Merge tag 'fscrypt-for-linus' of git://git.kernel.org/pub/scm/fs/fscrypt/fscrypt
[linux-2.6-microblaze.git] / fs / f2fs / data.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/data.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/buffer_head.h>
11 #include <linux/mpage.h>
12 #include <linux/writeback.h>
13 #include <linux/backing-dev.h>
14 #include <linux/pagevec.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/prefetch.h>
18 #include <linux/uio.h>
19 #include <linux/cleancache.h>
20 #include <linux/sched/signal.h>
21
22 #include "f2fs.h"
23 #include "node.h"
24 #include "segment.h"
25 #include "trace.h"
26 #include <trace/events/f2fs.h>
27
28 #define NUM_PREALLOC_POST_READ_CTXS     128
29
30 static struct kmem_cache *bio_post_read_ctx_cache;
31 static mempool_t *bio_post_read_ctx_pool;
32
33 static bool __is_cp_guaranteed(struct page *page)
34 {
35         struct address_space *mapping = page->mapping;
36         struct inode *inode;
37         struct f2fs_sb_info *sbi;
38
39         if (!mapping)
40                 return false;
41
42         inode = mapping->host;
43         sbi = F2FS_I_SB(inode);
44
45         if (inode->i_ino == F2FS_META_INO(sbi) ||
46                         inode->i_ino ==  F2FS_NODE_INO(sbi) ||
47                         S_ISDIR(inode->i_mode) ||
48                         (S_ISREG(inode->i_mode) &&
49                         (f2fs_is_atomic_file(inode) || IS_NOQUOTA(inode))) ||
50                         is_cold_data(page))
51                 return true;
52         return false;
53 }
54
55 static enum count_type __read_io_type(struct page *page)
56 {
57         struct address_space *mapping = page->mapping;
58
59         if (mapping) {
60                 struct inode *inode = mapping->host;
61                 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
62
63                 if (inode->i_ino == F2FS_META_INO(sbi))
64                         return F2FS_RD_META;
65
66                 if (inode->i_ino == F2FS_NODE_INO(sbi))
67                         return F2FS_RD_NODE;
68         }
69         return F2FS_RD_DATA;
70 }
71
72 /* postprocessing steps for read bios */
73 enum bio_post_read_step {
74         STEP_INITIAL = 0,
75         STEP_DECRYPT,
76 };
77
78 struct bio_post_read_ctx {
79         struct bio *bio;
80         struct work_struct work;
81         unsigned int cur_step;
82         unsigned int enabled_steps;
83 };
84
85 static void __read_end_io(struct bio *bio)
86 {
87         struct page *page;
88         struct bio_vec *bv;
89         int i;
90         struct bvec_iter_all iter_all;
91
92         bio_for_each_segment_all(bv, bio, i, iter_all) {
93                 page = bv->bv_page;
94
95                 /* PG_error was set if any post_read step failed */
96                 if (bio->bi_status || PageError(page)) {
97                         ClearPageUptodate(page);
98                         /* will re-read again later */
99                         ClearPageError(page);
100                 } else {
101                         SetPageUptodate(page);
102                 }
103                 dec_page_count(F2FS_P_SB(page), __read_io_type(page));
104                 unlock_page(page);
105         }
106         if (bio->bi_private)
107                 mempool_free(bio->bi_private, bio_post_read_ctx_pool);
108         bio_put(bio);
109 }
110
111 static void bio_post_read_processing(struct bio_post_read_ctx *ctx);
112
113 static void decrypt_work(struct work_struct *work)
114 {
115         struct bio_post_read_ctx *ctx =
116                 container_of(work, struct bio_post_read_ctx, work);
117
118         fscrypt_decrypt_bio(ctx->bio);
119
120         bio_post_read_processing(ctx);
121 }
122
123 static void bio_post_read_processing(struct bio_post_read_ctx *ctx)
124 {
125         switch (++ctx->cur_step) {
126         case STEP_DECRYPT:
127                 if (ctx->enabled_steps & (1 << STEP_DECRYPT)) {
128                         INIT_WORK(&ctx->work, decrypt_work);
129                         fscrypt_enqueue_decrypt_work(&ctx->work);
130                         return;
131                 }
132                 ctx->cur_step++;
133                 /* fall-through */
134         default:
135                 __read_end_io(ctx->bio);
136         }
137 }
138
139 static bool f2fs_bio_post_read_required(struct bio *bio)
140 {
141         return bio->bi_private && !bio->bi_status;
142 }
143
144 static void f2fs_read_end_io(struct bio *bio)
145 {
146         if (time_to_inject(F2FS_P_SB(bio_first_page_all(bio)),
147                                                 FAULT_READ_IO)) {
148                 f2fs_show_injection_info(FAULT_READ_IO);
149                 bio->bi_status = BLK_STS_IOERR;
150         }
151
152         if (f2fs_bio_post_read_required(bio)) {
153                 struct bio_post_read_ctx *ctx = bio->bi_private;
154
155                 ctx->cur_step = STEP_INITIAL;
156                 bio_post_read_processing(ctx);
157                 return;
158         }
159
160         __read_end_io(bio);
161 }
162
163 static void f2fs_write_end_io(struct bio *bio)
164 {
165         struct f2fs_sb_info *sbi = bio->bi_private;
166         struct bio_vec *bvec;
167         int i;
168         struct bvec_iter_all iter_all;
169
170         if (time_to_inject(sbi, FAULT_WRITE_IO)) {
171                 f2fs_show_injection_info(FAULT_WRITE_IO);
172                 bio->bi_status = BLK_STS_IOERR;
173         }
174
175         bio_for_each_segment_all(bvec, bio, i, iter_all) {
176                 struct page *page = bvec->bv_page;
177                 enum count_type type = WB_DATA_TYPE(page);
178
179                 if (IS_DUMMY_WRITTEN_PAGE(page)) {
180                         set_page_private(page, (unsigned long)NULL);
181                         ClearPagePrivate(page);
182                         unlock_page(page);
183                         mempool_free(page, sbi->write_io_dummy);
184
185                         if (unlikely(bio->bi_status))
186                                 f2fs_stop_checkpoint(sbi, true);
187                         continue;
188                 }
189
190                 fscrypt_pullback_bio_page(&page, true);
191
192                 if (unlikely(bio->bi_status)) {
193                         mapping_set_error(page->mapping, -EIO);
194                         if (type == F2FS_WB_CP_DATA)
195                                 f2fs_stop_checkpoint(sbi, true);
196                 }
197
198                 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
199                                         page->index != nid_of_node(page));
200
201                 dec_page_count(sbi, type);
202                 if (f2fs_in_warm_node_list(sbi, page))
203                         f2fs_del_fsync_node_entry(sbi, page);
204                 clear_cold_data(page);
205                 end_page_writeback(page);
206         }
207         if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
208                                 wq_has_sleeper(&sbi->cp_wait))
209                 wake_up(&sbi->cp_wait);
210
211         bio_put(bio);
212 }
213
214 /*
215  * Return true, if pre_bio's bdev is same as its target device.
216  */
217 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
218                                 block_t blk_addr, struct bio *bio)
219 {
220         struct block_device *bdev = sbi->sb->s_bdev;
221         int i;
222
223         for (i = 0; i < sbi->s_ndevs; i++) {
224                 if (FDEV(i).start_blk <= blk_addr &&
225                                         FDEV(i).end_blk >= blk_addr) {
226                         blk_addr -= FDEV(i).start_blk;
227                         bdev = FDEV(i).bdev;
228                         break;
229                 }
230         }
231         if (bio) {
232                 bio_set_dev(bio, bdev);
233                 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
234         }
235         return bdev;
236 }
237
238 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
239 {
240         int i;
241
242         for (i = 0; i < sbi->s_ndevs; i++)
243                 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
244                         return i;
245         return 0;
246 }
247
248 static bool __same_bdev(struct f2fs_sb_info *sbi,
249                                 block_t blk_addr, struct bio *bio)
250 {
251         struct block_device *b = f2fs_target_device(sbi, blk_addr, NULL);
252         return bio->bi_disk == b->bd_disk && bio->bi_partno == b->bd_partno;
253 }
254
255 /*
256  * Low-level block read/write IO operations.
257  */
258 static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
259                                 struct writeback_control *wbc,
260                                 int npages, bool is_read,
261                                 enum page_type type, enum temp_type temp)
262 {
263         struct bio *bio;
264
265         bio = f2fs_bio_alloc(sbi, npages, true);
266
267         f2fs_target_device(sbi, blk_addr, bio);
268         if (is_read) {
269                 bio->bi_end_io = f2fs_read_end_io;
270                 bio->bi_private = NULL;
271         } else {
272                 bio->bi_end_io = f2fs_write_end_io;
273                 bio->bi_private = sbi;
274                 bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi, type, temp);
275         }
276         if (wbc)
277                 wbc_init_bio(wbc, bio);
278
279         return bio;
280 }
281
282 static inline void __submit_bio(struct f2fs_sb_info *sbi,
283                                 struct bio *bio, enum page_type type)
284 {
285         if (!is_read_io(bio_op(bio))) {
286                 unsigned int start;
287
288                 if (type != DATA && type != NODE)
289                         goto submit_io;
290
291                 if (test_opt(sbi, LFS) && current->plug)
292                         blk_finish_plug(current->plug);
293
294                 start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
295                 start %= F2FS_IO_SIZE(sbi);
296
297                 if (start == 0)
298                         goto submit_io;
299
300                 /* fill dummy pages */
301                 for (; start < F2FS_IO_SIZE(sbi); start++) {
302                         struct page *page =
303                                 mempool_alloc(sbi->write_io_dummy,
304                                         GFP_NOIO | __GFP_ZERO | __GFP_NOFAIL);
305                         f2fs_bug_on(sbi, !page);
306
307                         SetPagePrivate(page);
308                         set_page_private(page, (unsigned long)DUMMY_WRITTEN_PAGE);
309                         lock_page(page);
310                         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
311                                 f2fs_bug_on(sbi, 1);
312                 }
313                 /*
314                  * In the NODE case, we lose next block address chain. So, we
315                  * need to do checkpoint in f2fs_sync_file.
316                  */
317                 if (type == NODE)
318                         set_sbi_flag(sbi, SBI_NEED_CP);
319         }
320 submit_io:
321         if (is_read_io(bio_op(bio)))
322                 trace_f2fs_submit_read_bio(sbi->sb, type, bio);
323         else
324                 trace_f2fs_submit_write_bio(sbi->sb, type, bio);
325         submit_bio(bio);
326 }
327
328 static void __submit_merged_bio(struct f2fs_bio_info *io)
329 {
330         struct f2fs_io_info *fio = &io->fio;
331
332         if (!io->bio)
333                 return;
334
335         bio_set_op_attrs(io->bio, fio->op, fio->op_flags);
336
337         if (is_read_io(fio->op))
338                 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
339         else
340                 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
341
342         __submit_bio(io->sbi, io->bio, fio->type);
343         io->bio = NULL;
344 }
345
346 static bool __has_merged_page(struct f2fs_bio_info *io, struct inode *inode,
347                                                 struct page *page, nid_t ino)
348 {
349         struct bio_vec *bvec;
350         struct page *target;
351         int i;
352         struct bvec_iter_all iter_all;
353
354         if (!io->bio)
355                 return false;
356
357         if (!inode && !page && !ino)
358                 return true;
359
360         bio_for_each_segment_all(bvec, io->bio, i, iter_all) {
361
362                 if (bvec->bv_page->mapping)
363                         target = bvec->bv_page;
364                 else
365                         target = fscrypt_control_page(bvec->bv_page);
366
367                 if (inode && inode == target->mapping->host)
368                         return true;
369                 if (page && page == target)
370                         return true;
371                 if (ino && ino == ino_of_node(target))
372                         return true;
373         }
374
375         return false;
376 }
377
378 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
379                                 enum page_type type, enum temp_type temp)
380 {
381         enum page_type btype = PAGE_TYPE_OF_BIO(type);
382         struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
383
384         down_write(&io->io_rwsem);
385
386         /* change META to META_FLUSH in the checkpoint procedure */
387         if (type >= META_FLUSH) {
388                 io->fio.type = META_FLUSH;
389                 io->fio.op = REQ_OP_WRITE;
390                 io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC;
391                 if (!test_opt(sbi, NOBARRIER))
392                         io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
393         }
394         __submit_merged_bio(io);
395         up_write(&io->io_rwsem);
396 }
397
398 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
399                                 struct inode *inode, struct page *page,
400                                 nid_t ino, enum page_type type, bool force)
401 {
402         enum temp_type temp;
403         bool ret = true;
404
405         for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
406                 if (!force)     {
407                         enum page_type btype = PAGE_TYPE_OF_BIO(type);
408                         struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
409
410                         down_read(&io->io_rwsem);
411                         ret = __has_merged_page(io, inode, page, ino);
412                         up_read(&io->io_rwsem);
413                 }
414                 if (ret)
415                         __f2fs_submit_merged_write(sbi, type, temp);
416
417                 /* TODO: use HOT temp only for meta pages now. */
418                 if (type >= META)
419                         break;
420         }
421 }
422
423 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
424 {
425         __submit_merged_write_cond(sbi, NULL, 0, 0, type, true);
426 }
427
428 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
429                                 struct inode *inode, struct page *page,
430                                 nid_t ino, enum page_type type)
431 {
432         __submit_merged_write_cond(sbi, inode, page, ino, type, false);
433 }
434
435 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
436 {
437         f2fs_submit_merged_write(sbi, DATA);
438         f2fs_submit_merged_write(sbi, NODE);
439         f2fs_submit_merged_write(sbi, META);
440 }
441
442 /*
443  * Fill the locked page with data located in the block address.
444  * A caller needs to unlock the page on failure.
445  */
446 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
447 {
448         struct bio *bio;
449         struct page *page = fio->encrypted_page ?
450                         fio->encrypted_page : fio->page;
451
452         if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
453                         __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC))
454                 return -EFAULT;
455
456         trace_f2fs_submit_page_bio(page, fio);
457         f2fs_trace_ios(fio, 0);
458
459         /* Allocate a new bio */
460         bio = __bio_alloc(fio->sbi, fio->new_blkaddr, fio->io_wbc,
461                                 1, is_read_io(fio->op), fio->type, fio->temp);
462
463         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
464                 bio_put(bio);
465                 return -EFAULT;
466         }
467
468         if (fio->io_wbc && !is_read_io(fio->op))
469                 wbc_account_io(fio->io_wbc, page, PAGE_SIZE);
470
471         bio_set_op_attrs(bio, fio->op, fio->op_flags);
472
473         inc_page_count(fio->sbi, is_read_io(fio->op) ?
474                         __read_io_type(page): WB_DATA_TYPE(fio->page));
475
476         __submit_bio(fio->sbi, bio, fio->type);
477         return 0;
478 }
479
480 void f2fs_submit_page_write(struct f2fs_io_info *fio)
481 {
482         struct f2fs_sb_info *sbi = fio->sbi;
483         enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
484         struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
485         struct page *bio_page;
486
487         f2fs_bug_on(sbi, is_read_io(fio->op));
488
489         down_write(&io->io_rwsem);
490 next:
491         if (fio->in_list) {
492                 spin_lock(&io->io_lock);
493                 if (list_empty(&io->io_list)) {
494                         spin_unlock(&io->io_lock);
495                         goto out;
496                 }
497                 fio = list_first_entry(&io->io_list,
498                                                 struct f2fs_io_info, list);
499                 list_del(&fio->list);
500                 spin_unlock(&io->io_lock);
501         }
502
503         if (__is_valid_data_blkaddr(fio->old_blkaddr))
504                 verify_block_addr(fio, fio->old_blkaddr);
505         verify_block_addr(fio, fio->new_blkaddr);
506
507         bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page;
508
509         /* set submitted = true as a return value */
510         fio->submitted = true;
511
512         inc_page_count(sbi, WB_DATA_TYPE(bio_page));
513
514         if (io->bio && (io->last_block_in_bio != fio->new_blkaddr - 1 ||
515             (io->fio.op != fio->op || io->fio.op_flags != fio->op_flags) ||
516                         !__same_bdev(sbi, fio->new_blkaddr, io->bio)))
517                 __submit_merged_bio(io);
518 alloc_new:
519         if (io->bio == NULL) {
520                 if ((fio->type == DATA || fio->type == NODE) &&
521                                 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
522                         dec_page_count(sbi, WB_DATA_TYPE(bio_page));
523                         fio->retry = true;
524                         goto skip;
525                 }
526                 io->bio = __bio_alloc(sbi, fio->new_blkaddr, fio->io_wbc,
527                                                 BIO_MAX_PAGES, false,
528                                                 fio->type, fio->temp);
529                 io->fio = *fio;
530         }
531
532         if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
533                 __submit_merged_bio(io);
534                 goto alloc_new;
535         }
536
537         if (fio->io_wbc)
538                 wbc_account_io(fio->io_wbc, bio_page, PAGE_SIZE);
539
540         io->last_block_in_bio = fio->new_blkaddr;
541         f2fs_trace_ios(fio, 0);
542
543         trace_f2fs_submit_page_write(fio->page, fio);
544 skip:
545         if (fio->in_list)
546                 goto next;
547 out:
548         if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
549                                 f2fs_is_checkpoint_ready(sbi))
550                 __submit_merged_bio(io);
551         up_write(&io->io_rwsem);
552 }
553
554 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
555                                         unsigned nr_pages, unsigned op_flag)
556 {
557         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
558         struct bio *bio;
559         struct bio_post_read_ctx *ctx;
560         unsigned int post_read_steps = 0;
561
562         if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC))
563                 return ERR_PTR(-EFAULT);
564
565         bio = f2fs_bio_alloc(sbi, min_t(int, nr_pages, BIO_MAX_PAGES), false);
566         if (!bio)
567                 return ERR_PTR(-ENOMEM);
568         f2fs_target_device(sbi, blkaddr, bio);
569         bio->bi_end_io = f2fs_read_end_io;
570         bio_set_op_attrs(bio, REQ_OP_READ, op_flag);
571
572         if (f2fs_encrypted_file(inode))
573                 post_read_steps |= 1 << STEP_DECRYPT;
574         if (post_read_steps) {
575                 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
576                 if (!ctx) {
577                         bio_put(bio);
578                         return ERR_PTR(-ENOMEM);
579                 }
580                 ctx->bio = bio;
581                 ctx->enabled_steps = post_read_steps;
582                 bio->bi_private = ctx;
583         }
584
585         return bio;
586 }
587
588 /* This can handle encryption stuffs */
589 static int f2fs_submit_page_read(struct inode *inode, struct page *page,
590                                                         block_t blkaddr)
591 {
592         struct bio *bio = f2fs_grab_read_bio(inode, blkaddr, 1, 0);
593
594         if (IS_ERR(bio))
595                 return PTR_ERR(bio);
596
597         /* wait for GCed page writeback via META_MAPPING */
598         f2fs_wait_on_block_writeback(inode, blkaddr);
599
600         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
601                 bio_put(bio);
602                 return -EFAULT;
603         }
604         ClearPageError(page);
605         inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
606         __submit_bio(F2FS_I_SB(inode), bio, DATA);
607         return 0;
608 }
609
610 static void __set_data_blkaddr(struct dnode_of_data *dn)
611 {
612         struct f2fs_node *rn = F2FS_NODE(dn->node_page);
613         __le32 *addr_array;
614         int base = 0;
615
616         if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
617                 base = get_extra_isize(dn->inode);
618
619         /* Get physical address of data block */
620         addr_array = blkaddr_in_node(rn);
621         addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
622 }
623
624 /*
625  * Lock ordering for the change of data block address:
626  * ->data_page
627  *  ->node_page
628  *    update block addresses in the node page
629  */
630 void f2fs_set_data_blkaddr(struct dnode_of_data *dn)
631 {
632         f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
633         __set_data_blkaddr(dn);
634         if (set_page_dirty(dn->node_page))
635                 dn->node_changed = true;
636 }
637
638 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
639 {
640         dn->data_blkaddr = blkaddr;
641         f2fs_set_data_blkaddr(dn);
642         f2fs_update_extent_cache(dn);
643 }
644
645 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
646 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
647 {
648         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
649         int err;
650
651         if (!count)
652                 return 0;
653
654         if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
655                 return -EPERM;
656         if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
657                 return err;
658
659         trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
660                                                 dn->ofs_in_node, count);
661
662         f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
663
664         for (; count > 0; dn->ofs_in_node++) {
665                 block_t blkaddr = datablock_addr(dn->inode,
666                                         dn->node_page, dn->ofs_in_node);
667                 if (blkaddr == NULL_ADDR) {
668                         dn->data_blkaddr = NEW_ADDR;
669                         __set_data_blkaddr(dn);
670                         count--;
671                 }
672         }
673
674         if (set_page_dirty(dn->node_page))
675                 dn->node_changed = true;
676         return 0;
677 }
678
679 /* Should keep dn->ofs_in_node unchanged */
680 int f2fs_reserve_new_block(struct dnode_of_data *dn)
681 {
682         unsigned int ofs_in_node = dn->ofs_in_node;
683         int ret;
684
685         ret = f2fs_reserve_new_blocks(dn, 1);
686         dn->ofs_in_node = ofs_in_node;
687         return ret;
688 }
689
690 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
691 {
692         bool need_put = dn->inode_page ? false : true;
693         int err;
694
695         err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
696         if (err)
697                 return err;
698
699         if (dn->data_blkaddr == NULL_ADDR)
700                 err = f2fs_reserve_new_block(dn);
701         if (err || need_put)
702                 f2fs_put_dnode(dn);
703         return err;
704 }
705
706 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
707 {
708         struct extent_info ei  = {0,0,0};
709         struct inode *inode = dn->inode;
710
711         if (f2fs_lookup_extent_cache(inode, index, &ei)) {
712                 dn->data_blkaddr = ei.blk + index - ei.fofs;
713                 return 0;
714         }
715
716         return f2fs_reserve_block(dn, index);
717 }
718
719 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
720                                                 int op_flags, bool for_write)
721 {
722         struct address_space *mapping = inode->i_mapping;
723         struct dnode_of_data dn;
724         struct page *page;
725         struct extent_info ei = {0,0,0};
726         int err;
727
728         page = f2fs_grab_cache_page(mapping, index, for_write);
729         if (!page)
730                 return ERR_PTR(-ENOMEM);
731
732         if (f2fs_lookup_extent_cache(inode, index, &ei)) {
733                 dn.data_blkaddr = ei.blk + index - ei.fofs;
734                 goto got_it;
735         }
736
737         set_new_dnode(&dn, inode, NULL, NULL, 0);
738         err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
739         if (err)
740                 goto put_err;
741         f2fs_put_dnode(&dn);
742
743         if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
744                 err = -ENOENT;
745                 goto put_err;
746         }
747 got_it:
748         if (PageUptodate(page)) {
749                 unlock_page(page);
750                 return page;
751         }
752
753         /*
754          * A new dentry page is allocated but not able to be written, since its
755          * new inode page couldn't be allocated due to -ENOSPC.
756          * In such the case, its blkaddr can be remained as NEW_ADDR.
757          * see, f2fs_add_link -> f2fs_get_new_data_page ->
758          * f2fs_init_inode_metadata.
759          */
760         if (dn.data_blkaddr == NEW_ADDR) {
761                 zero_user_segment(page, 0, PAGE_SIZE);
762                 if (!PageUptodate(page))
763                         SetPageUptodate(page);
764                 unlock_page(page);
765                 return page;
766         }
767
768         err = f2fs_submit_page_read(inode, page, dn.data_blkaddr);
769         if (err)
770                 goto put_err;
771         return page;
772
773 put_err:
774         f2fs_put_page(page, 1);
775         return ERR_PTR(err);
776 }
777
778 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index)
779 {
780         struct address_space *mapping = inode->i_mapping;
781         struct page *page;
782
783         page = find_get_page(mapping, index);
784         if (page && PageUptodate(page))
785                 return page;
786         f2fs_put_page(page, 0);
787
788         page = f2fs_get_read_data_page(inode, index, 0, false);
789         if (IS_ERR(page))
790                 return page;
791
792         if (PageUptodate(page))
793                 return page;
794
795         wait_on_page_locked(page);
796         if (unlikely(!PageUptodate(page))) {
797                 f2fs_put_page(page, 0);
798                 return ERR_PTR(-EIO);
799         }
800         return page;
801 }
802
803 /*
804  * If it tries to access a hole, return an error.
805  * Because, the callers, functions in dir.c and GC, should be able to know
806  * whether this page exists or not.
807  */
808 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
809                                                         bool for_write)
810 {
811         struct address_space *mapping = inode->i_mapping;
812         struct page *page;
813 repeat:
814         page = f2fs_get_read_data_page(inode, index, 0, for_write);
815         if (IS_ERR(page))
816                 return page;
817
818         /* wait for read completion */
819         lock_page(page);
820         if (unlikely(page->mapping != mapping)) {
821                 f2fs_put_page(page, 1);
822                 goto repeat;
823         }
824         if (unlikely(!PageUptodate(page))) {
825                 f2fs_put_page(page, 1);
826                 return ERR_PTR(-EIO);
827         }
828         return page;
829 }
830
831 /*
832  * Caller ensures that this data page is never allocated.
833  * A new zero-filled data page is allocated in the page cache.
834  *
835  * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
836  * f2fs_unlock_op().
837  * Note that, ipage is set only by make_empty_dir, and if any error occur,
838  * ipage should be released by this function.
839  */
840 struct page *f2fs_get_new_data_page(struct inode *inode,
841                 struct page *ipage, pgoff_t index, bool new_i_size)
842 {
843         struct address_space *mapping = inode->i_mapping;
844         struct page *page;
845         struct dnode_of_data dn;
846         int err;
847
848         page = f2fs_grab_cache_page(mapping, index, true);
849         if (!page) {
850                 /*
851                  * before exiting, we should make sure ipage will be released
852                  * if any error occur.
853                  */
854                 f2fs_put_page(ipage, 1);
855                 return ERR_PTR(-ENOMEM);
856         }
857
858         set_new_dnode(&dn, inode, ipage, NULL, 0);
859         err = f2fs_reserve_block(&dn, index);
860         if (err) {
861                 f2fs_put_page(page, 1);
862                 return ERR_PTR(err);
863         }
864         if (!ipage)
865                 f2fs_put_dnode(&dn);
866
867         if (PageUptodate(page))
868                 goto got_it;
869
870         if (dn.data_blkaddr == NEW_ADDR) {
871                 zero_user_segment(page, 0, PAGE_SIZE);
872                 if (!PageUptodate(page))
873                         SetPageUptodate(page);
874         } else {
875                 f2fs_put_page(page, 1);
876
877                 /* if ipage exists, blkaddr should be NEW_ADDR */
878                 f2fs_bug_on(F2FS_I_SB(inode), ipage);
879                 page = f2fs_get_lock_data_page(inode, index, true);
880                 if (IS_ERR(page))
881                         return page;
882         }
883 got_it:
884         if (new_i_size && i_size_read(inode) <
885                                 ((loff_t)(index + 1) << PAGE_SHIFT))
886                 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
887         return page;
888 }
889
890 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
891 {
892         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
893         struct f2fs_summary sum;
894         struct node_info ni;
895         block_t old_blkaddr;
896         blkcnt_t count = 1;
897         int err;
898
899         if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
900                 return -EPERM;
901
902         err = f2fs_get_node_info(sbi, dn->nid, &ni);
903         if (err)
904                 return err;
905
906         dn->data_blkaddr = datablock_addr(dn->inode,
907                                 dn->node_page, dn->ofs_in_node);
908         if (dn->data_blkaddr != NULL_ADDR)
909                 goto alloc;
910
911         if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
912                 return err;
913
914 alloc:
915         set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
916         old_blkaddr = dn->data_blkaddr;
917         f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr,
918                                         &sum, seg_type, NULL, false);
919         if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
920                 invalidate_mapping_pages(META_MAPPING(sbi),
921                                         old_blkaddr, old_blkaddr);
922         f2fs_set_data_blkaddr(dn);
923
924         /*
925          * i_size will be updated by direct_IO. Otherwise, we'll get stale
926          * data from unwritten block via dio_read.
927          */
928         return 0;
929 }
930
931 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
932 {
933         struct inode *inode = file_inode(iocb->ki_filp);
934         struct f2fs_map_blocks map;
935         int flag;
936         int err = 0;
937         bool direct_io = iocb->ki_flags & IOCB_DIRECT;
938
939         /* convert inline data for Direct I/O*/
940         if (direct_io) {
941                 err = f2fs_convert_inline_inode(inode);
942                 if (err)
943                         return err;
944         }
945
946         if (direct_io && allow_outplace_dio(inode, iocb, from))
947                 return 0;
948
949         if (is_inode_flag_set(inode, FI_NO_PREALLOC))
950                 return 0;
951
952         map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
953         map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from));
954         if (map.m_len > map.m_lblk)
955                 map.m_len -= map.m_lblk;
956         else
957                 map.m_len = 0;
958
959         map.m_next_pgofs = NULL;
960         map.m_next_extent = NULL;
961         map.m_seg_type = NO_CHECK_TYPE;
962         map.m_may_create = true;
963
964         if (direct_io) {
965                 map.m_seg_type = f2fs_rw_hint_to_seg_type(iocb->ki_hint);
966                 flag = f2fs_force_buffered_io(inode, iocb, from) ?
967                                         F2FS_GET_BLOCK_PRE_AIO :
968                                         F2FS_GET_BLOCK_PRE_DIO;
969                 goto map_blocks;
970         }
971         if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA(inode)) {
972                 err = f2fs_convert_inline_inode(inode);
973                 if (err)
974                         return err;
975         }
976         if (f2fs_has_inline_data(inode))
977                 return err;
978
979         flag = F2FS_GET_BLOCK_PRE_AIO;
980
981 map_blocks:
982         err = f2fs_map_blocks(inode, &map, 1, flag);
983         if (map.m_len > 0 && err == -ENOSPC) {
984                 if (!direct_io)
985                         set_inode_flag(inode, FI_NO_PREALLOC);
986                 err = 0;
987         }
988         return err;
989 }
990
991 void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock)
992 {
993         if (flag == F2FS_GET_BLOCK_PRE_AIO) {
994                 if (lock)
995                         down_read(&sbi->node_change);
996                 else
997                         up_read(&sbi->node_change);
998         } else {
999                 if (lock)
1000                         f2fs_lock_op(sbi);
1001                 else
1002                         f2fs_unlock_op(sbi);
1003         }
1004 }
1005
1006 /*
1007  * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
1008  * f2fs_map_blocks structure.
1009  * If original data blocks are allocated, then give them to blockdev.
1010  * Otherwise,
1011  *     a. preallocate requested block addresses
1012  *     b. do not use extent cache for better performance
1013  *     c. give the block addresses to blockdev
1014  */
1015 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
1016                                                 int create, int flag)
1017 {
1018         unsigned int maxblocks = map->m_len;
1019         struct dnode_of_data dn;
1020         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1021         int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1022         pgoff_t pgofs, end_offset, end;
1023         int err = 0, ofs = 1;
1024         unsigned int ofs_in_node, last_ofs_in_node;
1025         blkcnt_t prealloc;
1026         struct extent_info ei = {0,0,0};
1027         block_t blkaddr;
1028         unsigned int start_pgofs;
1029
1030         if (!maxblocks)
1031                 return 0;
1032
1033         map->m_len = 0;
1034         map->m_flags = 0;
1035
1036         /* it only supports block size == page size */
1037         pgofs = (pgoff_t)map->m_lblk;
1038         end = pgofs + maxblocks;
1039
1040         if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
1041                 if (test_opt(sbi, LFS) && flag == F2FS_GET_BLOCK_DIO &&
1042                                                         map->m_may_create)
1043                         goto next_dnode;
1044
1045                 map->m_pblk = ei.blk + pgofs - ei.fofs;
1046                 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
1047                 map->m_flags = F2FS_MAP_MAPPED;
1048                 if (map->m_next_extent)
1049                         *map->m_next_extent = pgofs + map->m_len;
1050
1051                 /* for hardware encryption, but to avoid potential issue in future */
1052                 if (flag == F2FS_GET_BLOCK_DIO)
1053                         f2fs_wait_on_block_writeback_range(inode,
1054                                                 map->m_pblk, map->m_len);
1055                 goto out;
1056         }
1057
1058 next_dnode:
1059         if (map->m_may_create)
1060                 __do_map_lock(sbi, flag, true);
1061
1062         /* When reading holes, we need its node page */
1063         set_new_dnode(&dn, inode, NULL, NULL, 0);
1064         err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1065         if (err) {
1066                 if (flag == F2FS_GET_BLOCK_BMAP)
1067                         map->m_pblk = 0;
1068                 if (err == -ENOENT) {
1069                         err = 0;
1070                         if (map->m_next_pgofs)
1071                                 *map->m_next_pgofs =
1072                                         f2fs_get_next_page_offset(&dn, pgofs);
1073                         if (map->m_next_extent)
1074                                 *map->m_next_extent =
1075                                         f2fs_get_next_page_offset(&dn, pgofs);
1076                 }
1077                 goto unlock_out;
1078         }
1079
1080         start_pgofs = pgofs;
1081         prealloc = 0;
1082         last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1083         end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1084
1085 next_block:
1086         blkaddr = datablock_addr(dn.inode, dn.node_page, dn.ofs_in_node);
1087
1088         if (__is_valid_data_blkaddr(blkaddr) &&
1089                 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
1090                 err = -EFAULT;
1091                 goto sync_out;
1092         }
1093
1094         if (is_valid_data_blkaddr(sbi, blkaddr)) {
1095                 /* use out-place-update for driect IO under LFS mode */
1096                 if (test_opt(sbi, LFS) && flag == F2FS_GET_BLOCK_DIO &&
1097                                                         map->m_may_create) {
1098                         err = __allocate_data_block(&dn, map->m_seg_type);
1099                         if (!err) {
1100                                 blkaddr = dn.data_blkaddr;
1101                                 set_inode_flag(inode, FI_APPEND_WRITE);
1102                         }
1103                 }
1104         } else {
1105                 if (create) {
1106                         if (unlikely(f2fs_cp_error(sbi))) {
1107                                 err = -EIO;
1108                                 goto sync_out;
1109                         }
1110                         if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1111                                 if (blkaddr == NULL_ADDR) {
1112                                         prealloc++;
1113                                         last_ofs_in_node = dn.ofs_in_node;
1114                                 }
1115                         } else {
1116                                 WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO &&
1117                                         flag != F2FS_GET_BLOCK_DIO);
1118                                 err = __allocate_data_block(&dn,
1119                                                         map->m_seg_type);
1120                                 if (!err)
1121                                         set_inode_flag(inode, FI_APPEND_WRITE);
1122                         }
1123                         if (err)
1124                                 goto sync_out;
1125                         map->m_flags |= F2FS_MAP_NEW;
1126                         blkaddr = dn.data_blkaddr;
1127                 } else {
1128                         if (flag == F2FS_GET_BLOCK_BMAP) {
1129                                 map->m_pblk = 0;
1130                                 goto sync_out;
1131                         }
1132                         if (flag == F2FS_GET_BLOCK_PRECACHE)
1133                                 goto sync_out;
1134                         if (flag == F2FS_GET_BLOCK_FIEMAP &&
1135                                                 blkaddr == NULL_ADDR) {
1136                                 if (map->m_next_pgofs)
1137                                         *map->m_next_pgofs = pgofs + 1;
1138                                 goto sync_out;
1139                         }
1140                         if (flag != F2FS_GET_BLOCK_FIEMAP) {
1141                                 /* for defragment case */
1142                                 if (map->m_next_pgofs)
1143                                         *map->m_next_pgofs = pgofs + 1;
1144                                 goto sync_out;
1145                         }
1146                 }
1147         }
1148
1149         if (flag == F2FS_GET_BLOCK_PRE_AIO)
1150                 goto skip;
1151
1152         if (map->m_len == 0) {
1153                 /* preallocated unwritten block should be mapped for fiemap. */
1154                 if (blkaddr == NEW_ADDR)
1155                         map->m_flags |= F2FS_MAP_UNWRITTEN;
1156                 map->m_flags |= F2FS_MAP_MAPPED;
1157
1158                 map->m_pblk = blkaddr;
1159                 map->m_len = 1;
1160         } else if ((map->m_pblk != NEW_ADDR &&
1161                         blkaddr == (map->m_pblk + ofs)) ||
1162                         (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1163                         flag == F2FS_GET_BLOCK_PRE_DIO) {
1164                 ofs++;
1165                 map->m_len++;
1166         } else {
1167                 goto sync_out;
1168         }
1169
1170 skip:
1171         dn.ofs_in_node++;
1172         pgofs++;
1173
1174         /* preallocate blocks in batch for one dnode page */
1175         if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1176                         (pgofs == end || dn.ofs_in_node == end_offset)) {
1177
1178                 dn.ofs_in_node = ofs_in_node;
1179                 err = f2fs_reserve_new_blocks(&dn, prealloc);
1180                 if (err)
1181                         goto sync_out;
1182
1183                 map->m_len += dn.ofs_in_node - ofs_in_node;
1184                 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1185                         err = -ENOSPC;
1186                         goto sync_out;
1187                 }
1188                 dn.ofs_in_node = end_offset;
1189         }
1190
1191         if (pgofs >= end)
1192                 goto sync_out;
1193         else if (dn.ofs_in_node < end_offset)
1194                 goto next_block;
1195
1196         if (flag == F2FS_GET_BLOCK_PRECACHE) {
1197                 if (map->m_flags & F2FS_MAP_MAPPED) {
1198                         unsigned int ofs = start_pgofs - map->m_lblk;
1199
1200                         f2fs_update_extent_cache_range(&dn,
1201                                 start_pgofs, map->m_pblk + ofs,
1202                                 map->m_len - ofs);
1203                 }
1204         }
1205
1206         f2fs_put_dnode(&dn);
1207
1208         if (map->m_may_create) {
1209                 __do_map_lock(sbi, flag, false);
1210                 f2fs_balance_fs(sbi, dn.node_changed);
1211         }
1212         goto next_dnode;
1213
1214 sync_out:
1215
1216         /* for hardware encryption, but to avoid potential issue in future */
1217         if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED)
1218                 f2fs_wait_on_block_writeback_range(inode,
1219                                                 map->m_pblk, map->m_len);
1220
1221         if (flag == F2FS_GET_BLOCK_PRECACHE) {
1222                 if (map->m_flags & F2FS_MAP_MAPPED) {
1223                         unsigned int ofs = start_pgofs - map->m_lblk;
1224
1225                         f2fs_update_extent_cache_range(&dn,
1226                                 start_pgofs, map->m_pblk + ofs,
1227                                 map->m_len - ofs);
1228                 }
1229                 if (map->m_next_extent)
1230                         *map->m_next_extent = pgofs + 1;
1231         }
1232         f2fs_put_dnode(&dn);
1233 unlock_out:
1234         if (map->m_may_create) {
1235                 __do_map_lock(sbi, flag, false);
1236                 f2fs_balance_fs(sbi, dn.node_changed);
1237         }
1238 out:
1239         trace_f2fs_map_blocks(inode, map, err);
1240         return err;
1241 }
1242
1243 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1244 {
1245         struct f2fs_map_blocks map;
1246         block_t last_lblk;
1247         int err;
1248
1249         if (pos + len > i_size_read(inode))
1250                 return false;
1251
1252         map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1253         map.m_next_pgofs = NULL;
1254         map.m_next_extent = NULL;
1255         map.m_seg_type = NO_CHECK_TYPE;
1256         map.m_may_create = false;
1257         last_lblk = F2FS_BLK_ALIGN(pos + len);
1258
1259         while (map.m_lblk < last_lblk) {
1260                 map.m_len = last_lblk - map.m_lblk;
1261                 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
1262                 if (err || map.m_len == 0)
1263                         return false;
1264                 map.m_lblk += map.m_len;
1265         }
1266         return true;
1267 }
1268
1269 static int __get_data_block(struct inode *inode, sector_t iblock,
1270                         struct buffer_head *bh, int create, int flag,
1271                         pgoff_t *next_pgofs, int seg_type, bool may_write)
1272 {
1273         struct f2fs_map_blocks map;
1274         int err;
1275
1276         map.m_lblk = iblock;
1277         map.m_len = bh->b_size >> inode->i_blkbits;
1278         map.m_next_pgofs = next_pgofs;
1279         map.m_next_extent = NULL;
1280         map.m_seg_type = seg_type;
1281         map.m_may_create = may_write;
1282
1283         err = f2fs_map_blocks(inode, &map, create, flag);
1284         if (!err) {
1285                 map_bh(bh, inode->i_sb, map.m_pblk);
1286                 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
1287                 bh->b_size = (u64)map.m_len << inode->i_blkbits;
1288         }
1289         return err;
1290 }
1291
1292 static int get_data_block(struct inode *inode, sector_t iblock,
1293                         struct buffer_head *bh_result, int create, int flag,
1294                         pgoff_t *next_pgofs)
1295 {
1296         return __get_data_block(inode, iblock, bh_result, create,
1297                                                         flag, next_pgofs,
1298                                                         NO_CHECK_TYPE, create);
1299 }
1300
1301 static int get_data_block_dio_write(struct inode *inode, sector_t iblock,
1302                         struct buffer_head *bh_result, int create)
1303 {
1304         return __get_data_block(inode, iblock, bh_result, create,
1305                                 F2FS_GET_BLOCK_DIO, NULL,
1306                                 f2fs_rw_hint_to_seg_type(inode->i_write_hint),
1307                                 true);
1308 }
1309
1310 static int get_data_block_dio(struct inode *inode, sector_t iblock,
1311                         struct buffer_head *bh_result, int create)
1312 {
1313         return __get_data_block(inode, iblock, bh_result, create,
1314                                 F2FS_GET_BLOCK_DIO, NULL,
1315                                 f2fs_rw_hint_to_seg_type(inode->i_write_hint),
1316                                 false);
1317 }
1318
1319 static int get_data_block_bmap(struct inode *inode, sector_t iblock,
1320                         struct buffer_head *bh_result, int create)
1321 {
1322         /* Block number less than F2FS MAX BLOCKS */
1323         if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks))
1324                 return -EFBIG;
1325
1326         return __get_data_block(inode, iblock, bh_result, create,
1327                                                 F2FS_GET_BLOCK_BMAP, NULL,
1328                                                 NO_CHECK_TYPE, create);
1329 }
1330
1331 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
1332 {
1333         return (offset >> inode->i_blkbits);
1334 }
1335
1336 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
1337 {
1338         return (blk << inode->i_blkbits);
1339 }
1340
1341 static int f2fs_xattr_fiemap(struct inode *inode,
1342                                 struct fiemap_extent_info *fieinfo)
1343 {
1344         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1345         struct page *page;
1346         struct node_info ni;
1347         __u64 phys = 0, len;
1348         __u32 flags;
1349         nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1350         int err = 0;
1351
1352         if (f2fs_has_inline_xattr(inode)) {
1353                 int offset;
1354
1355                 page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1356                                                 inode->i_ino, false);
1357                 if (!page)
1358                         return -ENOMEM;
1359
1360                 err = f2fs_get_node_info(sbi, inode->i_ino, &ni);
1361                 if (err) {
1362                         f2fs_put_page(page, 1);
1363                         return err;
1364                 }
1365
1366                 phys = (__u64)blk_to_logical(inode, ni.blk_addr);
1367                 offset = offsetof(struct f2fs_inode, i_addr) +
1368                                         sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1369                                         get_inline_xattr_addrs(inode));
1370
1371                 phys += offset;
1372                 len = inline_xattr_size(inode);
1373
1374                 f2fs_put_page(page, 1);
1375
1376                 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1377
1378                 if (!xnid)
1379                         flags |= FIEMAP_EXTENT_LAST;
1380
1381                 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1382                 if (err || err == 1)
1383                         return err;
1384         }
1385
1386         if (xnid) {
1387                 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1388                 if (!page)
1389                         return -ENOMEM;
1390
1391                 err = f2fs_get_node_info(sbi, xnid, &ni);
1392                 if (err) {
1393                         f2fs_put_page(page, 1);
1394                         return err;
1395                 }
1396
1397                 phys = (__u64)blk_to_logical(inode, ni.blk_addr);
1398                 len = inode->i_sb->s_blocksize;
1399
1400                 f2fs_put_page(page, 1);
1401
1402                 flags = FIEMAP_EXTENT_LAST;
1403         }
1404
1405         if (phys)
1406                 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1407
1408         return (err < 0 ? err : 0);
1409 }
1410
1411 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1412                 u64 start, u64 len)
1413 {
1414         struct buffer_head map_bh;
1415         sector_t start_blk, last_blk;
1416         pgoff_t next_pgofs;
1417         u64 logical = 0, phys = 0, size = 0;
1418         u32 flags = 0;
1419         int ret = 0;
1420
1421         if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1422                 ret = f2fs_precache_extents(inode);
1423                 if (ret)
1424                         return ret;
1425         }
1426
1427         ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC | FIEMAP_FLAG_XATTR);
1428         if (ret)
1429                 return ret;
1430
1431         inode_lock(inode);
1432
1433         if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1434                 ret = f2fs_xattr_fiemap(inode, fieinfo);
1435                 goto out;
1436         }
1437
1438         if (f2fs_has_inline_data(inode)) {
1439                 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1440                 if (ret != -EAGAIN)
1441                         goto out;
1442         }
1443
1444         if (logical_to_blk(inode, len) == 0)
1445                 len = blk_to_logical(inode, 1);
1446
1447         start_blk = logical_to_blk(inode, start);
1448         last_blk = logical_to_blk(inode, start + len - 1);
1449
1450 next:
1451         memset(&map_bh, 0, sizeof(struct buffer_head));
1452         map_bh.b_size = len;
1453
1454         ret = get_data_block(inode, start_blk, &map_bh, 0,
1455                                         F2FS_GET_BLOCK_FIEMAP, &next_pgofs);
1456         if (ret)
1457                 goto out;
1458
1459         /* HOLE */
1460         if (!buffer_mapped(&map_bh)) {
1461                 start_blk = next_pgofs;
1462
1463                 if (blk_to_logical(inode, start_blk) < blk_to_logical(inode,
1464                                         F2FS_I_SB(inode)->max_file_blocks))
1465                         goto prep_next;
1466
1467                 flags |= FIEMAP_EXTENT_LAST;
1468         }
1469
1470         if (size) {
1471                 if (IS_ENCRYPTED(inode))
1472                         flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1473
1474                 ret = fiemap_fill_next_extent(fieinfo, logical,
1475                                 phys, size, flags);
1476         }
1477
1478         if (start_blk > last_blk || ret)
1479                 goto out;
1480
1481         logical = blk_to_logical(inode, start_blk);
1482         phys = blk_to_logical(inode, map_bh.b_blocknr);
1483         size = map_bh.b_size;
1484         flags = 0;
1485         if (buffer_unwritten(&map_bh))
1486                 flags = FIEMAP_EXTENT_UNWRITTEN;
1487
1488         start_blk += logical_to_blk(inode, size);
1489
1490 prep_next:
1491         cond_resched();
1492         if (fatal_signal_pending(current))
1493                 ret = -EINTR;
1494         else
1495                 goto next;
1496 out:
1497         if (ret == 1)
1498                 ret = 0;
1499
1500         inode_unlock(inode);
1501         return ret;
1502 }
1503
1504 /*
1505  * This function was originally taken from fs/mpage.c, and customized for f2fs.
1506  * Major change was from block_size == page_size in f2fs by default.
1507  *
1508  * Note that the aops->readpages() function is ONLY used for read-ahead. If
1509  * this function ever deviates from doing just read-ahead, it should either
1510  * use ->readpage() or do the necessary surgery to decouple ->readpages()
1511  * from read-ahead.
1512  */
1513 static int f2fs_mpage_readpages(struct address_space *mapping,
1514                         struct list_head *pages, struct page *page,
1515                         unsigned nr_pages, bool is_readahead)
1516 {
1517         struct bio *bio = NULL;
1518         sector_t last_block_in_bio = 0;
1519         struct inode *inode = mapping->host;
1520         const unsigned blkbits = inode->i_blkbits;
1521         const unsigned blocksize = 1 << blkbits;
1522         sector_t block_in_file;
1523         sector_t last_block;
1524         sector_t last_block_in_file;
1525         sector_t block_nr;
1526         struct f2fs_map_blocks map;
1527
1528         map.m_pblk = 0;
1529         map.m_lblk = 0;
1530         map.m_len = 0;
1531         map.m_flags = 0;
1532         map.m_next_pgofs = NULL;
1533         map.m_next_extent = NULL;
1534         map.m_seg_type = NO_CHECK_TYPE;
1535         map.m_may_create = false;
1536
1537         for (; nr_pages; nr_pages--) {
1538                 if (pages) {
1539                         page = list_last_entry(pages, struct page, lru);
1540
1541                         prefetchw(&page->flags);
1542                         list_del(&page->lru);
1543                         if (add_to_page_cache_lru(page, mapping,
1544                                                   page->index,
1545                                                   readahead_gfp_mask(mapping)))
1546                                 goto next_page;
1547                 }
1548
1549                 block_in_file = (sector_t)page->index;
1550                 last_block = block_in_file + nr_pages;
1551                 last_block_in_file = (i_size_read(inode) + blocksize - 1) >>
1552                                                                 blkbits;
1553                 if (last_block > last_block_in_file)
1554                         last_block = last_block_in_file;
1555
1556                 /*
1557                  * Map blocks using the previous result first.
1558                  */
1559                 if ((map.m_flags & F2FS_MAP_MAPPED) &&
1560                                 block_in_file > map.m_lblk &&
1561                                 block_in_file < (map.m_lblk + map.m_len))
1562                         goto got_it;
1563
1564                 /*
1565                  * Then do more f2fs_map_blocks() calls until we are
1566                  * done with this page.
1567                  */
1568                 map.m_flags = 0;
1569
1570                 if (block_in_file < last_block) {
1571                         map.m_lblk = block_in_file;
1572                         map.m_len = last_block - block_in_file;
1573
1574                         if (f2fs_map_blocks(inode, &map, 0,
1575                                                 F2FS_GET_BLOCK_DEFAULT))
1576                                 goto set_error_page;
1577                 }
1578 got_it:
1579                 if ((map.m_flags & F2FS_MAP_MAPPED)) {
1580                         block_nr = map.m_pblk + block_in_file - map.m_lblk;
1581                         SetPageMappedToDisk(page);
1582
1583                         if (!PageUptodate(page) && !cleancache_get_page(page)) {
1584                                 SetPageUptodate(page);
1585                                 goto confused;
1586                         }
1587
1588                         if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
1589                                                                 DATA_GENERIC))
1590                                 goto set_error_page;
1591                 } else {
1592                         zero_user_segment(page, 0, PAGE_SIZE);
1593                         if (!PageUptodate(page))
1594                                 SetPageUptodate(page);
1595                         unlock_page(page);
1596                         goto next_page;
1597                 }
1598
1599                 /*
1600                  * This page will go to BIO.  Do we need to send this
1601                  * BIO off first?
1602                  */
1603                 if (bio && (last_block_in_bio != block_nr - 1 ||
1604                         !__same_bdev(F2FS_I_SB(inode), block_nr, bio))) {
1605 submit_and_realloc:
1606                         __submit_bio(F2FS_I_SB(inode), bio, DATA);
1607                         bio = NULL;
1608                 }
1609                 if (bio == NULL) {
1610                         bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
1611                                         is_readahead ? REQ_RAHEAD : 0);
1612                         if (IS_ERR(bio)) {
1613                                 bio = NULL;
1614                                 goto set_error_page;
1615                         }
1616                 }
1617
1618                 /*
1619                  * If the page is under writeback, we need to wait for
1620                  * its completion to see the correct decrypted data.
1621                  */
1622                 f2fs_wait_on_block_writeback(inode, block_nr);
1623
1624                 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
1625                         goto submit_and_realloc;
1626
1627                 inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
1628                 ClearPageError(page);
1629                 last_block_in_bio = block_nr;
1630                 goto next_page;
1631 set_error_page:
1632                 SetPageError(page);
1633                 zero_user_segment(page, 0, PAGE_SIZE);
1634                 unlock_page(page);
1635                 goto next_page;
1636 confused:
1637                 if (bio) {
1638                         __submit_bio(F2FS_I_SB(inode), bio, DATA);
1639                         bio = NULL;
1640                 }
1641                 unlock_page(page);
1642 next_page:
1643                 if (pages)
1644                         put_page(page);
1645         }
1646         BUG_ON(pages && !list_empty(pages));
1647         if (bio)
1648                 __submit_bio(F2FS_I_SB(inode), bio, DATA);
1649         return 0;
1650 }
1651
1652 static int f2fs_read_data_page(struct file *file, struct page *page)
1653 {
1654         struct inode *inode = page->mapping->host;
1655         int ret = -EAGAIN;
1656
1657         trace_f2fs_readpage(page, DATA);
1658
1659         /* If the file has inline data, try to read it directly */
1660         if (f2fs_has_inline_data(inode))
1661                 ret = f2fs_read_inline_data(inode, page);
1662         if (ret == -EAGAIN)
1663                 ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1, false);
1664         return ret;
1665 }
1666
1667 static int f2fs_read_data_pages(struct file *file,
1668                         struct address_space *mapping,
1669                         struct list_head *pages, unsigned nr_pages)
1670 {
1671         struct inode *inode = mapping->host;
1672         struct page *page = list_last_entry(pages, struct page, lru);
1673
1674         trace_f2fs_readpages(inode, page, nr_pages);
1675
1676         /* If the file has inline data, skip readpages */
1677         if (f2fs_has_inline_data(inode))
1678                 return 0;
1679
1680         return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages, true);
1681 }
1682
1683 static int encrypt_one_page(struct f2fs_io_info *fio)
1684 {
1685         struct inode *inode = fio->page->mapping->host;
1686         struct page *mpage;
1687         gfp_t gfp_flags = GFP_NOFS;
1688
1689         if (!f2fs_encrypted_file(inode))
1690                 return 0;
1691
1692         /* wait for GCed page writeback via META_MAPPING */
1693         f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
1694
1695 retry_encrypt:
1696         fio->encrypted_page = fscrypt_encrypt_page(inode, fio->page,
1697                         PAGE_SIZE, 0, fio->page->index, gfp_flags);
1698         if (IS_ERR(fio->encrypted_page)) {
1699                 /* flush pending IOs and wait for a while in the ENOMEM case */
1700                 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
1701                         f2fs_flush_merged_writes(fio->sbi);
1702                         congestion_wait(BLK_RW_ASYNC, HZ/50);
1703                         gfp_flags |= __GFP_NOFAIL;
1704                         goto retry_encrypt;
1705                 }
1706                 return PTR_ERR(fio->encrypted_page);
1707         }
1708
1709         mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
1710         if (mpage) {
1711                 if (PageUptodate(mpage))
1712                         memcpy(page_address(mpage),
1713                                 page_address(fio->encrypted_page), PAGE_SIZE);
1714                 f2fs_put_page(mpage, 1);
1715         }
1716         return 0;
1717 }
1718
1719 static inline bool check_inplace_update_policy(struct inode *inode,
1720                                 struct f2fs_io_info *fio)
1721 {
1722         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1723         unsigned int policy = SM_I(sbi)->ipu_policy;
1724
1725         if (policy & (0x1 << F2FS_IPU_FORCE))
1726                 return true;
1727         if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi))
1728                 return true;
1729         if (policy & (0x1 << F2FS_IPU_UTIL) &&
1730                         utilization(sbi) > SM_I(sbi)->min_ipu_util)
1731                 return true;
1732         if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) &&
1733                         utilization(sbi) > SM_I(sbi)->min_ipu_util)
1734                 return true;
1735
1736         /*
1737          * IPU for rewrite async pages
1738          */
1739         if (policy & (0x1 << F2FS_IPU_ASYNC) &&
1740                         fio && fio->op == REQ_OP_WRITE &&
1741                         !(fio->op_flags & REQ_SYNC) &&
1742                         !IS_ENCRYPTED(inode))
1743                 return true;
1744
1745         /* this is only set during fdatasync */
1746         if (policy & (0x1 << F2FS_IPU_FSYNC) &&
1747                         is_inode_flag_set(inode, FI_NEED_IPU))
1748                 return true;
1749
1750         if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1751                         !f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
1752                 return true;
1753
1754         return false;
1755 }
1756
1757 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
1758 {
1759         if (f2fs_is_pinned_file(inode))
1760                 return true;
1761
1762         /* if this is cold file, we should overwrite to avoid fragmentation */
1763         if (file_is_cold(inode))
1764                 return true;
1765
1766         return check_inplace_update_policy(inode, fio);
1767 }
1768
1769 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
1770 {
1771         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1772
1773         if (test_opt(sbi, LFS))
1774                 return true;
1775         if (S_ISDIR(inode->i_mode))
1776                 return true;
1777         if (IS_NOQUOTA(inode))
1778                 return true;
1779         if (f2fs_is_atomic_file(inode))
1780                 return true;
1781         if (fio) {
1782                 if (is_cold_data(fio->page))
1783                         return true;
1784                 if (IS_ATOMIC_WRITTEN_PAGE(fio->page))
1785                         return true;
1786                 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1787                         f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
1788                         return true;
1789         }
1790         return false;
1791 }
1792
1793 static inline bool need_inplace_update(struct f2fs_io_info *fio)
1794 {
1795         struct inode *inode = fio->page->mapping->host;
1796
1797         if (f2fs_should_update_outplace(inode, fio))
1798                 return false;
1799
1800         return f2fs_should_update_inplace(inode, fio);
1801 }
1802
1803 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
1804 {
1805         struct page *page = fio->page;
1806         struct inode *inode = page->mapping->host;
1807         struct dnode_of_data dn;
1808         struct extent_info ei = {0,0,0};
1809         struct node_info ni;
1810         bool ipu_force = false;
1811         int err = 0;
1812
1813         set_new_dnode(&dn, inode, NULL, NULL, 0);
1814         if (need_inplace_update(fio) &&
1815                         f2fs_lookup_extent_cache(inode, page->index, &ei)) {
1816                 fio->old_blkaddr = ei.blk + page->index - ei.fofs;
1817
1818                 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
1819                                                         DATA_GENERIC))
1820                         return -EFAULT;
1821
1822                 ipu_force = true;
1823                 fio->need_lock = LOCK_DONE;
1824                 goto got_it;
1825         }
1826
1827         /* Deadlock due to between page->lock and f2fs_lock_op */
1828         if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
1829                 return -EAGAIN;
1830
1831         err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
1832         if (err)
1833                 goto out;
1834
1835         fio->old_blkaddr = dn.data_blkaddr;
1836
1837         /* This page is already truncated */
1838         if (fio->old_blkaddr == NULL_ADDR) {
1839                 ClearPageUptodate(page);
1840                 clear_cold_data(page);
1841                 goto out_writepage;
1842         }
1843 got_it:
1844         if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
1845                 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
1846                                                         DATA_GENERIC)) {
1847                 err = -EFAULT;
1848                 goto out_writepage;
1849         }
1850         /*
1851          * If current allocation needs SSR,
1852          * it had better in-place writes for updated data.
1853          */
1854         if (ipu_force || (is_valid_data_blkaddr(fio->sbi, fio->old_blkaddr) &&
1855                                         need_inplace_update(fio))) {
1856                 err = encrypt_one_page(fio);
1857                 if (err)
1858                         goto out_writepage;
1859
1860                 set_page_writeback(page);
1861                 ClearPageError(page);
1862                 f2fs_put_dnode(&dn);
1863                 if (fio->need_lock == LOCK_REQ)
1864                         f2fs_unlock_op(fio->sbi);
1865                 err = f2fs_inplace_write_data(fio);
1866                 if (err && PageWriteback(page))
1867                         end_page_writeback(page);
1868                 trace_f2fs_do_write_data_page(fio->page, IPU);
1869                 set_inode_flag(inode, FI_UPDATE_WRITE);
1870                 return err;
1871         }
1872
1873         if (fio->need_lock == LOCK_RETRY) {
1874                 if (!f2fs_trylock_op(fio->sbi)) {
1875                         err = -EAGAIN;
1876                         goto out_writepage;
1877                 }
1878                 fio->need_lock = LOCK_REQ;
1879         }
1880
1881         err = f2fs_get_node_info(fio->sbi, dn.nid, &ni);
1882         if (err)
1883                 goto out_writepage;
1884
1885         fio->version = ni.version;
1886
1887         err = encrypt_one_page(fio);
1888         if (err)
1889                 goto out_writepage;
1890
1891         set_page_writeback(page);
1892         ClearPageError(page);
1893
1894         /* LFS mode write path */
1895         f2fs_outplace_write_data(&dn, fio);
1896         trace_f2fs_do_write_data_page(page, OPU);
1897         set_inode_flag(inode, FI_APPEND_WRITE);
1898         if (page->index == 0)
1899                 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
1900 out_writepage:
1901         f2fs_put_dnode(&dn);
1902 out:
1903         if (fio->need_lock == LOCK_REQ)
1904                 f2fs_unlock_op(fio->sbi);
1905         return err;
1906 }
1907
1908 static int __write_data_page(struct page *page, bool *submitted,
1909                                 struct writeback_control *wbc,
1910                                 enum iostat_type io_type)
1911 {
1912         struct inode *inode = page->mapping->host;
1913         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1914         loff_t i_size = i_size_read(inode);
1915         const pgoff_t end_index = ((unsigned long long) i_size)
1916                                                         >> PAGE_SHIFT;
1917         loff_t psize = (page->index + 1) << PAGE_SHIFT;
1918         unsigned offset = 0;
1919         bool need_balance_fs = false;
1920         int err = 0;
1921         struct f2fs_io_info fio = {
1922                 .sbi = sbi,
1923                 .ino = inode->i_ino,
1924                 .type = DATA,
1925                 .op = REQ_OP_WRITE,
1926                 .op_flags = wbc_to_write_flags(wbc),
1927                 .old_blkaddr = NULL_ADDR,
1928                 .page = page,
1929                 .encrypted_page = NULL,
1930                 .submitted = false,
1931                 .need_lock = LOCK_RETRY,
1932                 .io_type = io_type,
1933                 .io_wbc = wbc,
1934         };
1935
1936         trace_f2fs_writepage(page, DATA);
1937
1938         /* we should bypass data pages to proceed the kworkder jobs */
1939         if (unlikely(f2fs_cp_error(sbi))) {
1940                 mapping_set_error(page->mapping, -EIO);
1941                 /*
1942                  * don't drop any dirty dentry pages for keeping lastest
1943                  * directory structure.
1944                  */
1945                 if (S_ISDIR(inode->i_mode))
1946                         goto redirty_out;
1947                 goto out;
1948         }
1949
1950         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1951                 goto redirty_out;
1952
1953         if (page->index < end_index)
1954                 goto write;
1955
1956         /*
1957          * If the offset is out-of-range of file size,
1958          * this page does not have to be written to disk.
1959          */
1960         offset = i_size & (PAGE_SIZE - 1);
1961         if ((page->index >= end_index + 1) || !offset)
1962                 goto out;
1963
1964         zero_user_segment(page, offset, PAGE_SIZE);
1965 write:
1966         if (f2fs_is_drop_cache(inode))
1967                 goto out;
1968         /* we should not write 0'th page having journal header */
1969         if (f2fs_is_volatile_file(inode) && (!page->index ||
1970                         (!wbc->for_reclaim &&
1971                         f2fs_available_free_memory(sbi, BASE_CHECK))))
1972                 goto redirty_out;
1973
1974         /* Dentry blocks are controlled by checkpoint */
1975         if (S_ISDIR(inode->i_mode)) {
1976                 fio.need_lock = LOCK_DONE;
1977                 err = f2fs_do_write_data_page(&fio);
1978                 goto done;
1979         }
1980
1981         if (!wbc->for_reclaim)
1982                 need_balance_fs = true;
1983         else if (has_not_enough_free_secs(sbi, 0, 0))
1984                 goto redirty_out;
1985         else
1986                 set_inode_flag(inode, FI_HOT_DATA);
1987
1988         err = -EAGAIN;
1989         if (f2fs_has_inline_data(inode)) {
1990                 err = f2fs_write_inline_data(inode, page);
1991                 if (!err)
1992                         goto out;
1993         }
1994
1995         if (err == -EAGAIN) {
1996                 err = f2fs_do_write_data_page(&fio);
1997                 if (err == -EAGAIN) {
1998                         fio.need_lock = LOCK_REQ;
1999                         err = f2fs_do_write_data_page(&fio);
2000                 }
2001         }
2002
2003         if (err) {
2004                 file_set_keep_isize(inode);
2005         } else {
2006                 down_write(&F2FS_I(inode)->i_sem);
2007                 if (F2FS_I(inode)->last_disk_size < psize)
2008                         F2FS_I(inode)->last_disk_size = psize;
2009                 up_write(&F2FS_I(inode)->i_sem);
2010         }
2011
2012 done:
2013         if (err && err != -ENOENT)
2014                 goto redirty_out;
2015
2016 out:
2017         inode_dec_dirty_pages(inode);
2018         if (err) {
2019                 ClearPageUptodate(page);
2020                 clear_cold_data(page);
2021         }
2022
2023         if (wbc->for_reclaim) {
2024                 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2025                 clear_inode_flag(inode, FI_HOT_DATA);
2026                 f2fs_remove_dirty_inode(inode);
2027                 submitted = NULL;
2028         }
2029
2030         unlock_page(page);
2031         if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode))
2032                 f2fs_balance_fs(sbi, need_balance_fs);
2033
2034         if (unlikely(f2fs_cp_error(sbi))) {
2035                 f2fs_submit_merged_write(sbi, DATA);
2036                 submitted = NULL;
2037         }
2038
2039         if (submitted)
2040                 *submitted = fio.submitted;
2041
2042         return 0;
2043
2044 redirty_out:
2045         redirty_page_for_writepage(wbc, page);
2046         /*
2047          * pageout() in MM traslates EAGAIN, so calls handle_write_error()
2048          * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2049          * file_write_and_wait_range() will see EIO error, which is critical
2050          * to return value of fsync() followed by atomic_write failure to user.
2051          */
2052         if (!err || wbc->for_reclaim)
2053                 return AOP_WRITEPAGE_ACTIVATE;
2054         unlock_page(page);
2055         return err;
2056 }
2057
2058 static int f2fs_write_data_page(struct page *page,
2059                                         struct writeback_control *wbc)
2060 {
2061         return __write_data_page(page, NULL, wbc, FS_DATA_IO);
2062 }
2063
2064 /*
2065  * This function was copied from write_cche_pages from mm/page-writeback.c.
2066  * The major change is making write step of cold data page separately from
2067  * warm/hot data page.
2068  */
2069 static int f2fs_write_cache_pages(struct address_space *mapping,
2070                                         struct writeback_control *wbc,
2071                                         enum iostat_type io_type)
2072 {
2073         int ret = 0;
2074         int done = 0;
2075         struct pagevec pvec;
2076         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2077         int nr_pages;
2078         pgoff_t uninitialized_var(writeback_index);
2079         pgoff_t index;
2080         pgoff_t end;            /* Inclusive */
2081         pgoff_t done_index;
2082         int cycled;
2083         int range_whole = 0;
2084         xa_mark_t tag;
2085         int nwritten = 0;
2086
2087         pagevec_init(&pvec);
2088
2089         if (get_dirty_pages(mapping->host) <=
2090                                 SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
2091                 set_inode_flag(mapping->host, FI_HOT_DATA);
2092         else
2093                 clear_inode_flag(mapping->host, FI_HOT_DATA);
2094
2095         if (wbc->range_cyclic) {
2096                 writeback_index = mapping->writeback_index; /* prev offset */
2097                 index = writeback_index;
2098                 if (index == 0)
2099                         cycled = 1;
2100                 else
2101                         cycled = 0;
2102                 end = -1;
2103         } else {
2104                 index = wbc->range_start >> PAGE_SHIFT;
2105                 end = wbc->range_end >> PAGE_SHIFT;
2106                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2107                         range_whole = 1;
2108                 cycled = 1; /* ignore range_cyclic tests */
2109         }
2110         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2111                 tag = PAGECACHE_TAG_TOWRITE;
2112         else
2113                 tag = PAGECACHE_TAG_DIRTY;
2114 retry:
2115         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2116                 tag_pages_for_writeback(mapping, index, end);
2117         done_index = index;
2118         while (!done && (index <= end)) {
2119                 int i;
2120
2121                 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2122                                 tag);
2123                 if (nr_pages == 0)
2124                         break;
2125
2126                 for (i = 0; i < nr_pages; i++) {
2127                         struct page *page = pvec.pages[i];
2128                         bool submitted = false;
2129
2130                         /* give a priority to WB_SYNC threads */
2131                         if (atomic_read(&sbi->wb_sync_req[DATA]) &&
2132                                         wbc->sync_mode == WB_SYNC_NONE) {
2133                                 done = 1;
2134                                 break;
2135                         }
2136
2137                         done_index = page->index;
2138 retry_write:
2139                         lock_page(page);
2140
2141                         if (unlikely(page->mapping != mapping)) {
2142 continue_unlock:
2143                                 unlock_page(page);
2144                                 continue;
2145                         }
2146
2147                         if (!PageDirty(page)) {
2148                                 /* someone wrote it for us */
2149                                 goto continue_unlock;
2150                         }
2151
2152                         if (PageWriteback(page)) {
2153                                 if (wbc->sync_mode != WB_SYNC_NONE)
2154                                         f2fs_wait_on_page_writeback(page,
2155                                                         DATA, true, true);
2156                                 else
2157                                         goto continue_unlock;
2158                         }
2159
2160                         if (!clear_page_dirty_for_io(page))
2161                                 goto continue_unlock;
2162
2163                         ret = __write_data_page(page, &submitted, wbc, io_type);
2164                         if (unlikely(ret)) {
2165                                 /*
2166                                  * keep nr_to_write, since vfs uses this to
2167                                  * get # of written pages.
2168                                  */
2169                                 if (ret == AOP_WRITEPAGE_ACTIVATE) {
2170                                         unlock_page(page);
2171                                         ret = 0;
2172                                         continue;
2173                                 } else if (ret == -EAGAIN) {
2174                                         ret = 0;
2175                                         if (wbc->sync_mode == WB_SYNC_ALL) {
2176                                                 cond_resched();
2177                                                 congestion_wait(BLK_RW_ASYNC,
2178                                                                         HZ/50);
2179                                                 goto retry_write;
2180                                         }
2181                                         continue;
2182                                 }
2183                                 done_index = page->index + 1;
2184                                 done = 1;
2185                                 break;
2186                         } else if (submitted) {
2187                                 nwritten++;
2188                         }
2189
2190                         if (--wbc->nr_to_write <= 0 &&
2191                                         wbc->sync_mode == WB_SYNC_NONE) {
2192                                 done = 1;
2193                                 break;
2194                         }
2195                 }
2196                 pagevec_release(&pvec);
2197                 cond_resched();
2198         }
2199
2200         if (!cycled && !done) {
2201                 cycled = 1;
2202                 index = 0;
2203                 end = writeback_index - 1;
2204                 goto retry;
2205         }
2206         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2207                 mapping->writeback_index = done_index;
2208
2209         if (nwritten)
2210                 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
2211                                                                 NULL, 0, DATA);
2212
2213         return ret;
2214 }
2215
2216 static inline bool __should_serialize_io(struct inode *inode,
2217                                         struct writeback_control *wbc)
2218 {
2219         if (!S_ISREG(inode->i_mode))
2220                 return false;
2221         if (IS_NOQUOTA(inode))
2222                 return false;
2223         if (wbc->sync_mode != WB_SYNC_ALL)
2224                 return true;
2225         if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
2226                 return true;
2227         return false;
2228 }
2229
2230 static int __f2fs_write_data_pages(struct address_space *mapping,
2231                                                 struct writeback_control *wbc,
2232                                                 enum iostat_type io_type)
2233 {
2234         struct inode *inode = mapping->host;
2235         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2236         struct blk_plug plug;
2237         int ret;
2238         bool locked = false;
2239
2240         /* deal with chardevs and other special file */
2241         if (!mapping->a_ops->writepage)
2242                 return 0;
2243
2244         /* skip writing if there is no dirty page in this inode */
2245         if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
2246                 return 0;
2247
2248         /* during POR, we don't need to trigger writepage at all. */
2249         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2250                 goto skip_write;
2251
2252         if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
2253                         wbc->sync_mode == WB_SYNC_NONE &&
2254                         get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
2255                         f2fs_available_free_memory(sbi, DIRTY_DENTS))
2256                 goto skip_write;
2257
2258         /* skip writing during file defragment */
2259         if (is_inode_flag_set(inode, FI_DO_DEFRAG))
2260                 goto skip_write;
2261
2262         trace_f2fs_writepages(mapping->host, wbc, DATA);
2263
2264         /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
2265         if (wbc->sync_mode == WB_SYNC_ALL)
2266                 atomic_inc(&sbi->wb_sync_req[DATA]);
2267         else if (atomic_read(&sbi->wb_sync_req[DATA]))
2268                 goto skip_write;
2269
2270         if (__should_serialize_io(inode, wbc)) {
2271                 mutex_lock(&sbi->writepages);
2272                 locked = true;
2273         }
2274
2275         blk_start_plug(&plug);
2276         ret = f2fs_write_cache_pages(mapping, wbc, io_type);
2277         blk_finish_plug(&plug);
2278
2279         if (locked)
2280                 mutex_unlock(&sbi->writepages);
2281
2282         if (wbc->sync_mode == WB_SYNC_ALL)
2283                 atomic_dec(&sbi->wb_sync_req[DATA]);
2284         /*
2285          * if some pages were truncated, we cannot guarantee its mapping->host
2286          * to detect pending bios.
2287          */
2288
2289         f2fs_remove_dirty_inode(inode);
2290         return ret;
2291
2292 skip_write:
2293         wbc->pages_skipped += get_dirty_pages(inode);
2294         trace_f2fs_writepages(mapping->host, wbc, DATA);
2295         return 0;
2296 }
2297
2298 static int f2fs_write_data_pages(struct address_space *mapping,
2299                             struct writeback_control *wbc)
2300 {
2301         struct inode *inode = mapping->host;
2302
2303         return __f2fs_write_data_pages(mapping, wbc,
2304                         F2FS_I(inode)->cp_task == current ?
2305                         FS_CP_DATA_IO : FS_DATA_IO);
2306 }
2307
2308 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
2309 {
2310         struct inode *inode = mapping->host;
2311         loff_t i_size = i_size_read(inode);
2312
2313         if (to > i_size) {
2314                 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2315                 down_write(&F2FS_I(inode)->i_mmap_sem);
2316
2317                 truncate_pagecache(inode, i_size);
2318                 f2fs_truncate_blocks(inode, i_size, true, true);
2319
2320                 up_write(&F2FS_I(inode)->i_mmap_sem);
2321                 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2322         }
2323 }
2324
2325 static int prepare_write_begin(struct f2fs_sb_info *sbi,
2326                         struct page *page, loff_t pos, unsigned len,
2327                         block_t *blk_addr, bool *node_changed)
2328 {
2329         struct inode *inode = page->mapping->host;
2330         pgoff_t index = page->index;
2331         struct dnode_of_data dn;
2332         struct page *ipage;
2333         bool locked = false;
2334         struct extent_info ei = {0,0,0};
2335         int err = 0;
2336         int flag;
2337
2338         /*
2339          * we already allocated all the blocks, so we don't need to get
2340          * the block addresses when there is no need to fill the page.
2341          */
2342         if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE &&
2343                         !is_inode_flag_set(inode, FI_NO_PREALLOC))
2344                 return 0;
2345
2346         /* f2fs_lock_op avoids race between write CP and convert_inline_page */
2347         if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode))
2348                 flag = F2FS_GET_BLOCK_DEFAULT;
2349         else
2350                 flag = F2FS_GET_BLOCK_PRE_AIO;
2351
2352         if (f2fs_has_inline_data(inode) ||
2353                         (pos & PAGE_MASK) >= i_size_read(inode)) {
2354                 __do_map_lock(sbi, flag, true);
2355                 locked = true;
2356         }
2357 restart:
2358         /* check inline_data */
2359         ipage = f2fs_get_node_page(sbi, inode->i_ino);
2360         if (IS_ERR(ipage)) {
2361                 err = PTR_ERR(ipage);
2362                 goto unlock_out;
2363         }
2364
2365         set_new_dnode(&dn, inode, ipage, ipage, 0);
2366
2367         if (f2fs_has_inline_data(inode)) {
2368                 if (pos + len <= MAX_INLINE_DATA(inode)) {
2369                         f2fs_do_read_inline_data(page, ipage);
2370                         set_inode_flag(inode, FI_DATA_EXIST);
2371                         if (inode->i_nlink)
2372                                 set_inline_node(ipage);
2373                 } else {
2374                         err = f2fs_convert_inline_page(&dn, page);
2375                         if (err)
2376                                 goto out;
2377                         if (dn.data_blkaddr == NULL_ADDR)
2378                                 err = f2fs_get_block(&dn, index);
2379                 }
2380         } else if (locked) {
2381                 err = f2fs_get_block(&dn, index);
2382         } else {
2383                 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
2384                         dn.data_blkaddr = ei.blk + index - ei.fofs;
2385                 } else {
2386                         /* hole case */
2387                         err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
2388                         if (err || dn.data_blkaddr == NULL_ADDR) {
2389                                 f2fs_put_dnode(&dn);
2390                                 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO,
2391                                                                 true);
2392                                 WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
2393                                 locked = true;
2394                                 goto restart;
2395                         }
2396                 }
2397         }
2398
2399         /* convert_inline_page can make node_changed */
2400         *blk_addr = dn.data_blkaddr;
2401         *node_changed = dn.node_changed;
2402 out:
2403         f2fs_put_dnode(&dn);
2404 unlock_out:
2405         if (locked)
2406                 __do_map_lock(sbi, flag, false);
2407         return err;
2408 }
2409
2410 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
2411                 loff_t pos, unsigned len, unsigned flags,
2412                 struct page **pagep, void **fsdata)
2413 {
2414         struct inode *inode = mapping->host;
2415         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2416         struct page *page = NULL;
2417         pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
2418         bool need_balance = false, drop_atomic = false;
2419         block_t blkaddr = NULL_ADDR;
2420         int err = 0;
2421
2422         trace_f2fs_write_begin(inode, pos, len, flags);
2423
2424         err = f2fs_is_checkpoint_ready(sbi);
2425         if (err)
2426                 goto fail;
2427
2428         if ((f2fs_is_atomic_file(inode) &&
2429                         !f2fs_available_free_memory(sbi, INMEM_PAGES)) ||
2430                         is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
2431                 err = -ENOMEM;
2432                 drop_atomic = true;
2433                 goto fail;
2434         }
2435
2436         /*
2437          * We should check this at this moment to avoid deadlock on inode page
2438          * and #0 page. The locking rule for inline_data conversion should be:
2439          * lock_page(page #0) -> lock_page(inode_page)
2440          */
2441         if (index != 0) {
2442                 err = f2fs_convert_inline_inode(inode);
2443                 if (err)
2444                         goto fail;
2445         }
2446 repeat:
2447         /*
2448          * Do not use grab_cache_page_write_begin() to avoid deadlock due to
2449          * wait_for_stable_page. Will wait that below with our IO control.
2450          */
2451         page = f2fs_pagecache_get_page(mapping, index,
2452                                 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
2453         if (!page) {
2454                 err = -ENOMEM;
2455                 goto fail;
2456         }
2457
2458         *pagep = page;
2459
2460         err = prepare_write_begin(sbi, page, pos, len,
2461                                         &blkaddr, &need_balance);
2462         if (err)
2463                 goto fail;
2464
2465         if (need_balance && !IS_NOQUOTA(inode) &&
2466                         has_not_enough_free_secs(sbi, 0, 0)) {
2467                 unlock_page(page);
2468                 f2fs_balance_fs(sbi, true);
2469                 lock_page(page);
2470                 if (page->mapping != mapping) {
2471                         /* The page got truncated from under us */
2472                         f2fs_put_page(page, 1);
2473                         goto repeat;
2474                 }
2475         }
2476
2477         f2fs_wait_on_page_writeback(page, DATA, false, true);
2478
2479         if (len == PAGE_SIZE || PageUptodate(page))
2480                 return 0;
2481
2482         if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode)) {
2483                 zero_user_segment(page, len, PAGE_SIZE);
2484                 return 0;
2485         }
2486
2487         if (blkaddr == NEW_ADDR) {
2488                 zero_user_segment(page, 0, PAGE_SIZE);
2489                 SetPageUptodate(page);
2490         } else {
2491                 err = f2fs_submit_page_read(inode, page, blkaddr);
2492                 if (err)
2493                         goto fail;
2494
2495                 lock_page(page);
2496                 if (unlikely(page->mapping != mapping)) {
2497                         f2fs_put_page(page, 1);
2498                         goto repeat;
2499                 }
2500                 if (unlikely(!PageUptodate(page))) {
2501                         err = -EIO;
2502                         goto fail;
2503                 }
2504         }
2505         return 0;
2506
2507 fail:
2508         f2fs_put_page(page, 1);
2509         f2fs_write_failed(mapping, pos + len);
2510         if (drop_atomic)
2511                 f2fs_drop_inmem_pages_all(sbi, false);
2512         return err;
2513 }
2514
2515 static int f2fs_write_end(struct file *file,
2516                         struct address_space *mapping,
2517                         loff_t pos, unsigned len, unsigned copied,
2518                         struct page *page, void *fsdata)
2519 {
2520         struct inode *inode = page->mapping->host;
2521
2522         trace_f2fs_write_end(inode, pos, len, copied);
2523
2524         /*
2525          * This should be come from len == PAGE_SIZE, and we expect copied
2526          * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
2527          * let generic_perform_write() try to copy data again through copied=0.
2528          */
2529         if (!PageUptodate(page)) {
2530                 if (unlikely(copied != len))
2531                         copied = 0;
2532                 else
2533                         SetPageUptodate(page);
2534         }
2535         if (!copied)
2536                 goto unlock_out;
2537
2538         set_page_dirty(page);
2539
2540         if (pos + copied > i_size_read(inode))
2541                 f2fs_i_size_write(inode, pos + copied);
2542 unlock_out:
2543         f2fs_put_page(page, 1);
2544         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2545         return copied;
2546 }
2547
2548 static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
2549                            loff_t offset)
2550 {
2551         unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
2552         unsigned blkbits = i_blkbits;
2553         unsigned blocksize_mask = (1 << blkbits) - 1;
2554         unsigned long align = offset | iov_iter_alignment(iter);
2555         struct block_device *bdev = inode->i_sb->s_bdev;
2556
2557         if (align & blocksize_mask) {
2558                 if (bdev)
2559                         blkbits = blksize_bits(bdev_logical_block_size(bdev));
2560                 blocksize_mask = (1 << blkbits) - 1;
2561                 if (align & blocksize_mask)
2562                         return -EINVAL;
2563                 return 1;
2564         }
2565         return 0;
2566 }
2567
2568 static void f2fs_dio_end_io(struct bio *bio)
2569 {
2570         struct f2fs_private_dio *dio = bio->bi_private;
2571
2572         dec_page_count(F2FS_I_SB(dio->inode),
2573                         dio->write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
2574
2575         bio->bi_private = dio->orig_private;
2576         bio->bi_end_io = dio->orig_end_io;
2577
2578         kvfree(dio);
2579
2580         bio_endio(bio);
2581 }
2582
2583 static void f2fs_dio_submit_bio(struct bio *bio, struct inode *inode,
2584                                                         loff_t file_offset)
2585 {
2586         struct f2fs_private_dio *dio;
2587         bool write = (bio_op(bio) == REQ_OP_WRITE);
2588         int err;
2589
2590         dio = f2fs_kzalloc(F2FS_I_SB(inode),
2591                         sizeof(struct f2fs_private_dio), GFP_NOFS);
2592         if (!dio) {
2593                 err = -ENOMEM;
2594                 goto out;
2595         }
2596
2597         dio->inode = inode;
2598         dio->orig_end_io = bio->bi_end_io;
2599         dio->orig_private = bio->bi_private;
2600         dio->write = write;
2601
2602         bio->bi_end_io = f2fs_dio_end_io;
2603         bio->bi_private = dio;
2604
2605         inc_page_count(F2FS_I_SB(inode),
2606                         write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
2607
2608         submit_bio(bio);
2609         return;
2610 out:
2611         bio->bi_status = BLK_STS_IOERR;
2612         bio_endio(bio);
2613 }
2614
2615 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2616 {
2617         struct address_space *mapping = iocb->ki_filp->f_mapping;
2618         struct inode *inode = mapping->host;
2619         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2620         struct f2fs_inode_info *fi = F2FS_I(inode);
2621         size_t count = iov_iter_count(iter);
2622         loff_t offset = iocb->ki_pos;
2623         int rw = iov_iter_rw(iter);
2624         int err;
2625         enum rw_hint hint = iocb->ki_hint;
2626         int whint_mode = F2FS_OPTION(sbi).whint_mode;
2627         bool do_opu;
2628
2629         err = check_direct_IO(inode, iter, offset);
2630         if (err)
2631                 return err < 0 ? err : 0;
2632
2633         if (f2fs_force_buffered_io(inode, iocb, iter))
2634                 return 0;
2635
2636         do_opu = allow_outplace_dio(inode, iocb, iter);
2637
2638         trace_f2fs_direct_IO_enter(inode, offset, count, rw);
2639
2640         if (rw == WRITE && whint_mode == WHINT_MODE_OFF)
2641                 iocb->ki_hint = WRITE_LIFE_NOT_SET;
2642
2643         if (iocb->ki_flags & IOCB_NOWAIT) {
2644                 if (!down_read_trylock(&fi->i_gc_rwsem[rw])) {
2645                         iocb->ki_hint = hint;
2646                         err = -EAGAIN;
2647                         goto out;
2648                 }
2649                 if (do_opu && !down_read_trylock(&fi->i_gc_rwsem[READ])) {
2650                         up_read(&fi->i_gc_rwsem[rw]);
2651                         iocb->ki_hint = hint;
2652                         err = -EAGAIN;
2653                         goto out;
2654                 }
2655         } else {
2656                 down_read(&fi->i_gc_rwsem[rw]);
2657                 if (do_opu)
2658                         down_read(&fi->i_gc_rwsem[READ]);
2659         }
2660
2661         err = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
2662                         iter, rw == WRITE ? get_data_block_dio_write :
2663                         get_data_block_dio, NULL, f2fs_dio_submit_bio,
2664                         DIO_LOCKING | DIO_SKIP_HOLES);
2665
2666         if (do_opu)
2667                 up_read(&fi->i_gc_rwsem[READ]);
2668
2669         up_read(&fi->i_gc_rwsem[rw]);
2670
2671         if (rw == WRITE) {
2672                 if (whint_mode == WHINT_MODE_OFF)
2673                         iocb->ki_hint = hint;
2674                 if (err > 0) {
2675                         f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO,
2676                                                                         err);
2677                         if (!do_opu)
2678                                 set_inode_flag(inode, FI_UPDATE_WRITE);
2679                 } else if (err < 0) {
2680                         f2fs_write_failed(mapping, offset + count);
2681                 }
2682         }
2683
2684 out:
2685         trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
2686
2687         return err;
2688 }
2689
2690 void f2fs_invalidate_page(struct page *page, unsigned int offset,
2691                                                         unsigned int length)
2692 {
2693         struct inode *inode = page->mapping->host;
2694         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2695
2696         if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
2697                 (offset % PAGE_SIZE || length != PAGE_SIZE))
2698                 return;
2699
2700         if (PageDirty(page)) {
2701                 if (inode->i_ino == F2FS_META_INO(sbi)) {
2702                         dec_page_count(sbi, F2FS_DIRTY_META);
2703                 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
2704                         dec_page_count(sbi, F2FS_DIRTY_NODES);
2705                 } else {
2706                         inode_dec_dirty_pages(inode);
2707                         f2fs_remove_dirty_inode(inode);
2708                 }
2709         }
2710
2711         clear_cold_data(page);
2712
2713         /* This is atomic written page, keep Private */
2714         if (IS_ATOMIC_WRITTEN_PAGE(page))
2715                 return f2fs_drop_inmem_page(inode, page);
2716
2717         set_page_private(page, 0);
2718         ClearPagePrivate(page);
2719 }
2720
2721 int f2fs_release_page(struct page *page, gfp_t wait)
2722 {
2723         /* If this is dirty page, keep PagePrivate */
2724         if (PageDirty(page))
2725                 return 0;
2726
2727         /* This is atomic written page, keep Private */
2728         if (IS_ATOMIC_WRITTEN_PAGE(page))
2729                 return 0;
2730
2731         clear_cold_data(page);
2732         set_page_private(page, 0);
2733         ClearPagePrivate(page);
2734         return 1;
2735 }
2736
2737 static int f2fs_set_data_page_dirty(struct page *page)
2738 {
2739         struct address_space *mapping = page->mapping;
2740         struct inode *inode = mapping->host;
2741
2742         trace_f2fs_set_page_dirty(page, DATA);
2743
2744         if (!PageUptodate(page))
2745                 SetPageUptodate(page);
2746
2747         if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) {
2748                 if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
2749                         f2fs_register_inmem_page(inode, page);
2750                         return 1;
2751                 }
2752                 /*
2753                  * Previously, this page has been registered, we just
2754                  * return here.
2755                  */
2756                 return 0;
2757         }
2758
2759         if (!PageDirty(page)) {
2760                 __set_page_dirty_nobuffers(page);
2761                 f2fs_update_dirty_page(inode, page);
2762                 return 1;
2763         }
2764         return 0;
2765 }
2766
2767 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
2768 {
2769         struct inode *inode = mapping->host;
2770
2771         if (f2fs_has_inline_data(inode))
2772                 return 0;
2773
2774         /* make sure allocating whole blocks */
2775         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2776                 filemap_write_and_wait(mapping);
2777
2778         return generic_block_bmap(mapping, block, get_data_block_bmap);
2779 }
2780
2781 #ifdef CONFIG_MIGRATION
2782 #include <linux/migrate.h>
2783
2784 int f2fs_migrate_page(struct address_space *mapping,
2785                 struct page *newpage, struct page *page, enum migrate_mode mode)
2786 {
2787         int rc, extra_count;
2788         struct f2fs_inode_info *fi = F2FS_I(mapping->host);
2789         bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page);
2790
2791         BUG_ON(PageWriteback(page));
2792
2793         /* migrating an atomic written page is safe with the inmem_lock hold */
2794         if (atomic_written) {
2795                 if (mode != MIGRATE_SYNC)
2796                         return -EBUSY;
2797                 if (!mutex_trylock(&fi->inmem_lock))
2798                         return -EAGAIN;
2799         }
2800
2801         /*
2802          * A reference is expected if PagePrivate set when move mapping,
2803          * however F2FS breaks this for maintaining dirty page counts when
2804          * truncating pages. So here adjusting the 'extra_count' make it work.
2805          */
2806         extra_count = (atomic_written ? 1 : 0) - page_has_private(page);
2807         rc = migrate_page_move_mapping(mapping, newpage,
2808                                 page, mode, extra_count);
2809         if (rc != MIGRATEPAGE_SUCCESS) {
2810                 if (atomic_written)
2811                         mutex_unlock(&fi->inmem_lock);
2812                 return rc;
2813         }
2814
2815         if (atomic_written) {
2816                 struct inmem_pages *cur;
2817                 list_for_each_entry(cur, &fi->inmem_pages, list)
2818                         if (cur->page == page) {
2819                                 cur->page = newpage;
2820                                 break;
2821                         }
2822                 mutex_unlock(&fi->inmem_lock);
2823                 put_page(page);
2824                 get_page(newpage);
2825         }
2826
2827         if (PagePrivate(page))
2828                 SetPagePrivate(newpage);
2829         set_page_private(newpage, page_private(page));
2830
2831         if (mode != MIGRATE_SYNC_NO_COPY)
2832                 migrate_page_copy(newpage, page);
2833         else
2834                 migrate_page_states(newpage, page);
2835
2836         return MIGRATEPAGE_SUCCESS;
2837 }
2838 #endif
2839
2840 const struct address_space_operations f2fs_dblock_aops = {
2841         .readpage       = f2fs_read_data_page,
2842         .readpages      = f2fs_read_data_pages,
2843         .writepage      = f2fs_write_data_page,
2844         .writepages     = f2fs_write_data_pages,
2845         .write_begin    = f2fs_write_begin,
2846         .write_end      = f2fs_write_end,
2847         .set_page_dirty = f2fs_set_data_page_dirty,
2848         .invalidatepage = f2fs_invalidate_page,
2849         .releasepage    = f2fs_release_page,
2850         .direct_IO      = f2fs_direct_IO,
2851         .bmap           = f2fs_bmap,
2852 #ifdef CONFIG_MIGRATION
2853         .migratepage    = f2fs_migrate_page,
2854 #endif
2855 };
2856
2857 void f2fs_clear_page_cache_dirty_tag(struct page *page)
2858 {
2859         struct address_space *mapping = page_mapping(page);
2860         unsigned long flags;
2861
2862         xa_lock_irqsave(&mapping->i_pages, flags);
2863         __xa_clear_mark(&mapping->i_pages, page_index(page),
2864                                                 PAGECACHE_TAG_DIRTY);
2865         xa_unlock_irqrestore(&mapping->i_pages, flags);
2866 }
2867
2868 int __init f2fs_init_post_read_processing(void)
2869 {
2870         bio_post_read_ctx_cache = KMEM_CACHE(bio_post_read_ctx, 0);
2871         if (!bio_post_read_ctx_cache)
2872                 goto fail;
2873         bio_post_read_ctx_pool =
2874                 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
2875                                          bio_post_read_ctx_cache);
2876         if (!bio_post_read_ctx_pool)
2877                 goto fail_free_cache;
2878         return 0;
2879
2880 fail_free_cache:
2881         kmem_cache_destroy(bio_post_read_ctx_cache);
2882 fail:
2883         return -ENOMEM;
2884 }
2885
2886 void __exit f2fs_destroy_post_read_processing(void)
2887 {
2888         mempool_destroy(bio_post_read_ctx_pool);
2889         kmem_cache_destroy(bio_post_read_ctx_cache);
2890 }