Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[linux-2.6-microblaze.git] / fs / f2fs / checkpoint.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/checkpoint.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/bio.h>
10 #include <linux/mpage.h>
11 #include <linux/writeback.h>
12 #include <linux/blkdev.h>
13 #include <linux/f2fs_fs.h>
14 #include <linux/pagevec.h>
15 #include <linux/swap.h>
16 #include <linux/kthread.h>
17
18 #include "f2fs.h"
19 #include "node.h"
20 #include "segment.h"
21 #include "iostat.h"
22 #include <trace/events/f2fs.h>
23
24 #define DEFAULT_CHECKPOINT_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
25
26 static struct kmem_cache *ino_entry_slab;
27 struct kmem_cache *f2fs_inode_entry_slab;
28
29 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io)
30 {
31         f2fs_build_fault_attr(sbi, 0, 0);
32         set_ckpt_flags(sbi, CP_ERROR_FLAG);
33         if (!end_io)
34                 f2fs_flush_merged_writes(sbi);
35 }
36
37 /*
38  * We guarantee no failure on the returned page.
39  */
40 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
41 {
42         struct address_space *mapping = META_MAPPING(sbi);
43         struct page *page;
44 repeat:
45         page = f2fs_grab_cache_page(mapping, index, false);
46         if (!page) {
47                 cond_resched();
48                 goto repeat;
49         }
50         f2fs_wait_on_page_writeback(page, META, true, true);
51         if (!PageUptodate(page))
52                 SetPageUptodate(page);
53         return page;
54 }
55
56 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
57                                                         bool is_meta)
58 {
59         struct address_space *mapping = META_MAPPING(sbi);
60         struct page *page;
61         struct f2fs_io_info fio = {
62                 .sbi = sbi,
63                 .type = META,
64                 .op = REQ_OP_READ,
65                 .op_flags = REQ_META | REQ_PRIO,
66                 .old_blkaddr = index,
67                 .new_blkaddr = index,
68                 .encrypted_page = NULL,
69                 .is_por = !is_meta,
70         };
71         int err;
72
73         if (unlikely(!is_meta))
74                 fio.op_flags &= ~REQ_META;
75 repeat:
76         page = f2fs_grab_cache_page(mapping, index, false);
77         if (!page) {
78                 cond_resched();
79                 goto repeat;
80         }
81         if (PageUptodate(page))
82                 goto out;
83
84         fio.page = page;
85
86         err = f2fs_submit_page_bio(&fio);
87         if (err) {
88                 f2fs_put_page(page, 1);
89                 return ERR_PTR(err);
90         }
91
92         f2fs_update_iostat(sbi, FS_META_READ_IO, F2FS_BLKSIZE);
93
94         lock_page(page);
95         if (unlikely(page->mapping != mapping)) {
96                 f2fs_put_page(page, 1);
97                 goto repeat;
98         }
99
100         if (unlikely(!PageUptodate(page))) {
101                 f2fs_put_page(page, 1);
102                 return ERR_PTR(-EIO);
103         }
104 out:
105         return page;
106 }
107
108 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
109 {
110         return __get_meta_page(sbi, index, true);
111 }
112
113 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index)
114 {
115         struct page *page;
116         int count = 0;
117
118 retry:
119         page = __get_meta_page(sbi, index, true);
120         if (IS_ERR(page)) {
121                 if (PTR_ERR(page) == -EIO &&
122                                 ++count <= DEFAULT_RETRY_IO_COUNT)
123                         goto retry;
124                 f2fs_stop_checkpoint(sbi, false);
125         }
126         return page;
127 }
128
129 /* for POR only */
130 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
131 {
132         return __get_meta_page(sbi, index, false);
133 }
134
135 static bool __is_bitmap_valid(struct f2fs_sb_info *sbi, block_t blkaddr,
136                                                         int type)
137 {
138         struct seg_entry *se;
139         unsigned int segno, offset;
140         bool exist;
141
142         if (type != DATA_GENERIC_ENHANCE && type != DATA_GENERIC_ENHANCE_READ)
143                 return true;
144
145         segno = GET_SEGNO(sbi, blkaddr);
146         offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
147         se = get_seg_entry(sbi, segno);
148
149         exist = f2fs_test_bit(offset, se->cur_valid_map);
150         if (!exist && type == DATA_GENERIC_ENHANCE) {
151                 f2fs_err(sbi, "Inconsistent error blkaddr:%u, sit bitmap:%d",
152                          blkaddr, exist);
153                 set_sbi_flag(sbi, SBI_NEED_FSCK);
154                 WARN_ON(1);
155         }
156         return exist;
157 }
158
159 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
160                                         block_t blkaddr, int type)
161 {
162         switch (type) {
163         case META_NAT:
164                 break;
165         case META_SIT:
166                 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
167                         return false;
168                 break;
169         case META_SSA:
170                 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
171                         blkaddr < SM_I(sbi)->ssa_blkaddr))
172                         return false;
173                 break;
174         case META_CP:
175                 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
176                         blkaddr < __start_cp_addr(sbi)))
177                         return false;
178                 break;
179         case META_POR:
180                 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
181                         blkaddr < MAIN_BLKADDR(sbi)))
182                         return false;
183                 break;
184         case DATA_GENERIC:
185         case DATA_GENERIC_ENHANCE:
186         case DATA_GENERIC_ENHANCE_READ:
187                 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
188                                 blkaddr < MAIN_BLKADDR(sbi))) {
189                         f2fs_warn(sbi, "access invalid blkaddr:%u",
190                                   blkaddr);
191                         set_sbi_flag(sbi, SBI_NEED_FSCK);
192                         WARN_ON(1);
193                         return false;
194                 } else {
195                         return __is_bitmap_valid(sbi, blkaddr, type);
196                 }
197                 break;
198         case META_GENERIC:
199                 if (unlikely(blkaddr < SEG0_BLKADDR(sbi) ||
200                         blkaddr >= MAIN_BLKADDR(sbi)))
201                         return false;
202                 break;
203         default:
204                 BUG();
205         }
206
207         return true;
208 }
209
210 /*
211  * Readahead CP/NAT/SIT/SSA/POR pages
212  */
213 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
214                                                         int type, bool sync)
215 {
216         struct page *page;
217         block_t blkno = start;
218         struct f2fs_io_info fio = {
219                 .sbi = sbi,
220                 .type = META,
221                 .op = REQ_OP_READ,
222                 .op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD,
223                 .encrypted_page = NULL,
224                 .in_list = false,
225                 .is_por = (type == META_POR),
226         };
227         struct blk_plug plug;
228         int err;
229
230         if (unlikely(type == META_POR))
231                 fio.op_flags &= ~REQ_META;
232
233         blk_start_plug(&plug);
234         for (; nrpages-- > 0; blkno++) {
235
236                 if (!f2fs_is_valid_blkaddr(sbi, blkno, type))
237                         goto out;
238
239                 switch (type) {
240                 case META_NAT:
241                         if (unlikely(blkno >=
242                                         NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
243                                 blkno = 0;
244                         /* get nat block addr */
245                         fio.new_blkaddr = current_nat_addr(sbi,
246                                         blkno * NAT_ENTRY_PER_BLOCK);
247                         break;
248                 case META_SIT:
249                         if (unlikely(blkno >= TOTAL_SEGS(sbi)))
250                                 goto out;
251                         /* get sit block addr */
252                         fio.new_blkaddr = current_sit_addr(sbi,
253                                         blkno * SIT_ENTRY_PER_BLOCK);
254                         break;
255                 case META_SSA:
256                 case META_CP:
257                 case META_POR:
258                         fio.new_blkaddr = blkno;
259                         break;
260                 default:
261                         BUG();
262                 }
263
264                 page = f2fs_grab_cache_page(META_MAPPING(sbi),
265                                                 fio.new_blkaddr, false);
266                 if (!page)
267                         continue;
268                 if (PageUptodate(page)) {
269                         f2fs_put_page(page, 1);
270                         continue;
271                 }
272
273                 fio.page = page;
274                 err = f2fs_submit_page_bio(&fio);
275                 f2fs_put_page(page, err ? 1 : 0);
276
277                 if (!err)
278                         f2fs_update_iostat(sbi, FS_META_READ_IO, F2FS_BLKSIZE);
279         }
280 out:
281         blk_finish_plug(&plug);
282         return blkno - start;
283 }
284
285 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
286 {
287         struct page *page;
288         bool readahead = false;
289
290         page = find_get_page(META_MAPPING(sbi), index);
291         if (!page || !PageUptodate(page))
292                 readahead = true;
293         f2fs_put_page(page, 0);
294
295         if (readahead)
296                 f2fs_ra_meta_pages(sbi, index, BIO_MAX_VECS, META_POR, true);
297 }
298
299 static int __f2fs_write_meta_page(struct page *page,
300                                 struct writeback_control *wbc,
301                                 enum iostat_type io_type)
302 {
303         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
304
305         trace_f2fs_writepage(page, META);
306
307         if (unlikely(f2fs_cp_error(sbi)))
308                 goto redirty_out;
309         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
310                 goto redirty_out;
311         if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
312                 goto redirty_out;
313
314         f2fs_do_write_meta_page(sbi, page, io_type);
315         dec_page_count(sbi, F2FS_DIRTY_META);
316
317         if (wbc->for_reclaim)
318                 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, META);
319
320         unlock_page(page);
321
322         if (unlikely(f2fs_cp_error(sbi)))
323                 f2fs_submit_merged_write(sbi, META);
324
325         return 0;
326
327 redirty_out:
328         redirty_page_for_writepage(wbc, page);
329         return AOP_WRITEPAGE_ACTIVATE;
330 }
331
332 static int f2fs_write_meta_page(struct page *page,
333                                 struct writeback_control *wbc)
334 {
335         return __f2fs_write_meta_page(page, wbc, FS_META_IO);
336 }
337
338 static int f2fs_write_meta_pages(struct address_space *mapping,
339                                 struct writeback_control *wbc)
340 {
341         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
342         long diff, written;
343
344         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
345                 goto skip_write;
346
347         /* collect a number of dirty meta pages and write together */
348         if (wbc->sync_mode != WB_SYNC_ALL &&
349                         get_pages(sbi, F2FS_DIRTY_META) <
350                                         nr_pages_to_skip(sbi, META))
351                 goto skip_write;
352
353         /* if locked failed, cp will flush dirty pages instead */
354         if (!down_write_trylock(&sbi->cp_global_sem))
355                 goto skip_write;
356
357         trace_f2fs_writepages(mapping->host, wbc, META);
358         diff = nr_pages_to_write(sbi, META, wbc);
359         written = f2fs_sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO);
360         up_write(&sbi->cp_global_sem);
361         wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
362         return 0;
363
364 skip_write:
365         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
366         trace_f2fs_writepages(mapping->host, wbc, META);
367         return 0;
368 }
369
370 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
371                                 long nr_to_write, enum iostat_type io_type)
372 {
373         struct address_space *mapping = META_MAPPING(sbi);
374         pgoff_t index = 0, prev = ULONG_MAX;
375         struct pagevec pvec;
376         long nwritten = 0;
377         int nr_pages;
378         struct writeback_control wbc = {
379                 .for_reclaim = 0,
380         };
381         struct blk_plug plug;
382
383         pagevec_init(&pvec);
384
385         blk_start_plug(&plug);
386
387         while ((nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
388                                 PAGECACHE_TAG_DIRTY))) {
389                 int i;
390
391                 for (i = 0; i < nr_pages; i++) {
392                         struct page *page = pvec.pages[i];
393
394                         if (prev == ULONG_MAX)
395                                 prev = page->index - 1;
396                         if (nr_to_write != LONG_MAX && page->index != prev + 1) {
397                                 pagevec_release(&pvec);
398                                 goto stop;
399                         }
400
401                         lock_page(page);
402
403                         if (unlikely(page->mapping != mapping)) {
404 continue_unlock:
405                                 unlock_page(page);
406                                 continue;
407                         }
408                         if (!PageDirty(page)) {
409                                 /* someone wrote it for us */
410                                 goto continue_unlock;
411                         }
412
413                         f2fs_wait_on_page_writeback(page, META, true, true);
414
415                         if (!clear_page_dirty_for_io(page))
416                                 goto continue_unlock;
417
418                         if (__f2fs_write_meta_page(page, &wbc, io_type)) {
419                                 unlock_page(page);
420                                 break;
421                         }
422                         nwritten++;
423                         prev = page->index;
424                         if (unlikely(nwritten >= nr_to_write))
425                                 break;
426                 }
427                 pagevec_release(&pvec);
428                 cond_resched();
429         }
430 stop:
431         if (nwritten)
432                 f2fs_submit_merged_write(sbi, type);
433
434         blk_finish_plug(&plug);
435
436         return nwritten;
437 }
438
439 static int f2fs_set_meta_page_dirty(struct page *page)
440 {
441         trace_f2fs_set_page_dirty(page, META);
442
443         if (!PageUptodate(page))
444                 SetPageUptodate(page);
445         if (!PageDirty(page)) {
446                 __set_page_dirty_nobuffers(page);
447                 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
448                 set_page_private_reference(page);
449                 return 1;
450         }
451         return 0;
452 }
453
454 const struct address_space_operations f2fs_meta_aops = {
455         .writepage      = f2fs_write_meta_page,
456         .writepages     = f2fs_write_meta_pages,
457         .set_page_dirty = f2fs_set_meta_page_dirty,
458         .invalidatepage = f2fs_invalidate_page,
459         .releasepage    = f2fs_release_page,
460 #ifdef CONFIG_MIGRATION
461         .migratepage    = f2fs_migrate_page,
462 #endif
463 };
464
465 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino,
466                                                 unsigned int devidx, int type)
467 {
468         struct inode_management *im = &sbi->im[type];
469         struct ino_entry *e = NULL, *new = NULL;
470
471         if (type == FLUSH_INO) {
472                 rcu_read_lock();
473                 e = radix_tree_lookup(&im->ino_root, ino);
474                 rcu_read_unlock();
475         }
476
477 retry:
478         if (!e)
479                 new = f2fs_kmem_cache_alloc(ino_entry_slab,
480                                                 GFP_NOFS, true, NULL);
481
482         radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
483
484         spin_lock(&im->ino_lock);
485         e = radix_tree_lookup(&im->ino_root, ino);
486         if (!e) {
487                 if (!new) {
488                         spin_unlock(&im->ino_lock);
489                         goto retry;
490                 }
491                 e = new;
492                 if (unlikely(radix_tree_insert(&im->ino_root, ino, e)))
493                         f2fs_bug_on(sbi, 1);
494
495                 memset(e, 0, sizeof(struct ino_entry));
496                 e->ino = ino;
497
498                 list_add_tail(&e->list, &im->ino_list);
499                 if (type != ORPHAN_INO)
500                         im->ino_num++;
501         }
502
503         if (type == FLUSH_INO)
504                 f2fs_set_bit(devidx, (char *)&e->dirty_device);
505
506         spin_unlock(&im->ino_lock);
507         radix_tree_preload_end();
508
509         if (new && e != new)
510                 kmem_cache_free(ino_entry_slab, new);
511 }
512
513 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
514 {
515         struct inode_management *im = &sbi->im[type];
516         struct ino_entry *e;
517
518         spin_lock(&im->ino_lock);
519         e = radix_tree_lookup(&im->ino_root, ino);
520         if (e) {
521                 list_del(&e->list);
522                 radix_tree_delete(&im->ino_root, ino);
523                 im->ino_num--;
524                 spin_unlock(&im->ino_lock);
525                 kmem_cache_free(ino_entry_slab, e);
526                 return;
527         }
528         spin_unlock(&im->ino_lock);
529 }
530
531 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
532 {
533         /* add new dirty ino entry into list */
534         __add_ino_entry(sbi, ino, 0, type);
535 }
536
537 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
538 {
539         /* remove dirty ino entry from list */
540         __remove_ino_entry(sbi, ino, type);
541 }
542
543 /* mode should be APPEND_INO, UPDATE_INO or TRANS_DIR_INO */
544 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
545 {
546         struct inode_management *im = &sbi->im[mode];
547         struct ino_entry *e;
548
549         spin_lock(&im->ino_lock);
550         e = radix_tree_lookup(&im->ino_root, ino);
551         spin_unlock(&im->ino_lock);
552         return e ? true : false;
553 }
554
555 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all)
556 {
557         struct ino_entry *e, *tmp;
558         int i;
559
560         for (i = all ? ORPHAN_INO : APPEND_INO; i < MAX_INO_ENTRY; i++) {
561                 struct inode_management *im = &sbi->im[i];
562
563                 spin_lock(&im->ino_lock);
564                 list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
565                         list_del(&e->list);
566                         radix_tree_delete(&im->ino_root, e->ino);
567                         kmem_cache_free(ino_entry_slab, e);
568                         im->ino_num--;
569                 }
570                 spin_unlock(&im->ino_lock);
571         }
572 }
573
574 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
575                                         unsigned int devidx, int type)
576 {
577         __add_ino_entry(sbi, ino, devidx, type);
578 }
579
580 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
581                                         unsigned int devidx, int type)
582 {
583         struct inode_management *im = &sbi->im[type];
584         struct ino_entry *e;
585         bool is_dirty = false;
586
587         spin_lock(&im->ino_lock);
588         e = radix_tree_lookup(&im->ino_root, ino);
589         if (e && f2fs_test_bit(devidx, (char *)&e->dirty_device))
590                 is_dirty = true;
591         spin_unlock(&im->ino_lock);
592         return is_dirty;
593 }
594
595 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi)
596 {
597         struct inode_management *im = &sbi->im[ORPHAN_INO];
598         int err = 0;
599
600         spin_lock(&im->ino_lock);
601
602         if (time_to_inject(sbi, FAULT_ORPHAN)) {
603                 spin_unlock(&im->ino_lock);
604                 f2fs_show_injection_info(sbi, FAULT_ORPHAN);
605                 return -ENOSPC;
606         }
607
608         if (unlikely(im->ino_num >= sbi->max_orphans))
609                 err = -ENOSPC;
610         else
611                 im->ino_num++;
612         spin_unlock(&im->ino_lock);
613
614         return err;
615 }
616
617 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi)
618 {
619         struct inode_management *im = &sbi->im[ORPHAN_INO];
620
621         spin_lock(&im->ino_lock);
622         f2fs_bug_on(sbi, im->ino_num == 0);
623         im->ino_num--;
624         spin_unlock(&im->ino_lock);
625 }
626
627 void f2fs_add_orphan_inode(struct inode *inode)
628 {
629         /* add new orphan ino entry into list */
630         __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, 0, ORPHAN_INO);
631         f2fs_update_inode_page(inode);
632 }
633
634 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
635 {
636         /* remove orphan entry from orphan list */
637         __remove_ino_entry(sbi, ino, ORPHAN_INO);
638 }
639
640 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
641 {
642         struct inode *inode;
643         struct node_info ni;
644         int err;
645
646         inode = f2fs_iget_retry(sbi->sb, ino);
647         if (IS_ERR(inode)) {
648                 /*
649                  * there should be a bug that we can't find the entry
650                  * to orphan inode.
651                  */
652                 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
653                 return PTR_ERR(inode);
654         }
655
656         err = dquot_initialize(inode);
657         if (err) {
658                 iput(inode);
659                 goto err_out;
660         }
661
662         clear_nlink(inode);
663
664         /* truncate all the data during iput */
665         iput(inode);
666
667         err = f2fs_get_node_info(sbi, ino, &ni);
668         if (err)
669                 goto err_out;
670
671         /* ENOMEM was fully retried in f2fs_evict_inode. */
672         if (ni.blk_addr != NULL_ADDR) {
673                 err = -EIO;
674                 goto err_out;
675         }
676         return 0;
677
678 err_out:
679         set_sbi_flag(sbi, SBI_NEED_FSCK);
680         f2fs_warn(sbi, "%s: orphan failed (ino=%x), run fsck to fix.",
681                   __func__, ino);
682         return err;
683 }
684
685 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi)
686 {
687         block_t start_blk, orphan_blocks, i, j;
688         unsigned int s_flags = sbi->sb->s_flags;
689         int err = 0;
690 #ifdef CONFIG_QUOTA
691         int quota_enabled;
692 #endif
693
694         if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG))
695                 return 0;
696
697         if (bdev_read_only(sbi->sb->s_bdev)) {
698                 f2fs_info(sbi, "write access unavailable, skipping orphan cleanup");
699                 return 0;
700         }
701
702         if (s_flags & SB_RDONLY) {
703                 f2fs_info(sbi, "orphan cleanup on readonly fs");
704                 sbi->sb->s_flags &= ~SB_RDONLY;
705         }
706
707 #ifdef CONFIG_QUOTA
708         /* Needed for iput() to work correctly and not trash data */
709         sbi->sb->s_flags |= SB_ACTIVE;
710
711         /*
712          * Turn on quotas which were not enabled for read-only mounts if
713          * filesystem has quota feature, so that they are updated correctly.
714          */
715         quota_enabled = f2fs_enable_quota_files(sbi, s_flags & SB_RDONLY);
716 #endif
717
718         start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
719         orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
720
721         f2fs_ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
722
723         for (i = 0; i < orphan_blocks; i++) {
724                 struct page *page;
725                 struct f2fs_orphan_block *orphan_blk;
726
727                 page = f2fs_get_meta_page(sbi, start_blk + i);
728                 if (IS_ERR(page)) {
729                         err = PTR_ERR(page);
730                         goto out;
731                 }
732
733                 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
734                 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
735                         nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
736
737                         err = recover_orphan_inode(sbi, ino);
738                         if (err) {
739                                 f2fs_put_page(page, 1);
740                                 goto out;
741                         }
742                 }
743                 f2fs_put_page(page, 1);
744         }
745         /* clear Orphan Flag */
746         clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG);
747 out:
748         set_sbi_flag(sbi, SBI_IS_RECOVERED);
749
750 #ifdef CONFIG_QUOTA
751         /* Turn quotas off */
752         if (quota_enabled)
753                 f2fs_quota_off_umount(sbi->sb);
754 #endif
755         sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */
756
757         return err;
758 }
759
760 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
761 {
762         struct list_head *head;
763         struct f2fs_orphan_block *orphan_blk = NULL;
764         unsigned int nentries = 0;
765         unsigned short index = 1;
766         unsigned short orphan_blocks;
767         struct page *page = NULL;
768         struct ino_entry *orphan = NULL;
769         struct inode_management *im = &sbi->im[ORPHAN_INO];
770
771         orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
772
773         /*
774          * we don't need to do spin_lock(&im->ino_lock) here, since all the
775          * orphan inode operations are covered under f2fs_lock_op().
776          * And, spin_lock should be avoided due to page operations below.
777          */
778         head = &im->ino_list;
779
780         /* loop for each orphan inode entry and write them in Jornal block */
781         list_for_each_entry(orphan, head, list) {
782                 if (!page) {
783                         page = f2fs_grab_meta_page(sbi, start_blk++);
784                         orphan_blk =
785                                 (struct f2fs_orphan_block *)page_address(page);
786                         memset(orphan_blk, 0, sizeof(*orphan_blk));
787                 }
788
789                 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
790
791                 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
792                         /*
793                          * an orphan block is full of 1020 entries,
794                          * then we need to flush current orphan blocks
795                          * and bring another one in memory
796                          */
797                         orphan_blk->blk_addr = cpu_to_le16(index);
798                         orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
799                         orphan_blk->entry_count = cpu_to_le32(nentries);
800                         set_page_dirty(page);
801                         f2fs_put_page(page, 1);
802                         index++;
803                         nentries = 0;
804                         page = NULL;
805                 }
806         }
807
808         if (page) {
809                 orphan_blk->blk_addr = cpu_to_le16(index);
810                 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
811                 orphan_blk->entry_count = cpu_to_le32(nentries);
812                 set_page_dirty(page);
813                 f2fs_put_page(page, 1);
814         }
815 }
816
817 static __u32 f2fs_checkpoint_chksum(struct f2fs_sb_info *sbi,
818                                                 struct f2fs_checkpoint *ckpt)
819 {
820         unsigned int chksum_ofs = le32_to_cpu(ckpt->checksum_offset);
821         __u32 chksum;
822
823         chksum = f2fs_crc32(sbi, ckpt, chksum_ofs);
824         if (chksum_ofs < CP_CHKSUM_OFFSET) {
825                 chksum_ofs += sizeof(chksum);
826                 chksum = f2fs_chksum(sbi, chksum, (__u8 *)ckpt + chksum_ofs,
827                                                 F2FS_BLKSIZE - chksum_ofs);
828         }
829         return chksum;
830 }
831
832 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr,
833                 struct f2fs_checkpoint **cp_block, struct page **cp_page,
834                 unsigned long long *version)
835 {
836         size_t crc_offset = 0;
837         __u32 crc;
838
839         *cp_page = f2fs_get_meta_page(sbi, cp_addr);
840         if (IS_ERR(*cp_page))
841                 return PTR_ERR(*cp_page);
842
843         *cp_block = (struct f2fs_checkpoint *)page_address(*cp_page);
844
845         crc_offset = le32_to_cpu((*cp_block)->checksum_offset);
846         if (crc_offset < CP_MIN_CHKSUM_OFFSET ||
847                         crc_offset > CP_CHKSUM_OFFSET) {
848                 f2fs_put_page(*cp_page, 1);
849                 f2fs_warn(sbi, "invalid crc_offset: %zu", crc_offset);
850                 return -EINVAL;
851         }
852
853         crc = f2fs_checkpoint_chksum(sbi, *cp_block);
854         if (crc != cur_cp_crc(*cp_block)) {
855                 f2fs_put_page(*cp_page, 1);
856                 f2fs_warn(sbi, "invalid crc value");
857                 return -EINVAL;
858         }
859
860         *version = cur_cp_version(*cp_block);
861         return 0;
862 }
863
864 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
865                                 block_t cp_addr, unsigned long long *version)
866 {
867         struct page *cp_page_1 = NULL, *cp_page_2 = NULL;
868         struct f2fs_checkpoint *cp_block = NULL;
869         unsigned long long cur_version = 0, pre_version = 0;
870         int err;
871
872         err = get_checkpoint_version(sbi, cp_addr, &cp_block,
873                                         &cp_page_1, version);
874         if (err)
875                 return NULL;
876
877         if (le32_to_cpu(cp_block->cp_pack_total_block_count) >
878                                         sbi->blocks_per_seg) {
879                 f2fs_warn(sbi, "invalid cp_pack_total_block_count:%u",
880                           le32_to_cpu(cp_block->cp_pack_total_block_count));
881                 goto invalid_cp;
882         }
883         pre_version = *version;
884
885         cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
886         err = get_checkpoint_version(sbi, cp_addr, &cp_block,
887                                         &cp_page_2, version);
888         if (err)
889                 goto invalid_cp;
890         cur_version = *version;
891
892         if (cur_version == pre_version) {
893                 *version = cur_version;
894                 f2fs_put_page(cp_page_2, 1);
895                 return cp_page_1;
896         }
897         f2fs_put_page(cp_page_2, 1);
898 invalid_cp:
899         f2fs_put_page(cp_page_1, 1);
900         return NULL;
901 }
902
903 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi)
904 {
905         struct f2fs_checkpoint *cp_block;
906         struct f2fs_super_block *fsb = sbi->raw_super;
907         struct page *cp1, *cp2, *cur_page;
908         unsigned long blk_size = sbi->blocksize;
909         unsigned long long cp1_version = 0, cp2_version = 0;
910         unsigned long long cp_start_blk_no;
911         unsigned int cp_blks = 1 + __cp_payload(sbi);
912         block_t cp_blk_no;
913         int i;
914         int err;
915
916         sbi->ckpt = f2fs_kvzalloc(sbi, array_size(blk_size, cp_blks),
917                                   GFP_KERNEL);
918         if (!sbi->ckpt)
919                 return -ENOMEM;
920         /*
921          * Finding out valid cp block involves read both
922          * sets( cp pack 1 and cp pack 2)
923          */
924         cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
925         cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
926
927         /* The second checkpoint pack should start at the next segment */
928         cp_start_blk_no += ((unsigned long long)1) <<
929                                 le32_to_cpu(fsb->log_blocks_per_seg);
930         cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
931
932         if (cp1 && cp2) {
933                 if (ver_after(cp2_version, cp1_version))
934                         cur_page = cp2;
935                 else
936                         cur_page = cp1;
937         } else if (cp1) {
938                 cur_page = cp1;
939         } else if (cp2) {
940                 cur_page = cp2;
941         } else {
942                 err = -EFSCORRUPTED;
943                 goto fail_no_cp;
944         }
945
946         cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
947         memcpy(sbi->ckpt, cp_block, blk_size);
948
949         if (cur_page == cp1)
950                 sbi->cur_cp_pack = 1;
951         else
952                 sbi->cur_cp_pack = 2;
953
954         /* Sanity checking of checkpoint */
955         if (f2fs_sanity_check_ckpt(sbi)) {
956                 err = -EFSCORRUPTED;
957                 goto free_fail_no_cp;
958         }
959
960         if (cp_blks <= 1)
961                 goto done;
962
963         cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
964         if (cur_page == cp2)
965                 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
966
967         for (i = 1; i < cp_blks; i++) {
968                 void *sit_bitmap_ptr;
969                 unsigned char *ckpt = (unsigned char *)sbi->ckpt;
970
971                 cur_page = f2fs_get_meta_page(sbi, cp_blk_no + i);
972                 if (IS_ERR(cur_page)) {
973                         err = PTR_ERR(cur_page);
974                         goto free_fail_no_cp;
975                 }
976                 sit_bitmap_ptr = page_address(cur_page);
977                 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
978                 f2fs_put_page(cur_page, 1);
979         }
980 done:
981         f2fs_put_page(cp1, 1);
982         f2fs_put_page(cp2, 1);
983         return 0;
984
985 free_fail_no_cp:
986         f2fs_put_page(cp1, 1);
987         f2fs_put_page(cp2, 1);
988 fail_no_cp:
989         kvfree(sbi->ckpt);
990         return err;
991 }
992
993 static void __add_dirty_inode(struct inode *inode, enum inode_type type)
994 {
995         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
996         int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
997
998         if (is_inode_flag_set(inode, flag))
999                 return;
1000
1001         set_inode_flag(inode, flag);
1002         if (!f2fs_is_volatile_file(inode))
1003                 list_add_tail(&F2FS_I(inode)->dirty_list,
1004                                                 &sbi->inode_list[type]);
1005         stat_inc_dirty_inode(sbi, type);
1006 }
1007
1008 static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
1009 {
1010         int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
1011
1012         if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag))
1013                 return;
1014
1015         list_del_init(&F2FS_I(inode)->dirty_list);
1016         clear_inode_flag(inode, flag);
1017         stat_dec_dirty_inode(F2FS_I_SB(inode), type);
1018 }
1019
1020 void f2fs_update_dirty_page(struct inode *inode, struct page *page)
1021 {
1022         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1023         enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
1024
1025         if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1026                         !S_ISLNK(inode->i_mode))
1027                 return;
1028
1029         spin_lock(&sbi->inode_lock[type]);
1030         if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH))
1031                 __add_dirty_inode(inode, type);
1032         inode_inc_dirty_pages(inode);
1033         spin_unlock(&sbi->inode_lock[type]);
1034
1035         set_page_private_reference(page);
1036 }
1037
1038 void f2fs_remove_dirty_inode(struct inode *inode)
1039 {
1040         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1041         enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
1042
1043         if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1044                         !S_ISLNK(inode->i_mode))
1045                 return;
1046
1047         if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
1048                 return;
1049
1050         spin_lock(&sbi->inode_lock[type]);
1051         __remove_dirty_inode(inode, type);
1052         spin_unlock(&sbi->inode_lock[type]);
1053 }
1054
1055 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type)
1056 {
1057         struct list_head *head;
1058         struct inode *inode;
1059         struct f2fs_inode_info *fi;
1060         bool is_dir = (type == DIR_INODE);
1061         unsigned long ino = 0;
1062
1063         trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
1064                                 get_pages(sbi, is_dir ?
1065                                 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1066 retry:
1067         if (unlikely(f2fs_cp_error(sbi))) {
1068                 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
1069                                 get_pages(sbi, is_dir ?
1070                                 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1071                 return -EIO;
1072         }
1073
1074         spin_lock(&sbi->inode_lock[type]);
1075
1076         head = &sbi->inode_list[type];
1077         if (list_empty(head)) {
1078                 spin_unlock(&sbi->inode_lock[type]);
1079                 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
1080                                 get_pages(sbi, is_dir ?
1081                                 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1082                 return 0;
1083         }
1084         fi = list_first_entry(head, struct f2fs_inode_info, dirty_list);
1085         inode = igrab(&fi->vfs_inode);
1086         spin_unlock(&sbi->inode_lock[type]);
1087         if (inode) {
1088                 unsigned long cur_ino = inode->i_ino;
1089
1090                 F2FS_I(inode)->cp_task = current;
1091
1092                 filemap_fdatawrite(inode->i_mapping);
1093
1094                 F2FS_I(inode)->cp_task = NULL;
1095
1096                 iput(inode);
1097                 /* We need to give cpu to another writers. */
1098                 if (ino == cur_ino)
1099                         cond_resched();
1100                 else
1101                         ino = cur_ino;
1102         } else {
1103                 /*
1104                  * We should submit bio, since it exists several
1105                  * wribacking dentry pages in the freeing inode.
1106                  */
1107                 f2fs_submit_merged_write(sbi, DATA);
1108                 cond_resched();
1109         }
1110         goto retry;
1111 }
1112
1113 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi)
1114 {
1115         struct list_head *head = &sbi->inode_list[DIRTY_META];
1116         struct inode *inode;
1117         struct f2fs_inode_info *fi;
1118         s64 total = get_pages(sbi, F2FS_DIRTY_IMETA);
1119
1120         while (total--) {
1121                 if (unlikely(f2fs_cp_error(sbi)))
1122                         return -EIO;
1123
1124                 spin_lock(&sbi->inode_lock[DIRTY_META]);
1125                 if (list_empty(head)) {
1126                         spin_unlock(&sbi->inode_lock[DIRTY_META]);
1127                         return 0;
1128                 }
1129                 fi = list_first_entry(head, struct f2fs_inode_info,
1130                                                         gdirty_list);
1131                 inode = igrab(&fi->vfs_inode);
1132                 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1133                 if (inode) {
1134                         sync_inode_metadata(inode, 0);
1135
1136                         /* it's on eviction */
1137                         if (is_inode_flag_set(inode, FI_DIRTY_INODE))
1138                                 f2fs_update_inode_page(inode);
1139                         iput(inode);
1140                 }
1141         }
1142         return 0;
1143 }
1144
1145 static void __prepare_cp_block(struct f2fs_sb_info *sbi)
1146 {
1147         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1148         struct f2fs_nm_info *nm_i = NM_I(sbi);
1149         nid_t last_nid = nm_i->next_scan_nid;
1150
1151         next_free_nid(sbi, &last_nid);
1152         ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
1153         ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
1154         ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
1155         ckpt->next_free_nid = cpu_to_le32(last_nid);
1156 }
1157
1158 static bool __need_flush_quota(struct f2fs_sb_info *sbi)
1159 {
1160         bool ret = false;
1161
1162         if (!is_journalled_quota(sbi))
1163                 return false;
1164
1165         down_write(&sbi->quota_sem);
1166         if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH)) {
1167                 ret = false;
1168         } else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR)) {
1169                 ret = false;
1170         } else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_FLUSH)) {
1171                 clear_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
1172                 ret = true;
1173         } else if (get_pages(sbi, F2FS_DIRTY_QDATA)) {
1174                 ret = true;
1175         }
1176         up_write(&sbi->quota_sem);
1177         return ret;
1178 }
1179
1180 /*
1181  * Freeze all the FS-operations for checkpoint.
1182  */
1183 static int block_operations(struct f2fs_sb_info *sbi)
1184 {
1185         struct writeback_control wbc = {
1186                 .sync_mode = WB_SYNC_ALL,
1187                 .nr_to_write = LONG_MAX,
1188                 .for_reclaim = 0,
1189         };
1190         int err = 0, cnt = 0;
1191
1192         /*
1193          * Let's flush inline_data in dirty node pages.
1194          */
1195         f2fs_flush_inline_data(sbi);
1196
1197 retry_flush_quotas:
1198         f2fs_lock_all(sbi);
1199         if (__need_flush_quota(sbi)) {
1200                 int locked;
1201
1202                 if (++cnt > DEFAULT_RETRY_QUOTA_FLUSH_COUNT) {
1203                         set_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH);
1204                         set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
1205                         goto retry_flush_dents;
1206                 }
1207                 f2fs_unlock_all(sbi);
1208
1209                 /* only failed during mount/umount/freeze/quotactl */
1210                 locked = down_read_trylock(&sbi->sb->s_umount);
1211                 f2fs_quota_sync(sbi->sb, -1);
1212                 if (locked)
1213                         up_read(&sbi->sb->s_umount);
1214                 cond_resched();
1215                 goto retry_flush_quotas;
1216         }
1217
1218 retry_flush_dents:
1219         /* write all the dirty dentry pages */
1220         if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
1221                 f2fs_unlock_all(sbi);
1222                 err = f2fs_sync_dirty_inodes(sbi, DIR_INODE);
1223                 if (err)
1224                         return err;
1225                 cond_resched();
1226                 goto retry_flush_quotas;
1227         }
1228
1229         /*
1230          * POR: we should ensure that there are no dirty node pages
1231          * until finishing nat/sit flush. inode->i_blocks can be updated.
1232          */
1233         down_write(&sbi->node_change);
1234
1235         if (get_pages(sbi, F2FS_DIRTY_IMETA)) {
1236                 up_write(&sbi->node_change);
1237                 f2fs_unlock_all(sbi);
1238                 err = f2fs_sync_inode_meta(sbi);
1239                 if (err)
1240                         return err;
1241                 cond_resched();
1242                 goto retry_flush_quotas;
1243         }
1244
1245 retry_flush_nodes:
1246         down_write(&sbi->node_write);
1247
1248         if (get_pages(sbi, F2FS_DIRTY_NODES)) {
1249                 up_write(&sbi->node_write);
1250                 atomic_inc(&sbi->wb_sync_req[NODE]);
1251                 err = f2fs_sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO);
1252                 atomic_dec(&sbi->wb_sync_req[NODE]);
1253                 if (err) {
1254                         up_write(&sbi->node_change);
1255                         f2fs_unlock_all(sbi);
1256                         return err;
1257                 }
1258                 cond_resched();
1259                 goto retry_flush_nodes;
1260         }
1261
1262         /*
1263          * sbi->node_change is used only for AIO write_begin path which produces
1264          * dirty node blocks and some checkpoint values by block allocation.
1265          */
1266         __prepare_cp_block(sbi);
1267         up_write(&sbi->node_change);
1268         return err;
1269 }
1270
1271 static void unblock_operations(struct f2fs_sb_info *sbi)
1272 {
1273         up_write(&sbi->node_write);
1274         f2fs_unlock_all(sbi);
1275 }
1276
1277 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type)
1278 {
1279         DEFINE_WAIT(wait);
1280
1281         for (;;) {
1282                 if (!get_pages(sbi, type))
1283                         break;
1284
1285                 if (unlikely(f2fs_cp_error(sbi)))
1286                         break;
1287
1288                 if (type == F2FS_DIRTY_META)
1289                         f2fs_sync_meta_pages(sbi, META, LONG_MAX,
1290                                                         FS_CP_META_IO);
1291                 else if (type == F2FS_WB_CP_DATA)
1292                         f2fs_submit_merged_write(sbi, DATA);
1293
1294                 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
1295                 io_schedule_timeout(DEFAULT_IO_TIMEOUT);
1296         }
1297         finish_wait(&sbi->cp_wait, &wait);
1298 }
1299
1300 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1301 {
1302         unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
1303         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1304         unsigned long flags;
1305
1306         if (cpc->reason & CP_UMOUNT) {
1307                 if (le32_to_cpu(ckpt->cp_pack_total_block_count) >
1308                         sbi->blocks_per_seg - NM_I(sbi)->nat_bits_blocks) {
1309                         clear_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1310                         f2fs_notice(sbi, "Disable nat_bits due to no space");
1311                 } else if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG) &&
1312                                                 f2fs_nat_bitmap_enabled(sbi)) {
1313                         f2fs_enable_nat_bits(sbi);
1314                         set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1315                         f2fs_notice(sbi, "Rebuild and enable nat_bits");
1316                 }
1317         }
1318
1319         spin_lock_irqsave(&sbi->cp_lock, flags);
1320
1321         if (cpc->reason & CP_TRIMMED)
1322                 __set_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1323         else
1324                 __clear_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1325
1326         if (cpc->reason & CP_UMOUNT)
1327                 __set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1328         else
1329                 __clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1330
1331         if (cpc->reason & CP_FASTBOOT)
1332                 __set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1333         else
1334                 __clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1335
1336         if (orphan_num)
1337                 __set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1338         else
1339                 __clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1340
1341         if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1342                 __set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1343
1344         if (is_sbi_flag_set(sbi, SBI_IS_RESIZEFS))
1345                 __set_ckpt_flags(ckpt, CP_RESIZEFS_FLAG);
1346         else
1347                 __clear_ckpt_flags(ckpt, CP_RESIZEFS_FLAG);
1348
1349         if (is_sbi_flag_set(sbi, SBI_CP_DISABLED))
1350                 __set_ckpt_flags(ckpt, CP_DISABLED_FLAG);
1351         else
1352                 __clear_ckpt_flags(ckpt, CP_DISABLED_FLAG);
1353
1354         if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK))
1355                 __set_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG);
1356         else
1357                 __clear_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG);
1358
1359         if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH))
1360                 __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1361         else
1362                 __clear_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1363
1364         if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR))
1365                 __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1366
1367         /* set this flag to activate crc|cp_ver for recovery */
1368         __set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG);
1369         __clear_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG);
1370
1371         spin_unlock_irqrestore(&sbi->cp_lock, flags);
1372 }
1373
1374 static void commit_checkpoint(struct f2fs_sb_info *sbi,
1375         void *src, block_t blk_addr)
1376 {
1377         struct writeback_control wbc = {
1378                 .for_reclaim = 0,
1379         };
1380
1381         /*
1382          * pagevec_lookup_tag and lock_page again will take
1383          * some extra time. Therefore, f2fs_update_meta_pages and
1384          * f2fs_sync_meta_pages are combined in this function.
1385          */
1386         struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
1387         int err;
1388
1389         f2fs_wait_on_page_writeback(page, META, true, true);
1390
1391         memcpy(page_address(page), src, PAGE_SIZE);
1392
1393         set_page_dirty(page);
1394         if (unlikely(!clear_page_dirty_for_io(page)))
1395                 f2fs_bug_on(sbi, 1);
1396
1397         /* writeout cp pack 2 page */
1398         err = __f2fs_write_meta_page(page, &wbc, FS_CP_META_IO);
1399         if (unlikely(err && f2fs_cp_error(sbi))) {
1400                 f2fs_put_page(page, 1);
1401                 return;
1402         }
1403
1404         f2fs_bug_on(sbi, err);
1405         f2fs_put_page(page, 0);
1406
1407         /* submit checkpoint (with barrier if NOBARRIER is not set) */
1408         f2fs_submit_merged_write(sbi, META_FLUSH);
1409 }
1410
1411 static inline u64 get_sectors_written(struct block_device *bdev)
1412 {
1413         return (u64)part_stat_read(bdev, sectors[STAT_WRITE]);
1414 }
1415
1416 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi)
1417 {
1418         if (f2fs_is_multi_device(sbi)) {
1419                 u64 sectors = 0;
1420                 int i;
1421
1422                 for (i = 0; i < sbi->s_ndevs; i++)
1423                         sectors += get_sectors_written(FDEV(i).bdev);
1424
1425                 return sectors;
1426         }
1427
1428         return get_sectors_written(sbi->sb->s_bdev);
1429 }
1430
1431 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1432 {
1433         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1434         struct f2fs_nm_info *nm_i = NM_I(sbi);
1435         unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags;
1436         block_t start_blk;
1437         unsigned int data_sum_blocks, orphan_blocks;
1438         __u32 crc32 = 0;
1439         int i;
1440         int cp_payload_blks = __cp_payload(sbi);
1441         struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1442         u64 kbytes_written;
1443         int err;
1444
1445         /* Flush all the NAT/SIT pages */
1446         f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1447
1448         /* start to update checkpoint, cp ver is already updated previously */
1449         ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi, true));
1450         ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
1451         for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
1452                 ckpt->cur_node_segno[i] =
1453                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
1454                 ckpt->cur_node_blkoff[i] =
1455                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
1456                 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
1457                                 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
1458         }
1459         for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
1460                 ckpt->cur_data_segno[i] =
1461                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
1462                 ckpt->cur_data_blkoff[i] =
1463                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
1464                 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
1465                                 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
1466         }
1467
1468         /* 2 cp + n data seg summary + orphan inode blocks */
1469         data_sum_blocks = f2fs_npages_for_summary_flush(sbi, false);
1470         spin_lock_irqsave(&sbi->cp_lock, flags);
1471         if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
1472                 __set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1473         else
1474                 __clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1475         spin_unlock_irqrestore(&sbi->cp_lock, flags);
1476
1477         orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
1478         ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
1479                         orphan_blocks);
1480
1481         if (__remain_node_summaries(cpc->reason))
1482                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1483                                 cp_payload_blks + data_sum_blocks +
1484                                 orphan_blocks + NR_CURSEG_NODE_TYPE);
1485         else
1486                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1487                                 cp_payload_blks + data_sum_blocks +
1488                                 orphan_blocks);
1489
1490         /* update ckpt flag for checkpoint */
1491         update_ckpt_flags(sbi, cpc);
1492
1493         /* update SIT/NAT bitmap */
1494         get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1495         get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1496
1497         crc32 = f2fs_checkpoint_chksum(sbi, ckpt);
1498         *((__le32 *)((unsigned char *)ckpt +
1499                                 le32_to_cpu(ckpt->checksum_offset)))
1500                                 = cpu_to_le32(crc32);
1501
1502         start_blk = __start_cp_next_addr(sbi);
1503
1504         /* write nat bits */
1505         if ((cpc->reason & CP_UMOUNT) &&
1506                         is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG)) {
1507                 __u64 cp_ver = cur_cp_version(ckpt);
1508                 block_t blk;
1509
1510                 cp_ver |= ((__u64)crc32 << 32);
1511                 *(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver);
1512
1513                 blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks;
1514                 for (i = 0; i < nm_i->nat_bits_blocks; i++)
1515                         f2fs_update_meta_page(sbi, nm_i->nat_bits +
1516                                         (i << F2FS_BLKSIZE_BITS), blk + i);
1517         }
1518
1519         /* write out checkpoint buffer at block 0 */
1520         f2fs_update_meta_page(sbi, ckpt, start_blk++);
1521
1522         for (i = 1; i < 1 + cp_payload_blks; i++)
1523                 f2fs_update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1524                                                         start_blk++);
1525
1526         if (orphan_num) {
1527                 write_orphan_inodes(sbi, start_blk);
1528                 start_blk += orphan_blocks;
1529         }
1530
1531         f2fs_write_data_summaries(sbi, start_blk);
1532         start_blk += data_sum_blocks;
1533
1534         /* Record write statistics in the hot node summary */
1535         kbytes_written = sbi->kbytes_written;
1536         kbytes_written += (f2fs_get_sectors_written(sbi) -
1537                                 sbi->sectors_written_start) >> 1;
1538         seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
1539
1540         if (__remain_node_summaries(cpc->reason)) {
1541                 f2fs_write_node_summaries(sbi, start_blk);
1542                 start_blk += NR_CURSEG_NODE_TYPE;
1543         }
1544
1545         /* update user_block_counts */
1546         sbi->last_valid_block_count = sbi->total_valid_block_count;
1547         percpu_counter_set(&sbi->alloc_valid_block_count, 0);
1548
1549         /* Here, we have one bio having CP pack except cp pack 2 page */
1550         f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1551         /* Wait for all dirty meta pages to be submitted for IO */
1552         f2fs_wait_on_all_pages(sbi, F2FS_DIRTY_META);
1553
1554         /* wait for previous submitted meta pages writeback */
1555         f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
1556
1557         /* flush all device cache */
1558         err = f2fs_flush_device_cache(sbi);
1559         if (err)
1560                 return err;
1561
1562         /* barrier and flush checkpoint cp pack 2 page if it can */
1563         commit_checkpoint(sbi, ckpt, start_blk);
1564         f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
1565
1566         /*
1567          * invalidate intermediate page cache borrowed from meta inode which are
1568          * used for migration of encrypted, verity or compressed inode's blocks.
1569          */
1570         if (f2fs_sb_has_encrypt(sbi) || f2fs_sb_has_verity(sbi) ||
1571                 f2fs_sb_has_compression(sbi))
1572                 invalidate_mapping_pages(META_MAPPING(sbi),
1573                                 MAIN_BLKADDR(sbi), MAX_BLKADDR(sbi) - 1);
1574
1575         f2fs_release_ino_entry(sbi, false);
1576
1577         f2fs_reset_fsync_node_info(sbi);
1578
1579         clear_sbi_flag(sbi, SBI_IS_DIRTY);
1580         clear_sbi_flag(sbi, SBI_NEED_CP);
1581         clear_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH);
1582
1583         spin_lock(&sbi->stat_lock);
1584         sbi->unusable_block_count = 0;
1585         spin_unlock(&sbi->stat_lock);
1586
1587         __set_cp_next_pack(sbi);
1588
1589         /*
1590          * redirty superblock if metadata like node page or inode cache is
1591          * updated during writing checkpoint.
1592          */
1593         if (get_pages(sbi, F2FS_DIRTY_NODES) ||
1594                         get_pages(sbi, F2FS_DIRTY_IMETA))
1595                 set_sbi_flag(sbi, SBI_IS_DIRTY);
1596
1597         f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS));
1598
1599         return unlikely(f2fs_cp_error(sbi)) ? -EIO : 0;
1600 }
1601
1602 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1603 {
1604         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1605         unsigned long long ckpt_ver;
1606         int err = 0;
1607
1608         if (f2fs_readonly(sbi->sb) || f2fs_hw_is_readonly(sbi))
1609                 return -EROFS;
1610
1611         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
1612                 if (cpc->reason != CP_PAUSE)
1613                         return 0;
1614                 f2fs_warn(sbi, "Start checkpoint disabled!");
1615         }
1616         if (cpc->reason != CP_RESIZE)
1617                 down_write(&sbi->cp_global_sem);
1618
1619         if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1620                 ((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) ||
1621                 ((cpc->reason & CP_DISCARD) && !sbi->discard_blks)))
1622                 goto out;
1623         if (unlikely(f2fs_cp_error(sbi))) {
1624                 err = -EIO;
1625                 goto out;
1626         }
1627
1628         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1629
1630         err = block_operations(sbi);
1631         if (err)
1632                 goto out;
1633
1634         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1635
1636         f2fs_flush_merged_writes(sbi);
1637
1638         /* this is the case of multiple fstrims without any changes */
1639         if (cpc->reason & CP_DISCARD) {
1640                 if (!f2fs_exist_trim_candidates(sbi, cpc)) {
1641                         unblock_operations(sbi);
1642                         goto out;
1643                 }
1644
1645                 if (NM_I(sbi)->nat_cnt[DIRTY_NAT] == 0 &&
1646                                 SIT_I(sbi)->dirty_sentries == 0 &&
1647                                 prefree_segments(sbi) == 0) {
1648                         f2fs_flush_sit_entries(sbi, cpc);
1649                         f2fs_clear_prefree_segments(sbi, cpc);
1650                         unblock_operations(sbi);
1651                         goto out;
1652                 }
1653         }
1654
1655         /*
1656          * update checkpoint pack index
1657          * Increase the version number so that
1658          * SIT entries and seg summaries are written at correct place
1659          */
1660         ckpt_ver = cur_cp_version(ckpt);
1661         ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1662
1663         /* write cached NAT/SIT entries to NAT/SIT area */
1664         err = f2fs_flush_nat_entries(sbi, cpc);
1665         if (err) {
1666                 f2fs_err(sbi, "f2fs_flush_nat_entries failed err:%d, stop checkpoint", err);
1667                 f2fs_bug_on(sbi, !f2fs_cp_error(sbi));
1668                 goto stop;
1669         }
1670
1671         f2fs_flush_sit_entries(sbi, cpc);
1672
1673         /* save inmem log status */
1674         f2fs_save_inmem_curseg(sbi);
1675
1676         err = do_checkpoint(sbi, cpc);
1677         if (err) {
1678                 f2fs_err(sbi, "do_checkpoint failed err:%d, stop checkpoint", err);
1679                 f2fs_bug_on(sbi, !f2fs_cp_error(sbi));
1680                 f2fs_release_discard_addrs(sbi);
1681         } else {
1682                 f2fs_clear_prefree_segments(sbi, cpc);
1683         }
1684
1685         f2fs_restore_inmem_curseg(sbi);
1686 stop:
1687         unblock_operations(sbi);
1688         stat_inc_cp_count(sbi->stat_info);
1689
1690         if (cpc->reason & CP_RECOVERY)
1691                 f2fs_notice(sbi, "checkpoint: version = %llx", ckpt_ver);
1692
1693         /* update CP_TIME to trigger checkpoint periodically */
1694         f2fs_update_time(sbi, CP_TIME);
1695         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1696 out:
1697         if (cpc->reason != CP_RESIZE)
1698                 up_write(&sbi->cp_global_sem);
1699         return err;
1700 }
1701
1702 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi)
1703 {
1704         int i;
1705
1706         for (i = 0; i < MAX_INO_ENTRY; i++) {
1707                 struct inode_management *im = &sbi->im[i];
1708
1709                 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1710                 spin_lock_init(&im->ino_lock);
1711                 INIT_LIST_HEAD(&im->ino_list);
1712                 im->ino_num = 0;
1713         }
1714
1715         sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1716                         NR_CURSEG_PERSIST_TYPE - __cp_payload(sbi)) *
1717                                 F2FS_ORPHANS_PER_BLOCK;
1718 }
1719
1720 int __init f2fs_create_checkpoint_caches(void)
1721 {
1722         ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1723                         sizeof(struct ino_entry));
1724         if (!ino_entry_slab)
1725                 return -ENOMEM;
1726         f2fs_inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1727                         sizeof(struct inode_entry));
1728         if (!f2fs_inode_entry_slab) {
1729                 kmem_cache_destroy(ino_entry_slab);
1730                 return -ENOMEM;
1731         }
1732         return 0;
1733 }
1734
1735 void f2fs_destroy_checkpoint_caches(void)
1736 {
1737         kmem_cache_destroy(ino_entry_slab);
1738         kmem_cache_destroy(f2fs_inode_entry_slab);
1739 }
1740
1741 static int __write_checkpoint_sync(struct f2fs_sb_info *sbi)
1742 {
1743         struct cp_control cpc = { .reason = CP_SYNC, };
1744         int err;
1745
1746         down_write(&sbi->gc_lock);
1747         err = f2fs_write_checkpoint(sbi, &cpc);
1748         up_write(&sbi->gc_lock);
1749
1750         return err;
1751 }
1752
1753 static void __checkpoint_and_complete_reqs(struct f2fs_sb_info *sbi)
1754 {
1755         struct ckpt_req_control *cprc = &sbi->cprc_info;
1756         struct ckpt_req *req, *next;
1757         struct llist_node *dispatch_list;
1758         u64 sum_diff = 0, diff, count = 0;
1759         int ret;
1760
1761         dispatch_list = llist_del_all(&cprc->issue_list);
1762         if (!dispatch_list)
1763                 return;
1764         dispatch_list = llist_reverse_order(dispatch_list);
1765
1766         ret = __write_checkpoint_sync(sbi);
1767         atomic_inc(&cprc->issued_ckpt);
1768
1769         llist_for_each_entry_safe(req, next, dispatch_list, llnode) {
1770                 diff = (u64)ktime_ms_delta(ktime_get(), req->queue_time);
1771                 req->ret = ret;
1772                 complete(&req->wait);
1773
1774                 sum_diff += diff;
1775                 count++;
1776         }
1777         atomic_sub(count, &cprc->queued_ckpt);
1778         atomic_add(count, &cprc->total_ckpt);
1779
1780         spin_lock(&cprc->stat_lock);
1781         cprc->cur_time = (unsigned int)div64_u64(sum_diff, count);
1782         if (cprc->peak_time < cprc->cur_time)
1783                 cprc->peak_time = cprc->cur_time;
1784         spin_unlock(&cprc->stat_lock);
1785 }
1786
1787 static int issue_checkpoint_thread(void *data)
1788 {
1789         struct f2fs_sb_info *sbi = data;
1790         struct ckpt_req_control *cprc = &sbi->cprc_info;
1791         wait_queue_head_t *q = &cprc->ckpt_wait_queue;
1792 repeat:
1793         if (kthread_should_stop())
1794                 return 0;
1795
1796         if (!llist_empty(&cprc->issue_list))
1797                 __checkpoint_and_complete_reqs(sbi);
1798
1799         wait_event_interruptible(*q,
1800                 kthread_should_stop() || !llist_empty(&cprc->issue_list));
1801         goto repeat;
1802 }
1803
1804 static void flush_remained_ckpt_reqs(struct f2fs_sb_info *sbi,
1805                 struct ckpt_req *wait_req)
1806 {
1807         struct ckpt_req_control *cprc = &sbi->cprc_info;
1808
1809         if (!llist_empty(&cprc->issue_list)) {
1810                 __checkpoint_and_complete_reqs(sbi);
1811         } else {
1812                 /* already dispatched by issue_checkpoint_thread */
1813                 if (wait_req)
1814                         wait_for_completion(&wait_req->wait);
1815         }
1816 }
1817
1818 static void init_ckpt_req(struct ckpt_req *req)
1819 {
1820         memset(req, 0, sizeof(struct ckpt_req));
1821
1822         init_completion(&req->wait);
1823         req->queue_time = ktime_get();
1824 }
1825
1826 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi)
1827 {
1828         struct ckpt_req_control *cprc = &sbi->cprc_info;
1829         struct ckpt_req req;
1830         struct cp_control cpc;
1831
1832         cpc.reason = __get_cp_reason(sbi);
1833         if (!test_opt(sbi, MERGE_CHECKPOINT) || cpc.reason != CP_SYNC) {
1834                 int ret;
1835
1836                 down_write(&sbi->gc_lock);
1837                 ret = f2fs_write_checkpoint(sbi, &cpc);
1838                 up_write(&sbi->gc_lock);
1839
1840                 return ret;
1841         }
1842
1843         if (!cprc->f2fs_issue_ckpt)
1844                 return __write_checkpoint_sync(sbi);
1845
1846         init_ckpt_req(&req);
1847
1848         llist_add(&req.llnode, &cprc->issue_list);
1849         atomic_inc(&cprc->queued_ckpt);
1850
1851         /*
1852          * update issue_list before we wake up issue_checkpoint thread,
1853          * this smp_mb() pairs with another barrier in ___wait_event(),
1854          * see more details in comments of waitqueue_active().
1855          */
1856         smp_mb();
1857
1858         if (waitqueue_active(&cprc->ckpt_wait_queue))
1859                 wake_up(&cprc->ckpt_wait_queue);
1860
1861         if (cprc->f2fs_issue_ckpt)
1862                 wait_for_completion(&req.wait);
1863         else
1864                 flush_remained_ckpt_reqs(sbi, &req);
1865
1866         return req.ret;
1867 }
1868
1869 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi)
1870 {
1871         dev_t dev = sbi->sb->s_bdev->bd_dev;
1872         struct ckpt_req_control *cprc = &sbi->cprc_info;
1873
1874         if (cprc->f2fs_issue_ckpt)
1875                 return 0;
1876
1877         cprc->f2fs_issue_ckpt = kthread_run(issue_checkpoint_thread, sbi,
1878                         "f2fs_ckpt-%u:%u", MAJOR(dev), MINOR(dev));
1879         if (IS_ERR(cprc->f2fs_issue_ckpt)) {
1880                 cprc->f2fs_issue_ckpt = NULL;
1881                 return -ENOMEM;
1882         }
1883
1884         set_task_ioprio(cprc->f2fs_issue_ckpt, cprc->ckpt_thread_ioprio);
1885
1886         return 0;
1887 }
1888
1889 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi)
1890 {
1891         struct ckpt_req_control *cprc = &sbi->cprc_info;
1892
1893         if (cprc->f2fs_issue_ckpt) {
1894                 struct task_struct *ckpt_task = cprc->f2fs_issue_ckpt;
1895
1896                 cprc->f2fs_issue_ckpt = NULL;
1897                 kthread_stop(ckpt_task);
1898
1899                 flush_remained_ckpt_reqs(sbi, NULL);
1900         }
1901 }
1902
1903 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi)
1904 {
1905         struct ckpt_req_control *cprc = &sbi->cprc_info;
1906
1907         atomic_set(&cprc->issued_ckpt, 0);
1908         atomic_set(&cprc->total_ckpt, 0);
1909         atomic_set(&cprc->queued_ckpt, 0);
1910         cprc->ckpt_thread_ioprio = DEFAULT_CHECKPOINT_IOPRIO;
1911         init_waitqueue_head(&cprc->ckpt_wait_queue);
1912         init_llist_head(&cprc->issue_list);
1913         spin_lock_init(&cprc->stat_lock);
1914 }