Merge tag 'rproc-v5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/andersson...
[linux-2.6-microblaze.git] / fs / f2fs / checkpoint.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/checkpoint.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/bio.h>
10 #include <linux/mpage.h>
11 #include <linux/writeback.h>
12 #include <linux/blkdev.h>
13 #include <linux/f2fs_fs.h>
14 #include <linux/pagevec.h>
15 #include <linux/swap.h>
16 #include <linux/kthread.h>
17
18 #include "f2fs.h"
19 #include "node.h"
20 #include "segment.h"
21 #include <trace/events/f2fs.h>
22
23 #define DEFAULT_CHECKPOINT_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
24
25 static struct kmem_cache *ino_entry_slab;
26 struct kmem_cache *f2fs_inode_entry_slab;
27
28 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io)
29 {
30         f2fs_build_fault_attr(sbi, 0, 0);
31         set_ckpt_flags(sbi, CP_ERROR_FLAG);
32         if (!end_io)
33                 f2fs_flush_merged_writes(sbi);
34 }
35
36 /*
37  * We guarantee no failure on the returned page.
38  */
39 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
40 {
41         struct address_space *mapping = META_MAPPING(sbi);
42         struct page *page;
43 repeat:
44         page = f2fs_grab_cache_page(mapping, index, false);
45         if (!page) {
46                 cond_resched();
47                 goto repeat;
48         }
49         f2fs_wait_on_page_writeback(page, META, true, true);
50         if (!PageUptodate(page))
51                 SetPageUptodate(page);
52         return page;
53 }
54
55 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
56                                                         bool is_meta)
57 {
58         struct address_space *mapping = META_MAPPING(sbi);
59         struct page *page;
60         struct f2fs_io_info fio = {
61                 .sbi = sbi,
62                 .type = META,
63                 .op = REQ_OP_READ,
64                 .op_flags = REQ_META | REQ_PRIO,
65                 .old_blkaddr = index,
66                 .new_blkaddr = index,
67                 .encrypted_page = NULL,
68                 .is_por = !is_meta,
69         };
70         int err;
71
72         if (unlikely(!is_meta))
73                 fio.op_flags &= ~REQ_META;
74 repeat:
75         page = f2fs_grab_cache_page(mapping, index, false);
76         if (!page) {
77                 cond_resched();
78                 goto repeat;
79         }
80         if (PageUptodate(page))
81                 goto out;
82
83         fio.page = page;
84
85         err = f2fs_submit_page_bio(&fio);
86         if (err) {
87                 f2fs_put_page(page, 1);
88                 return ERR_PTR(err);
89         }
90
91         f2fs_update_iostat(sbi, FS_META_READ_IO, F2FS_BLKSIZE);
92
93         lock_page(page);
94         if (unlikely(page->mapping != mapping)) {
95                 f2fs_put_page(page, 1);
96                 goto repeat;
97         }
98
99         if (unlikely(!PageUptodate(page))) {
100                 f2fs_put_page(page, 1);
101                 return ERR_PTR(-EIO);
102         }
103 out:
104         return page;
105 }
106
107 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
108 {
109         return __get_meta_page(sbi, index, true);
110 }
111
112 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index)
113 {
114         struct page *page;
115         int count = 0;
116
117 retry:
118         page = __get_meta_page(sbi, index, true);
119         if (IS_ERR(page)) {
120                 if (PTR_ERR(page) == -EIO &&
121                                 ++count <= DEFAULT_RETRY_IO_COUNT)
122                         goto retry;
123                 f2fs_stop_checkpoint(sbi, false);
124         }
125         return page;
126 }
127
128 /* for POR only */
129 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
130 {
131         return __get_meta_page(sbi, index, false);
132 }
133
134 static bool __is_bitmap_valid(struct f2fs_sb_info *sbi, block_t blkaddr,
135                                                         int type)
136 {
137         struct seg_entry *se;
138         unsigned int segno, offset;
139         bool exist;
140
141         if (type != DATA_GENERIC_ENHANCE && type != DATA_GENERIC_ENHANCE_READ)
142                 return true;
143
144         segno = GET_SEGNO(sbi, blkaddr);
145         offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
146         se = get_seg_entry(sbi, segno);
147
148         exist = f2fs_test_bit(offset, se->cur_valid_map);
149         if (!exist && type == DATA_GENERIC_ENHANCE) {
150                 f2fs_err(sbi, "Inconsistent error blkaddr:%u, sit bitmap:%d",
151                          blkaddr, exist);
152                 set_sbi_flag(sbi, SBI_NEED_FSCK);
153                 WARN_ON(1);
154         }
155         return exist;
156 }
157
158 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
159                                         block_t blkaddr, int type)
160 {
161         switch (type) {
162         case META_NAT:
163                 break;
164         case META_SIT:
165                 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
166                         return false;
167                 break;
168         case META_SSA:
169                 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
170                         blkaddr < SM_I(sbi)->ssa_blkaddr))
171                         return false;
172                 break;
173         case META_CP:
174                 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
175                         blkaddr < __start_cp_addr(sbi)))
176                         return false;
177                 break;
178         case META_POR:
179                 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
180                         blkaddr < MAIN_BLKADDR(sbi)))
181                         return false;
182                 break;
183         case DATA_GENERIC:
184         case DATA_GENERIC_ENHANCE:
185         case DATA_GENERIC_ENHANCE_READ:
186                 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
187                                 blkaddr < MAIN_BLKADDR(sbi))) {
188                         f2fs_warn(sbi, "access invalid blkaddr:%u",
189                                   blkaddr);
190                         set_sbi_flag(sbi, SBI_NEED_FSCK);
191                         WARN_ON(1);
192                         return false;
193                 } else {
194                         return __is_bitmap_valid(sbi, blkaddr, type);
195                 }
196                 break;
197         case META_GENERIC:
198                 if (unlikely(blkaddr < SEG0_BLKADDR(sbi) ||
199                         blkaddr >= MAIN_BLKADDR(sbi)))
200                         return false;
201                 break;
202         default:
203                 BUG();
204         }
205
206         return true;
207 }
208
209 /*
210  * Readahead CP/NAT/SIT/SSA/POR pages
211  */
212 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
213                                                         int type, bool sync)
214 {
215         struct page *page;
216         block_t blkno = start;
217         struct f2fs_io_info fio = {
218                 .sbi = sbi,
219                 .type = META,
220                 .op = REQ_OP_READ,
221                 .op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD,
222                 .encrypted_page = NULL,
223                 .in_list = false,
224                 .is_por = (type == META_POR),
225         };
226         struct blk_plug plug;
227         int err;
228
229         if (unlikely(type == META_POR))
230                 fio.op_flags &= ~REQ_META;
231
232         blk_start_plug(&plug);
233         for (; nrpages-- > 0; blkno++) {
234
235                 if (!f2fs_is_valid_blkaddr(sbi, blkno, type))
236                         goto out;
237
238                 switch (type) {
239                 case META_NAT:
240                         if (unlikely(blkno >=
241                                         NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
242                                 blkno = 0;
243                         /* get nat block addr */
244                         fio.new_blkaddr = current_nat_addr(sbi,
245                                         blkno * NAT_ENTRY_PER_BLOCK);
246                         break;
247                 case META_SIT:
248                         if (unlikely(blkno >= TOTAL_SEGS(sbi)))
249                                 goto out;
250                         /* get sit block addr */
251                         fio.new_blkaddr = current_sit_addr(sbi,
252                                         blkno * SIT_ENTRY_PER_BLOCK);
253                         break;
254                 case META_SSA:
255                 case META_CP:
256                 case META_POR:
257                         fio.new_blkaddr = blkno;
258                         break;
259                 default:
260                         BUG();
261                 }
262
263                 page = f2fs_grab_cache_page(META_MAPPING(sbi),
264                                                 fio.new_blkaddr, false);
265                 if (!page)
266                         continue;
267                 if (PageUptodate(page)) {
268                         f2fs_put_page(page, 1);
269                         continue;
270                 }
271
272                 fio.page = page;
273                 err = f2fs_submit_page_bio(&fio);
274                 f2fs_put_page(page, err ? 1 : 0);
275
276                 if (!err)
277                         f2fs_update_iostat(sbi, FS_META_READ_IO, F2FS_BLKSIZE);
278         }
279 out:
280         blk_finish_plug(&plug);
281         return blkno - start;
282 }
283
284 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
285 {
286         struct page *page;
287         bool readahead = false;
288
289         page = find_get_page(META_MAPPING(sbi), index);
290         if (!page || !PageUptodate(page))
291                 readahead = true;
292         f2fs_put_page(page, 0);
293
294         if (readahead)
295                 f2fs_ra_meta_pages(sbi, index, BIO_MAX_VECS, META_POR, true);
296 }
297
298 static int __f2fs_write_meta_page(struct page *page,
299                                 struct writeback_control *wbc,
300                                 enum iostat_type io_type)
301 {
302         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
303
304         trace_f2fs_writepage(page, META);
305
306         if (unlikely(f2fs_cp_error(sbi)))
307                 goto redirty_out;
308         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
309                 goto redirty_out;
310         if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
311                 goto redirty_out;
312
313         f2fs_do_write_meta_page(sbi, page, io_type);
314         dec_page_count(sbi, F2FS_DIRTY_META);
315
316         if (wbc->for_reclaim)
317                 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, META);
318
319         unlock_page(page);
320
321         if (unlikely(f2fs_cp_error(sbi)))
322                 f2fs_submit_merged_write(sbi, META);
323
324         return 0;
325
326 redirty_out:
327         redirty_page_for_writepage(wbc, page);
328         return AOP_WRITEPAGE_ACTIVATE;
329 }
330
331 static int f2fs_write_meta_page(struct page *page,
332                                 struct writeback_control *wbc)
333 {
334         return __f2fs_write_meta_page(page, wbc, FS_META_IO);
335 }
336
337 static int f2fs_write_meta_pages(struct address_space *mapping,
338                                 struct writeback_control *wbc)
339 {
340         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
341         long diff, written;
342
343         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
344                 goto skip_write;
345
346         /* collect a number of dirty meta pages and write together */
347         if (wbc->sync_mode != WB_SYNC_ALL &&
348                         get_pages(sbi, F2FS_DIRTY_META) <
349                                         nr_pages_to_skip(sbi, META))
350                 goto skip_write;
351
352         /* if locked failed, cp will flush dirty pages instead */
353         if (!down_write_trylock(&sbi->cp_global_sem))
354                 goto skip_write;
355
356         trace_f2fs_writepages(mapping->host, wbc, META);
357         diff = nr_pages_to_write(sbi, META, wbc);
358         written = f2fs_sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO);
359         up_write(&sbi->cp_global_sem);
360         wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
361         return 0;
362
363 skip_write:
364         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
365         trace_f2fs_writepages(mapping->host, wbc, META);
366         return 0;
367 }
368
369 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
370                                 long nr_to_write, enum iostat_type io_type)
371 {
372         struct address_space *mapping = META_MAPPING(sbi);
373         pgoff_t index = 0, prev = ULONG_MAX;
374         struct pagevec pvec;
375         long nwritten = 0;
376         int nr_pages;
377         struct writeback_control wbc = {
378                 .for_reclaim = 0,
379         };
380         struct blk_plug plug;
381
382         pagevec_init(&pvec);
383
384         blk_start_plug(&plug);
385
386         while ((nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
387                                 PAGECACHE_TAG_DIRTY))) {
388                 int i;
389
390                 for (i = 0; i < nr_pages; i++) {
391                         struct page *page = pvec.pages[i];
392
393                         if (prev == ULONG_MAX)
394                                 prev = page->index - 1;
395                         if (nr_to_write != LONG_MAX && page->index != prev + 1) {
396                                 pagevec_release(&pvec);
397                                 goto stop;
398                         }
399
400                         lock_page(page);
401
402                         if (unlikely(page->mapping != mapping)) {
403 continue_unlock:
404                                 unlock_page(page);
405                                 continue;
406                         }
407                         if (!PageDirty(page)) {
408                                 /* someone wrote it for us */
409                                 goto continue_unlock;
410                         }
411
412                         f2fs_wait_on_page_writeback(page, META, true, true);
413
414                         if (!clear_page_dirty_for_io(page))
415                                 goto continue_unlock;
416
417                         if (__f2fs_write_meta_page(page, &wbc, io_type)) {
418                                 unlock_page(page);
419                                 break;
420                         }
421                         nwritten++;
422                         prev = page->index;
423                         if (unlikely(nwritten >= nr_to_write))
424                                 break;
425                 }
426                 pagevec_release(&pvec);
427                 cond_resched();
428         }
429 stop:
430         if (nwritten)
431                 f2fs_submit_merged_write(sbi, type);
432
433         blk_finish_plug(&plug);
434
435         return nwritten;
436 }
437
438 static int f2fs_set_meta_page_dirty(struct page *page)
439 {
440         trace_f2fs_set_page_dirty(page, META);
441
442         if (!PageUptodate(page))
443                 SetPageUptodate(page);
444         if (!PageDirty(page)) {
445                 __set_page_dirty_nobuffers(page);
446                 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
447                 f2fs_set_page_private(page, 0);
448                 return 1;
449         }
450         return 0;
451 }
452
453 const struct address_space_operations f2fs_meta_aops = {
454         .writepage      = f2fs_write_meta_page,
455         .writepages     = f2fs_write_meta_pages,
456         .set_page_dirty = f2fs_set_meta_page_dirty,
457         .invalidatepage = f2fs_invalidate_page,
458         .releasepage    = f2fs_release_page,
459 #ifdef CONFIG_MIGRATION
460         .migratepage    = f2fs_migrate_page,
461 #endif
462 };
463
464 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino,
465                                                 unsigned int devidx, int type)
466 {
467         struct inode_management *im = &sbi->im[type];
468         struct ino_entry *e, *tmp;
469
470         tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS);
471
472         radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
473
474         spin_lock(&im->ino_lock);
475         e = radix_tree_lookup(&im->ino_root, ino);
476         if (!e) {
477                 e = tmp;
478                 if (unlikely(radix_tree_insert(&im->ino_root, ino, e)))
479                         f2fs_bug_on(sbi, 1);
480
481                 memset(e, 0, sizeof(struct ino_entry));
482                 e->ino = ino;
483
484                 list_add_tail(&e->list, &im->ino_list);
485                 if (type != ORPHAN_INO)
486                         im->ino_num++;
487         }
488
489         if (type == FLUSH_INO)
490                 f2fs_set_bit(devidx, (char *)&e->dirty_device);
491
492         spin_unlock(&im->ino_lock);
493         radix_tree_preload_end();
494
495         if (e != tmp)
496                 kmem_cache_free(ino_entry_slab, tmp);
497 }
498
499 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
500 {
501         struct inode_management *im = &sbi->im[type];
502         struct ino_entry *e;
503
504         spin_lock(&im->ino_lock);
505         e = radix_tree_lookup(&im->ino_root, ino);
506         if (e) {
507                 list_del(&e->list);
508                 radix_tree_delete(&im->ino_root, ino);
509                 im->ino_num--;
510                 spin_unlock(&im->ino_lock);
511                 kmem_cache_free(ino_entry_slab, e);
512                 return;
513         }
514         spin_unlock(&im->ino_lock);
515 }
516
517 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
518 {
519         /* add new dirty ino entry into list */
520         __add_ino_entry(sbi, ino, 0, type);
521 }
522
523 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
524 {
525         /* remove dirty ino entry from list */
526         __remove_ino_entry(sbi, ino, type);
527 }
528
529 /* mode should be APPEND_INO, UPDATE_INO or TRANS_DIR_INO */
530 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
531 {
532         struct inode_management *im = &sbi->im[mode];
533         struct ino_entry *e;
534
535         spin_lock(&im->ino_lock);
536         e = radix_tree_lookup(&im->ino_root, ino);
537         spin_unlock(&im->ino_lock);
538         return e ? true : false;
539 }
540
541 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all)
542 {
543         struct ino_entry *e, *tmp;
544         int i;
545
546         for (i = all ? ORPHAN_INO : APPEND_INO; i < MAX_INO_ENTRY; i++) {
547                 struct inode_management *im = &sbi->im[i];
548
549                 spin_lock(&im->ino_lock);
550                 list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
551                         list_del(&e->list);
552                         radix_tree_delete(&im->ino_root, e->ino);
553                         kmem_cache_free(ino_entry_slab, e);
554                         im->ino_num--;
555                 }
556                 spin_unlock(&im->ino_lock);
557         }
558 }
559
560 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
561                                         unsigned int devidx, int type)
562 {
563         __add_ino_entry(sbi, ino, devidx, type);
564 }
565
566 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
567                                         unsigned int devidx, int type)
568 {
569         struct inode_management *im = &sbi->im[type];
570         struct ino_entry *e;
571         bool is_dirty = false;
572
573         spin_lock(&im->ino_lock);
574         e = radix_tree_lookup(&im->ino_root, ino);
575         if (e && f2fs_test_bit(devidx, (char *)&e->dirty_device))
576                 is_dirty = true;
577         spin_unlock(&im->ino_lock);
578         return is_dirty;
579 }
580
581 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi)
582 {
583         struct inode_management *im = &sbi->im[ORPHAN_INO];
584         int err = 0;
585
586         spin_lock(&im->ino_lock);
587
588         if (time_to_inject(sbi, FAULT_ORPHAN)) {
589                 spin_unlock(&im->ino_lock);
590                 f2fs_show_injection_info(sbi, FAULT_ORPHAN);
591                 return -ENOSPC;
592         }
593
594         if (unlikely(im->ino_num >= sbi->max_orphans))
595                 err = -ENOSPC;
596         else
597                 im->ino_num++;
598         spin_unlock(&im->ino_lock);
599
600         return err;
601 }
602
603 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi)
604 {
605         struct inode_management *im = &sbi->im[ORPHAN_INO];
606
607         spin_lock(&im->ino_lock);
608         f2fs_bug_on(sbi, im->ino_num == 0);
609         im->ino_num--;
610         spin_unlock(&im->ino_lock);
611 }
612
613 void f2fs_add_orphan_inode(struct inode *inode)
614 {
615         /* add new orphan ino entry into list */
616         __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, 0, ORPHAN_INO);
617         f2fs_update_inode_page(inode);
618 }
619
620 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
621 {
622         /* remove orphan entry from orphan list */
623         __remove_ino_entry(sbi, ino, ORPHAN_INO);
624 }
625
626 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
627 {
628         struct inode *inode;
629         struct node_info ni;
630         int err;
631
632         inode = f2fs_iget_retry(sbi->sb, ino);
633         if (IS_ERR(inode)) {
634                 /*
635                  * there should be a bug that we can't find the entry
636                  * to orphan inode.
637                  */
638                 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
639                 return PTR_ERR(inode);
640         }
641
642         err = dquot_initialize(inode);
643         if (err) {
644                 iput(inode);
645                 goto err_out;
646         }
647
648         clear_nlink(inode);
649
650         /* truncate all the data during iput */
651         iput(inode);
652
653         err = f2fs_get_node_info(sbi, ino, &ni);
654         if (err)
655                 goto err_out;
656
657         /* ENOMEM was fully retried in f2fs_evict_inode. */
658         if (ni.blk_addr != NULL_ADDR) {
659                 err = -EIO;
660                 goto err_out;
661         }
662         return 0;
663
664 err_out:
665         set_sbi_flag(sbi, SBI_NEED_FSCK);
666         f2fs_warn(sbi, "%s: orphan failed (ino=%x), run fsck to fix.",
667                   __func__, ino);
668         return err;
669 }
670
671 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi)
672 {
673         block_t start_blk, orphan_blocks, i, j;
674         unsigned int s_flags = sbi->sb->s_flags;
675         int err = 0;
676 #ifdef CONFIG_QUOTA
677         int quota_enabled;
678 #endif
679
680         if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG))
681                 return 0;
682
683         if (bdev_read_only(sbi->sb->s_bdev)) {
684                 f2fs_info(sbi, "write access unavailable, skipping orphan cleanup");
685                 return 0;
686         }
687
688         if (s_flags & SB_RDONLY) {
689                 f2fs_info(sbi, "orphan cleanup on readonly fs");
690                 sbi->sb->s_flags &= ~SB_RDONLY;
691         }
692
693 #ifdef CONFIG_QUOTA
694         /* Needed for iput() to work correctly and not trash data */
695         sbi->sb->s_flags |= SB_ACTIVE;
696
697         /*
698          * Turn on quotas which were not enabled for read-only mounts if
699          * filesystem has quota feature, so that they are updated correctly.
700          */
701         quota_enabled = f2fs_enable_quota_files(sbi, s_flags & SB_RDONLY);
702 #endif
703
704         start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
705         orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
706
707         f2fs_ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
708
709         for (i = 0; i < orphan_blocks; i++) {
710                 struct page *page;
711                 struct f2fs_orphan_block *orphan_blk;
712
713                 page = f2fs_get_meta_page(sbi, start_blk + i);
714                 if (IS_ERR(page)) {
715                         err = PTR_ERR(page);
716                         goto out;
717                 }
718
719                 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
720                 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
721                         nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
722                         err = recover_orphan_inode(sbi, ino);
723                         if (err) {
724                                 f2fs_put_page(page, 1);
725                                 goto out;
726                         }
727                 }
728                 f2fs_put_page(page, 1);
729         }
730         /* clear Orphan Flag */
731         clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG);
732 out:
733         set_sbi_flag(sbi, SBI_IS_RECOVERED);
734
735 #ifdef CONFIG_QUOTA
736         /* Turn quotas off */
737         if (quota_enabled)
738                 f2fs_quota_off_umount(sbi->sb);
739 #endif
740         sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */
741
742         return err;
743 }
744
745 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
746 {
747         struct list_head *head;
748         struct f2fs_orphan_block *orphan_blk = NULL;
749         unsigned int nentries = 0;
750         unsigned short index = 1;
751         unsigned short orphan_blocks;
752         struct page *page = NULL;
753         struct ino_entry *orphan = NULL;
754         struct inode_management *im = &sbi->im[ORPHAN_INO];
755
756         orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
757
758         /*
759          * we don't need to do spin_lock(&im->ino_lock) here, since all the
760          * orphan inode operations are covered under f2fs_lock_op().
761          * And, spin_lock should be avoided due to page operations below.
762          */
763         head = &im->ino_list;
764
765         /* loop for each orphan inode entry and write them in Jornal block */
766         list_for_each_entry(orphan, head, list) {
767                 if (!page) {
768                         page = f2fs_grab_meta_page(sbi, start_blk++);
769                         orphan_blk =
770                                 (struct f2fs_orphan_block *)page_address(page);
771                         memset(orphan_blk, 0, sizeof(*orphan_blk));
772                 }
773
774                 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
775
776                 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
777                         /*
778                          * an orphan block is full of 1020 entries,
779                          * then we need to flush current orphan blocks
780                          * and bring another one in memory
781                          */
782                         orphan_blk->blk_addr = cpu_to_le16(index);
783                         orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
784                         orphan_blk->entry_count = cpu_to_le32(nentries);
785                         set_page_dirty(page);
786                         f2fs_put_page(page, 1);
787                         index++;
788                         nentries = 0;
789                         page = NULL;
790                 }
791         }
792
793         if (page) {
794                 orphan_blk->blk_addr = cpu_to_le16(index);
795                 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
796                 orphan_blk->entry_count = cpu_to_le32(nentries);
797                 set_page_dirty(page);
798                 f2fs_put_page(page, 1);
799         }
800 }
801
802 static __u32 f2fs_checkpoint_chksum(struct f2fs_sb_info *sbi,
803                                                 struct f2fs_checkpoint *ckpt)
804 {
805         unsigned int chksum_ofs = le32_to_cpu(ckpt->checksum_offset);
806         __u32 chksum;
807
808         chksum = f2fs_crc32(sbi, ckpt, chksum_ofs);
809         if (chksum_ofs < CP_CHKSUM_OFFSET) {
810                 chksum_ofs += sizeof(chksum);
811                 chksum = f2fs_chksum(sbi, chksum, (__u8 *)ckpt + chksum_ofs,
812                                                 F2FS_BLKSIZE - chksum_ofs);
813         }
814         return chksum;
815 }
816
817 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr,
818                 struct f2fs_checkpoint **cp_block, struct page **cp_page,
819                 unsigned long long *version)
820 {
821         size_t crc_offset = 0;
822         __u32 crc;
823
824         *cp_page = f2fs_get_meta_page(sbi, cp_addr);
825         if (IS_ERR(*cp_page))
826                 return PTR_ERR(*cp_page);
827
828         *cp_block = (struct f2fs_checkpoint *)page_address(*cp_page);
829
830         crc_offset = le32_to_cpu((*cp_block)->checksum_offset);
831         if (crc_offset < CP_MIN_CHKSUM_OFFSET ||
832                         crc_offset > CP_CHKSUM_OFFSET) {
833                 f2fs_put_page(*cp_page, 1);
834                 f2fs_warn(sbi, "invalid crc_offset: %zu", crc_offset);
835                 return -EINVAL;
836         }
837
838         crc = f2fs_checkpoint_chksum(sbi, *cp_block);
839         if (crc != cur_cp_crc(*cp_block)) {
840                 f2fs_put_page(*cp_page, 1);
841                 f2fs_warn(sbi, "invalid crc value");
842                 return -EINVAL;
843         }
844
845         *version = cur_cp_version(*cp_block);
846         return 0;
847 }
848
849 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
850                                 block_t cp_addr, unsigned long long *version)
851 {
852         struct page *cp_page_1 = NULL, *cp_page_2 = NULL;
853         struct f2fs_checkpoint *cp_block = NULL;
854         unsigned long long cur_version = 0, pre_version = 0;
855         int err;
856
857         err = get_checkpoint_version(sbi, cp_addr, &cp_block,
858                                         &cp_page_1, version);
859         if (err)
860                 return NULL;
861
862         if (le32_to_cpu(cp_block->cp_pack_total_block_count) >
863                                         sbi->blocks_per_seg) {
864                 f2fs_warn(sbi, "invalid cp_pack_total_block_count:%u",
865                           le32_to_cpu(cp_block->cp_pack_total_block_count));
866                 goto invalid_cp;
867         }
868         pre_version = *version;
869
870         cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
871         err = get_checkpoint_version(sbi, cp_addr, &cp_block,
872                                         &cp_page_2, version);
873         if (err)
874                 goto invalid_cp;
875         cur_version = *version;
876
877         if (cur_version == pre_version) {
878                 *version = cur_version;
879                 f2fs_put_page(cp_page_2, 1);
880                 return cp_page_1;
881         }
882         f2fs_put_page(cp_page_2, 1);
883 invalid_cp:
884         f2fs_put_page(cp_page_1, 1);
885         return NULL;
886 }
887
888 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi)
889 {
890         struct f2fs_checkpoint *cp_block;
891         struct f2fs_super_block *fsb = sbi->raw_super;
892         struct page *cp1, *cp2, *cur_page;
893         unsigned long blk_size = sbi->blocksize;
894         unsigned long long cp1_version = 0, cp2_version = 0;
895         unsigned long long cp_start_blk_no;
896         unsigned int cp_blks = 1 + __cp_payload(sbi);
897         block_t cp_blk_no;
898         int i;
899         int err;
900
901         sbi->ckpt = f2fs_kvzalloc(sbi, array_size(blk_size, cp_blks),
902                                   GFP_KERNEL);
903         if (!sbi->ckpt)
904                 return -ENOMEM;
905         /*
906          * Finding out valid cp block involves read both
907          * sets( cp pack 1 and cp pack 2)
908          */
909         cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
910         cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
911
912         /* The second checkpoint pack should start at the next segment */
913         cp_start_blk_no += ((unsigned long long)1) <<
914                                 le32_to_cpu(fsb->log_blocks_per_seg);
915         cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
916
917         if (cp1 && cp2) {
918                 if (ver_after(cp2_version, cp1_version))
919                         cur_page = cp2;
920                 else
921                         cur_page = cp1;
922         } else if (cp1) {
923                 cur_page = cp1;
924         } else if (cp2) {
925                 cur_page = cp2;
926         } else {
927                 err = -EFSCORRUPTED;
928                 goto fail_no_cp;
929         }
930
931         cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
932         memcpy(sbi->ckpt, cp_block, blk_size);
933
934         if (cur_page == cp1)
935                 sbi->cur_cp_pack = 1;
936         else
937                 sbi->cur_cp_pack = 2;
938
939         /* Sanity checking of checkpoint */
940         if (f2fs_sanity_check_ckpt(sbi)) {
941                 err = -EFSCORRUPTED;
942                 goto free_fail_no_cp;
943         }
944
945         if (cp_blks <= 1)
946                 goto done;
947
948         cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
949         if (cur_page == cp2)
950                 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
951
952         for (i = 1; i < cp_blks; i++) {
953                 void *sit_bitmap_ptr;
954                 unsigned char *ckpt = (unsigned char *)sbi->ckpt;
955
956                 cur_page = f2fs_get_meta_page(sbi, cp_blk_no + i);
957                 if (IS_ERR(cur_page)) {
958                         err = PTR_ERR(cur_page);
959                         goto free_fail_no_cp;
960                 }
961                 sit_bitmap_ptr = page_address(cur_page);
962                 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
963                 f2fs_put_page(cur_page, 1);
964         }
965 done:
966         f2fs_put_page(cp1, 1);
967         f2fs_put_page(cp2, 1);
968         return 0;
969
970 free_fail_no_cp:
971         f2fs_put_page(cp1, 1);
972         f2fs_put_page(cp2, 1);
973 fail_no_cp:
974         kvfree(sbi->ckpt);
975         return err;
976 }
977
978 static void __add_dirty_inode(struct inode *inode, enum inode_type type)
979 {
980         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
981         int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
982
983         if (is_inode_flag_set(inode, flag))
984                 return;
985
986         set_inode_flag(inode, flag);
987         if (!f2fs_is_volatile_file(inode))
988                 list_add_tail(&F2FS_I(inode)->dirty_list,
989                                                 &sbi->inode_list[type]);
990         stat_inc_dirty_inode(sbi, type);
991 }
992
993 static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
994 {
995         int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
996
997         if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag))
998                 return;
999
1000         list_del_init(&F2FS_I(inode)->dirty_list);
1001         clear_inode_flag(inode, flag);
1002         stat_dec_dirty_inode(F2FS_I_SB(inode), type);
1003 }
1004
1005 void f2fs_update_dirty_page(struct inode *inode, struct page *page)
1006 {
1007         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1008         enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
1009
1010         if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1011                         !S_ISLNK(inode->i_mode))
1012                 return;
1013
1014         spin_lock(&sbi->inode_lock[type]);
1015         if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH))
1016                 __add_dirty_inode(inode, type);
1017         inode_inc_dirty_pages(inode);
1018         spin_unlock(&sbi->inode_lock[type]);
1019
1020         f2fs_set_page_private(page, 0);
1021 }
1022
1023 void f2fs_remove_dirty_inode(struct inode *inode)
1024 {
1025         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1026         enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
1027
1028         if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1029                         !S_ISLNK(inode->i_mode))
1030                 return;
1031
1032         if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
1033                 return;
1034
1035         spin_lock(&sbi->inode_lock[type]);
1036         __remove_dirty_inode(inode, type);
1037         spin_unlock(&sbi->inode_lock[type]);
1038 }
1039
1040 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type)
1041 {
1042         struct list_head *head;
1043         struct inode *inode;
1044         struct f2fs_inode_info *fi;
1045         bool is_dir = (type == DIR_INODE);
1046         unsigned long ino = 0;
1047
1048         trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
1049                                 get_pages(sbi, is_dir ?
1050                                 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1051 retry:
1052         if (unlikely(f2fs_cp_error(sbi))) {
1053                 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
1054                                 get_pages(sbi, is_dir ?
1055                                 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1056                 return -EIO;
1057         }
1058
1059         spin_lock(&sbi->inode_lock[type]);
1060
1061         head = &sbi->inode_list[type];
1062         if (list_empty(head)) {
1063                 spin_unlock(&sbi->inode_lock[type]);
1064                 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
1065                                 get_pages(sbi, is_dir ?
1066                                 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1067                 return 0;
1068         }
1069         fi = list_first_entry(head, struct f2fs_inode_info, dirty_list);
1070         inode = igrab(&fi->vfs_inode);
1071         spin_unlock(&sbi->inode_lock[type]);
1072         if (inode) {
1073                 unsigned long cur_ino = inode->i_ino;
1074
1075                 F2FS_I(inode)->cp_task = current;
1076
1077                 filemap_fdatawrite(inode->i_mapping);
1078
1079                 F2FS_I(inode)->cp_task = NULL;
1080
1081                 iput(inode);
1082                 /* We need to give cpu to another writers. */
1083                 if (ino == cur_ino)
1084                         cond_resched();
1085                 else
1086                         ino = cur_ino;
1087         } else {
1088                 /*
1089                  * We should submit bio, since it exists several
1090                  * wribacking dentry pages in the freeing inode.
1091                  */
1092                 f2fs_submit_merged_write(sbi, DATA);
1093                 cond_resched();
1094         }
1095         goto retry;
1096 }
1097
1098 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi)
1099 {
1100         struct list_head *head = &sbi->inode_list[DIRTY_META];
1101         struct inode *inode;
1102         struct f2fs_inode_info *fi;
1103         s64 total = get_pages(sbi, F2FS_DIRTY_IMETA);
1104
1105         while (total--) {
1106                 if (unlikely(f2fs_cp_error(sbi)))
1107                         return -EIO;
1108
1109                 spin_lock(&sbi->inode_lock[DIRTY_META]);
1110                 if (list_empty(head)) {
1111                         spin_unlock(&sbi->inode_lock[DIRTY_META]);
1112                         return 0;
1113                 }
1114                 fi = list_first_entry(head, struct f2fs_inode_info,
1115                                                         gdirty_list);
1116                 inode = igrab(&fi->vfs_inode);
1117                 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1118                 if (inode) {
1119                         sync_inode_metadata(inode, 0);
1120
1121                         /* it's on eviction */
1122                         if (is_inode_flag_set(inode, FI_DIRTY_INODE))
1123                                 f2fs_update_inode_page(inode);
1124                         iput(inode);
1125                 }
1126         }
1127         return 0;
1128 }
1129
1130 static void __prepare_cp_block(struct f2fs_sb_info *sbi)
1131 {
1132         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1133         struct f2fs_nm_info *nm_i = NM_I(sbi);
1134         nid_t last_nid = nm_i->next_scan_nid;
1135
1136         next_free_nid(sbi, &last_nid);
1137         ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
1138         ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
1139         ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
1140         ckpt->next_free_nid = cpu_to_le32(last_nid);
1141 }
1142
1143 static bool __need_flush_quota(struct f2fs_sb_info *sbi)
1144 {
1145         bool ret = false;
1146
1147         if (!is_journalled_quota(sbi))
1148                 return false;
1149
1150         down_write(&sbi->quota_sem);
1151         if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH)) {
1152                 ret = false;
1153         } else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR)) {
1154                 ret = false;
1155         } else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_FLUSH)) {
1156                 clear_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
1157                 ret = true;
1158         } else if (get_pages(sbi, F2FS_DIRTY_QDATA)) {
1159                 ret = true;
1160         }
1161         up_write(&sbi->quota_sem);
1162         return ret;
1163 }
1164
1165 /*
1166  * Freeze all the FS-operations for checkpoint.
1167  */
1168 static int block_operations(struct f2fs_sb_info *sbi)
1169 {
1170         struct writeback_control wbc = {
1171                 .sync_mode = WB_SYNC_ALL,
1172                 .nr_to_write = LONG_MAX,
1173                 .for_reclaim = 0,
1174         };
1175         int err = 0, cnt = 0;
1176
1177         /*
1178          * Let's flush inline_data in dirty node pages.
1179          */
1180         f2fs_flush_inline_data(sbi);
1181
1182 retry_flush_quotas:
1183         f2fs_lock_all(sbi);
1184         if (__need_flush_quota(sbi)) {
1185                 int locked;
1186
1187                 if (++cnt > DEFAULT_RETRY_QUOTA_FLUSH_COUNT) {
1188                         set_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH);
1189                         set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
1190                         goto retry_flush_dents;
1191                 }
1192                 f2fs_unlock_all(sbi);
1193
1194                 /* only failed during mount/umount/freeze/quotactl */
1195                 locked = down_read_trylock(&sbi->sb->s_umount);
1196                 f2fs_quota_sync(sbi->sb, -1);
1197                 if (locked)
1198                         up_read(&sbi->sb->s_umount);
1199                 cond_resched();
1200                 goto retry_flush_quotas;
1201         }
1202
1203 retry_flush_dents:
1204         /* write all the dirty dentry pages */
1205         if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
1206                 f2fs_unlock_all(sbi);
1207                 err = f2fs_sync_dirty_inodes(sbi, DIR_INODE);
1208                 if (err)
1209                         return err;
1210                 cond_resched();
1211                 goto retry_flush_quotas;
1212         }
1213
1214         /*
1215          * POR: we should ensure that there are no dirty node pages
1216          * until finishing nat/sit flush. inode->i_blocks can be updated.
1217          */
1218         down_write(&sbi->node_change);
1219
1220         if (get_pages(sbi, F2FS_DIRTY_IMETA)) {
1221                 up_write(&sbi->node_change);
1222                 f2fs_unlock_all(sbi);
1223                 err = f2fs_sync_inode_meta(sbi);
1224                 if (err)
1225                         return err;
1226                 cond_resched();
1227                 goto retry_flush_quotas;
1228         }
1229
1230 retry_flush_nodes:
1231         down_write(&sbi->node_write);
1232
1233         if (get_pages(sbi, F2FS_DIRTY_NODES)) {
1234                 up_write(&sbi->node_write);
1235                 atomic_inc(&sbi->wb_sync_req[NODE]);
1236                 err = f2fs_sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO);
1237                 atomic_dec(&sbi->wb_sync_req[NODE]);
1238                 if (err) {
1239                         up_write(&sbi->node_change);
1240                         f2fs_unlock_all(sbi);
1241                         return err;
1242                 }
1243                 cond_resched();
1244                 goto retry_flush_nodes;
1245         }
1246
1247         /*
1248          * sbi->node_change is used only for AIO write_begin path which produces
1249          * dirty node blocks and some checkpoint values by block allocation.
1250          */
1251         __prepare_cp_block(sbi);
1252         up_write(&sbi->node_change);
1253         return err;
1254 }
1255
1256 static void unblock_operations(struct f2fs_sb_info *sbi)
1257 {
1258         up_write(&sbi->node_write);
1259         f2fs_unlock_all(sbi);
1260 }
1261
1262 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type)
1263 {
1264         DEFINE_WAIT(wait);
1265
1266         for (;;) {
1267                 if (!get_pages(sbi, type))
1268                         break;
1269
1270                 if (unlikely(f2fs_cp_error(sbi)))
1271                         break;
1272
1273                 if (type == F2FS_DIRTY_META)
1274                         f2fs_sync_meta_pages(sbi, META, LONG_MAX,
1275                                                         FS_CP_META_IO);
1276                 else if (type == F2FS_WB_CP_DATA)
1277                         f2fs_submit_merged_write(sbi, DATA);
1278
1279                 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
1280                 io_schedule_timeout(DEFAULT_IO_TIMEOUT);
1281         }
1282         finish_wait(&sbi->cp_wait, &wait);
1283 }
1284
1285 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1286 {
1287         unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
1288         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1289         unsigned long flags;
1290
1291         spin_lock_irqsave(&sbi->cp_lock, flags);
1292
1293         if ((cpc->reason & CP_UMOUNT) &&
1294                         le32_to_cpu(ckpt->cp_pack_total_block_count) >
1295                         sbi->blocks_per_seg - NM_I(sbi)->nat_bits_blocks)
1296                 disable_nat_bits(sbi, false);
1297
1298         if (cpc->reason & CP_TRIMMED)
1299                 __set_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1300         else
1301                 __clear_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1302
1303         if (cpc->reason & CP_UMOUNT)
1304                 __set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1305         else
1306                 __clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1307
1308         if (cpc->reason & CP_FASTBOOT)
1309                 __set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1310         else
1311                 __clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1312
1313         if (orphan_num)
1314                 __set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1315         else
1316                 __clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1317
1318         if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1319                 __set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1320
1321         if (is_sbi_flag_set(sbi, SBI_IS_RESIZEFS))
1322                 __set_ckpt_flags(ckpt, CP_RESIZEFS_FLAG);
1323         else
1324                 __clear_ckpt_flags(ckpt, CP_RESIZEFS_FLAG);
1325
1326         if (is_sbi_flag_set(sbi, SBI_CP_DISABLED))
1327                 __set_ckpt_flags(ckpt, CP_DISABLED_FLAG);
1328         else
1329                 __clear_ckpt_flags(ckpt, CP_DISABLED_FLAG);
1330
1331         if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK))
1332                 __set_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG);
1333         else
1334                 __clear_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG);
1335
1336         if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH))
1337                 __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1338         else
1339                 __clear_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1340
1341         if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR))
1342                 __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1343
1344         /* set this flag to activate crc|cp_ver for recovery */
1345         __set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG);
1346         __clear_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG);
1347
1348         spin_unlock_irqrestore(&sbi->cp_lock, flags);
1349 }
1350
1351 static void commit_checkpoint(struct f2fs_sb_info *sbi,
1352         void *src, block_t blk_addr)
1353 {
1354         struct writeback_control wbc = {
1355                 .for_reclaim = 0,
1356         };
1357
1358         /*
1359          * pagevec_lookup_tag and lock_page again will take
1360          * some extra time. Therefore, f2fs_update_meta_pages and
1361          * f2fs_sync_meta_pages are combined in this function.
1362          */
1363         struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
1364         int err;
1365
1366         f2fs_wait_on_page_writeback(page, META, true, true);
1367
1368         memcpy(page_address(page), src, PAGE_SIZE);
1369
1370         set_page_dirty(page);
1371         if (unlikely(!clear_page_dirty_for_io(page)))
1372                 f2fs_bug_on(sbi, 1);
1373
1374         /* writeout cp pack 2 page */
1375         err = __f2fs_write_meta_page(page, &wbc, FS_CP_META_IO);
1376         if (unlikely(err && f2fs_cp_error(sbi))) {
1377                 f2fs_put_page(page, 1);
1378                 return;
1379         }
1380
1381         f2fs_bug_on(sbi, err);
1382         f2fs_put_page(page, 0);
1383
1384         /* submit checkpoint (with barrier if NOBARRIER is not set) */
1385         f2fs_submit_merged_write(sbi, META_FLUSH);
1386 }
1387
1388 static inline u64 get_sectors_written(struct block_device *bdev)
1389 {
1390         return (u64)part_stat_read(bdev, sectors[STAT_WRITE]);
1391 }
1392
1393 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi)
1394 {
1395         if (f2fs_is_multi_device(sbi)) {
1396                 u64 sectors = 0;
1397                 int i;
1398
1399                 for (i = 0; i < sbi->s_ndevs; i++)
1400                         sectors += get_sectors_written(FDEV(i).bdev);
1401
1402                 return sectors;
1403         }
1404
1405         return get_sectors_written(sbi->sb->s_bdev);
1406 }
1407
1408 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1409 {
1410         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1411         struct f2fs_nm_info *nm_i = NM_I(sbi);
1412         unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags;
1413         block_t start_blk;
1414         unsigned int data_sum_blocks, orphan_blocks;
1415         __u32 crc32 = 0;
1416         int i;
1417         int cp_payload_blks = __cp_payload(sbi);
1418         struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1419         u64 kbytes_written;
1420         int err;
1421
1422         /* Flush all the NAT/SIT pages */
1423         f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1424
1425         /* start to update checkpoint, cp ver is already updated previously */
1426         ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi, true));
1427         ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
1428         for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
1429                 ckpt->cur_node_segno[i] =
1430                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
1431                 ckpt->cur_node_blkoff[i] =
1432                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
1433                 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
1434                                 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
1435         }
1436         for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
1437                 ckpt->cur_data_segno[i] =
1438                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
1439                 ckpt->cur_data_blkoff[i] =
1440                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
1441                 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
1442                                 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
1443         }
1444
1445         /* 2 cp + n data seg summary + orphan inode blocks */
1446         data_sum_blocks = f2fs_npages_for_summary_flush(sbi, false);
1447         spin_lock_irqsave(&sbi->cp_lock, flags);
1448         if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
1449                 __set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1450         else
1451                 __clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1452         spin_unlock_irqrestore(&sbi->cp_lock, flags);
1453
1454         orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
1455         ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
1456                         orphan_blocks);
1457
1458         if (__remain_node_summaries(cpc->reason))
1459                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
1460                                 cp_payload_blks + data_sum_blocks +
1461                                 orphan_blocks + NR_CURSEG_NODE_TYPE);
1462         else
1463                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1464                                 cp_payload_blks + data_sum_blocks +
1465                                 orphan_blocks);
1466
1467         /* update ckpt flag for checkpoint */
1468         update_ckpt_flags(sbi, cpc);
1469
1470         /* update SIT/NAT bitmap */
1471         get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1472         get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1473
1474         crc32 = f2fs_checkpoint_chksum(sbi, ckpt);
1475         *((__le32 *)((unsigned char *)ckpt +
1476                                 le32_to_cpu(ckpt->checksum_offset)))
1477                                 = cpu_to_le32(crc32);
1478
1479         start_blk = __start_cp_next_addr(sbi);
1480
1481         /* write nat bits */
1482         if (enabled_nat_bits(sbi, cpc)) {
1483                 __u64 cp_ver = cur_cp_version(ckpt);
1484                 block_t blk;
1485
1486                 cp_ver |= ((__u64)crc32 << 32);
1487                 *(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver);
1488
1489                 blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks;
1490                 for (i = 0; i < nm_i->nat_bits_blocks; i++)
1491                         f2fs_update_meta_page(sbi, nm_i->nat_bits +
1492                                         (i << F2FS_BLKSIZE_BITS), blk + i);
1493         }
1494
1495         /* write out checkpoint buffer at block 0 */
1496         f2fs_update_meta_page(sbi, ckpt, start_blk++);
1497
1498         for (i = 1; i < 1 + cp_payload_blks; i++)
1499                 f2fs_update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1500                                                         start_blk++);
1501
1502         if (orphan_num) {
1503                 write_orphan_inodes(sbi, start_blk);
1504                 start_blk += orphan_blocks;
1505         }
1506
1507         f2fs_write_data_summaries(sbi, start_blk);
1508         start_blk += data_sum_blocks;
1509
1510         /* Record write statistics in the hot node summary */
1511         kbytes_written = sbi->kbytes_written;
1512         kbytes_written += (f2fs_get_sectors_written(sbi) -
1513                                 sbi->sectors_written_start) >> 1;
1514         seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
1515
1516         if (__remain_node_summaries(cpc->reason)) {
1517                 f2fs_write_node_summaries(sbi, start_blk);
1518                 start_blk += NR_CURSEG_NODE_TYPE;
1519         }
1520
1521         /* update user_block_counts */
1522         sbi->last_valid_block_count = sbi->total_valid_block_count;
1523         percpu_counter_set(&sbi->alloc_valid_block_count, 0);
1524
1525         /* Here, we have one bio having CP pack except cp pack 2 page */
1526         f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1527         /* Wait for all dirty meta pages to be submitted for IO */
1528         f2fs_wait_on_all_pages(sbi, F2FS_DIRTY_META);
1529
1530         /* wait for previous submitted meta pages writeback */
1531         f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
1532
1533         /* flush all device cache */
1534         err = f2fs_flush_device_cache(sbi);
1535         if (err)
1536                 return err;
1537
1538         /* barrier and flush checkpoint cp pack 2 page if it can */
1539         commit_checkpoint(sbi, ckpt, start_blk);
1540         f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
1541
1542         /*
1543          * invalidate intermediate page cache borrowed from meta inode which are
1544          * used for migration of encrypted, verity or compressed inode's blocks.
1545          */
1546         if (f2fs_sb_has_encrypt(sbi) || f2fs_sb_has_verity(sbi) ||
1547                 f2fs_sb_has_compression(sbi))
1548                 invalidate_mapping_pages(META_MAPPING(sbi),
1549                                 MAIN_BLKADDR(sbi), MAX_BLKADDR(sbi) - 1);
1550
1551         f2fs_release_ino_entry(sbi, false);
1552
1553         f2fs_reset_fsync_node_info(sbi);
1554
1555         clear_sbi_flag(sbi, SBI_IS_DIRTY);
1556         clear_sbi_flag(sbi, SBI_NEED_CP);
1557         clear_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH);
1558
1559         spin_lock(&sbi->stat_lock);
1560         sbi->unusable_block_count = 0;
1561         spin_unlock(&sbi->stat_lock);
1562
1563         __set_cp_next_pack(sbi);
1564
1565         /*
1566          * redirty superblock if metadata like node page or inode cache is
1567          * updated during writing checkpoint.
1568          */
1569         if (get_pages(sbi, F2FS_DIRTY_NODES) ||
1570                         get_pages(sbi, F2FS_DIRTY_IMETA))
1571                 set_sbi_flag(sbi, SBI_IS_DIRTY);
1572
1573         f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS));
1574
1575         return unlikely(f2fs_cp_error(sbi)) ? -EIO : 0;
1576 }
1577
1578 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1579 {
1580         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1581         unsigned long long ckpt_ver;
1582         int err = 0;
1583
1584         if (f2fs_readonly(sbi->sb) || f2fs_hw_is_readonly(sbi))
1585                 return -EROFS;
1586
1587         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
1588                 if (cpc->reason != CP_PAUSE)
1589                         return 0;
1590                 f2fs_warn(sbi, "Start checkpoint disabled!");
1591         }
1592         if (cpc->reason != CP_RESIZE)
1593                 down_write(&sbi->cp_global_sem);
1594
1595         if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1596                 ((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) ||
1597                 ((cpc->reason & CP_DISCARD) && !sbi->discard_blks)))
1598                 goto out;
1599         if (unlikely(f2fs_cp_error(sbi))) {
1600                 err = -EIO;
1601                 goto out;
1602         }
1603
1604         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1605
1606         err = block_operations(sbi);
1607         if (err)
1608                 goto out;
1609
1610         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1611
1612         f2fs_flush_merged_writes(sbi);
1613
1614         /* this is the case of multiple fstrims without any changes */
1615         if (cpc->reason & CP_DISCARD) {
1616                 if (!f2fs_exist_trim_candidates(sbi, cpc)) {
1617                         unblock_operations(sbi);
1618                         goto out;
1619                 }
1620
1621                 if (NM_I(sbi)->nat_cnt[DIRTY_NAT] == 0 &&
1622                                 SIT_I(sbi)->dirty_sentries == 0 &&
1623                                 prefree_segments(sbi) == 0) {
1624                         f2fs_flush_sit_entries(sbi, cpc);
1625                         f2fs_clear_prefree_segments(sbi, cpc);
1626                         unblock_operations(sbi);
1627                         goto out;
1628                 }
1629         }
1630
1631         /*
1632          * update checkpoint pack index
1633          * Increase the version number so that
1634          * SIT entries and seg summaries are written at correct place
1635          */
1636         ckpt_ver = cur_cp_version(ckpt);
1637         ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1638
1639         /* write cached NAT/SIT entries to NAT/SIT area */
1640         err = f2fs_flush_nat_entries(sbi, cpc);
1641         if (err)
1642                 goto stop;
1643
1644         f2fs_flush_sit_entries(sbi, cpc);
1645
1646         /* save inmem log status */
1647         f2fs_save_inmem_curseg(sbi);
1648
1649         err = do_checkpoint(sbi, cpc);
1650         if (err)
1651                 f2fs_release_discard_addrs(sbi);
1652         else
1653                 f2fs_clear_prefree_segments(sbi, cpc);
1654
1655         f2fs_restore_inmem_curseg(sbi);
1656 stop:
1657         unblock_operations(sbi);
1658         stat_inc_cp_count(sbi->stat_info);
1659
1660         if (cpc->reason & CP_RECOVERY)
1661                 f2fs_notice(sbi, "checkpoint: version = %llx", ckpt_ver);
1662
1663         /* update CP_TIME to trigger checkpoint periodically */
1664         f2fs_update_time(sbi, CP_TIME);
1665         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1666 out:
1667         if (cpc->reason != CP_RESIZE)
1668                 up_write(&sbi->cp_global_sem);
1669         return err;
1670 }
1671
1672 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi)
1673 {
1674         int i;
1675
1676         for (i = 0; i < MAX_INO_ENTRY; i++) {
1677                 struct inode_management *im = &sbi->im[i];
1678
1679                 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1680                 spin_lock_init(&im->ino_lock);
1681                 INIT_LIST_HEAD(&im->ino_list);
1682                 im->ino_num = 0;
1683         }
1684
1685         sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1686                         NR_CURSEG_PERSIST_TYPE - __cp_payload(sbi)) *
1687                                 F2FS_ORPHANS_PER_BLOCK;
1688 }
1689
1690 int __init f2fs_create_checkpoint_caches(void)
1691 {
1692         ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1693                         sizeof(struct ino_entry));
1694         if (!ino_entry_slab)
1695                 return -ENOMEM;
1696         f2fs_inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1697                         sizeof(struct inode_entry));
1698         if (!f2fs_inode_entry_slab) {
1699                 kmem_cache_destroy(ino_entry_slab);
1700                 return -ENOMEM;
1701         }
1702         return 0;
1703 }
1704
1705 void f2fs_destroy_checkpoint_caches(void)
1706 {
1707         kmem_cache_destroy(ino_entry_slab);
1708         kmem_cache_destroy(f2fs_inode_entry_slab);
1709 }
1710
1711 static int __write_checkpoint_sync(struct f2fs_sb_info *sbi)
1712 {
1713         struct cp_control cpc = { .reason = CP_SYNC, };
1714         int err;
1715
1716         down_write(&sbi->gc_lock);
1717         err = f2fs_write_checkpoint(sbi, &cpc);
1718         up_write(&sbi->gc_lock);
1719
1720         return err;
1721 }
1722
1723 static void __checkpoint_and_complete_reqs(struct f2fs_sb_info *sbi)
1724 {
1725         struct ckpt_req_control *cprc = &sbi->cprc_info;
1726         struct ckpt_req *req, *next;
1727         struct llist_node *dispatch_list;
1728         u64 sum_diff = 0, diff, count = 0;
1729         int ret;
1730
1731         dispatch_list = llist_del_all(&cprc->issue_list);
1732         if (!dispatch_list)
1733                 return;
1734         dispatch_list = llist_reverse_order(dispatch_list);
1735
1736         ret = __write_checkpoint_sync(sbi);
1737         atomic_inc(&cprc->issued_ckpt);
1738
1739         llist_for_each_entry_safe(req, next, dispatch_list, llnode) {
1740                 diff = (u64)ktime_ms_delta(ktime_get(), req->queue_time);
1741                 req->ret = ret;
1742                 complete(&req->wait);
1743
1744                 sum_diff += diff;
1745                 count++;
1746         }
1747         atomic_sub(count, &cprc->queued_ckpt);
1748         atomic_add(count, &cprc->total_ckpt);
1749
1750         spin_lock(&cprc->stat_lock);
1751         cprc->cur_time = (unsigned int)div64_u64(sum_diff, count);
1752         if (cprc->peak_time < cprc->cur_time)
1753                 cprc->peak_time = cprc->cur_time;
1754         spin_unlock(&cprc->stat_lock);
1755 }
1756
1757 static int issue_checkpoint_thread(void *data)
1758 {
1759         struct f2fs_sb_info *sbi = data;
1760         struct ckpt_req_control *cprc = &sbi->cprc_info;
1761         wait_queue_head_t *q = &cprc->ckpt_wait_queue;
1762 repeat:
1763         if (kthread_should_stop())
1764                 return 0;
1765
1766         if (!llist_empty(&cprc->issue_list))
1767                 __checkpoint_and_complete_reqs(sbi);
1768
1769         wait_event_interruptible(*q,
1770                 kthread_should_stop() || !llist_empty(&cprc->issue_list));
1771         goto repeat;
1772 }
1773
1774 static void flush_remained_ckpt_reqs(struct f2fs_sb_info *sbi,
1775                 struct ckpt_req *wait_req)
1776 {
1777         struct ckpt_req_control *cprc = &sbi->cprc_info;
1778
1779         if (!llist_empty(&cprc->issue_list)) {
1780                 __checkpoint_and_complete_reqs(sbi);
1781         } else {
1782                 /* already dispatched by issue_checkpoint_thread */
1783                 if (wait_req)
1784                         wait_for_completion(&wait_req->wait);
1785         }
1786 }
1787
1788 static void init_ckpt_req(struct ckpt_req *req)
1789 {
1790         memset(req, 0, sizeof(struct ckpt_req));
1791
1792         init_completion(&req->wait);
1793         req->queue_time = ktime_get();
1794 }
1795
1796 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi)
1797 {
1798         struct ckpt_req_control *cprc = &sbi->cprc_info;
1799         struct ckpt_req req;
1800         struct cp_control cpc;
1801
1802         cpc.reason = __get_cp_reason(sbi);
1803         if (!test_opt(sbi, MERGE_CHECKPOINT) || cpc.reason != CP_SYNC) {
1804                 int ret;
1805
1806                 down_write(&sbi->gc_lock);
1807                 ret = f2fs_write_checkpoint(sbi, &cpc);
1808                 up_write(&sbi->gc_lock);
1809
1810                 return ret;
1811         }
1812
1813         if (!cprc->f2fs_issue_ckpt)
1814                 return __write_checkpoint_sync(sbi);
1815
1816         init_ckpt_req(&req);
1817
1818         llist_add(&req.llnode, &cprc->issue_list);
1819         atomic_inc(&cprc->queued_ckpt);
1820
1821         /* update issue_list before we wake up issue_checkpoint thread */
1822         smp_mb();
1823
1824         if (waitqueue_active(&cprc->ckpt_wait_queue))
1825                 wake_up(&cprc->ckpt_wait_queue);
1826
1827         if (cprc->f2fs_issue_ckpt)
1828                 wait_for_completion(&req.wait);
1829         else
1830                 flush_remained_ckpt_reqs(sbi, &req);
1831
1832         return req.ret;
1833 }
1834
1835 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi)
1836 {
1837         dev_t dev = sbi->sb->s_bdev->bd_dev;
1838         struct ckpt_req_control *cprc = &sbi->cprc_info;
1839
1840         if (cprc->f2fs_issue_ckpt)
1841                 return 0;
1842
1843         cprc->f2fs_issue_ckpt = kthread_run(issue_checkpoint_thread, sbi,
1844                         "f2fs_ckpt-%u:%u", MAJOR(dev), MINOR(dev));
1845         if (IS_ERR(cprc->f2fs_issue_ckpt)) {
1846                 cprc->f2fs_issue_ckpt = NULL;
1847                 return -ENOMEM;
1848         }
1849
1850         set_task_ioprio(cprc->f2fs_issue_ckpt, cprc->ckpt_thread_ioprio);
1851
1852         return 0;
1853 }
1854
1855 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi)
1856 {
1857         struct ckpt_req_control *cprc = &sbi->cprc_info;
1858
1859         if (cprc->f2fs_issue_ckpt) {
1860                 struct task_struct *ckpt_task = cprc->f2fs_issue_ckpt;
1861
1862                 cprc->f2fs_issue_ckpt = NULL;
1863                 kthread_stop(ckpt_task);
1864
1865                 flush_remained_ckpt_reqs(sbi, NULL);
1866         }
1867 }
1868
1869 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi)
1870 {
1871         struct ckpt_req_control *cprc = &sbi->cprc_info;
1872
1873         atomic_set(&cprc->issued_ckpt, 0);
1874         atomic_set(&cprc->total_ckpt, 0);
1875         atomic_set(&cprc->queued_ckpt, 0);
1876         cprc->ckpt_thread_ioprio = DEFAULT_CHECKPOINT_IOPRIO;
1877         init_waitqueue_head(&cprc->ckpt_wait_queue);
1878         init_llist_head(&cprc->issue_list);
1879         spin_lock_init(&cprc->stat_lock);
1880 }