f2fs: fix to do sanity check on .cp_pack_total_block_count
[linux-2.6-microblaze.git] / fs / f2fs / data.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/data.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/buffer_head.h>
11 #include <linux/sched/mm.h>
12 #include <linux/mpage.h>
13 #include <linux/writeback.h>
14 #include <linux/pagevec.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/blk-crypto.h>
18 #include <linux/swap.h>
19 #include <linux/prefetch.h>
20 #include <linux/uio.h>
21 #include <linux/sched/signal.h>
22 #include <linux/fiemap.h>
23 #include <linux/iomap.h>
24
25 #include "f2fs.h"
26 #include "node.h"
27 #include "segment.h"
28 #include "iostat.h"
29 #include <trace/events/f2fs.h>
30
31 #define NUM_PREALLOC_POST_READ_CTXS     128
32
33 static struct kmem_cache *bio_post_read_ctx_cache;
34 static struct kmem_cache *bio_entry_slab;
35 static mempool_t *bio_post_read_ctx_pool;
36 static struct bio_set f2fs_bioset;
37
38 #define F2FS_BIO_POOL_SIZE      NR_CURSEG_TYPE
39
40 int __init f2fs_init_bioset(void)
41 {
42         if (bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE,
43                                         0, BIOSET_NEED_BVECS))
44                 return -ENOMEM;
45         return 0;
46 }
47
48 void f2fs_destroy_bioset(void)
49 {
50         bioset_exit(&f2fs_bioset);
51 }
52
53 static bool __is_cp_guaranteed(struct page *page)
54 {
55         struct address_space *mapping = page->mapping;
56         struct inode *inode;
57         struct f2fs_sb_info *sbi;
58
59         if (!mapping)
60                 return false;
61
62         inode = mapping->host;
63         sbi = F2FS_I_SB(inode);
64
65         if (inode->i_ino == F2FS_META_INO(sbi) ||
66                         inode->i_ino == F2FS_NODE_INO(sbi) ||
67                         S_ISDIR(inode->i_mode))
68                 return true;
69
70         if (f2fs_is_compressed_page(page))
71                 return false;
72         if ((S_ISREG(inode->i_mode) &&
73                         (f2fs_is_atomic_file(inode) || IS_NOQUOTA(inode))) ||
74                         page_private_gcing(page))
75                 return true;
76         return false;
77 }
78
79 static enum count_type __read_io_type(struct page *page)
80 {
81         struct address_space *mapping = page_file_mapping(page);
82
83         if (mapping) {
84                 struct inode *inode = mapping->host;
85                 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
86
87                 if (inode->i_ino == F2FS_META_INO(sbi))
88                         return F2FS_RD_META;
89
90                 if (inode->i_ino == F2FS_NODE_INO(sbi))
91                         return F2FS_RD_NODE;
92         }
93         return F2FS_RD_DATA;
94 }
95
96 /* postprocessing steps for read bios */
97 enum bio_post_read_step {
98 #ifdef CONFIG_FS_ENCRYPTION
99         STEP_DECRYPT    = 1 << 0,
100 #else
101         STEP_DECRYPT    = 0,    /* compile out the decryption-related code */
102 #endif
103 #ifdef CONFIG_F2FS_FS_COMPRESSION
104         STEP_DECOMPRESS = 1 << 1,
105 #else
106         STEP_DECOMPRESS = 0,    /* compile out the decompression-related code */
107 #endif
108 #ifdef CONFIG_FS_VERITY
109         STEP_VERITY     = 1 << 2,
110 #else
111         STEP_VERITY     = 0,    /* compile out the verity-related code */
112 #endif
113 };
114
115 struct bio_post_read_ctx {
116         struct bio *bio;
117         struct f2fs_sb_info *sbi;
118         struct work_struct work;
119         unsigned int enabled_steps;
120         block_t fs_blkaddr;
121 };
122
123 static void f2fs_finish_read_bio(struct bio *bio)
124 {
125         struct bio_vec *bv;
126         struct bvec_iter_all iter_all;
127
128         /*
129          * Update and unlock the bio's pagecache pages, and put the
130          * decompression context for any compressed pages.
131          */
132         bio_for_each_segment_all(bv, bio, iter_all) {
133                 struct page *page = bv->bv_page;
134
135                 if (f2fs_is_compressed_page(page)) {
136                         if (bio->bi_status)
137                                 f2fs_end_read_compressed_page(page, true, 0);
138                         f2fs_put_page_dic(page);
139                         continue;
140                 }
141
142                 /* PG_error was set if decryption or verity failed. */
143                 if (bio->bi_status || PageError(page)) {
144                         ClearPageUptodate(page);
145                         /* will re-read again later */
146                         ClearPageError(page);
147                 } else {
148                         SetPageUptodate(page);
149                 }
150                 dec_page_count(F2FS_P_SB(page), __read_io_type(page));
151                 unlock_page(page);
152         }
153
154         if (bio->bi_private)
155                 mempool_free(bio->bi_private, bio_post_read_ctx_pool);
156         bio_put(bio);
157 }
158
159 static void f2fs_verify_bio(struct work_struct *work)
160 {
161         struct bio_post_read_ctx *ctx =
162                 container_of(work, struct bio_post_read_ctx, work);
163         struct bio *bio = ctx->bio;
164         bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS);
165
166         /*
167          * fsverity_verify_bio() may call readpages() again, and while verity
168          * will be disabled for this, decryption and/or decompression may still
169          * be needed, resulting in another bio_post_read_ctx being allocated.
170          * So to prevent deadlocks we need to release the current ctx to the
171          * mempool first.  This assumes that verity is the last post-read step.
172          */
173         mempool_free(ctx, bio_post_read_ctx_pool);
174         bio->bi_private = NULL;
175
176         /*
177          * Verify the bio's pages with fs-verity.  Exclude compressed pages,
178          * as those were handled separately by f2fs_end_read_compressed_page().
179          */
180         if (may_have_compressed_pages) {
181                 struct bio_vec *bv;
182                 struct bvec_iter_all iter_all;
183
184                 bio_for_each_segment_all(bv, bio, iter_all) {
185                         struct page *page = bv->bv_page;
186
187                         if (!f2fs_is_compressed_page(page) &&
188                             !PageError(page) && !fsverity_verify_page(page))
189                                 SetPageError(page);
190                 }
191         } else {
192                 fsverity_verify_bio(bio);
193         }
194
195         f2fs_finish_read_bio(bio);
196 }
197
198 /*
199  * If the bio's data needs to be verified with fs-verity, then enqueue the
200  * verity work for the bio.  Otherwise finish the bio now.
201  *
202  * Note that to avoid deadlocks, the verity work can't be done on the
203  * decryption/decompression workqueue.  This is because verifying the data pages
204  * can involve reading verity metadata pages from the file, and these verity
205  * metadata pages may be encrypted and/or compressed.
206  */
207 static void f2fs_verify_and_finish_bio(struct bio *bio)
208 {
209         struct bio_post_read_ctx *ctx = bio->bi_private;
210
211         if (ctx && (ctx->enabled_steps & STEP_VERITY)) {
212                 INIT_WORK(&ctx->work, f2fs_verify_bio);
213                 fsverity_enqueue_verify_work(&ctx->work);
214         } else {
215                 f2fs_finish_read_bio(bio);
216         }
217 }
218
219 /*
220  * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last
221  * remaining page was read by @ctx->bio.
222  *
223  * Note that a bio may span clusters (even a mix of compressed and uncompressed
224  * clusters) or be for just part of a cluster.  STEP_DECOMPRESS just indicates
225  * that the bio includes at least one compressed page.  The actual decompression
226  * is done on a per-cluster basis, not a per-bio basis.
227  */
228 static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx)
229 {
230         struct bio_vec *bv;
231         struct bvec_iter_all iter_all;
232         bool all_compressed = true;
233         block_t blkaddr = ctx->fs_blkaddr;
234
235         bio_for_each_segment_all(bv, ctx->bio, iter_all) {
236                 struct page *page = bv->bv_page;
237
238                 /* PG_error was set if decryption failed. */
239                 if (f2fs_is_compressed_page(page))
240                         f2fs_end_read_compressed_page(page, PageError(page),
241                                                 blkaddr);
242                 else
243                         all_compressed = false;
244
245                 blkaddr++;
246         }
247
248         /*
249          * Optimization: if all the bio's pages are compressed, then scheduling
250          * the per-bio verity work is unnecessary, as verity will be fully
251          * handled at the compression cluster level.
252          */
253         if (all_compressed)
254                 ctx->enabled_steps &= ~STEP_VERITY;
255 }
256
257 static void f2fs_post_read_work(struct work_struct *work)
258 {
259         struct bio_post_read_ctx *ctx =
260                 container_of(work, struct bio_post_read_ctx, work);
261
262         if (ctx->enabled_steps & STEP_DECRYPT)
263                 fscrypt_decrypt_bio(ctx->bio);
264
265         if (ctx->enabled_steps & STEP_DECOMPRESS)
266                 f2fs_handle_step_decompress(ctx);
267
268         f2fs_verify_and_finish_bio(ctx->bio);
269 }
270
271 static void f2fs_read_end_io(struct bio *bio)
272 {
273         struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio));
274         struct bio_post_read_ctx *ctx;
275
276         iostat_update_and_unbind_ctx(bio, 0);
277         ctx = bio->bi_private;
278
279         if (time_to_inject(sbi, FAULT_READ_IO)) {
280                 f2fs_show_injection_info(sbi, FAULT_READ_IO);
281                 bio->bi_status = BLK_STS_IOERR;
282         }
283
284         if (bio->bi_status) {
285                 f2fs_finish_read_bio(bio);
286                 return;
287         }
288
289         if (ctx && (ctx->enabled_steps & (STEP_DECRYPT | STEP_DECOMPRESS))) {
290                 INIT_WORK(&ctx->work, f2fs_post_read_work);
291                 queue_work(ctx->sbi->post_read_wq, &ctx->work);
292         } else {
293                 f2fs_verify_and_finish_bio(bio);
294         }
295 }
296
297 static void f2fs_write_end_io(struct bio *bio)
298 {
299         struct f2fs_sb_info *sbi;
300         struct bio_vec *bvec;
301         struct bvec_iter_all iter_all;
302
303         iostat_update_and_unbind_ctx(bio, 1);
304         sbi = bio->bi_private;
305
306         if (time_to_inject(sbi, FAULT_WRITE_IO)) {
307                 f2fs_show_injection_info(sbi, FAULT_WRITE_IO);
308                 bio->bi_status = BLK_STS_IOERR;
309         }
310
311         bio_for_each_segment_all(bvec, bio, iter_all) {
312                 struct page *page = bvec->bv_page;
313                 enum count_type type = WB_DATA_TYPE(page);
314
315                 if (page_private_dummy(page)) {
316                         clear_page_private_dummy(page);
317                         unlock_page(page);
318                         mempool_free(page, sbi->write_io_dummy);
319
320                         if (unlikely(bio->bi_status))
321                                 f2fs_stop_checkpoint(sbi, true);
322                         continue;
323                 }
324
325                 fscrypt_finalize_bounce_page(&page);
326
327 #ifdef CONFIG_F2FS_FS_COMPRESSION
328                 if (f2fs_is_compressed_page(page)) {
329                         f2fs_compress_write_end_io(bio, page);
330                         continue;
331                 }
332 #endif
333
334                 if (unlikely(bio->bi_status)) {
335                         mapping_set_error(page->mapping, -EIO);
336                         if (type == F2FS_WB_CP_DATA)
337                                 f2fs_stop_checkpoint(sbi, true);
338                 }
339
340                 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
341                                         page->index != nid_of_node(page));
342
343                 dec_page_count(sbi, type);
344                 if (f2fs_in_warm_node_list(sbi, page))
345                         f2fs_del_fsync_node_entry(sbi, page);
346                 clear_page_private_gcing(page);
347                 end_page_writeback(page);
348         }
349         if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
350                                 wq_has_sleeper(&sbi->cp_wait))
351                 wake_up(&sbi->cp_wait);
352
353         bio_put(bio);
354 }
355
356 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
357                                 block_t blk_addr, struct bio *bio)
358 {
359         struct block_device *bdev = sbi->sb->s_bdev;
360         int i;
361
362         if (f2fs_is_multi_device(sbi)) {
363                 for (i = 0; i < sbi->s_ndevs; i++) {
364                         if (FDEV(i).start_blk <= blk_addr &&
365                             FDEV(i).end_blk >= blk_addr) {
366                                 blk_addr -= FDEV(i).start_blk;
367                                 bdev = FDEV(i).bdev;
368                                 break;
369                         }
370                 }
371         }
372         if (bio) {
373                 bio_set_dev(bio, bdev);
374                 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
375         }
376         return bdev;
377 }
378
379 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
380 {
381         int i;
382
383         if (!f2fs_is_multi_device(sbi))
384                 return 0;
385
386         for (i = 0; i < sbi->s_ndevs; i++)
387                 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
388                         return i;
389         return 0;
390 }
391
392 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages)
393 {
394         struct f2fs_sb_info *sbi = fio->sbi;
395         struct bio *bio;
396
397         bio = bio_alloc_bioset(GFP_NOIO, npages, &f2fs_bioset);
398
399         f2fs_target_device(sbi, fio->new_blkaddr, bio);
400         if (is_read_io(fio->op)) {
401                 bio->bi_end_io = f2fs_read_end_io;
402                 bio->bi_private = NULL;
403         } else {
404                 bio->bi_end_io = f2fs_write_end_io;
405                 bio->bi_private = sbi;
406                 bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi,
407                                                 fio->type, fio->temp);
408         }
409         iostat_alloc_and_bind_ctx(sbi, bio, NULL);
410
411         if (fio->io_wbc)
412                 wbc_init_bio(fio->io_wbc, bio);
413
414         return bio;
415 }
416
417 static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode,
418                                   pgoff_t first_idx,
419                                   const struct f2fs_io_info *fio,
420                                   gfp_t gfp_mask)
421 {
422         /*
423          * The f2fs garbage collector sets ->encrypted_page when it wants to
424          * read/write raw data without encryption.
425          */
426         if (!fio || !fio->encrypted_page)
427                 fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask);
428 }
429
430 static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode,
431                                      pgoff_t next_idx,
432                                      const struct f2fs_io_info *fio)
433 {
434         /*
435          * The f2fs garbage collector sets ->encrypted_page when it wants to
436          * read/write raw data without encryption.
437          */
438         if (fio && fio->encrypted_page)
439                 return !bio_has_crypt_ctx(bio);
440
441         return fscrypt_mergeable_bio(bio, inode, next_idx);
442 }
443
444 static inline void __submit_bio(struct f2fs_sb_info *sbi,
445                                 struct bio *bio, enum page_type type)
446 {
447         if (!is_read_io(bio_op(bio))) {
448                 unsigned int start;
449
450                 if (type != DATA && type != NODE)
451                         goto submit_io;
452
453                 if (f2fs_lfs_mode(sbi) && current->plug)
454                         blk_finish_plug(current->plug);
455
456                 if (!F2FS_IO_ALIGNED(sbi))
457                         goto submit_io;
458
459                 start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
460                 start %= F2FS_IO_SIZE(sbi);
461
462                 if (start == 0)
463                         goto submit_io;
464
465                 /* fill dummy pages */
466                 for (; start < F2FS_IO_SIZE(sbi); start++) {
467                         struct page *page =
468                                 mempool_alloc(sbi->write_io_dummy,
469                                               GFP_NOIO | __GFP_NOFAIL);
470                         f2fs_bug_on(sbi, !page);
471
472                         lock_page(page);
473
474                         zero_user_segment(page, 0, PAGE_SIZE);
475                         set_page_private_dummy(page);
476
477                         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
478                                 f2fs_bug_on(sbi, 1);
479                 }
480                 /*
481                  * In the NODE case, we lose next block address chain. So, we
482                  * need to do checkpoint in f2fs_sync_file.
483                  */
484                 if (type == NODE)
485                         set_sbi_flag(sbi, SBI_NEED_CP);
486         }
487 submit_io:
488         if (is_read_io(bio_op(bio)))
489                 trace_f2fs_submit_read_bio(sbi->sb, type, bio);
490         else
491                 trace_f2fs_submit_write_bio(sbi->sb, type, bio);
492
493         iostat_update_submit_ctx(bio, type);
494         submit_bio(bio);
495 }
496
497 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
498                                 struct bio *bio, enum page_type type)
499 {
500         __submit_bio(sbi, bio, type);
501 }
502
503 static void __attach_io_flag(struct f2fs_io_info *fio)
504 {
505         struct f2fs_sb_info *sbi = fio->sbi;
506         unsigned int temp_mask = (1 << NR_TEMP_TYPE) - 1;
507         unsigned int io_flag, fua_flag, meta_flag;
508
509         if (fio->type == DATA)
510                 io_flag = sbi->data_io_flag;
511         else if (fio->type == NODE)
512                 io_flag = sbi->node_io_flag;
513         else
514                 return;
515
516         fua_flag = io_flag & temp_mask;
517         meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask;
518
519         /*
520          * data/node io flag bits per temp:
521          *      REQ_META     |      REQ_FUA      |
522          *    5 |    4 |   3 |    2 |    1 |   0 |
523          * Cold | Warm | Hot | Cold | Warm | Hot |
524          */
525         if ((1 << fio->temp) & meta_flag)
526                 fio->op_flags |= REQ_META;
527         if ((1 << fio->temp) & fua_flag)
528                 fio->op_flags |= REQ_FUA;
529 }
530
531 static void __submit_merged_bio(struct f2fs_bio_info *io)
532 {
533         struct f2fs_io_info *fio = &io->fio;
534
535         if (!io->bio)
536                 return;
537
538         __attach_io_flag(fio);
539         bio_set_op_attrs(io->bio, fio->op, fio->op_flags);
540
541         if (is_read_io(fio->op))
542                 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
543         else
544                 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
545
546         __submit_bio(io->sbi, io->bio, fio->type);
547         io->bio = NULL;
548 }
549
550 static bool __has_merged_page(struct bio *bio, struct inode *inode,
551                                                 struct page *page, nid_t ino)
552 {
553         struct bio_vec *bvec;
554         struct bvec_iter_all iter_all;
555
556         if (!bio)
557                 return false;
558
559         if (!inode && !page && !ino)
560                 return true;
561
562         bio_for_each_segment_all(bvec, bio, iter_all) {
563                 struct page *target = bvec->bv_page;
564
565                 if (fscrypt_is_bounce_page(target)) {
566                         target = fscrypt_pagecache_page(target);
567                         if (IS_ERR(target))
568                                 continue;
569                 }
570                 if (f2fs_is_compressed_page(target)) {
571                         target = f2fs_compress_control_page(target);
572                         if (IS_ERR(target))
573                                 continue;
574                 }
575
576                 if (inode && inode == target->mapping->host)
577                         return true;
578                 if (page && page == target)
579                         return true;
580                 if (ino && ino == ino_of_node(target))
581                         return true;
582         }
583
584         return false;
585 }
586
587 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
588                                 enum page_type type, enum temp_type temp)
589 {
590         enum page_type btype = PAGE_TYPE_OF_BIO(type);
591         struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
592
593         f2fs_down_write(&io->io_rwsem);
594
595         /* change META to META_FLUSH in the checkpoint procedure */
596         if (type >= META_FLUSH) {
597                 io->fio.type = META_FLUSH;
598                 io->fio.op = REQ_OP_WRITE;
599                 io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC;
600                 if (!test_opt(sbi, NOBARRIER))
601                         io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
602         }
603         __submit_merged_bio(io);
604         f2fs_up_write(&io->io_rwsem);
605 }
606
607 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
608                                 struct inode *inode, struct page *page,
609                                 nid_t ino, enum page_type type, bool force)
610 {
611         enum temp_type temp;
612         bool ret = true;
613
614         for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
615                 if (!force)     {
616                         enum page_type btype = PAGE_TYPE_OF_BIO(type);
617                         struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
618
619                         f2fs_down_read(&io->io_rwsem);
620                         ret = __has_merged_page(io->bio, inode, page, ino);
621                         f2fs_up_read(&io->io_rwsem);
622                 }
623                 if (ret)
624                         __f2fs_submit_merged_write(sbi, type, temp);
625
626                 /* TODO: use HOT temp only for meta pages now. */
627                 if (type >= META)
628                         break;
629         }
630 }
631
632 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
633 {
634         __submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
635 }
636
637 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
638                                 struct inode *inode, struct page *page,
639                                 nid_t ino, enum page_type type)
640 {
641         __submit_merged_write_cond(sbi, inode, page, ino, type, false);
642 }
643
644 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
645 {
646         f2fs_submit_merged_write(sbi, DATA);
647         f2fs_submit_merged_write(sbi, NODE);
648         f2fs_submit_merged_write(sbi, META);
649 }
650
651 /*
652  * Fill the locked page with data located in the block address.
653  * A caller needs to unlock the page on failure.
654  */
655 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
656 {
657         struct bio *bio;
658         struct page *page = fio->encrypted_page ?
659                         fio->encrypted_page : fio->page;
660
661         if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
662                         fio->is_por ? META_POR : (__is_meta_io(fio) ?
663                         META_GENERIC : DATA_GENERIC_ENHANCE)))
664                 return -EFSCORRUPTED;
665
666         trace_f2fs_submit_page_bio(page, fio);
667
668         /* Allocate a new bio */
669         bio = __bio_alloc(fio, 1);
670
671         f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
672                                fio->page->index, fio, GFP_NOIO);
673
674         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
675                 bio_put(bio);
676                 return -EFAULT;
677         }
678
679         if (fio->io_wbc && !is_read_io(fio->op))
680                 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
681
682         __attach_io_flag(fio);
683         bio_set_op_attrs(bio, fio->op, fio->op_flags);
684
685         inc_page_count(fio->sbi, is_read_io(fio->op) ?
686                         __read_io_type(page): WB_DATA_TYPE(fio->page));
687
688         __submit_bio(fio->sbi, bio, fio->type);
689         return 0;
690 }
691
692 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
693                                 block_t last_blkaddr, block_t cur_blkaddr)
694 {
695         if (unlikely(sbi->max_io_bytes &&
696                         bio->bi_iter.bi_size >= sbi->max_io_bytes))
697                 return false;
698         if (last_blkaddr + 1 != cur_blkaddr)
699                 return false;
700         return bio->bi_bdev == f2fs_target_device(sbi, cur_blkaddr, NULL);
701 }
702
703 static bool io_type_is_mergeable(struct f2fs_bio_info *io,
704                                                 struct f2fs_io_info *fio)
705 {
706         if (io->fio.op != fio->op)
707                 return false;
708         return io->fio.op_flags == fio->op_flags;
709 }
710
711 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
712                                         struct f2fs_bio_info *io,
713                                         struct f2fs_io_info *fio,
714                                         block_t last_blkaddr,
715                                         block_t cur_blkaddr)
716 {
717         if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) {
718                 unsigned int filled_blocks =
719                                 F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size);
720                 unsigned int io_size = F2FS_IO_SIZE(sbi);
721                 unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt;
722
723                 /* IOs in bio is aligned and left space of vectors is not enough */
724                 if (!(filled_blocks % io_size) && left_vecs < io_size)
725                         return false;
726         }
727         if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr))
728                 return false;
729         return io_type_is_mergeable(io, fio);
730 }
731
732 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio,
733                                 struct page *page, enum temp_type temp)
734 {
735         struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
736         struct bio_entry *be;
737
738         be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS, true, NULL);
739         be->bio = bio;
740         bio_get(bio);
741
742         if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE)
743                 f2fs_bug_on(sbi, 1);
744
745         f2fs_down_write(&io->bio_list_lock);
746         list_add_tail(&be->list, &io->bio_list);
747         f2fs_up_write(&io->bio_list_lock);
748 }
749
750 static void del_bio_entry(struct bio_entry *be)
751 {
752         list_del(&be->list);
753         kmem_cache_free(bio_entry_slab, be);
754 }
755
756 static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio,
757                                                         struct page *page)
758 {
759         struct f2fs_sb_info *sbi = fio->sbi;
760         enum temp_type temp;
761         bool found = false;
762         int ret = -EAGAIN;
763
764         for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
765                 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
766                 struct list_head *head = &io->bio_list;
767                 struct bio_entry *be;
768
769                 f2fs_down_write(&io->bio_list_lock);
770                 list_for_each_entry(be, head, list) {
771                         if (be->bio != *bio)
772                                 continue;
773
774                         found = true;
775
776                         f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio,
777                                                             *fio->last_block,
778                                                             fio->new_blkaddr));
779                         if (f2fs_crypt_mergeable_bio(*bio,
780                                         fio->page->mapping->host,
781                                         fio->page->index, fio) &&
782                             bio_add_page(*bio, page, PAGE_SIZE, 0) ==
783                                         PAGE_SIZE) {
784                                 ret = 0;
785                                 break;
786                         }
787
788                         /* page can't be merged into bio; submit the bio */
789                         del_bio_entry(be);
790                         __submit_bio(sbi, *bio, DATA);
791                         break;
792                 }
793                 f2fs_up_write(&io->bio_list_lock);
794         }
795
796         if (ret) {
797                 bio_put(*bio);
798                 *bio = NULL;
799         }
800
801         return ret;
802 }
803
804 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
805                                         struct bio **bio, struct page *page)
806 {
807         enum temp_type temp;
808         bool found = false;
809         struct bio *target = bio ? *bio : NULL;
810
811         for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
812                 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
813                 struct list_head *head = &io->bio_list;
814                 struct bio_entry *be;
815
816                 if (list_empty(head))
817                         continue;
818
819                 f2fs_down_read(&io->bio_list_lock);
820                 list_for_each_entry(be, head, list) {
821                         if (target)
822                                 found = (target == be->bio);
823                         else
824                                 found = __has_merged_page(be->bio, NULL,
825                                                                 page, 0);
826                         if (found)
827                                 break;
828                 }
829                 f2fs_up_read(&io->bio_list_lock);
830
831                 if (!found)
832                         continue;
833
834                 found = false;
835
836                 f2fs_down_write(&io->bio_list_lock);
837                 list_for_each_entry(be, head, list) {
838                         if (target)
839                                 found = (target == be->bio);
840                         else
841                                 found = __has_merged_page(be->bio, NULL,
842                                                                 page, 0);
843                         if (found) {
844                                 target = be->bio;
845                                 del_bio_entry(be);
846                                 break;
847                         }
848                 }
849                 f2fs_up_write(&io->bio_list_lock);
850         }
851
852         if (found)
853                 __submit_bio(sbi, target, DATA);
854         if (bio && *bio) {
855                 bio_put(*bio);
856                 *bio = NULL;
857         }
858 }
859
860 int f2fs_merge_page_bio(struct f2fs_io_info *fio)
861 {
862         struct bio *bio = *fio->bio;
863         struct page *page = fio->encrypted_page ?
864                         fio->encrypted_page : fio->page;
865
866         if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
867                         __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC))
868                 return -EFSCORRUPTED;
869
870         trace_f2fs_submit_page_bio(page, fio);
871
872         if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block,
873                                                 fio->new_blkaddr))
874                 f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL);
875 alloc_new:
876         if (!bio) {
877                 bio = __bio_alloc(fio, BIO_MAX_VECS);
878                 __attach_io_flag(fio);
879                 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
880                                        fio->page->index, fio, GFP_NOIO);
881                 bio_set_op_attrs(bio, fio->op, fio->op_flags);
882
883                 add_bio_entry(fio->sbi, bio, page, fio->temp);
884         } else {
885                 if (add_ipu_page(fio, &bio, page))
886                         goto alloc_new;
887         }
888
889         if (fio->io_wbc)
890                 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
891
892         inc_page_count(fio->sbi, WB_DATA_TYPE(page));
893
894         *fio->last_block = fio->new_blkaddr;
895         *fio->bio = bio;
896
897         return 0;
898 }
899
900 void f2fs_submit_page_write(struct f2fs_io_info *fio)
901 {
902         struct f2fs_sb_info *sbi = fio->sbi;
903         enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
904         struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
905         struct page *bio_page;
906
907         f2fs_bug_on(sbi, is_read_io(fio->op));
908
909         f2fs_down_write(&io->io_rwsem);
910 next:
911         if (fio->in_list) {
912                 spin_lock(&io->io_lock);
913                 if (list_empty(&io->io_list)) {
914                         spin_unlock(&io->io_lock);
915                         goto out;
916                 }
917                 fio = list_first_entry(&io->io_list,
918                                                 struct f2fs_io_info, list);
919                 list_del(&fio->list);
920                 spin_unlock(&io->io_lock);
921         }
922
923         verify_fio_blkaddr(fio);
924
925         if (fio->encrypted_page)
926                 bio_page = fio->encrypted_page;
927         else if (fio->compressed_page)
928                 bio_page = fio->compressed_page;
929         else
930                 bio_page = fio->page;
931
932         /* set submitted = true as a return value */
933         fio->submitted = true;
934
935         inc_page_count(sbi, WB_DATA_TYPE(bio_page));
936
937         if (io->bio &&
938             (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio,
939                               fio->new_blkaddr) ||
940              !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host,
941                                        bio_page->index, fio)))
942                 __submit_merged_bio(io);
943 alloc_new:
944         if (io->bio == NULL) {
945                 if (F2FS_IO_ALIGNED(sbi) &&
946                                 (fio->type == DATA || fio->type == NODE) &&
947                                 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
948                         dec_page_count(sbi, WB_DATA_TYPE(bio_page));
949                         fio->retry = true;
950                         goto skip;
951                 }
952                 io->bio = __bio_alloc(fio, BIO_MAX_VECS);
953                 f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host,
954                                        bio_page->index, fio, GFP_NOIO);
955                 io->fio = *fio;
956         }
957
958         if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
959                 __submit_merged_bio(io);
960                 goto alloc_new;
961         }
962
963         if (fio->io_wbc)
964                 wbc_account_cgroup_owner(fio->io_wbc, bio_page, PAGE_SIZE);
965
966         io->last_block_in_bio = fio->new_blkaddr;
967
968         trace_f2fs_submit_page_write(fio->page, fio);
969 skip:
970         if (fio->in_list)
971                 goto next;
972 out:
973         if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
974                                 !f2fs_is_checkpoint_ready(sbi))
975                 __submit_merged_bio(io);
976         f2fs_up_write(&io->io_rwsem);
977 }
978
979 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
980                                       unsigned nr_pages, unsigned op_flag,
981                                       pgoff_t first_idx, bool for_write)
982 {
983         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
984         struct bio *bio;
985         struct bio_post_read_ctx *ctx = NULL;
986         unsigned int post_read_steps = 0;
987
988         bio = bio_alloc_bioset(for_write ? GFP_NOIO : GFP_KERNEL,
989                                bio_max_segs(nr_pages), &f2fs_bioset);
990         if (!bio)
991                 return ERR_PTR(-ENOMEM);
992
993         f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS);
994
995         f2fs_target_device(sbi, blkaddr, bio);
996         bio->bi_end_io = f2fs_read_end_io;
997         bio_set_op_attrs(bio, REQ_OP_READ, op_flag);
998
999         if (fscrypt_inode_uses_fs_layer_crypto(inode))
1000                 post_read_steps |= STEP_DECRYPT;
1001
1002         if (f2fs_need_verity(inode, first_idx))
1003                 post_read_steps |= STEP_VERITY;
1004
1005         /*
1006          * STEP_DECOMPRESS is handled specially, since a compressed file might
1007          * contain both compressed and uncompressed clusters.  We'll allocate a
1008          * bio_post_read_ctx if the file is compressed, but the caller is
1009          * responsible for enabling STEP_DECOMPRESS if it's actually needed.
1010          */
1011
1012         if (post_read_steps || f2fs_compressed_file(inode)) {
1013                 /* Due to the mempool, this never fails. */
1014                 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
1015                 ctx->bio = bio;
1016                 ctx->sbi = sbi;
1017                 ctx->enabled_steps = post_read_steps;
1018                 ctx->fs_blkaddr = blkaddr;
1019                 bio->bi_private = ctx;
1020         }
1021         iostat_alloc_and_bind_ctx(sbi, bio, ctx);
1022
1023         return bio;
1024 }
1025
1026 /* This can handle encryption stuffs */
1027 static int f2fs_submit_page_read(struct inode *inode, struct page *page,
1028                                  block_t blkaddr, int op_flags, bool for_write)
1029 {
1030         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1031         struct bio *bio;
1032
1033         bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags,
1034                                         page->index, for_write);
1035         if (IS_ERR(bio))
1036                 return PTR_ERR(bio);
1037
1038         /* wait for GCed page writeback via META_MAPPING */
1039         f2fs_wait_on_block_writeback(inode, blkaddr);
1040
1041         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
1042                 bio_put(bio);
1043                 return -EFAULT;
1044         }
1045         ClearPageError(page);
1046         inc_page_count(sbi, F2FS_RD_DATA);
1047         f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE);
1048         __submit_bio(sbi, bio, DATA);
1049         return 0;
1050 }
1051
1052 static void __set_data_blkaddr(struct dnode_of_data *dn)
1053 {
1054         struct f2fs_node *rn = F2FS_NODE(dn->node_page);
1055         __le32 *addr_array;
1056         int base = 0;
1057
1058         if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
1059                 base = get_extra_isize(dn->inode);
1060
1061         /* Get physical address of data block */
1062         addr_array = blkaddr_in_node(rn);
1063         addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
1064 }
1065
1066 /*
1067  * Lock ordering for the change of data block address:
1068  * ->data_page
1069  *  ->node_page
1070  *    update block addresses in the node page
1071  */
1072 void f2fs_set_data_blkaddr(struct dnode_of_data *dn)
1073 {
1074         f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1075         __set_data_blkaddr(dn);
1076         if (set_page_dirty(dn->node_page))
1077                 dn->node_changed = true;
1078 }
1079
1080 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1081 {
1082         dn->data_blkaddr = blkaddr;
1083         f2fs_set_data_blkaddr(dn);
1084         f2fs_update_extent_cache(dn);
1085 }
1086
1087 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
1088 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
1089 {
1090         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1091         int err;
1092
1093         if (!count)
1094                 return 0;
1095
1096         if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1097                 return -EPERM;
1098         if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1099                 return err;
1100
1101         trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
1102                                                 dn->ofs_in_node, count);
1103
1104         f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1105
1106         for (; count > 0; dn->ofs_in_node++) {
1107                 block_t blkaddr = f2fs_data_blkaddr(dn);
1108
1109                 if (blkaddr == NULL_ADDR) {
1110                         dn->data_blkaddr = NEW_ADDR;
1111                         __set_data_blkaddr(dn);
1112                         count--;
1113                 }
1114         }
1115
1116         if (set_page_dirty(dn->node_page))
1117                 dn->node_changed = true;
1118         return 0;
1119 }
1120
1121 /* Should keep dn->ofs_in_node unchanged */
1122 int f2fs_reserve_new_block(struct dnode_of_data *dn)
1123 {
1124         unsigned int ofs_in_node = dn->ofs_in_node;
1125         int ret;
1126
1127         ret = f2fs_reserve_new_blocks(dn, 1);
1128         dn->ofs_in_node = ofs_in_node;
1129         return ret;
1130 }
1131
1132 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
1133 {
1134         bool need_put = dn->inode_page ? false : true;
1135         int err;
1136
1137         err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
1138         if (err)
1139                 return err;
1140
1141         if (dn->data_blkaddr == NULL_ADDR)
1142                 err = f2fs_reserve_new_block(dn);
1143         if (err || need_put)
1144                 f2fs_put_dnode(dn);
1145         return err;
1146 }
1147
1148 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
1149 {
1150         struct extent_info ei = {0, };
1151         struct inode *inode = dn->inode;
1152
1153         if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1154                 dn->data_blkaddr = ei.blk + index - ei.fofs;
1155                 return 0;
1156         }
1157
1158         return f2fs_reserve_block(dn, index);
1159 }
1160
1161 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
1162                                                 int op_flags, bool for_write)
1163 {
1164         struct address_space *mapping = inode->i_mapping;
1165         struct dnode_of_data dn;
1166         struct page *page;
1167         struct extent_info ei = {0, };
1168         int err;
1169
1170         page = f2fs_grab_cache_page(mapping, index, for_write);
1171         if (!page)
1172                 return ERR_PTR(-ENOMEM);
1173
1174         if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1175                 dn.data_blkaddr = ei.blk + index - ei.fofs;
1176                 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
1177                                                 DATA_GENERIC_ENHANCE_READ)) {
1178                         err = -EFSCORRUPTED;
1179                         goto put_err;
1180                 }
1181                 goto got_it;
1182         }
1183
1184         set_new_dnode(&dn, inode, NULL, NULL, 0);
1185         err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1186         if (err)
1187                 goto put_err;
1188         f2fs_put_dnode(&dn);
1189
1190         if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1191                 err = -ENOENT;
1192                 goto put_err;
1193         }
1194         if (dn.data_blkaddr != NEW_ADDR &&
1195                         !f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
1196                                                 dn.data_blkaddr,
1197                                                 DATA_GENERIC_ENHANCE)) {
1198                 err = -EFSCORRUPTED;
1199                 goto put_err;
1200         }
1201 got_it:
1202         if (PageUptodate(page)) {
1203                 unlock_page(page);
1204                 return page;
1205         }
1206
1207         /*
1208          * A new dentry page is allocated but not able to be written, since its
1209          * new inode page couldn't be allocated due to -ENOSPC.
1210          * In such the case, its blkaddr can be remained as NEW_ADDR.
1211          * see, f2fs_add_link -> f2fs_get_new_data_page ->
1212          * f2fs_init_inode_metadata.
1213          */
1214         if (dn.data_blkaddr == NEW_ADDR) {
1215                 zero_user_segment(page, 0, PAGE_SIZE);
1216                 if (!PageUptodate(page))
1217                         SetPageUptodate(page);
1218                 unlock_page(page);
1219                 return page;
1220         }
1221
1222         err = f2fs_submit_page_read(inode, page, dn.data_blkaddr,
1223                                                 op_flags, for_write);
1224         if (err)
1225                 goto put_err;
1226         return page;
1227
1228 put_err:
1229         f2fs_put_page(page, 1);
1230         return ERR_PTR(err);
1231 }
1232
1233 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index)
1234 {
1235         struct address_space *mapping = inode->i_mapping;
1236         struct page *page;
1237
1238         page = find_get_page(mapping, index);
1239         if (page && PageUptodate(page))
1240                 return page;
1241         f2fs_put_page(page, 0);
1242
1243         page = f2fs_get_read_data_page(inode, index, 0, false);
1244         if (IS_ERR(page))
1245                 return page;
1246
1247         if (PageUptodate(page))
1248                 return page;
1249
1250         wait_on_page_locked(page);
1251         if (unlikely(!PageUptodate(page))) {
1252                 f2fs_put_page(page, 0);
1253                 return ERR_PTR(-EIO);
1254         }
1255         return page;
1256 }
1257
1258 /*
1259  * If it tries to access a hole, return an error.
1260  * Because, the callers, functions in dir.c and GC, should be able to know
1261  * whether this page exists or not.
1262  */
1263 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
1264                                                         bool for_write)
1265 {
1266         struct address_space *mapping = inode->i_mapping;
1267         struct page *page;
1268 repeat:
1269         page = f2fs_get_read_data_page(inode, index, 0, for_write);
1270         if (IS_ERR(page))
1271                 return page;
1272
1273         /* wait for read completion */
1274         lock_page(page);
1275         if (unlikely(page->mapping != mapping)) {
1276                 f2fs_put_page(page, 1);
1277                 goto repeat;
1278         }
1279         if (unlikely(!PageUptodate(page))) {
1280                 f2fs_put_page(page, 1);
1281                 return ERR_PTR(-EIO);
1282         }
1283         return page;
1284 }
1285
1286 /*
1287  * Caller ensures that this data page is never allocated.
1288  * A new zero-filled data page is allocated in the page cache.
1289  *
1290  * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1291  * f2fs_unlock_op().
1292  * Note that, ipage is set only by make_empty_dir, and if any error occur,
1293  * ipage should be released by this function.
1294  */
1295 struct page *f2fs_get_new_data_page(struct inode *inode,
1296                 struct page *ipage, pgoff_t index, bool new_i_size)
1297 {
1298         struct address_space *mapping = inode->i_mapping;
1299         struct page *page;
1300         struct dnode_of_data dn;
1301         int err;
1302
1303         page = f2fs_grab_cache_page(mapping, index, true);
1304         if (!page) {
1305                 /*
1306                  * before exiting, we should make sure ipage will be released
1307                  * if any error occur.
1308                  */
1309                 f2fs_put_page(ipage, 1);
1310                 return ERR_PTR(-ENOMEM);
1311         }
1312
1313         set_new_dnode(&dn, inode, ipage, NULL, 0);
1314         err = f2fs_reserve_block(&dn, index);
1315         if (err) {
1316                 f2fs_put_page(page, 1);
1317                 return ERR_PTR(err);
1318         }
1319         if (!ipage)
1320                 f2fs_put_dnode(&dn);
1321
1322         if (PageUptodate(page))
1323                 goto got_it;
1324
1325         if (dn.data_blkaddr == NEW_ADDR) {
1326                 zero_user_segment(page, 0, PAGE_SIZE);
1327                 if (!PageUptodate(page))
1328                         SetPageUptodate(page);
1329         } else {
1330                 f2fs_put_page(page, 1);
1331
1332                 /* if ipage exists, blkaddr should be NEW_ADDR */
1333                 f2fs_bug_on(F2FS_I_SB(inode), ipage);
1334                 page = f2fs_get_lock_data_page(inode, index, true);
1335                 if (IS_ERR(page))
1336                         return page;
1337         }
1338 got_it:
1339         if (new_i_size && i_size_read(inode) <
1340                                 ((loff_t)(index + 1) << PAGE_SHIFT))
1341                 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
1342         return page;
1343 }
1344
1345 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
1346 {
1347         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1348         struct f2fs_summary sum;
1349         struct node_info ni;
1350         block_t old_blkaddr;
1351         blkcnt_t count = 1;
1352         int err;
1353
1354         if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1355                 return -EPERM;
1356
1357         err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
1358         if (err)
1359                 return err;
1360
1361         dn->data_blkaddr = f2fs_data_blkaddr(dn);
1362         if (dn->data_blkaddr != NULL_ADDR)
1363                 goto alloc;
1364
1365         if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1366                 return err;
1367
1368 alloc:
1369         set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1370         old_blkaddr = dn->data_blkaddr;
1371         f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr,
1372                                 &sum, seg_type, NULL);
1373         if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
1374                 invalidate_mapping_pages(META_MAPPING(sbi),
1375                                         old_blkaddr, old_blkaddr);
1376                 f2fs_invalidate_compress_page(sbi, old_blkaddr);
1377         }
1378         f2fs_update_data_blkaddr(dn, dn->data_blkaddr);
1379         return 0;
1380 }
1381
1382 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock)
1383 {
1384         if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1385                 if (lock)
1386                         f2fs_down_read(&sbi->node_change);
1387                 else
1388                         f2fs_up_read(&sbi->node_change);
1389         } else {
1390                 if (lock)
1391                         f2fs_lock_op(sbi);
1392                 else
1393                         f2fs_unlock_op(sbi);
1394         }
1395 }
1396
1397 /*
1398  * f2fs_map_blocks() tries to find or build mapping relationship which
1399  * maps continuous logical blocks to physical blocks, and return such
1400  * info via f2fs_map_blocks structure.
1401  */
1402 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
1403                                                 int create, int flag)
1404 {
1405         unsigned int maxblocks = map->m_len;
1406         struct dnode_of_data dn;
1407         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1408         int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1409         pgoff_t pgofs, end_offset, end;
1410         int err = 0, ofs = 1;
1411         unsigned int ofs_in_node, last_ofs_in_node;
1412         blkcnt_t prealloc;
1413         struct extent_info ei = {0, };
1414         block_t blkaddr;
1415         unsigned int start_pgofs;
1416         int bidx = 0;
1417
1418         if (!maxblocks)
1419                 return 0;
1420
1421         map->m_bdev = inode->i_sb->s_bdev;
1422         map->m_multidev_dio =
1423                 f2fs_allow_multi_device_dio(F2FS_I_SB(inode), flag);
1424
1425         map->m_len = 0;
1426         map->m_flags = 0;
1427
1428         /* it only supports block size == page size */
1429         pgofs = (pgoff_t)map->m_lblk;
1430         end = pgofs + maxblocks;
1431
1432         if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
1433                 if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO &&
1434                                                         map->m_may_create)
1435                         goto next_dnode;
1436
1437                 map->m_pblk = ei.blk + pgofs - ei.fofs;
1438                 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
1439                 map->m_flags = F2FS_MAP_MAPPED;
1440                 if (map->m_next_extent)
1441                         *map->m_next_extent = pgofs + map->m_len;
1442
1443                 /* for hardware encryption, but to avoid potential issue in future */
1444                 if (flag == F2FS_GET_BLOCK_DIO)
1445                         f2fs_wait_on_block_writeback_range(inode,
1446                                                 map->m_pblk, map->m_len);
1447
1448                 if (map->m_multidev_dio) {
1449                         block_t blk_addr = map->m_pblk;
1450
1451                         bidx = f2fs_target_device_index(sbi, map->m_pblk);
1452
1453                         map->m_bdev = FDEV(bidx).bdev;
1454                         map->m_pblk -= FDEV(bidx).start_blk;
1455                         map->m_len = min(map->m_len,
1456                                 FDEV(bidx).end_blk + 1 - map->m_pblk);
1457
1458                         if (map->m_may_create)
1459                                 f2fs_update_device_state(sbi, inode->i_ino,
1460                                                         blk_addr, map->m_len);
1461                 }
1462                 goto out;
1463         }
1464
1465 next_dnode:
1466         if (map->m_may_create)
1467                 f2fs_do_map_lock(sbi, flag, true);
1468
1469         /* When reading holes, we need its node page */
1470         set_new_dnode(&dn, inode, NULL, NULL, 0);
1471         err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1472         if (err) {
1473                 if (flag == F2FS_GET_BLOCK_BMAP)
1474                         map->m_pblk = 0;
1475
1476                 if (err == -ENOENT) {
1477                         /*
1478                          * There is one exceptional case that read_node_page()
1479                          * may return -ENOENT due to filesystem has been
1480                          * shutdown or cp_error, so force to convert error
1481                          * number to EIO for such case.
1482                          */
1483                         if (map->m_may_create &&
1484                                 (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
1485                                 f2fs_cp_error(sbi))) {
1486                                 err = -EIO;
1487                                 goto unlock_out;
1488                         }
1489
1490                         err = 0;
1491                         if (map->m_next_pgofs)
1492                                 *map->m_next_pgofs =
1493                                         f2fs_get_next_page_offset(&dn, pgofs);
1494                         if (map->m_next_extent)
1495                                 *map->m_next_extent =
1496                                         f2fs_get_next_page_offset(&dn, pgofs);
1497                 }
1498                 goto unlock_out;
1499         }
1500
1501         start_pgofs = pgofs;
1502         prealloc = 0;
1503         last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1504         end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1505
1506 next_block:
1507         blkaddr = f2fs_data_blkaddr(&dn);
1508
1509         if (__is_valid_data_blkaddr(blkaddr) &&
1510                 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1511                 err = -EFSCORRUPTED;
1512                 goto sync_out;
1513         }
1514
1515         if (__is_valid_data_blkaddr(blkaddr)) {
1516                 /* use out-place-update for driect IO under LFS mode */
1517                 if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO &&
1518                                                         map->m_may_create) {
1519                         err = __allocate_data_block(&dn, map->m_seg_type);
1520                         if (err)
1521                                 goto sync_out;
1522                         blkaddr = dn.data_blkaddr;
1523                         set_inode_flag(inode, FI_APPEND_WRITE);
1524                 }
1525         } else {
1526                 if (create) {
1527                         if (unlikely(f2fs_cp_error(sbi))) {
1528                                 err = -EIO;
1529                                 goto sync_out;
1530                         }
1531                         if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1532                                 if (blkaddr == NULL_ADDR) {
1533                                         prealloc++;
1534                                         last_ofs_in_node = dn.ofs_in_node;
1535                                 }
1536                         } else {
1537                                 WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO &&
1538                                         flag != F2FS_GET_BLOCK_DIO);
1539                                 err = __allocate_data_block(&dn,
1540                                                         map->m_seg_type);
1541                                 if (!err) {
1542                                         if (flag == F2FS_GET_BLOCK_PRE_DIO)
1543                                                 file_need_truncate(inode);
1544                                         set_inode_flag(inode, FI_APPEND_WRITE);
1545                                 }
1546                         }
1547                         if (err)
1548                                 goto sync_out;
1549                         map->m_flags |= F2FS_MAP_NEW;
1550                         blkaddr = dn.data_blkaddr;
1551                 } else {
1552                         if (f2fs_compressed_file(inode) &&
1553                                         f2fs_sanity_check_cluster(&dn) &&
1554                                         (flag != F2FS_GET_BLOCK_FIEMAP ||
1555                                         IS_ENABLED(CONFIG_F2FS_CHECK_FS))) {
1556                                 err = -EFSCORRUPTED;
1557                                 goto sync_out;
1558                         }
1559                         if (flag == F2FS_GET_BLOCK_BMAP) {
1560                                 map->m_pblk = 0;
1561                                 goto sync_out;
1562                         }
1563                         if (flag == F2FS_GET_BLOCK_PRECACHE)
1564                                 goto sync_out;
1565                         if (flag == F2FS_GET_BLOCK_FIEMAP &&
1566                                                 blkaddr == NULL_ADDR) {
1567                                 if (map->m_next_pgofs)
1568                                         *map->m_next_pgofs = pgofs + 1;
1569                                 goto sync_out;
1570                         }
1571                         if (flag != F2FS_GET_BLOCK_FIEMAP) {
1572                                 /* for defragment case */
1573                                 if (map->m_next_pgofs)
1574                                         *map->m_next_pgofs = pgofs + 1;
1575                                 goto sync_out;
1576                         }
1577                 }
1578         }
1579
1580         if (flag == F2FS_GET_BLOCK_PRE_AIO)
1581                 goto skip;
1582
1583         if (map->m_multidev_dio)
1584                 bidx = f2fs_target_device_index(sbi, blkaddr);
1585
1586         if (map->m_len == 0) {
1587                 /* preallocated unwritten block should be mapped for fiemap. */
1588                 if (blkaddr == NEW_ADDR)
1589                         map->m_flags |= F2FS_MAP_UNWRITTEN;
1590                 map->m_flags |= F2FS_MAP_MAPPED;
1591
1592                 map->m_pblk = blkaddr;
1593                 map->m_len = 1;
1594
1595                 if (map->m_multidev_dio)
1596                         map->m_bdev = FDEV(bidx).bdev;
1597         } else if ((map->m_pblk != NEW_ADDR &&
1598                         blkaddr == (map->m_pblk + ofs)) ||
1599                         (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1600                         flag == F2FS_GET_BLOCK_PRE_DIO) {
1601                 if (map->m_multidev_dio && map->m_bdev != FDEV(bidx).bdev)
1602                         goto sync_out;
1603                 ofs++;
1604                 map->m_len++;
1605         } else {
1606                 goto sync_out;
1607         }
1608
1609 skip:
1610         dn.ofs_in_node++;
1611         pgofs++;
1612
1613         /* preallocate blocks in batch for one dnode page */
1614         if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1615                         (pgofs == end || dn.ofs_in_node == end_offset)) {
1616
1617                 dn.ofs_in_node = ofs_in_node;
1618                 err = f2fs_reserve_new_blocks(&dn, prealloc);
1619                 if (err)
1620                         goto sync_out;
1621
1622                 map->m_len += dn.ofs_in_node - ofs_in_node;
1623                 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1624                         err = -ENOSPC;
1625                         goto sync_out;
1626                 }
1627                 dn.ofs_in_node = end_offset;
1628         }
1629
1630         if (pgofs >= end)
1631                 goto sync_out;
1632         else if (dn.ofs_in_node < end_offset)
1633                 goto next_block;
1634
1635         if (flag == F2FS_GET_BLOCK_PRECACHE) {
1636                 if (map->m_flags & F2FS_MAP_MAPPED) {
1637                         unsigned int ofs = start_pgofs - map->m_lblk;
1638
1639                         f2fs_update_extent_cache_range(&dn,
1640                                 start_pgofs, map->m_pblk + ofs,
1641                                 map->m_len - ofs);
1642                 }
1643         }
1644
1645         f2fs_put_dnode(&dn);
1646
1647         if (map->m_may_create) {
1648                 f2fs_do_map_lock(sbi, flag, false);
1649                 f2fs_balance_fs(sbi, dn.node_changed);
1650         }
1651         goto next_dnode;
1652
1653 sync_out:
1654
1655         if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED) {
1656                 /*
1657                  * for hardware encryption, but to avoid potential issue
1658                  * in future
1659                  */
1660                 f2fs_wait_on_block_writeback_range(inode,
1661                                                 map->m_pblk, map->m_len);
1662                 invalidate_mapping_pages(META_MAPPING(sbi),
1663                                                 map->m_pblk, map->m_pblk);
1664
1665                 if (map->m_multidev_dio) {
1666                         block_t blk_addr = map->m_pblk;
1667
1668                         bidx = f2fs_target_device_index(sbi, map->m_pblk);
1669
1670                         map->m_bdev = FDEV(bidx).bdev;
1671                         map->m_pblk -= FDEV(bidx).start_blk;
1672
1673                         if (map->m_may_create)
1674                                 f2fs_update_device_state(sbi, inode->i_ino,
1675                                                         blk_addr, map->m_len);
1676
1677                         f2fs_bug_on(sbi, blk_addr + map->m_len >
1678                                                 FDEV(bidx).end_blk + 1);
1679                 }
1680         }
1681
1682         if (flag == F2FS_GET_BLOCK_PRECACHE) {
1683                 if (map->m_flags & F2FS_MAP_MAPPED) {
1684                         unsigned int ofs = start_pgofs - map->m_lblk;
1685
1686                         f2fs_update_extent_cache_range(&dn,
1687                                 start_pgofs, map->m_pblk + ofs,
1688                                 map->m_len - ofs);
1689                 }
1690                 if (map->m_next_extent)
1691                         *map->m_next_extent = pgofs + 1;
1692         }
1693         f2fs_put_dnode(&dn);
1694 unlock_out:
1695         if (map->m_may_create) {
1696                 f2fs_do_map_lock(sbi, flag, false);
1697                 f2fs_balance_fs(sbi, dn.node_changed);
1698         }
1699 out:
1700         trace_f2fs_map_blocks(inode, map, create, flag, err);
1701         return err;
1702 }
1703
1704 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1705 {
1706         struct f2fs_map_blocks map;
1707         block_t last_lblk;
1708         int err;
1709
1710         if (pos + len > i_size_read(inode))
1711                 return false;
1712
1713         map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1714         map.m_next_pgofs = NULL;
1715         map.m_next_extent = NULL;
1716         map.m_seg_type = NO_CHECK_TYPE;
1717         map.m_may_create = false;
1718         last_lblk = F2FS_BLK_ALIGN(pos + len);
1719
1720         while (map.m_lblk < last_lblk) {
1721                 map.m_len = last_lblk - map.m_lblk;
1722                 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
1723                 if (err || map.m_len == 0)
1724                         return false;
1725                 map.m_lblk += map.m_len;
1726         }
1727         return true;
1728 }
1729
1730 static inline u64 bytes_to_blks(struct inode *inode, u64 bytes)
1731 {
1732         return (bytes >> inode->i_blkbits);
1733 }
1734
1735 static inline u64 blks_to_bytes(struct inode *inode, u64 blks)
1736 {
1737         return (blks << inode->i_blkbits);
1738 }
1739
1740 static int f2fs_xattr_fiemap(struct inode *inode,
1741                                 struct fiemap_extent_info *fieinfo)
1742 {
1743         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1744         struct page *page;
1745         struct node_info ni;
1746         __u64 phys = 0, len;
1747         __u32 flags;
1748         nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1749         int err = 0;
1750
1751         if (f2fs_has_inline_xattr(inode)) {
1752                 int offset;
1753
1754                 page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1755                                                 inode->i_ino, false);
1756                 if (!page)
1757                         return -ENOMEM;
1758
1759                 err = f2fs_get_node_info(sbi, inode->i_ino, &ni, false);
1760                 if (err) {
1761                         f2fs_put_page(page, 1);
1762                         return err;
1763                 }
1764
1765                 phys = blks_to_bytes(inode, ni.blk_addr);
1766                 offset = offsetof(struct f2fs_inode, i_addr) +
1767                                         sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1768                                         get_inline_xattr_addrs(inode));
1769
1770                 phys += offset;
1771                 len = inline_xattr_size(inode);
1772
1773                 f2fs_put_page(page, 1);
1774
1775                 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1776
1777                 if (!xnid)
1778                         flags |= FIEMAP_EXTENT_LAST;
1779
1780                 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1781                 trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1782                 if (err || err == 1)
1783                         return err;
1784         }
1785
1786         if (xnid) {
1787                 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1788                 if (!page)
1789                         return -ENOMEM;
1790
1791                 err = f2fs_get_node_info(sbi, xnid, &ni, false);
1792                 if (err) {
1793                         f2fs_put_page(page, 1);
1794                         return err;
1795                 }
1796
1797                 phys = blks_to_bytes(inode, ni.blk_addr);
1798                 len = inode->i_sb->s_blocksize;
1799
1800                 f2fs_put_page(page, 1);
1801
1802                 flags = FIEMAP_EXTENT_LAST;
1803         }
1804
1805         if (phys) {
1806                 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1807                 trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1808         }
1809
1810         return (err < 0 ? err : 0);
1811 }
1812
1813 static loff_t max_inode_blocks(struct inode *inode)
1814 {
1815         loff_t result = ADDRS_PER_INODE(inode);
1816         loff_t leaf_count = ADDRS_PER_BLOCK(inode);
1817
1818         /* two direct node blocks */
1819         result += (leaf_count * 2);
1820
1821         /* two indirect node blocks */
1822         leaf_count *= NIDS_PER_BLOCK;
1823         result += (leaf_count * 2);
1824
1825         /* one double indirect node block */
1826         leaf_count *= NIDS_PER_BLOCK;
1827         result += leaf_count;
1828
1829         return result;
1830 }
1831
1832 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1833                 u64 start, u64 len)
1834 {
1835         struct f2fs_map_blocks map;
1836         sector_t start_blk, last_blk;
1837         pgoff_t next_pgofs;
1838         u64 logical = 0, phys = 0, size = 0;
1839         u32 flags = 0;
1840         int ret = 0;
1841         bool compr_cluster = false, compr_appended;
1842         unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
1843         unsigned int count_in_cluster = 0;
1844         loff_t maxbytes;
1845
1846         if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1847                 ret = f2fs_precache_extents(inode);
1848                 if (ret)
1849                         return ret;
1850         }
1851
1852         ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR);
1853         if (ret)
1854                 return ret;
1855
1856         inode_lock(inode);
1857
1858         maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
1859         if (start > maxbytes) {
1860                 ret = -EFBIG;
1861                 goto out;
1862         }
1863
1864         if (len > maxbytes || (maxbytes - len) < start)
1865                 len = maxbytes - start;
1866
1867         if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1868                 ret = f2fs_xattr_fiemap(inode, fieinfo);
1869                 goto out;
1870         }
1871
1872         if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
1873                 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1874                 if (ret != -EAGAIN)
1875                         goto out;
1876         }
1877
1878         if (bytes_to_blks(inode, len) == 0)
1879                 len = blks_to_bytes(inode, 1);
1880
1881         start_blk = bytes_to_blks(inode, start);
1882         last_blk = bytes_to_blks(inode, start + len - 1);
1883
1884 next:
1885         memset(&map, 0, sizeof(map));
1886         map.m_lblk = start_blk;
1887         map.m_len = bytes_to_blks(inode, len);
1888         map.m_next_pgofs = &next_pgofs;
1889         map.m_seg_type = NO_CHECK_TYPE;
1890
1891         if (compr_cluster) {
1892                 map.m_lblk += 1;
1893                 map.m_len = cluster_size - count_in_cluster;
1894         }
1895
1896         ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP);
1897         if (ret)
1898                 goto out;
1899
1900         /* HOLE */
1901         if (!compr_cluster && !(map.m_flags & F2FS_MAP_FLAGS)) {
1902                 start_blk = next_pgofs;
1903
1904                 if (blks_to_bytes(inode, start_blk) < blks_to_bytes(inode,
1905                                                 max_inode_blocks(inode)))
1906                         goto prep_next;
1907
1908                 flags |= FIEMAP_EXTENT_LAST;
1909         }
1910
1911         compr_appended = false;
1912         /* In a case of compressed cluster, append this to the last extent */
1913         if (compr_cluster && ((map.m_flags & F2FS_MAP_UNWRITTEN) ||
1914                         !(map.m_flags & F2FS_MAP_FLAGS))) {
1915                 compr_appended = true;
1916                 goto skip_fill;
1917         }
1918
1919         if (size) {
1920                 flags |= FIEMAP_EXTENT_MERGED;
1921                 if (IS_ENCRYPTED(inode))
1922                         flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1923
1924                 ret = fiemap_fill_next_extent(fieinfo, logical,
1925                                 phys, size, flags);
1926                 trace_f2fs_fiemap(inode, logical, phys, size, flags, ret);
1927                 if (ret)
1928                         goto out;
1929                 size = 0;
1930         }
1931
1932         if (start_blk > last_blk)
1933                 goto out;
1934
1935 skip_fill:
1936         if (map.m_pblk == COMPRESS_ADDR) {
1937                 compr_cluster = true;
1938                 count_in_cluster = 1;
1939         } else if (compr_appended) {
1940                 unsigned int appended_blks = cluster_size -
1941                                                 count_in_cluster + 1;
1942                 size += blks_to_bytes(inode, appended_blks);
1943                 start_blk += appended_blks;
1944                 compr_cluster = false;
1945         } else {
1946                 logical = blks_to_bytes(inode, start_blk);
1947                 phys = __is_valid_data_blkaddr(map.m_pblk) ?
1948                         blks_to_bytes(inode, map.m_pblk) : 0;
1949                 size = blks_to_bytes(inode, map.m_len);
1950                 flags = 0;
1951
1952                 if (compr_cluster) {
1953                         flags = FIEMAP_EXTENT_ENCODED;
1954                         count_in_cluster += map.m_len;
1955                         if (count_in_cluster == cluster_size) {
1956                                 compr_cluster = false;
1957                                 size += blks_to_bytes(inode, 1);
1958                         }
1959                 } else if (map.m_flags & F2FS_MAP_UNWRITTEN) {
1960                         flags = FIEMAP_EXTENT_UNWRITTEN;
1961                 }
1962
1963                 start_blk += bytes_to_blks(inode, size);
1964         }
1965
1966 prep_next:
1967         cond_resched();
1968         if (fatal_signal_pending(current))
1969                 ret = -EINTR;
1970         else
1971                 goto next;
1972 out:
1973         if (ret == 1)
1974                 ret = 0;
1975
1976         inode_unlock(inode);
1977         return ret;
1978 }
1979
1980 static inline loff_t f2fs_readpage_limit(struct inode *inode)
1981 {
1982         if (IS_ENABLED(CONFIG_FS_VERITY) &&
1983             (IS_VERITY(inode) || f2fs_verity_in_progress(inode)))
1984                 return inode->i_sb->s_maxbytes;
1985
1986         return i_size_read(inode);
1987 }
1988
1989 static int f2fs_read_single_page(struct inode *inode, struct page *page,
1990                                         unsigned nr_pages,
1991                                         struct f2fs_map_blocks *map,
1992                                         struct bio **bio_ret,
1993                                         sector_t *last_block_in_bio,
1994                                         bool is_readahead)
1995 {
1996         struct bio *bio = *bio_ret;
1997         const unsigned blocksize = blks_to_bytes(inode, 1);
1998         sector_t block_in_file;
1999         sector_t last_block;
2000         sector_t last_block_in_file;
2001         sector_t block_nr;
2002         int ret = 0;
2003
2004         block_in_file = (sector_t)page_index(page);
2005         last_block = block_in_file + nr_pages;
2006         last_block_in_file = bytes_to_blks(inode,
2007                         f2fs_readpage_limit(inode) + blocksize - 1);
2008         if (last_block > last_block_in_file)
2009                 last_block = last_block_in_file;
2010
2011         /* just zeroing out page which is beyond EOF */
2012         if (block_in_file >= last_block)
2013                 goto zero_out;
2014         /*
2015          * Map blocks using the previous result first.
2016          */
2017         if ((map->m_flags & F2FS_MAP_MAPPED) &&
2018                         block_in_file > map->m_lblk &&
2019                         block_in_file < (map->m_lblk + map->m_len))
2020                 goto got_it;
2021
2022         /*
2023          * Then do more f2fs_map_blocks() calls until we are
2024          * done with this page.
2025          */
2026         map->m_lblk = block_in_file;
2027         map->m_len = last_block - block_in_file;
2028
2029         ret = f2fs_map_blocks(inode, map, 0, F2FS_GET_BLOCK_DEFAULT);
2030         if (ret)
2031                 goto out;
2032 got_it:
2033         if ((map->m_flags & F2FS_MAP_MAPPED)) {
2034                 block_nr = map->m_pblk + block_in_file - map->m_lblk;
2035                 SetPageMappedToDisk(page);
2036
2037                 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
2038                                                 DATA_GENERIC_ENHANCE_READ)) {
2039                         ret = -EFSCORRUPTED;
2040                         goto out;
2041                 }
2042         } else {
2043 zero_out:
2044                 zero_user_segment(page, 0, PAGE_SIZE);
2045                 if (f2fs_need_verity(inode, page->index) &&
2046                     !fsverity_verify_page(page)) {
2047                         ret = -EIO;
2048                         goto out;
2049                 }
2050                 if (!PageUptodate(page))
2051                         SetPageUptodate(page);
2052                 unlock_page(page);
2053                 goto out;
2054         }
2055
2056         /*
2057          * This page will go to BIO.  Do we need to send this
2058          * BIO off first?
2059          */
2060         if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio,
2061                                        *last_block_in_bio, block_nr) ||
2062                     !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2063 submit_and_realloc:
2064                 __submit_bio(F2FS_I_SB(inode), bio, DATA);
2065                 bio = NULL;
2066         }
2067         if (bio == NULL) {
2068                 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
2069                                 is_readahead ? REQ_RAHEAD : 0, page->index,
2070                                 false);
2071                 if (IS_ERR(bio)) {
2072                         ret = PTR_ERR(bio);
2073                         bio = NULL;
2074                         goto out;
2075                 }
2076         }
2077
2078         /*
2079          * If the page is under writeback, we need to wait for
2080          * its completion to see the correct decrypted data.
2081          */
2082         f2fs_wait_on_block_writeback(inode, block_nr);
2083
2084         if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2085                 goto submit_and_realloc;
2086
2087         inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
2088         f2fs_update_iostat(F2FS_I_SB(inode), FS_DATA_READ_IO, F2FS_BLKSIZE);
2089         ClearPageError(page);
2090         *last_block_in_bio = block_nr;
2091         goto out;
2092 out:
2093         *bio_ret = bio;
2094         return ret;
2095 }
2096
2097 #ifdef CONFIG_F2FS_FS_COMPRESSION
2098 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
2099                                 unsigned nr_pages, sector_t *last_block_in_bio,
2100                                 bool is_readahead, bool for_write)
2101 {
2102         struct dnode_of_data dn;
2103         struct inode *inode = cc->inode;
2104         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2105         struct bio *bio = *bio_ret;
2106         unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size;
2107         sector_t last_block_in_file;
2108         const unsigned blocksize = blks_to_bytes(inode, 1);
2109         struct decompress_io_ctx *dic = NULL;
2110         struct extent_info ei = {0, };
2111         bool from_dnode = true;
2112         int i;
2113         int ret = 0;
2114
2115         f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc));
2116
2117         last_block_in_file = bytes_to_blks(inode,
2118                         f2fs_readpage_limit(inode) + blocksize - 1);
2119
2120         /* get rid of pages beyond EOF */
2121         for (i = 0; i < cc->cluster_size; i++) {
2122                 struct page *page = cc->rpages[i];
2123
2124                 if (!page)
2125                         continue;
2126                 if ((sector_t)page->index >= last_block_in_file) {
2127                         zero_user_segment(page, 0, PAGE_SIZE);
2128                         if (!PageUptodate(page))
2129                                 SetPageUptodate(page);
2130                 } else if (!PageUptodate(page)) {
2131                         continue;
2132                 }
2133                 unlock_page(page);
2134                 if (for_write)
2135                         put_page(page);
2136                 cc->rpages[i] = NULL;
2137                 cc->nr_rpages--;
2138         }
2139
2140         /* we are done since all pages are beyond EOF */
2141         if (f2fs_cluster_is_empty(cc))
2142                 goto out;
2143
2144         if (f2fs_lookup_extent_cache(inode, start_idx, &ei))
2145                 from_dnode = false;
2146
2147         if (!from_dnode)
2148                 goto skip_reading_dnode;
2149
2150         set_new_dnode(&dn, inode, NULL, NULL, 0);
2151         ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
2152         if (ret)
2153                 goto out;
2154
2155         f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR);
2156
2157 skip_reading_dnode:
2158         for (i = 1; i < cc->cluster_size; i++) {
2159                 block_t blkaddr;
2160
2161                 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2162                                         dn.ofs_in_node + i) :
2163                                         ei.blk + i - 1;
2164
2165                 if (!__is_valid_data_blkaddr(blkaddr))
2166                         break;
2167
2168                 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
2169                         ret = -EFAULT;
2170                         goto out_put_dnode;
2171                 }
2172                 cc->nr_cpages++;
2173
2174                 if (!from_dnode && i >= ei.c_len)
2175                         break;
2176         }
2177
2178         /* nothing to decompress */
2179         if (cc->nr_cpages == 0) {
2180                 ret = 0;
2181                 goto out_put_dnode;
2182         }
2183
2184         dic = f2fs_alloc_dic(cc);
2185         if (IS_ERR(dic)) {
2186                 ret = PTR_ERR(dic);
2187                 goto out_put_dnode;
2188         }
2189
2190         for (i = 0; i < cc->nr_cpages; i++) {
2191                 struct page *page = dic->cpages[i];
2192                 block_t blkaddr;
2193                 struct bio_post_read_ctx *ctx;
2194
2195                 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2196                                         dn.ofs_in_node + i + 1) :
2197                                         ei.blk + i;
2198
2199                 f2fs_wait_on_block_writeback(inode, blkaddr);
2200
2201                 if (f2fs_load_compressed_page(sbi, page, blkaddr)) {
2202                         if (atomic_dec_and_test(&dic->remaining_pages))
2203                                 f2fs_decompress_cluster(dic);
2204                         continue;
2205                 }
2206
2207                 if (bio && (!page_is_mergeable(sbi, bio,
2208                                         *last_block_in_bio, blkaddr) ||
2209                     !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2210 submit_and_realloc:
2211                         __submit_bio(sbi, bio, DATA);
2212                         bio = NULL;
2213                 }
2214
2215                 if (!bio) {
2216                         bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages,
2217                                         is_readahead ? REQ_RAHEAD : 0,
2218                                         page->index, for_write);
2219                         if (IS_ERR(bio)) {
2220                                 ret = PTR_ERR(bio);
2221                                 f2fs_decompress_end_io(dic, ret);
2222                                 f2fs_put_dnode(&dn);
2223                                 *bio_ret = NULL;
2224                                 return ret;
2225                         }
2226                 }
2227
2228                 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2229                         goto submit_and_realloc;
2230
2231                 ctx = get_post_read_ctx(bio);
2232                 ctx->enabled_steps |= STEP_DECOMPRESS;
2233                 refcount_inc(&dic->refcnt);
2234
2235                 inc_page_count(sbi, F2FS_RD_DATA);
2236                 f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE);
2237                 f2fs_update_iostat(sbi, FS_CDATA_READ_IO, F2FS_BLKSIZE);
2238                 ClearPageError(page);
2239                 *last_block_in_bio = blkaddr;
2240         }
2241
2242         if (from_dnode)
2243                 f2fs_put_dnode(&dn);
2244
2245         *bio_ret = bio;
2246         return 0;
2247
2248 out_put_dnode:
2249         if (from_dnode)
2250                 f2fs_put_dnode(&dn);
2251 out:
2252         for (i = 0; i < cc->cluster_size; i++) {
2253                 if (cc->rpages[i]) {
2254                         ClearPageUptodate(cc->rpages[i]);
2255                         ClearPageError(cc->rpages[i]);
2256                         unlock_page(cc->rpages[i]);
2257                 }
2258         }
2259         *bio_ret = bio;
2260         return ret;
2261 }
2262 #endif
2263
2264 /*
2265  * This function was originally taken from fs/mpage.c, and customized for f2fs.
2266  * Major change was from block_size == page_size in f2fs by default.
2267  */
2268 static int f2fs_mpage_readpages(struct inode *inode,
2269                 struct readahead_control *rac, struct page *page)
2270 {
2271         struct bio *bio = NULL;
2272         sector_t last_block_in_bio = 0;
2273         struct f2fs_map_blocks map;
2274 #ifdef CONFIG_F2FS_FS_COMPRESSION
2275         struct compress_ctx cc = {
2276                 .inode = inode,
2277                 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2278                 .cluster_size = F2FS_I(inode)->i_cluster_size,
2279                 .cluster_idx = NULL_CLUSTER,
2280                 .rpages = NULL,
2281                 .cpages = NULL,
2282                 .nr_rpages = 0,
2283                 .nr_cpages = 0,
2284         };
2285         pgoff_t nc_cluster_idx = NULL_CLUSTER;
2286 #endif
2287         unsigned nr_pages = rac ? readahead_count(rac) : 1;
2288         unsigned max_nr_pages = nr_pages;
2289         int ret = 0;
2290
2291         map.m_pblk = 0;
2292         map.m_lblk = 0;
2293         map.m_len = 0;
2294         map.m_flags = 0;
2295         map.m_next_pgofs = NULL;
2296         map.m_next_extent = NULL;
2297         map.m_seg_type = NO_CHECK_TYPE;
2298         map.m_may_create = false;
2299
2300         for (; nr_pages; nr_pages--) {
2301                 if (rac) {
2302                         page = readahead_page(rac);
2303                         prefetchw(&page->flags);
2304                 }
2305
2306 #ifdef CONFIG_F2FS_FS_COMPRESSION
2307                 if (f2fs_compressed_file(inode)) {
2308                         /* there are remained comressed pages, submit them */
2309                         if (!f2fs_cluster_can_merge_page(&cc, page->index)) {
2310                                 ret = f2fs_read_multi_pages(&cc, &bio,
2311                                                         max_nr_pages,
2312                                                         &last_block_in_bio,
2313                                                         rac != NULL, false);
2314                                 f2fs_destroy_compress_ctx(&cc, false);
2315                                 if (ret)
2316                                         goto set_error_page;
2317                         }
2318                         if (cc.cluster_idx == NULL_CLUSTER) {
2319                                 if (nc_cluster_idx ==
2320                                         page->index >> cc.log_cluster_size) {
2321                                         goto read_single_page;
2322                                 }
2323
2324                                 ret = f2fs_is_compressed_cluster(inode, page->index);
2325                                 if (ret < 0)
2326                                         goto set_error_page;
2327                                 else if (!ret) {
2328                                         nc_cluster_idx =
2329                                                 page->index >> cc.log_cluster_size;
2330                                         goto read_single_page;
2331                                 }
2332
2333                                 nc_cluster_idx = NULL_CLUSTER;
2334                         }
2335                         ret = f2fs_init_compress_ctx(&cc);
2336                         if (ret)
2337                                 goto set_error_page;
2338
2339                         f2fs_compress_ctx_add_page(&cc, page);
2340
2341                         goto next_page;
2342                 }
2343 read_single_page:
2344 #endif
2345
2346                 ret = f2fs_read_single_page(inode, page, max_nr_pages, &map,
2347                                         &bio, &last_block_in_bio, rac);
2348                 if (ret) {
2349 #ifdef CONFIG_F2FS_FS_COMPRESSION
2350 set_error_page:
2351 #endif
2352                         SetPageError(page);
2353                         zero_user_segment(page, 0, PAGE_SIZE);
2354                         unlock_page(page);
2355                 }
2356 #ifdef CONFIG_F2FS_FS_COMPRESSION
2357 next_page:
2358 #endif
2359                 if (rac)
2360                         put_page(page);
2361
2362 #ifdef CONFIG_F2FS_FS_COMPRESSION
2363                 if (f2fs_compressed_file(inode)) {
2364                         /* last page */
2365                         if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) {
2366                                 ret = f2fs_read_multi_pages(&cc, &bio,
2367                                                         max_nr_pages,
2368                                                         &last_block_in_bio,
2369                                                         rac != NULL, false);
2370                                 f2fs_destroy_compress_ctx(&cc, false);
2371                         }
2372                 }
2373 #endif
2374         }
2375         if (bio)
2376                 __submit_bio(F2FS_I_SB(inode), bio, DATA);
2377         return ret;
2378 }
2379
2380 static int f2fs_read_data_page(struct file *file, struct page *page)
2381 {
2382         struct inode *inode = page_file_mapping(page)->host;
2383         int ret = -EAGAIN;
2384
2385         trace_f2fs_readpage(page, DATA);
2386
2387         if (!f2fs_is_compress_backend_ready(inode)) {
2388                 unlock_page(page);
2389                 return -EOPNOTSUPP;
2390         }
2391
2392         /* If the file has inline data, try to read it directly */
2393         if (f2fs_has_inline_data(inode))
2394                 ret = f2fs_read_inline_data(inode, page);
2395         if (ret == -EAGAIN)
2396                 ret = f2fs_mpage_readpages(inode, NULL, page);
2397         return ret;
2398 }
2399
2400 static void f2fs_readahead(struct readahead_control *rac)
2401 {
2402         struct inode *inode = rac->mapping->host;
2403
2404         trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac));
2405
2406         if (!f2fs_is_compress_backend_ready(inode))
2407                 return;
2408
2409         /* If the file has inline data, skip readpages */
2410         if (f2fs_has_inline_data(inode))
2411                 return;
2412
2413         f2fs_mpage_readpages(inode, rac, NULL);
2414 }
2415
2416 int f2fs_encrypt_one_page(struct f2fs_io_info *fio)
2417 {
2418         struct inode *inode = fio->page->mapping->host;
2419         struct page *mpage, *page;
2420         gfp_t gfp_flags = GFP_NOFS;
2421
2422         if (!f2fs_encrypted_file(inode))
2423                 return 0;
2424
2425         page = fio->compressed_page ? fio->compressed_page : fio->page;
2426
2427         /* wait for GCed page writeback via META_MAPPING */
2428         f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
2429
2430         if (fscrypt_inode_uses_inline_crypto(inode))
2431                 return 0;
2432
2433 retry_encrypt:
2434         fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page,
2435                                         PAGE_SIZE, 0, gfp_flags);
2436         if (IS_ERR(fio->encrypted_page)) {
2437                 /* flush pending IOs and wait for a while in the ENOMEM case */
2438                 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
2439                         f2fs_flush_merged_writes(fio->sbi);
2440                         memalloc_retry_wait(GFP_NOFS);
2441                         gfp_flags |= __GFP_NOFAIL;
2442                         goto retry_encrypt;
2443                 }
2444                 return PTR_ERR(fio->encrypted_page);
2445         }
2446
2447         mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
2448         if (mpage) {
2449                 if (PageUptodate(mpage))
2450                         memcpy(page_address(mpage),
2451                                 page_address(fio->encrypted_page), PAGE_SIZE);
2452                 f2fs_put_page(mpage, 1);
2453         }
2454         return 0;
2455 }
2456
2457 static inline bool check_inplace_update_policy(struct inode *inode,
2458                                 struct f2fs_io_info *fio)
2459 {
2460         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2461         unsigned int policy = SM_I(sbi)->ipu_policy;
2462
2463         if (policy & (0x1 << F2FS_IPU_HONOR_OPU_WRITE) &&
2464                         is_inode_flag_set(inode, FI_OPU_WRITE))
2465                 return false;
2466         if (policy & (0x1 << F2FS_IPU_FORCE))
2467                 return true;
2468         if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi))
2469                 return true;
2470         if (policy & (0x1 << F2FS_IPU_UTIL) &&
2471                         utilization(sbi) > SM_I(sbi)->min_ipu_util)
2472                 return true;
2473         if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) &&
2474                         utilization(sbi) > SM_I(sbi)->min_ipu_util)
2475                 return true;
2476
2477         /*
2478          * IPU for rewrite async pages
2479          */
2480         if (policy & (0x1 << F2FS_IPU_ASYNC) &&
2481                         fio && fio->op == REQ_OP_WRITE &&
2482                         !(fio->op_flags & REQ_SYNC) &&
2483                         !IS_ENCRYPTED(inode))
2484                 return true;
2485
2486         /* this is only set during fdatasync */
2487         if (policy & (0x1 << F2FS_IPU_FSYNC) &&
2488                         is_inode_flag_set(inode, FI_NEED_IPU))
2489                 return true;
2490
2491         if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2492                         !f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2493                 return true;
2494
2495         return false;
2496 }
2497
2498 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
2499 {
2500         /* swap file is migrating in aligned write mode */
2501         if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2502                 return false;
2503
2504         if (f2fs_is_pinned_file(inode))
2505                 return true;
2506
2507         /* if this is cold file, we should overwrite to avoid fragmentation */
2508         if (file_is_cold(inode))
2509                 return true;
2510
2511         return check_inplace_update_policy(inode, fio);
2512 }
2513
2514 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
2515 {
2516         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2517
2518         /* The below cases were checked when setting it. */
2519         if (f2fs_is_pinned_file(inode))
2520                 return false;
2521         if (fio && is_sbi_flag_set(sbi, SBI_NEED_FSCK))
2522                 return true;
2523         if (f2fs_lfs_mode(sbi))
2524                 return true;
2525         if (S_ISDIR(inode->i_mode))
2526                 return true;
2527         if (IS_NOQUOTA(inode))
2528                 return true;
2529         if (f2fs_is_atomic_file(inode))
2530                 return true;
2531
2532         /* swap file is migrating in aligned write mode */
2533         if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2534                 return true;
2535
2536         if (is_inode_flag_set(inode, FI_OPU_WRITE))
2537                 return true;
2538
2539         if (fio) {
2540                 if (page_private_gcing(fio->page))
2541                         return true;
2542                 if (page_private_dummy(fio->page))
2543                         return true;
2544                 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2545                         f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2546                         return true;
2547         }
2548         return false;
2549 }
2550
2551 static inline bool need_inplace_update(struct f2fs_io_info *fio)
2552 {
2553         struct inode *inode = fio->page->mapping->host;
2554
2555         if (f2fs_should_update_outplace(inode, fio))
2556                 return false;
2557
2558         return f2fs_should_update_inplace(inode, fio);
2559 }
2560
2561 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
2562 {
2563         struct page *page = fio->page;
2564         struct inode *inode = page->mapping->host;
2565         struct dnode_of_data dn;
2566         struct extent_info ei = {0, };
2567         struct node_info ni;
2568         bool ipu_force = false;
2569         int err = 0;
2570
2571         set_new_dnode(&dn, inode, NULL, NULL, 0);
2572         if (need_inplace_update(fio) &&
2573                         f2fs_lookup_extent_cache(inode, page->index, &ei)) {
2574                 fio->old_blkaddr = ei.blk + page->index - ei.fofs;
2575
2576                 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2577                                                 DATA_GENERIC_ENHANCE))
2578                         return -EFSCORRUPTED;
2579
2580                 ipu_force = true;
2581                 fio->need_lock = LOCK_DONE;
2582                 goto got_it;
2583         }
2584
2585         /* Deadlock due to between page->lock and f2fs_lock_op */
2586         if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
2587                 return -EAGAIN;
2588
2589         err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
2590         if (err)
2591                 goto out;
2592
2593         fio->old_blkaddr = dn.data_blkaddr;
2594
2595         /* This page is already truncated */
2596         if (fio->old_blkaddr == NULL_ADDR) {
2597                 ClearPageUptodate(page);
2598                 clear_page_private_gcing(page);
2599                 goto out_writepage;
2600         }
2601 got_it:
2602         if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2603                 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2604                                                 DATA_GENERIC_ENHANCE)) {
2605                 err = -EFSCORRUPTED;
2606                 goto out_writepage;
2607         }
2608         /*
2609          * If current allocation needs SSR,
2610          * it had better in-place writes for updated data.
2611          */
2612         if (ipu_force ||
2613                 (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2614                                         need_inplace_update(fio))) {
2615                 err = f2fs_encrypt_one_page(fio);
2616                 if (err)
2617                         goto out_writepage;
2618
2619                 set_page_writeback(page);
2620                 ClearPageError(page);
2621                 f2fs_put_dnode(&dn);
2622                 if (fio->need_lock == LOCK_REQ)
2623                         f2fs_unlock_op(fio->sbi);
2624                 err = f2fs_inplace_write_data(fio);
2625                 if (err) {
2626                         if (fscrypt_inode_uses_fs_layer_crypto(inode))
2627                                 fscrypt_finalize_bounce_page(&fio->encrypted_page);
2628                         if (PageWriteback(page))
2629                                 end_page_writeback(page);
2630                 } else {
2631                         set_inode_flag(inode, FI_UPDATE_WRITE);
2632                 }
2633                 trace_f2fs_do_write_data_page(fio->page, IPU);
2634                 return err;
2635         }
2636
2637         if (fio->need_lock == LOCK_RETRY) {
2638                 if (!f2fs_trylock_op(fio->sbi)) {
2639                         err = -EAGAIN;
2640                         goto out_writepage;
2641                 }
2642                 fio->need_lock = LOCK_REQ;
2643         }
2644
2645         err = f2fs_get_node_info(fio->sbi, dn.nid, &ni, false);
2646         if (err)
2647                 goto out_writepage;
2648
2649         fio->version = ni.version;
2650
2651         err = f2fs_encrypt_one_page(fio);
2652         if (err)
2653                 goto out_writepage;
2654
2655         set_page_writeback(page);
2656         ClearPageError(page);
2657
2658         if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR)
2659                 f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false);
2660
2661         /* LFS mode write path */
2662         f2fs_outplace_write_data(&dn, fio);
2663         trace_f2fs_do_write_data_page(page, OPU);
2664         set_inode_flag(inode, FI_APPEND_WRITE);
2665         if (page->index == 0)
2666                 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
2667 out_writepage:
2668         f2fs_put_dnode(&dn);
2669 out:
2670         if (fio->need_lock == LOCK_REQ)
2671                 f2fs_unlock_op(fio->sbi);
2672         return err;
2673 }
2674
2675 int f2fs_write_single_data_page(struct page *page, int *submitted,
2676                                 struct bio **bio,
2677                                 sector_t *last_block,
2678                                 struct writeback_control *wbc,
2679                                 enum iostat_type io_type,
2680                                 int compr_blocks,
2681                                 bool allow_balance)
2682 {
2683         struct inode *inode = page->mapping->host;
2684         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2685         loff_t i_size = i_size_read(inode);
2686         const pgoff_t end_index = ((unsigned long long)i_size)
2687                                                         >> PAGE_SHIFT;
2688         loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT;
2689         unsigned offset = 0;
2690         bool need_balance_fs = false;
2691         int err = 0;
2692         struct f2fs_io_info fio = {
2693                 .sbi = sbi,
2694                 .ino = inode->i_ino,
2695                 .type = DATA,
2696                 .op = REQ_OP_WRITE,
2697                 .op_flags = wbc_to_write_flags(wbc),
2698                 .old_blkaddr = NULL_ADDR,
2699                 .page = page,
2700                 .encrypted_page = NULL,
2701                 .submitted = false,
2702                 .compr_blocks = compr_blocks,
2703                 .need_lock = LOCK_RETRY,
2704                 .io_type = io_type,
2705                 .io_wbc = wbc,
2706                 .bio = bio,
2707                 .last_block = last_block,
2708         };
2709
2710         trace_f2fs_writepage(page, DATA);
2711
2712         /* we should bypass data pages to proceed the kworkder jobs */
2713         if (unlikely(f2fs_cp_error(sbi))) {
2714                 mapping_set_error(page->mapping, -EIO);
2715                 /*
2716                  * don't drop any dirty dentry pages for keeping lastest
2717                  * directory structure.
2718                  */
2719                 if (S_ISDIR(inode->i_mode))
2720                         goto redirty_out;
2721                 goto out;
2722         }
2723
2724         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2725                 goto redirty_out;
2726
2727         if (page->index < end_index ||
2728                         f2fs_verity_in_progress(inode) ||
2729                         compr_blocks)
2730                 goto write;
2731
2732         /*
2733          * If the offset is out-of-range of file size,
2734          * this page does not have to be written to disk.
2735          */
2736         offset = i_size & (PAGE_SIZE - 1);
2737         if ((page->index >= end_index + 1) || !offset)
2738                 goto out;
2739
2740         zero_user_segment(page, offset, PAGE_SIZE);
2741 write:
2742         if (f2fs_is_drop_cache(inode))
2743                 goto out;
2744         /* we should not write 0'th page having journal header */
2745         if (f2fs_is_volatile_file(inode) && (!page->index ||
2746                         (!wbc->for_reclaim &&
2747                         f2fs_available_free_memory(sbi, BASE_CHECK))))
2748                 goto redirty_out;
2749
2750         /* Dentry/quota blocks are controlled by checkpoint */
2751         if (S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) {
2752                 /*
2753                  * We need to wait for node_write to avoid block allocation during
2754                  * checkpoint. This can only happen to quota writes which can cause
2755                  * the below discard race condition.
2756                  */
2757                 if (IS_NOQUOTA(inode))
2758                         f2fs_down_read(&sbi->node_write);
2759
2760                 fio.need_lock = LOCK_DONE;
2761                 err = f2fs_do_write_data_page(&fio);
2762
2763                 if (IS_NOQUOTA(inode))
2764                         f2fs_up_read(&sbi->node_write);
2765
2766                 goto done;
2767         }
2768
2769         if (!wbc->for_reclaim)
2770                 need_balance_fs = true;
2771         else if (has_not_enough_free_secs(sbi, 0, 0))
2772                 goto redirty_out;
2773         else
2774                 set_inode_flag(inode, FI_HOT_DATA);
2775
2776         err = -EAGAIN;
2777         if (f2fs_has_inline_data(inode)) {
2778                 err = f2fs_write_inline_data(inode, page);
2779                 if (!err)
2780                         goto out;
2781         }
2782
2783         if (err == -EAGAIN) {
2784                 err = f2fs_do_write_data_page(&fio);
2785                 if (err == -EAGAIN) {
2786                         fio.need_lock = LOCK_REQ;
2787                         err = f2fs_do_write_data_page(&fio);
2788                 }
2789         }
2790
2791         if (err) {
2792                 file_set_keep_isize(inode);
2793         } else {
2794                 spin_lock(&F2FS_I(inode)->i_size_lock);
2795                 if (F2FS_I(inode)->last_disk_size < psize)
2796                         F2FS_I(inode)->last_disk_size = psize;
2797                 spin_unlock(&F2FS_I(inode)->i_size_lock);
2798         }
2799
2800 done:
2801         if (err && err != -ENOENT)
2802                 goto redirty_out;
2803
2804 out:
2805         inode_dec_dirty_pages(inode);
2806         if (err) {
2807                 ClearPageUptodate(page);
2808                 clear_page_private_gcing(page);
2809         }
2810
2811         if (wbc->for_reclaim) {
2812                 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2813                 clear_inode_flag(inode, FI_HOT_DATA);
2814                 f2fs_remove_dirty_inode(inode);
2815                 submitted = NULL;
2816         }
2817         unlock_page(page);
2818         if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2819                         !F2FS_I(inode)->cp_task && allow_balance)
2820                 f2fs_balance_fs(sbi, need_balance_fs);
2821
2822         if (unlikely(f2fs_cp_error(sbi))) {
2823                 f2fs_submit_merged_write(sbi, DATA);
2824                 f2fs_submit_merged_ipu_write(sbi, bio, NULL);
2825                 submitted = NULL;
2826         }
2827
2828         if (submitted)
2829                 *submitted = fio.submitted ? 1 : 0;
2830
2831         return 0;
2832
2833 redirty_out:
2834         redirty_page_for_writepage(wbc, page);
2835         /*
2836          * pageout() in MM traslates EAGAIN, so calls handle_write_error()
2837          * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2838          * file_write_and_wait_range() will see EIO error, which is critical
2839          * to return value of fsync() followed by atomic_write failure to user.
2840          */
2841         if (!err || wbc->for_reclaim)
2842                 return AOP_WRITEPAGE_ACTIVATE;
2843         unlock_page(page);
2844         return err;
2845 }
2846
2847 static int f2fs_write_data_page(struct page *page,
2848                                         struct writeback_control *wbc)
2849 {
2850 #ifdef CONFIG_F2FS_FS_COMPRESSION
2851         struct inode *inode = page->mapping->host;
2852
2853         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
2854                 goto out;
2855
2856         if (f2fs_compressed_file(inode)) {
2857                 if (f2fs_is_compressed_cluster(inode, page->index)) {
2858                         redirty_page_for_writepage(wbc, page);
2859                         return AOP_WRITEPAGE_ACTIVATE;
2860                 }
2861         }
2862 out:
2863 #endif
2864
2865         return f2fs_write_single_data_page(page, NULL, NULL, NULL,
2866                                                 wbc, FS_DATA_IO, 0, true);
2867 }
2868
2869 /*
2870  * This function was copied from write_cche_pages from mm/page-writeback.c.
2871  * The major change is making write step of cold data page separately from
2872  * warm/hot data page.
2873  */
2874 static int f2fs_write_cache_pages(struct address_space *mapping,
2875                                         struct writeback_control *wbc,
2876                                         enum iostat_type io_type)
2877 {
2878         int ret = 0;
2879         int done = 0, retry = 0;
2880         struct pagevec pvec;
2881         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2882         struct bio *bio = NULL;
2883         sector_t last_block;
2884 #ifdef CONFIG_F2FS_FS_COMPRESSION
2885         struct inode *inode = mapping->host;
2886         struct compress_ctx cc = {
2887                 .inode = inode,
2888                 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2889                 .cluster_size = F2FS_I(inode)->i_cluster_size,
2890                 .cluster_idx = NULL_CLUSTER,
2891                 .rpages = NULL,
2892                 .nr_rpages = 0,
2893                 .cpages = NULL,
2894                 .valid_nr_cpages = 0,
2895                 .rbuf = NULL,
2896                 .cbuf = NULL,
2897                 .rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size,
2898                 .private = NULL,
2899         };
2900 #endif
2901         int nr_pages;
2902         pgoff_t index;
2903         pgoff_t end;            /* Inclusive */
2904         pgoff_t done_index;
2905         int range_whole = 0;
2906         xa_mark_t tag;
2907         int nwritten = 0;
2908         int submitted = 0;
2909         int i;
2910
2911         pagevec_init(&pvec);
2912
2913         if (get_dirty_pages(mapping->host) <=
2914                                 SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
2915                 set_inode_flag(mapping->host, FI_HOT_DATA);
2916         else
2917                 clear_inode_flag(mapping->host, FI_HOT_DATA);
2918
2919         if (wbc->range_cyclic) {
2920                 index = mapping->writeback_index; /* prev offset */
2921                 end = -1;
2922         } else {
2923                 index = wbc->range_start >> PAGE_SHIFT;
2924                 end = wbc->range_end >> PAGE_SHIFT;
2925                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2926                         range_whole = 1;
2927         }
2928         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2929                 tag = PAGECACHE_TAG_TOWRITE;
2930         else
2931                 tag = PAGECACHE_TAG_DIRTY;
2932 retry:
2933         retry = 0;
2934         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2935                 tag_pages_for_writeback(mapping, index, end);
2936         done_index = index;
2937         while (!done && !retry && (index <= end)) {
2938                 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2939                                 tag);
2940                 if (nr_pages == 0)
2941                         break;
2942
2943                 for (i = 0; i < nr_pages; i++) {
2944                         struct page *page = pvec.pages[i];
2945                         bool need_readd;
2946 readd:
2947                         need_readd = false;
2948 #ifdef CONFIG_F2FS_FS_COMPRESSION
2949                         if (f2fs_compressed_file(inode)) {
2950                                 void *fsdata = NULL;
2951                                 struct page *pagep;
2952                                 int ret2;
2953
2954                                 ret = f2fs_init_compress_ctx(&cc);
2955                                 if (ret) {
2956                                         done = 1;
2957                                         break;
2958                                 }
2959
2960                                 if (!f2fs_cluster_can_merge_page(&cc,
2961                                                                 page->index)) {
2962                                         ret = f2fs_write_multi_pages(&cc,
2963                                                 &submitted, wbc, io_type);
2964                                         if (!ret)
2965                                                 need_readd = true;
2966                                         goto result;
2967                                 }
2968
2969                                 if (unlikely(f2fs_cp_error(sbi)))
2970                                         goto lock_page;
2971
2972                                 if (!f2fs_cluster_is_empty(&cc))
2973                                         goto lock_page;
2974
2975                                 ret2 = f2fs_prepare_compress_overwrite(
2976                                                         inode, &pagep,
2977                                                         page->index, &fsdata);
2978                                 if (ret2 < 0) {
2979                                         ret = ret2;
2980                                         done = 1;
2981                                         break;
2982                                 } else if (ret2 &&
2983                                         (!f2fs_compress_write_end(inode,
2984                                                 fsdata, page->index, 1) ||
2985                                          !f2fs_all_cluster_page_loaded(&cc,
2986                                                 &pvec, i, nr_pages))) {
2987                                         retry = 1;
2988                                         break;
2989                                 }
2990                         }
2991 #endif
2992                         /* give a priority to WB_SYNC threads */
2993                         if (atomic_read(&sbi->wb_sync_req[DATA]) &&
2994                                         wbc->sync_mode == WB_SYNC_NONE) {
2995                                 done = 1;
2996                                 break;
2997                         }
2998 #ifdef CONFIG_F2FS_FS_COMPRESSION
2999 lock_page:
3000 #endif
3001                         done_index = page->index;
3002 retry_write:
3003                         lock_page(page);
3004
3005                         if (unlikely(page->mapping != mapping)) {
3006 continue_unlock:
3007                                 unlock_page(page);
3008                                 continue;
3009                         }
3010
3011                         if (!PageDirty(page)) {
3012                                 /* someone wrote it for us */
3013                                 goto continue_unlock;
3014                         }
3015
3016                         if (PageWriteback(page)) {
3017                                 if (wbc->sync_mode != WB_SYNC_NONE)
3018                                         f2fs_wait_on_page_writeback(page,
3019                                                         DATA, true, true);
3020                                 else
3021                                         goto continue_unlock;
3022                         }
3023
3024                         if (!clear_page_dirty_for_io(page))
3025                                 goto continue_unlock;
3026
3027 #ifdef CONFIG_F2FS_FS_COMPRESSION
3028                         if (f2fs_compressed_file(inode)) {
3029                                 get_page(page);
3030                                 f2fs_compress_ctx_add_page(&cc, page);
3031                                 continue;
3032                         }
3033 #endif
3034                         ret = f2fs_write_single_data_page(page, &submitted,
3035                                         &bio, &last_block, wbc, io_type,
3036                                         0, true);
3037                         if (ret == AOP_WRITEPAGE_ACTIVATE)
3038                                 unlock_page(page);
3039 #ifdef CONFIG_F2FS_FS_COMPRESSION
3040 result:
3041 #endif
3042                         nwritten += submitted;
3043                         wbc->nr_to_write -= submitted;
3044
3045                         if (unlikely(ret)) {
3046                                 /*
3047                                  * keep nr_to_write, since vfs uses this to
3048                                  * get # of written pages.
3049                                  */
3050                                 if (ret == AOP_WRITEPAGE_ACTIVATE) {
3051                                         ret = 0;
3052                                         goto next;
3053                                 } else if (ret == -EAGAIN) {
3054                                         ret = 0;
3055                                         if (wbc->sync_mode == WB_SYNC_ALL) {
3056                                                 cond_resched();
3057                                                 congestion_wait(BLK_RW_ASYNC,
3058                                                         DEFAULT_IO_TIMEOUT);
3059                                                 goto retry_write;
3060                                         }
3061                                         goto next;
3062                                 }
3063                                 done_index = page->index + 1;
3064                                 done = 1;
3065                                 break;
3066                         }
3067
3068                         if (wbc->nr_to_write <= 0 &&
3069                                         wbc->sync_mode == WB_SYNC_NONE) {
3070                                 done = 1;
3071                                 break;
3072                         }
3073 next:
3074                         if (need_readd)
3075                                 goto readd;
3076                 }
3077                 pagevec_release(&pvec);
3078                 cond_resched();
3079         }
3080 #ifdef CONFIG_F2FS_FS_COMPRESSION
3081         /* flush remained pages in compress cluster */
3082         if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) {
3083                 ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type);
3084                 nwritten += submitted;
3085                 wbc->nr_to_write -= submitted;
3086                 if (ret) {
3087                         done = 1;
3088                         retry = 0;
3089                 }
3090         }
3091         if (f2fs_compressed_file(inode))
3092                 f2fs_destroy_compress_ctx(&cc, false);
3093 #endif
3094         if (retry) {
3095                 index = 0;
3096                 end = -1;
3097                 goto retry;
3098         }
3099         if (wbc->range_cyclic && !done)
3100                 done_index = 0;
3101         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3102                 mapping->writeback_index = done_index;
3103
3104         if (nwritten)
3105                 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
3106                                                                 NULL, 0, DATA);
3107         /* submit cached bio of IPU write */
3108         if (bio)
3109                 f2fs_submit_merged_ipu_write(sbi, &bio, NULL);
3110
3111         return ret;
3112 }
3113
3114 static inline bool __should_serialize_io(struct inode *inode,
3115                                         struct writeback_control *wbc)
3116 {
3117         /* to avoid deadlock in path of data flush */
3118         if (F2FS_I(inode)->cp_task)
3119                 return false;
3120
3121         if (!S_ISREG(inode->i_mode))
3122                 return false;
3123         if (IS_NOQUOTA(inode))
3124                 return false;
3125
3126         if (f2fs_need_compress_data(inode))
3127                 return true;
3128         if (wbc->sync_mode != WB_SYNC_ALL)
3129                 return true;
3130         if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
3131                 return true;
3132         return false;
3133 }
3134
3135 static int __f2fs_write_data_pages(struct address_space *mapping,
3136                                                 struct writeback_control *wbc,
3137                                                 enum iostat_type io_type)
3138 {
3139         struct inode *inode = mapping->host;
3140         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3141         struct blk_plug plug;
3142         int ret;
3143         bool locked = false;
3144
3145         /* deal with chardevs and other special file */
3146         if (!mapping->a_ops->writepage)
3147                 return 0;
3148
3149         /* skip writing if there is no dirty page in this inode */
3150         if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
3151                 return 0;
3152
3153         /* during POR, we don't need to trigger writepage at all. */
3154         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
3155                 goto skip_write;
3156
3157         if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
3158                         wbc->sync_mode == WB_SYNC_NONE &&
3159                         get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
3160                         f2fs_available_free_memory(sbi, DIRTY_DENTS))
3161                 goto skip_write;
3162
3163         /* skip writing in file defragment preparing stage */
3164         if (is_inode_flag_set(inode, FI_SKIP_WRITES))
3165                 goto skip_write;
3166
3167         trace_f2fs_writepages(mapping->host, wbc, DATA);
3168
3169         /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
3170         if (wbc->sync_mode == WB_SYNC_ALL)
3171                 atomic_inc(&sbi->wb_sync_req[DATA]);
3172         else if (atomic_read(&sbi->wb_sync_req[DATA])) {
3173                 /* to avoid potential deadlock */
3174                 if (current->plug)
3175                         blk_finish_plug(current->plug);
3176                 goto skip_write;
3177         }
3178
3179         if (__should_serialize_io(inode, wbc)) {
3180                 mutex_lock(&sbi->writepages);
3181                 locked = true;
3182         }
3183
3184         blk_start_plug(&plug);
3185         ret = f2fs_write_cache_pages(mapping, wbc, io_type);
3186         blk_finish_plug(&plug);
3187
3188         if (locked)
3189                 mutex_unlock(&sbi->writepages);
3190
3191         if (wbc->sync_mode == WB_SYNC_ALL)
3192                 atomic_dec(&sbi->wb_sync_req[DATA]);
3193         /*
3194          * if some pages were truncated, we cannot guarantee its mapping->host
3195          * to detect pending bios.
3196          */
3197
3198         f2fs_remove_dirty_inode(inode);
3199         return ret;
3200
3201 skip_write:
3202         wbc->pages_skipped += get_dirty_pages(inode);
3203         trace_f2fs_writepages(mapping->host, wbc, DATA);
3204         return 0;
3205 }
3206
3207 static int f2fs_write_data_pages(struct address_space *mapping,
3208                             struct writeback_control *wbc)
3209 {
3210         struct inode *inode = mapping->host;
3211
3212         return __f2fs_write_data_pages(mapping, wbc,
3213                         F2FS_I(inode)->cp_task == current ?
3214                         FS_CP_DATA_IO : FS_DATA_IO);
3215 }
3216
3217 void f2fs_write_failed(struct inode *inode, loff_t to)
3218 {
3219         loff_t i_size = i_size_read(inode);
3220
3221         if (IS_NOQUOTA(inode))
3222                 return;
3223
3224         /* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
3225         if (to > i_size && !f2fs_verity_in_progress(inode)) {
3226                 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3227                 filemap_invalidate_lock(inode->i_mapping);
3228
3229                 truncate_pagecache(inode, i_size);
3230                 f2fs_truncate_blocks(inode, i_size, true);
3231
3232                 filemap_invalidate_unlock(inode->i_mapping);
3233                 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3234         }
3235 }
3236
3237 static int prepare_write_begin(struct f2fs_sb_info *sbi,
3238                         struct page *page, loff_t pos, unsigned len,
3239                         block_t *blk_addr, bool *node_changed)
3240 {
3241         struct inode *inode = page->mapping->host;
3242         pgoff_t index = page->index;
3243         struct dnode_of_data dn;
3244         struct page *ipage;
3245         bool locked = false;
3246         struct extent_info ei = {0, };
3247         int err = 0;
3248         int flag;
3249
3250         /*
3251          * If a whole page is being written and we already preallocated all the
3252          * blocks, then there is no need to get a block address now.
3253          */
3254         if (len == PAGE_SIZE && is_inode_flag_set(inode, FI_PREALLOCATED_ALL))
3255                 return 0;
3256
3257         /* f2fs_lock_op avoids race between write CP and convert_inline_page */
3258         if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode))
3259                 flag = F2FS_GET_BLOCK_DEFAULT;
3260         else
3261                 flag = F2FS_GET_BLOCK_PRE_AIO;
3262
3263         if (f2fs_has_inline_data(inode) ||
3264                         (pos & PAGE_MASK) >= i_size_read(inode)) {
3265                 f2fs_do_map_lock(sbi, flag, true);
3266                 locked = true;
3267         }
3268
3269 restart:
3270         /* check inline_data */
3271         ipage = f2fs_get_node_page(sbi, inode->i_ino);
3272         if (IS_ERR(ipage)) {
3273                 err = PTR_ERR(ipage);
3274                 goto unlock_out;
3275         }
3276
3277         set_new_dnode(&dn, inode, ipage, ipage, 0);
3278
3279         if (f2fs_has_inline_data(inode)) {
3280                 if (pos + len <= MAX_INLINE_DATA(inode)) {
3281                         f2fs_do_read_inline_data(page, ipage);
3282                         set_inode_flag(inode, FI_DATA_EXIST);
3283                         if (inode->i_nlink)
3284                                 set_page_private_inline(ipage);
3285                 } else {
3286                         err = f2fs_convert_inline_page(&dn, page);
3287                         if (err)
3288                                 goto out;
3289                         if (dn.data_blkaddr == NULL_ADDR)
3290                                 err = f2fs_get_block(&dn, index);
3291                 }
3292         } else if (locked) {
3293                 err = f2fs_get_block(&dn, index);
3294         } else {
3295                 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
3296                         dn.data_blkaddr = ei.blk + index - ei.fofs;
3297                 } else {
3298                         /* hole case */
3299                         err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3300                         if (err || dn.data_blkaddr == NULL_ADDR) {
3301                                 f2fs_put_dnode(&dn);
3302                                 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO,
3303                                                                 true);
3304                                 WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
3305                                 locked = true;
3306                                 goto restart;
3307                         }
3308                 }
3309         }
3310
3311         /* convert_inline_page can make node_changed */
3312         *blk_addr = dn.data_blkaddr;
3313         *node_changed = dn.node_changed;
3314 out:
3315         f2fs_put_dnode(&dn);
3316 unlock_out:
3317         if (locked)
3318                 f2fs_do_map_lock(sbi, flag, false);
3319         return err;
3320 }
3321
3322 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
3323                 loff_t pos, unsigned len, unsigned flags,
3324                 struct page **pagep, void **fsdata)
3325 {
3326         struct inode *inode = mapping->host;
3327         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3328         struct page *page = NULL;
3329         pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
3330         bool need_balance = false, drop_atomic = false;
3331         block_t blkaddr = NULL_ADDR;
3332         int err = 0;
3333
3334         trace_f2fs_write_begin(inode, pos, len, flags);
3335
3336         if (!f2fs_is_checkpoint_ready(sbi)) {
3337                 err = -ENOSPC;
3338                 goto fail;
3339         }
3340
3341         if ((f2fs_is_atomic_file(inode) &&
3342                         !f2fs_available_free_memory(sbi, INMEM_PAGES)) ||
3343                         is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
3344                 err = -ENOMEM;
3345                 drop_atomic = true;
3346                 goto fail;
3347         }
3348
3349         /*
3350          * We should check this at this moment to avoid deadlock on inode page
3351          * and #0 page. The locking rule for inline_data conversion should be:
3352          * lock_page(page #0) -> lock_page(inode_page)
3353          */
3354         if (index != 0) {
3355                 err = f2fs_convert_inline_inode(inode);
3356                 if (err)
3357                         goto fail;
3358         }
3359
3360 #ifdef CONFIG_F2FS_FS_COMPRESSION
3361         if (f2fs_compressed_file(inode)) {
3362                 int ret;
3363
3364                 *fsdata = NULL;
3365
3366                 if (len == PAGE_SIZE && !(f2fs_is_atomic_file(inode)))
3367                         goto repeat;
3368
3369                 ret = f2fs_prepare_compress_overwrite(inode, pagep,
3370                                                         index, fsdata);
3371                 if (ret < 0) {
3372                         err = ret;
3373                         goto fail;
3374                 } else if (ret) {
3375                         return 0;
3376                 }
3377         }
3378 #endif
3379
3380 repeat:
3381         /*
3382          * Do not use grab_cache_page_write_begin() to avoid deadlock due to
3383          * wait_for_stable_page. Will wait that below with our IO control.
3384          */
3385         page = f2fs_pagecache_get_page(mapping, index,
3386                                 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
3387         if (!page) {
3388                 err = -ENOMEM;
3389                 goto fail;
3390         }
3391
3392         /* TODO: cluster can be compressed due to race with .writepage */
3393
3394         *pagep = page;
3395
3396         err = prepare_write_begin(sbi, page, pos, len,
3397                                         &blkaddr, &need_balance);
3398         if (err)
3399                 goto fail;
3400
3401         if (need_balance && !IS_NOQUOTA(inode) &&
3402                         has_not_enough_free_secs(sbi, 0, 0)) {
3403                 unlock_page(page);
3404                 f2fs_balance_fs(sbi, true);
3405                 lock_page(page);
3406                 if (page->mapping != mapping) {
3407                         /* The page got truncated from under us */
3408                         f2fs_put_page(page, 1);
3409                         goto repeat;
3410                 }
3411         }
3412
3413         f2fs_wait_on_page_writeback(page, DATA, false, true);
3414
3415         if (len == PAGE_SIZE || PageUptodate(page))
3416                 return 0;
3417
3418         if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) &&
3419             !f2fs_verity_in_progress(inode)) {
3420                 zero_user_segment(page, len, PAGE_SIZE);
3421                 return 0;
3422         }
3423
3424         if (blkaddr == NEW_ADDR) {
3425                 zero_user_segment(page, 0, PAGE_SIZE);
3426                 SetPageUptodate(page);
3427         } else {
3428                 if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3429                                 DATA_GENERIC_ENHANCE_READ)) {
3430                         err = -EFSCORRUPTED;
3431                         goto fail;
3432                 }
3433                 err = f2fs_submit_page_read(inode, page, blkaddr, 0, true);
3434                 if (err)
3435                         goto fail;
3436
3437                 lock_page(page);
3438                 if (unlikely(page->mapping != mapping)) {
3439                         f2fs_put_page(page, 1);
3440                         goto repeat;
3441                 }
3442                 if (unlikely(!PageUptodate(page))) {
3443                         err = -EIO;
3444                         goto fail;
3445                 }
3446         }
3447         return 0;
3448
3449 fail:
3450         f2fs_put_page(page, 1);
3451         f2fs_write_failed(inode, pos + len);
3452         if (drop_atomic)
3453                 f2fs_drop_inmem_pages_all(sbi, false);
3454         return err;
3455 }
3456
3457 static int f2fs_write_end(struct file *file,
3458                         struct address_space *mapping,
3459                         loff_t pos, unsigned len, unsigned copied,
3460                         struct page *page, void *fsdata)
3461 {
3462         struct inode *inode = page->mapping->host;
3463
3464         trace_f2fs_write_end(inode, pos, len, copied);
3465
3466         /*
3467          * This should be come from len == PAGE_SIZE, and we expect copied
3468          * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
3469          * let generic_perform_write() try to copy data again through copied=0.
3470          */
3471         if (!PageUptodate(page)) {
3472                 if (unlikely(copied != len))
3473                         copied = 0;
3474                 else
3475                         SetPageUptodate(page);
3476         }
3477
3478 #ifdef CONFIG_F2FS_FS_COMPRESSION
3479         /* overwrite compressed file */
3480         if (f2fs_compressed_file(inode) && fsdata) {
3481                 f2fs_compress_write_end(inode, fsdata, page->index, copied);
3482                 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3483
3484                 if (pos + copied > i_size_read(inode) &&
3485                                 !f2fs_verity_in_progress(inode))
3486                         f2fs_i_size_write(inode, pos + copied);
3487                 return copied;
3488         }
3489 #endif
3490
3491         if (!copied)
3492                 goto unlock_out;
3493
3494         set_page_dirty(page);
3495
3496         if (pos + copied > i_size_read(inode) &&
3497             !f2fs_verity_in_progress(inode))
3498                 f2fs_i_size_write(inode, pos + copied);
3499 unlock_out:
3500         f2fs_put_page(page, 1);
3501         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3502         return copied;
3503 }
3504
3505 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3506                                                         unsigned int length)
3507 {
3508         struct inode *inode = page->mapping->host;
3509         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3510
3511         if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
3512                 (offset % PAGE_SIZE || length != PAGE_SIZE))
3513                 return;
3514
3515         if (PageDirty(page)) {
3516                 if (inode->i_ino == F2FS_META_INO(sbi)) {
3517                         dec_page_count(sbi, F2FS_DIRTY_META);
3518                 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
3519                         dec_page_count(sbi, F2FS_DIRTY_NODES);
3520                 } else {
3521                         inode_dec_dirty_pages(inode);
3522                         f2fs_remove_dirty_inode(inode);
3523                 }
3524         }
3525
3526         clear_page_private_gcing(page);
3527
3528         if (test_opt(sbi, COMPRESS_CACHE) &&
3529                         inode->i_ino == F2FS_COMPRESS_INO(sbi))
3530                 clear_page_private_data(page);
3531
3532         if (page_private_atomic(page))
3533                 return f2fs_drop_inmem_page(inode, page);
3534
3535         detach_page_private(page);
3536         set_page_private(page, 0);
3537 }
3538
3539 int f2fs_release_page(struct page *page, gfp_t wait)
3540 {
3541         /* If this is dirty page, keep PagePrivate */
3542         if (PageDirty(page))
3543                 return 0;
3544
3545         /* This is atomic written page, keep Private */
3546         if (page_private_atomic(page))
3547                 return 0;
3548
3549         if (test_opt(F2FS_P_SB(page), COMPRESS_CACHE)) {
3550                 struct inode *inode = page->mapping->host;
3551
3552                 if (inode->i_ino == F2FS_COMPRESS_INO(F2FS_I_SB(inode)))
3553                         clear_page_private_data(page);
3554         }
3555
3556         clear_page_private_gcing(page);
3557
3558         detach_page_private(page);
3559         set_page_private(page, 0);
3560         return 1;
3561 }
3562
3563 static int f2fs_set_data_page_dirty(struct page *page)
3564 {
3565         struct inode *inode = page_file_mapping(page)->host;
3566
3567         trace_f2fs_set_page_dirty(page, DATA);
3568
3569         if (!PageUptodate(page))
3570                 SetPageUptodate(page);
3571         if (PageSwapCache(page))
3572                 return __set_page_dirty_nobuffers(page);
3573
3574         if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) {
3575                 if (!page_private_atomic(page)) {
3576                         f2fs_register_inmem_page(inode, page);
3577                         return 1;
3578                 }
3579                 /*
3580                  * Previously, this page has been registered, we just
3581                  * return here.
3582                  */
3583                 return 0;
3584         }
3585
3586         if (!PageDirty(page)) {
3587                 __set_page_dirty_nobuffers(page);
3588                 f2fs_update_dirty_page(inode, page);
3589                 return 1;
3590         }
3591         return 0;
3592 }
3593
3594
3595 static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block)
3596 {
3597 #ifdef CONFIG_F2FS_FS_COMPRESSION
3598         struct dnode_of_data dn;
3599         sector_t start_idx, blknr = 0;
3600         int ret;
3601
3602         start_idx = round_down(block, F2FS_I(inode)->i_cluster_size);
3603
3604         set_new_dnode(&dn, inode, NULL, NULL, 0);
3605         ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
3606         if (ret)
3607                 return 0;
3608
3609         if (dn.data_blkaddr != COMPRESS_ADDR) {
3610                 dn.ofs_in_node += block - start_idx;
3611                 blknr = f2fs_data_blkaddr(&dn);
3612                 if (!__is_valid_data_blkaddr(blknr))
3613                         blknr = 0;
3614         }
3615
3616         f2fs_put_dnode(&dn);
3617         return blknr;
3618 #else
3619         return 0;
3620 #endif
3621 }
3622
3623
3624 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
3625 {
3626         struct inode *inode = mapping->host;
3627         sector_t blknr = 0;
3628
3629         if (f2fs_has_inline_data(inode))
3630                 goto out;
3631
3632         /* make sure allocating whole blocks */
3633         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
3634                 filemap_write_and_wait(mapping);
3635
3636         /* Block number less than F2FS MAX BLOCKS */
3637         if (unlikely(block >= max_file_blocks(inode)))
3638                 goto out;
3639
3640         if (f2fs_compressed_file(inode)) {
3641                 blknr = f2fs_bmap_compress(inode, block);
3642         } else {
3643                 struct f2fs_map_blocks map;
3644
3645                 memset(&map, 0, sizeof(map));
3646                 map.m_lblk = block;
3647                 map.m_len = 1;
3648                 map.m_next_pgofs = NULL;
3649                 map.m_seg_type = NO_CHECK_TYPE;
3650
3651                 if (!f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_BMAP))
3652                         blknr = map.m_pblk;
3653         }
3654 out:
3655         trace_f2fs_bmap(inode, block, blknr);
3656         return blknr;
3657 }
3658
3659 #ifdef CONFIG_MIGRATION
3660 #include <linux/migrate.h>
3661
3662 int f2fs_migrate_page(struct address_space *mapping,
3663                 struct page *newpage, struct page *page, enum migrate_mode mode)
3664 {
3665         int rc, extra_count;
3666         struct f2fs_inode_info *fi = F2FS_I(mapping->host);
3667         bool atomic_written = page_private_atomic(page);
3668
3669         BUG_ON(PageWriteback(page));
3670
3671         /* migrating an atomic written page is safe with the inmem_lock hold */
3672         if (atomic_written) {
3673                 if (mode != MIGRATE_SYNC)
3674                         return -EBUSY;
3675                 if (!mutex_trylock(&fi->inmem_lock))
3676                         return -EAGAIN;
3677         }
3678
3679         /* one extra reference was held for atomic_write page */
3680         extra_count = atomic_written ? 1 : 0;
3681         rc = migrate_page_move_mapping(mapping, newpage,
3682                                 page, extra_count);
3683         if (rc != MIGRATEPAGE_SUCCESS) {
3684                 if (atomic_written)
3685                         mutex_unlock(&fi->inmem_lock);
3686                 return rc;
3687         }
3688
3689         if (atomic_written) {
3690                 struct inmem_pages *cur;
3691
3692                 list_for_each_entry(cur, &fi->inmem_pages, list)
3693                         if (cur->page == page) {
3694                                 cur->page = newpage;
3695                                 break;
3696                         }
3697                 mutex_unlock(&fi->inmem_lock);
3698                 put_page(page);
3699                 get_page(newpage);
3700         }
3701
3702         /* guarantee to start from no stale private field */
3703         set_page_private(newpage, 0);
3704         if (PagePrivate(page)) {
3705                 set_page_private(newpage, page_private(page));
3706                 SetPagePrivate(newpage);
3707                 get_page(newpage);
3708
3709                 set_page_private(page, 0);
3710                 ClearPagePrivate(page);
3711                 put_page(page);
3712         }
3713
3714         if (mode != MIGRATE_SYNC_NO_COPY)
3715                 migrate_page_copy(newpage, page);
3716         else
3717                 migrate_page_states(newpage, page);
3718
3719         return MIGRATEPAGE_SUCCESS;
3720 }
3721 #endif
3722
3723 #ifdef CONFIG_SWAP
3724 static int f2fs_migrate_blocks(struct inode *inode, block_t start_blk,
3725                                                         unsigned int blkcnt)
3726 {
3727         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3728         unsigned int blkofs;
3729         unsigned int blk_per_sec = BLKS_PER_SEC(sbi);
3730         unsigned int secidx = start_blk / blk_per_sec;
3731         unsigned int end_sec = secidx + blkcnt / blk_per_sec;
3732         int ret = 0;
3733
3734         f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3735         filemap_invalidate_lock(inode->i_mapping);
3736
3737         set_inode_flag(inode, FI_ALIGNED_WRITE);
3738         set_inode_flag(inode, FI_OPU_WRITE);
3739
3740         for (; secidx < end_sec; secidx++) {
3741                 f2fs_down_write(&sbi->pin_sem);
3742
3743                 f2fs_lock_op(sbi);
3744                 f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
3745                 f2fs_unlock_op(sbi);
3746
3747                 set_inode_flag(inode, FI_SKIP_WRITES);
3748
3749                 for (blkofs = 0; blkofs < blk_per_sec; blkofs++) {
3750                         struct page *page;
3751                         unsigned int blkidx = secidx * blk_per_sec + blkofs;
3752
3753                         page = f2fs_get_lock_data_page(inode, blkidx, true);
3754                         if (IS_ERR(page)) {
3755                                 f2fs_up_write(&sbi->pin_sem);
3756                                 ret = PTR_ERR(page);
3757                                 goto done;
3758                         }
3759
3760                         set_page_dirty(page);
3761                         f2fs_put_page(page, 1);
3762                 }
3763
3764                 clear_inode_flag(inode, FI_SKIP_WRITES);
3765
3766                 ret = filemap_fdatawrite(inode->i_mapping);
3767
3768                 f2fs_up_write(&sbi->pin_sem);
3769
3770                 if (ret)
3771                         break;
3772         }
3773
3774 done:
3775         clear_inode_flag(inode, FI_SKIP_WRITES);
3776         clear_inode_flag(inode, FI_OPU_WRITE);
3777         clear_inode_flag(inode, FI_ALIGNED_WRITE);
3778
3779         filemap_invalidate_unlock(inode->i_mapping);
3780         f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3781
3782         return ret;
3783 }
3784
3785 static int check_swap_activate(struct swap_info_struct *sis,
3786                                 struct file *swap_file, sector_t *span)
3787 {
3788         struct address_space *mapping = swap_file->f_mapping;
3789         struct inode *inode = mapping->host;
3790         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3791         sector_t cur_lblock;
3792         sector_t last_lblock;
3793         sector_t pblock;
3794         sector_t lowest_pblock = -1;
3795         sector_t highest_pblock = 0;
3796         int nr_extents = 0;
3797         unsigned long nr_pblocks;
3798         unsigned int blks_per_sec = BLKS_PER_SEC(sbi);
3799         unsigned int sec_blks_mask = BLKS_PER_SEC(sbi) - 1;
3800         unsigned int not_aligned = 0;
3801         int ret = 0;
3802
3803         /*
3804          * Map all the blocks into the extent list.  This code doesn't try
3805          * to be very smart.
3806          */
3807         cur_lblock = 0;
3808         last_lblock = bytes_to_blks(inode, i_size_read(inode));
3809
3810         while (cur_lblock < last_lblock && cur_lblock < sis->max) {
3811                 struct f2fs_map_blocks map;
3812 retry:
3813                 cond_resched();
3814
3815                 memset(&map, 0, sizeof(map));
3816                 map.m_lblk = cur_lblock;
3817                 map.m_len = last_lblock - cur_lblock;
3818                 map.m_next_pgofs = NULL;
3819                 map.m_next_extent = NULL;
3820                 map.m_seg_type = NO_CHECK_TYPE;
3821                 map.m_may_create = false;
3822
3823                 ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP);
3824                 if (ret)
3825                         goto out;
3826
3827                 /* hole */
3828                 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
3829                         f2fs_err(sbi, "Swapfile has holes");
3830                         ret = -EINVAL;
3831                         goto out;
3832                 }
3833
3834                 pblock = map.m_pblk;
3835                 nr_pblocks = map.m_len;
3836
3837                 if ((pblock - SM_I(sbi)->main_blkaddr) & sec_blks_mask ||
3838                                 nr_pblocks & sec_blks_mask) {
3839                         not_aligned++;
3840
3841                         nr_pblocks = roundup(nr_pblocks, blks_per_sec);
3842                         if (cur_lblock + nr_pblocks > sis->max)
3843                                 nr_pblocks -= blks_per_sec;
3844
3845                         if (!nr_pblocks) {
3846                                 /* this extent is last one */
3847                                 nr_pblocks = map.m_len;
3848                                 f2fs_warn(sbi, "Swapfile: last extent is not aligned to section");
3849                                 goto next;
3850                         }
3851
3852                         ret = f2fs_migrate_blocks(inode, cur_lblock,
3853                                                         nr_pblocks);
3854                         if (ret)
3855                                 goto out;
3856                         goto retry;
3857                 }
3858 next:
3859                 if (cur_lblock + nr_pblocks >= sis->max)
3860                         nr_pblocks = sis->max - cur_lblock;
3861
3862                 if (cur_lblock) {       /* exclude the header page */
3863                         if (pblock < lowest_pblock)
3864                                 lowest_pblock = pblock;
3865                         if (pblock + nr_pblocks - 1 > highest_pblock)
3866                                 highest_pblock = pblock + nr_pblocks - 1;
3867                 }
3868
3869                 /*
3870                  * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
3871                  */
3872                 ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock);
3873                 if (ret < 0)
3874                         goto out;
3875                 nr_extents += ret;
3876                 cur_lblock += nr_pblocks;
3877         }
3878         ret = nr_extents;
3879         *span = 1 + highest_pblock - lowest_pblock;
3880         if (cur_lblock == 0)
3881                 cur_lblock = 1; /* force Empty message */
3882         sis->max = cur_lblock;
3883         sis->pages = cur_lblock - 1;
3884         sis->highest_bit = cur_lblock - 1;
3885 out:
3886         if (not_aligned)
3887                 f2fs_warn(sbi, "Swapfile (%u) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate(%u * N)",
3888                           not_aligned, blks_per_sec * F2FS_BLKSIZE);
3889         return ret;
3890 }
3891
3892 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
3893                                 sector_t *span)
3894 {
3895         struct inode *inode = file_inode(file);
3896         int ret;
3897
3898         if (!S_ISREG(inode->i_mode))
3899                 return -EINVAL;
3900
3901         if (f2fs_readonly(F2FS_I_SB(inode)->sb))
3902                 return -EROFS;
3903
3904         if (f2fs_lfs_mode(F2FS_I_SB(inode))) {
3905                 f2fs_err(F2FS_I_SB(inode),
3906                         "Swapfile not supported in LFS mode");
3907                 return -EINVAL;
3908         }
3909
3910         ret = f2fs_convert_inline_inode(inode);
3911         if (ret)
3912                 return ret;
3913
3914         if (!f2fs_disable_compressed_file(inode))
3915                 return -EINVAL;
3916
3917         f2fs_precache_extents(inode);
3918
3919         ret = check_swap_activate(sis, file, span);
3920         if (ret < 0)
3921                 return ret;
3922
3923         set_inode_flag(inode, FI_PIN_FILE);
3924         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3925         return ret;
3926 }
3927
3928 static void f2fs_swap_deactivate(struct file *file)
3929 {
3930         struct inode *inode = file_inode(file);
3931
3932         clear_inode_flag(inode, FI_PIN_FILE);
3933 }
3934 #else
3935 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
3936                                 sector_t *span)
3937 {
3938         return -EOPNOTSUPP;
3939 }
3940
3941 static void f2fs_swap_deactivate(struct file *file)
3942 {
3943 }
3944 #endif
3945
3946 const struct address_space_operations f2fs_dblock_aops = {
3947         .readpage       = f2fs_read_data_page,
3948         .readahead      = f2fs_readahead,
3949         .writepage      = f2fs_write_data_page,
3950         .writepages     = f2fs_write_data_pages,
3951         .write_begin    = f2fs_write_begin,
3952         .write_end      = f2fs_write_end,
3953         .set_page_dirty = f2fs_set_data_page_dirty,
3954         .invalidatepage = f2fs_invalidate_page,
3955         .releasepage    = f2fs_release_page,
3956         .direct_IO      = noop_direct_IO,
3957         .bmap           = f2fs_bmap,
3958         .swap_activate  = f2fs_swap_activate,
3959         .swap_deactivate = f2fs_swap_deactivate,
3960 #ifdef CONFIG_MIGRATION
3961         .migratepage    = f2fs_migrate_page,
3962 #endif
3963 };
3964
3965 void f2fs_clear_page_cache_dirty_tag(struct page *page)
3966 {
3967         struct address_space *mapping = page_mapping(page);
3968         unsigned long flags;
3969
3970         xa_lock_irqsave(&mapping->i_pages, flags);
3971         __xa_clear_mark(&mapping->i_pages, page_index(page),
3972                                                 PAGECACHE_TAG_DIRTY);
3973         xa_unlock_irqrestore(&mapping->i_pages, flags);
3974 }
3975
3976 int __init f2fs_init_post_read_processing(void)
3977 {
3978         bio_post_read_ctx_cache =
3979                 kmem_cache_create("f2fs_bio_post_read_ctx",
3980                                   sizeof(struct bio_post_read_ctx), 0, 0, NULL);
3981         if (!bio_post_read_ctx_cache)
3982                 goto fail;
3983         bio_post_read_ctx_pool =
3984                 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
3985                                          bio_post_read_ctx_cache);
3986         if (!bio_post_read_ctx_pool)
3987                 goto fail_free_cache;
3988         return 0;
3989
3990 fail_free_cache:
3991         kmem_cache_destroy(bio_post_read_ctx_cache);
3992 fail:
3993         return -ENOMEM;
3994 }
3995
3996 void f2fs_destroy_post_read_processing(void)
3997 {
3998         mempool_destroy(bio_post_read_ctx_pool);
3999         kmem_cache_destroy(bio_post_read_ctx_cache);
4000 }
4001
4002 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi)
4003 {
4004         if (!f2fs_sb_has_encrypt(sbi) &&
4005                 !f2fs_sb_has_verity(sbi) &&
4006                 !f2fs_sb_has_compression(sbi))
4007                 return 0;
4008
4009         sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq",
4010                                                  WQ_UNBOUND | WQ_HIGHPRI,
4011                                                  num_online_cpus());
4012         if (!sbi->post_read_wq)
4013                 return -ENOMEM;
4014         return 0;
4015 }
4016
4017 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi)
4018 {
4019         if (sbi->post_read_wq)
4020                 destroy_workqueue(sbi->post_read_wq);
4021 }
4022
4023 int __init f2fs_init_bio_entry_cache(void)
4024 {
4025         bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab",
4026                         sizeof(struct bio_entry));
4027         if (!bio_entry_slab)
4028                 return -ENOMEM;
4029         return 0;
4030 }
4031
4032 void f2fs_destroy_bio_entry_cache(void)
4033 {
4034         kmem_cache_destroy(bio_entry_slab);
4035 }
4036
4037 static int f2fs_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
4038                             unsigned int flags, struct iomap *iomap,
4039                             struct iomap *srcmap)
4040 {
4041         struct f2fs_map_blocks map = {};
4042         pgoff_t next_pgofs = 0;
4043         int err;
4044
4045         map.m_lblk = bytes_to_blks(inode, offset);
4046         map.m_len = bytes_to_blks(inode, offset + length - 1) - map.m_lblk + 1;
4047         map.m_next_pgofs = &next_pgofs;
4048         map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint);
4049         if (flags & IOMAP_WRITE)
4050                 map.m_may_create = true;
4051
4052         err = f2fs_map_blocks(inode, &map, flags & IOMAP_WRITE,
4053                               F2FS_GET_BLOCK_DIO);
4054         if (err)
4055                 return err;
4056
4057         iomap->offset = blks_to_bytes(inode, map.m_lblk);
4058
4059         if (map.m_flags & (F2FS_MAP_MAPPED | F2FS_MAP_UNWRITTEN)) {
4060                 iomap->length = blks_to_bytes(inode, map.m_len);
4061                 if (map.m_flags & F2FS_MAP_MAPPED) {
4062                         iomap->type = IOMAP_MAPPED;
4063                         iomap->flags |= IOMAP_F_MERGED;
4064                 } else {
4065                         iomap->type = IOMAP_UNWRITTEN;
4066                 }
4067                 if (WARN_ON_ONCE(!__is_valid_data_blkaddr(map.m_pblk)))
4068                         return -EINVAL;
4069
4070                 iomap->bdev = map.m_bdev;
4071                 iomap->addr = blks_to_bytes(inode, map.m_pblk);
4072         } else {
4073                 iomap->length = blks_to_bytes(inode, next_pgofs) -
4074                                 iomap->offset;
4075                 iomap->type = IOMAP_HOLE;
4076                 iomap->addr = IOMAP_NULL_ADDR;
4077         }
4078
4079         if (map.m_flags & F2FS_MAP_NEW)
4080                 iomap->flags |= IOMAP_F_NEW;
4081         if ((inode->i_state & I_DIRTY_DATASYNC) ||
4082             offset + length > i_size_read(inode))
4083                 iomap->flags |= IOMAP_F_DIRTY;
4084
4085         return 0;
4086 }
4087
4088 const struct iomap_ops f2fs_iomap_ops = {
4089         .iomap_begin    = f2fs_iomap_begin,
4090 };