53af21ff6196d7f8f19980b028ccdc46b3747a23
[linux-2.6-microblaze.git] / fs / f2fs / data.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/data.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/buffer_head.h>
11 #include <linux/mpage.h>
12 #include <linux/writeback.h>
13 #include <linux/backing-dev.h>
14 #include <linux/pagevec.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/blk-crypto.h>
18 #include <linux/swap.h>
19 #include <linux/prefetch.h>
20 #include <linux/uio.h>
21 #include <linux/cleancache.h>
22 #include <linux/sched/signal.h>
23 #include <linux/fiemap.h>
24
25 #include "f2fs.h"
26 #include "node.h"
27 #include "segment.h"
28 #include <trace/events/f2fs.h>
29
30 #define NUM_PREALLOC_POST_READ_CTXS     128
31
32 static struct kmem_cache *bio_post_read_ctx_cache;
33 static struct kmem_cache *bio_entry_slab;
34 static mempool_t *bio_post_read_ctx_pool;
35 static struct bio_set f2fs_bioset;
36
37 #define F2FS_BIO_POOL_SIZE      NR_CURSEG_TYPE
38
39 int __init f2fs_init_bioset(void)
40 {
41         if (bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE,
42                                         0, BIOSET_NEED_BVECS))
43                 return -ENOMEM;
44         return 0;
45 }
46
47 void f2fs_destroy_bioset(void)
48 {
49         bioset_exit(&f2fs_bioset);
50 }
51
52 static bool __is_cp_guaranteed(struct page *page)
53 {
54         struct address_space *mapping = page->mapping;
55         struct inode *inode;
56         struct f2fs_sb_info *sbi;
57
58         if (!mapping)
59                 return false;
60
61         inode = mapping->host;
62         sbi = F2FS_I_SB(inode);
63
64         if (inode->i_ino == F2FS_META_INO(sbi) ||
65                         inode->i_ino == F2FS_NODE_INO(sbi) ||
66                         S_ISDIR(inode->i_mode))
67                 return true;
68
69         if (f2fs_is_compressed_page(page))
70                 return false;
71         if ((S_ISREG(inode->i_mode) &&
72                         (f2fs_is_atomic_file(inode) || IS_NOQUOTA(inode))) ||
73                         page_private_gcing(page))
74                 return true;
75         return false;
76 }
77
78 static enum count_type __read_io_type(struct page *page)
79 {
80         struct address_space *mapping = page_file_mapping(page);
81
82         if (mapping) {
83                 struct inode *inode = mapping->host;
84                 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
85
86                 if (inode->i_ino == F2FS_META_INO(sbi))
87                         return F2FS_RD_META;
88
89                 if (inode->i_ino == F2FS_NODE_INO(sbi))
90                         return F2FS_RD_NODE;
91         }
92         return F2FS_RD_DATA;
93 }
94
95 /* postprocessing steps for read bios */
96 enum bio_post_read_step {
97 #ifdef CONFIG_FS_ENCRYPTION
98         STEP_DECRYPT    = 1 << 0,
99 #else
100         STEP_DECRYPT    = 0,    /* compile out the decryption-related code */
101 #endif
102 #ifdef CONFIG_F2FS_FS_COMPRESSION
103         STEP_DECOMPRESS = 1 << 1,
104 #else
105         STEP_DECOMPRESS = 0,    /* compile out the decompression-related code */
106 #endif
107 #ifdef CONFIG_FS_VERITY
108         STEP_VERITY     = 1 << 2,
109 #else
110         STEP_VERITY     = 0,    /* compile out the verity-related code */
111 #endif
112 };
113
114 struct bio_post_read_ctx {
115         struct bio *bio;
116         struct f2fs_sb_info *sbi;
117         struct work_struct work;
118         unsigned int enabled_steps;
119 };
120
121 static void f2fs_finish_read_bio(struct bio *bio)
122 {
123         struct bio_vec *bv;
124         struct bvec_iter_all iter_all;
125
126         /*
127          * Update and unlock the bio's pagecache pages, and put the
128          * decompression context for any compressed pages.
129          */
130         bio_for_each_segment_all(bv, bio, iter_all) {
131                 struct page *page = bv->bv_page;
132
133                 if (f2fs_is_compressed_page(page)) {
134                         if (bio->bi_status)
135                                 f2fs_end_read_compressed_page(page, true, 0);
136                         f2fs_put_page_dic(page);
137                         continue;
138                 }
139
140                 /* PG_error was set if decryption or verity failed. */
141                 if (bio->bi_status || PageError(page)) {
142                         ClearPageUptodate(page);
143                         /* will re-read again later */
144                         ClearPageError(page);
145                 } else {
146                         SetPageUptodate(page);
147                 }
148                 dec_page_count(F2FS_P_SB(page), __read_io_type(page));
149                 unlock_page(page);
150         }
151
152         if (bio->bi_private)
153                 mempool_free(bio->bi_private, bio_post_read_ctx_pool);
154         bio_put(bio);
155 }
156
157 static void f2fs_verify_bio(struct work_struct *work)
158 {
159         struct bio_post_read_ctx *ctx =
160                 container_of(work, struct bio_post_read_ctx, work);
161         struct bio *bio = ctx->bio;
162         bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS);
163
164         /*
165          * fsverity_verify_bio() may call readpages() again, and while verity
166          * will be disabled for this, decryption and/or decompression may still
167          * be needed, resulting in another bio_post_read_ctx being allocated.
168          * So to prevent deadlocks we need to release the current ctx to the
169          * mempool first.  This assumes that verity is the last post-read step.
170          */
171         mempool_free(ctx, bio_post_read_ctx_pool);
172         bio->bi_private = NULL;
173
174         /*
175          * Verify the bio's pages with fs-verity.  Exclude compressed pages,
176          * as those were handled separately by f2fs_end_read_compressed_page().
177          */
178         if (may_have_compressed_pages) {
179                 struct bio_vec *bv;
180                 struct bvec_iter_all iter_all;
181
182                 bio_for_each_segment_all(bv, bio, iter_all) {
183                         struct page *page = bv->bv_page;
184
185                         if (!f2fs_is_compressed_page(page) &&
186                             !PageError(page) && !fsverity_verify_page(page))
187                                 SetPageError(page);
188                 }
189         } else {
190                 fsverity_verify_bio(bio);
191         }
192
193         f2fs_finish_read_bio(bio);
194 }
195
196 /*
197  * If the bio's data needs to be verified with fs-verity, then enqueue the
198  * verity work for the bio.  Otherwise finish the bio now.
199  *
200  * Note that to avoid deadlocks, the verity work can't be done on the
201  * decryption/decompression workqueue.  This is because verifying the data pages
202  * can involve reading verity metadata pages from the file, and these verity
203  * metadata pages may be encrypted and/or compressed.
204  */
205 static void f2fs_verify_and_finish_bio(struct bio *bio)
206 {
207         struct bio_post_read_ctx *ctx = bio->bi_private;
208
209         if (ctx && (ctx->enabled_steps & STEP_VERITY)) {
210                 INIT_WORK(&ctx->work, f2fs_verify_bio);
211                 fsverity_enqueue_verify_work(&ctx->work);
212         } else {
213                 f2fs_finish_read_bio(bio);
214         }
215 }
216
217 /*
218  * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last
219  * remaining page was read by @ctx->bio.
220  *
221  * Note that a bio may span clusters (even a mix of compressed and uncompressed
222  * clusters) or be for just part of a cluster.  STEP_DECOMPRESS just indicates
223  * that the bio includes at least one compressed page.  The actual decompression
224  * is done on a per-cluster basis, not a per-bio basis.
225  */
226 static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx)
227 {
228         struct bio_vec *bv;
229         struct bvec_iter_all iter_all;
230         bool all_compressed = true;
231         block_t blkaddr = SECTOR_TO_BLOCK(ctx->bio->bi_iter.bi_sector);
232
233         bio_for_each_segment_all(bv, ctx->bio, iter_all) {
234                 struct page *page = bv->bv_page;
235
236                 /* PG_error was set if decryption failed. */
237                 if (f2fs_is_compressed_page(page))
238                         f2fs_end_read_compressed_page(page, PageError(page),
239                                                 blkaddr);
240                 else
241                         all_compressed = false;
242
243                 blkaddr++;
244         }
245
246         /*
247          * Optimization: if all the bio's pages are compressed, then scheduling
248          * the per-bio verity work is unnecessary, as verity will be fully
249          * handled at the compression cluster level.
250          */
251         if (all_compressed)
252                 ctx->enabled_steps &= ~STEP_VERITY;
253 }
254
255 static void f2fs_post_read_work(struct work_struct *work)
256 {
257         struct bio_post_read_ctx *ctx =
258                 container_of(work, struct bio_post_read_ctx, work);
259
260         if (ctx->enabled_steps & STEP_DECRYPT)
261                 fscrypt_decrypt_bio(ctx->bio);
262
263         if (ctx->enabled_steps & STEP_DECOMPRESS)
264                 f2fs_handle_step_decompress(ctx);
265
266         f2fs_verify_and_finish_bio(ctx->bio);
267 }
268
269 static void f2fs_read_end_io(struct bio *bio)
270 {
271         struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio));
272         struct bio_post_read_ctx *ctx = bio->bi_private;
273
274         if (time_to_inject(sbi, FAULT_READ_IO)) {
275                 f2fs_show_injection_info(sbi, FAULT_READ_IO);
276                 bio->bi_status = BLK_STS_IOERR;
277         }
278
279         if (bio->bi_status) {
280                 f2fs_finish_read_bio(bio);
281                 return;
282         }
283
284         if (ctx && (ctx->enabled_steps & (STEP_DECRYPT | STEP_DECOMPRESS))) {
285                 INIT_WORK(&ctx->work, f2fs_post_read_work);
286                 queue_work(ctx->sbi->post_read_wq, &ctx->work);
287         } else {
288                 f2fs_verify_and_finish_bio(bio);
289         }
290 }
291
292 static void f2fs_write_end_io(struct bio *bio)
293 {
294         struct f2fs_sb_info *sbi = bio->bi_private;
295         struct bio_vec *bvec;
296         struct bvec_iter_all iter_all;
297
298         if (time_to_inject(sbi, FAULT_WRITE_IO)) {
299                 f2fs_show_injection_info(sbi, FAULT_WRITE_IO);
300                 bio->bi_status = BLK_STS_IOERR;
301         }
302
303         bio_for_each_segment_all(bvec, bio, iter_all) {
304                 struct page *page = bvec->bv_page;
305                 enum count_type type = WB_DATA_TYPE(page);
306
307                 if (page_private_dummy(page)) {
308                         clear_page_private_dummy(page);
309                         unlock_page(page);
310                         mempool_free(page, sbi->write_io_dummy);
311
312                         if (unlikely(bio->bi_status))
313                                 f2fs_stop_checkpoint(sbi, true);
314                         continue;
315                 }
316
317                 fscrypt_finalize_bounce_page(&page);
318
319 #ifdef CONFIG_F2FS_FS_COMPRESSION
320                 if (f2fs_is_compressed_page(page)) {
321                         f2fs_compress_write_end_io(bio, page);
322                         continue;
323                 }
324 #endif
325
326                 if (unlikely(bio->bi_status)) {
327                         mapping_set_error(page->mapping, -EIO);
328                         if (type == F2FS_WB_CP_DATA)
329                                 f2fs_stop_checkpoint(sbi, true);
330                 }
331
332                 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
333                                         page->index != nid_of_node(page));
334
335                 dec_page_count(sbi, type);
336                 if (f2fs_in_warm_node_list(sbi, page))
337                         f2fs_del_fsync_node_entry(sbi, page);
338                 clear_page_private_gcing(page);
339                 end_page_writeback(page);
340         }
341         if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
342                                 wq_has_sleeper(&sbi->cp_wait))
343                 wake_up(&sbi->cp_wait);
344
345         bio_put(bio);
346 }
347
348 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
349                                 block_t blk_addr, struct bio *bio)
350 {
351         struct block_device *bdev = sbi->sb->s_bdev;
352         int i;
353
354         if (f2fs_is_multi_device(sbi)) {
355                 for (i = 0; i < sbi->s_ndevs; i++) {
356                         if (FDEV(i).start_blk <= blk_addr &&
357                             FDEV(i).end_blk >= blk_addr) {
358                                 blk_addr -= FDEV(i).start_blk;
359                                 bdev = FDEV(i).bdev;
360                                 break;
361                         }
362                 }
363         }
364         if (bio) {
365                 bio_set_dev(bio, bdev);
366                 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
367         }
368         return bdev;
369 }
370
371 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
372 {
373         int i;
374
375         if (!f2fs_is_multi_device(sbi))
376                 return 0;
377
378         for (i = 0; i < sbi->s_ndevs; i++)
379                 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
380                         return i;
381         return 0;
382 }
383
384 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages)
385 {
386         struct f2fs_sb_info *sbi = fio->sbi;
387         struct bio *bio;
388
389         bio = bio_alloc_bioset(GFP_NOIO, npages, &f2fs_bioset);
390
391         f2fs_target_device(sbi, fio->new_blkaddr, bio);
392         if (is_read_io(fio->op)) {
393                 bio->bi_end_io = f2fs_read_end_io;
394                 bio->bi_private = NULL;
395         } else {
396                 bio->bi_end_io = f2fs_write_end_io;
397                 bio->bi_private = sbi;
398                 bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi,
399                                                 fio->type, fio->temp);
400         }
401         if (fio->io_wbc)
402                 wbc_init_bio(fio->io_wbc, bio);
403
404         return bio;
405 }
406
407 static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode,
408                                   pgoff_t first_idx,
409                                   const struct f2fs_io_info *fio,
410                                   gfp_t gfp_mask)
411 {
412         /*
413          * The f2fs garbage collector sets ->encrypted_page when it wants to
414          * read/write raw data without encryption.
415          */
416         if (!fio || !fio->encrypted_page)
417                 fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask);
418 }
419
420 static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode,
421                                      pgoff_t next_idx,
422                                      const struct f2fs_io_info *fio)
423 {
424         /*
425          * The f2fs garbage collector sets ->encrypted_page when it wants to
426          * read/write raw data without encryption.
427          */
428         if (fio && fio->encrypted_page)
429                 return !bio_has_crypt_ctx(bio);
430
431         return fscrypt_mergeable_bio(bio, inode, next_idx);
432 }
433
434 static inline void __submit_bio(struct f2fs_sb_info *sbi,
435                                 struct bio *bio, enum page_type type)
436 {
437         if (!is_read_io(bio_op(bio))) {
438                 unsigned int start;
439
440                 if (type != DATA && type != NODE)
441                         goto submit_io;
442
443                 if (f2fs_lfs_mode(sbi) && current->plug)
444                         blk_finish_plug(current->plug);
445
446                 if (!F2FS_IO_ALIGNED(sbi))
447                         goto submit_io;
448
449                 start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
450                 start %= F2FS_IO_SIZE(sbi);
451
452                 if (start == 0)
453                         goto submit_io;
454
455                 /* fill dummy pages */
456                 for (; start < F2FS_IO_SIZE(sbi); start++) {
457                         struct page *page =
458                                 mempool_alloc(sbi->write_io_dummy,
459                                               GFP_NOIO | __GFP_NOFAIL);
460                         f2fs_bug_on(sbi, !page);
461
462                         lock_page(page);
463
464                         zero_user_segment(page, 0, PAGE_SIZE);
465                         set_page_private_dummy(page);
466
467                         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
468                                 f2fs_bug_on(sbi, 1);
469                 }
470                 /*
471                  * In the NODE case, we lose next block address chain. So, we
472                  * need to do checkpoint in f2fs_sync_file.
473                  */
474                 if (type == NODE)
475                         set_sbi_flag(sbi, SBI_NEED_CP);
476         }
477 submit_io:
478         if (is_read_io(bio_op(bio)))
479                 trace_f2fs_submit_read_bio(sbi->sb, type, bio);
480         else
481                 trace_f2fs_submit_write_bio(sbi->sb, type, bio);
482         submit_bio(bio);
483 }
484
485 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
486                                 struct bio *bio, enum page_type type)
487 {
488         __submit_bio(sbi, bio, type);
489 }
490
491 static void __attach_io_flag(struct f2fs_io_info *fio)
492 {
493         struct f2fs_sb_info *sbi = fio->sbi;
494         unsigned int temp_mask = (1 << NR_TEMP_TYPE) - 1;
495         unsigned int io_flag, fua_flag, meta_flag;
496
497         if (fio->type == DATA)
498                 io_flag = sbi->data_io_flag;
499         else if (fio->type == NODE)
500                 io_flag = sbi->node_io_flag;
501         else
502                 return;
503
504         fua_flag = io_flag & temp_mask;
505         meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask;
506
507         /*
508          * data/node io flag bits per temp:
509          *      REQ_META     |      REQ_FUA      |
510          *    5 |    4 |   3 |    2 |    1 |   0 |
511          * Cold | Warm | Hot | Cold | Warm | Hot |
512          */
513         if ((1 << fio->temp) & meta_flag)
514                 fio->op_flags |= REQ_META;
515         if ((1 << fio->temp) & fua_flag)
516                 fio->op_flags |= REQ_FUA;
517 }
518
519 static void __submit_merged_bio(struct f2fs_bio_info *io)
520 {
521         struct f2fs_io_info *fio = &io->fio;
522
523         if (!io->bio)
524                 return;
525
526         __attach_io_flag(fio);
527         bio_set_op_attrs(io->bio, fio->op, fio->op_flags);
528
529         if (is_read_io(fio->op))
530                 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
531         else
532                 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
533
534         __submit_bio(io->sbi, io->bio, fio->type);
535         io->bio = NULL;
536 }
537
538 static bool __has_merged_page(struct bio *bio, struct inode *inode,
539                                                 struct page *page, nid_t ino)
540 {
541         struct bio_vec *bvec;
542         struct bvec_iter_all iter_all;
543
544         if (!bio)
545                 return false;
546
547         if (!inode && !page && !ino)
548                 return true;
549
550         bio_for_each_segment_all(bvec, bio, iter_all) {
551                 struct page *target = bvec->bv_page;
552
553                 if (fscrypt_is_bounce_page(target)) {
554                         target = fscrypt_pagecache_page(target);
555                         if (IS_ERR(target))
556                                 continue;
557                 }
558                 if (f2fs_is_compressed_page(target)) {
559                         target = f2fs_compress_control_page(target);
560                         if (IS_ERR(target))
561                                 continue;
562                 }
563
564                 if (inode && inode == target->mapping->host)
565                         return true;
566                 if (page && page == target)
567                         return true;
568                 if (ino && ino == ino_of_node(target))
569                         return true;
570         }
571
572         return false;
573 }
574
575 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
576                                 enum page_type type, enum temp_type temp)
577 {
578         enum page_type btype = PAGE_TYPE_OF_BIO(type);
579         struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
580
581         down_write(&io->io_rwsem);
582
583         /* change META to META_FLUSH in the checkpoint procedure */
584         if (type >= META_FLUSH) {
585                 io->fio.type = META_FLUSH;
586                 io->fio.op = REQ_OP_WRITE;
587                 io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC;
588                 if (!test_opt(sbi, NOBARRIER))
589                         io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
590         }
591         __submit_merged_bio(io);
592         up_write(&io->io_rwsem);
593 }
594
595 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
596                                 struct inode *inode, struct page *page,
597                                 nid_t ino, enum page_type type, bool force)
598 {
599         enum temp_type temp;
600         bool ret = true;
601
602         for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
603                 if (!force)     {
604                         enum page_type btype = PAGE_TYPE_OF_BIO(type);
605                         struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
606
607                         down_read(&io->io_rwsem);
608                         ret = __has_merged_page(io->bio, inode, page, ino);
609                         up_read(&io->io_rwsem);
610                 }
611                 if (ret)
612                         __f2fs_submit_merged_write(sbi, type, temp);
613
614                 /* TODO: use HOT temp only for meta pages now. */
615                 if (type >= META)
616                         break;
617         }
618 }
619
620 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
621 {
622         __submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
623 }
624
625 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
626                                 struct inode *inode, struct page *page,
627                                 nid_t ino, enum page_type type)
628 {
629         __submit_merged_write_cond(sbi, inode, page, ino, type, false);
630 }
631
632 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
633 {
634         f2fs_submit_merged_write(sbi, DATA);
635         f2fs_submit_merged_write(sbi, NODE);
636         f2fs_submit_merged_write(sbi, META);
637 }
638
639 /*
640  * Fill the locked page with data located in the block address.
641  * A caller needs to unlock the page on failure.
642  */
643 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
644 {
645         struct bio *bio;
646         struct page *page = fio->encrypted_page ?
647                         fio->encrypted_page : fio->page;
648
649         if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
650                         fio->is_por ? META_POR : (__is_meta_io(fio) ?
651                         META_GENERIC : DATA_GENERIC_ENHANCE)))
652                 return -EFSCORRUPTED;
653
654         trace_f2fs_submit_page_bio(page, fio);
655
656         /* Allocate a new bio */
657         bio = __bio_alloc(fio, 1);
658
659         f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
660                                fio->page->index, fio, GFP_NOIO);
661
662         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
663                 bio_put(bio);
664                 return -EFAULT;
665         }
666
667         if (fio->io_wbc && !is_read_io(fio->op))
668                 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
669
670         __attach_io_flag(fio);
671         bio_set_op_attrs(bio, fio->op, fio->op_flags);
672
673         inc_page_count(fio->sbi, is_read_io(fio->op) ?
674                         __read_io_type(page): WB_DATA_TYPE(fio->page));
675
676         __submit_bio(fio->sbi, bio, fio->type);
677         return 0;
678 }
679
680 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
681                                 block_t last_blkaddr, block_t cur_blkaddr)
682 {
683         if (unlikely(sbi->max_io_bytes &&
684                         bio->bi_iter.bi_size >= sbi->max_io_bytes))
685                 return false;
686         if (last_blkaddr + 1 != cur_blkaddr)
687                 return false;
688         return bio->bi_bdev == f2fs_target_device(sbi, cur_blkaddr, NULL);
689 }
690
691 static bool io_type_is_mergeable(struct f2fs_bio_info *io,
692                                                 struct f2fs_io_info *fio)
693 {
694         if (io->fio.op != fio->op)
695                 return false;
696         return io->fio.op_flags == fio->op_flags;
697 }
698
699 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
700                                         struct f2fs_bio_info *io,
701                                         struct f2fs_io_info *fio,
702                                         block_t last_blkaddr,
703                                         block_t cur_blkaddr)
704 {
705         if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) {
706                 unsigned int filled_blocks =
707                                 F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size);
708                 unsigned int io_size = F2FS_IO_SIZE(sbi);
709                 unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt;
710
711                 /* IOs in bio is aligned and left space of vectors is not enough */
712                 if (!(filled_blocks % io_size) && left_vecs < io_size)
713                         return false;
714         }
715         if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr))
716                 return false;
717         return io_type_is_mergeable(io, fio);
718 }
719
720 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio,
721                                 struct page *page, enum temp_type temp)
722 {
723         struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
724         struct bio_entry *be;
725
726         be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS);
727         be->bio = bio;
728         bio_get(bio);
729
730         if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE)
731                 f2fs_bug_on(sbi, 1);
732
733         down_write(&io->bio_list_lock);
734         list_add_tail(&be->list, &io->bio_list);
735         up_write(&io->bio_list_lock);
736 }
737
738 static void del_bio_entry(struct bio_entry *be)
739 {
740         list_del(&be->list);
741         kmem_cache_free(bio_entry_slab, be);
742 }
743
744 static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio,
745                                                         struct page *page)
746 {
747         struct f2fs_sb_info *sbi = fio->sbi;
748         enum temp_type temp;
749         bool found = false;
750         int ret = -EAGAIN;
751
752         for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
753                 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
754                 struct list_head *head = &io->bio_list;
755                 struct bio_entry *be;
756
757                 down_write(&io->bio_list_lock);
758                 list_for_each_entry(be, head, list) {
759                         if (be->bio != *bio)
760                                 continue;
761
762                         found = true;
763
764                         f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio,
765                                                             *fio->last_block,
766                                                             fio->new_blkaddr));
767                         if (f2fs_crypt_mergeable_bio(*bio,
768                                         fio->page->mapping->host,
769                                         fio->page->index, fio) &&
770                             bio_add_page(*bio, page, PAGE_SIZE, 0) ==
771                                         PAGE_SIZE) {
772                                 ret = 0;
773                                 break;
774                         }
775
776                         /* page can't be merged into bio; submit the bio */
777                         del_bio_entry(be);
778                         __submit_bio(sbi, *bio, DATA);
779                         break;
780                 }
781                 up_write(&io->bio_list_lock);
782         }
783
784         if (ret) {
785                 bio_put(*bio);
786                 *bio = NULL;
787         }
788
789         return ret;
790 }
791
792 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
793                                         struct bio **bio, struct page *page)
794 {
795         enum temp_type temp;
796         bool found = false;
797         struct bio *target = bio ? *bio : NULL;
798
799         for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
800                 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
801                 struct list_head *head = &io->bio_list;
802                 struct bio_entry *be;
803
804                 if (list_empty(head))
805                         continue;
806
807                 down_read(&io->bio_list_lock);
808                 list_for_each_entry(be, head, list) {
809                         if (target)
810                                 found = (target == be->bio);
811                         else
812                                 found = __has_merged_page(be->bio, NULL,
813                                                                 page, 0);
814                         if (found)
815                                 break;
816                 }
817                 up_read(&io->bio_list_lock);
818
819                 if (!found)
820                         continue;
821
822                 found = false;
823
824                 down_write(&io->bio_list_lock);
825                 list_for_each_entry(be, head, list) {
826                         if (target)
827                                 found = (target == be->bio);
828                         else
829                                 found = __has_merged_page(be->bio, NULL,
830                                                                 page, 0);
831                         if (found) {
832                                 target = be->bio;
833                                 del_bio_entry(be);
834                                 break;
835                         }
836                 }
837                 up_write(&io->bio_list_lock);
838         }
839
840         if (found)
841                 __submit_bio(sbi, target, DATA);
842         if (bio && *bio) {
843                 bio_put(*bio);
844                 *bio = NULL;
845         }
846 }
847
848 int f2fs_merge_page_bio(struct f2fs_io_info *fio)
849 {
850         struct bio *bio = *fio->bio;
851         struct page *page = fio->encrypted_page ?
852                         fio->encrypted_page : fio->page;
853
854         if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
855                         __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC))
856                 return -EFSCORRUPTED;
857
858         trace_f2fs_submit_page_bio(page, fio);
859
860         if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block,
861                                                 fio->new_blkaddr))
862                 f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL);
863 alloc_new:
864         if (!bio) {
865                 bio = __bio_alloc(fio, BIO_MAX_VECS);
866                 __attach_io_flag(fio);
867                 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
868                                        fio->page->index, fio, GFP_NOIO);
869                 bio_set_op_attrs(bio, fio->op, fio->op_flags);
870
871                 add_bio_entry(fio->sbi, bio, page, fio->temp);
872         } else {
873                 if (add_ipu_page(fio, &bio, page))
874                         goto alloc_new;
875         }
876
877         if (fio->io_wbc)
878                 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
879
880         inc_page_count(fio->sbi, WB_DATA_TYPE(page));
881
882         *fio->last_block = fio->new_blkaddr;
883         *fio->bio = bio;
884
885         return 0;
886 }
887
888 void f2fs_submit_page_write(struct f2fs_io_info *fio)
889 {
890         struct f2fs_sb_info *sbi = fio->sbi;
891         enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
892         struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
893         struct page *bio_page;
894
895         f2fs_bug_on(sbi, is_read_io(fio->op));
896
897         down_write(&io->io_rwsem);
898 next:
899         if (fio->in_list) {
900                 spin_lock(&io->io_lock);
901                 if (list_empty(&io->io_list)) {
902                         spin_unlock(&io->io_lock);
903                         goto out;
904                 }
905                 fio = list_first_entry(&io->io_list,
906                                                 struct f2fs_io_info, list);
907                 list_del(&fio->list);
908                 spin_unlock(&io->io_lock);
909         }
910
911         verify_fio_blkaddr(fio);
912
913         if (fio->encrypted_page)
914                 bio_page = fio->encrypted_page;
915         else if (fio->compressed_page)
916                 bio_page = fio->compressed_page;
917         else
918                 bio_page = fio->page;
919
920         /* set submitted = true as a return value */
921         fio->submitted = true;
922
923         inc_page_count(sbi, WB_DATA_TYPE(bio_page));
924
925         if (io->bio &&
926             (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio,
927                               fio->new_blkaddr) ||
928              !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host,
929                                        bio_page->index, fio)))
930                 __submit_merged_bio(io);
931 alloc_new:
932         if (io->bio == NULL) {
933                 if (F2FS_IO_ALIGNED(sbi) &&
934                                 (fio->type == DATA || fio->type == NODE) &&
935                                 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
936                         dec_page_count(sbi, WB_DATA_TYPE(bio_page));
937                         fio->retry = true;
938                         goto skip;
939                 }
940                 io->bio = __bio_alloc(fio, BIO_MAX_VECS);
941                 f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host,
942                                        bio_page->index, fio, GFP_NOIO);
943                 io->fio = *fio;
944         }
945
946         if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
947                 __submit_merged_bio(io);
948                 goto alloc_new;
949         }
950
951         if (fio->io_wbc)
952                 wbc_account_cgroup_owner(fio->io_wbc, bio_page, PAGE_SIZE);
953
954         io->last_block_in_bio = fio->new_blkaddr;
955
956         trace_f2fs_submit_page_write(fio->page, fio);
957 skip:
958         if (fio->in_list)
959                 goto next;
960 out:
961         if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
962                                 !f2fs_is_checkpoint_ready(sbi))
963                 __submit_merged_bio(io);
964         up_write(&io->io_rwsem);
965 }
966
967 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
968                                       unsigned nr_pages, unsigned op_flag,
969                                       pgoff_t first_idx, bool for_write)
970 {
971         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
972         struct bio *bio;
973         struct bio_post_read_ctx *ctx;
974         unsigned int post_read_steps = 0;
975
976         bio = bio_alloc_bioset(for_write ? GFP_NOIO : GFP_KERNEL,
977                                bio_max_segs(nr_pages), &f2fs_bioset);
978         if (!bio)
979                 return ERR_PTR(-ENOMEM);
980
981         f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS);
982
983         f2fs_target_device(sbi, blkaddr, bio);
984         bio->bi_end_io = f2fs_read_end_io;
985         bio_set_op_attrs(bio, REQ_OP_READ, op_flag);
986
987         if (fscrypt_inode_uses_fs_layer_crypto(inode))
988                 post_read_steps |= STEP_DECRYPT;
989
990         if (f2fs_need_verity(inode, first_idx))
991                 post_read_steps |= STEP_VERITY;
992
993         /*
994          * STEP_DECOMPRESS is handled specially, since a compressed file might
995          * contain both compressed and uncompressed clusters.  We'll allocate a
996          * bio_post_read_ctx if the file is compressed, but the caller is
997          * responsible for enabling STEP_DECOMPRESS if it's actually needed.
998          */
999
1000         if (post_read_steps || f2fs_compressed_file(inode)) {
1001                 /* Due to the mempool, this never fails. */
1002                 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
1003                 ctx->bio = bio;
1004                 ctx->sbi = sbi;
1005                 ctx->enabled_steps = post_read_steps;
1006                 bio->bi_private = ctx;
1007         }
1008
1009         return bio;
1010 }
1011
1012 /* This can handle encryption stuffs */
1013 static int f2fs_submit_page_read(struct inode *inode, struct page *page,
1014                                  block_t blkaddr, int op_flags, bool for_write)
1015 {
1016         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1017         struct bio *bio;
1018
1019         bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags,
1020                                         page->index, for_write);
1021         if (IS_ERR(bio))
1022                 return PTR_ERR(bio);
1023
1024         /* wait for GCed page writeback via META_MAPPING */
1025         f2fs_wait_on_block_writeback(inode, blkaddr);
1026
1027         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
1028                 bio_put(bio);
1029                 return -EFAULT;
1030         }
1031         ClearPageError(page);
1032         inc_page_count(sbi, F2FS_RD_DATA);
1033         f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE);
1034         __submit_bio(sbi, bio, DATA);
1035         return 0;
1036 }
1037
1038 static void __set_data_blkaddr(struct dnode_of_data *dn)
1039 {
1040         struct f2fs_node *rn = F2FS_NODE(dn->node_page);
1041         __le32 *addr_array;
1042         int base = 0;
1043
1044         if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
1045                 base = get_extra_isize(dn->inode);
1046
1047         /* Get physical address of data block */
1048         addr_array = blkaddr_in_node(rn);
1049         addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
1050 }
1051
1052 /*
1053  * Lock ordering for the change of data block address:
1054  * ->data_page
1055  *  ->node_page
1056  *    update block addresses in the node page
1057  */
1058 void f2fs_set_data_blkaddr(struct dnode_of_data *dn)
1059 {
1060         f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1061         __set_data_blkaddr(dn);
1062         if (set_page_dirty(dn->node_page))
1063                 dn->node_changed = true;
1064 }
1065
1066 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1067 {
1068         dn->data_blkaddr = blkaddr;
1069         f2fs_set_data_blkaddr(dn);
1070         f2fs_update_extent_cache(dn);
1071 }
1072
1073 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
1074 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
1075 {
1076         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1077         int err;
1078
1079         if (!count)
1080                 return 0;
1081
1082         if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1083                 return -EPERM;
1084         if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1085                 return err;
1086
1087         trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
1088                                                 dn->ofs_in_node, count);
1089
1090         f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1091
1092         for (; count > 0; dn->ofs_in_node++) {
1093                 block_t blkaddr = f2fs_data_blkaddr(dn);
1094
1095                 if (blkaddr == NULL_ADDR) {
1096                         dn->data_blkaddr = NEW_ADDR;
1097                         __set_data_blkaddr(dn);
1098                         count--;
1099                 }
1100         }
1101
1102         if (set_page_dirty(dn->node_page))
1103                 dn->node_changed = true;
1104         return 0;
1105 }
1106
1107 /* Should keep dn->ofs_in_node unchanged */
1108 int f2fs_reserve_new_block(struct dnode_of_data *dn)
1109 {
1110         unsigned int ofs_in_node = dn->ofs_in_node;
1111         int ret;
1112
1113         ret = f2fs_reserve_new_blocks(dn, 1);
1114         dn->ofs_in_node = ofs_in_node;
1115         return ret;
1116 }
1117
1118 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
1119 {
1120         bool need_put = dn->inode_page ? false : true;
1121         int err;
1122
1123         err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
1124         if (err)
1125                 return err;
1126
1127         if (dn->data_blkaddr == NULL_ADDR)
1128                 err = f2fs_reserve_new_block(dn);
1129         if (err || need_put)
1130                 f2fs_put_dnode(dn);
1131         return err;
1132 }
1133
1134 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
1135 {
1136         struct extent_info ei = {0, 0, 0};
1137         struct inode *inode = dn->inode;
1138
1139         if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1140                 dn->data_blkaddr = ei.blk + index - ei.fofs;
1141                 return 0;
1142         }
1143
1144         return f2fs_reserve_block(dn, index);
1145 }
1146
1147 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
1148                                                 int op_flags, bool for_write)
1149 {
1150         struct address_space *mapping = inode->i_mapping;
1151         struct dnode_of_data dn;
1152         struct page *page;
1153         struct extent_info ei = {0,0,0};
1154         int err;
1155
1156         page = f2fs_grab_cache_page(mapping, index, for_write);
1157         if (!page)
1158                 return ERR_PTR(-ENOMEM);
1159
1160         if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1161                 dn.data_blkaddr = ei.blk + index - ei.fofs;
1162                 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
1163                                                 DATA_GENERIC_ENHANCE_READ)) {
1164                         err = -EFSCORRUPTED;
1165                         goto put_err;
1166                 }
1167                 goto got_it;
1168         }
1169
1170         set_new_dnode(&dn, inode, NULL, NULL, 0);
1171         err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1172         if (err)
1173                 goto put_err;
1174         f2fs_put_dnode(&dn);
1175
1176         if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1177                 err = -ENOENT;
1178                 goto put_err;
1179         }
1180         if (dn.data_blkaddr != NEW_ADDR &&
1181                         !f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
1182                                                 dn.data_blkaddr,
1183                                                 DATA_GENERIC_ENHANCE)) {
1184                 err = -EFSCORRUPTED;
1185                 goto put_err;
1186         }
1187 got_it:
1188         if (PageUptodate(page)) {
1189                 unlock_page(page);
1190                 return page;
1191         }
1192
1193         /*
1194          * A new dentry page is allocated but not able to be written, since its
1195          * new inode page couldn't be allocated due to -ENOSPC.
1196          * In such the case, its blkaddr can be remained as NEW_ADDR.
1197          * see, f2fs_add_link -> f2fs_get_new_data_page ->
1198          * f2fs_init_inode_metadata.
1199          */
1200         if (dn.data_blkaddr == NEW_ADDR) {
1201                 zero_user_segment(page, 0, PAGE_SIZE);
1202                 if (!PageUptodate(page))
1203                         SetPageUptodate(page);
1204                 unlock_page(page);
1205                 return page;
1206         }
1207
1208         err = f2fs_submit_page_read(inode, page, dn.data_blkaddr,
1209                                                 op_flags, for_write);
1210         if (err)
1211                 goto put_err;
1212         return page;
1213
1214 put_err:
1215         f2fs_put_page(page, 1);
1216         return ERR_PTR(err);
1217 }
1218
1219 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index)
1220 {
1221         struct address_space *mapping = inode->i_mapping;
1222         struct page *page;
1223
1224         page = find_get_page(mapping, index);
1225         if (page && PageUptodate(page))
1226                 return page;
1227         f2fs_put_page(page, 0);
1228
1229         page = f2fs_get_read_data_page(inode, index, 0, false);
1230         if (IS_ERR(page))
1231                 return page;
1232
1233         if (PageUptodate(page))
1234                 return page;
1235
1236         wait_on_page_locked(page);
1237         if (unlikely(!PageUptodate(page))) {
1238                 f2fs_put_page(page, 0);
1239                 return ERR_PTR(-EIO);
1240         }
1241         return page;
1242 }
1243
1244 /*
1245  * If it tries to access a hole, return an error.
1246  * Because, the callers, functions in dir.c and GC, should be able to know
1247  * whether this page exists or not.
1248  */
1249 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
1250                                                         bool for_write)
1251 {
1252         struct address_space *mapping = inode->i_mapping;
1253         struct page *page;
1254 repeat:
1255         page = f2fs_get_read_data_page(inode, index, 0, for_write);
1256         if (IS_ERR(page))
1257                 return page;
1258
1259         /* wait for read completion */
1260         lock_page(page);
1261         if (unlikely(page->mapping != mapping)) {
1262                 f2fs_put_page(page, 1);
1263                 goto repeat;
1264         }
1265         if (unlikely(!PageUptodate(page))) {
1266                 f2fs_put_page(page, 1);
1267                 return ERR_PTR(-EIO);
1268         }
1269         return page;
1270 }
1271
1272 /*
1273  * Caller ensures that this data page is never allocated.
1274  * A new zero-filled data page is allocated in the page cache.
1275  *
1276  * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1277  * f2fs_unlock_op().
1278  * Note that, ipage is set only by make_empty_dir, and if any error occur,
1279  * ipage should be released by this function.
1280  */
1281 struct page *f2fs_get_new_data_page(struct inode *inode,
1282                 struct page *ipage, pgoff_t index, bool new_i_size)
1283 {
1284         struct address_space *mapping = inode->i_mapping;
1285         struct page *page;
1286         struct dnode_of_data dn;
1287         int err;
1288
1289         page = f2fs_grab_cache_page(mapping, index, true);
1290         if (!page) {
1291                 /*
1292                  * before exiting, we should make sure ipage will be released
1293                  * if any error occur.
1294                  */
1295                 f2fs_put_page(ipage, 1);
1296                 return ERR_PTR(-ENOMEM);
1297         }
1298
1299         set_new_dnode(&dn, inode, ipage, NULL, 0);
1300         err = f2fs_reserve_block(&dn, index);
1301         if (err) {
1302                 f2fs_put_page(page, 1);
1303                 return ERR_PTR(err);
1304         }
1305         if (!ipage)
1306                 f2fs_put_dnode(&dn);
1307
1308         if (PageUptodate(page))
1309                 goto got_it;
1310
1311         if (dn.data_blkaddr == NEW_ADDR) {
1312                 zero_user_segment(page, 0, PAGE_SIZE);
1313                 if (!PageUptodate(page))
1314                         SetPageUptodate(page);
1315         } else {
1316                 f2fs_put_page(page, 1);
1317
1318                 /* if ipage exists, blkaddr should be NEW_ADDR */
1319                 f2fs_bug_on(F2FS_I_SB(inode), ipage);
1320                 page = f2fs_get_lock_data_page(inode, index, true);
1321                 if (IS_ERR(page))
1322                         return page;
1323         }
1324 got_it:
1325         if (new_i_size && i_size_read(inode) <
1326                                 ((loff_t)(index + 1) << PAGE_SHIFT))
1327                 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
1328         return page;
1329 }
1330
1331 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
1332 {
1333         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1334         struct f2fs_summary sum;
1335         struct node_info ni;
1336         block_t old_blkaddr;
1337         blkcnt_t count = 1;
1338         int err;
1339
1340         if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1341                 return -EPERM;
1342
1343         err = f2fs_get_node_info(sbi, dn->nid, &ni);
1344         if (err)
1345                 return err;
1346
1347         dn->data_blkaddr = f2fs_data_blkaddr(dn);
1348         if (dn->data_blkaddr != NULL_ADDR)
1349                 goto alloc;
1350
1351         if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1352                 return err;
1353
1354 alloc:
1355         set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1356         old_blkaddr = dn->data_blkaddr;
1357         f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr,
1358                                 &sum, seg_type, NULL);
1359         if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
1360                 invalidate_mapping_pages(META_MAPPING(sbi),
1361                                         old_blkaddr, old_blkaddr);
1362                 f2fs_invalidate_compress_page(sbi, old_blkaddr);
1363         }
1364         f2fs_update_data_blkaddr(dn, dn->data_blkaddr);
1365
1366         /*
1367          * i_size will be updated by direct_IO. Otherwise, we'll get stale
1368          * data from unwritten block via dio_read.
1369          */
1370         return 0;
1371 }
1372
1373 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
1374 {
1375         struct inode *inode = file_inode(iocb->ki_filp);
1376         struct f2fs_map_blocks map;
1377         int flag;
1378         int err = 0;
1379         bool direct_io = iocb->ki_flags & IOCB_DIRECT;
1380
1381         map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
1382         map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from));
1383         if (map.m_len > map.m_lblk)
1384                 map.m_len -= map.m_lblk;
1385         else
1386                 map.m_len = 0;
1387
1388         map.m_next_pgofs = NULL;
1389         map.m_next_extent = NULL;
1390         map.m_seg_type = NO_CHECK_TYPE;
1391         map.m_may_create = true;
1392
1393         if (direct_io) {
1394                 map.m_seg_type = f2fs_rw_hint_to_seg_type(iocb->ki_hint);
1395                 flag = f2fs_force_buffered_io(inode, iocb, from) ?
1396                                         F2FS_GET_BLOCK_PRE_AIO :
1397                                         F2FS_GET_BLOCK_PRE_DIO;
1398                 goto map_blocks;
1399         }
1400         if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA(inode)) {
1401                 err = f2fs_convert_inline_inode(inode);
1402                 if (err)
1403                         return err;
1404         }
1405         if (f2fs_has_inline_data(inode))
1406                 return err;
1407
1408         flag = F2FS_GET_BLOCK_PRE_AIO;
1409
1410 map_blocks:
1411         err = f2fs_map_blocks(inode, &map, 1, flag);
1412         if (map.m_len > 0 && err == -ENOSPC) {
1413                 if (!direct_io)
1414                         set_inode_flag(inode, FI_NO_PREALLOC);
1415                 err = 0;
1416         }
1417         return err;
1418 }
1419
1420 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock)
1421 {
1422         if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1423                 if (lock)
1424                         down_read(&sbi->node_change);
1425                 else
1426                         up_read(&sbi->node_change);
1427         } else {
1428                 if (lock)
1429                         f2fs_lock_op(sbi);
1430                 else
1431                         f2fs_unlock_op(sbi);
1432         }
1433 }
1434
1435 /*
1436  * f2fs_map_blocks() tries to find or build mapping relationship which
1437  * maps continuous logical blocks to physical blocks, and return such
1438  * info via f2fs_map_blocks structure.
1439  */
1440 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
1441                                                 int create, int flag)
1442 {
1443         unsigned int maxblocks = map->m_len;
1444         struct dnode_of_data dn;
1445         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1446         int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1447         pgoff_t pgofs, end_offset, end;
1448         int err = 0, ofs = 1;
1449         unsigned int ofs_in_node, last_ofs_in_node;
1450         blkcnt_t prealloc;
1451         struct extent_info ei = {0,0,0};
1452         block_t blkaddr;
1453         unsigned int start_pgofs;
1454
1455         if (!maxblocks)
1456                 return 0;
1457
1458         map->m_len = 0;
1459         map->m_flags = 0;
1460
1461         /* it only supports block size == page size */
1462         pgofs = (pgoff_t)map->m_lblk;
1463         end = pgofs + maxblocks;
1464
1465         if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
1466                 if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO &&
1467                                                         map->m_may_create)
1468                         goto next_dnode;
1469
1470                 map->m_pblk = ei.blk + pgofs - ei.fofs;
1471                 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
1472                 map->m_flags = F2FS_MAP_MAPPED;
1473                 if (map->m_next_extent)
1474                         *map->m_next_extent = pgofs + map->m_len;
1475
1476                 /* for hardware encryption, but to avoid potential issue in future */
1477                 if (flag == F2FS_GET_BLOCK_DIO)
1478                         f2fs_wait_on_block_writeback_range(inode,
1479                                                 map->m_pblk, map->m_len);
1480                 goto out;
1481         }
1482
1483 next_dnode:
1484         if (map->m_may_create)
1485                 f2fs_do_map_lock(sbi, flag, true);
1486
1487         /* When reading holes, we need its node page */
1488         set_new_dnode(&dn, inode, NULL, NULL, 0);
1489         err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1490         if (err) {
1491                 if (flag == F2FS_GET_BLOCK_BMAP)
1492                         map->m_pblk = 0;
1493                 if (err == -ENOENT) {
1494                         err = 0;
1495                         if (map->m_next_pgofs)
1496                                 *map->m_next_pgofs =
1497                                         f2fs_get_next_page_offset(&dn, pgofs);
1498                         if (map->m_next_extent)
1499                                 *map->m_next_extent =
1500                                         f2fs_get_next_page_offset(&dn, pgofs);
1501                 }
1502                 goto unlock_out;
1503         }
1504
1505         start_pgofs = pgofs;
1506         prealloc = 0;
1507         last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1508         end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1509
1510 next_block:
1511         blkaddr = f2fs_data_blkaddr(&dn);
1512
1513         if (__is_valid_data_blkaddr(blkaddr) &&
1514                 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1515                 err = -EFSCORRUPTED;
1516                 goto sync_out;
1517         }
1518
1519         if (__is_valid_data_blkaddr(blkaddr)) {
1520                 /* use out-place-update for driect IO under LFS mode */
1521                 if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO &&
1522                                                         map->m_may_create) {
1523                         err = __allocate_data_block(&dn, map->m_seg_type);
1524                         if (err)
1525                                 goto sync_out;
1526                         blkaddr = dn.data_blkaddr;
1527                         set_inode_flag(inode, FI_APPEND_WRITE);
1528                 }
1529         } else {
1530                 if (create) {
1531                         if (unlikely(f2fs_cp_error(sbi))) {
1532                                 err = -EIO;
1533                                 goto sync_out;
1534                         }
1535                         if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1536                                 if (blkaddr == NULL_ADDR) {
1537                                         prealloc++;
1538                                         last_ofs_in_node = dn.ofs_in_node;
1539                                 }
1540                         } else {
1541                                 WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO &&
1542                                         flag != F2FS_GET_BLOCK_DIO);
1543                                 err = __allocate_data_block(&dn,
1544                                                         map->m_seg_type);
1545                                 if (!err)
1546                                         set_inode_flag(inode, FI_APPEND_WRITE);
1547                         }
1548                         if (err)
1549                                 goto sync_out;
1550                         map->m_flags |= F2FS_MAP_NEW;
1551                         blkaddr = dn.data_blkaddr;
1552                 } else {
1553                         if (flag == F2FS_GET_BLOCK_BMAP) {
1554                                 map->m_pblk = 0;
1555                                 goto sync_out;
1556                         }
1557                         if (flag == F2FS_GET_BLOCK_PRECACHE)
1558                                 goto sync_out;
1559                         if (flag == F2FS_GET_BLOCK_FIEMAP &&
1560                                                 blkaddr == NULL_ADDR) {
1561                                 if (map->m_next_pgofs)
1562                                         *map->m_next_pgofs = pgofs + 1;
1563                                 goto sync_out;
1564                         }
1565                         if (flag != F2FS_GET_BLOCK_FIEMAP) {
1566                                 /* for defragment case */
1567                                 if (map->m_next_pgofs)
1568                                         *map->m_next_pgofs = pgofs + 1;
1569                                 goto sync_out;
1570                         }
1571                 }
1572         }
1573
1574         if (flag == F2FS_GET_BLOCK_PRE_AIO)
1575                 goto skip;
1576
1577         if (map->m_len == 0) {
1578                 /* preallocated unwritten block should be mapped for fiemap. */
1579                 if (blkaddr == NEW_ADDR)
1580                         map->m_flags |= F2FS_MAP_UNWRITTEN;
1581                 map->m_flags |= F2FS_MAP_MAPPED;
1582
1583                 map->m_pblk = blkaddr;
1584                 map->m_len = 1;
1585         } else if ((map->m_pblk != NEW_ADDR &&
1586                         blkaddr == (map->m_pblk + ofs)) ||
1587                         (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1588                         flag == F2FS_GET_BLOCK_PRE_DIO) {
1589                 ofs++;
1590                 map->m_len++;
1591         } else {
1592                 goto sync_out;
1593         }
1594
1595 skip:
1596         dn.ofs_in_node++;
1597         pgofs++;
1598
1599         /* preallocate blocks in batch for one dnode page */
1600         if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1601                         (pgofs == end || dn.ofs_in_node == end_offset)) {
1602
1603                 dn.ofs_in_node = ofs_in_node;
1604                 err = f2fs_reserve_new_blocks(&dn, prealloc);
1605                 if (err)
1606                         goto sync_out;
1607
1608                 map->m_len += dn.ofs_in_node - ofs_in_node;
1609                 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1610                         err = -ENOSPC;
1611                         goto sync_out;
1612                 }
1613                 dn.ofs_in_node = end_offset;
1614         }
1615
1616         if (pgofs >= end)
1617                 goto sync_out;
1618         else if (dn.ofs_in_node < end_offset)
1619                 goto next_block;
1620
1621         if (flag == F2FS_GET_BLOCK_PRECACHE) {
1622                 if (map->m_flags & F2FS_MAP_MAPPED) {
1623                         unsigned int ofs = start_pgofs - map->m_lblk;
1624
1625                         f2fs_update_extent_cache_range(&dn,
1626                                 start_pgofs, map->m_pblk + ofs,
1627                                 map->m_len - ofs);
1628                 }
1629         }
1630
1631         f2fs_put_dnode(&dn);
1632
1633         if (map->m_may_create) {
1634                 f2fs_do_map_lock(sbi, flag, false);
1635                 f2fs_balance_fs(sbi, dn.node_changed);
1636         }
1637         goto next_dnode;
1638
1639 sync_out:
1640
1641         /* for hardware encryption, but to avoid potential issue in future */
1642         if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED)
1643                 f2fs_wait_on_block_writeback_range(inode,
1644                                                 map->m_pblk, map->m_len);
1645
1646         if (flag == F2FS_GET_BLOCK_PRECACHE) {
1647                 if (map->m_flags & F2FS_MAP_MAPPED) {
1648                         unsigned int ofs = start_pgofs - map->m_lblk;
1649
1650                         f2fs_update_extent_cache_range(&dn,
1651                                 start_pgofs, map->m_pblk + ofs,
1652                                 map->m_len - ofs);
1653                 }
1654                 if (map->m_next_extent)
1655                         *map->m_next_extent = pgofs + 1;
1656         }
1657         f2fs_put_dnode(&dn);
1658 unlock_out:
1659         if (map->m_may_create) {
1660                 f2fs_do_map_lock(sbi, flag, false);
1661                 f2fs_balance_fs(sbi, dn.node_changed);
1662         }
1663 out:
1664         trace_f2fs_map_blocks(inode, map, err);
1665         return err;
1666 }
1667
1668 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1669 {
1670         struct f2fs_map_blocks map;
1671         block_t last_lblk;
1672         int err;
1673
1674         if (pos + len > i_size_read(inode))
1675                 return false;
1676
1677         map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1678         map.m_next_pgofs = NULL;
1679         map.m_next_extent = NULL;
1680         map.m_seg_type = NO_CHECK_TYPE;
1681         map.m_may_create = false;
1682         last_lblk = F2FS_BLK_ALIGN(pos + len);
1683
1684         while (map.m_lblk < last_lblk) {
1685                 map.m_len = last_lblk - map.m_lblk;
1686                 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
1687                 if (err || map.m_len == 0)
1688                         return false;
1689                 map.m_lblk += map.m_len;
1690         }
1691         return true;
1692 }
1693
1694 static inline u64 bytes_to_blks(struct inode *inode, u64 bytes)
1695 {
1696         return (bytes >> inode->i_blkbits);
1697 }
1698
1699 static inline u64 blks_to_bytes(struct inode *inode, u64 blks)
1700 {
1701         return (blks << inode->i_blkbits);
1702 }
1703
1704 static int __get_data_block(struct inode *inode, sector_t iblock,
1705                         struct buffer_head *bh, int create, int flag,
1706                         pgoff_t *next_pgofs, int seg_type, bool may_write)
1707 {
1708         struct f2fs_map_blocks map;
1709         int err;
1710
1711         map.m_lblk = iblock;
1712         map.m_len = bytes_to_blks(inode, bh->b_size);
1713         map.m_next_pgofs = next_pgofs;
1714         map.m_next_extent = NULL;
1715         map.m_seg_type = seg_type;
1716         map.m_may_create = may_write;
1717
1718         err = f2fs_map_blocks(inode, &map, create, flag);
1719         if (!err) {
1720                 map_bh(bh, inode->i_sb, map.m_pblk);
1721                 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
1722                 bh->b_size = blks_to_bytes(inode, map.m_len);
1723         }
1724         return err;
1725 }
1726
1727 static int get_data_block_dio_write(struct inode *inode, sector_t iblock,
1728                         struct buffer_head *bh_result, int create)
1729 {
1730         return __get_data_block(inode, iblock, bh_result, create,
1731                                 F2FS_GET_BLOCK_DIO, NULL,
1732                                 f2fs_rw_hint_to_seg_type(inode->i_write_hint),
1733                                 true);
1734 }
1735
1736 static int get_data_block_dio(struct inode *inode, sector_t iblock,
1737                         struct buffer_head *bh_result, int create)
1738 {
1739         return __get_data_block(inode, iblock, bh_result, create,
1740                                 F2FS_GET_BLOCK_DIO, NULL,
1741                                 f2fs_rw_hint_to_seg_type(inode->i_write_hint),
1742                                 false);
1743 }
1744
1745 static int f2fs_xattr_fiemap(struct inode *inode,
1746                                 struct fiemap_extent_info *fieinfo)
1747 {
1748         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1749         struct page *page;
1750         struct node_info ni;
1751         __u64 phys = 0, len;
1752         __u32 flags;
1753         nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1754         int err = 0;
1755
1756         if (f2fs_has_inline_xattr(inode)) {
1757                 int offset;
1758
1759                 page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1760                                                 inode->i_ino, false);
1761                 if (!page)
1762                         return -ENOMEM;
1763
1764                 err = f2fs_get_node_info(sbi, inode->i_ino, &ni);
1765                 if (err) {
1766                         f2fs_put_page(page, 1);
1767                         return err;
1768                 }
1769
1770                 phys = blks_to_bytes(inode, ni.blk_addr);
1771                 offset = offsetof(struct f2fs_inode, i_addr) +
1772                                         sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1773                                         get_inline_xattr_addrs(inode));
1774
1775                 phys += offset;
1776                 len = inline_xattr_size(inode);
1777
1778                 f2fs_put_page(page, 1);
1779
1780                 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1781
1782                 if (!xnid)
1783                         flags |= FIEMAP_EXTENT_LAST;
1784
1785                 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1786                 trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1787                 if (err || err == 1)
1788                         return err;
1789         }
1790
1791         if (xnid) {
1792                 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1793                 if (!page)
1794                         return -ENOMEM;
1795
1796                 err = f2fs_get_node_info(sbi, xnid, &ni);
1797                 if (err) {
1798                         f2fs_put_page(page, 1);
1799                         return err;
1800                 }
1801
1802                 phys = blks_to_bytes(inode, ni.blk_addr);
1803                 len = inode->i_sb->s_blocksize;
1804
1805                 f2fs_put_page(page, 1);
1806
1807                 flags = FIEMAP_EXTENT_LAST;
1808         }
1809
1810         if (phys) {
1811                 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1812                 trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1813         }
1814
1815         return (err < 0 ? err : 0);
1816 }
1817
1818 static loff_t max_inode_blocks(struct inode *inode)
1819 {
1820         loff_t result = ADDRS_PER_INODE(inode);
1821         loff_t leaf_count = ADDRS_PER_BLOCK(inode);
1822
1823         /* two direct node blocks */
1824         result += (leaf_count * 2);
1825
1826         /* two indirect node blocks */
1827         leaf_count *= NIDS_PER_BLOCK;
1828         result += (leaf_count * 2);
1829
1830         /* one double indirect node block */
1831         leaf_count *= NIDS_PER_BLOCK;
1832         result += leaf_count;
1833
1834         return result;
1835 }
1836
1837 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1838                 u64 start, u64 len)
1839 {
1840         struct f2fs_map_blocks map;
1841         sector_t start_blk, last_blk;
1842         pgoff_t next_pgofs;
1843         u64 logical = 0, phys = 0, size = 0;
1844         u32 flags = 0;
1845         int ret = 0;
1846         bool compr_cluster = false;
1847         unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
1848         loff_t maxbytes;
1849
1850         if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1851                 ret = f2fs_precache_extents(inode);
1852                 if (ret)
1853                         return ret;
1854         }
1855
1856         ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR);
1857         if (ret)
1858                 return ret;
1859
1860         inode_lock(inode);
1861
1862         maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
1863         if (start > maxbytes) {
1864                 ret = -EFBIG;
1865                 goto out;
1866         }
1867
1868         if (len > maxbytes || (maxbytes - len) < start)
1869                 len = maxbytes - start;
1870
1871         if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1872                 ret = f2fs_xattr_fiemap(inode, fieinfo);
1873                 goto out;
1874         }
1875
1876         if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
1877                 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1878                 if (ret != -EAGAIN)
1879                         goto out;
1880         }
1881
1882         if (bytes_to_blks(inode, len) == 0)
1883                 len = blks_to_bytes(inode, 1);
1884
1885         start_blk = bytes_to_blks(inode, start);
1886         last_blk = bytes_to_blks(inode, start + len - 1);
1887
1888 next:
1889         memset(&map, 0, sizeof(map));
1890         map.m_lblk = start_blk;
1891         map.m_len = bytes_to_blks(inode, len);
1892         map.m_next_pgofs = &next_pgofs;
1893         map.m_seg_type = NO_CHECK_TYPE;
1894
1895         if (compr_cluster)
1896                 map.m_len = cluster_size - 1;
1897
1898         ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP);
1899         if (ret)
1900                 goto out;
1901
1902         /* HOLE */
1903         if (!(map.m_flags & F2FS_MAP_FLAGS)) {
1904                 start_blk = next_pgofs;
1905
1906                 if (blks_to_bytes(inode, start_blk) < blks_to_bytes(inode,
1907                                                 max_inode_blocks(inode)))
1908                         goto prep_next;
1909
1910                 flags |= FIEMAP_EXTENT_LAST;
1911         }
1912
1913         if (size) {
1914                 flags |= FIEMAP_EXTENT_MERGED;
1915                 if (IS_ENCRYPTED(inode))
1916                         flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1917
1918                 ret = fiemap_fill_next_extent(fieinfo, logical,
1919                                 phys, size, flags);
1920                 trace_f2fs_fiemap(inode, logical, phys, size, flags, ret);
1921                 if (ret)
1922                         goto out;
1923                 size = 0;
1924         }
1925
1926         if (start_blk > last_blk)
1927                 goto out;
1928
1929         if (compr_cluster) {
1930                 compr_cluster = false;
1931
1932
1933                 logical = blks_to_bytes(inode, start_blk - 1);
1934                 phys = blks_to_bytes(inode, map.m_pblk);
1935                 size = blks_to_bytes(inode, cluster_size);
1936
1937                 flags |= FIEMAP_EXTENT_ENCODED;
1938
1939                 start_blk += cluster_size - 1;
1940
1941                 if (start_blk > last_blk)
1942                         goto out;
1943
1944                 goto prep_next;
1945         }
1946
1947         if (map.m_pblk == COMPRESS_ADDR) {
1948                 compr_cluster = true;
1949                 start_blk++;
1950                 goto prep_next;
1951         }
1952
1953         logical = blks_to_bytes(inode, start_blk);
1954         phys = blks_to_bytes(inode, map.m_pblk);
1955         size = blks_to_bytes(inode, map.m_len);
1956         flags = 0;
1957         if (map.m_flags & F2FS_MAP_UNWRITTEN)
1958                 flags = FIEMAP_EXTENT_UNWRITTEN;
1959
1960         start_blk += bytes_to_blks(inode, size);
1961
1962 prep_next:
1963         cond_resched();
1964         if (fatal_signal_pending(current))
1965                 ret = -EINTR;
1966         else
1967                 goto next;
1968 out:
1969         if (ret == 1)
1970                 ret = 0;
1971
1972         inode_unlock(inode);
1973         return ret;
1974 }
1975
1976 static inline loff_t f2fs_readpage_limit(struct inode *inode)
1977 {
1978         if (IS_ENABLED(CONFIG_FS_VERITY) &&
1979             (IS_VERITY(inode) || f2fs_verity_in_progress(inode)))
1980                 return inode->i_sb->s_maxbytes;
1981
1982         return i_size_read(inode);
1983 }
1984
1985 static int f2fs_read_single_page(struct inode *inode, struct page *page,
1986                                         unsigned nr_pages,
1987                                         struct f2fs_map_blocks *map,
1988                                         struct bio **bio_ret,
1989                                         sector_t *last_block_in_bio,
1990                                         bool is_readahead)
1991 {
1992         struct bio *bio = *bio_ret;
1993         const unsigned blocksize = blks_to_bytes(inode, 1);
1994         sector_t block_in_file;
1995         sector_t last_block;
1996         sector_t last_block_in_file;
1997         sector_t block_nr;
1998         int ret = 0;
1999
2000         block_in_file = (sector_t)page_index(page);
2001         last_block = block_in_file + nr_pages;
2002         last_block_in_file = bytes_to_blks(inode,
2003                         f2fs_readpage_limit(inode) + blocksize - 1);
2004         if (last_block > last_block_in_file)
2005                 last_block = last_block_in_file;
2006
2007         /* just zeroing out page which is beyond EOF */
2008         if (block_in_file >= last_block)
2009                 goto zero_out;
2010         /*
2011          * Map blocks using the previous result first.
2012          */
2013         if ((map->m_flags & F2FS_MAP_MAPPED) &&
2014                         block_in_file > map->m_lblk &&
2015                         block_in_file < (map->m_lblk + map->m_len))
2016                 goto got_it;
2017
2018         /*
2019          * Then do more f2fs_map_blocks() calls until we are
2020          * done with this page.
2021          */
2022         map->m_lblk = block_in_file;
2023         map->m_len = last_block - block_in_file;
2024
2025         ret = f2fs_map_blocks(inode, map, 0, F2FS_GET_BLOCK_DEFAULT);
2026         if (ret)
2027                 goto out;
2028 got_it:
2029         if ((map->m_flags & F2FS_MAP_MAPPED)) {
2030                 block_nr = map->m_pblk + block_in_file - map->m_lblk;
2031                 SetPageMappedToDisk(page);
2032
2033                 if (!PageUptodate(page) && (!PageSwapCache(page) &&
2034                                         !cleancache_get_page(page))) {
2035                         SetPageUptodate(page);
2036                         goto confused;
2037                 }
2038
2039                 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
2040                                                 DATA_GENERIC_ENHANCE_READ)) {
2041                         ret = -EFSCORRUPTED;
2042                         goto out;
2043                 }
2044         } else {
2045 zero_out:
2046                 zero_user_segment(page, 0, PAGE_SIZE);
2047                 if (f2fs_need_verity(inode, page->index) &&
2048                     !fsverity_verify_page(page)) {
2049                         ret = -EIO;
2050                         goto out;
2051                 }
2052                 if (!PageUptodate(page))
2053                         SetPageUptodate(page);
2054                 unlock_page(page);
2055                 goto out;
2056         }
2057
2058         /*
2059          * This page will go to BIO.  Do we need to send this
2060          * BIO off first?
2061          */
2062         if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio,
2063                                        *last_block_in_bio, block_nr) ||
2064                     !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2065 submit_and_realloc:
2066                 __submit_bio(F2FS_I_SB(inode), bio, DATA);
2067                 bio = NULL;
2068         }
2069         if (bio == NULL) {
2070                 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
2071                                 is_readahead ? REQ_RAHEAD : 0, page->index,
2072                                 false);
2073                 if (IS_ERR(bio)) {
2074                         ret = PTR_ERR(bio);
2075                         bio = NULL;
2076                         goto out;
2077                 }
2078         }
2079
2080         /*
2081          * If the page is under writeback, we need to wait for
2082          * its completion to see the correct decrypted data.
2083          */
2084         f2fs_wait_on_block_writeback(inode, block_nr);
2085
2086         if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2087                 goto submit_and_realloc;
2088
2089         inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
2090         f2fs_update_iostat(F2FS_I_SB(inode), FS_DATA_READ_IO, F2FS_BLKSIZE);
2091         ClearPageError(page);
2092         *last_block_in_bio = block_nr;
2093         goto out;
2094 confused:
2095         if (bio) {
2096                 __submit_bio(F2FS_I_SB(inode), bio, DATA);
2097                 bio = NULL;
2098         }
2099         unlock_page(page);
2100 out:
2101         *bio_ret = bio;
2102         return ret;
2103 }
2104
2105 #ifdef CONFIG_F2FS_FS_COMPRESSION
2106 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
2107                                 unsigned nr_pages, sector_t *last_block_in_bio,
2108                                 bool is_readahead, bool for_write)
2109 {
2110         struct dnode_of_data dn;
2111         struct inode *inode = cc->inode;
2112         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2113         struct bio *bio = *bio_ret;
2114         unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size;
2115         sector_t last_block_in_file;
2116         const unsigned blocksize = blks_to_bytes(inode, 1);
2117         struct decompress_io_ctx *dic = NULL;
2118         int i;
2119         int ret = 0;
2120
2121         f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc));
2122
2123         last_block_in_file = bytes_to_blks(inode,
2124                         f2fs_readpage_limit(inode) + blocksize - 1);
2125
2126         /* get rid of pages beyond EOF */
2127         for (i = 0; i < cc->cluster_size; i++) {
2128                 struct page *page = cc->rpages[i];
2129
2130                 if (!page)
2131                         continue;
2132                 if ((sector_t)page->index >= last_block_in_file) {
2133                         zero_user_segment(page, 0, PAGE_SIZE);
2134                         if (!PageUptodate(page))
2135                                 SetPageUptodate(page);
2136                 } else if (!PageUptodate(page)) {
2137                         continue;
2138                 }
2139                 unlock_page(page);
2140                 cc->rpages[i] = NULL;
2141                 cc->nr_rpages--;
2142         }
2143
2144         /* we are done since all pages are beyond EOF */
2145         if (f2fs_cluster_is_empty(cc))
2146                 goto out;
2147
2148         set_new_dnode(&dn, inode, NULL, NULL, 0);
2149         ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
2150         if (ret)
2151                 goto out;
2152
2153         f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR);
2154
2155         for (i = 1; i < cc->cluster_size; i++) {
2156                 block_t blkaddr;
2157
2158                 blkaddr = data_blkaddr(dn.inode, dn.node_page,
2159                                                 dn.ofs_in_node + i);
2160
2161                 if (!__is_valid_data_blkaddr(blkaddr))
2162                         break;
2163
2164                 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
2165                         ret = -EFAULT;
2166                         goto out_put_dnode;
2167                 }
2168                 cc->nr_cpages++;
2169         }
2170
2171         /* nothing to decompress */
2172         if (cc->nr_cpages == 0) {
2173                 ret = 0;
2174                 goto out_put_dnode;
2175         }
2176
2177         dic = f2fs_alloc_dic(cc);
2178         if (IS_ERR(dic)) {
2179                 ret = PTR_ERR(dic);
2180                 goto out_put_dnode;
2181         }
2182
2183         for (i = 0; i < cc->nr_cpages; i++) {
2184                 struct page *page = dic->cpages[i];
2185                 block_t blkaddr;
2186                 struct bio_post_read_ctx *ctx;
2187
2188                 blkaddr = data_blkaddr(dn.inode, dn.node_page,
2189                                                 dn.ofs_in_node + i + 1);
2190
2191                 f2fs_wait_on_block_writeback(inode, blkaddr);
2192
2193                 if (f2fs_load_compressed_page(sbi, page, blkaddr)) {
2194                         if (atomic_dec_and_test(&dic->remaining_pages))
2195                                 f2fs_decompress_cluster(dic);
2196                         continue;
2197                 }
2198
2199                 if (bio && (!page_is_mergeable(sbi, bio,
2200                                         *last_block_in_bio, blkaddr) ||
2201                     !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2202 submit_and_realloc:
2203                         __submit_bio(sbi, bio, DATA);
2204                         bio = NULL;
2205                 }
2206
2207                 if (!bio) {
2208                         bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages,
2209                                         is_readahead ? REQ_RAHEAD : 0,
2210                                         page->index, for_write);
2211                         if (IS_ERR(bio)) {
2212                                 ret = PTR_ERR(bio);
2213                                 f2fs_decompress_end_io(dic, ret);
2214                                 f2fs_put_dnode(&dn);
2215                                 *bio_ret = NULL;
2216                                 return ret;
2217                         }
2218                 }
2219
2220                 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2221                         goto submit_and_realloc;
2222
2223                 ctx = bio->bi_private;
2224                 ctx->enabled_steps |= STEP_DECOMPRESS;
2225                 refcount_inc(&dic->refcnt);
2226
2227                 inc_page_count(sbi, F2FS_RD_DATA);
2228                 f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE);
2229                 f2fs_update_iostat(sbi, FS_CDATA_READ_IO, F2FS_BLKSIZE);
2230                 ClearPageError(page);
2231                 *last_block_in_bio = blkaddr;
2232         }
2233
2234         f2fs_put_dnode(&dn);
2235
2236         *bio_ret = bio;
2237         return 0;
2238
2239 out_put_dnode:
2240         f2fs_put_dnode(&dn);
2241 out:
2242         for (i = 0; i < cc->cluster_size; i++) {
2243                 if (cc->rpages[i]) {
2244                         ClearPageUptodate(cc->rpages[i]);
2245                         ClearPageError(cc->rpages[i]);
2246                         unlock_page(cc->rpages[i]);
2247                 }
2248         }
2249         *bio_ret = bio;
2250         return ret;
2251 }
2252 #endif
2253
2254 /*
2255  * This function was originally taken from fs/mpage.c, and customized for f2fs.
2256  * Major change was from block_size == page_size in f2fs by default.
2257  */
2258 static int f2fs_mpage_readpages(struct inode *inode,
2259                 struct readahead_control *rac, struct page *page)
2260 {
2261         struct bio *bio = NULL;
2262         sector_t last_block_in_bio = 0;
2263         struct f2fs_map_blocks map;
2264 #ifdef CONFIG_F2FS_FS_COMPRESSION
2265         struct compress_ctx cc = {
2266                 .inode = inode,
2267                 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2268                 .cluster_size = F2FS_I(inode)->i_cluster_size,
2269                 .cluster_idx = NULL_CLUSTER,
2270                 .rpages = NULL,
2271                 .cpages = NULL,
2272                 .nr_rpages = 0,
2273                 .nr_cpages = 0,
2274         };
2275 #endif
2276         unsigned nr_pages = rac ? readahead_count(rac) : 1;
2277         unsigned max_nr_pages = nr_pages;
2278         int ret = 0;
2279
2280         map.m_pblk = 0;
2281         map.m_lblk = 0;
2282         map.m_len = 0;
2283         map.m_flags = 0;
2284         map.m_next_pgofs = NULL;
2285         map.m_next_extent = NULL;
2286         map.m_seg_type = NO_CHECK_TYPE;
2287         map.m_may_create = false;
2288
2289         for (; nr_pages; nr_pages--) {
2290                 if (rac) {
2291                         page = readahead_page(rac);
2292                         prefetchw(&page->flags);
2293                 }
2294
2295 #ifdef CONFIG_F2FS_FS_COMPRESSION
2296                 if (f2fs_compressed_file(inode)) {
2297                         /* there are remained comressed pages, submit them */
2298                         if (!f2fs_cluster_can_merge_page(&cc, page->index)) {
2299                                 ret = f2fs_read_multi_pages(&cc, &bio,
2300                                                         max_nr_pages,
2301                                                         &last_block_in_bio,
2302                                                         rac != NULL, false);
2303                                 f2fs_destroy_compress_ctx(&cc, false);
2304                                 if (ret)
2305                                         goto set_error_page;
2306                         }
2307                         ret = f2fs_is_compressed_cluster(inode, page->index);
2308                         if (ret < 0)
2309                                 goto set_error_page;
2310                         else if (!ret)
2311                                 goto read_single_page;
2312
2313                         ret = f2fs_init_compress_ctx(&cc);
2314                         if (ret)
2315                                 goto set_error_page;
2316
2317                         f2fs_compress_ctx_add_page(&cc, page);
2318
2319                         goto next_page;
2320                 }
2321 read_single_page:
2322 #endif
2323
2324                 ret = f2fs_read_single_page(inode, page, max_nr_pages, &map,
2325                                         &bio, &last_block_in_bio, rac);
2326                 if (ret) {
2327 #ifdef CONFIG_F2FS_FS_COMPRESSION
2328 set_error_page:
2329 #endif
2330                         SetPageError(page);
2331                         zero_user_segment(page, 0, PAGE_SIZE);
2332                         unlock_page(page);
2333                 }
2334 #ifdef CONFIG_F2FS_FS_COMPRESSION
2335 next_page:
2336 #endif
2337                 if (rac)
2338                         put_page(page);
2339
2340 #ifdef CONFIG_F2FS_FS_COMPRESSION
2341                 if (f2fs_compressed_file(inode)) {
2342                         /* last page */
2343                         if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) {
2344                                 ret = f2fs_read_multi_pages(&cc, &bio,
2345                                                         max_nr_pages,
2346                                                         &last_block_in_bio,
2347                                                         rac != NULL, false);
2348                                 f2fs_destroy_compress_ctx(&cc, false);
2349                         }
2350                 }
2351 #endif
2352         }
2353         if (bio)
2354                 __submit_bio(F2FS_I_SB(inode), bio, DATA);
2355         return ret;
2356 }
2357
2358 static int f2fs_read_data_page(struct file *file, struct page *page)
2359 {
2360         struct inode *inode = page_file_mapping(page)->host;
2361         int ret = -EAGAIN;
2362
2363         trace_f2fs_readpage(page, DATA);
2364
2365         if (!f2fs_is_compress_backend_ready(inode)) {
2366                 unlock_page(page);
2367                 return -EOPNOTSUPP;
2368         }
2369
2370         /* If the file has inline data, try to read it directly */
2371         if (f2fs_has_inline_data(inode))
2372                 ret = f2fs_read_inline_data(inode, page);
2373         if (ret == -EAGAIN)
2374                 ret = f2fs_mpage_readpages(inode, NULL, page);
2375         return ret;
2376 }
2377
2378 static void f2fs_readahead(struct readahead_control *rac)
2379 {
2380         struct inode *inode = rac->mapping->host;
2381
2382         trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac));
2383
2384         if (!f2fs_is_compress_backend_ready(inode))
2385                 return;
2386
2387         /* If the file has inline data, skip readpages */
2388         if (f2fs_has_inline_data(inode))
2389                 return;
2390
2391         f2fs_mpage_readpages(inode, rac, NULL);
2392 }
2393
2394 int f2fs_encrypt_one_page(struct f2fs_io_info *fio)
2395 {
2396         struct inode *inode = fio->page->mapping->host;
2397         struct page *mpage, *page;
2398         gfp_t gfp_flags = GFP_NOFS;
2399
2400         if (!f2fs_encrypted_file(inode))
2401                 return 0;
2402
2403         page = fio->compressed_page ? fio->compressed_page : fio->page;
2404
2405         /* wait for GCed page writeback via META_MAPPING */
2406         f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
2407
2408         if (fscrypt_inode_uses_inline_crypto(inode))
2409                 return 0;
2410
2411 retry_encrypt:
2412         fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page,
2413                                         PAGE_SIZE, 0, gfp_flags);
2414         if (IS_ERR(fio->encrypted_page)) {
2415                 /* flush pending IOs and wait for a while in the ENOMEM case */
2416                 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
2417                         f2fs_flush_merged_writes(fio->sbi);
2418                         congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
2419                         gfp_flags |= __GFP_NOFAIL;
2420                         goto retry_encrypt;
2421                 }
2422                 return PTR_ERR(fio->encrypted_page);
2423         }
2424
2425         mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
2426         if (mpage) {
2427                 if (PageUptodate(mpage))
2428                         memcpy(page_address(mpage),
2429                                 page_address(fio->encrypted_page), PAGE_SIZE);
2430                 f2fs_put_page(mpage, 1);
2431         }
2432         return 0;
2433 }
2434
2435 static inline bool check_inplace_update_policy(struct inode *inode,
2436                                 struct f2fs_io_info *fio)
2437 {
2438         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2439         unsigned int policy = SM_I(sbi)->ipu_policy;
2440
2441         if (policy & (0x1 << F2FS_IPU_FORCE))
2442                 return true;
2443         if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi))
2444                 return true;
2445         if (policy & (0x1 << F2FS_IPU_UTIL) &&
2446                         utilization(sbi) > SM_I(sbi)->min_ipu_util)
2447                 return true;
2448         if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) &&
2449                         utilization(sbi) > SM_I(sbi)->min_ipu_util)
2450                 return true;
2451
2452         /*
2453          * IPU for rewrite async pages
2454          */
2455         if (policy & (0x1 << F2FS_IPU_ASYNC) &&
2456                         fio && fio->op == REQ_OP_WRITE &&
2457                         !(fio->op_flags & REQ_SYNC) &&
2458                         !IS_ENCRYPTED(inode))
2459                 return true;
2460
2461         /* this is only set during fdatasync */
2462         if (policy & (0x1 << F2FS_IPU_FSYNC) &&
2463                         is_inode_flag_set(inode, FI_NEED_IPU))
2464                 return true;
2465
2466         if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2467                         !f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2468                 return true;
2469
2470         return false;
2471 }
2472
2473 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
2474 {
2475         if (f2fs_is_pinned_file(inode))
2476                 return true;
2477
2478         /* if this is cold file, we should overwrite to avoid fragmentation */
2479         if (file_is_cold(inode))
2480                 return true;
2481
2482         return check_inplace_update_policy(inode, fio);
2483 }
2484
2485 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
2486 {
2487         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2488
2489         if (f2fs_lfs_mode(sbi))
2490                 return true;
2491         if (S_ISDIR(inode->i_mode))
2492                 return true;
2493         if (IS_NOQUOTA(inode))
2494                 return true;
2495         if (f2fs_is_atomic_file(inode))
2496                 return true;
2497         if (fio) {
2498                 if (page_private_gcing(fio->page))
2499                         return true;
2500                 if (page_private_dummy(fio->page))
2501                         return true;
2502                 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2503                         f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2504                         return true;
2505         }
2506         return false;
2507 }
2508
2509 static inline bool need_inplace_update(struct f2fs_io_info *fio)
2510 {
2511         struct inode *inode = fio->page->mapping->host;
2512
2513         if (f2fs_should_update_outplace(inode, fio))
2514                 return false;
2515
2516         return f2fs_should_update_inplace(inode, fio);
2517 }
2518
2519 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
2520 {
2521         struct page *page = fio->page;
2522         struct inode *inode = page->mapping->host;
2523         struct dnode_of_data dn;
2524         struct extent_info ei = {0,0,0};
2525         struct node_info ni;
2526         bool ipu_force = false;
2527         int err = 0;
2528
2529         set_new_dnode(&dn, inode, NULL, NULL, 0);
2530         if (need_inplace_update(fio) &&
2531                         f2fs_lookup_extent_cache(inode, page->index, &ei)) {
2532                 fio->old_blkaddr = ei.blk + page->index - ei.fofs;
2533
2534                 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2535                                                 DATA_GENERIC_ENHANCE))
2536                         return -EFSCORRUPTED;
2537
2538                 ipu_force = true;
2539                 fio->need_lock = LOCK_DONE;
2540                 goto got_it;
2541         }
2542
2543         /* Deadlock due to between page->lock and f2fs_lock_op */
2544         if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
2545                 return -EAGAIN;
2546
2547         err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
2548         if (err)
2549                 goto out;
2550
2551         fio->old_blkaddr = dn.data_blkaddr;
2552
2553         /* This page is already truncated */
2554         if (fio->old_blkaddr == NULL_ADDR) {
2555                 ClearPageUptodate(page);
2556                 clear_page_private_gcing(page);
2557                 goto out_writepage;
2558         }
2559 got_it:
2560         if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2561                 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2562                                                 DATA_GENERIC_ENHANCE)) {
2563                 err = -EFSCORRUPTED;
2564                 goto out_writepage;
2565         }
2566         /*
2567          * If current allocation needs SSR,
2568          * it had better in-place writes for updated data.
2569          */
2570         if (ipu_force ||
2571                 (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2572                                         need_inplace_update(fio))) {
2573                 err = f2fs_encrypt_one_page(fio);
2574                 if (err)
2575                         goto out_writepage;
2576
2577                 set_page_writeback(page);
2578                 ClearPageError(page);
2579                 f2fs_put_dnode(&dn);
2580                 if (fio->need_lock == LOCK_REQ)
2581                         f2fs_unlock_op(fio->sbi);
2582                 err = f2fs_inplace_write_data(fio);
2583                 if (err) {
2584                         if (fscrypt_inode_uses_fs_layer_crypto(inode))
2585                                 fscrypt_finalize_bounce_page(&fio->encrypted_page);
2586                         if (PageWriteback(page))
2587                                 end_page_writeback(page);
2588                 } else {
2589                         set_inode_flag(inode, FI_UPDATE_WRITE);
2590                 }
2591                 trace_f2fs_do_write_data_page(fio->page, IPU);
2592                 return err;
2593         }
2594
2595         if (fio->need_lock == LOCK_RETRY) {
2596                 if (!f2fs_trylock_op(fio->sbi)) {
2597                         err = -EAGAIN;
2598                         goto out_writepage;
2599                 }
2600                 fio->need_lock = LOCK_REQ;
2601         }
2602
2603         err = f2fs_get_node_info(fio->sbi, dn.nid, &ni);
2604         if (err)
2605                 goto out_writepage;
2606
2607         fio->version = ni.version;
2608
2609         err = f2fs_encrypt_one_page(fio);
2610         if (err)
2611                 goto out_writepage;
2612
2613         set_page_writeback(page);
2614         ClearPageError(page);
2615
2616         if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR)
2617                 f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false);
2618
2619         /* LFS mode write path */
2620         f2fs_outplace_write_data(&dn, fio);
2621         trace_f2fs_do_write_data_page(page, OPU);
2622         set_inode_flag(inode, FI_APPEND_WRITE);
2623         if (page->index == 0)
2624                 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
2625 out_writepage:
2626         f2fs_put_dnode(&dn);
2627 out:
2628         if (fio->need_lock == LOCK_REQ)
2629                 f2fs_unlock_op(fio->sbi);
2630         return err;
2631 }
2632
2633 int f2fs_write_single_data_page(struct page *page, int *submitted,
2634                                 struct bio **bio,
2635                                 sector_t *last_block,
2636                                 struct writeback_control *wbc,
2637                                 enum iostat_type io_type,
2638                                 int compr_blocks,
2639                                 bool allow_balance)
2640 {
2641         struct inode *inode = page->mapping->host;
2642         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2643         loff_t i_size = i_size_read(inode);
2644         const pgoff_t end_index = ((unsigned long long)i_size)
2645                                                         >> PAGE_SHIFT;
2646         loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT;
2647         unsigned offset = 0;
2648         bool need_balance_fs = false;
2649         int err = 0;
2650         struct f2fs_io_info fio = {
2651                 .sbi = sbi,
2652                 .ino = inode->i_ino,
2653                 .type = DATA,
2654                 .op = REQ_OP_WRITE,
2655                 .op_flags = wbc_to_write_flags(wbc),
2656                 .old_blkaddr = NULL_ADDR,
2657                 .page = page,
2658                 .encrypted_page = NULL,
2659                 .submitted = false,
2660                 .compr_blocks = compr_blocks,
2661                 .need_lock = LOCK_RETRY,
2662                 .io_type = io_type,
2663                 .io_wbc = wbc,
2664                 .bio = bio,
2665                 .last_block = last_block,
2666         };
2667
2668         trace_f2fs_writepage(page, DATA);
2669
2670         /* we should bypass data pages to proceed the kworkder jobs */
2671         if (unlikely(f2fs_cp_error(sbi))) {
2672                 mapping_set_error(page->mapping, -EIO);
2673                 /*
2674                  * don't drop any dirty dentry pages for keeping lastest
2675                  * directory structure.
2676                  */
2677                 if (S_ISDIR(inode->i_mode))
2678                         goto redirty_out;
2679                 goto out;
2680         }
2681
2682         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2683                 goto redirty_out;
2684
2685         if (page->index < end_index ||
2686                         f2fs_verity_in_progress(inode) ||
2687                         compr_blocks)
2688                 goto write;
2689
2690         /*
2691          * If the offset is out-of-range of file size,
2692          * this page does not have to be written to disk.
2693          */
2694         offset = i_size & (PAGE_SIZE - 1);
2695         if ((page->index >= end_index + 1) || !offset)
2696                 goto out;
2697
2698         zero_user_segment(page, offset, PAGE_SIZE);
2699 write:
2700         if (f2fs_is_drop_cache(inode))
2701                 goto out;
2702         /* we should not write 0'th page having journal header */
2703         if (f2fs_is_volatile_file(inode) && (!page->index ||
2704                         (!wbc->for_reclaim &&
2705                         f2fs_available_free_memory(sbi, BASE_CHECK))))
2706                 goto redirty_out;
2707
2708         /* Dentry/quota blocks are controlled by checkpoint */
2709         if (S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) {
2710                 /*
2711                  * We need to wait for node_write to avoid block allocation during
2712                  * checkpoint. This can only happen to quota writes which can cause
2713                  * the below discard race condition.
2714                  */
2715                 if (IS_NOQUOTA(inode))
2716                         down_read(&sbi->node_write);
2717
2718                 fio.need_lock = LOCK_DONE;
2719                 err = f2fs_do_write_data_page(&fio);
2720
2721                 if (IS_NOQUOTA(inode))
2722                         up_read(&sbi->node_write);
2723
2724                 goto done;
2725         }
2726
2727         if (!wbc->for_reclaim)
2728                 need_balance_fs = true;
2729         else if (has_not_enough_free_secs(sbi, 0, 0))
2730                 goto redirty_out;
2731         else
2732                 set_inode_flag(inode, FI_HOT_DATA);
2733
2734         err = -EAGAIN;
2735         if (f2fs_has_inline_data(inode)) {
2736                 err = f2fs_write_inline_data(inode, page);
2737                 if (!err)
2738                         goto out;
2739         }
2740
2741         if (err == -EAGAIN) {
2742                 err = f2fs_do_write_data_page(&fio);
2743                 if (err == -EAGAIN) {
2744                         fio.need_lock = LOCK_REQ;
2745                         err = f2fs_do_write_data_page(&fio);
2746                 }
2747         }
2748
2749         if (err) {
2750                 file_set_keep_isize(inode);
2751         } else {
2752                 spin_lock(&F2FS_I(inode)->i_size_lock);
2753                 if (F2FS_I(inode)->last_disk_size < psize)
2754                         F2FS_I(inode)->last_disk_size = psize;
2755                 spin_unlock(&F2FS_I(inode)->i_size_lock);
2756         }
2757
2758 done:
2759         if (err && err != -ENOENT)
2760                 goto redirty_out;
2761
2762 out:
2763         inode_dec_dirty_pages(inode);
2764         if (err) {
2765                 ClearPageUptodate(page);
2766                 clear_page_private_gcing(page);
2767         }
2768
2769         if (wbc->for_reclaim) {
2770                 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2771                 clear_inode_flag(inode, FI_HOT_DATA);
2772                 f2fs_remove_dirty_inode(inode);
2773                 submitted = NULL;
2774         }
2775         unlock_page(page);
2776         if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2777                         !F2FS_I(inode)->cp_task && allow_balance)
2778                 f2fs_balance_fs(sbi, need_balance_fs);
2779
2780         if (unlikely(f2fs_cp_error(sbi))) {
2781                 f2fs_submit_merged_write(sbi, DATA);
2782                 f2fs_submit_merged_ipu_write(sbi, bio, NULL);
2783                 submitted = NULL;
2784         }
2785
2786         if (submitted)
2787                 *submitted = fio.submitted ? 1 : 0;
2788
2789         return 0;
2790
2791 redirty_out:
2792         redirty_page_for_writepage(wbc, page);
2793         /*
2794          * pageout() in MM traslates EAGAIN, so calls handle_write_error()
2795          * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2796          * file_write_and_wait_range() will see EIO error, which is critical
2797          * to return value of fsync() followed by atomic_write failure to user.
2798          */
2799         if (!err || wbc->for_reclaim)
2800                 return AOP_WRITEPAGE_ACTIVATE;
2801         unlock_page(page);
2802         return err;
2803 }
2804
2805 static int f2fs_write_data_page(struct page *page,
2806                                         struct writeback_control *wbc)
2807 {
2808 #ifdef CONFIG_F2FS_FS_COMPRESSION
2809         struct inode *inode = page->mapping->host;
2810
2811         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
2812                 goto out;
2813
2814         if (f2fs_compressed_file(inode)) {
2815                 if (f2fs_is_compressed_cluster(inode, page->index)) {
2816                         redirty_page_for_writepage(wbc, page);
2817                         return AOP_WRITEPAGE_ACTIVATE;
2818                 }
2819         }
2820 out:
2821 #endif
2822
2823         return f2fs_write_single_data_page(page, NULL, NULL, NULL,
2824                                                 wbc, FS_DATA_IO, 0, true);
2825 }
2826
2827 /*
2828  * This function was copied from write_cche_pages from mm/page-writeback.c.
2829  * The major change is making write step of cold data page separately from
2830  * warm/hot data page.
2831  */
2832 static int f2fs_write_cache_pages(struct address_space *mapping,
2833                                         struct writeback_control *wbc,
2834                                         enum iostat_type io_type)
2835 {
2836         int ret = 0;
2837         int done = 0, retry = 0;
2838         struct pagevec pvec;
2839         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2840         struct bio *bio = NULL;
2841         sector_t last_block;
2842 #ifdef CONFIG_F2FS_FS_COMPRESSION
2843         struct inode *inode = mapping->host;
2844         struct compress_ctx cc = {
2845                 .inode = inode,
2846                 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2847                 .cluster_size = F2FS_I(inode)->i_cluster_size,
2848                 .cluster_idx = NULL_CLUSTER,
2849                 .rpages = NULL,
2850                 .nr_rpages = 0,
2851                 .cpages = NULL,
2852                 .rbuf = NULL,
2853                 .cbuf = NULL,
2854                 .rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size,
2855                 .private = NULL,
2856         };
2857 #endif
2858         int nr_pages;
2859         pgoff_t index;
2860         pgoff_t end;            /* Inclusive */
2861         pgoff_t done_index;
2862         int range_whole = 0;
2863         xa_mark_t tag;
2864         int nwritten = 0;
2865         int submitted = 0;
2866         int i;
2867
2868         pagevec_init(&pvec);
2869
2870         if (get_dirty_pages(mapping->host) <=
2871                                 SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
2872                 set_inode_flag(mapping->host, FI_HOT_DATA);
2873         else
2874                 clear_inode_flag(mapping->host, FI_HOT_DATA);
2875
2876         if (wbc->range_cyclic) {
2877                 index = mapping->writeback_index; /* prev offset */
2878                 end = -1;
2879         } else {
2880                 index = wbc->range_start >> PAGE_SHIFT;
2881                 end = wbc->range_end >> PAGE_SHIFT;
2882                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2883                         range_whole = 1;
2884         }
2885         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2886                 tag = PAGECACHE_TAG_TOWRITE;
2887         else
2888                 tag = PAGECACHE_TAG_DIRTY;
2889 retry:
2890         retry = 0;
2891         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2892                 tag_pages_for_writeback(mapping, index, end);
2893         done_index = index;
2894         while (!done && !retry && (index <= end)) {
2895                 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2896                                 tag);
2897                 if (nr_pages == 0)
2898                         break;
2899
2900                 for (i = 0; i < nr_pages; i++) {
2901                         struct page *page = pvec.pages[i];
2902                         bool need_readd;
2903 readd:
2904                         need_readd = false;
2905 #ifdef CONFIG_F2FS_FS_COMPRESSION
2906                         if (f2fs_compressed_file(inode)) {
2907                                 ret = f2fs_init_compress_ctx(&cc);
2908                                 if (ret) {
2909                                         done = 1;
2910                                         break;
2911                                 }
2912
2913                                 if (!f2fs_cluster_can_merge_page(&cc,
2914                                                                 page->index)) {
2915                                         ret = f2fs_write_multi_pages(&cc,
2916                                                 &submitted, wbc, io_type);
2917                                         if (!ret)
2918                                                 need_readd = true;
2919                                         goto result;
2920                                 }
2921
2922                                 if (unlikely(f2fs_cp_error(sbi)))
2923                                         goto lock_page;
2924
2925                                 if (f2fs_cluster_is_empty(&cc)) {
2926                                         void *fsdata = NULL;
2927                                         struct page *pagep;
2928                                         int ret2;
2929
2930                                         ret2 = f2fs_prepare_compress_overwrite(
2931                                                         inode, &pagep,
2932                                                         page->index, &fsdata);
2933                                         if (ret2 < 0) {
2934                                                 ret = ret2;
2935                                                 done = 1;
2936                                                 break;
2937                                         } else if (ret2 &&
2938                                                 !f2fs_compress_write_end(inode,
2939                                                                 fsdata, page->index,
2940                                                                 1)) {
2941                                                 retry = 1;
2942                                                 break;
2943                                         }
2944                                 } else {
2945                                         goto lock_page;
2946                                 }
2947                         }
2948 #endif
2949                         /* give a priority to WB_SYNC threads */
2950                         if (atomic_read(&sbi->wb_sync_req[DATA]) &&
2951                                         wbc->sync_mode == WB_SYNC_NONE) {
2952                                 done = 1;
2953                                 break;
2954                         }
2955 #ifdef CONFIG_F2FS_FS_COMPRESSION
2956 lock_page:
2957 #endif
2958                         done_index = page->index;
2959 retry_write:
2960                         lock_page(page);
2961
2962                         if (unlikely(page->mapping != mapping)) {
2963 continue_unlock:
2964                                 unlock_page(page);
2965                                 continue;
2966                         }
2967
2968                         if (!PageDirty(page)) {
2969                                 /* someone wrote it for us */
2970                                 goto continue_unlock;
2971                         }
2972
2973                         if (PageWriteback(page)) {
2974                                 if (wbc->sync_mode != WB_SYNC_NONE)
2975                                         f2fs_wait_on_page_writeback(page,
2976                                                         DATA, true, true);
2977                                 else
2978                                         goto continue_unlock;
2979                         }
2980
2981                         if (!clear_page_dirty_for_io(page))
2982                                 goto continue_unlock;
2983
2984 #ifdef CONFIG_F2FS_FS_COMPRESSION
2985                         if (f2fs_compressed_file(inode)) {
2986                                 get_page(page);
2987                                 f2fs_compress_ctx_add_page(&cc, page);
2988                                 continue;
2989                         }
2990 #endif
2991                         ret = f2fs_write_single_data_page(page, &submitted,
2992                                         &bio, &last_block, wbc, io_type,
2993                                         0, true);
2994                         if (ret == AOP_WRITEPAGE_ACTIVATE)
2995                                 unlock_page(page);
2996 #ifdef CONFIG_F2FS_FS_COMPRESSION
2997 result:
2998 #endif
2999                         nwritten += submitted;
3000                         wbc->nr_to_write -= submitted;
3001
3002                         if (unlikely(ret)) {
3003                                 /*
3004                                  * keep nr_to_write, since vfs uses this to
3005                                  * get # of written pages.
3006                                  */
3007                                 if (ret == AOP_WRITEPAGE_ACTIVATE) {
3008                                         ret = 0;
3009                                         goto next;
3010                                 } else if (ret == -EAGAIN) {
3011                                         ret = 0;
3012                                         if (wbc->sync_mode == WB_SYNC_ALL) {
3013                                                 cond_resched();
3014                                                 congestion_wait(BLK_RW_ASYNC,
3015                                                         DEFAULT_IO_TIMEOUT);
3016                                                 goto retry_write;
3017                                         }
3018                                         goto next;
3019                                 }
3020                                 done_index = page->index + 1;
3021                                 done = 1;
3022                                 break;
3023                         }
3024
3025                         if (wbc->nr_to_write <= 0 &&
3026                                         wbc->sync_mode == WB_SYNC_NONE) {
3027                                 done = 1;
3028                                 break;
3029                         }
3030 next:
3031                         if (need_readd)
3032                                 goto readd;
3033                 }
3034                 pagevec_release(&pvec);
3035                 cond_resched();
3036         }
3037 #ifdef CONFIG_F2FS_FS_COMPRESSION
3038         /* flush remained pages in compress cluster */
3039         if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) {
3040                 ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type);
3041                 nwritten += submitted;
3042                 wbc->nr_to_write -= submitted;
3043                 if (ret) {
3044                         done = 1;
3045                         retry = 0;
3046                 }
3047         }
3048         if (f2fs_compressed_file(inode))
3049                 f2fs_destroy_compress_ctx(&cc, false);
3050 #endif
3051         if (retry) {
3052                 index = 0;
3053                 end = -1;
3054                 goto retry;
3055         }
3056         if (wbc->range_cyclic && !done)
3057                 done_index = 0;
3058         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3059                 mapping->writeback_index = done_index;
3060
3061         if (nwritten)
3062                 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
3063                                                                 NULL, 0, DATA);
3064         /* submit cached bio of IPU write */
3065         if (bio)
3066                 f2fs_submit_merged_ipu_write(sbi, &bio, NULL);
3067
3068         return ret;
3069 }
3070
3071 static inline bool __should_serialize_io(struct inode *inode,
3072                                         struct writeback_control *wbc)
3073 {
3074         /* to avoid deadlock in path of data flush */
3075         if (F2FS_I(inode)->cp_task)
3076                 return false;
3077
3078         if (!S_ISREG(inode->i_mode))
3079                 return false;
3080         if (IS_NOQUOTA(inode))
3081                 return false;
3082
3083         if (f2fs_need_compress_data(inode))
3084                 return true;
3085         if (wbc->sync_mode != WB_SYNC_ALL)
3086                 return true;
3087         if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
3088                 return true;
3089         return false;
3090 }
3091
3092 static int __f2fs_write_data_pages(struct address_space *mapping,
3093                                                 struct writeback_control *wbc,
3094                                                 enum iostat_type io_type)
3095 {
3096         struct inode *inode = mapping->host;
3097         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3098         struct blk_plug plug;
3099         int ret;
3100         bool locked = false;
3101
3102         /* deal with chardevs and other special file */
3103         if (!mapping->a_ops->writepage)
3104                 return 0;
3105
3106         /* skip writing if there is no dirty page in this inode */
3107         if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
3108                 return 0;
3109
3110         /* during POR, we don't need to trigger writepage at all. */
3111         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
3112                 goto skip_write;
3113
3114         if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
3115                         wbc->sync_mode == WB_SYNC_NONE &&
3116                         get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
3117                         f2fs_available_free_memory(sbi, DIRTY_DENTS))
3118                 goto skip_write;
3119
3120         /* skip writing during file defragment */
3121         if (is_inode_flag_set(inode, FI_DO_DEFRAG))
3122                 goto skip_write;
3123
3124         trace_f2fs_writepages(mapping->host, wbc, DATA);
3125
3126         /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
3127         if (wbc->sync_mode == WB_SYNC_ALL)
3128                 atomic_inc(&sbi->wb_sync_req[DATA]);
3129         else if (atomic_read(&sbi->wb_sync_req[DATA]))
3130                 goto skip_write;
3131
3132         if (__should_serialize_io(inode, wbc)) {
3133                 mutex_lock(&sbi->writepages);
3134                 locked = true;
3135         }
3136
3137         blk_start_plug(&plug);
3138         ret = f2fs_write_cache_pages(mapping, wbc, io_type);
3139         blk_finish_plug(&plug);
3140
3141         if (locked)
3142                 mutex_unlock(&sbi->writepages);
3143
3144         if (wbc->sync_mode == WB_SYNC_ALL)
3145                 atomic_dec(&sbi->wb_sync_req[DATA]);
3146         /*
3147          * if some pages were truncated, we cannot guarantee its mapping->host
3148          * to detect pending bios.
3149          */
3150
3151         f2fs_remove_dirty_inode(inode);
3152         return ret;
3153
3154 skip_write:
3155         wbc->pages_skipped += get_dirty_pages(inode);
3156         trace_f2fs_writepages(mapping->host, wbc, DATA);
3157         return 0;
3158 }
3159
3160 static int f2fs_write_data_pages(struct address_space *mapping,
3161                             struct writeback_control *wbc)
3162 {
3163         struct inode *inode = mapping->host;
3164
3165         return __f2fs_write_data_pages(mapping, wbc,
3166                         F2FS_I(inode)->cp_task == current ?
3167                         FS_CP_DATA_IO : FS_DATA_IO);
3168 }
3169
3170 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
3171 {
3172         struct inode *inode = mapping->host;
3173         loff_t i_size = i_size_read(inode);
3174
3175         if (IS_NOQUOTA(inode))
3176                 return;
3177
3178         /* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
3179         if (to > i_size && !f2fs_verity_in_progress(inode)) {
3180                 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3181                 down_write(&F2FS_I(inode)->i_mmap_sem);
3182
3183                 truncate_pagecache(inode, i_size);
3184                 f2fs_truncate_blocks(inode, i_size, true);
3185
3186                 up_write(&F2FS_I(inode)->i_mmap_sem);
3187                 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3188         }
3189 }
3190
3191 static int prepare_write_begin(struct f2fs_sb_info *sbi,
3192                         struct page *page, loff_t pos, unsigned len,
3193                         block_t *blk_addr, bool *node_changed)
3194 {
3195         struct inode *inode = page->mapping->host;
3196         pgoff_t index = page->index;
3197         struct dnode_of_data dn;
3198         struct page *ipage;
3199         bool locked = false;
3200         struct extent_info ei = {0,0,0};
3201         int err = 0;
3202         int flag;
3203
3204         /*
3205          * we already allocated all the blocks, so we don't need to get
3206          * the block addresses when there is no need to fill the page.
3207          */
3208         if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE &&
3209             !is_inode_flag_set(inode, FI_NO_PREALLOC) &&
3210             !f2fs_verity_in_progress(inode))
3211                 return 0;
3212
3213         /* f2fs_lock_op avoids race between write CP and convert_inline_page */
3214         if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode))
3215                 flag = F2FS_GET_BLOCK_DEFAULT;
3216         else
3217                 flag = F2FS_GET_BLOCK_PRE_AIO;
3218
3219         if (f2fs_has_inline_data(inode) ||
3220                         (pos & PAGE_MASK) >= i_size_read(inode)) {
3221                 f2fs_do_map_lock(sbi, flag, true);
3222                 locked = true;
3223         }
3224
3225 restart:
3226         /* check inline_data */
3227         ipage = f2fs_get_node_page(sbi, inode->i_ino);
3228         if (IS_ERR(ipage)) {
3229                 err = PTR_ERR(ipage);
3230                 goto unlock_out;
3231         }
3232
3233         set_new_dnode(&dn, inode, ipage, ipage, 0);
3234
3235         if (f2fs_has_inline_data(inode)) {
3236                 if (pos + len <= MAX_INLINE_DATA(inode)) {
3237                         f2fs_do_read_inline_data(page, ipage);
3238                         set_inode_flag(inode, FI_DATA_EXIST);
3239                         if (inode->i_nlink)
3240                                 set_page_private_inline(ipage);
3241                 } else {
3242                         err = f2fs_convert_inline_page(&dn, page);
3243                         if (err)
3244                                 goto out;
3245                         if (dn.data_blkaddr == NULL_ADDR)
3246                                 err = f2fs_get_block(&dn, index);
3247                 }
3248         } else if (locked) {
3249                 err = f2fs_get_block(&dn, index);
3250         } else {
3251                 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
3252                         dn.data_blkaddr = ei.blk + index - ei.fofs;
3253                 } else {
3254                         /* hole case */
3255                         err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3256                         if (err || dn.data_blkaddr == NULL_ADDR) {
3257                                 f2fs_put_dnode(&dn);
3258                                 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO,
3259                                                                 true);
3260                                 WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
3261                                 locked = true;
3262                                 goto restart;
3263                         }
3264                 }
3265         }
3266
3267         /* convert_inline_page can make node_changed */
3268         *blk_addr = dn.data_blkaddr;
3269         *node_changed = dn.node_changed;
3270 out:
3271         f2fs_put_dnode(&dn);
3272 unlock_out:
3273         if (locked)
3274                 f2fs_do_map_lock(sbi, flag, false);
3275         return err;
3276 }
3277
3278 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
3279                 loff_t pos, unsigned len, unsigned flags,
3280                 struct page **pagep, void **fsdata)
3281 {
3282         struct inode *inode = mapping->host;
3283         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3284         struct page *page = NULL;
3285         pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
3286         bool need_balance = false, drop_atomic = false;
3287         block_t blkaddr = NULL_ADDR;
3288         int err = 0;
3289
3290         trace_f2fs_write_begin(inode, pos, len, flags);
3291
3292         if (!f2fs_is_checkpoint_ready(sbi)) {
3293                 err = -ENOSPC;
3294                 goto fail;
3295         }
3296
3297         if ((f2fs_is_atomic_file(inode) &&
3298                         !f2fs_available_free_memory(sbi, INMEM_PAGES)) ||
3299                         is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
3300                 err = -ENOMEM;
3301                 drop_atomic = true;
3302                 goto fail;
3303         }
3304
3305         /*
3306          * We should check this at this moment to avoid deadlock on inode page
3307          * and #0 page. The locking rule for inline_data conversion should be:
3308          * lock_page(page #0) -> lock_page(inode_page)
3309          */
3310         if (index != 0) {
3311                 err = f2fs_convert_inline_inode(inode);
3312                 if (err)
3313                         goto fail;
3314         }
3315
3316 #ifdef CONFIG_F2FS_FS_COMPRESSION
3317         if (f2fs_compressed_file(inode)) {
3318                 int ret;
3319
3320                 *fsdata = NULL;
3321
3322                 ret = f2fs_prepare_compress_overwrite(inode, pagep,
3323                                                         index, fsdata);
3324                 if (ret < 0) {
3325                         err = ret;
3326                         goto fail;
3327                 } else if (ret) {
3328                         return 0;
3329                 }
3330         }
3331 #endif
3332
3333 repeat:
3334         /*
3335          * Do not use grab_cache_page_write_begin() to avoid deadlock due to
3336          * wait_for_stable_page. Will wait that below with our IO control.
3337          */
3338         page = f2fs_pagecache_get_page(mapping, index,
3339                                 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
3340         if (!page) {
3341                 err = -ENOMEM;
3342                 goto fail;
3343         }
3344
3345         /* TODO: cluster can be compressed due to race with .writepage */
3346
3347         *pagep = page;
3348
3349         err = prepare_write_begin(sbi, page, pos, len,
3350                                         &blkaddr, &need_balance);
3351         if (err)
3352                 goto fail;
3353
3354         if (need_balance && !IS_NOQUOTA(inode) &&
3355                         has_not_enough_free_secs(sbi, 0, 0)) {
3356                 unlock_page(page);
3357                 f2fs_balance_fs(sbi, true);
3358                 lock_page(page);
3359                 if (page->mapping != mapping) {
3360                         /* The page got truncated from under us */
3361                         f2fs_put_page(page, 1);
3362                         goto repeat;
3363                 }
3364         }
3365
3366         f2fs_wait_on_page_writeback(page, DATA, false, true);
3367
3368         if (len == PAGE_SIZE || PageUptodate(page))
3369                 return 0;
3370
3371         if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) &&
3372             !f2fs_verity_in_progress(inode)) {
3373                 zero_user_segment(page, len, PAGE_SIZE);
3374                 return 0;
3375         }
3376
3377         if (blkaddr == NEW_ADDR) {
3378                 zero_user_segment(page, 0, PAGE_SIZE);
3379                 SetPageUptodate(page);
3380         } else {
3381                 if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3382                                 DATA_GENERIC_ENHANCE_READ)) {
3383                         err = -EFSCORRUPTED;
3384                         goto fail;
3385                 }
3386                 err = f2fs_submit_page_read(inode, page, blkaddr, 0, true);
3387                 if (err)
3388                         goto fail;
3389
3390                 lock_page(page);
3391                 if (unlikely(page->mapping != mapping)) {
3392                         f2fs_put_page(page, 1);
3393                         goto repeat;
3394                 }
3395                 if (unlikely(!PageUptodate(page))) {
3396                         err = -EIO;
3397                         goto fail;
3398                 }
3399         }
3400         return 0;
3401
3402 fail:
3403         f2fs_put_page(page, 1);
3404         f2fs_write_failed(mapping, pos + len);
3405         if (drop_atomic)
3406                 f2fs_drop_inmem_pages_all(sbi, false);
3407         return err;
3408 }
3409
3410 static int f2fs_write_end(struct file *file,
3411                         struct address_space *mapping,
3412                         loff_t pos, unsigned len, unsigned copied,
3413                         struct page *page, void *fsdata)
3414 {
3415         struct inode *inode = page->mapping->host;
3416
3417         trace_f2fs_write_end(inode, pos, len, copied);
3418
3419         /*
3420          * This should be come from len == PAGE_SIZE, and we expect copied
3421          * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
3422          * let generic_perform_write() try to copy data again through copied=0.
3423          */
3424         if (!PageUptodate(page)) {
3425                 if (unlikely(copied != len))
3426                         copied = 0;
3427                 else
3428                         SetPageUptodate(page);
3429         }
3430
3431 #ifdef CONFIG_F2FS_FS_COMPRESSION
3432         /* overwrite compressed file */
3433         if (f2fs_compressed_file(inode) && fsdata) {
3434                 f2fs_compress_write_end(inode, fsdata, page->index, copied);
3435                 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3436
3437                 if (pos + copied > i_size_read(inode) &&
3438                                 !f2fs_verity_in_progress(inode))
3439                         f2fs_i_size_write(inode, pos + copied);
3440                 return copied;
3441         }
3442 #endif
3443
3444         if (!copied)
3445                 goto unlock_out;
3446
3447         set_page_dirty(page);
3448
3449         if (pos + copied > i_size_read(inode) &&
3450             !f2fs_verity_in_progress(inode))
3451                 f2fs_i_size_write(inode, pos + copied);
3452 unlock_out:
3453         f2fs_put_page(page, 1);
3454         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3455         return copied;
3456 }
3457
3458 static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
3459                            loff_t offset)
3460 {
3461         unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
3462         unsigned blkbits = i_blkbits;
3463         unsigned blocksize_mask = (1 << blkbits) - 1;
3464         unsigned long align = offset | iov_iter_alignment(iter);
3465         struct block_device *bdev = inode->i_sb->s_bdev;
3466
3467         if (iov_iter_rw(iter) == READ && offset >= i_size_read(inode))
3468                 return 1;
3469
3470         if (align & blocksize_mask) {
3471                 if (bdev)
3472                         blkbits = blksize_bits(bdev_logical_block_size(bdev));
3473                 blocksize_mask = (1 << blkbits) - 1;
3474                 if (align & blocksize_mask)
3475                         return -EINVAL;
3476                 return 1;
3477         }
3478         return 0;
3479 }
3480
3481 static void f2fs_dio_end_io(struct bio *bio)
3482 {
3483         struct f2fs_private_dio *dio = bio->bi_private;
3484
3485         dec_page_count(F2FS_I_SB(dio->inode),
3486                         dio->write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
3487
3488         bio->bi_private = dio->orig_private;
3489         bio->bi_end_io = dio->orig_end_io;
3490
3491         kfree(dio);
3492
3493         bio_endio(bio);
3494 }
3495
3496 static void f2fs_dio_submit_bio(struct bio *bio, struct inode *inode,
3497                                                         loff_t file_offset)
3498 {
3499         struct f2fs_private_dio *dio;
3500         bool write = (bio_op(bio) == REQ_OP_WRITE);
3501
3502         dio = f2fs_kzalloc(F2FS_I_SB(inode),
3503                         sizeof(struct f2fs_private_dio), GFP_NOFS);
3504         if (!dio)
3505                 goto out;
3506
3507         dio->inode = inode;
3508         dio->orig_end_io = bio->bi_end_io;
3509         dio->orig_private = bio->bi_private;
3510         dio->write = write;
3511
3512         bio->bi_end_io = f2fs_dio_end_io;
3513         bio->bi_private = dio;
3514
3515         inc_page_count(F2FS_I_SB(inode),
3516                         write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
3517
3518         submit_bio(bio);
3519         return;
3520 out:
3521         bio->bi_status = BLK_STS_IOERR;
3522         bio_endio(bio);
3523 }
3524
3525 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3526 {
3527         struct address_space *mapping = iocb->ki_filp->f_mapping;
3528         struct inode *inode = mapping->host;
3529         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3530         struct f2fs_inode_info *fi = F2FS_I(inode);
3531         size_t count = iov_iter_count(iter);
3532         loff_t offset = iocb->ki_pos;
3533         int rw = iov_iter_rw(iter);
3534         int err;
3535         enum rw_hint hint = iocb->ki_hint;
3536         int whint_mode = F2FS_OPTION(sbi).whint_mode;
3537         bool do_opu;
3538
3539         err = check_direct_IO(inode, iter, offset);
3540         if (err)
3541                 return err < 0 ? err : 0;
3542
3543         if (f2fs_force_buffered_io(inode, iocb, iter))
3544                 return 0;
3545
3546         do_opu = allow_outplace_dio(inode, iocb, iter);
3547
3548         trace_f2fs_direct_IO_enter(inode, offset, count, rw);
3549
3550         if (rw == WRITE && whint_mode == WHINT_MODE_OFF)
3551                 iocb->ki_hint = WRITE_LIFE_NOT_SET;
3552
3553         if (iocb->ki_flags & IOCB_NOWAIT) {
3554                 if (!down_read_trylock(&fi->i_gc_rwsem[rw])) {
3555                         iocb->ki_hint = hint;
3556                         err = -EAGAIN;
3557                         goto out;
3558                 }
3559                 if (do_opu && !down_read_trylock(&fi->i_gc_rwsem[READ])) {
3560                         up_read(&fi->i_gc_rwsem[rw]);
3561                         iocb->ki_hint = hint;
3562                         err = -EAGAIN;
3563                         goto out;
3564                 }
3565         } else {
3566                 down_read(&fi->i_gc_rwsem[rw]);
3567                 if (do_opu)
3568                         down_read(&fi->i_gc_rwsem[READ]);
3569         }
3570
3571         err = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3572                         iter, rw == WRITE ? get_data_block_dio_write :
3573                         get_data_block_dio, NULL, f2fs_dio_submit_bio,
3574                         rw == WRITE ? DIO_LOCKING | DIO_SKIP_HOLES :
3575                         DIO_SKIP_HOLES);
3576
3577         if (do_opu)
3578                 up_read(&fi->i_gc_rwsem[READ]);
3579
3580         up_read(&fi->i_gc_rwsem[rw]);
3581
3582         if (rw == WRITE) {
3583                 if (whint_mode == WHINT_MODE_OFF)
3584                         iocb->ki_hint = hint;
3585                 if (err > 0) {
3586                         f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO,
3587                                                                         err);
3588                         if (!do_opu)
3589                                 set_inode_flag(inode, FI_UPDATE_WRITE);
3590                 } else if (err == -EIOCBQUEUED) {
3591                         f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO,
3592                                                 count - iov_iter_count(iter));
3593                 } else if (err < 0) {
3594                         f2fs_write_failed(mapping, offset + count);
3595                 }
3596         } else {
3597                 if (err > 0)
3598                         f2fs_update_iostat(sbi, APP_DIRECT_READ_IO, err);
3599                 else if (err == -EIOCBQUEUED)
3600                         f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_READ_IO,
3601                                                 count - iov_iter_count(iter));
3602         }
3603
3604 out:
3605         trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
3606
3607         return err;
3608 }
3609
3610 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3611                                                         unsigned int length)
3612 {
3613         struct inode *inode = page->mapping->host;
3614         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3615
3616         if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
3617                 (offset % PAGE_SIZE || length != PAGE_SIZE))
3618                 return;
3619
3620         if (PageDirty(page)) {
3621                 if (inode->i_ino == F2FS_META_INO(sbi)) {
3622                         dec_page_count(sbi, F2FS_DIRTY_META);
3623                 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
3624                         dec_page_count(sbi, F2FS_DIRTY_NODES);
3625                 } else {
3626                         inode_dec_dirty_pages(inode);
3627                         f2fs_remove_dirty_inode(inode);
3628                 }
3629         }
3630
3631         clear_page_private_gcing(page);
3632
3633         if (test_opt(sbi, COMPRESS_CACHE)) {
3634                 if (f2fs_compressed_file(inode))
3635                         f2fs_invalidate_compress_pages(sbi, inode->i_ino);
3636                 if (inode->i_ino == F2FS_COMPRESS_INO(sbi))
3637                         clear_page_private_data(page);
3638         }
3639
3640         if (page_private_atomic(page))
3641                 return f2fs_drop_inmem_page(inode, page);
3642
3643         detach_page_private(page);
3644         set_page_private(page, 0);
3645 }
3646
3647 int f2fs_release_page(struct page *page, gfp_t wait)
3648 {
3649         /* If this is dirty page, keep PagePrivate */
3650         if (PageDirty(page))
3651                 return 0;
3652
3653         /* This is atomic written page, keep Private */
3654         if (page_private_atomic(page))
3655                 return 0;
3656
3657         if (test_opt(F2FS_P_SB(page), COMPRESS_CACHE)) {
3658                 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3659                 struct inode *inode = page->mapping->host;
3660
3661                 if (f2fs_compressed_file(inode))
3662                         f2fs_invalidate_compress_pages(sbi, inode->i_ino);
3663                 if (inode->i_ino == F2FS_COMPRESS_INO(sbi))
3664                         clear_page_private_data(page);
3665         }
3666
3667         clear_page_private_gcing(page);
3668
3669         detach_page_private(page);
3670         set_page_private(page, 0);
3671         return 1;
3672 }
3673
3674 static int f2fs_set_data_page_dirty(struct page *page)
3675 {
3676         struct inode *inode = page_file_mapping(page)->host;
3677
3678         trace_f2fs_set_page_dirty(page, DATA);
3679
3680         if (!PageUptodate(page))
3681                 SetPageUptodate(page);
3682         if (PageSwapCache(page))
3683                 return __set_page_dirty_nobuffers(page);
3684
3685         if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) {
3686                 if (!page_private_atomic(page)) {
3687                         f2fs_register_inmem_page(inode, page);
3688                         return 1;
3689                 }
3690                 /*
3691                  * Previously, this page has been registered, we just
3692                  * return here.
3693                  */
3694                 return 0;
3695         }
3696
3697         if (!PageDirty(page)) {
3698                 __set_page_dirty_nobuffers(page);
3699                 f2fs_update_dirty_page(inode, page);
3700                 return 1;
3701         }
3702         return 0;
3703 }
3704
3705
3706 static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block)
3707 {
3708 #ifdef CONFIG_F2FS_FS_COMPRESSION
3709         struct dnode_of_data dn;
3710         sector_t start_idx, blknr = 0;
3711         int ret;
3712
3713         start_idx = round_down(block, F2FS_I(inode)->i_cluster_size);
3714
3715         set_new_dnode(&dn, inode, NULL, NULL, 0);
3716         ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
3717         if (ret)
3718                 return 0;
3719
3720         if (dn.data_blkaddr != COMPRESS_ADDR) {
3721                 dn.ofs_in_node += block - start_idx;
3722                 blknr = f2fs_data_blkaddr(&dn);
3723                 if (!__is_valid_data_blkaddr(blknr))
3724                         blknr = 0;
3725         }
3726
3727         f2fs_put_dnode(&dn);
3728         return blknr;
3729 #else
3730         return 0;
3731 #endif
3732 }
3733
3734
3735 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
3736 {
3737         struct inode *inode = mapping->host;
3738         sector_t blknr = 0;
3739
3740         if (f2fs_has_inline_data(inode))
3741                 goto out;
3742
3743         /* make sure allocating whole blocks */
3744         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
3745                 filemap_write_and_wait(mapping);
3746
3747         /* Block number less than F2FS MAX BLOCKS */
3748         if (unlikely(block >= max_file_blocks(inode)))
3749                 goto out;
3750
3751         if (f2fs_compressed_file(inode)) {
3752                 blknr = f2fs_bmap_compress(inode, block);
3753         } else {
3754                 struct f2fs_map_blocks map;
3755
3756                 memset(&map, 0, sizeof(map));
3757                 map.m_lblk = block;
3758                 map.m_len = 1;
3759                 map.m_next_pgofs = NULL;
3760                 map.m_seg_type = NO_CHECK_TYPE;
3761
3762                 if (!f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_BMAP))
3763                         blknr = map.m_pblk;
3764         }
3765 out:
3766         trace_f2fs_bmap(inode, block, blknr);
3767         return blknr;
3768 }
3769
3770 #ifdef CONFIG_MIGRATION
3771 #include <linux/migrate.h>
3772
3773 int f2fs_migrate_page(struct address_space *mapping,
3774                 struct page *newpage, struct page *page, enum migrate_mode mode)
3775 {
3776         int rc, extra_count;
3777         struct f2fs_inode_info *fi = F2FS_I(mapping->host);
3778         bool atomic_written = page_private_atomic(page);
3779
3780         BUG_ON(PageWriteback(page));
3781
3782         /* migrating an atomic written page is safe with the inmem_lock hold */
3783         if (atomic_written) {
3784                 if (mode != MIGRATE_SYNC)
3785                         return -EBUSY;
3786                 if (!mutex_trylock(&fi->inmem_lock))
3787                         return -EAGAIN;
3788         }
3789
3790         /* one extra reference was held for atomic_write page */
3791         extra_count = atomic_written ? 1 : 0;
3792         rc = migrate_page_move_mapping(mapping, newpage,
3793                                 page, extra_count);
3794         if (rc != MIGRATEPAGE_SUCCESS) {
3795                 if (atomic_written)
3796                         mutex_unlock(&fi->inmem_lock);
3797                 return rc;
3798         }
3799
3800         if (atomic_written) {
3801                 struct inmem_pages *cur;
3802
3803                 list_for_each_entry(cur, &fi->inmem_pages, list)
3804                         if (cur->page == page) {
3805                                 cur->page = newpage;
3806                                 break;
3807                         }
3808                 mutex_unlock(&fi->inmem_lock);
3809                 put_page(page);
3810                 get_page(newpage);
3811         }
3812
3813         if (PagePrivate(page)) {
3814                 set_page_private(newpage, page_private(page));
3815                 SetPagePrivate(newpage);
3816                 get_page(newpage);
3817
3818                 set_page_private(page, 0);
3819                 ClearPagePrivate(page);
3820                 put_page(page);
3821         }
3822
3823         if (mode != MIGRATE_SYNC_NO_COPY)
3824                 migrate_page_copy(newpage, page);
3825         else
3826                 migrate_page_states(newpage, page);
3827
3828         return MIGRATEPAGE_SUCCESS;
3829 }
3830 #endif
3831
3832 #ifdef CONFIG_SWAP
3833 static int f2fs_is_file_aligned(struct inode *inode)
3834 {
3835         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3836         block_t main_blkaddr = SM_I(sbi)->main_blkaddr;
3837         block_t cur_lblock;
3838         block_t last_lblock;
3839         block_t pblock;
3840         unsigned long nr_pblocks;
3841         unsigned int blocks_per_sec = BLKS_PER_SEC(sbi);
3842         unsigned int not_aligned = 0;
3843         int ret = 0;
3844
3845         cur_lblock = 0;
3846         last_lblock = bytes_to_blks(inode, i_size_read(inode));
3847
3848         while (cur_lblock < last_lblock) {
3849                 struct f2fs_map_blocks map;
3850
3851                 memset(&map, 0, sizeof(map));
3852                 map.m_lblk = cur_lblock;
3853                 map.m_len = last_lblock - cur_lblock;
3854                 map.m_next_pgofs = NULL;
3855                 map.m_next_extent = NULL;
3856                 map.m_seg_type = NO_CHECK_TYPE;
3857                 map.m_may_create = false;
3858
3859                 ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP);
3860                 if (ret)
3861                         goto out;
3862
3863                 /* hole */
3864                 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
3865                         f2fs_err(sbi, "Swapfile has holes");
3866                         ret = -ENOENT;
3867                         goto out;
3868                 }
3869
3870                 pblock = map.m_pblk;
3871                 nr_pblocks = map.m_len;
3872
3873                 if ((pblock - main_blkaddr) & (blocks_per_sec - 1) ||
3874                         nr_pblocks & (blocks_per_sec - 1)) {
3875                         if (f2fs_is_pinned_file(inode)) {
3876                                 f2fs_err(sbi, "Swapfile does not align to section");
3877                                 ret = -EINVAL;
3878                                 goto out;
3879                         }
3880                         not_aligned++;
3881                 }
3882
3883                 cur_lblock += nr_pblocks;
3884         }
3885         if (not_aligned)
3886                 f2fs_warn(sbi, "Swapfile (%u) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate()",
3887                           not_aligned);
3888 out:
3889         return ret;
3890 }
3891
3892 static int check_swap_activate_fast(struct swap_info_struct *sis,
3893                                 struct file *swap_file, sector_t *span)
3894 {
3895         struct address_space *mapping = swap_file->f_mapping;
3896         struct inode *inode = mapping->host;
3897         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3898         sector_t cur_lblock;
3899         sector_t last_lblock;
3900         sector_t pblock;
3901         sector_t lowest_pblock = -1;
3902         sector_t highest_pblock = 0;
3903         int nr_extents = 0;
3904         unsigned long nr_pblocks;
3905         unsigned int blocks_per_sec = BLKS_PER_SEC(sbi);
3906         unsigned int not_aligned = 0;
3907         int ret = 0;
3908
3909         /*
3910          * Map all the blocks into the extent list.  This code doesn't try
3911          * to be very smart.
3912          */
3913         cur_lblock = 0;
3914         last_lblock = bytes_to_blks(inode, i_size_read(inode));
3915
3916         while (cur_lblock < last_lblock && cur_lblock < sis->max) {
3917                 struct f2fs_map_blocks map;
3918
3919                 cond_resched();
3920
3921                 memset(&map, 0, sizeof(map));
3922                 map.m_lblk = cur_lblock;
3923                 map.m_len = last_lblock - cur_lblock;
3924                 map.m_next_pgofs = NULL;
3925                 map.m_next_extent = NULL;
3926                 map.m_seg_type = NO_CHECK_TYPE;
3927                 map.m_may_create = false;
3928
3929                 ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP);
3930                 if (ret)
3931                         goto out;
3932
3933                 /* hole */
3934                 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
3935                         f2fs_err(sbi, "Swapfile has holes");
3936                         ret = -EINVAL;
3937                         goto out;
3938                 }
3939
3940                 pblock = map.m_pblk;
3941                 nr_pblocks = map.m_len;
3942
3943                 if ((pblock - SM_I(sbi)->main_blkaddr) & (blocks_per_sec - 1) ||
3944                                 nr_pblocks & (blocks_per_sec - 1)) {
3945                         if (f2fs_is_pinned_file(inode)) {
3946                                 f2fs_err(sbi, "Swapfile does not align to section");
3947                                 ret = -EINVAL;
3948                                 goto out;
3949                         }
3950                         not_aligned++;
3951                 }
3952
3953                 if (cur_lblock + nr_pblocks >= sis->max)
3954                         nr_pblocks = sis->max - cur_lblock;
3955
3956                 if (cur_lblock) {       /* exclude the header page */
3957                         if (pblock < lowest_pblock)
3958                                 lowest_pblock = pblock;
3959                         if (pblock + nr_pblocks - 1 > highest_pblock)
3960                                 highest_pblock = pblock + nr_pblocks - 1;
3961                 }
3962
3963                 /*
3964                  * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
3965                  */
3966                 ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock);
3967                 if (ret < 0)
3968                         goto out;
3969                 nr_extents += ret;
3970                 cur_lblock += nr_pblocks;
3971         }
3972         ret = nr_extents;
3973         *span = 1 + highest_pblock - lowest_pblock;
3974         if (cur_lblock == 0)
3975                 cur_lblock = 1; /* force Empty message */
3976         sis->max = cur_lblock;
3977         sis->pages = cur_lblock - 1;
3978         sis->highest_bit = cur_lblock - 1;
3979
3980         if (not_aligned)
3981                 f2fs_warn(sbi, "Swapfile (%u) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate()",
3982                           not_aligned);
3983 out:
3984         return ret;
3985 }
3986
3987 /* Copied from generic_swapfile_activate() to check any holes */
3988 static int check_swap_activate(struct swap_info_struct *sis,
3989                                 struct file *swap_file, sector_t *span)
3990 {
3991         struct address_space *mapping = swap_file->f_mapping;
3992         struct inode *inode = mapping->host;
3993         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3994         unsigned blocks_per_page;
3995         unsigned long page_no;
3996         sector_t probe_block;
3997         sector_t last_block;
3998         sector_t lowest_block = -1;
3999         sector_t highest_block = 0;
4000         int nr_extents = 0;
4001         int ret = 0;
4002
4003         if (PAGE_SIZE == F2FS_BLKSIZE)
4004                 return check_swap_activate_fast(sis, swap_file, span);
4005
4006         ret = f2fs_is_file_aligned(inode);
4007         if (ret)
4008                 goto out;
4009
4010         blocks_per_page = bytes_to_blks(inode, PAGE_SIZE);
4011
4012         /*
4013          * Map all the blocks into the extent list.  This code doesn't try
4014          * to be very smart.
4015          */
4016         probe_block = 0;
4017         page_no = 0;
4018         last_block = bytes_to_blks(inode, i_size_read(inode));
4019         while ((probe_block + blocks_per_page) <= last_block &&
4020                         page_no < sis->max) {
4021                 unsigned block_in_page;
4022                 sector_t first_block;
4023                 sector_t block = 0;
4024
4025                 cond_resched();
4026
4027                 block = probe_block;
4028                 ret = bmap(inode, &block);
4029                 if (ret)
4030                         goto out;
4031                 if (!block)
4032                         goto bad_bmap;
4033                 first_block = block;
4034
4035                 /*
4036                  * It must be PAGE_SIZE aligned on-disk
4037                  */
4038                 if (first_block & (blocks_per_page - 1)) {
4039                         probe_block++;
4040                         goto reprobe;
4041                 }
4042
4043                 for (block_in_page = 1; block_in_page < blocks_per_page;
4044                                         block_in_page++) {
4045
4046                         block = probe_block + block_in_page;
4047                         ret = bmap(inode, &block);
4048                         if (ret)
4049                                 goto out;
4050                         if (!block)
4051                                 goto bad_bmap;
4052
4053                         if (block != first_block + block_in_page) {
4054                                 /* Discontiguity */
4055                                 probe_block++;
4056                                 goto reprobe;
4057                         }
4058                 }
4059
4060                 first_block >>= (PAGE_SHIFT - inode->i_blkbits);
4061                 if (page_no) {  /* exclude the header page */
4062                         if (first_block < lowest_block)
4063                                 lowest_block = first_block;
4064                         if (first_block > highest_block)
4065                                 highest_block = first_block;
4066                 }
4067
4068                 /*
4069                  * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
4070                  */
4071                 ret = add_swap_extent(sis, page_no, 1, first_block);
4072                 if (ret < 0)
4073                         goto out;
4074                 nr_extents += ret;
4075                 page_no++;
4076                 probe_block += blocks_per_page;
4077 reprobe:
4078                 continue;
4079         }
4080         ret = nr_extents;
4081         *span = 1 + highest_block - lowest_block;
4082         if (page_no == 0)
4083                 page_no = 1;    /* force Empty message */
4084         sis->max = page_no;
4085         sis->pages = page_no - 1;
4086         sis->highest_bit = page_no - 1;
4087 out:
4088         return ret;
4089 bad_bmap:
4090         f2fs_err(sbi, "Swapfile has holes");
4091         return -EINVAL;
4092 }
4093
4094 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4095                                 sector_t *span)
4096 {
4097         struct inode *inode = file_inode(file);
4098         int ret;
4099
4100         if (!S_ISREG(inode->i_mode))
4101                 return -EINVAL;
4102
4103         if (f2fs_readonly(F2FS_I_SB(inode)->sb))
4104                 return -EROFS;
4105
4106         if (f2fs_lfs_mode(F2FS_I_SB(inode))) {
4107                 f2fs_err(F2FS_I_SB(inode),
4108                         "Swapfile not supported in LFS mode");
4109                 return -EINVAL;
4110         }
4111
4112         ret = f2fs_convert_inline_inode(inode);
4113         if (ret)
4114                 return ret;
4115
4116         if (!f2fs_disable_compressed_file(inode))
4117                 return -EINVAL;
4118
4119         f2fs_precache_extents(inode);
4120
4121         ret = check_swap_activate(sis, file, span);
4122         if (ret < 0)
4123                 return ret;
4124
4125         set_inode_flag(inode, FI_PIN_FILE);
4126         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
4127         return ret;
4128 }
4129
4130 static void f2fs_swap_deactivate(struct file *file)
4131 {
4132         struct inode *inode = file_inode(file);
4133
4134         clear_inode_flag(inode, FI_PIN_FILE);
4135 }
4136 #else
4137 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4138                                 sector_t *span)
4139 {
4140         return -EOPNOTSUPP;
4141 }
4142
4143 static void f2fs_swap_deactivate(struct file *file)
4144 {
4145 }
4146 #endif
4147
4148 const struct address_space_operations f2fs_dblock_aops = {
4149         .readpage       = f2fs_read_data_page,
4150         .readahead      = f2fs_readahead,
4151         .writepage      = f2fs_write_data_page,
4152         .writepages     = f2fs_write_data_pages,
4153         .write_begin    = f2fs_write_begin,
4154         .write_end      = f2fs_write_end,
4155         .set_page_dirty = f2fs_set_data_page_dirty,
4156         .invalidatepage = f2fs_invalidate_page,
4157         .releasepage    = f2fs_release_page,
4158         .direct_IO      = f2fs_direct_IO,
4159         .bmap           = f2fs_bmap,
4160         .swap_activate  = f2fs_swap_activate,
4161         .swap_deactivate = f2fs_swap_deactivate,
4162 #ifdef CONFIG_MIGRATION
4163         .migratepage    = f2fs_migrate_page,
4164 #endif
4165 };
4166
4167 void f2fs_clear_page_cache_dirty_tag(struct page *page)
4168 {
4169         struct address_space *mapping = page_mapping(page);
4170         unsigned long flags;
4171
4172         xa_lock_irqsave(&mapping->i_pages, flags);
4173         __xa_clear_mark(&mapping->i_pages, page_index(page),
4174                                                 PAGECACHE_TAG_DIRTY);
4175         xa_unlock_irqrestore(&mapping->i_pages, flags);
4176 }
4177
4178 int __init f2fs_init_post_read_processing(void)
4179 {
4180         bio_post_read_ctx_cache =
4181                 kmem_cache_create("f2fs_bio_post_read_ctx",
4182                                   sizeof(struct bio_post_read_ctx), 0, 0, NULL);
4183         if (!bio_post_read_ctx_cache)
4184                 goto fail;
4185         bio_post_read_ctx_pool =
4186                 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
4187                                          bio_post_read_ctx_cache);
4188         if (!bio_post_read_ctx_pool)
4189                 goto fail_free_cache;
4190         return 0;
4191
4192 fail_free_cache:
4193         kmem_cache_destroy(bio_post_read_ctx_cache);
4194 fail:
4195         return -ENOMEM;
4196 }
4197
4198 void f2fs_destroy_post_read_processing(void)
4199 {
4200         mempool_destroy(bio_post_read_ctx_pool);
4201         kmem_cache_destroy(bio_post_read_ctx_cache);
4202 }
4203
4204 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi)
4205 {
4206         if (!f2fs_sb_has_encrypt(sbi) &&
4207                 !f2fs_sb_has_verity(sbi) &&
4208                 !f2fs_sb_has_compression(sbi))
4209                 return 0;
4210
4211         sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq",
4212                                                  WQ_UNBOUND | WQ_HIGHPRI,
4213                                                  num_online_cpus());
4214         if (!sbi->post_read_wq)
4215                 return -ENOMEM;
4216         return 0;
4217 }
4218
4219 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi)
4220 {
4221         if (sbi->post_read_wq)
4222                 destroy_workqueue(sbi->post_read_wq);
4223 }
4224
4225 int __init f2fs_init_bio_entry_cache(void)
4226 {
4227         bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab",
4228                         sizeof(struct bio_entry));
4229         if (!bio_entry_slab)
4230                 return -ENOMEM;
4231         return 0;
4232 }
4233
4234 void f2fs_destroy_bio_entry_cache(void)
4235 {
4236         kmem_cache_destroy(bio_entry_slab);
4237 }