 err = -EFSCORRUPTED;
1564                 goto sync_out;
1565         }
1566
1567         if (__is_valid_data_blkaddr(blkaddr)) {
1568                 /* use out-place-update for driect IO under LFS mode */
1569                 if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO &&
1570                                                         map->m_may_create) {
1571                         err = __allocate_data_block(&dn, map->m_seg_type);
1572                         if (err)
1573                                 goto sync_out;
1574                         blkaddr = dn.data_blkaddr;
1575                         set_inode_flag(inode, FI_APPEND_WRITE);
1576                 }
1577         } else {
1578                 if (create) {
1579                         if (unlikely(f2fs_cp_error(sbi))) {
1580                                 err = -EIO;
1581                                 goto sync_out;
1582                         }
1583                         if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1584                                 if (blkaddr == NULL_ADDR) {
1585                                         prealloc++;
1586                                         last_ofs_in_node = dn.ofs_in_node;
1587                                 }
1588                         } else {
1589                                 WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO &&
1590                                         flag != F2FS_GET_BLOCK_DIO);
1591                                 err = __allocate_data_block(&dn,
1592                                                         map->m_seg_type);
1593                                 if (!err)
1594                                         set_inode_flag(inode, FI_APPEND_WRITE);
1595                         }
1596                         if (err)
1597                                 goto sync_out;
1598                         map->m_flags |= F2FS_MAP_NEW;
1599                         blkaddr = dn.data_blkaddr;
1600                 } else {
1601                         if (f2fs_compressed_file(inode) &&
1602                                         f2fs_sanity_check_cluster(&dn) &&
1603                                         (flag != F2FS_GET_BLOCK_FIEMAP ||
1604                                         IS_ENABLED(CONFIG_F2FS_CHECK_FS))) {
1605                                 err = -EFSCORRUPTED;
1606                                 goto sync_out;
1607                         }
1608                         if (flag == F2FS_GET_BLOCK_BMAP) {
1609                                 map->m_pblk = 0;
1610                                 goto sync_out;
1611                         }
1612                         if (flag == F2FS_GET_BLOCK_PRECACHE)
1613                                 goto sync_out;
1614                         if (flag == F2FS_GET_BLOCK_FIEMAP &&
1615                                                 blkaddr == NULL_ADDR) {
1616                                 if (map->m_next_pgofs)
1617                                         *map->m_next_pgofs = pgofs + 1;
1618                                 goto sync_out;
1619                         }
1620                         if (flag != F2FS_GET_BLOCK_FIEMAP) {
1621                                 /* for defragment case */
1622                                 if (map->m_next_pgofs)
1623                                         *map->m_next_pgofs = pgofs + 1;
1624                                 goto sync_out;
1625                         }
1626                 }
1627         }
1628
1629         if (flag == F2FS_GET_BLOCK_PRE_AIO)
1630                 goto skip;
1631
1632         if (map->m_multidev_dio)
1633                 bidx = f2fs_target_device_index(sbi, blkaddr);
1634
1635         if (map->m_len == 0) {
1636                 /* preallocated unwritten block should be mapped for fiemap. */
1637                 if (blkaddr == NEW_ADDR)
1638                         map->m_flags |= F2FS_MAP_UNWRITTEN;
1639                 map->m_flags |= F2FS_MAP_MAPPED;
1640
1641                 map->m_pblk = blkaddr;
1642                 map->m_len = 1;
1643
1644                 if (map->m_multidev_dio)
1645                         map->m_bdev = FDEV(bidx).bdev;
1646         } else if ((map->m_pblk != NEW_ADDR &&
1647                         blkaddr == (map->m_pblk + ofs)) ||
1648                         (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1649                         flag == F2FS_GET_BLOCK_PRE_DIO) {
1650                 if (map->m_multidev_dio && map->m_bdev != FDEV(bidx).bdev)
1651                         goto sync_out;
1652                 ofs++;
1653                 map->m_len++;
1654         } else {
1655                 goto sync_out;
1656         }
1657
1658 skip:
1659         dn.ofs_in_node++;
1660         pgofs++;
1661
1662         /* preallocate blocks in batch for one dnode page */
1663         if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1664                         (pgofs == end || dn.ofs_in_node == end_offset)) {
1665
1666                 dn.ofs_in_node = ofs_in_node;
1667                 err = f2fs_reserve_new_blocks(&dn, prealloc);
1668                 if (err)
1669                         goto sync_out;
1670
1671                 map->m_len += dn.ofs_in_node - ofs_in_node;
1672                 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1673                         err = -ENOSPC;
1674                         goto sync_out;
1675                 }
1676                 dn.ofs_in_node = end_offset;
1677         }
1678
1679         if (pgofs >= end)
1680                 goto sync_out;
1681         else if (dn.ofs_in_node < end_offset)
1682                 goto next_block;
1683
1684         if (flag == F2FS_GET_BLOCK_PRECACHE) {
1685                 if (map->m_flags & F2FS_MAP_MAPPED) {
1686                         unsigned int ofs = start_pgofs - map->m_lblk;
1687
1688                         f2fs_update_extent_cache_range(&dn,
1689                                 start_pgofs, map->m_pblk + ofs,
1690                                 map->m_len - ofs);
1691                 }
1692         }
1693
1694         f2fs_put_dnode(&dn);
1695
1696         if (map->m_may_create) {
1697                 f2fs_do_map_lock(sbi, flag, false);
1698                 f2fs_balance_fs(sbi, dn.node_changed);
1699         }
1700         goto next_dnode;
1701
1702 sync_out:
1703
1704         if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED) {
1705                 /*
1706                  * for hardware encryption, but to avoid potential issue
1707                  * in future
1708                  */
1709                 f2fs_wait_on_block_writeback_range(inode,
1710                                                 map->m_pblk, map->m_len);
1711
1712                 if (map->m_multidev_dio) {
1713                         block_t blk_addr = map->m_pblk;
1714
1715                         bidx = f2fs_target_device_index(sbi, map->m_pblk);
1716
1717                         map->m_bdev = FDEV(bidx).bdev;
1718                         map->m_pblk -= FDEV(bidx).start_blk;
1719
1720                         if (map->m_may_create)
1721                                 f2fs_update_device_state(sbi, inode->i_ino,
1722                                                         blk_addr, map->m_len);
1723
1724                         f2fs_bug_on(sbi, blk_addr + map->m_len >
1725                                                 FDEV(bidx).end_blk + 1);
1726                 }
1727         }
1728
1729         if (flag == F2FS_GET_BLOCK_PRECACHE) {
1730                 if (map->m_flags & F2FS_MAP_MAPPED) {
1731                         unsigned int ofs = start_pgofs - map->m_lblk;
1732
1733                         f2fs_update_extent_cache_range(&dn,
1734                                 start_pgofs, map->m_pblk + ofs,
1735                                 map->m_len - ofs);
1736                 }
1737                 if (map->m_next_extent)
1738                         *map->m_next_extent = pgofs + 1;
1739         }
1740         f2fs_put_dnode(&dn);
1741 unlock_out:
1742         if (map->m_may_create) {
1743                 f2fs_do_map_lock(sbi, flag, false);
1744                 f2fs_balance_fs(sbi, dn.node_changed);
1745         }
1746 out:
1747         trace_f2fs_map_blocks(inode, map, create, flag, err);
1748         return err;
1749 }
1750
1751 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1752 {
1753         struct f2fs_map_blocks map;
1754         block_t last_lblk;
1755         int err;
1756
1757         if (pos + len > i_size_read(inode))
1758                 return false;
1759
1760         map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1761         map.m_next_pgofs = NULL;
1762         map.m_next_extent = NULL;
1763         map.m_seg_type = NO_CHECK_TYPE;
1764         map.m_may_create = false;
1765         last_lblk = F2FS_BLK_ALIGN(pos + len);
1766
1767         while (map.m_lblk < last_lblk) {
1768                 map.m_len = last_lblk - map.m_lblk;
1769                 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
1770                 if (err || map.m_len == 0)
1771                         return false;
1772                 map.m_lblk += map.m_len;
1773         }
1774         return true;
1775 }
1776
1777 static inline u64 bytes_to_blks(struct inode *inode, u64 bytes)
1778 {
1779         return (bytes >> inode->i_blkbits);
1780 }
1781
1782 static inline u64 blks_to_bytes(struct inode *inode, u64 blks)
1783 {
1784         return (blks << inode->i_blkbits);
1785 }
1786
1787 static int __get_data_block(struct inode *inode, sector_t iblock,
1788                         struct buffer_head *bh, int create, int flag,
1789                         pgoff_t *next_pgofs, int seg_type, bool may_write)
1790 {
1791         struct f2fs_map_blocks map;
1792         int err;
1793
1794         map.m_lblk = iblock;
1795         map.m_len = bytes_to_blks(inode, bh->b_size);
1796         map.m_next_pgofs = next_pgofs;
1797         map.m_next_extent = NULL;
1798         map.m_seg_type = seg_type;
1799         map.m_may_create = may_write;
1800
1801         err = f2fs_map_blocks(inode, &map, create, flag);
1802         if (!err) {
1803                 map_bh(bh, inode->i_sb, map.m_pblk);
1804                 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
1805                 bh->b_size = blks_to_bytes(inode, map.m_len);
1806
1807                 if (map.m_multidev_dio)
1808                         bh->b_bdev = map.m_bdev;
1809         }
1810         return err;
1811 }
1812
1813 static int get_data_block_dio_write(struct inode *inode, sector_t iblock,
1814                         struct buffer_head *bh_result, int create)
1815 {
1816         return __get_data_block(inode, iblock, bh_result, create,
1817                                 F2FS_GET_BLOCK_DIO, NULL,
1818                                 f2fs_rw_hint_to_seg_type(inode->i_write_hint),
1819                                 true);
1820 }
1821
1822 static int get_data_block_dio(struct inode *inode, sector_t iblock,
1823                         struct buffer_head *bh_result, int create)
1824 {
1825         return __get_data_block(inode, iblock, bh_result, create,
1826                                 F2FS_GET_BLOCK_DIO, NULL,
1827                                 f2fs_rw_hint_to_seg_type(inode->i_write_hint),
1828                                 false);
1829 }
1830
1831 static int f2fs_xattr_fiemap(struct inode *inode,
1832                                 struct fiemap_extent_info *fieinfo)
1833 {
1834         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1835         struct page *page;
1836         struct node_info ni;
1837         __u64 phys = 0, len;
1838         __u32 flags;
1839         nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1840         int err = 0;
1841
1842         if (f2fs_has_inline_xattr(inode)) {
1843                 int offset;
1844
1845                 page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1846                                                 inode->i_ino, false);
1847                 if (!page)
1848                         return -ENOMEM;
1849
1850                 err = f2fs_get_node_info(sbi, inode->i_ino, &ni);
1851                 if (err) {
1852                         f2fs_put_page(page, 1);
1853                         return err;
1854                 }
1855
1856                 phys = blks_to_bytes(inode, ni.blk_addr);
1857                 offset = offsetof(struct f2fs_inode, i_addr) +
1858                                         sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1859                                         get_inline_xattr_addrs(inode));
1860
1861                 phys += offset;
1862                 len = inline_xattr_size(inode);
1863
1864                 f2fs_put_page(page, 1);
1865
1866                 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1867
1868                 if (!xnid)
1869                         flags |= FIEMAP_EXTENT_LAST;
1870
1871                 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1872                 trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1873                 if (err || err == 1)
1874                         return err;
1875         }
1876
1877         if (xnid) {
1878                 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1879                 if (!page)
1880                         return -ENOMEM;
1881
1882                 err = f2fs_get_node_info(sbi, xnid, &ni);
1883                 if (err) {
1884                         f2fs_put_page(page, 1);
1885                         return err;
1886                 }
1887
1888                 phys = blks_to_bytes(inode, ni.blk_addr);
1889                 len = inode->i_sb->s_blocksize;
1890
1891                 f2fs_put_page(page, 1);
1892
1893                 flags = FIEMAP_EXTENT_LAST;
1894         }
1895
1896         if (phys) {
1897                 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1898                 trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1899         }
1900
1901         return (err < 0 ? err : 0);
1902 }
1903
1904 static loff_t max_inode_blocks(struct inode *inode)
1905 {
1906         loff_t result = ADDRS_PER_INODE(inode);
1907         loff_t leaf_count = ADDRS_PER_BLOCK(inode);
1908
1909         /* two direct node blocks */
1910         result += (leaf_count * 2);
1911
1912         /* two indirect node blocks */
1913         leaf_count *= NIDS_PER_BLOCK;
1914         result += (leaf_count * 2);
1915
1916         /* one double indirect node block */
1917         leaf_count *= NIDS_PER_BLOCK;
1918         result += leaf_count;
1919
1920         return result;
1921 }
1922
1923 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1924                 u64 start, u64 len)
1925 {
1926         struct f2fs_map_blocks map;
1927         sector_t start_blk, last_blk;
1928         pgoff_t next_pgofs;
1929         u64 logical = 0, phys = 0, size = 0;
1930         u32 flags = 0;
1931         int ret = 0;
1932         bool compr_cluster = false, compr_appended;
1933         unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
1934         unsigned int count_in_cluster = 0;
1935         loff_t maxbytes;
1936
1937         if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1938                 ret = f2fs_precache_extents(inode);
1939                 if (ret)
1940                         return ret;
1941         }
1942
1943         ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR);
1944         if (ret)
1945                 return ret;
1946
1947         inode_lock(inode);
1948
1949         maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
1950         if (start > maxbytes) {
1951                 ret = -EFBIG;
1952                 goto out;
1953         }
1954
1955         if (len > maxbytes || (maxbytes - len) < start)
1956                 len = maxbytes - start;
1957
1958         if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1959                 ret = f2fs_xattr_fiemap(inode, fieinfo);
1960                 goto out;
1961         }
1962
1963         if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
1964                 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1965                 if (ret != -EAGAIN)
1966                         goto out;
1967         }
1968
1969         if (bytes_to_blks(inode, len) == 0)
1970                 len = blks_to_bytes(inode, 1);
1971
1972         start_blk = bytes_to_blks(inode, start);
1973         last_blk = bytes_to_blks(inode, start + len - 1);
1974
1975 next:
1976         memset(&map, 0, sizeof(map));
1977         map.m_lblk = start_blk;
1978         map.m_len = bytes_to_blks(inode, len);
1979         map.m_next_pgofs = &next_pgofs;
1980         map.m_seg_type = NO_CHECK_TYPE;
1981
1982         if (compr_cluster) {
1983                 map.m_lblk += 1;
1984                 map.m_len = cluster_size - count_in_cluster;
1985         }
1986
1987         ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP);
1988         if (ret)
1989                 goto out;
1990
1991         /* HOLE */
1992         if (!compr_cluster && !(map.m_flags & F2FS_MAP_FLAGS)) {
1993                 start_blk = next_pgofs;
1994
1995                 if (blks_to_bytes(inode, start_blk) < blks_to_bytes(inode,
1996                                                 max_inode_blocks(inode)))
1997                         goto prep_next;
1998
1999                 flags |= FIEMAP_EXTENT_LAST;
2000         }
2001
2002         compr_appended = false;
2003         /* In a case of compressed cluster, append this to the last extent */
2004         if (compr_cluster && ((map.m_flags & F2FS_MAP_UNWRITTEN) ||
2005                         !(map.m_flags & F2FS_MAP_FLAGS))) {
2006                 compr_appended = true;
2007                 goto skip_fill;
2008         }
2009
2010         if (size) {
2011                 flags |= FIEMAP_EXTENT_MERGED;
2012                 if (IS_ENCRYPTED(inode))
2013                         flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
2014
2015                 ret = fiemap_fill_next_extent(fieinfo, logical,
2016                                 phys, size, flags);
2017                 trace_f2fs_fiemap(inode, logical, phys, size, flags, ret);
2018                 if (ret)
2019                         goto out;
2020                 size = 0;
2021         }
2022
2023         if (start_blk > last_blk)
2024                 goto out;
2025
2026 skip_fill:
2027         if (map.m_pblk == COMPRESS_ADDR) {
2028                 compr_cluster = true;
2029                 count_in_cluster = 1;
2030         } else if (compr_appended) {
2031                 unsigned int appended_blks = cluster_size -
2032                                                 count_in_cluster + 1;
2033                 size += blks_to_bytes(inode, appended_blks);
2034                 start_blk += appended_blks;
2035                 compr_cluster = false;
2036         } else {
2037                 logical = blks_to_bytes(inode, start_blk);
2038                 phys = __is_valid_data_blkaddr(map.m_pblk) ?
2039                         blks_to_bytes(inode, map.m_pblk) : 0;
2040                 size = blks_to_bytes(inode, map.m_len);
2041                 flags = 0;
2042
2043                 if (compr_cluster) {
2044                         flags = FIEMAP_EXTENT_ENCODED;
2045                         count_in_cluster += map.m_len;
2046                         if (count_in_cluster == cluster_size) {
2047                                 compr_cluster = false;
2048                                 size += blks_to_bytes(inode, 1);
2049                         }
2050                 } else if (map.m_flags & F2FS_MAP_UNWRITTEN) {
2051                         flags = FIEMAP_EXTENT_UNWRITTEN;
2052                 }
2053
2054                 start_blk += bytes_to_blks(inode, size);
2055         }
2056
2057 prep_next:
2058         cond_resched();
2059         if (fatal_signal_pending(current))
2060                 ret = -EINTR;
2061         else
2062                 goto next;
2063 out:
2064         if (ret == 1)
2065                 ret = 0;
2066
2067         inode_unlock(inode);
2068         return ret;
2069 }
2070
2071 static inline loff_t f2fs_readpage_limit(struct inode *inode)
2072 {
2073         if (IS_ENABLED(CONFIG_FS_VERITY) &&
2074             (IS_VERITY(inode) || f2fs_verity_in_progress(inode)))
2075                 return inode->i_sb->s_maxbytes;
2076
2077         return i_size_read(inode);
2078 }
2079
2080 static int f2fs_read_single_page(struct inode *inode, struct page *page,
2081                                         unsigned nr_pages,
2082                                         struct f2fs_map_blocks *map,
2083                                         struct bio **bio_ret,
2084                                         sector_t *last_block_in_bio,
2085                                         bool is_readahead)
2086 {
2087         struct bio *bio = *bio_ret;
2088         const unsigned blocksize = blks_to_bytes(inode, 1);
2089         sector_t block_in_file;
2090         sector_t last_block;
2091         sector_t last_block_in_file;
2092         sector_t block_nr;
2093         int ret = 0;
2094
2095         block_in_file = (sector_t)page_index(page);
2096         last_block = block_in_file + nr_pages;
2097         last_block_in_file = bytes_to_blks(inode,
2098                         f2fs_readpage_limit(inode) + blocksize - 1);
2099         if (last_block > last_block_in_file)
2100                 last_block = last_block_in_file;
2101
2102         /* just zeroing out page which is beyond EOF */
2103         if (block_in_file >= last_block)
2104                 goto zero_out;
2105         /*
2106          * Map blocks using the previous result first.
2107          */
2108         if ((map->m_flags & F2FS_MAP_MAPPED) &&
2109                         block_in_file > map->m_lblk &&
2110                         block_in_file < (map->m_lblk + map->m_len))
2111                 goto got_it;
2112
2113         /*
2114          * Then do more f2fs_map_blocks() calls until we are
2115          * done with this page.
2116          */
2117         map->m_lblk = block_in_file;
2118         map->m_len = last_block - block_in_file;
2119
2120         ret = f2fs_map_blocks(inode, map, 0, F2FS_GET_BLOCK_DEFAULT);
2121         if (ret)
2122                 goto out;
2123 got_it:
2124         if ((map->m_flags & F2FS_MAP_MAPPED)) {
2125                 block_nr = map->m_pblk + block_in_file - map->m_lblk;
2126                 SetPageMappedToDisk(page);
2127
2128                 if (!PageUptodate(page) && (!PageSwapCache(page) &&
2129                                         !cleancache_get_page(page))) {
2130                         SetPageUptodate(page);
2131                         goto confused;
2132                 }
2133
2134                 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
2135                                                 DATA_GENERIC_ENHANCE_READ)) {
2136                         ret = -EFSCORRUPTED;
2137                         goto out;
2138                 }
2139         } else {
2140 zero_out:
2141                 zero_user_segment(page, 0, PAGE_SIZE);
2142                 if (f2fs_need_verity(inode, page->index) &&
2143                     !fsverity_verify_page(page)) {
2144                         ret = -EIO;
2145                         goto out;
2146                 }
2147                 if (!PageUptodate(page))
2148                         SetPageUptodate(page);
2149                 unlock_page(page);
2150                 goto out;
2151         }
2152
2153         /*
2154          * This page will go to BIO.  Do we need to send this
2155          * BIO off first?
2156          */
2157         if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio,
2158                                        *last_block_in_bio, block_nr) ||
2159                     !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2160 submit_and_realloc:
2161                 __submit_bio(F2FS_I_SB(inode), bio, DATA);
2162                 bio = NULL;
2163         }
2164         if (bio == NULL) {
2165                 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
2166                                 is_readahead ? REQ_RAHEAD : 0, page->index,
2167                                 false);
2168                 if (IS_ERR(bio)) {
2169                         ret = PTR_ERR(bio);
2170                         bio = NULL;
2171                         goto out;
2172                 }
2173         }
2174
2175         /*
2176          * If the page is under writeback, we need to wait for
2177          * its completion to see the correct decrypted data.
2178          */
2179         f2fs_wait_on_block_writeback(inode, block_nr);
2180
2181         if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2182                 goto submit_and_realloc;
2183
2184         inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
2185         f2fs_update_iostat(F2FS_I_SB(inode), FS_DATA_READ_IO, F2FS_BLKSIZE);
2186         ClearPageError(page);
2187         *last_block_in_bio = block_nr;
2188         goto out;
2189 confused:
2190         if (bio) {
2191                 __submit_bio(F2FS_I_SB(inode), bio, DATA);
2192                 bio = NULL;
2193         }
2194         unlock_page(page);
2195 out:
2196         *bio_ret = bio;
2197         return ret;
2198 }
2199
2200 #ifdef CONFIG_F2FS_FS_COMPRESSION
2201 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
2202                                 unsigned nr_pages, sector_t *last_block_in_bio,
2203                                 bool is_readahead, bool for_write)
2204 {
2205         struct dnode_of_data dn;
2206         struct inode *inode = cc->inode;
2207         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2208         struct bio *bio = *bio_ret;
2209         unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size;
2210         sector_t last_block_in_file;
2211         const unsigned blocksize = blks_to_bytes(inode, 1);
2212         struct decompress_io_ctx *dic = NULL;
2213         struct extent_info ei = {0, };
2214         bool from_dnode = true;
2215         int i;
2216         int ret = 0;
2217
2218         f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc));
2219
2220         last_block_in_file = bytes_to_blks(inode,
2221                         f2fs_readpage_limit(inode) + blocksize - 1);
2222
2223         /* get rid of pages beyond EOF */
2224         for (i = 0; i < cc->cluster_size; i++) {
2225                 struct page *page = cc->rpages[i];
2226
2227                 if (!page)
2228                         continue;
2229                 if ((sector_t)page->index >= last_block_in_file) {
2230                         zero_user_segment(page, 0, PAGE_SIZE);
2231                         if (!PageUptodate(page))
2232                                 SetPageUptodate(page);
2233                 } else if (!PageUptodate(page)) {
2234                         continue;
2235                 }
2236                 unlock_page(page);
2237                 if (for_write)
2238                         put_page(page);
2239                 cc->rpages[i] = NULL;
2240                 cc->nr_rpages--;
2241         }
2242
2243         /* we are done since all pages are beyond EOF */
2244         if (f2fs_cluster_is_empty(cc))
2245                 goto out;
2246
2247         if (f2fs_lookup_extent_cache(inode, start_idx, &ei))
2248                 from_dnode = false;
2249
2250         if (!from_dnode)
2251                 goto skip_reading_dnode;
2252
2253         set_new_dnode(&dn, inode, NULL, NULL, 0);
2254         ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
2255         if (ret)
2256                 goto out;
2257
2258         f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR);
2259
2260 skip_reading_dnode:
2261         for (i = 1; i < cc->cluster_size; i++) {
2262                 block_t blkaddr;
2263
2264                 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2265                                         dn.ofs_in_node + i) :
2266                                         ei.blk + i - 1;
2267
2268                 if (!__is_valid_data_blkaddr(blkaddr))
2269                         break;
2270
2271                 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
2272                         ret = -EFAULT;
2273                         goto out_put_dnode;
2274                 }
2275                 cc->nr_cpages++;
2276
2277                 if (!from_dnode && i >= ei.c_len)
2278                         break;
2279         }
2280
2281         /* nothing to decompress */
2282         if (cc->nr_cpages == 0) {
2283                 ret = 0;
2284                 goto out_put_dnode;
2285         }
2286
2287         dic = f2fs_alloc_dic(cc);
2288         if (IS_ERR(dic)) {
2289                 ret = PTR_ERR(dic);
2290                 goto out_put_dnode;
2291         }
2292
2293         for (i = 0; i < cc->nr_cpages; i++) {
2294                 struct page *page = dic->cpages[i];
2295                 block_t blkaddr;
2296                 struct bio_post_read_ctx *ctx;
2297
2298                 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2299                                         dn.ofs_in_node + i + 1) :
2300                                         ei.blk + i;
2301
2302                 f2fs_wait_on_block_writeback(inode, blkaddr);
2303
2304                 if (f2fs_load_compressed_page(sbi, page, blkaddr)) {
2305                         if (atomic_dec_and_test(&dic->remaining_pages))
2306                                 f2fs_decompress_cluster(dic);
2307                         continue;
2308                 }
2309
2310                 if (bio && (!page_is_mergeable(sbi, bio,
2311                                         *last_block_in_bio, blkaddr) ||
2312                     !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2313 submit_and_realloc:
2314                         __submit_bio(sbi, bio, DATA);
2315                         bio = NULL;
2316                 }
2317
2318                 if (!bio) {
2319                         bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages,
2320                                         is_readahead ? REQ_RAHEAD : 0,
2321                                         page->index, for_write);
2322                         if (IS_ERR(bio)) {
2323                                 ret = PTR_ERR(bio);
2324                                 f2fs_decompress_end_io(dic, ret);
2325                                 f2fs_put_dnode(&dn);
2326                                 *bio_ret = NULL;
2327                                 return ret;
2328                         }
2329                 }
2330
2331                 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2332                         goto submit_and_realloc;
2333
2334                 ctx = get_post_read_ctx(bio);
2335                 ctx->enabled_steps |= STEP_DECOMPRESS;
2336                 refcount_inc(&dic->refcnt);
2337
2338                 inc_page_count(sbi, F2FS_RD_DATA);
2339                 f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE);
2340                 f2fs_update_iostat(sbi, FS_CDATA_READ_IO, F2FS_BLKSIZE);
2341                 ClearPageError(page);
2342                 *last_block_in_bio = blkaddr;
2343         }
2344
2345         if (from_dnode)
2346                 f2fs_put_dnode(&dn);
2347
2348         *bio_ret = bio;
2349         return 0;
2350
2351 out_put_dnode:
2352         if (from_dnode)
2353                 f2fs_put_dnode(&dn);
2354 out:
2355         for (i = 0; i < cc->cluster_size; i++) {
2356                 if (cc->rpages[i]) {
2357                         ClearPageUptodate(cc->rpages[i]);
2358                         ClearPageError(cc->rpages[i]);
2359                         unlock_page(cc->rpages[i]);
2360                 }
2361         }
2362         *bio_ret = bio;
2363         return ret;
2364 }
2365 #endif
2366
2367 /*
2368  * This function was originally taken from fs/mpage.c, and customized for f2fs.
2369  * Major change was from block_size == page_size in f2fs by default.
2370  */
2371 static int f2fs_mpage_readpages(struct inode *inode,
2372                 struct readahead_control *rac, struct page *page)
2373 {
2374         struct bio *bio = NULL;
2375         sector_t last_block_in_bio = 0;
2376         struct f2fs_map_blocks map;
2377 #ifdef CONFIG_F2FS_FS_COMPRESSION
2378         struct compress_ctx cc = {
2379                 .inode = inode,
2380                 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2381                 .cluster_size = F2FS_I(inode)->i_cluster_size,
2382                 .cluster_idx = NULL_CLUSTER,
2383                 .rpages = NULL,
2384                 .cpages = NULL,
2385                 .nr_rpages = 0,
2386                 .nr_cpages = 0,
2387         };
2388         pgoff_t nc_cluster_idx = NULL_CLUSTER;
2389 #endif
2390         unsigned nr_pages = rac ? readahead_count(rac) : 1;
2391         unsigned max_nr_pages = nr_pages;
2392         int ret = 0;
2393
2394         map.m_pblk = 0;
2395         map.m_lblk = 0;
2396         map.m_len = 0;
2397         map.m_flags = 0;
2398         map.m_next_pgofs = NULL;
2399         map.m_next_extent = NULL;
2400         map.m_seg_type = NO_CHECK_TYPE;
2401         map.m_may_create = false;
2402
2403         for (; nr_pages; nr_pages--) {
2404                 if (rac) {
2405                         page = readahead_page(rac);
2406                         prefetchw(&page->flags);
2407                 }
2408
2409 #ifdef CONFIG_F2FS_FS_COMPRESSION
2410                 if (f2fs_compressed_file(inode)) {
2411                         /* there are remained comressed pages, submit them */
2412                         if (!f2fs_cluster_can_merge_page(&cc, page->index)) {
2413                                 ret = f2fs_read_multi_pages(&cc, &bio,
2414                                                         max_nr_pages,
2415                                                         &last_block_in_bio,
2416                                                         rac != NULL, false);
2417                                 f2fs_destroy_compress_ctx(&cc, false);
2418                                 if (ret)
2419                                         goto set_error_page;
2420                         }
2421                         if (cc.cluster_idx == NULL_CLUSTER) {
2422                                 if (nc_cluster_idx ==
2423                                         page->index >> cc.log_cluster_size) {
2424                                         goto read_single_page;
2425                                 }
2426
2427                                 ret = f2fs_is_compressed_cluster(inode, page->index);
2428                                 if (ret < 0)
2429                                         goto set_error_page;
2430                                 else if (!ret) {
2431                                         nc_cluster_idx =
2432                                                 page->index >> cc.log_cluster_size;
2433                                         goto read_single_page;
2434                                 }
2435
2436                                 nc_cluster_idx = NULL_CLUSTER;
2437                         }
2438                         ret = f2fs_init_compress_ctx(&cc);
2439                         if (ret)
2440                                 goto set_error_page;
2441
2442                         f2fs_compress_ctx_add_page(&cc, page);
2443
2444                         goto next_page;
2445                 }
2446 read_single_page:
2447 #endif
2448
2449                 ret = f2fs_read_single_page(inode, page, max_nr_pages, &map,
2450                                         &bio, &last_block_in_bio, rac);
2451                 if (ret) {
2452 #ifdef CONFIG_F2FS_FS_COMPRESSION
2453 set_error_page:
2454 #endif
2455                         SetPageError(page);
2456                         zero_user_segment(page, 0, PAGE_SIZE);
2457                         unlock_page(page);
2458                 }
2459 #ifdef CONFIG_F2FS_FS_COMPRESSION
2460 next_page:
2461 #endif
2462                 if (rac)
2463                         put_page(page);
2464
2465 #ifdef CONFIG_F2FS_FS_COMPRESSION
2466                 if (f2fs_compressed_file(inode)) {
2467                         /* last page */
2468                         if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) {
2469                                 ret = f2fs_read_multi_pages(&cc, &bio,
2470                                                         max_nr_pages,
2471                                                         &last_block_in_bio,
2472                                                         rac != NULL, false);
2473                                 f2fs_destroy_compress_ctx(&cc, false);
2474                         }
2475                 }
2476 #endif
2477         }
2478         if (bio)
2479                 __submit_bio(F2FS_I_SB(inode), bio, DATA);
2480         return ret;
2481 }
2482
2483 static int f2fs_read_data_page(struct file *file, struct page *page)
2484 {
2485         struct inode *inode = page_file_mapping(page)->host;
2486         int ret = -EAGAIN;
2487
2488         trace_f2fs_readpage(page, DATA);
2489
2490         if (!f2fs_is_compress_backend_ready(inode)) {
2491                 unlock_page(page);
2492                 return -EOPNOTSUPP;
2493         }
2494
2495         /* If the file has inline data, try to read it directly */
2496         if (f2fs_has_inline_data(inode))
2497                 ret = f2fs_read_inline_data(inode, page);
2498         if (ret == -EAGAIN)
2499                 ret = f2fs_mpage_readpages(inode, NULL, page);
2500         return ret;
2501 }
2502
2503 static void f2fs_readahead(struct readahead_control *rac)
2504 {
2505         struct inode *inode = rac->mapping->host;
2506
2507         trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac));
2508
2509         if (!f2fs_is_compress_backend_ready(inode))
2510                 return;
2511
2512         /* If the file has inline data, skip readpages */
2513         if (f2fs_has_inline_data(inode))
2514                 return;
2515
2516         f2fs_mpage_readpages(inode, rac, NULL);
2517 }
2518
2519 int f2fs_encrypt_one_page(struct f2fs_io_info *fio)
2520 {
2521         struct inode *inode = fio->page->mapping->host;
2522         struct page *mpage, *page;
2523         gfp_t gfp_flags = GFP_NOFS;
2524
2525         if (!f2fs_encrypted_file(inode))
2526                 return 0;
2527
2528         page = fio->compressed_page ? fio->compressed_page : fio->page;
2529
2530         /* wait for GCed page writeback via META_MAPPING */
2531         f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
2532
2533         if (fscrypt_inode_uses_inline_crypto(inode))
2534                 return 0;
2535
2536 retry_encrypt:
2537         fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page,
2538                                         PAGE_SIZE, 0, gfp_flags);
2539         if (IS_ERR(fio->encrypted_page)) {
2540                 /* flush pending IOs and wait for a while in the ENOMEM case */
2541                 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
2542                         f2fs_flush_merged_writes(fio->sbi);
2543                         congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
2544                         gfp_flags |= __GFP_NOFAIL;
2545                         goto retry_encrypt;
2546                 }
2547                 return PTR_ERR(fio->encrypted_page);
2548         }
2549
2550         mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
2551         if (mpage) {
2552                 if (PageUptodate(mpage))
2553                         memcpy(page_address(mpage),
2554                                 page_address(fio->encrypted_page), PAGE_SIZE);
2555                 f2fs_put_page(mpage, 1);
2556         }
2557         return 0;
2558 }
2559
2560 static inline bool check_inplace_update_policy(struct inode *inode,
2561                                 struct f2fs_io_info *fio)
2562 {
2563         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2564         unsigned int policy = SM_I(sbi)->ipu_policy;
2565
2566         if (policy & (0x1 << F2FS_IPU_FORCE))
2567                 return true;
2568         if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi))
2569                 return true;
2570         if (policy & (0x1 << F2FS_IPU_UTIL) &&
2571                         utilization(sbi) > SM_I(sbi)->min_ipu_util)
2572                 return true;
2573         if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) &&
2574                         utilization(sbi) > SM_I(sbi)->min_ipu_util)
2575                 return true;
2576
2577         /*
2578          * IPU for rewrite async pages
2579          */
2580         if (policy & (0x1 << F2FS_IPU_ASYNC) &&
2581                         fio && fio->op == REQ_OP_WRITE &&
2582                         !(fio->op_flags & REQ_SYNC) &&
2583                         !IS_ENCRYPTED(inode))
2584                 return true;
2585
2586         /* this is only set during fdatasync */
2587         if (policy & (0x1 << F2FS_IPU_FSYNC) &&
2588                         is_inode_flag_set(inode, FI_NEED_IPU))
2589                 return true;
2590
2591         if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2592                         !f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2593                 return true;
2594
2595         return false;
2596 }
2597
2598 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
2599 {
2600         /* swap file is migrating in aligned write mode */
2601         if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2602                 return false;
2603
2604         if (f2fs_is_pinned_file(inode))
2605                 return true;
2606
2607         /* if this is cold file, we should overwrite to avoid fragmentation */
2608         if (file_is_cold(inode))
2609                 return true;
2610
2611         return check_inplace_update_policy(inode, fio);
2612 }
2613
2614 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
2615 {
2616         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2617
2618         if (f2fs_lfs_mode(sbi))
2619                 return true;
2620         if (S_ISDIR(inode->i_mode))
2621                 return true;
2622         if (IS_NOQUOTA(inode))
2623                 return true;
2624         if (f2fs_is_atomic_file(inode))
2625                 return true;
2626         if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
2627                 return true;
2628
2629         /* swap file is migrating in aligned write mode */
2630         if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2631                 return true;
2632
2633         if (fio) {
2634                 if (page_private_gcing(fio->page))
2635                         return true;
2636                 if (page_private_dummy(fio->page))
2637                         return true;
2638                 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2639                         f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2640                         return true;
2641         }
2642         return false;
2643 }
2644
2645 static inline bool need_inplace_update(struct f2fs_io_info *fio)
2646 {
2647         struct inode *inode = fio->page->mapping->host;
2648
2649         if (f2fs_should_update_outplace(inode, fio))
2650                 return false;
2651
2652         return f2fs_should_update_inplace(inode, fio);
2653 }
2654
2655 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
2656 {
2657         struct page *page = fio->page;
2658         struct inode *inode = page->mapping->host;
2659         struct dnode_of_data dn;
2660         struct extent_info ei = {0, };
2661         struct node_info ni;
2662         bool ipu_force = false;
2663         int err = 0;
2664
2665         set_new_dnode(&dn, inode, NULL, NULL, 0);
2666         if (need_inplace_update(fio) &&
2667                         f2fs_lookup_extent_cache(inode, page->index, &ei)) {
2668                 fio->old_blkaddr = ei.blk + page->index - ei.fofs;
2669
2670                 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2671                                                 DATA_GENERIC_ENHANCE))
2672                         return -EFSCORRUPTED;
2673
2674                 ipu_force = true;
2675                 fio->need_lock = LOCK_DONE;
2676                 goto got_it;
2677         }
2678
2679         /* Deadlock due to between page->lock and f2fs_lock_op */
2680         if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
2681                 return -EAGAIN;
2682
2683         err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
2684         if (err)
2685                 goto out;
2686
2687         fio->old_blkaddr = dn.data_blkaddr;
2688
2689         /* This page is already truncated */
2690         if (fio->old_blkaddr == NULL_ADDR) {
2691                 ClearPageUptodate(page);
2692                 clear_page_private_gcing(page);
2693                 goto out_writepage;
2694         }
2695 got_it:
2696         if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2697                 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2698                                                 DATA_GENERIC_ENHANCE)) {
2699                 err = -EFSCORRUPTED;
2700                 goto out_writepage;
2701         }
2702         /*
2703          * If current allocation needs SSR,
2704          * it had better in-place writes for updated data.
2705          */
2706         if (ipu_force ||
2707                 (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2708                                         need_inplace_update(fio))) {
2709                 err = f2fs_encrypt_one_page(fio);
2710                 if (err)
2711                         goto out_writepage;
2712
2713                 set_page_writeback(page);
2714                 ClearPageError(page);
2715                 f2fs_put_dnode(&dn);
2716                 if (fio->need_lock == LOCK_REQ)
2717                         f2fs_unlock_op(fio->sbi);
2718                 err = f2fs_inplace_write_data(fio);
2719                 if (err) {
2720                         if (fscrypt_inode_uses_fs_layer_crypto(inode))
2721                                 fscrypt_finalize_bounce_page(&fio->encrypted_page);
2722                         if (PageWriteback(page))
2723                                 end_page_writeback(page);
2724                 } else {
2725                         set_inode_flag(inode, FI_UPDATE_WRITE);
2726                 }
2727                 trace_f2fs_do_write_data_page(fio->page, IPU);
2728                 return err;
2729         }
2730
2731         if (fio->need_lock == LOCK_RETRY) {
2732                 if (!f2fs_trylock_op(fio->sbi)) {
2733                         err = -EAGAIN;
2734                         goto out_writepage;
2735                 }
2736                 fio->need_lock = LOCK_REQ;
2737         }
2738
2739         err = f2fs_get_node_info(fio->sbi, dn.nid, &ni);
2740         if (err)
2741                 goto out_writepage;
2742
2743         fio->version = ni.version;
2744
2745         err = f2fs_encrypt_one_page(fio);
2746         if (err)
2747                 goto out_writepage;
2748
2749         set_page_writeback(page);
2750         ClearPageError(page);
2751
2752         if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR)
2753                 f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false);
2754
2755         /* LFS mode write path */
2756         f2fs_outplace_write_data(&dn, fio);
2757         trace_f2fs_do_write_data_page(page, OPU);
2758         set_inode_flag(inode, FI_APPEND_WRITE);
2759         if (page->index == 0)
2760                 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
2761 out_writepage:
2762         f2fs_put_dnode(&dn);
2763 out:
2764         if (fio->need_lock == LOCK_REQ)
2765                 f2fs_unlock_op(fio->sbi);
2766         return err;
2767 }
2768
2769 int f2fs_write_single_data_page(struct page *page, int *submitted,
2770                                 struct bio **bio,
2771                                 sector_t *last_block,
2772                                 struct writeback_control *wbc,
2773                                 enum iostat_type io_type,
2774                                 int compr_blocks,
2775                                 bool allow_balance)
2776 {
2777         struct inode *inode = page->mapping->host;
2778         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2779         loff_t i_size = i_size_read(inode);
2780         const pgoff_t end_index = ((unsigned long long)i_size)
2781                                                         >> PAGE_SHIFT;
2782         loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT;
2783         unsigned offset = 0;
2784         bool need_balance_fs = false;
2785         int err = 0;
2786         struct f2fs_io_info fio = {
2787                 .sbi = sbi,
2788                 .ino = inode->i_ino,
2789                 .type = DATA,
2790                 .op = REQ_OP_WRITE,
2791                 .op_flags = wbc_to_write_flags(wbc),
2792                 .old_blkaddr = NULL_ADDR,
2793                 .page = page,
2794                 .encrypted_page = NULL,
2795                 .submitted = false,
2796                 .compr_blocks = compr_blocks,
2797                 .need_lock = LOCK_RETRY,
2798                 .io_type = io_type,
2799                 .io_wbc = wbc,
2800                 .bio = bio,
2801                 .last_block = last_block,
2802         };
2803
2804         trace_f2fs_writepage(page, DATA);
2805
2806         /* we should bypass data pages to proceed the kworkder jobs */
2807         if (unlikely(f2fs_cp_error(sbi))) {
2808                 mapping_set_error(page->mapping, -EIO);
2809                 /*
2810                  * don't drop any dirty dentry pages for keeping lastest
2811                  * directory structure.
2812                  */
2813                 if (S_ISDIR(inode->i_mode))
2814                         goto redirty_out;
2815                 goto out;
2816         }
2817
2818         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2819                 goto redirty_out;
2820
2821         if (page->index < end_index ||
2822                         f2fs_verity_in_progress(inode) ||
2823                         compr_blocks)
2824                 goto write;
2825
2826         /*
2827          * If the offset is out-of-range of file size,
2828          * this page does not have to be written to disk.
2829          */
2830         offset = i_size & (PAGE_SIZE - 1);
2831         if ((page->index >= end_index + 1) || !offset)
2832                 goto out;
2833
2834         zero_user_segment(page, offset, PAGE_SIZE);
2835 write:
2836         if (f2fs_is_drop_cache(inode))
2837                 goto out;
2838         /* we should not write 0'th page having journal header */
2839         if (f2fs_is_volatile_file(inode) && (!page->index ||
2840                         (!wbc->for_reclaim &&
2841                         f2fs_available_free_memory(sbi, BASE_CHECK))))
2842                 goto redirty_out;
2843
2844         /* Dentry/quota blocks are controlled by checkpoint */
2845         if (S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) {
2846                 /*
2847                  * We need to wait for node_write to avoid block allocation during
2848                  * checkpoint. This can only happen to quota writes which can cause
2849                  * the below discard race condition.
2850                  */
2851                 if (IS_NOQUOTA(inode))
2852                         down_read(&sbi->node_write);
2853
2854                 fio.need_lock = LOCK_DONE;
2855                 err = f2fs_do_write_data_page(&fio);
2856
2857                 if (IS_NOQUOTA(inode))
2858                         up_read(&sbi->node_write);
2859
2860                 goto done;
2861         }
2862
2863         if (!wbc->for_reclaim)
2864                 need_balance_fs = true;
2865         else if (has_not_enough_free_secs(sbi, 0, 0))
2866                 goto redirty_out;
2867         else
2868                 set_inode_flag(inode, FI_HOT_DATA);
2869
2870         err = -EAGAIN;
2871         if (f2fs_has_inline_data(inode)) {
2872                 err = f2fs_write_inline_data(inode, page);
2873                 if (!err)
2874                         goto out;
2875         }
2876
2877         if (err == -EAGAIN) {
2878                 err = f2fs_do_write_data_page(&fio);
2879                 if (err == -EAGAIN) {
2880                         fio.need_lock = LOCK_REQ;
2881                         err = f2fs_do_write_data_page(&fio);
2882                 }
2883         }
2884
2885         if (err) {
2886                 file_set_keep_isize(inode);
2887         } else {
2888                 spin_lock(&F2FS_I(inode)->i_size_lock);
2889                 if (F2FS_I(inode)->last_disk_size < psize)
2890                         F2FS_I(inode)->last_disk_size = psize;
2891                 spin_unlock(&F2FS_I(inode)->i_size_lock);
2892         }
2893
2894 done:
2895         if (err && err != -ENOENT)
2896                 goto redirty_out;
2897
2898 out:
2899         inode_dec_dirty_pages(inode);
2900         if (err) {
2901                 ClearPageUptodate(page);
2902                 clear_page_private_gcing(page);
2903         }
2904
2905         if (wbc->for_reclaim) {
2906                 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2907                 clear_inode_flag(inode, FI_HOT_DATA);
2908                 f2fs_remove_dirty_inode(inode);
2909                 submitted = NULL;
2910         }
2911         unlock_page(page);
2912         if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2913                         !F2FS_I(inode)->cp_task && allow_balance)
2914                 f2fs_balance_fs(sbi, need_balance_fs);
2915
2916         if (unlikely(f2fs_cp_error(sbi))) {
2917                 f2fs_submit_merged_write(sbi, DATA);
2918                 f2fs_submit_merged_ipu_write(sbi, bio, NULL);
2919                 submitted = NULL;
2920         }
2921
2922         if (submitted)
2923                 *submitted = fio.submitted ? 1 : 0;
2924
2925         return 0;
2926
2927 redirty_out:
2928         redirty_page_for_writepage(wbc, page);
2929         /*
2930          * pageout() in MM traslates EAGAIN, so calls handle_write_error()
2931          * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2932          * file_write_and_wait_range() will see EIO error, which is critical
2933          * to return value of fsync() followed by atomic_write failure to user.
2934          */
2935         if (!err || wbc->for_reclaim)
2936                 return AOP_WRITEPAGE_ACTIVATE;
2937         unlock_page(page);
2938         return err;
2939 }
2940
2941 static int f2fs_write_data_page(struct page *page,
2942                                         struct writeback_control *wbc)
2943 {
2944 #ifdef CONFIG_F2FS_FS_COMPRESSION
2945         struct inode *inode = page->mapping->host;
2946
2947         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
2948                 goto out;
2949
2950         if (f2fs_compressed_file(inode)) {
2951                 if (f2fs_is_compressed_cluster(inode, page->index)) {
2952                         redirty_page_for_writepage(wbc, page);
2953                         return AOP_WRITEPAGE_ACTIVATE;
2954                 }
2955         }
2956 out:
2957 #endif
2958
2959         return f2fs_write_single_data_page(page, NULL, NULL, NULL,
2960                                                 wbc, FS_DATA_IO, 0, true);
2961 }
2962
2963 /*
2964  * This function was copied from write_cche_pages from mm/page-writeback.c.
2965  * The major change is making write step of cold data page separately from
2966  * warm/hot data page.
2967  */
2968 static int f2fs_write_cache_pages(struct address_space *mapping,
2969                                         struct writeback_control *wbc,
2970                                         enum iostat_type io_type)
2971 {
2972         int ret = 0;
2973         int done = 0, retry = 0;
2974         struct pagevec pvec;
2975         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2976         struct bio *bio = NULL;
2977         sector_t last_block;
2978 #ifdef CONFIG_F2FS_FS_COMPRESSION
2979         struct inode *inode = mapping->host;
2980         struct compress_ctx cc = {
2981                 .inode = inode,
2982                 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2983                 .cluster_size = F2FS_I(inode)->i_cluster_size,
2984                 .cluster_idx = NULL_CLUSTER,
2985                 .rpages = NULL,
2986                 .nr_rpages = 0,
2987                 .cpages = NULL,
2988                 .rbuf = NULL,
2989                 .cbuf = NULL,
2990                 .rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size,
2991                 .private = NULL,
2992         };
2993 #endif
2994         int nr_pages;
2995         pgoff_t index;
2996         pgoff_t end;            /* Inclusive */
2997         pgoff_t done_index;
2998         int range_whole = 0;
2999         xa_mark_t tag;
3000         int nwritten = 0;
3001         int submitted = 0;
3002         int i;
3003
3004         pagevec_init(&pvec);
3005
3006         if (get_dirty_pages(mapping->host) <=
3007                                 SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
3008                 set_inode_flag(mapping->host, FI_HOT_DATA);
3009         else
3010                 clear_inode_flag(mapping->host, FI_HOT_DATA);
3011
3012         if (wbc->range_cyclic) {
3013                 index = mapping->writeback_index; /* prev offset */
3014                 end = -1;
3015         } else {
3016                 index = wbc->range_start >> PAGE_SHIFT;
3017                 end = wbc->range_end >> PAGE_SHIFT;
3018                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3019                         range_whole = 1;
3020         }
3021         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3022                 tag = PAGECACHE_TAG_TOWRITE;
3023         else
3024                 tag = PAGECACHE_TAG_DIRTY;
3025 retry:
3026         retry = 0;
3027         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3028                 tag_pages_for_writeback(mapping, index, end);
3029         done_index = index;
3030         while (!done && !retry && (index <= end)) {
3031                 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
3032                                 tag);
3033                 if (nr_pages == 0)
3034                         break;
3035
3036                 for (i = 0; i < nr_pages; i++) {
3037                         struct page *page = pvec.pages[i];
3038                         bool need_readd;
3039 readd:
3040                         need_readd = false;
3041 #ifdef CONFIG_F2FS_FS_COMPRESSION
3042                         if (f2fs_compressed_file(inode)) {
3043                                 void *fsdata = NULL;
3044                                 struct page *pagep;
3045                                 int ret2;
3046
3047                                 ret = f2fs_init_compress_ctx(&cc);
3048                                 if (ret) {
3049                                         done = 1;
3050                                         break;
3051                                 }
3052
3053                                 if (!f2fs_cluster_can_merge_page(&cc,
3054                                                                 page->index)) {
3055                                         ret = f2fs_write_multi_pages(&cc,
3056                                                 &submitted, wbc, io_type);
3057                                         if (!ret)
3058                                                 need_readd = true;
3059                                         goto result;
3060                                 }
3061
3062                                 if (unlikely(f2fs_cp_error(sbi)))
3063                                         goto lock_page;
3064
3065                                 if (!f2fs_cluster_is_empty(&cc))
3066                                         goto lock_page;
3067
3068                                 ret2 = f2fs_prepare_compress_overwrite(
3069                                                         inode, &pagep,
3070                                                         page->index, &fsdata);
3071                                 if (ret2 < 0) {
3072                                         ret = ret2;
3073                                         done = 1;
3074                                         break;
3075                                 } else if (ret2 &&
3076                                         (!f2fs_compress_write_end(inode,
3077                                                 fsdata, page->index, 1) ||
3078                                          !f2fs_all_cluster_page_loaded(&cc,
3079                                                 &pvec, i, nr_pages))) {
3080                                         retry = 1;
3081                                         break;
3082                                 }
3083                         }
3084 #endif
3085                         /* give a priority to WB_SYNC threads */
3086                         if (atomic_read(&sbi->wb_sync_req[DATA]) &&
3087                                         wbc->sync_mode == WB_SYNC_NONE) {
3088                                 done = 1;
3089                                 break;
3090                         }
3091 #ifdef CONFIG_F2FS_FS_COMPRESSION
3092 lock_page:
3093 #endif
3094                         done_index = page->index;
3095 retry_write:
3096                         lock_page(page);
3097
3098                         if (unlikely(page->mapping != mapping)) {
3099 continue_unlock:
3100                                 unlock_page(page);
3101                                 continue;
3102                         }
3103
3104                         if (!PageDirty(page)) {
3105                                 /* someone wrote it for us */
3106                                 goto continue_unlock;
3107                         }
3108
3109                         if (PageWriteback(page)) {
3110                                 if (wbc->sync_mode != WB_SYNC_NONE)
3111                                         f2fs_wait_on_page_writeback(page,
3112                                                         DATA, true, true);
3113                                 else
3114                                         goto continue_unlock;
3115                         }
3116
3117                         if (!clear_page_dirty_for_io(page))
3118                                 goto continue_unlock;
3119
3120 #ifdef CONFIG_F2FS_FS_COMPRESSION
3121                         if (f2fs_compressed_file(inode)) {
3122                                 get_page(page);
3123                                 f2fs_compress_ctx_add_page(&cc, page);
3124                                 continue;
3125                         }
3126 #endif
3127                         ret = f2fs_write_single_data_page(page, &submitted,
3128                                         &bio, &last_block, wbc, io_type,
3129                                         0, true);
3130                         if (ret == AOP_WRITEPAGE_ACTIVATE)
3131                                 unlock_page(page);
3132 #ifdef CONFIG_F2FS_FS_COMPRESSION
3133 result:
3134 #endif
3135                         nwritten += submitted;
3136                         wbc->nr_to_write -= submitted;
3137
3138                         if (unlikely(ret)) {
3139                                 /*
3140                                  * keep nr_to_write, since vfs uses this to
3141                                  * get # of written pages.
3142                                  */
3143                                 if (ret == AOP_WRITEPAGE_ACTIVATE) {
3144                                         ret = 0;
3145                                         goto next;
3146                                 } else if (ret == -EAGAIN) {
3147                                         ret = 0;
3148                                         if (wbc->sync_mode == WB_SYNC_ALL) {
3149                                                 cond_resched();
3150                                                 congestion_wait(BLK_RW_ASYNC,
3151                                                         DEFAULT_IO_TIMEOUT);
3152                                                 goto retry_write;
3153                                         }
3154                                         goto next;
3155                                 }
3156                                 done_index = page->index + 1;
3157                                 done = 1;
3158                                 break;
3159                         }
3160
3161                         if (wbc->nr_to_write <= 0 &&
3162                                         wbc->sync_mode == WB_SYNC_NONE) {
3163                                 done = 1;
3164                                 break;
3165                         }
3166 next:
3167                         if (need_readd)
3168                                 goto readd;
3169                 }
3170                 pagevec_release(&pvec);
3171                 cond_resched();
3172         }
3173 #ifdef CONFIG_F2FS_FS_COMPRESSION
3174         /* flush remained pages in compress cluster */
3175         if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) {
3176                 ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type);
3177                 nwritten += submitted;
3178                 wbc->nr_to_write -= submitted;
3179                 if (ret) {
3180                         done = 1;
3181                         retry = 0;
3182                 }
3183         }
3184         if (f2fs_compressed_file(inode))
3185                 f2fs_destroy_compress_ctx(&cc, false);
3186 #endif
3187         if (retry) {
3188                 index = 0;
3189                 end = -1;
3190                 goto retry;
3191         }
3192         if (wbc->range_cyclic && !done)
3193                 done_index = 0;
3194         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3195                 mapping->writeback_index = done_index;
3196
3197         if (nwritten)
3198                 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
3199                                                                 NULL, 0, DATA);
3200         /* submit cached bio of IPU write */
3201         if (bio)
3202                 f2fs_submit_merged_ipu_write(sbi, &bio, NULL);
3203
3204         return ret;
3205 }
3206
3207 static inline bool __should_serialize_io(struct inode *inode,
3208                                         struct writeback_control *wbc)
3209 {
3210         /* to avoid deadlock in path of data flush */
3211         if (F2FS_I(inode)->cp_task)
3212                 return false;
3213
3214         if (!S_ISREG(inode->i_mode))
3215                 return false;
3216         if (IS_NOQUOTA(inode))
3217                 return false;
3218
3219         if (f2fs_need_compress_data(inode))
3220                 return true;
3221         if (wbc->sync_mode != WB_SYNC_ALL)
3222                 return true;
3223         if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
3224                 return true;
3225         return false;
3226 }
3227
3228 static int __f2fs_write_data_pages(struct address_space *mapping,
3229                                                 struct writeback_control *wbc,
3230                                                 enum iostat_type io_type)
3231 {
3232         struct inode *inode = mapping->host;
3233         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3234         struct blk_plug plug;
3235         int ret;
3236         bool locked = false;
3237
3238         /* deal with chardevs and other special file */
3239         if (!mapping->a_ops->writepage)
3240                 return 0;
3241
3242         /* skip writing if there is no dirty page in this inode */
3243         if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
3244                 return 0;
3245
3246         /* during POR, we don't need to trigger writepage at all. */
3247         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
3248                 goto skip_write;
3249
3250         if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
3251                         wbc->sync_mode == WB_SYNC_NONE &&
3252                         get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
3253                         f2fs_available_free_memory(sbi, DIRTY_DENTS))
3254                 goto skip_write;
3255
3256         /* skip writing during file defragment */
3257         if (is_inode_flag_set(inode, FI_DO_DEFRAG))
3258                 goto skip_write;
3259
3260         trace_f2fs_writepages(mapping->host, wbc, DATA);
3261
3262         /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
3263         if (wbc->sync_mode == WB_SYNC_ALL)
3264                 atomic_inc(&sbi->wb_sync_req[DATA]);
3265         else if (atomic_read(&sbi->wb_sync_req[DATA]))
3266                 goto skip_write;
3267
3268         if (__should_serialize_io(inode, wbc)) {
3269                 mutex_lock(&sbi->writepages);
3270                 locked = true;
3271         }
3272
3273         blk_start_plug(&plug);
3274         ret = f2fs_write_cache_pages(mapping, wbc, io_type);
3275         blk_finish_plug(&plug);
3276
3277         if (locked)
3278                 mutex_unlock(&sbi->writepages);
3279
3280         if (wbc->sync_mode == WB_SYNC_ALL)
3281                 atomic_dec(&sbi->wb_sync_req[DATA]);
3282         /*
3283          * if some pages were truncated, we cannot guarantee its mapping->host
3284          * to detect pending bios.
3285          */
3286
3287         f2fs_remove_dirty_inode(inode);
3288         return ret;
3289
3290 skip_write:
3291         wbc->pages_skipped += get_dirty_pages(inode);
3292         trace_f2fs_writepages(mapping->host, wbc, DATA);
3293         return 0;
3294 }
3295
3296 static int f2fs_write_data_pages(struct address_space *mapping,
3297                             struct writeback_control *wbc)
3298 {
3299         struct inode *inode = mapping->host;
3300
3301         return __f2fs_write_data_pages(mapping, wbc,
3302                         F2FS_I(inode)->cp_task == current ?
3303                         FS_CP_DATA_IO : FS_DATA_IO);
3304 }
3305
3306 static void f2fs_write_failed(struct inode *inode, loff_t to)
3307 {
3308         loff_t i_size = i_size_read(inode);
3309
3310         if (IS_NOQUOTA(inode))
3311                 return;
3312
3313         /* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
3314         if (to > i_size && !f2fs_verity_in_progress(inode)) {
3315                 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3316                 filemap_invalidate_lock(inode->i_mapping);
3317
3318                 truncate_pagecache(inode, i_size);
3319                 f2fs_truncate_blocks(inode, i_size, true);
3320
3321                 filemap_invalidate_unlock(inode->i_mapping);
3322                 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3323         }
3324 }
3325
3326 static int prepare_write_begin(struct f2fs_sb_info *sbi,
3327                         struct page *page, loff_t pos, unsigned len,
3328                         block_t *blk_addr, bool *node_changed)
3329 {
3330         struct inode *inode = page->mapping->host;
3331         pgoff_t index = page->index;
3332         struct dnode_of_data dn;
3333         struct page *ipage;
3334         bool locked = false;
3335         struct extent_info ei = {0, };
3336         int err = 0;
3337         int flag;
3338
3339         /*
3340          * we already allocated all the blocks, so we don't need to get
3341          * the block addresses when there is no need to fill the page.
3342          */
3343         if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE &&
3344             !is_inode_flag_set(inode, FI_NO_PREALLOC) &&
3345             !f2fs_verity_in_progress(inode))
3346                 return 0;
3347
3348         /* f2fs_lock_op avoids race between write CP and convert_inline_page */
3349         if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode))
3350                 flag = F2FS_GET_BLOCK_DEFAULT;
3351         else
3352                 flag = F2FS_GET_BLOCK_PRE_AIO;
3353
3354         if (f2fs_has_inline_data(inode) ||
3355                         (pos & PAGE_MASK) >= i_size_read(inode)) {
3356                 f2fs_do_map_lock(sbi, flag, true);
3357                 locked = true;
3358         }
3359
3360 restart:
3361         /* check inline_data */
3362         ipage = f2fs_get_node_page(sbi, inode->i_ino);
3363         if (IS_ERR(ipage)) {
3364                 err = PTR_ERR(ipage);
3365                 goto unlock_out;
3366         }
3367
3368         set_new_dnode(&dn, inode, ipage, ipage, 0);
3369
3370         if (f2fs_has_inline_data(inode)) {
3371                 if (pos + len <= MAX_INLINE_DATA(inode)) {
3372                         f2fs_do_read_inline_data(page, ipage);
3373                         set_inode_flag(inode, FI_DATA_EXIST);
3374                         if (inode->i_nlink)
3375                                 set_page_private_inline(ipage);
3376                 } else {
3377                         err = f2fs_convert_inline_page(&dn, page);
3378                         if (err)
3379                                 goto out;
3380                         if (dn.data_blkaddr == NULL_ADDR)
3381                                 err = f2fs_get_block(&dn, index);
3382                 }
3383         } else if (locked) {
3384                 err = f2fs_get_block(&dn, index);
3385         } else {
3386                 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
3387                         dn.data_blkaddr = ei.blk + index - ei.fofs;
3388                 } else {
3389                         /* hole case */
3390                         err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3391                         if (err || dn.data_blkaddr == NULL_ADDR) {
3392                                 f2fs_put_dnode(&dn);
3393                                 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO,
3394                                                                 true);
3395                                 WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
3396                                 locked = true;
3397                                 goto restart;
3398                         }
3399                 }
3400         }
3401
3402         /* convert_inline_page can make node_changed */
3403         *blk_addr = dn.data_blkaddr;
3404         *node_changed = dn.node_changed;
3405 out:
3406         f2fs_put_dnode(&dn);
3407 unlock_out:
3408         if (locked)
3409                 f2fs_do_map_lock(sbi, flag, false);
3410         return err;
3411 }
3412
3413 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
3414                 loff_t pos, unsigned len, unsigned flags,
3415                 struct page **pagep, void **fsdata)
3416 {
3417         struct inode *inode = mapping->host;
3418         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3419         struct page *page = NULL;
3420         pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
3421         bool need_balance = false, drop_atomic = false;
3422         block_t blkaddr = NULL_ADDR;
3423         int err = 0;
3424
3425         trace_f2fs_write_begin(inode, pos, len, flags);
3426
3427         if (!f2fs_is_checkpoint_ready(sbi)) {
3428                 err = -ENOSPC;
3429                 goto fail;
3430         }
3431
3432         if ((f2fs_is_atomic_file(inode) &&
3433                         !f2fs_available_free_memory(sbi, INMEM_PAGES)) ||
3434                         is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
3435                 err = -ENOMEM;
3436                 drop_atomic = true;
3437                 goto fail;
3438         }
3439
3440         /*
3441          * We should check this at this moment to avoid deadlock on inode page
3442          * and #0 page. The locking rule for inline_data conversion should be:
3443          * lock_page(page #0) -> lock_page(inode_page)
3444          */
3445         if (index != 0) {
3446                 err = f2fs_convert_inline_inode(inode);
3447                 if (err)
3448                         goto fail;
3449         }
3450
3451 #ifdef CONFIG_F2FS_FS_COMPRESSION
3452         if (f2fs_compressed_file(inode)) {
3453                 int ret;
3454
3455                 *fsdata = NULL;
3456
3457                 if (len == PAGE_SIZE)
3458                         goto repeat;
3459
3460                 ret = f2fs_prepare_compress_overwrite(inode, pagep,
3461                                                         index, fsdata);
3462                 if (ret < 0) {
3463                         err = ret;
3464                         goto fail;
3465                 } else if (ret) {
3466                         return 0;
3467                 }
3468         }
3469 #endif
3470
3471 repeat:
3472         /*
3473          * Do not use grab_cache_page_write_begin() to avoid deadlock due to
3474          * wait_for_stable_page. Will wait that below with our IO control.
3475          */
3476         page = f2fs_pagecache_get_page(mapping, index,
3477                                 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
3478         if (!page) {
3479                 err = -ENOMEM;
3480                 goto fail;
3481         }
3482
3483         /* TODO: cluster can be compressed due to race with .writepage */
3484
3485         *pagep = page;
3486
3487         err = prepare_write_begin(sbi, page, pos, len,
3488                                         &blkaddr, &need_balance);
3489         if (err)
3490                 goto fail;
3491
3492         if (need_balance && !IS_NOQUOTA(inode) &&
3493                         has_not_enough_free_secs(sbi, 0, 0)) {
3494                 unlock_page(page);
3495                 f2fs_balance_fs(sbi, true);
3496                 lock_page(page);
3497                 if (page->mapping != mapping) {
3498                         /* The page got truncated from under us */
3499                         f2fs_put_page(page, 1);
3500                         goto repeat;
3501                 }
3502         }
3503
3504         f2fs_wait_on_page_writeback(page, DATA, false, true);
3505
3506         if (len == PAGE_SIZE || PageUptodate(page))
3507                 return 0;
3508
3509         if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) &&
3510             !f2fs_verity_in_progress(inode)) {
3511                 zero_user_segment(page, len, PAGE_SIZE);
3512                 return 0;
3513         }
3514
3515         if (blkaddr == NEW_ADDR) {
3516                 zero_user_segment(page, 0, PAGE_SIZE);
3517                 SetPageUptodate(page);
3518         } else {
3519                 if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3520                                 DATA_GENERIC_ENHANCE_READ)) {
3521                         err = -EFSCORRUPTED;
3522                         goto fail;
3523                 }
3524                 err = f2fs_submit_page_read(inode, page, blkaddr, 0, true);
3525                 if (err)
3526                         goto fail;
3527
3528                 lock_page(page);
3529                 if (unlikely(page->mapping != mapping)) {
3530                         f2fs_put_page(page, 1);
3531                         goto repeat;
3532                 }
3533                 if (unlikely(!PageUptodate(page))) {
3534                         err = -EIO;
3535                         goto fail;
3536                 }
3537         }
3538         return 0;
3539
3540 fail:
3541         f2fs_put_page(page, 1);
3542         f2fs_write_failed(inode, pos + len);
3543         if (drop_atomic)
3544                 f2fs_drop_inmem_pages_all(sbi, false);
3545         return err;
3546 }
3547
3548 static int f2fs_write_end(struct file *file,
3549                         struct address_space *mapping,
3550                         loff_t pos, unsigned len, unsigned copied,
3551                         struct page *page, void *fsdata)
3552 {
3553         struct inode *inode = page->mapping->host;
3554
3555         trace_f2fs_write_end(inode, pos, len, copied);
3556
3557         /*
3558          * This should be come from len == PAGE_SIZE, and we expect copied
3559          * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
3560          * let generic_perform_write() try to copy data again through copied=0.
3561          */
3562         if (!PageUptodate(page)) {
3563                 if (unlikely(copied != len))
3564                         copied = 0;
3565                 else
3566                         SetPageUptodate(page);
3567         }
3568
3569 #ifdef CONFIG_F2FS_FS_COMPRESSION
3570         /* overwrite compressed file */
3571         if (f2fs_compressed_file(inode) && fsdata) {
3572                 f2fs_compress_write_end(inode, fsdata, page->index, copied);
3573                 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3574
3575                 if (pos + copied > i_size_read(inode) &&
3576                                 !f2fs_verity_in_progress(inode))
3577                         f2fs_i_size_write(inode, pos + copied);
3578                 return copied;
3579         }
3580 #endif
3581
3582         if (!copied)
3583                 goto unlock_out;
3584
3585         set_page_dirty(page);
3586
3587         if (pos + copied > i_size_read(inode) &&
3588             !f2fs_verity_in_progress(inode))
3589                 f2fs_i_size_write(inode, pos + copied);
3590 unlock_out:
3591         f2fs_put_page(page, 1);
3592         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3593         return copied;
3594 }
3595
3596 static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
3597                            loff_t offset)
3598 {
3599         unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
3600         unsigned blkbits = i_blkbits;
3601         unsigned blocksize_mask = (1 << blkbits) - 1;
3602         unsigned long align = offset | iov_iter_alignment(iter);
3603         struct block_device *bdev = inode->i_sb->s_bdev;
3604
3605         if (iov_iter_rw(iter) == READ && offset >= i_size_read(inode))
3606                 return 1;
3607
3608         if (align & blocksize_mask) {
3609                 if (bdev)
3610                         blkbits = blksize_bits(bdev_logical_block_size(bdev));
3611                 blocksize_mask = (1 << blkbits) - 1;
3612                 if (align & blocksize_mask)
3613                         return -EINVAL;
3614                 return 1;
3615         }
3616         return 0;
3617 }
3618
3619 static void f2fs_dio_end_io(struct bio *bio)
3620 {
3621         struct f2fs_private_dio *dio = bio->bi_private;
3622
3623         dec_page_count(F2FS_I_SB(dio->inode),
3624                         dio->write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
3625
3626         bio->bi_private = dio->orig_private;
3627         bio->bi_end_io = dio->orig_end_io;
3628
3629         kfree(dio);
3630
3631         bio_endio(bio);
3632 }
3633
3634 static void f2fs_dio_submit_bio(struct bio *bio, struct inode *inode,
3635                                                         loff_t file_offset)
3636 {
3637         struct f2fs_private_dio *dio;
3638         bool write = (bio_op(bio) == REQ_OP_WRITE);
3639
3640         dio = f2fs_kzalloc(F2FS_I_SB(inode),
3641                         sizeof(struct f2fs_private_dio), GFP_NOFS);
3642         if (!dio)
3643                 goto out;
3644
3645         dio->inode = inode;
3646         dio->orig_end_io = bio->bi_end_io;
3647         dio->orig_private = bio->bi_private;
3648         dio->write = write;
3649
3650         bio->bi_end_io = f2fs_dio_end_io;
3651         bio->bi_private = dio;
3652
3653         inc_page_count(F2FS_I_SB(inode),
3654                         write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
3655
3656         submit_bio(bio);
3657         return;
3658 out:
3659         bio->bi_status = BLK_STS_IOERR;
3660         bio_endio(bio);
3661 }
3662
3663 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3664 {
3665         struct address_space *mapping = iocb->ki_filp->f_mapping;
3666         struct inode *inode = mapping->host;
3667         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3668         struct f2fs_inode_info *fi = F2FS_I(inode);
3669         size_t count = iov_iter_count(iter);
3670         loff_t offset = iocb->ki_pos;
3671         int rw = iov_iter_rw(iter);
3672         int err;
3673         enum rw_hint hint = iocb->ki_hint;
3674         int whint_mode = F2FS_OPTION(sbi).whint_mode;
3675         bool do_opu;
3676
3677         err = check_direct_IO(inode, iter, offset);
3678         if (err)
3679                 return err < 0 ? err : 0;
3680
3681         if (f2fs_force_buffered_io(inode, iocb, iter))
3682                 return 0;
3683
3684         do_opu = rw == WRITE && f2fs_lfs_mode(sbi);
3685
3686         trace_f2fs_direct_IO_enter(inode, offset, count, rw);
3687
3688         if (rw == WRITE && whint_mode == WHINT_MODE_OFF)
3689                 iocb->ki_hint = WRITE_LIFE_NOT_SET;
3690
3691         if (iocb->ki_flags & IOCB_NOWAIT) {
3692                 if (!down_read_trylock(&fi->i_gc_rwsem[rw])) {
3693                         iocb->ki_hint = hint;
3694                         err = -EAGAIN;
3695                         goto out;
3696                 }
3697                 if (do_opu && !down_read_trylock(&fi->i_gc_rwsem[READ])) {
3698                         up_read(&fi->i_gc_rwsem[rw]);
3699                         iocb->ki_hint = hint;
3700                         err = -EAGAIN;
3701                         goto out;
3702                 }
3703         } else {
3704                 down_read(&fi->i_gc_rwsem[rw]);
3705                 if (do_opu)
3706                         down_read(&fi->i_gc_rwsem[READ]);
3707         }
3708
3709         err = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3710                         iter, rw == WRITE ? get_data_block_dio_write :
3711                         get_data_block_dio, NULL, f2fs_dio_submit_bio,
3712                         rw == WRITE ? DIO_LOCKING | DIO_SKIP_HOLES :
3713                         DIO_SKIP_HOLES);
3714
3715         if (do_opu)
3716                 up_read(&fi->i_gc_rwsem[READ]);
3717
3718         up_read(&fi->i_gc_rwsem[rw]);
3719
3720         if (rw == WRITE) {
3721                 if (whint_mode == WHINT_MODE_OFF)
3722                         iocb->ki_hint = hint;
3723                 if (err > 0) {
3724                         f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO,
3725                                                                         err);
3726                         if (!do_opu)
3727                                 set_inode_flag(inode, FI_UPDATE_WRITE);
3728                 } else if (err == -EIOCBQUEUED) {
3729                         f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO,
3730                                                 count - iov_iter_count(iter));
3731                 } else if (err < 0) {
3732                         f2fs_write_failed(inode, offset + count);
3733                 }
3734         } else {
3735                 if (err > 0)
3736                         f2fs_update_iostat(sbi, APP_DIRECT_READ_IO, err);
3737                 else if (err == -EIOCBQUEUED)
3738                         f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_READ_IO,
3739                                                 count - iov_iter_count(iter));
3740         }
3741
3742 out:
3743         trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
3744
3745         return err;
3746 }
3747
3748 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3749                                                         unsigned int length)
3750 {
3751         struct inode *inode = page->mapping->host;
3752         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3753
3754         if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
3755                 (offset % PAGE_SIZE || length != PAGE_SIZE))
3756                 return;
3757
3758         if (PageDirty(page)) {
3759                 if (inode->i_ino == F2FS_META_INO(sbi)) {
3760                         dec_page_count(sbi, F2FS_DIRTY_META);
3761                 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
3762                         dec_page_count(sbi, F2FS_DIRTY_NODES);
3763                 } else {
3764                         inode_dec_dirty_pages(inode);
3765                         f2fs_remove_dirty_inode(inode);
3766                 }
3767         }
3768
3769         clear_page_private_gcing(page);
3770
3771         if (test_opt(sbi, COMPRESS_CACHE)) {
3772                 if (f2fs_compressed_file(inode))
3773                         f2fs_invalidate_compress_pages(sbi, inode->i_ino);
3774                 if (inode->i_ino == F2FS_COMPRESS_INO(sbi))
3775                         clear_page_private_data(page);
3776         }
3777
3778         if (page_private_atomic(page))
3779                 return f2fs_drop_inmem_page(inode, page);
3780
3781         detach_page_private(page);
3782         set_page_private(page, 0);
3783 }
3784
3785 int f2fs_release_page(struct page *page, gfp_t wait)
3786 {
3787         /* If this is dirty page, keep PagePrivate */
3788         if (PageDirty(page))
3789                 return 0;
3790
3791         /* This is atomic written page, keep Private */
3792         if (page_private_atomic(page))
3793                 return 0;
3794
3795         if (test_opt(F2FS_P_SB(page), COMPRESS_CACHE)) {
3796                 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3797                 struct inode *inode = page->mapping->host;
3798
3799                 if (f2fs_compressed_file(inode))
3800                         f2fs_invalidate_compress_pages(sbi, inode->i_ino);
3801                 if (inode->i_ino == F2FS_COMPRESS_INO(sbi))
3802                         clear_page_private_data(page);
3803         }
3804
3805         clear_page_private_gcing(page);
3806
3807         detach_page_private(page);
3808         set_page_private(page, 0);
3809         return 1;
3810 }
3811
3812 static int f2fs_set_data_page_dirty(struct page *page)
3813 {
3814         struct inode *inode = page_file_mapping(page)->host;
3815
3816         trace_f2fs_set_page_dirty(page, DATA);
3817
3818         if (!PageUptodate(page))
3819                 SetPageUptodate(page);
3820         if (PageSwapCache(page))
3821                 return __set_page_dirty_nobuffers(page);
3822
3823         if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) {
3824                 if (!page_private_atomic(page)) {
3825                         f2fs_register_inmem_page(inode, page);
3826                         return 1;
3827                 }
3828                 /*
3829                  * Previously, this page has been registered, we just
3830                  * return here.
3831                  */
3832                 return 0;
3833         }
3834
3835         if (!PageDirty(page)) {
3836                 __set_page_dirty_nobuffers(page);
3837                 f2fs_update_dirty_page(inode, page);
3838                 return 1;
3839         }
3840         return 0;
3841 }
3842
3843
3844 static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block)
3845 {
3846 #ifdef CONFIG_F2FS_FS_COMPRESSION
3847         struct dnode_of_data dn;
3848         sector_t start_idx, blknr = 0;
3849         int ret;
3850
3851         start_idx = round_down(block, F2FS_I(inode)->i_cluster_size);
3852
3853         set_new_dnode(&dn, inode, NULL, NULL, 0);
3854         ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
3855         if (ret)
3856                 return 0;
3857
3858         if (dn.data_blkaddr != COMPRESS_ADDR) {
3859                 dn.ofs_in_node += block - start_idx;
3860                 blknr = f2fs_data_blkaddr(&dn);
3861                 if (!__is_valid_data_blkaddr(blknr))
3862                         blknr = 0;
3863         }
3864
3865         f2fs_put_dnode(&dn);
3866         return blknr;
3867 #else
3868         return 0;
3869 #endif
3870 }
3871
3872
3873 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
3874 {
3875         struct inode *inode = mapping->host;
3876         sector_t blknr = 0;
3877
3878         if (f2fs_has_inline_data(inode))
3879                 goto out;
3880
3881         /* make sure allocating whole blocks */
3882         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
3883                 filemap_write_and_wait(mapping);
3884
3885         /* Block number less than F2FS MAX BLOCKS */
3886         if (unlikely(block >= max_file_blocks(inode)))
3887                 goto out;
3888
3889         if (f2fs_compressed_file(inode)) {
3890                 blknr = f2fs_bmap_compress(inode, block);
3891         } else {
3892                 struct f2fs_map_blocks map;
3893
3894                 memset(&map, 0, sizeof(map));
3895                 map.m_lblk = block;
3896                 map.m_len = 1;
3897                 map.m_next_pgofs = NULL;
3898                 map.m_seg_type = NO_CHECK_TYPE;
3899
3900                 if (!f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_BMAP))
3901                         blknr = map.m_pblk;
3902         }
3903 out:
3904         trace_f2fs_bmap(inode, block, blknr);
3905         return blknr;
3906 }
3907
3908 #ifdef CONFIG_MIGRATION
3909 #include <linux/migrate.h>
3910
3911 int f2fs_migrate_page(struct address_space *mapping,
3912                 struct page *newpage, struct page *page, enum migrate_mode mode)
3913 {
3914         int rc, extra_count;
3915         struct f2fs_inode_info *fi = F2FS_I(mapping->host);
3916         bool atomic_written = page_private_atomic(page);
3917
3918         BUG_ON(PageWriteback(page));
3919
3920         /* migrating an atomic written page is safe with the inmem_lock hold */
3921         if (atomic_written) {
3922                 if (mode != MIGRATE_SYNC)
3923                         return -EBUSY;
3924                 if (!mutex_trylock(&fi->inmem_lock))
3925                         return -EAGAIN;
3926         }
3927
3928         /* one extra reference was held for atomic_write page */
3929         extra_count = atomic_written ? 1 : 0;
3930         rc = migrate_page_move_mapping(mapping, newpage,
3931                                 page, extra_count);
3932         if (rc != MIGRATEPAGE_SUCCESS) {
3933                 if (atomic_written)
3934                         mutex_unlock(&fi->inmem_lock);
3935                 return rc;
3936         }
3937
3938         if (atomic_written) {
3939                 struct inmem_pages *cur;
3940
3941                 list_for_each_entry(cur, &fi->inmem_pages, list)
3942                         if (cur->page == page) {
3943                                 cur->page = newpage;
3944                                 break;
3945                         }
3946                 mutex_unlock(&fi->inmem_lock);
3947                 put_page(page);
3948                 get_page(newpage);
3949         }
3950
3951         /* guarantee to start from no stale private field */
3952         set_page_private(newpage, 0);
3953         if (PagePrivate(page)) {
3954                 set_page_private(newpage, page_private(page));
3955                 SetPagePrivate(newpage);
3956                 get_page(newpage);
3957
3958                 set_page_private(page, 0);
3959                 ClearPagePrivate(page);
3960                 put_page(page);
3961         }
3962
3963         if (mode != MIGRATE_SYNC_NO_COPY)
3964                 migrate_page_copy(newpage, page);
3965         else
3966                 migrate_page_states(newpage, page);
3967
3968         return MIGRATEPAGE_SUCCESS;
3969 }
3970 #endif
3971
3972 #ifdef CONFIG_SWAP
3973 static int f2fs_migrate_blocks(struct inode *inode, block_t start_blk,
3974                                                         unsigned int blkcnt)
3975 {
3976         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3977         unsigned int blkofs;
3978         unsigned int blk_per_sec = BLKS_PER_SEC(sbi);
3979         unsigned int secidx = start_blk / blk_per_sec;
3980         unsigned int end_sec = secidx + blkcnt / blk_per_sec;
3981         int ret = 0;
3982
3983         down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3984         filemap_invalidate_lock(inode->i_mapping);
3985
3986         set_inode_flag(inode, FI_ALIGNED_WRITE);
3987
3988         for (; secidx < end_sec; secidx++) {
3989                 down_write(&sbi->pin_sem);
3990
3991                 f2fs_lock_op(sbi);
3992                 f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
3993                 f2fs_unlock_op(sbi);
3994
3995                 set_inode_flag(inode, FI_DO_DEFRAG);
3996
3997                 for (blkofs = 0; blkofs < blk_per_sec; blkofs++) {
3998                         struct page *page;
3999                         unsigned int blkidx = secidx * blk_per_sec + blkofs;
4000
4001                         page = f2fs_get_lock_data_page(inode, blkidx, true);
4002                         if (IS_ERR(page)) {
4003                                 up_write(&sbi->pin_sem);
4004                                 ret = PTR_ERR(page);
4005                                 goto done;
4006                         }
4007
4008                         set_page_dirty(page);
4009                         f2fs_put_page(page, 1);
4010                 }
4011
4012                 clear_inode_flag(inode, FI_DO_DEFRAG);
4013
4014                 ret = filemap_fdatawrite(inode->i_mapping);
4015
4016                 up_write(&sbi->pin_sem);
4017
4018                 if (ret)
4019                         break;
4020         }
4021
4022 done:
4023         clear_inode_flag(inode, FI_DO_DEFRAG);
4024         clear_inode_flag(inode, FI_ALIGNED_WRITE);
4025
4026         filemap_invalidate_unlock(inode->i_mapping);
4027         up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4028
4029         return ret;
4030 }
4031
4032 static int check_swap_activate(struct swap_info_struct *sis,
4033                                 struct file *swap_file, sector_t *span)
4034 {
4035         struct address_space *mapping = swap_file->f_mapping;
4036         struct inode *inode = mapping->host;
4037         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4038         sector_t cur_lblock;
4039         sector_t last_lblock;
4040         sector_t pblock;
4041         sector_t lowest_pblock = -1;
4042         sector_t highest_pblock = 0;
4043         int nr_extents = 0;
4044         unsigned long nr_pblocks;
4045         unsigned int blks_per_sec = BLKS_PER_SEC(sbi);
4046         unsigned int sec_blks_mask = BLKS_PER_SEC(sbi) - 1;
4047         unsigned int not_aligned = 0;
4048         int ret = 0;
4049
4050         /*
4051          * Map all the blocks into the extent list.  This code doesn't try
4052          * to be very smart.
4053          */
4054         cur_lblock = 0;
4055         last_lblock = bytes_to_blks(inode, i_size_read(inode));
4056
4057         while (cur_lblock < last_lblock && cur_lblock < sis->max) {
4058                 struct f2fs_map_blocks map;
4059 retry:
4060                 cond_resched();
4061
4062                 memset(&map, 0, sizeof(map));
4063                 map.m_lblk = cur_lblock;
4064                 map.m_len = last_lblock - cur_lblock;
4065                 map.m_next_pgofs = NULL;
4066                 map.m_next_extent = NULL;
4067                 map.m_seg_type = NO_CHECK_TYPE;
4068                 map.m_may_create = false;
4069
4070                 ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP);
4071                 if (ret)
4072                         goto out;
4073
4074                 /* hole */
4075                 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
4076                         f2fs_err(sbi, "Swapfile has holes");
4077                         ret = -EINVAL;
4078                         goto out;
4079                 }
4080
4081                 pblock = map.m_pblk;
4082                 nr_pblocks = map.m_len;
4083
4084                 if ((pblock - SM_I(sbi)->main_blkaddr) & sec_blks_mask ||
4085                                 nr_pblocks & sec_blks_mask) {
4086                         not_aligned++;
4087
4088                         nr_pblocks = roundup(nr_pblocks, blks_per_sec);
4089                         if (cur_lblock + nr_pblocks > sis->max)
4090                                 nr_pblocks -= blks_per_sec;
4091
4092                         if (!nr_pblocks) {
4093                                 /* this extent is last one */
4094                                 nr_pblocks = map.m_len;
4095                                 f2fs_warn(sbi, "Swapfile: last extent is not aligned to section");
4096                                 goto next;
4097                         }
4098
4099                         ret = f2fs_migrate_blocks(inode, cur_lblock,
4100                                                         nr_pblocks);
4101                         if (ret)
4102                                 goto out;
4103                         goto retry;
4104                 }
4105 next:
4106                 if (cur_lblock + nr_pblocks >= sis->max)
4107                         nr_pblocks = sis->max - cur_lblock;
4108
4109                 if (cur_lblock) {       /* exclude the header page */
4110                         if (pblock < lowest_pblock)
4111                                 lowest_pblock = pblock;
4112                         if (pblock + nr_pblocks - 1 > highest_pblock)
4113                                 highest_pblock = pblock + nr_pblocks - 1;
4114                 }
4115
4116                 /*
4117                  * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
4118                  */
4119                 ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock);
4120                 if (ret < 0)
4121                         goto out;
4122                 nr_extents += ret;
4123                 cur_lblock += nr_pblocks;
4124         }
4125         ret = nr_extents;
4126         *span = 1 + highest_pblock - lowest_pblock;
4127         if (cur_lblock == 0)
4128                 cur_lblock = 1; /* force Empty message */
4129         sis->max = cur_lblock;
4130         sis->pages = cur_lblock - 1;
4131         sis->highest_bit = cur_lblock - 1;
4132 out:
4133         if (not_aligned)
4134                 f2fs_warn(sbi, "Swapfile (%u) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate(%u * N)",
4135                           not_aligned, blks_per_sec * F2FS_BLKSIZE);
4136         return ret;
4137 }
4138
4139 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4140                                 sector_t *span)
4141 {
4142         struct inode *inode = file_inode(file);
4143         int ret;
4144
4145         if (!S_ISREG(inode->i_mode))
4146                 return -EINVAL;
4147
4148         if (f2fs_readonly(F2FS_I_SB(inode)->sb))
4149                 return -EROFS;
4150
4151         if (f2fs_lfs_mode(F2FS_I_SB(inode))) {
4152                 f2fs_err(F2FS_I_SB(inode),
4153                         "Swapfile not supported in LFS mode");
4154                 return -EINVAL;
4155         }
4156
4157         ret = f2fs_convert_inline_inode(inode);
4158         if (ret)
4159                 return ret;
4160
4161         if (!f2fs_disable_compressed_file(inode))
4162                 return -EINVAL;
4163
4164         f2fs_precache_extents(inode);
4165
4166         ret = check_swap_activate(sis, file, span);
4167         if (ret < 0)
4168                 return ret;
4169
4170         set_inode_flag(inode, FI_PIN_FILE);
4171         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
4172         return ret;
4173 }
4174
4175 static void f2fs_swap_deactivate(struct file *file)
4176 {
4177         struct inode *inode = file_inode(file);
4178
4179         clear_inode_flag(inode, FI_PIN_FILE);
4180 }
4181 #else
4182 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4183                                 sector_t *span)
4184 {
4185         return -EOPNOTSUPP;
4186 }
4187
4188 static void f2fs_swap_deactivate(struct file *file)
4189 {
4190 }
4191 #endif
4192
4193 const struct address_space_operations f2fs_dblock_aops = {
4194         .readpage       = f2fs_read_data_page,
4195         .readahead      = f2fs_readahead,
4196         .writepage      = f2fs_write_data_page,
4197         .writepages     = f2fs_write_data_pages,
4198         .write_begin    = f2fs_write_begin,
4199         .write_end      = f2fs_write_end,
4200         .set_page_dirty = f2fs_set_data_page_dirty,
4201         .invalidatepage = f2fs_invalidate_page,
4202         .releasepage    = f2fs_release_page,
4203         .direct_IO      = f2fs_direct_IO,
4204         .bmap           = f2fs_bmap,
4205         .swap_activate  = f2fs_swap_activate,
4206         .swap_deactivate = f2fs_swap_deactivate,
4207 #ifdef CONFIG_MIGRATION
4208         .migratepage    = f2fs_migrate_page,
4209 #endif
4210 };
4211
4212 void f2fs_clear_page_cache_dirty_tag(struct page *page)
4213 {
4214         struct address_space *mapping = page_mapping(page);
4215         unsigned long flags;
4216
4217         xa_lock_irqsave(&mapping->i_pages, flags);
4218         __xa_clear_mark(&mapping->i_pages, page_index(page),
4219                                                 PAGECACHE_TAG_DIRTY);
4220         xa_unlock_irqrestore(&mapping->i_pages, flags);
4221 }
4222
4223 int __init f2fs_init_post_read_processing(void)
4224 {
4225         bio_post_read_ctx_cache =
4226                 kmem_cache_create("f2fs_bio_post_read_ctx",
4227                                   sizeof(struct bio_post_read_ctx), 0, 0, NULL);
4228         if (!bio_post_read_ctx_cache)
4229                 goto fail;
4230         bio_post_read_ctx_pool =
4231                 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
4232                                          bio_post_read_ctx_cache);
4233         if (!bio_post_read_ctx_pool)
4234                 goto fail_free_cache;
4235         return 0;
4236
4237 fail_free_cache:
4238         kmem_cache_destroy(bio_post_read_ctx_cache);
4239 fail:
4240         return -ENOMEM;
4241 }
4242
4243 void f2fs_destroy_post_read_processing(void)
4244 {
4245         mempool_destroy(bio_post_read_ctx_pool);
4246         kmem_cache_destroy(bio_post_read_ctx_cache);
4247 }
4248
4249 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi)
4250 {
4251         if (!f2fs_sb_has_encrypt(sbi) &&
4252                 !f2fs_sb_has_verity(sbi) &&
4253                 !f2fs_sb_has_compression(sbi))
4254                 return 0;
4255
4256         sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq",
4257                                                  WQ_UNBOUND | WQ_HIGHPRI,
4258                                                  num_online_cpus());
4259         if (!sbi->post_read_wq)
4260                 return -ENOMEM;
4261         return 0;
4262 }
4263
4264 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi)
4265 {
4266         if (sbi->post_read_wq)
4267                 destroy_workqueue(sbi->post_read_wq);
4268 }
4269
4270 int __init f2fs_init_bio_entry_cache(void)
4271 {
4272         bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab",
4273                         sizeof(struct bio_entry));
4274         if (!bio_entry_slab)
4275                 return -ENOMEM;
4276         return 0;
4277 }
4278
4279 void f2fs_destroy_bio_entry_cache(void)
4280 {
4281         kmem_cache_destroy(bio_entry_slab);
4282 }