Merge tag 'pm-4.17-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
[linux-2.6-microblaze.git] / fs / f2fs / data.c
1 /*
2  * fs/f2fs/data.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/buffer_head.h>
14 #include <linux/mpage.h>
15 #include <linux/writeback.h>
16 #include <linux/backing-dev.h>
17 #include <linux/pagevec.h>
18 #include <linux/blkdev.h>
19 #include <linux/bio.h>
20 #include <linux/prefetch.h>
21 #include <linux/uio.h>
22 #include <linux/mm.h>
23 #include <linux/memcontrol.h>
24 #include <linux/cleancache.h>
25 #include <linux/sched/signal.h>
26
27 #include "f2fs.h"
28 #include "node.h"
29 #include "segment.h"
30 #include "trace.h"
31 #include <trace/events/f2fs.h>
32
33 static bool __is_cp_guaranteed(struct page *page)
34 {
35         struct address_space *mapping = page->mapping;
36         struct inode *inode;
37         struct f2fs_sb_info *sbi;
38
39         if (!mapping)
40                 return false;
41
42         inode = mapping->host;
43         sbi = F2FS_I_SB(inode);
44
45         if (inode->i_ino == F2FS_META_INO(sbi) ||
46                         inode->i_ino ==  F2FS_NODE_INO(sbi) ||
47                         S_ISDIR(inode->i_mode) ||
48                         is_cold_data(page))
49                 return true;
50         return false;
51 }
52
53 static void f2fs_read_end_io(struct bio *bio)
54 {
55         struct bio_vec *bvec;
56         int i;
57
58 #ifdef CONFIG_F2FS_FAULT_INJECTION
59         if (time_to_inject(F2FS_P_SB(bio_first_page_all(bio)), FAULT_IO)) {
60                 f2fs_show_injection_info(FAULT_IO);
61                 bio->bi_status = BLK_STS_IOERR;
62         }
63 #endif
64
65         if (f2fs_bio_encrypted(bio)) {
66                 if (bio->bi_status) {
67                         fscrypt_release_ctx(bio->bi_private);
68                 } else {
69                         fscrypt_decrypt_bio_pages(bio->bi_private, bio);
70                         return;
71                 }
72         }
73
74         bio_for_each_segment_all(bvec, bio, i) {
75                 struct page *page = bvec->bv_page;
76
77                 if (!bio->bi_status) {
78                         if (!PageUptodate(page))
79                                 SetPageUptodate(page);
80                 } else {
81                         ClearPageUptodate(page);
82                         SetPageError(page);
83                 }
84                 unlock_page(page);
85         }
86         bio_put(bio);
87 }
88
89 static void f2fs_write_end_io(struct bio *bio)
90 {
91         struct f2fs_sb_info *sbi = bio->bi_private;
92         struct bio_vec *bvec;
93         int i;
94
95         bio_for_each_segment_all(bvec, bio, i) {
96                 struct page *page = bvec->bv_page;
97                 enum count_type type = WB_DATA_TYPE(page);
98
99                 if (IS_DUMMY_WRITTEN_PAGE(page)) {
100                         set_page_private(page, (unsigned long)NULL);
101                         ClearPagePrivate(page);
102                         unlock_page(page);
103                         mempool_free(page, sbi->write_io_dummy);
104
105                         if (unlikely(bio->bi_status))
106                                 f2fs_stop_checkpoint(sbi, true);
107                         continue;
108                 }
109
110                 fscrypt_pullback_bio_page(&page, true);
111
112                 if (unlikely(bio->bi_status)) {
113                         mapping_set_error(page->mapping, -EIO);
114                         if (type == F2FS_WB_CP_DATA)
115                                 f2fs_stop_checkpoint(sbi, true);
116                 }
117
118                 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
119                                         page->index != nid_of_node(page));
120
121                 dec_page_count(sbi, type);
122                 clear_cold_data(page);
123                 end_page_writeback(page);
124         }
125         if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
126                                 wq_has_sleeper(&sbi->cp_wait))
127                 wake_up(&sbi->cp_wait);
128
129         bio_put(bio);
130 }
131
132 /*
133  * Return true, if pre_bio's bdev is same as its target device.
134  */
135 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
136                                 block_t blk_addr, struct bio *bio)
137 {
138         struct block_device *bdev = sbi->sb->s_bdev;
139         int i;
140
141         for (i = 0; i < sbi->s_ndevs; i++) {
142                 if (FDEV(i).start_blk <= blk_addr &&
143                                         FDEV(i).end_blk >= blk_addr) {
144                         blk_addr -= FDEV(i).start_blk;
145                         bdev = FDEV(i).bdev;
146                         break;
147                 }
148         }
149         if (bio) {
150                 bio_set_dev(bio, bdev);
151                 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
152         }
153         return bdev;
154 }
155
156 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
157 {
158         int i;
159
160         for (i = 0; i < sbi->s_ndevs; i++)
161                 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
162                         return i;
163         return 0;
164 }
165
166 static bool __same_bdev(struct f2fs_sb_info *sbi,
167                                 block_t blk_addr, struct bio *bio)
168 {
169         struct block_device *b = f2fs_target_device(sbi, blk_addr, NULL);
170         return bio->bi_disk == b->bd_disk && bio->bi_partno == b->bd_partno;
171 }
172
173 /*
174  * Low-level block read/write IO operations.
175  */
176 static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
177                                 struct writeback_control *wbc,
178                                 int npages, bool is_read,
179                                 enum page_type type, enum temp_type temp)
180 {
181         struct bio *bio;
182
183         bio = f2fs_bio_alloc(sbi, npages, true);
184
185         f2fs_target_device(sbi, blk_addr, bio);
186         if (is_read) {
187                 bio->bi_end_io = f2fs_read_end_io;
188                 bio->bi_private = NULL;
189         } else {
190                 bio->bi_end_io = f2fs_write_end_io;
191                 bio->bi_private = sbi;
192                 bio->bi_write_hint = io_type_to_rw_hint(sbi, type, temp);
193         }
194         if (wbc)
195                 wbc_init_bio(wbc, bio);
196
197         return bio;
198 }
199
200 static inline void __submit_bio(struct f2fs_sb_info *sbi,
201                                 struct bio *bio, enum page_type type)
202 {
203         if (!is_read_io(bio_op(bio))) {
204                 unsigned int start;
205
206                 if (type != DATA && type != NODE)
207                         goto submit_io;
208
209                 if (f2fs_sb_has_blkzoned(sbi->sb) && current->plug)
210                         blk_finish_plug(current->plug);
211
212                 start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
213                 start %= F2FS_IO_SIZE(sbi);
214
215                 if (start == 0)
216                         goto submit_io;
217
218                 /* fill dummy pages */
219                 for (; start < F2FS_IO_SIZE(sbi); start++) {
220                         struct page *page =
221                                 mempool_alloc(sbi->write_io_dummy,
222                                         GFP_NOIO | __GFP_ZERO | __GFP_NOFAIL);
223                         f2fs_bug_on(sbi, !page);
224
225                         SetPagePrivate(page);
226                         set_page_private(page, (unsigned long)DUMMY_WRITTEN_PAGE);
227                         lock_page(page);
228                         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
229                                 f2fs_bug_on(sbi, 1);
230                 }
231                 /*
232                  * In the NODE case, we lose next block address chain. So, we
233                  * need to do checkpoint in f2fs_sync_file.
234                  */
235                 if (type == NODE)
236                         set_sbi_flag(sbi, SBI_NEED_CP);
237         }
238 submit_io:
239         if (is_read_io(bio_op(bio)))
240                 trace_f2fs_submit_read_bio(sbi->sb, type, bio);
241         else
242                 trace_f2fs_submit_write_bio(sbi->sb, type, bio);
243         submit_bio(bio);
244 }
245
246 static void __submit_merged_bio(struct f2fs_bio_info *io)
247 {
248         struct f2fs_io_info *fio = &io->fio;
249
250         if (!io->bio)
251                 return;
252
253         bio_set_op_attrs(io->bio, fio->op, fio->op_flags);
254
255         if (is_read_io(fio->op))
256                 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
257         else
258                 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
259
260         __submit_bio(io->sbi, io->bio, fio->type);
261         io->bio = NULL;
262 }
263
264 static bool __has_merged_page(struct f2fs_bio_info *io,
265                                 struct inode *inode, nid_t ino, pgoff_t idx)
266 {
267         struct bio_vec *bvec;
268         struct page *target;
269         int i;
270
271         if (!io->bio)
272                 return false;
273
274         if (!inode && !ino)
275                 return true;
276
277         bio_for_each_segment_all(bvec, io->bio, i) {
278
279                 if (bvec->bv_page->mapping)
280                         target = bvec->bv_page;
281                 else
282                         target = fscrypt_control_page(bvec->bv_page);
283
284                 if (idx != target->index)
285                         continue;
286
287                 if (inode && inode == target->mapping->host)
288                         return true;
289                 if (ino && ino == ino_of_node(target))
290                         return true;
291         }
292
293         return false;
294 }
295
296 static bool has_merged_page(struct f2fs_sb_info *sbi, struct inode *inode,
297                                 nid_t ino, pgoff_t idx, enum page_type type)
298 {
299         enum page_type btype = PAGE_TYPE_OF_BIO(type);
300         enum temp_type temp;
301         struct f2fs_bio_info *io;
302         bool ret = false;
303
304         for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
305                 io = sbi->write_io[btype] + temp;
306
307                 down_read(&io->io_rwsem);
308                 ret = __has_merged_page(io, inode, ino, idx);
309                 up_read(&io->io_rwsem);
310
311                 /* TODO: use HOT temp only for meta pages now. */
312                 if (ret || btype == META)
313                         break;
314         }
315         return ret;
316 }
317
318 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
319                                 enum page_type type, enum temp_type temp)
320 {
321         enum page_type btype = PAGE_TYPE_OF_BIO(type);
322         struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
323
324         down_write(&io->io_rwsem);
325
326         /* change META to META_FLUSH in the checkpoint procedure */
327         if (type >= META_FLUSH) {
328                 io->fio.type = META_FLUSH;
329                 io->fio.op = REQ_OP_WRITE;
330                 io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC;
331                 if (!test_opt(sbi, NOBARRIER))
332                         io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
333         }
334         __submit_merged_bio(io);
335         up_write(&io->io_rwsem);
336 }
337
338 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
339                                 struct inode *inode, nid_t ino, pgoff_t idx,
340                                 enum page_type type, bool force)
341 {
342         enum temp_type temp;
343
344         if (!force && !has_merged_page(sbi, inode, ino, idx, type))
345                 return;
346
347         for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
348
349                 __f2fs_submit_merged_write(sbi, type, temp);
350
351                 /* TODO: use HOT temp only for meta pages now. */
352                 if (type >= META)
353                         break;
354         }
355 }
356
357 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
358 {
359         __submit_merged_write_cond(sbi, NULL, 0, 0, type, true);
360 }
361
362 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
363                                 struct inode *inode, nid_t ino, pgoff_t idx,
364                                 enum page_type type)
365 {
366         __submit_merged_write_cond(sbi, inode, ino, idx, type, false);
367 }
368
369 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
370 {
371         f2fs_submit_merged_write(sbi, DATA);
372         f2fs_submit_merged_write(sbi, NODE);
373         f2fs_submit_merged_write(sbi, META);
374 }
375
376 /*
377  * Fill the locked page with data located in the block address.
378  * A caller needs to unlock the page on failure.
379  */
380 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
381 {
382         struct bio *bio;
383         struct page *page = fio->encrypted_page ?
384                         fio->encrypted_page : fio->page;
385
386         verify_block_addr(fio, fio->new_blkaddr);
387         trace_f2fs_submit_page_bio(page, fio);
388         f2fs_trace_ios(fio, 0);
389
390         /* Allocate a new bio */
391         bio = __bio_alloc(fio->sbi, fio->new_blkaddr, fio->io_wbc,
392                                 1, is_read_io(fio->op), fio->type, fio->temp);
393
394         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
395                 bio_put(bio);
396                 return -EFAULT;
397         }
398         bio_set_op_attrs(bio, fio->op, fio->op_flags);
399
400         __submit_bio(fio->sbi, bio, fio->type);
401
402         if (!is_read_io(fio->op))
403                 inc_page_count(fio->sbi, WB_DATA_TYPE(fio->page));
404         return 0;
405 }
406
407 int f2fs_submit_page_write(struct f2fs_io_info *fio)
408 {
409         struct f2fs_sb_info *sbi = fio->sbi;
410         enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
411         struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
412         struct page *bio_page;
413         int err = 0;
414
415         f2fs_bug_on(sbi, is_read_io(fio->op));
416
417         down_write(&io->io_rwsem);
418 next:
419         if (fio->in_list) {
420                 spin_lock(&io->io_lock);
421                 if (list_empty(&io->io_list)) {
422                         spin_unlock(&io->io_lock);
423                         goto out_fail;
424                 }
425                 fio = list_first_entry(&io->io_list,
426                                                 struct f2fs_io_info, list);
427                 list_del(&fio->list);
428                 spin_unlock(&io->io_lock);
429         }
430
431         if (fio->old_blkaddr != NEW_ADDR)
432                 verify_block_addr(fio, fio->old_blkaddr);
433         verify_block_addr(fio, fio->new_blkaddr);
434
435         bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page;
436
437         /* set submitted = true as a return value */
438         fio->submitted = true;
439
440         inc_page_count(sbi, WB_DATA_TYPE(bio_page));
441
442         if (io->bio && (io->last_block_in_bio != fio->new_blkaddr - 1 ||
443             (io->fio.op != fio->op || io->fio.op_flags != fio->op_flags) ||
444                         !__same_bdev(sbi, fio->new_blkaddr, io->bio)))
445                 __submit_merged_bio(io);
446 alloc_new:
447         if (io->bio == NULL) {
448                 if ((fio->type == DATA || fio->type == NODE) &&
449                                 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
450                         err = -EAGAIN;
451                         dec_page_count(sbi, WB_DATA_TYPE(bio_page));
452                         goto out_fail;
453                 }
454                 io->bio = __bio_alloc(sbi, fio->new_blkaddr, fio->io_wbc,
455                                                 BIO_MAX_PAGES, false,
456                                                 fio->type, fio->temp);
457                 io->fio = *fio;
458         }
459
460         if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
461                 __submit_merged_bio(io);
462                 goto alloc_new;
463         }
464
465         if (fio->io_wbc)
466                 wbc_account_io(fio->io_wbc, bio_page, PAGE_SIZE);
467
468         io->last_block_in_bio = fio->new_blkaddr;
469         f2fs_trace_ios(fio, 0);
470
471         trace_f2fs_submit_page_write(fio->page, fio);
472
473         if (fio->in_list)
474                 goto next;
475 out_fail:
476         up_write(&io->io_rwsem);
477         return err;
478 }
479
480 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
481                                                          unsigned nr_pages)
482 {
483         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
484         struct fscrypt_ctx *ctx = NULL;
485         struct bio *bio;
486
487         if (f2fs_encrypted_file(inode)) {
488                 ctx = fscrypt_get_ctx(inode, GFP_NOFS);
489                 if (IS_ERR(ctx))
490                         return ERR_CAST(ctx);
491
492                 /* wait the page to be moved by cleaning */
493                 f2fs_wait_on_block_writeback(sbi, blkaddr);
494         }
495
496         bio = f2fs_bio_alloc(sbi, min_t(int, nr_pages, BIO_MAX_PAGES), false);
497         if (!bio) {
498                 if (ctx)
499                         fscrypt_release_ctx(ctx);
500                 return ERR_PTR(-ENOMEM);
501         }
502         f2fs_target_device(sbi, blkaddr, bio);
503         bio->bi_end_io = f2fs_read_end_io;
504         bio->bi_private = ctx;
505         bio_set_op_attrs(bio, REQ_OP_READ, 0);
506
507         return bio;
508 }
509
510 /* This can handle encryption stuffs */
511 static int f2fs_submit_page_read(struct inode *inode, struct page *page,
512                                                         block_t blkaddr)
513 {
514         struct bio *bio = f2fs_grab_read_bio(inode, blkaddr, 1);
515
516         if (IS_ERR(bio))
517                 return PTR_ERR(bio);
518
519         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
520                 bio_put(bio);
521                 return -EFAULT;
522         }
523         __submit_bio(F2FS_I_SB(inode), bio, DATA);
524         return 0;
525 }
526
527 static void __set_data_blkaddr(struct dnode_of_data *dn)
528 {
529         struct f2fs_node *rn = F2FS_NODE(dn->node_page);
530         __le32 *addr_array;
531         int base = 0;
532
533         if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
534                 base = get_extra_isize(dn->inode);
535
536         /* Get physical address of data block */
537         addr_array = blkaddr_in_node(rn);
538         addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
539 }
540
541 /*
542  * Lock ordering for the change of data block address:
543  * ->data_page
544  *  ->node_page
545  *    update block addresses in the node page
546  */
547 void set_data_blkaddr(struct dnode_of_data *dn)
548 {
549         f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
550         __set_data_blkaddr(dn);
551         if (set_page_dirty(dn->node_page))
552                 dn->node_changed = true;
553 }
554
555 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
556 {
557         dn->data_blkaddr = blkaddr;
558         set_data_blkaddr(dn);
559         f2fs_update_extent_cache(dn);
560 }
561
562 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
563 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
564 {
565         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
566         int err;
567
568         if (!count)
569                 return 0;
570
571         if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
572                 return -EPERM;
573         if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
574                 return err;
575
576         trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
577                                                 dn->ofs_in_node, count);
578
579         f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
580
581         for (; count > 0; dn->ofs_in_node++) {
582                 block_t blkaddr = datablock_addr(dn->inode,
583                                         dn->node_page, dn->ofs_in_node);
584                 if (blkaddr == NULL_ADDR) {
585                         dn->data_blkaddr = NEW_ADDR;
586                         __set_data_blkaddr(dn);
587                         count--;
588                 }
589         }
590
591         if (set_page_dirty(dn->node_page))
592                 dn->node_changed = true;
593         return 0;
594 }
595
596 /* Should keep dn->ofs_in_node unchanged */
597 int reserve_new_block(struct dnode_of_data *dn)
598 {
599         unsigned int ofs_in_node = dn->ofs_in_node;
600         int ret;
601
602         ret = reserve_new_blocks(dn, 1);
603         dn->ofs_in_node = ofs_in_node;
604         return ret;
605 }
606
607 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
608 {
609         bool need_put = dn->inode_page ? false : true;
610         int err;
611
612         err = get_dnode_of_data(dn, index, ALLOC_NODE);
613         if (err)
614                 return err;
615
616         if (dn->data_blkaddr == NULL_ADDR)
617                 err = reserve_new_block(dn);
618         if (err || need_put)
619                 f2fs_put_dnode(dn);
620         return err;
621 }
622
623 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
624 {
625         struct extent_info ei  = {0,0,0};
626         struct inode *inode = dn->inode;
627
628         if (f2fs_lookup_extent_cache(inode, index, &ei)) {
629                 dn->data_blkaddr = ei.blk + index - ei.fofs;
630                 return 0;
631         }
632
633         return f2fs_reserve_block(dn, index);
634 }
635
636 struct page *get_read_data_page(struct inode *inode, pgoff_t index,
637                                                 int op_flags, bool for_write)
638 {
639         struct address_space *mapping = inode->i_mapping;
640         struct dnode_of_data dn;
641         struct page *page;
642         struct extent_info ei = {0,0,0};
643         int err;
644
645         page = f2fs_grab_cache_page(mapping, index, for_write);
646         if (!page)
647                 return ERR_PTR(-ENOMEM);
648
649         if (f2fs_lookup_extent_cache(inode, index, &ei)) {
650                 dn.data_blkaddr = ei.blk + index - ei.fofs;
651                 goto got_it;
652         }
653
654         set_new_dnode(&dn, inode, NULL, NULL, 0);
655         err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
656         if (err)
657                 goto put_err;
658         f2fs_put_dnode(&dn);
659
660         if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
661                 err = -ENOENT;
662                 goto put_err;
663         }
664 got_it:
665         if (PageUptodate(page)) {
666                 unlock_page(page);
667                 return page;
668         }
669
670         /*
671          * A new dentry page is allocated but not able to be written, since its
672          * new inode page couldn't be allocated due to -ENOSPC.
673          * In such the case, its blkaddr can be remained as NEW_ADDR.
674          * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
675          */
676         if (dn.data_blkaddr == NEW_ADDR) {
677                 zero_user_segment(page, 0, PAGE_SIZE);
678                 if (!PageUptodate(page))
679                         SetPageUptodate(page);
680                 unlock_page(page);
681                 return page;
682         }
683
684         err = f2fs_submit_page_read(inode, page, dn.data_blkaddr);
685         if (err)
686                 goto put_err;
687         return page;
688
689 put_err:
690         f2fs_put_page(page, 1);
691         return ERR_PTR(err);
692 }
693
694 struct page *find_data_page(struct inode *inode, pgoff_t index)
695 {
696         struct address_space *mapping = inode->i_mapping;
697         struct page *page;
698
699         page = find_get_page(mapping, index);
700         if (page && PageUptodate(page))
701                 return page;
702         f2fs_put_page(page, 0);
703
704         page = get_read_data_page(inode, index, 0, false);
705         if (IS_ERR(page))
706                 return page;
707
708         if (PageUptodate(page))
709                 return page;
710
711         wait_on_page_locked(page);
712         if (unlikely(!PageUptodate(page))) {
713                 f2fs_put_page(page, 0);
714                 return ERR_PTR(-EIO);
715         }
716         return page;
717 }
718
719 /*
720  * If it tries to access a hole, return an error.
721  * Because, the callers, functions in dir.c and GC, should be able to know
722  * whether this page exists or not.
723  */
724 struct page *get_lock_data_page(struct inode *inode, pgoff_t index,
725                                                         bool for_write)
726 {
727         struct address_space *mapping = inode->i_mapping;
728         struct page *page;
729 repeat:
730         page = get_read_data_page(inode, index, 0, for_write);
731         if (IS_ERR(page))
732                 return page;
733
734         /* wait for read completion */
735         lock_page(page);
736         if (unlikely(page->mapping != mapping)) {
737                 f2fs_put_page(page, 1);
738                 goto repeat;
739         }
740         if (unlikely(!PageUptodate(page))) {
741                 f2fs_put_page(page, 1);
742                 return ERR_PTR(-EIO);
743         }
744         return page;
745 }
746
747 /*
748  * Caller ensures that this data page is never allocated.
749  * A new zero-filled data page is allocated in the page cache.
750  *
751  * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
752  * f2fs_unlock_op().
753  * Note that, ipage is set only by make_empty_dir, and if any error occur,
754  * ipage should be released by this function.
755  */
756 struct page *get_new_data_page(struct inode *inode,
757                 struct page *ipage, pgoff_t index, bool new_i_size)
758 {
759         struct address_space *mapping = inode->i_mapping;
760         struct page *page;
761         struct dnode_of_data dn;
762         int err;
763
764         page = f2fs_grab_cache_page(mapping, index, true);
765         if (!page) {
766                 /*
767                  * before exiting, we should make sure ipage will be released
768                  * if any error occur.
769                  */
770                 f2fs_put_page(ipage, 1);
771                 return ERR_PTR(-ENOMEM);
772         }
773
774         set_new_dnode(&dn, inode, ipage, NULL, 0);
775         err = f2fs_reserve_block(&dn, index);
776         if (err) {
777                 f2fs_put_page(page, 1);
778                 return ERR_PTR(err);
779         }
780         if (!ipage)
781                 f2fs_put_dnode(&dn);
782
783         if (PageUptodate(page))
784                 goto got_it;
785
786         if (dn.data_blkaddr == NEW_ADDR) {
787                 zero_user_segment(page, 0, PAGE_SIZE);
788                 if (!PageUptodate(page))
789                         SetPageUptodate(page);
790         } else {
791                 f2fs_put_page(page, 1);
792
793                 /* if ipage exists, blkaddr should be NEW_ADDR */
794                 f2fs_bug_on(F2FS_I_SB(inode), ipage);
795                 page = get_lock_data_page(inode, index, true);
796                 if (IS_ERR(page))
797                         return page;
798         }
799 got_it:
800         if (new_i_size && i_size_read(inode) <
801                                 ((loff_t)(index + 1) << PAGE_SHIFT))
802                 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
803         return page;
804 }
805
806 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
807 {
808         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
809         struct f2fs_summary sum;
810         struct node_info ni;
811         pgoff_t fofs;
812         blkcnt_t count = 1;
813         int err;
814
815         if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
816                 return -EPERM;
817
818         dn->data_blkaddr = datablock_addr(dn->inode,
819                                 dn->node_page, dn->ofs_in_node);
820         if (dn->data_blkaddr == NEW_ADDR)
821                 goto alloc;
822
823         if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
824                 return err;
825
826 alloc:
827         get_node_info(sbi, dn->nid, &ni);
828         set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
829
830         allocate_data_block(sbi, NULL, dn->data_blkaddr, &dn->data_blkaddr,
831                                         &sum, seg_type, NULL, false);
832         set_data_blkaddr(dn);
833
834         /* update i_size */
835         fofs = start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) +
836                                                         dn->ofs_in_node;
837         if (i_size_read(dn->inode) < ((loff_t)(fofs + 1) << PAGE_SHIFT))
838                 f2fs_i_size_write(dn->inode,
839                                 ((loff_t)(fofs + 1) << PAGE_SHIFT));
840         return 0;
841 }
842
843 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
844 {
845         struct inode *inode = file_inode(iocb->ki_filp);
846         struct f2fs_map_blocks map;
847         int flag;
848         int err = 0;
849         bool direct_io = iocb->ki_flags & IOCB_DIRECT;
850
851         /* convert inline data for Direct I/O*/
852         if (direct_io) {
853                 err = f2fs_convert_inline_inode(inode);
854                 if (err)
855                         return err;
856         }
857
858         if (is_inode_flag_set(inode, FI_NO_PREALLOC))
859                 return 0;
860
861         map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
862         map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from));
863         if (map.m_len > map.m_lblk)
864                 map.m_len -= map.m_lblk;
865         else
866                 map.m_len = 0;
867
868         map.m_next_pgofs = NULL;
869         map.m_next_extent = NULL;
870         map.m_seg_type = NO_CHECK_TYPE;
871
872         if (direct_io) {
873                 map.m_seg_type = rw_hint_to_seg_type(iocb->ki_hint);
874                 flag = f2fs_force_buffered_io(inode, WRITE) ?
875                                         F2FS_GET_BLOCK_PRE_AIO :
876                                         F2FS_GET_BLOCK_PRE_DIO;
877                 goto map_blocks;
878         }
879         if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA(inode)) {
880                 err = f2fs_convert_inline_inode(inode);
881                 if (err)
882                         return err;
883         }
884         if (f2fs_has_inline_data(inode))
885                 return err;
886
887         flag = F2FS_GET_BLOCK_PRE_AIO;
888
889 map_blocks:
890         err = f2fs_map_blocks(inode, &map, 1, flag);
891         if (map.m_len > 0 && err == -ENOSPC) {
892                 if (!direct_io)
893                         set_inode_flag(inode, FI_NO_PREALLOC);
894                 err = 0;
895         }
896         return err;
897 }
898
899 static inline void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock)
900 {
901         if (flag == F2FS_GET_BLOCK_PRE_AIO) {
902                 if (lock)
903                         down_read(&sbi->node_change);
904                 else
905                         up_read(&sbi->node_change);
906         } else {
907                 if (lock)
908                         f2fs_lock_op(sbi);
909                 else
910                         f2fs_unlock_op(sbi);
911         }
912 }
913
914 /*
915  * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
916  * f2fs_map_blocks structure.
917  * If original data blocks are allocated, then give them to blockdev.
918  * Otherwise,
919  *     a. preallocate requested block addresses
920  *     b. do not use extent cache for better performance
921  *     c. give the block addresses to blockdev
922  */
923 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
924                                                 int create, int flag)
925 {
926         unsigned int maxblocks = map->m_len;
927         struct dnode_of_data dn;
928         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
929         int mode = create ? ALLOC_NODE : LOOKUP_NODE;
930         pgoff_t pgofs, end_offset, end;
931         int err = 0, ofs = 1;
932         unsigned int ofs_in_node, last_ofs_in_node;
933         blkcnt_t prealloc;
934         struct extent_info ei = {0,0,0};
935         block_t blkaddr;
936         unsigned int start_pgofs;
937
938         if (!maxblocks)
939                 return 0;
940
941         map->m_len = 0;
942         map->m_flags = 0;
943
944         /* it only supports block size == page size */
945         pgofs = (pgoff_t)map->m_lblk;
946         end = pgofs + maxblocks;
947
948         if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
949                 map->m_pblk = ei.blk + pgofs - ei.fofs;
950                 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
951                 map->m_flags = F2FS_MAP_MAPPED;
952                 if (map->m_next_extent)
953                         *map->m_next_extent = pgofs + map->m_len;
954                 goto out;
955         }
956
957 next_dnode:
958         if (create)
959                 __do_map_lock(sbi, flag, true);
960
961         /* When reading holes, we need its node page */
962         set_new_dnode(&dn, inode, NULL, NULL, 0);
963         err = get_dnode_of_data(&dn, pgofs, mode);
964         if (err) {
965                 if (flag == F2FS_GET_BLOCK_BMAP)
966                         map->m_pblk = 0;
967                 if (err == -ENOENT) {
968                         err = 0;
969                         if (map->m_next_pgofs)
970                                 *map->m_next_pgofs =
971                                         get_next_page_offset(&dn, pgofs);
972                         if (map->m_next_extent)
973                                 *map->m_next_extent =
974                                         get_next_page_offset(&dn, pgofs);
975                 }
976                 goto unlock_out;
977         }
978
979         start_pgofs = pgofs;
980         prealloc = 0;
981         last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
982         end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
983
984 next_block:
985         blkaddr = datablock_addr(dn.inode, dn.node_page, dn.ofs_in_node);
986
987         if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) {
988                 if (create) {
989                         if (unlikely(f2fs_cp_error(sbi))) {
990                                 err = -EIO;
991                                 goto sync_out;
992                         }
993                         if (flag == F2FS_GET_BLOCK_PRE_AIO) {
994                                 if (blkaddr == NULL_ADDR) {
995                                         prealloc++;
996                                         last_ofs_in_node = dn.ofs_in_node;
997                                 }
998                         } else {
999                                 err = __allocate_data_block(&dn,
1000                                                         map->m_seg_type);
1001                                 if (!err)
1002                                         set_inode_flag(inode, FI_APPEND_WRITE);
1003                         }
1004                         if (err)
1005                                 goto sync_out;
1006                         map->m_flags |= F2FS_MAP_NEW;
1007                         blkaddr = dn.data_blkaddr;
1008                 } else {
1009                         if (flag == F2FS_GET_BLOCK_BMAP) {
1010                                 map->m_pblk = 0;
1011                                 goto sync_out;
1012                         }
1013                         if (flag == F2FS_GET_BLOCK_PRECACHE)
1014                                 goto sync_out;
1015                         if (flag == F2FS_GET_BLOCK_FIEMAP &&
1016                                                 blkaddr == NULL_ADDR) {
1017                                 if (map->m_next_pgofs)
1018                                         *map->m_next_pgofs = pgofs + 1;
1019                                 goto sync_out;
1020                         }
1021                         if (flag != F2FS_GET_BLOCK_FIEMAP) {
1022                                 /* for defragment case */
1023                                 if (map->m_next_pgofs)
1024                                         *map->m_next_pgofs = pgofs + 1;
1025                                 goto sync_out;
1026                         }
1027                 }
1028         }
1029
1030         if (flag == F2FS_GET_BLOCK_PRE_AIO)
1031                 goto skip;
1032
1033         if (map->m_len == 0) {
1034                 /* preallocated unwritten block should be mapped for fiemap. */
1035                 if (blkaddr == NEW_ADDR)
1036                         map->m_flags |= F2FS_MAP_UNWRITTEN;
1037                 map->m_flags |= F2FS_MAP_MAPPED;
1038
1039                 map->m_pblk = blkaddr;
1040                 map->m_len = 1;
1041         } else if ((map->m_pblk != NEW_ADDR &&
1042                         blkaddr == (map->m_pblk + ofs)) ||
1043                         (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1044                         flag == F2FS_GET_BLOCK_PRE_DIO) {
1045                 ofs++;
1046                 map->m_len++;
1047         } else {
1048                 goto sync_out;
1049         }
1050
1051 skip:
1052         dn.ofs_in_node++;
1053         pgofs++;
1054
1055         /* preallocate blocks in batch for one dnode page */
1056         if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1057                         (pgofs == end || dn.ofs_in_node == end_offset)) {
1058
1059                 dn.ofs_in_node = ofs_in_node;
1060                 err = reserve_new_blocks(&dn, prealloc);
1061                 if (err)
1062                         goto sync_out;
1063
1064                 map->m_len += dn.ofs_in_node - ofs_in_node;
1065                 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1066                         err = -ENOSPC;
1067                         goto sync_out;
1068                 }
1069                 dn.ofs_in_node = end_offset;
1070         }
1071
1072         if (pgofs >= end)
1073                 goto sync_out;
1074         else if (dn.ofs_in_node < end_offset)
1075                 goto next_block;
1076
1077         if (flag == F2FS_GET_BLOCK_PRECACHE) {
1078                 if (map->m_flags & F2FS_MAP_MAPPED) {
1079                         unsigned int ofs = start_pgofs - map->m_lblk;
1080
1081                         f2fs_update_extent_cache_range(&dn,
1082                                 start_pgofs, map->m_pblk + ofs,
1083                                 map->m_len - ofs);
1084                 }
1085         }
1086
1087         f2fs_put_dnode(&dn);
1088
1089         if (create) {
1090                 __do_map_lock(sbi, flag, false);
1091                 f2fs_balance_fs(sbi, dn.node_changed);
1092         }
1093         goto next_dnode;
1094
1095 sync_out:
1096         if (flag == F2FS_GET_BLOCK_PRECACHE) {
1097                 if (map->m_flags & F2FS_MAP_MAPPED) {
1098                         unsigned int ofs = start_pgofs - map->m_lblk;
1099
1100                         f2fs_update_extent_cache_range(&dn,
1101                                 start_pgofs, map->m_pblk + ofs,
1102                                 map->m_len - ofs);
1103                 }
1104                 if (map->m_next_extent)
1105                         *map->m_next_extent = pgofs + 1;
1106         }
1107         f2fs_put_dnode(&dn);
1108 unlock_out:
1109         if (create) {
1110                 __do_map_lock(sbi, flag, false);
1111                 f2fs_balance_fs(sbi, dn.node_changed);
1112         }
1113 out:
1114         trace_f2fs_map_blocks(inode, map, err);
1115         return err;
1116 }
1117
1118 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1119 {
1120         struct f2fs_map_blocks map;
1121         block_t last_lblk;
1122         int err;
1123
1124         if (pos + len > i_size_read(inode))
1125                 return false;
1126
1127         map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1128         map.m_next_pgofs = NULL;
1129         map.m_next_extent = NULL;
1130         map.m_seg_type = NO_CHECK_TYPE;
1131         last_lblk = F2FS_BLK_ALIGN(pos + len);
1132
1133         while (map.m_lblk < last_lblk) {
1134                 map.m_len = last_lblk - map.m_lblk;
1135                 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
1136                 if (err || map.m_len == 0)
1137                         return false;
1138                 map.m_lblk += map.m_len;
1139         }
1140         return true;
1141 }
1142
1143 static int __get_data_block(struct inode *inode, sector_t iblock,
1144                         struct buffer_head *bh, int create, int flag,
1145                         pgoff_t *next_pgofs, int seg_type)
1146 {
1147         struct f2fs_map_blocks map;
1148         int err;
1149
1150         map.m_lblk = iblock;
1151         map.m_len = bh->b_size >> inode->i_blkbits;
1152         map.m_next_pgofs = next_pgofs;
1153         map.m_next_extent = NULL;
1154         map.m_seg_type = seg_type;
1155
1156         err = f2fs_map_blocks(inode, &map, create, flag);
1157         if (!err) {
1158                 map_bh(bh, inode->i_sb, map.m_pblk);
1159                 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
1160                 bh->b_size = (u64)map.m_len << inode->i_blkbits;
1161         }
1162         return err;
1163 }
1164
1165 static int get_data_block(struct inode *inode, sector_t iblock,
1166                         struct buffer_head *bh_result, int create, int flag,
1167                         pgoff_t *next_pgofs)
1168 {
1169         return __get_data_block(inode, iblock, bh_result, create,
1170                                                         flag, next_pgofs,
1171                                                         NO_CHECK_TYPE);
1172 }
1173
1174 static int get_data_block_dio(struct inode *inode, sector_t iblock,
1175                         struct buffer_head *bh_result, int create)
1176 {
1177         return __get_data_block(inode, iblock, bh_result, create,
1178                                                 F2FS_GET_BLOCK_DEFAULT, NULL,
1179                                                 rw_hint_to_seg_type(
1180                                                         inode->i_write_hint));
1181 }
1182
1183 static int get_data_block_bmap(struct inode *inode, sector_t iblock,
1184                         struct buffer_head *bh_result, int create)
1185 {
1186         /* Block number less than F2FS MAX BLOCKS */
1187         if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks))
1188                 return -EFBIG;
1189
1190         return __get_data_block(inode, iblock, bh_result, create,
1191                                                 F2FS_GET_BLOCK_BMAP, NULL,
1192                                                 NO_CHECK_TYPE);
1193 }
1194
1195 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
1196 {
1197         return (offset >> inode->i_blkbits);
1198 }
1199
1200 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
1201 {
1202         return (blk << inode->i_blkbits);
1203 }
1204
1205 static int f2fs_xattr_fiemap(struct inode *inode,
1206                                 struct fiemap_extent_info *fieinfo)
1207 {
1208         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1209         struct page *page;
1210         struct node_info ni;
1211         __u64 phys = 0, len;
1212         __u32 flags;
1213         nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1214         int err = 0;
1215
1216         if (f2fs_has_inline_xattr(inode)) {
1217                 int offset;
1218
1219                 page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1220                                                 inode->i_ino, false);
1221                 if (!page)
1222                         return -ENOMEM;
1223
1224                 get_node_info(sbi, inode->i_ino, &ni);
1225
1226                 phys = (__u64)blk_to_logical(inode, ni.blk_addr);
1227                 offset = offsetof(struct f2fs_inode, i_addr) +
1228                                         sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1229                                         get_inline_xattr_addrs(inode));
1230
1231                 phys += offset;
1232                 len = inline_xattr_size(inode);
1233
1234                 f2fs_put_page(page, 1);
1235
1236                 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1237
1238                 if (!xnid)
1239                         flags |= FIEMAP_EXTENT_LAST;
1240
1241                 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1242                 if (err || err == 1)
1243                         return err;
1244         }
1245
1246         if (xnid) {
1247                 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1248                 if (!page)
1249                         return -ENOMEM;
1250
1251                 get_node_info(sbi, xnid, &ni);
1252
1253                 phys = (__u64)blk_to_logical(inode, ni.blk_addr);
1254                 len = inode->i_sb->s_blocksize;
1255
1256                 f2fs_put_page(page, 1);
1257
1258                 flags = FIEMAP_EXTENT_LAST;
1259         }
1260
1261         if (phys)
1262                 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1263
1264         return (err < 0 ? err : 0);
1265 }
1266
1267 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1268                 u64 start, u64 len)
1269 {
1270         struct buffer_head map_bh;
1271         sector_t start_blk, last_blk;
1272         pgoff_t next_pgofs;
1273         u64 logical = 0, phys = 0, size = 0;
1274         u32 flags = 0;
1275         int ret = 0;
1276
1277         if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1278                 ret = f2fs_precache_extents(inode);
1279                 if (ret)
1280                         return ret;
1281         }
1282
1283         ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC | FIEMAP_FLAG_XATTR);
1284         if (ret)
1285                 return ret;
1286
1287         inode_lock(inode);
1288
1289         if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1290                 ret = f2fs_xattr_fiemap(inode, fieinfo);
1291                 goto out;
1292         }
1293
1294         if (f2fs_has_inline_data(inode)) {
1295                 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1296                 if (ret != -EAGAIN)
1297                         goto out;
1298         }
1299
1300         if (logical_to_blk(inode, len) == 0)
1301                 len = blk_to_logical(inode, 1);
1302
1303         start_blk = logical_to_blk(inode, start);
1304         last_blk = logical_to_blk(inode, start + len - 1);
1305
1306 next:
1307         memset(&map_bh, 0, sizeof(struct buffer_head));
1308         map_bh.b_size = len;
1309
1310         ret = get_data_block(inode, start_blk, &map_bh, 0,
1311                                         F2FS_GET_BLOCK_FIEMAP, &next_pgofs);
1312         if (ret)
1313                 goto out;
1314
1315         /* HOLE */
1316         if (!buffer_mapped(&map_bh)) {
1317                 start_blk = next_pgofs;
1318
1319                 if (blk_to_logical(inode, start_blk) < blk_to_logical(inode,
1320                                         F2FS_I_SB(inode)->max_file_blocks))
1321                         goto prep_next;
1322
1323                 flags |= FIEMAP_EXTENT_LAST;
1324         }
1325
1326         if (size) {
1327                 if (f2fs_encrypted_inode(inode))
1328                         flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1329
1330                 ret = fiemap_fill_next_extent(fieinfo, logical,
1331                                 phys, size, flags);
1332         }
1333
1334         if (start_blk > last_blk || ret)
1335                 goto out;
1336
1337         logical = blk_to_logical(inode, start_blk);
1338         phys = blk_to_logical(inode, map_bh.b_blocknr);
1339         size = map_bh.b_size;
1340         flags = 0;
1341         if (buffer_unwritten(&map_bh))
1342                 flags = FIEMAP_EXTENT_UNWRITTEN;
1343
1344         start_blk += logical_to_blk(inode, size);
1345
1346 prep_next:
1347         cond_resched();
1348         if (fatal_signal_pending(current))
1349                 ret = -EINTR;
1350         else
1351                 goto next;
1352 out:
1353         if (ret == 1)
1354                 ret = 0;
1355
1356         inode_unlock(inode);
1357         return ret;
1358 }
1359
1360 /*
1361  * This function was originally taken from fs/mpage.c, and customized for f2fs.
1362  * Major change was from block_size == page_size in f2fs by default.
1363  */
1364 static int f2fs_mpage_readpages(struct address_space *mapping,
1365                         struct list_head *pages, struct page *page,
1366                         unsigned nr_pages)
1367 {
1368         struct bio *bio = NULL;
1369         sector_t last_block_in_bio = 0;
1370         struct inode *inode = mapping->host;
1371         const unsigned blkbits = inode->i_blkbits;
1372         const unsigned blocksize = 1 << blkbits;
1373         sector_t block_in_file;
1374         sector_t last_block;
1375         sector_t last_block_in_file;
1376         sector_t block_nr;
1377         struct f2fs_map_blocks map;
1378
1379         map.m_pblk = 0;
1380         map.m_lblk = 0;
1381         map.m_len = 0;
1382         map.m_flags = 0;
1383         map.m_next_pgofs = NULL;
1384         map.m_next_extent = NULL;
1385         map.m_seg_type = NO_CHECK_TYPE;
1386
1387         for (; nr_pages; nr_pages--) {
1388                 if (pages) {
1389                         page = list_last_entry(pages, struct page, lru);
1390
1391                         prefetchw(&page->flags);
1392                         list_del(&page->lru);
1393                         if (add_to_page_cache_lru(page, mapping,
1394                                                   page->index,
1395                                                   readahead_gfp_mask(mapping)))
1396                                 goto next_page;
1397                 }
1398
1399                 block_in_file = (sector_t)page->index;
1400                 last_block = block_in_file + nr_pages;
1401                 last_block_in_file = (i_size_read(inode) + blocksize - 1) >>
1402                                                                 blkbits;
1403                 if (last_block > last_block_in_file)
1404                         last_block = last_block_in_file;
1405
1406                 /*
1407                  * Map blocks using the previous result first.
1408                  */
1409                 if ((map.m_flags & F2FS_MAP_MAPPED) &&
1410                                 block_in_file > map.m_lblk &&
1411                                 block_in_file < (map.m_lblk + map.m_len))
1412                         goto got_it;
1413
1414                 /*
1415                  * Then do more f2fs_map_blocks() calls until we are
1416                  * done with this page.
1417                  */
1418                 map.m_flags = 0;
1419
1420                 if (block_in_file < last_block) {
1421                         map.m_lblk = block_in_file;
1422                         map.m_len = last_block - block_in_file;
1423
1424                         if (f2fs_map_blocks(inode, &map, 0,
1425                                                 F2FS_GET_BLOCK_DEFAULT))
1426                                 goto set_error_page;
1427                 }
1428 got_it:
1429                 if ((map.m_flags & F2FS_MAP_MAPPED)) {
1430                         block_nr = map.m_pblk + block_in_file - map.m_lblk;
1431                         SetPageMappedToDisk(page);
1432
1433                         if (!PageUptodate(page) && !cleancache_get_page(page)) {
1434                                 SetPageUptodate(page);
1435                                 goto confused;
1436                         }
1437                 } else {
1438                         zero_user_segment(page, 0, PAGE_SIZE);
1439                         if (!PageUptodate(page))
1440                                 SetPageUptodate(page);
1441                         unlock_page(page);
1442                         goto next_page;
1443                 }
1444
1445                 /*
1446                  * This page will go to BIO.  Do we need to send this
1447                  * BIO off first?
1448                  */
1449                 if (bio && (last_block_in_bio != block_nr - 1 ||
1450                         !__same_bdev(F2FS_I_SB(inode), block_nr, bio))) {
1451 submit_and_realloc:
1452                         __submit_bio(F2FS_I_SB(inode), bio, DATA);
1453                         bio = NULL;
1454                 }
1455                 if (bio == NULL) {
1456                         bio = f2fs_grab_read_bio(inode, block_nr, nr_pages);
1457                         if (IS_ERR(bio)) {
1458                                 bio = NULL;
1459                                 goto set_error_page;
1460                         }
1461                 }
1462
1463                 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
1464                         goto submit_and_realloc;
1465
1466                 last_block_in_bio = block_nr;
1467                 goto next_page;
1468 set_error_page:
1469                 SetPageError(page);
1470                 zero_user_segment(page, 0, PAGE_SIZE);
1471                 unlock_page(page);
1472                 goto next_page;
1473 confused:
1474                 if (bio) {
1475                         __submit_bio(F2FS_I_SB(inode), bio, DATA);
1476                         bio = NULL;
1477                 }
1478                 unlock_page(page);
1479 next_page:
1480                 if (pages)
1481                         put_page(page);
1482         }
1483         BUG_ON(pages && !list_empty(pages));
1484         if (bio)
1485                 __submit_bio(F2FS_I_SB(inode), bio, DATA);
1486         return 0;
1487 }
1488
1489 static int f2fs_read_data_page(struct file *file, struct page *page)
1490 {
1491         struct inode *inode = page->mapping->host;
1492         int ret = -EAGAIN;
1493
1494         trace_f2fs_readpage(page, DATA);
1495
1496         /* If the file has inline data, try to read it directly */
1497         if (f2fs_has_inline_data(inode))
1498                 ret = f2fs_read_inline_data(inode, page);
1499         if (ret == -EAGAIN)
1500                 ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1);
1501         return ret;
1502 }
1503
1504 static int f2fs_read_data_pages(struct file *file,
1505                         struct address_space *mapping,
1506                         struct list_head *pages, unsigned nr_pages)
1507 {
1508         struct inode *inode = mapping->host;
1509         struct page *page = list_last_entry(pages, struct page, lru);
1510
1511         trace_f2fs_readpages(inode, page, nr_pages);
1512
1513         /* If the file has inline data, skip readpages */
1514         if (f2fs_has_inline_data(inode))
1515                 return 0;
1516
1517         return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages);
1518 }
1519
1520 static int encrypt_one_page(struct f2fs_io_info *fio)
1521 {
1522         struct inode *inode = fio->page->mapping->host;
1523         gfp_t gfp_flags = GFP_NOFS;
1524
1525         if (!f2fs_encrypted_file(inode))
1526                 return 0;
1527
1528         /* wait for GCed encrypted page writeback */
1529         f2fs_wait_on_block_writeback(fio->sbi, fio->old_blkaddr);
1530
1531 retry_encrypt:
1532         fio->encrypted_page = fscrypt_encrypt_page(inode, fio->page,
1533                         PAGE_SIZE, 0, fio->page->index, gfp_flags);
1534         if (!IS_ERR(fio->encrypted_page))
1535                 return 0;
1536
1537         /* flush pending IOs and wait for a while in the ENOMEM case */
1538         if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
1539                 f2fs_flush_merged_writes(fio->sbi);
1540                 congestion_wait(BLK_RW_ASYNC, HZ/50);
1541                 gfp_flags |= __GFP_NOFAIL;
1542                 goto retry_encrypt;
1543         }
1544         return PTR_ERR(fio->encrypted_page);
1545 }
1546
1547 static inline bool check_inplace_update_policy(struct inode *inode,
1548                                 struct f2fs_io_info *fio)
1549 {
1550         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1551         unsigned int policy = SM_I(sbi)->ipu_policy;
1552
1553         if (policy & (0x1 << F2FS_IPU_FORCE))
1554                 return true;
1555         if (policy & (0x1 << F2FS_IPU_SSR) && need_SSR(sbi))
1556                 return true;
1557         if (policy & (0x1 << F2FS_IPU_UTIL) &&
1558                         utilization(sbi) > SM_I(sbi)->min_ipu_util)
1559                 return true;
1560         if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && need_SSR(sbi) &&
1561                         utilization(sbi) > SM_I(sbi)->min_ipu_util)
1562                 return true;
1563
1564         /*
1565          * IPU for rewrite async pages
1566          */
1567         if (policy & (0x1 << F2FS_IPU_ASYNC) &&
1568                         fio && fio->op == REQ_OP_WRITE &&
1569                         !(fio->op_flags & REQ_SYNC) &&
1570                         !f2fs_encrypted_inode(inode))
1571                 return true;
1572
1573         /* this is only set during fdatasync */
1574         if (policy & (0x1 << F2FS_IPU_FSYNC) &&
1575                         is_inode_flag_set(inode, FI_NEED_IPU))
1576                 return true;
1577
1578         return false;
1579 }
1580
1581 bool should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
1582 {
1583         if (f2fs_is_pinned_file(inode))
1584                 return true;
1585
1586         /* if this is cold file, we should overwrite to avoid fragmentation */
1587         if (file_is_cold(inode))
1588                 return true;
1589
1590         return check_inplace_update_policy(inode, fio);
1591 }
1592
1593 bool should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
1594 {
1595         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1596
1597         if (test_opt(sbi, LFS))
1598                 return true;
1599         if (S_ISDIR(inode->i_mode))
1600                 return true;
1601         if (f2fs_is_atomic_file(inode))
1602                 return true;
1603         if (fio) {
1604                 if (is_cold_data(fio->page))
1605                         return true;
1606                 if (IS_ATOMIC_WRITTEN_PAGE(fio->page))
1607                         return true;
1608         }
1609         return false;
1610 }
1611
1612 static inline bool need_inplace_update(struct f2fs_io_info *fio)
1613 {
1614         struct inode *inode = fio->page->mapping->host;
1615
1616         if (should_update_outplace(inode, fio))
1617                 return false;
1618
1619         return should_update_inplace(inode, fio);
1620 }
1621
1622 static inline bool valid_ipu_blkaddr(struct f2fs_io_info *fio)
1623 {
1624         if (fio->old_blkaddr == NEW_ADDR)
1625                 return false;
1626         if (fio->old_blkaddr == NULL_ADDR)
1627                 return false;
1628         return true;
1629 }
1630
1631 int do_write_data_page(struct f2fs_io_info *fio)
1632 {
1633         struct page *page = fio->page;
1634         struct inode *inode = page->mapping->host;
1635         struct dnode_of_data dn;
1636         struct extent_info ei = {0,0,0};
1637         bool ipu_force = false;
1638         int err = 0;
1639
1640         set_new_dnode(&dn, inode, NULL, NULL, 0);
1641         if (need_inplace_update(fio) &&
1642                         f2fs_lookup_extent_cache(inode, page->index, &ei)) {
1643                 fio->old_blkaddr = ei.blk + page->index - ei.fofs;
1644
1645                 if (valid_ipu_blkaddr(fio)) {
1646                         ipu_force = true;
1647                         fio->need_lock = LOCK_DONE;
1648                         goto got_it;
1649                 }
1650         }
1651
1652         /* Deadlock due to between page->lock and f2fs_lock_op */
1653         if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
1654                 return -EAGAIN;
1655
1656         err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
1657         if (err)
1658                 goto out;
1659
1660         fio->old_blkaddr = dn.data_blkaddr;
1661
1662         /* This page is already truncated */
1663         if (fio->old_blkaddr == NULL_ADDR) {
1664                 ClearPageUptodate(page);
1665                 goto out_writepage;
1666         }
1667 got_it:
1668         /*
1669          * If current allocation needs SSR,
1670          * it had better in-place writes for updated data.
1671          */
1672         if (ipu_force || (valid_ipu_blkaddr(fio) && need_inplace_update(fio))) {
1673                 err = encrypt_one_page(fio);
1674                 if (err)
1675                         goto out_writepage;
1676
1677                 set_page_writeback(page);
1678                 f2fs_put_dnode(&dn);
1679                 if (fio->need_lock == LOCK_REQ)
1680                         f2fs_unlock_op(fio->sbi);
1681                 err = rewrite_data_page(fio);
1682                 trace_f2fs_do_write_data_page(fio->page, IPU);
1683                 set_inode_flag(inode, FI_UPDATE_WRITE);
1684                 return err;
1685         }
1686
1687         if (fio->need_lock == LOCK_RETRY) {
1688                 if (!f2fs_trylock_op(fio->sbi)) {
1689                         err = -EAGAIN;
1690                         goto out_writepage;
1691                 }
1692                 fio->need_lock = LOCK_REQ;
1693         }
1694
1695         err = encrypt_one_page(fio);
1696         if (err)
1697                 goto out_writepage;
1698
1699         set_page_writeback(page);
1700
1701         /* LFS mode write path */
1702         write_data_page(&dn, fio);
1703         trace_f2fs_do_write_data_page(page, OPU);
1704         set_inode_flag(inode, FI_APPEND_WRITE);
1705         if (page->index == 0)
1706                 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
1707 out_writepage:
1708         f2fs_put_dnode(&dn);
1709 out:
1710         if (fio->need_lock == LOCK_REQ)
1711                 f2fs_unlock_op(fio->sbi);
1712         return err;
1713 }
1714
1715 static int __write_data_page(struct page *page, bool *submitted,
1716                                 struct writeback_control *wbc,
1717                                 enum iostat_type io_type)
1718 {
1719         struct inode *inode = page->mapping->host;
1720         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1721         loff_t i_size = i_size_read(inode);
1722         const pgoff_t end_index = ((unsigned long long) i_size)
1723                                                         >> PAGE_SHIFT;
1724         loff_t psize = (page->index + 1) << PAGE_SHIFT;
1725         unsigned offset = 0;
1726         bool need_balance_fs = false;
1727         int err = 0;
1728         struct f2fs_io_info fio = {
1729                 .sbi = sbi,
1730                 .ino = inode->i_ino,
1731                 .type = DATA,
1732                 .op = REQ_OP_WRITE,
1733                 .op_flags = wbc_to_write_flags(wbc),
1734                 .old_blkaddr = NULL_ADDR,
1735                 .page = page,
1736                 .encrypted_page = NULL,
1737                 .submitted = false,
1738                 .need_lock = LOCK_RETRY,
1739                 .io_type = io_type,
1740                 .io_wbc = wbc,
1741         };
1742
1743         trace_f2fs_writepage(page, DATA);
1744
1745         /* we should bypass data pages to proceed the kworkder jobs */
1746         if (unlikely(f2fs_cp_error(sbi))) {
1747                 mapping_set_error(page->mapping, -EIO);
1748                 goto out;
1749         }
1750
1751         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1752                 goto redirty_out;
1753
1754         if (page->index < end_index)
1755                 goto write;
1756
1757         /*
1758          * If the offset is out-of-range of file size,
1759          * this page does not have to be written to disk.
1760          */
1761         offset = i_size & (PAGE_SIZE - 1);
1762         if ((page->index >= end_index + 1) || !offset)
1763                 goto out;
1764
1765         zero_user_segment(page, offset, PAGE_SIZE);
1766 write:
1767         if (f2fs_is_drop_cache(inode))
1768                 goto out;
1769         /* we should not write 0'th page having journal header */
1770         if (f2fs_is_volatile_file(inode) && (!page->index ||
1771                         (!wbc->for_reclaim &&
1772                         available_free_memory(sbi, BASE_CHECK))))
1773                 goto redirty_out;
1774
1775         /* Dentry blocks are controlled by checkpoint */
1776         if (S_ISDIR(inode->i_mode)) {
1777                 fio.need_lock = LOCK_DONE;
1778                 err = do_write_data_page(&fio);
1779                 goto done;
1780         }
1781
1782         if (!wbc->for_reclaim)
1783                 need_balance_fs = true;
1784         else if (has_not_enough_free_secs(sbi, 0, 0))
1785                 goto redirty_out;
1786         else
1787                 set_inode_flag(inode, FI_HOT_DATA);
1788
1789         err = -EAGAIN;
1790         if (f2fs_has_inline_data(inode)) {
1791                 err = f2fs_write_inline_data(inode, page);
1792                 if (!err)
1793                         goto out;
1794         }
1795
1796         if (err == -EAGAIN) {
1797                 err = do_write_data_page(&fio);
1798                 if (err == -EAGAIN) {
1799                         fio.need_lock = LOCK_REQ;
1800                         err = do_write_data_page(&fio);
1801                 }
1802         }
1803
1804         if (err) {
1805                 file_set_keep_isize(inode);
1806         } else {
1807                 down_write(&F2FS_I(inode)->i_sem);
1808                 if (F2FS_I(inode)->last_disk_size < psize)
1809                         F2FS_I(inode)->last_disk_size = psize;
1810                 up_write(&F2FS_I(inode)->i_sem);
1811         }
1812
1813 done:
1814         if (err && err != -ENOENT)
1815                 goto redirty_out;
1816
1817 out:
1818         inode_dec_dirty_pages(inode);
1819         if (err)
1820                 ClearPageUptodate(page);
1821
1822         if (wbc->for_reclaim) {
1823                 f2fs_submit_merged_write_cond(sbi, inode, 0, page->index, DATA);
1824                 clear_inode_flag(inode, FI_HOT_DATA);
1825                 remove_dirty_inode(inode);
1826                 submitted = NULL;
1827         }
1828
1829         unlock_page(page);
1830         if (!S_ISDIR(inode->i_mode))
1831                 f2fs_balance_fs(sbi, need_balance_fs);
1832
1833         if (unlikely(f2fs_cp_error(sbi))) {
1834                 f2fs_submit_merged_write(sbi, DATA);
1835                 submitted = NULL;
1836         }
1837
1838         if (submitted)
1839                 *submitted = fio.submitted;
1840
1841         return 0;
1842
1843 redirty_out:
1844         redirty_page_for_writepage(wbc, page);
1845         if (!err)
1846                 return AOP_WRITEPAGE_ACTIVATE;
1847         unlock_page(page);
1848         return err;
1849 }
1850
1851 static int f2fs_write_data_page(struct page *page,
1852                                         struct writeback_control *wbc)
1853 {
1854         return __write_data_page(page, NULL, wbc, FS_DATA_IO);
1855 }
1856
1857 /*
1858  * This function was copied from write_cche_pages from mm/page-writeback.c.
1859  * The major change is making write step of cold data page separately from
1860  * warm/hot data page.
1861  */
1862 static int f2fs_write_cache_pages(struct address_space *mapping,
1863                                         struct writeback_control *wbc,
1864                                         enum iostat_type io_type)
1865 {
1866         int ret = 0;
1867         int done = 0;
1868         struct pagevec pvec;
1869         int nr_pages;
1870         pgoff_t uninitialized_var(writeback_index);
1871         pgoff_t index;
1872         pgoff_t end;            /* Inclusive */
1873         pgoff_t done_index;
1874         pgoff_t last_idx = ULONG_MAX;
1875         int cycled;
1876         int range_whole = 0;
1877         int tag;
1878
1879         pagevec_init(&pvec);
1880
1881         if (get_dirty_pages(mapping->host) <=
1882                                 SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
1883                 set_inode_flag(mapping->host, FI_HOT_DATA);
1884         else
1885                 clear_inode_flag(mapping->host, FI_HOT_DATA);
1886
1887         if (wbc->range_cyclic) {
1888                 writeback_index = mapping->writeback_index; /* prev offset */
1889                 index = writeback_index;
1890                 if (index == 0)
1891                         cycled = 1;
1892                 else
1893                         cycled = 0;
1894                 end = -1;
1895         } else {
1896                 index = wbc->range_start >> PAGE_SHIFT;
1897                 end = wbc->range_end >> PAGE_SHIFT;
1898                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1899                         range_whole = 1;
1900                 cycled = 1; /* ignore range_cyclic tests */
1901         }
1902         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1903                 tag = PAGECACHE_TAG_TOWRITE;
1904         else
1905                 tag = PAGECACHE_TAG_DIRTY;
1906 retry:
1907         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1908                 tag_pages_for_writeback(mapping, index, end);
1909         done_index = index;
1910         while (!done && (index <= end)) {
1911                 int i;
1912
1913                 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
1914                                 tag);
1915                 if (nr_pages == 0)
1916                         break;
1917
1918                 for (i = 0; i < nr_pages; i++) {
1919                         struct page *page = pvec.pages[i];
1920                         bool submitted = false;
1921
1922                         done_index = page->index;
1923 retry_write:
1924                         lock_page(page);
1925
1926                         if (unlikely(page->mapping != mapping)) {
1927 continue_unlock:
1928                                 unlock_page(page);
1929                                 continue;
1930                         }
1931
1932                         if (!PageDirty(page)) {
1933                                 /* someone wrote it for us */
1934                                 goto continue_unlock;
1935                         }
1936
1937                         if (PageWriteback(page)) {
1938                                 if (wbc->sync_mode != WB_SYNC_NONE)
1939                                         f2fs_wait_on_page_writeback(page,
1940                                                                 DATA, true);
1941                                 else
1942                                         goto continue_unlock;
1943                         }
1944
1945                         BUG_ON(PageWriteback(page));
1946                         if (!clear_page_dirty_for_io(page))
1947                                 goto continue_unlock;
1948
1949                         ret = __write_data_page(page, &submitted, wbc, io_type);
1950                         if (unlikely(ret)) {
1951                                 /*
1952                                  * keep nr_to_write, since vfs uses this to
1953                                  * get # of written pages.
1954                                  */
1955                                 if (ret == AOP_WRITEPAGE_ACTIVATE) {
1956                                         unlock_page(page);
1957                                         ret = 0;
1958                                         continue;
1959                                 } else if (ret == -EAGAIN) {
1960                                         ret = 0;
1961                                         if (wbc->sync_mode == WB_SYNC_ALL) {
1962                                                 cond_resched();
1963                                                 congestion_wait(BLK_RW_ASYNC,
1964                                                                         HZ/50);
1965                                                 goto retry_write;
1966                                         }
1967                                         continue;
1968                                 }
1969                                 done_index = page->index + 1;
1970                                 done = 1;
1971                                 break;
1972                         } else if (submitted) {
1973                                 last_idx = page->index;
1974                         }
1975
1976                         /* give a priority to WB_SYNC threads */
1977                         if ((atomic_read(&F2FS_M_SB(mapping)->wb_sync_req) ||
1978                                         --wbc->nr_to_write <= 0) &&
1979                                         wbc->sync_mode == WB_SYNC_NONE) {
1980                                 done = 1;
1981                                 break;
1982                         }
1983                 }
1984                 pagevec_release(&pvec);
1985                 cond_resched();
1986         }
1987
1988         if (!cycled && !done) {
1989                 cycled = 1;
1990                 index = 0;
1991                 end = writeback_index - 1;
1992                 goto retry;
1993         }
1994         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1995                 mapping->writeback_index = done_index;
1996
1997         if (last_idx != ULONG_MAX)
1998                 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
1999                                                 0, last_idx, DATA);
2000
2001         return ret;
2002 }
2003
2004 int __f2fs_write_data_pages(struct address_space *mapping,
2005                                                 struct writeback_control *wbc,
2006                                                 enum iostat_type io_type)
2007 {
2008         struct inode *inode = mapping->host;
2009         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2010         struct blk_plug plug;
2011         int ret;
2012
2013         /* deal with chardevs and other special file */
2014         if (!mapping->a_ops->writepage)
2015                 return 0;
2016
2017         /* skip writing if there is no dirty page in this inode */
2018         if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
2019                 return 0;
2020
2021         /* during POR, we don't need to trigger writepage at all. */
2022         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2023                 goto skip_write;
2024
2025         if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
2026                         get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
2027                         available_free_memory(sbi, DIRTY_DENTS))
2028                 goto skip_write;
2029
2030         /* skip writing during file defragment */
2031         if (is_inode_flag_set(inode, FI_DO_DEFRAG))
2032                 goto skip_write;
2033
2034         trace_f2fs_writepages(mapping->host, wbc, DATA);
2035
2036         /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
2037         if (wbc->sync_mode == WB_SYNC_ALL)
2038                 atomic_inc(&sbi->wb_sync_req);
2039         else if (atomic_read(&sbi->wb_sync_req))
2040                 goto skip_write;
2041
2042         blk_start_plug(&plug);
2043         ret = f2fs_write_cache_pages(mapping, wbc, io_type);
2044         blk_finish_plug(&plug);
2045
2046         if (wbc->sync_mode == WB_SYNC_ALL)
2047                 atomic_dec(&sbi->wb_sync_req);
2048         /*
2049          * if some pages were truncated, we cannot guarantee its mapping->host
2050          * to detect pending bios.
2051          */
2052
2053         remove_dirty_inode(inode);
2054         return ret;
2055
2056 skip_write:
2057         wbc->pages_skipped += get_dirty_pages(inode);
2058         trace_f2fs_writepages(mapping->host, wbc, DATA);
2059         return 0;
2060 }
2061
2062 static int f2fs_write_data_pages(struct address_space *mapping,
2063                             struct writeback_control *wbc)
2064 {
2065         struct inode *inode = mapping->host;
2066
2067         return __f2fs_write_data_pages(mapping, wbc,
2068                         F2FS_I(inode)->cp_task == current ?
2069                         FS_CP_DATA_IO : FS_DATA_IO);
2070 }
2071
2072 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
2073 {
2074         struct inode *inode = mapping->host;
2075         loff_t i_size = i_size_read(inode);
2076
2077         if (to > i_size) {
2078                 down_write(&F2FS_I(inode)->i_mmap_sem);
2079                 truncate_pagecache(inode, i_size);
2080                 truncate_blocks(inode, i_size, true);
2081                 up_write(&F2FS_I(inode)->i_mmap_sem);
2082         }
2083 }
2084
2085 static int prepare_write_begin(struct f2fs_sb_info *sbi,
2086                         struct page *page, loff_t pos, unsigned len,
2087                         block_t *blk_addr, bool *node_changed)
2088 {
2089         struct inode *inode = page->mapping->host;
2090         pgoff_t index = page->index;
2091         struct dnode_of_data dn;
2092         struct page *ipage;
2093         bool locked = false;
2094         struct extent_info ei = {0,0,0};
2095         int err = 0;
2096
2097         /*
2098          * we already allocated all the blocks, so we don't need to get
2099          * the block addresses when there is no need to fill the page.
2100          */
2101         if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE &&
2102                         !is_inode_flag_set(inode, FI_NO_PREALLOC))
2103                 return 0;
2104
2105         if (f2fs_has_inline_data(inode) ||
2106                         (pos & PAGE_MASK) >= i_size_read(inode)) {
2107                 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true);
2108                 locked = true;
2109         }
2110 restart:
2111         /* check inline_data */
2112         ipage = get_node_page(sbi, inode->i_ino);
2113         if (IS_ERR(ipage)) {
2114                 err = PTR_ERR(ipage);
2115                 goto unlock_out;
2116         }
2117
2118         set_new_dnode(&dn, inode, ipage, ipage, 0);
2119
2120         if (f2fs_has_inline_data(inode)) {
2121                 if (pos + len <= MAX_INLINE_DATA(inode)) {
2122                         read_inline_data(page, ipage);
2123                         set_inode_flag(inode, FI_DATA_EXIST);
2124                         if (inode->i_nlink)
2125                                 set_inline_node(ipage);
2126                 } else {
2127                         err = f2fs_convert_inline_page(&dn, page);
2128                         if (err)
2129                                 goto out;
2130                         if (dn.data_blkaddr == NULL_ADDR)
2131                                 err = f2fs_get_block(&dn, index);
2132                 }
2133         } else if (locked) {
2134                 err = f2fs_get_block(&dn, index);
2135         } else {
2136                 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
2137                         dn.data_blkaddr = ei.blk + index - ei.fofs;
2138                 } else {
2139                         /* hole case */
2140                         err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
2141                         if (err || dn.data_blkaddr == NULL_ADDR) {
2142                                 f2fs_put_dnode(&dn);
2143                                 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO,
2144                                                                 true);
2145                                 locked = true;
2146                                 goto restart;
2147                         }
2148                 }
2149         }
2150
2151         /* convert_inline_page can make node_changed */
2152         *blk_addr = dn.data_blkaddr;
2153         *node_changed = dn.node_changed;
2154 out:
2155         f2fs_put_dnode(&dn);
2156 unlock_out:
2157         if (locked)
2158                 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false);
2159         return err;
2160 }
2161
2162 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
2163                 loff_t pos, unsigned len, unsigned flags,
2164                 struct page **pagep, void **fsdata)
2165 {
2166         struct inode *inode = mapping->host;
2167         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2168         struct page *page = NULL;
2169         pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
2170         bool need_balance = false, drop_atomic = false;
2171         block_t blkaddr = NULL_ADDR;
2172         int err = 0;
2173
2174         trace_f2fs_write_begin(inode, pos, len, flags);
2175
2176         if (f2fs_is_atomic_file(inode) &&
2177                         !available_free_memory(sbi, INMEM_PAGES)) {
2178                 err = -ENOMEM;
2179                 drop_atomic = true;
2180                 goto fail;
2181         }
2182
2183         /*
2184          * We should check this at this moment to avoid deadlock on inode page
2185          * and #0 page. The locking rule for inline_data conversion should be:
2186          * lock_page(page #0) -> lock_page(inode_page)
2187          */
2188         if (index != 0) {
2189                 err = f2fs_convert_inline_inode(inode);
2190                 if (err)
2191                         goto fail;
2192         }
2193 repeat:
2194         /*
2195          * Do not use grab_cache_page_write_begin() to avoid deadlock due to
2196          * wait_for_stable_page. Will wait that below with our IO control.
2197          */
2198         page = f2fs_pagecache_get_page(mapping, index,
2199                                 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
2200         if (!page) {
2201                 err = -ENOMEM;
2202                 goto fail;
2203         }
2204
2205         *pagep = page;
2206
2207         err = prepare_write_begin(sbi, page, pos, len,
2208                                         &blkaddr, &need_balance);
2209         if (err)
2210                 goto fail;
2211
2212         if (need_balance && has_not_enough_free_secs(sbi, 0, 0)) {
2213                 unlock_page(page);
2214                 f2fs_balance_fs(sbi, true);
2215                 lock_page(page);
2216                 if (page->mapping != mapping) {
2217                         /* The page got truncated from under us */
2218                         f2fs_put_page(page, 1);
2219                         goto repeat;
2220                 }
2221         }
2222
2223         f2fs_wait_on_page_writeback(page, DATA, false);
2224
2225         /* wait for GCed encrypted page writeback */
2226         if (f2fs_encrypted_file(inode))
2227                 f2fs_wait_on_block_writeback(sbi, blkaddr);
2228
2229         if (len == PAGE_SIZE || PageUptodate(page))
2230                 return 0;
2231
2232         if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode)) {
2233                 zero_user_segment(page, len, PAGE_SIZE);
2234                 return 0;
2235         }
2236
2237         if (blkaddr == NEW_ADDR) {
2238                 zero_user_segment(page, 0, PAGE_SIZE);
2239                 SetPageUptodate(page);
2240         } else {
2241                 err = f2fs_submit_page_read(inode, page, blkaddr);
2242                 if (err)
2243                         goto fail;
2244
2245                 lock_page(page);
2246                 if (unlikely(page->mapping != mapping)) {
2247                         f2fs_put_page(page, 1);
2248                         goto repeat;
2249                 }
2250                 if (unlikely(!PageUptodate(page))) {
2251                         err = -EIO;
2252                         goto fail;
2253                 }
2254         }
2255         return 0;
2256
2257 fail:
2258         f2fs_put_page(page, 1);
2259         f2fs_write_failed(mapping, pos + len);
2260         if (drop_atomic)
2261                 drop_inmem_pages_all(sbi);
2262         return err;
2263 }
2264
2265 static int f2fs_write_end(struct file *file,
2266                         struct address_space *mapping,
2267                         loff_t pos, unsigned len, unsigned copied,
2268                         struct page *page, void *fsdata)
2269 {
2270         struct inode *inode = page->mapping->host;
2271
2272         trace_f2fs_write_end(inode, pos, len, copied);
2273
2274         /*
2275          * This should be come from len == PAGE_SIZE, and we expect copied
2276          * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
2277          * let generic_perform_write() try to copy data again through copied=0.
2278          */
2279         if (!PageUptodate(page)) {
2280                 if (unlikely(copied != len))
2281                         copied = 0;
2282                 else
2283                         SetPageUptodate(page);
2284         }
2285         if (!copied)
2286                 goto unlock_out;
2287
2288         set_page_dirty(page);
2289
2290         if (pos + copied > i_size_read(inode))
2291                 f2fs_i_size_write(inode, pos + copied);
2292 unlock_out:
2293         f2fs_put_page(page, 1);
2294         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2295         return copied;
2296 }
2297
2298 static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
2299                            loff_t offset)
2300 {
2301         unsigned blocksize_mask = inode->i_sb->s_blocksize - 1;
2302
2303         if (offset & blocksize_mask)
2304                 return -EINVAL;
2305
2306         if (iov_iter_alignment(iter) & blocksize_mask)
2307                 return -EINVAL;
2308
2309         return 0;
2310 }
2311
2312 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2313 {
2314         struct address_space *mapping = iocb->ki_filp->f_mapping;
2315         struct inode *inode = mapping->host;
2316         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2317         size_t count = iov_iter_count(iter);
2318         loff_t offset = iocb->ki_pos;
2319         int rw = iov_iter_rw(iter);
2320         int err;
2321         enum rw_hint hint = iocb->ki_hint;
2322         int whint_mode = F2FS_OPTION(sbi).whint_mode;
2323
2324         err = check_direct_IO(inode, iter, offset);
2325         if (err)
2326                 return err;
2327
2328         if (f2fs_force_buffered_io(inode, rw))
2329                 return 0;
2330
2331         trace_f2fs_direct_IO_enter(inode, offset, count, rw);
2332
2333         if (rw == WRITE && whint_mode == WHINT_MODE_OFF)
2334                 iocb->ki_hint = WRITE_LIFE_NOT_SET;
2335
2336         if (!down_read_trylock(&F2FS_I(inode)->dio_rwsem[rw])) {
2337                 if (iocb->ki_flags & IOCB_NOWAIT) {
2338                         iocb->ki_hint = hint;
2339                         err = -EAGAIN;
2340                         goto out;
2341                 }
2342                 down_read(&F2FS_I(inode)->dio_rwsem[rw]);
2343         }
2344
2345         err = blockdev_direct_IO(iocb, inode, iter, get_data_block_dio);
2346         up_read(&F2FS_I(inode)->dio_rwsem[rw]);
2347
2348         if (rw == WRITE) {
2349                 if (whint_mode == WHINT_MODE_OFF)
2350                         iocb->ki_hint = hint;
2351                 if (err > 0) {
2352                         f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO,
2353                                                                         err);
2354                         set_inode_flag(inode, FI_UPDATE_WRITE);
2355                 } else if (err < 0) {
2356                         f2fs_write_failed(mapping, offset + count);
2357                 }
2358         }
2359
2360 out:
2361         trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
2362
2363         return err;
2364 }
2365
2366 void f2fs_invalidate_page(struct page *page, unsigned int offset,
2367                                                         unsigned int length)
2368 {
2369         struct inode *inode = page->mapping->host;
2370         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2371
2372         if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
2373                 (offset % PAGE_SIZE || length != PAGE_SIZE))
2374                 return;
2375
2376         if (PageDirty(page)) {
2377                 if (inode->i_ino == F2FS_META_INO(sbi)) {
2378                         dec_page_count(sbi, F2FS_DIRTY_META);
2379                 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
2380                         dec_page_count(sbi, F2FS_DIRTY_NODES);
2381                 } else {
2382                         inode_dec_dirty_pages(inode);
2383                         remove_dirty_inode(inode);
2384                 }
2385         }
2386
2387         /* This is atomic written page, keep Private */
2388         if (IS_ATOMIC_WRITTEN_PAGE(page))
2389                 return drop_inmem_page(inode, page);
2390
2391         set_page_private(page, 0);
2392         ClearPagePrivate(page);
2393 }
2394
2395 int f2fs_release_page(struct page *page, gfp_t wait)
2396 {
2397         /* If this is dirty page, keep PagePrivate */
2398         if (PageDirty(page))
2399                 return 0;
2400
2401         /* This is atomic written page, keep Private */
2402         if (IS_ATOMIC_WRITTEN_PAGE(page))
2403                 return 0;
2404
2405         set_page_private(page, 0);
2406         ClearPagePrivate(page);
2407         return 1;
2408 }
2409
2410 /*
2411  * This was copied from __set_page_dirty_buffers which gives higher performance
2412  * in very high speed storages. (e.g., pmem)
2413  */
2414 void f2fs_set_page_dirty_nobuffers(struct page *page)
2415 {
2416         struct address_space *mapping = page->mapping;
2417         unsigned long flags;
2418
2419         if (unlikely(!mapping))
2420                 return;
2421
2422         spin_lock(&mapping->private_lock);
2423         lock_page_memcg(page);
2424         SetPageDirty(page);
2425         spin_unlock(&mapping->private_lock);
2426
2427         xa_lock_irqsave(&mapping->i_pages, flags);
2428         WARN_ON_ONCE(!PageUptodate(page));
2429         account_page_dirtied(page, mapping);
2430         radix_tree_tag_set(&mapping->i_pages,
2431                         page_index(page), PAGECACHE_TAG_DIRTY);
2432         xa_unlock_irqrestore(&mapping->i_pages, flags);
2433         unlock_page_memcg(page);
2434
2435         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2436         return;
2437 }
2438
2439 static int f2fs_set_data_page_dirty(struct page *page)
2440 {
2441         struct address_space *mapping = page->mapping;
2442         struct inode *inode = mapping->host;
2443
2444         trace_f2fs_set_page_dirty(page, DATA);
2445
2446         if (!PageUptodate(page))
2447                 SetPageUptodate(page);
2448
2449         if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) {
2450                 if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
2451                         register_inmem_page(inode, page);
2452                         return 1;
2453                 }
2454                 /*
2455                  * Previously, this page has been registered, we just
2456                  * return here.
2457                  */
2458                 return 0;
2459         }
2460
2461         if (!PageDirty(page)) {
2462                 f2fs_set_page_dirty_nobuffers(page);
2463                 update_dirty_page(inode, page);
2464                 return 1;
2465         }
2466         return 0;
2467 }
2468
2469 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
2470 {
2471         struct inode *inode = mapping->host;
2472
2473         if (f2fs_has_inline_data(inode))
2474                 return 0;
2475
2476         /* make sure allocating whole blocks */
2477         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2478                 filemap_write_and_wait(mapping);
2479
2480         return generic_block_bmap(mapping, block, get_data_block_bmap);
2481 }
2482
2483 #ifdef CONFIG_MIGRATION
2484 #include <linux/migrate.h>
2485
2486 int f2fs_migrate_page(struct address_space *mapping,
2487                 struct page *newpage, struct page *page, enum migrate_mode mode)
2488 {
2489         int rc, extra_count;
2490         struct f2fs_inode_info *fi = F2FS_I(mapping->host);
2491         bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page);
2492
2493         BUG_ON(PageWriteback(page));
2494
2495         /* migrating an atomic written page is safe with the inmem_lock hold */
2496         if (atomic_written) {
2497                 if (mode != MIGRATE_SYNC)
2498                         return -EBUSY;
2499                 if (!mutex_trylock(&fi->inmem_lock))
2500                         return -EAGAIN;
2501         }
2502
2503         /*
2504          * A reference is expected if PagePrivate set when move mapping,
2505          * however F2FS breaks this for maintaining dirty page counts when
2506          * truncating pages. So here adjusting the 'extra_count' make it work.
2507          */
2508         extra_count = (atomic_written ? 1 : 0) - page_has_private(page);
2509         rc = migrate_page_move_mapping(mapping, newpage,
2510                                 page, NULL, mode, extra_count);
2511         if (rc != MIGRATEPAGE_SUCCESS) {
2512                 if (atomic_written)
2513                         mutex_unlock(&fi->inmem_lock);
2514                 return rc;
2515         }
2516
2517         if (atomic_written) {
2518                 struct inmem_pages *cur;
2519                 list_for_each_entry(cur, &fi->inmem_pages, list)
2520                         if (cur->page == page) {
2521                                 cur->page = newpage;
2522                                 break;
2523                         }
2524                 mutex_unlock(&fi->inmem_lock);
2525                 put_page(page);
2526                 get_page(newpage);
2527         }
2528
2529         if (PagePrivate(page))
2530                 SetPagePrivate(newpage);
2531         set_page_private(newpage, page_private(page));
2532
2533         if (mode != MIGRATE_SYNC_NO_COPY)
2534                 migrate_page_copy(newpage, page);
2535         else
2536                 migrate_page_states(newpage, page);
2537
2538         return MIGRATEPAGE_SUCCESS;
2539 }
2540 #endif
2541
2542 const struct address_space_operations f2fs_dblock_aops = {
2543         .readpage       = f2fs_read_data_page,
2544         .readpages      = f2fs_read_data_pages,
2545         .writepage      = f2fs_write_data_page,
2546         .writepages     = f2fs_write_data_pages,
2547         .write_begin    = f2fs_write_begin,
2548         .write_end      = f2fs_write_end,
2549         .set_page_dirty = f2fs_set_data_page_dirty,
2550         .invalidatepage = f2fs_invalidate_page,
2551         .releasepage    = f2fs_release_page,
2552         .direct_IO      = f2fs_direct_IO,
2553         .bmap           = f2fs_bmap,
2554 #ifdef CONFIG_MIGRATION
2555         .migratepage    = f2fs_migrate_page,
2556 #endif
2557 };