Merge tag 'pm-6.5-rc1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael...
[linux-2.6-microblaze.git] / fs / f2fs / checkpoint.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/checkpoint.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/bio.h>
10 #include <linux/mpage.h>
11 #include <linux/writeback.h>
12 #include <linux/blkdev.h>
13 #include <linux/f2fs_fs.h>
14 #include <linux/pagevec.h>
15 #include <linux/swap.h>
16 #include <linux/kthread.h>
17
18 #include "f2fs.h"
19 #include "node.h"
20 #include "segment.h"
21 #include "iostat.h"
22 #include <trace/events/f2fs.h>
23
24 #define DEFAULT_CHECKPOINT_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
25
26 static struct kmem_cache *ino_entry_slab;
27 struct kmem_cache *f2fs_inode_entry_slab;
28
29 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io,
30                                                 unsigned char reason)
31 {
32         f2fs_build_fault_attr(sbi, 0, 0);
33         set_ckpt_flags(sbi, CP_ERROR_FLAG);
34         if (!end_io) {
35                 f2fs_flush_merged_writes(sbi);
36
37                 f2fs_handle_stop(sbi, reason);
38         }
39 }
40
41 /*
42  * We guarantee no failure on the returned page.
43  */
44 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
45 {
46         struct address_space *mapping = META_MAPPING(sbi);
47         struct page *page;
48 repeat:
49         page = f2fs_grab_cache_page(mapping, index, false);
50         if (!page) {
51                 cond_resched();
52                 goto repeat;
53         }
54         f2fs_wait_on_page_writeback(page, META, true, true);
55         if (!PageUptodate(page))
56                 SetPageUptodate(page);
57         return page;
58 }
59
60 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
61                                                         bool is_meta)
62 {
63         struct address_space *mapping = META_MAPPING(sbi);
64         struct page *page;
65         struct f2fs_io_info fio = {
66                 .sbi = sbi,
67                 .type = META,
68                 .op = REQ_OP_READ,
69                 .op_flags = REQ_META | REQ_PRIO,
70                 .old_blkaddr = index,
71                 .new_blkaddr = index,
72                 .encrypted_page = NULL,
73                 .is_por = !is_meta ? 1 : 0,
74         };
75         int err;
76
77         if (unlikely(!is_meta))
78                 fio.op_flags &= ~REQ_META;
79 repeat:
80         page = f2fs_grab_cache_page(mapping, index, false);
81         if (!page) {
82                 cond_resched();
83                 goto repeat;
84         }
85         if (PageUptodate(page))
86                 goto out;
87
88         fio.page = page;
89
90         err = f2fs_submit_page_bio(&fio);
91         if (err) {
92                 f2fs_put_page(page, 1);
93                 return ERR_PTR(err);
94         }
95
96         f2fs_update_iostat(sbi, NULL, FS_META_READ_IO, F2FS_BLKSIZE);
97
98         lock_page(page);
99         if (unlikely(page->mapping != mapping)) {
100                 f2fs_put_page(page, 1);
101                 goto repeat;
102         }
103
104         if (unlikely(!PageUptodate(page))) {
105                 f2fs_handle_page_eio(sbi, page->index, META);
106                 f2fs_put_page(page, 1);
107                 return ERR_PTR(-EIO);
108         }
109 out:
110         return page;
111 }
112
113 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
114 {
115         return __get_meta_page(sbi, index, true);
116 }
117
118 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index)
119 {
120         struct page *page;
121         int count = 0;
122
123 retry:
124         page = __get_meta_page(sbi, index, true);
125         if (IS_ERR(page)) {
126                 if (PTR_ERR(page) == -EIO &&
127                                 ++count <= DEFAULT_RETRY_IO_COUNT)
128                         goto retry;
129                 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_META_PAGE);
130         }
131         return page;
132 }
133
134 /* for POR only */
135 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
136 {
137         return __get_meta_page(sbi, index, false);
138 }
139
140 static bool __is_bitmap_valid(struct f2fs_sb_info *sbi, block_t blkaddr,
141                                                         int type)
142 {
143         struct seg_entry *se;
144         unsigned int segno, offset;
145         bool exist;
146
147         if (type == DATA_GENERIC)
148                 return true;
149
150         segno = GET_SEGNO(sbi, blkaddr);
151         offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
152         se = get_seg_entry(sbi, segno);
153
154         exist = f2fs_test_bit(offset, se->cur_valid_map);
155
156         /* skip data, if we already have an error in checkpoint. */
157         if (unlikely(f2fs_cp_error(sbi)))
158                 return exist;
159
160         if (exist && type == DATA_GENERIC_ENHANCE_UPDATE) {
161                 f2fs_err(sbi, "Inconsistent error blkaddr:%u, sit bitmap:%d",
162                          blkaddr, exist);
163                 set_sbi_flag(sbi, SBI_NEED_FSCK);
164                 return exist;
165         }
166
167         if (!exist && type == DATA_GENERIC_ENHANCE) {
168                 f2fs_err(sbi, "Inconsistent error blkaddr:%u, sit bitmap:%d",
169                          blkaddr, exist);
170                 set_sbi_flag(sbi, SBI_NEED_FSCK);
171                 dump_stack();
172         }
173         return exist;
174 }
175
176 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
177                                         block_t blkaddr, int type)
178 {
179         if (time_to_inject(sbi, FAULT_BLKADDR))
180                 return false;
181
182         switch (type) {
183         case META_NAT:
184                 break;
185         case META_SIT:
186                 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
187                         return false;
188                 break;
189         case META_SSA:
190                 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
191                         blkaddr < SM_I(sbi)->ssa_blkaddr))
192                         return false;
193                 break;
194         case META_CP:
195                 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
196                         blkaddr < __start_cp_addr(sbi)))
197                         return false;
198                 break;
199         case META_POR:
200                 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
201                         blkaddr < MAIN_BLKADDR(sbi)))
202                         return false;
203                 break;
204         case DATA_GENERIC:
205         case DATA_GENERIC_ENHANCE:
206         case DATA_GENERIC_ENHANCE_READ:
207         case DATA_GENERIC_ENHANCE_UPDATE:
208                 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
209                                 blkaddr < MAIN_BLKADDR(sbi))) {
210
211                         /* Skip to emit an error message. */
212                         if (unlikely(f2fs_cp_error(sbi)))
213                                 return false;
214
215                         f2fs_warn(sbi, "access invalid blkaddr:%u",
216                                   blkaddr);
217                         set_sbi_flag(sbi, SBI_NEED_FSCK);
218                         dump_stack();
219                         return false;
220                 } else {
221                         return __is_bitmap_valid(sbi, blkaddr, type);
222                 }
223                 break;
224         case META_GENERIC:
225                 if (unlikely(blkaddr < SEG0_BLKADDR(sbi) ||
226                         blkaddr >= MAIN_BLKADDR(sbi)))
227                         return false;
228                 break;
229         default:
230                 BUG();
231         }
232
233         return true;
234 }
235
236 /*
237  * Readahead CP/NAT/SIT/SSA/POR pages
238  */
239 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
240                                                         int type, bool sync)
241 {
242         struct page *page;
243         block_t blkno = start;
244         struct f2fs_io_info fio = {
245                 .sbi = sbi,
246                 .type = META,
247                 .op = REQ_OP_READ,
248                 .op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD,
249                 .encrypted_page = NULL,
250                 .in_list = 0,
251                 .is_por = (type == META_POR) ? 1 : 0,
252         };
253         struct blk_plug plug;
254         int err;
255
256         if (unlikely(type == META_POR))
257                 fio.op_flags &= ~REQ_META;
258
259         blk_start_plug(&plug);
260         for (; nrpages-- > 0; blkno++) {
261
262                 if (!f2fs_is_valid_blkaddr(sbi, blkno, type))
263                         goto out;
264
265                 switch (type) {
266                 case META_NAT:
267                         if (unlikely(blkno >=
268                                         NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
269                                 blkno = 0;
270                         /* get nat block addr */
271                         fio.new_blkaddr = current_nat_addr(sbi,
272                                         blkno * NAT_ENTRY_PER_BLOCK);
273                         break;
274                 case META_SIT:
275                         if (unlikely(blkno >= TOTAL_SEGS(sbi)))
276                                 goto out;
277                         /* get sit block addr */
278                         fio.new_blkaddr = current_sit_addr(sbi,
279                                         blkno * SIT_ENTRY_PER_BLOCK);
280                         break;
281                 case META_SSA:
282                 case META_CP:
283                 case META_POR:
284                         fio.new_blkaddr = blkno;
285                         break;
286                 default:
287                         BUG();
288                 }
289
290                 page = f2fs_grab_cache_page(META_MAPPING(sbi),
291                                                 fio.new_blkaddr, false);
292                 if (!page)
293                         continue;
294                 if (PageUptodate(page)) {
295                         f2fs_put_page(page, 1);
296                         continue;
297                 }
298
299                 fio.page = page;
300                 err = f2fs_submit_page_bio(&fio);
301                 f2fs_put_page(page, err ? 1 : 0);
302
303                 if (!err)
304                         f2fs_update_iostat(sbi, NULL, FS_META_READ_IO,
305                                                         F2FS_BLKSIZE);
306         }
307 out:
308         blk_finish_plug(&plug);
309         return blkno - start;
310 }
311
312 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index,
313                                                         unsigned int ra_blocks)
314 {
315         struct page *page;
316         bool readahead = false;
317
318         if (ra_blocks == RECOVERY_MIN_RA_BLOCKS)
319                 return;
320
321         page = find_get_page(META_MAPPING(sbi), index);
322         if (!page || !PageUptodate(page))
323                 readahead = true;
324         f2fs_put_page(page, 0);
325
326         if (readahead)
327                 f2fs_ra_meta_pages(sbi, index, ra_blocks, META_POR, true);
328 }
329
330 static int __f2fs_write_meta_page(struct page *page,
331                                 struct writeback_control *wbc,
332                                 enum iostat_type io_type)
333 {
334         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
335
336         trace_f2fs_writepage(page, META);
337
338         if (unlikely(f2fs_cp_error(sbi))) {
339                 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) {
340                         ClearPageUptodate(page);
341                         dec_page_count(sbi, F2FS_DIRTY_META);
342                         unlock_page(page);
343                         return 0;
344                 }
345                 goto redirty_out;
346         }
347         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
348                 goto redirty_out;
349         if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
350                 goto redirty_out;
351
352         f2fs_do_write_meta_page(sbi, page, io_type);
353         dec_page_count(sbi, F2FS_DIRTY_META);
354
355         if (wbc->for_reclaim)
356                 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, META);
357
358         unlock_page(page);
359
360         if (unlikely(f2fs_cp_error(sbi)))
361                 f2fs_submit_merged_write(sbi, META);
362
363         return 0;
364
365 redirty_out:
366         redirty_page_for_writepage(wbc, page);
367         return AOP_WRITEPAGE_ACTIVATE;
368 }
369
370 static int f2fs_write_meta_page(struct page *page,
371                                 struct writeback_control *wbc)
372 {
373         return __f2fs_write_meta_page(page, wbc, FS_META_IO);
374 }
375
376 static int f2fs_write_meta_pages(struct address_space *mapping,
377                                 struct writeback_control *wbc)
378 {
379         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
380         long diff, written;
381
382         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
383                 goto skip_write;
384
385         /* collect a number of dirty meta pages and write together */
386         if (wbc->sync_mode != WB_SYNC_ALL &&
387                         get_pages(sbi, F2FS_DIRTY_META) <
388                                         nr_pages_to_skip(sbi, META))
389                 goto skip_write;
390
391         /* if locked failed, cp will flush dirty pages instead */
392         if (!f2fs_down_write_trylock(&sbi->cp_global_sem))
393                 goto skip_write;
394
395         trace_f2fs_writepages(mapping->host, wbc, META);
396         diff = nr_pages_to_write(sbi, META, wbc);
397         written = f2fs_sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO);
398         f2fs_up_write(&sbi->cp_global_sem);
399         wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
400         return 0;
401
402 skip_write:
403         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
404         trace_f2fs_writepages(mapping->host, wbc, META);
405         return 0;
406 }
407
408 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
409                                 long nr_to_write, enum iostat_type io_type)
410 {
411         struct address_space *mapping = META_MAPPING(sbi);
412         pgoff_t index = 0, prev = ULONG_MAX;
413         struct folio_batch fbatch;
414         long nwritten = 0;
415         int nr_folios;
416         struct writeback_control wbc = {
417                 .for_reclaim = 0,
418         };
419         struct blk_plug plug;
420
421         folio_batch_init(&fbatch);
422
423         blk_start_plug(&plug);
424
425         while ((nr_folios = filemap_get_folios_tag(mapping, &index,
426                                         (pgoff_t)-1,
427                                         PAGECACHE_TAG_DIRTY, &fbatch))) {
428                 int i;
429
430                 for (i = 0; i < nr_folios; i++) {
431                         struct folio *folio = fbatch.folios[i];
432
433                         if (nr_to_write != LONG_MAX && i != 0 &&
434                                         folio->index != prev +
435                                         folio_nr_pages(fbatch.folios[i-1])) {
436                                 folio_batch_release(&fbatch);
437                                 goto stop;
438                         }
439
440                         folio_lock(folio);
441
442                         if (unlikely(folio->mapping != mapping)) {
443 continue_unlock:
444                                 folio_unlock(folio);
445                                 continue;
446                         }
447                         if (!folio_test_dirty(folio)) {
448                                 /* someone wrote it for us */
449                                 goto continue_unlock;
450                         }
451
452                         f2fs_wait_on_page_writeback(&folio->page, META,
453                                         true, true);
454
455                         if (!folio_clear_dirty_for_io(folio))
456                                 goto continue_unlock;
457
458                         if (__f2fs_write_meta_page(&folio->page, &wbc,
459                                                 io_type)) {
460                                 folio_unlock(folio);
461                                 break;
462                         }
463                         nwritten += folio_nr_pages(folio);
464                         prev = folio->index;
465                         if (unlikely(nwritten >= nr_to_write))
466                                 break;
467                 }
468                 folio_batch_release(&fbatch);
469                 cond_resched();
470         }
471 stop:
472         if (nwritten)
473                 f2fs_submit_merged_write(sbi, type);
474
475         blk_finish_plug(&plug);
476
477         return nwritten;
478 }
479
480 static bool f2fs_dirty_meta_folio(struct address_space *mapping,
481                 struct folio *folio)
482 {
483         trace_f2fs_set_page_dirty(&folio->page, META);
484
485         if (!folio_test_uptodate(folio))
486                 folio_mark_uptodate(folio);
487         if (filemap_dirty_folio(mapping, folio)) {
488                 inc_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_META);
489                 set_page_private_reference(&folio->page);
490                 return true;
491         }
492         return false;
493 }
494
495 const struct address_space_operations f2fs_meta_aops = {
496         .writepage      = f2fs_write_meta_page,
497         .writepages     = f2fs_write_meta_pages,
498         .dirty_folio    = f2fs_dirty_meta_folio,
499         .invalidate_folio = f2fs_invalidate_folio,
500         .release_folio  = f2fs_release_folio,
501         .migrate_folio  = filemap_migrate_folio,
502 };
503
504 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino,
505                                                 unsigned int devidx, int type)
506 {
507         struct inode_management *im = &sbi->im[type];
508         struct ino_entry *e = NULL, *new = NULL;
509
510         if (type == FLUSH_INO) {
511                 rcu_read_lock();
512                 e = radix_tree_lookup(&im->ino_root, ino);
513                 rcu_read_unlock();
514         }
515
516 retry:
517         if (!e)
518                 new = f2fs_kmem_cache_alloc(ino_entry_slab,
519                                                 GFP_NOFS, true, NULL);
520
521         radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
522
523         spin_lock(&im->ino_lock);
524         e = radix_tree_lookup(&im->ino_root, ino);
525         if (!e) {
526                 if (!new) {
527                         spin_unlock(&im->ino_lock);
528                         radix_tree_preload_end();
529                         goto retry;
530                 }
531                 e = new;
532                 if (unlikely(radix_tree_insert(&im->ino_root, ino, e)))
533                         f2fs_bug_on(sbi, 1);
534
535                 memset(e, 0, sizeof(struct ino_entry));
536                 e->ino = ino;
537
538                 list_add_tail(&e->list, &im->ino_list);
539                 if (type != ORPHAN_INO)
540                         im->ino_num++;
541         }
542
543         if (type == FLUSH_INO)
544                 f2fs_set_bit(devidx, (char *)&e->dirty_device);
545
546         spin_unlock(&im->ino_lock);
547         radix_tree_preload_end();
548
549         if (new && e != new)
550                 kmem_cache_free(ino_entry_slab, new);
551 }
552
553 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
554 {
555         struct inode_management *im = &sbi->im[type];
556         struct ino_entry *e;
557
558         spin_lock(&im->ino_lock);
559         e = radix_tree_lookup(&im->ino_root, ino);
560         if (e) {
561                 list_del(&e->list);
562                 radix_tree_delete(&im->ino_root, ino);
563                 im->ino_num--;
564                 spin_unlock(&im->ino_lock);
565                 kmem_cache_free(ino_entry_slab, e);
566                 return;
567         }
568         spin_unlock(&im->ino_lock);
569 }
570
571 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
572 {
573         /* add new dirty ino entry into list */
574         __add_ino_entry(sbi, ino, 0, type);
575 }
576
577 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
578 {
579         /* remove dirty ino entry from list */
580         __remove_ino_entry(sbi, ino, type);
581 }
582
583 /* mode should be APPEND_INO, UPDATE_INO or TRANS_DIR_INO */
584 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
585 {
586         struct inode_management *im = &sbi->im[mode];
587         struct ino_entry *e;
588
589         spin_lock(&im->ino_lock);
590         e = radix_tree_lookup(&im->ino_root, ino);
591         spin_unlock(&im->ino_lock);
592         return e ? true : false;
593 }
594
595 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all)
596 {
597         struct ino_entry *e, *tmp;
598         int i;
599
600         for (i = all ? ORPHAN_INO : APPEND_INO; i < MAX_INO_ENTRY; i++) {
601                 struct inode_management *im = &sbi->im[i];
602
603                 spin_lock(&im->ino_lock);
604                 list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
605                         list_del(&e->list);
606                         radix_tree_delete(&im->ino_root, e->ino);
607                         kmem_cache_free(ino_entry_slab, e);
608                         im->ino_num--;
609                 }
610                 spin_unlock(&im->ino_lock);
611         }
612 }
613
614 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
615                                         unsigned int devidx, int type)
616 {
617         __add_ino_entry(sbi, ino, devidx, type);
618 }
619
620 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
621                                         unsigned int devidx, int type)
622 {
623         struct inode_management *im = &sbi->im[type];
624         struct ino_entry *e;
625         bool is_dirty = false;
626
627         spin_lock(&im->ino_lock);
628         e = radix_tree_lookup(&im->ino_root, ino);
629         if (e && f2fs_test_bit(devidx, (char *)&e->dirty_device))
630                 is_dirty = true;
631         spin_unlock(&im->ino_lock);
632         return is_dirty;
633 }
634
635 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi)
636 {
637         struct inode_management *im = &sbi->im[ORPHAN_INO];
638         int err = 0;
639
640         spin_lock(&im->ino_lock);
641
642         if (time_to_inject(sbi, FAULT_ORPHAN)) {
643                 spin_unlock(&im->ino_lock);
644                 return -ENOSPC;
645         }
646
647         if (unlikely(im->ino_num >= sbi->max_orphans))
648                 err = -ENOSPC;
649         else
650                 im->ino_num++;
651         spin_unlock(&im->ino_lock);
652
653         return err;
654 }
655
656 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi)
657 {
658         struct inode_management *im = &sbi->im[ORPHAN_INO];
659
660         spin_lock(&im->ino_lock);
661         f2fs_bug_on(sbi, im->ino_num == 0);
662         im->ino_num--;
663         spin_unlock(&im->ino_lock);
664 }
665
666 void f2fs_add_orphan_inode(struct inode *inode)
667 {
668         /* add new orphan ino entry into list */
669         __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, 0, ORPHAN_INO);
670         f2fs_update_inode_page(inode);
671 }
672
673 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
674 {
675         /* remove orphan entry from orphan list */
676         __remove_ino_entry(sbi, ino, ORPHAN_INO);
677 }
678
679 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
680 {
681         struct inode *inode;
682         struct node_info ni;
683         int err;
684
685         inode = f2fs_iget_retry(sbi->sb, ino);
686         if (IS_ERR(inode)) {
687                 /*
688                  * there should be a bug that we can't find the entry
689                  * to orphan inode.
690                  */
691                 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
692                 return PTR_ERR(inode);
693         }
694
695         err = f2fs_dquot_initialize(inode);
696         if (err) {
697                 iput(inode);
698                 goto err_out;
699         }
700
701         clear_nlink(inode);
702
703         /* truncate all the data during iput */
704         iput(inode);
705
706         err = f2fs_get_node_info(sbi, ino, &ni, false);
707         if (err)
708                 goto err_out;
709
710         /* ENOMEM was fully retried in f2fs_evict_inode. */
711         if (ni.blk_addr != NULL_ADDR) {
712                 err = -EIO;
713                 goto err_out;
714         }
715         return 0;
716
717 err_out:
718         set_sbi_flag(sbi, SBI_NEED_FSCK);
719         f2fs_warn(sbi, "%s: orphan failed (ino=%x), run fsck to fix.",
720                   __func__, ino);
721         return err;
722 }
723
724 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi)
725 {
726         block_t start_blk, orphan_blocks, i, j;
727         int err = 0;
728
729         if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG))
730                 return 0;
731
732         if (f2fs_hw_is_readonly(sbi)) {
733                 f2fs_info(sbi, "write access unavailable, skipping orphan cleanup");
734                 return 0;
735         }
736
737         if (is_sbi_flag_set(sbi, SBI_IS_WRITABLE))
738                 f2fs_info(sbi, "orphan cleanup on readonly fs");
739
740         start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
741         orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
742
743         f2fs_ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
744
745         for (i = 0; i < orphan_blocks; i++) {
746                 struct page *page;
747                 struct f2fs_orphan_block *orphan_blk;
748
749                 page = f2fs_get_meta_page(sbi, start_blk + i);
750                 if (IS_ERR(page)) {
751                         err = PTR_ERR(page);
752                         goto out;
753                 }
754
755                 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
756                 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
757                         nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
758
759                         err = recover_orphan_inode(sbi, ino);
760                         if (err) {
761                                 f2fs_put_page(page, 1);
762                                 goto out;
763                         }
764                 }
765                 f2fs_put_page(page, 1);
766         }
767         /* clear Orphan Flag */
768         clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG);
769 out:
770         set_sbi_flag(sbi, SBI_IS_RECOVERED);
771
772         return err;
773 }
774
775 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
776 {
777         struct list_head *head;
778         struct f2fs_orphan_block *orphan_blk = NULL;
779         unsigned int nentries = 0;
780         unsigned short index = 1;
781         unsigned short orphan_blocks;
782         struct page *page = NULL;
783         struct ino_entry *orphan = NULL;
784         struct inode_management *im = &sbi->im[ORPHAN_INO];
785
786         orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
787
788         /*
789          * we don't need to do spin_lock(&im->ino_lock) here, since all the
790          * orphan inode operations are covered under f2fs_lock_op().
791          * And, spin_lock should be avoided due to page operations below.
792          */
793         head = &im->ino_list;
794
795         /* loop for each orphan inode entry and write them in journal block */
796         list_for_each_entry(orphan, head, list) {
797                 if (!page) {
798                         page = f2fs_grab_meta_page(sbi, start_blk++);
799                         orphan_blk =
800                                 (struct f2fs_orphan_block *)page_address(page);
801                         memset(orphan_blk, 0, sizeof(*orphan_blk));
802                 }
803
804                 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
805
806                 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
807                         /*
808                          * an orphan block is full of 1020 entries,
809                          * then we need to flush current orphan blocks
810                          * and bring another one in memory
811                          */
812                         orphan_blk->blk_addr = cpu_to_le16(index);
813                         orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
814                         orphan_blk->entry_count = cpu_to_le32(nentries);
815                         set_page_dirty(page);
816                         f2fs_put_page(page, 1);
817                         index++;
818                         nentries = 0;
819                         page = NULL;
820                 }
821         }
822
823         if (page) {
824                 orphan_blk->blk_addr = cpu_to_le16(index);
825                 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
826                 orphan_blk->entry_count = cpu_to_le32(nentries);
827                 set_page_dirty(page);
828                 f2fs_put_page(page, 1);
829         }
830 }
831
832 static __u32 f2fs_checkpoint_chksum(struct f2fs_sb_info *sbi,
833                                                 struct f2fs_checkpoint *ckpt)
834 {
835         unsigned int chksum_ofs = le32_to_cpu(ckpt->checksum_offset);
836         __u32 chksum;
837
838         chksum = f2fs_crc32(sbi, ckpt, chksum_ofs);
839         if (chksum_ofs < CP_CHKSUM_OFFSET) {
840                 chksum_ofs += sizeof(chksum);
841                 chksum = f2fs_chksum(sbi, chksum, (__u8 *)ckpt + chksum_ofs,
842                                                 F2FS_BLKSIZE - chksum_ofs);
843         }
844         return chksum;
845 }
846
847 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr,
848                 struct f2fs_checkpoint **cp_block, struct page **cp_page,
849                 unsigned long long *version)
850 {
851         size_t crc_offset = 0;
852         __u32 crc;
853
854         *cp_page = f2fs_get_meta_page(sbi, cp_addr);
855         if (IS_ERR(*cp_page))
856                 return PTR_ERR(*cp_page);
857
858         *cp_block = (struct f2fs_checkpoint *)page_address(*cp_page);
859
860         crc_offset = le32_to_cpu((*cp_block)->checksum_offset);
861         if (crc_offset < CP_MIN_CHKSUM_OFFSET ||
862                         crc_offset > CP_CHKSUM_OFFSET) {
863                 f2fs_put_page(*cp_page, 1);
864                 f2fs_warn(sbi, "invalid crc_offset: %zu", crc_offset);
865                 return -EINVAL;
866         }
867
868         crc = f2fs_checkpoint_chksum(sbi, *cp_block);
869         if (crc != cur_cp_crc(*cp_block)) {
870                 f2fs_put_page(*cp_page, 1);
871                 f2fs_warn(sbi, "invalid crc value");
872                 return -EINVAL;
873         }
874
875         *version = cur_cp_version(*cp_block);
876         return 0;
877 }
878
879 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
880                                 block_t cp_addr, unsigned long long *version)
881 {
882         struct page *cp_page_1 = NULL, *cp_page_2 = NULL;
883         struct f2fs_checkpoint *cp_block = NULL;
884         unsigned long long cur_version = 0, pre_version = 0;
885         unsigned int cp_blocks;
886         int err;
887
888         err = get_checkpoint_version(sbi, cp_addr, &cp_block,
889                                         &cp_page_1, version);
890         if (err)
891                 return NULL;
892
893         cp_blocks = le32_to_cpu(cp_block->cp_pack_total_block_count);
894
895         if (cp_blocks > sbi->blocks_per_seg || cp_blocks <= F2FS_CP_PACKS) {
896                 f2fs_warn(sbi, "invalid cp_pack_total_block_count:%u",
897                           le32_to_cpu(cp_block->cp_pack_total_block_count));
898                 goto invalid_cp;
899         }
900         pre_version = *version;
901
902         cp_addr += cp_blocks - 1;
903         err = get_checkpoint_version(sbi, cp_addr, &cp_block,
904                                         &cp_page_2, version);
905         if (err)
906                 goto invalid_cp;
907         cur_version = *version;
908
909         if (cur_version == pre_version) {
910                 *version = cur_version;
911                 f2fs_put_page(cp_page_2, 1);
912                 return cp_page_1;
913         }
914         f2fs_put_page(cp_page_2, 1);
915 invalid_cp:
916         f2fs_put_page(cp_page_1, 1);
917         return NULL;
918 }
919
920 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi)
921 {
922         struct f2fs_checkpoint *cp_block;
923         struct f2fs_super_block *fsb = sbi->raw_super;
924         struct page *cp1, *cp2, *cur_page;
925         unsigned long blk_size = sbi->blocksize;
926         unsigned long long cp1_version = 0, cp2_version = 0;
927         unsigned long long cp_start_blk_no;
928         unsigned int cp_blks = 1 + __cp_payload(sbi);
929         block_t cp_blk_no;
930         int i;
931         int err;
932
933         sbi->ckpt = f2fs_kvzalloc(sbi, array_size(blk_size, cp_blks),
934                                   GFP_KERNEL);
935         if (!sbi->ckpt)
936                 return -ENOMEM;
937         /*
938          * Finding out valid cp block involves read both
939          * sets( cp pack 1 and cp pack 2)
940          */
941         cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
942         cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
943
944         /* The second checkpoint pack should start at the next segment */
945         cp_start_blk_no += ((unsigned long long)1) <<
946                                 le32_to_cpu(fsb->log_blocks_per_seg);
947         cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
948
949         if (cp1 && cp2) {
950                 if (ver_after(cp2_version, cp1_version))
951                         cur_page = cp2;
952                 else
953                         cur_page = cp1;
954         } else if (cp1) {
955                 cur_page = cp1;
956         } else if (cp2) {
957                 cur_page = cp2;
958         } else {
959                 err = -EFSCORRUPTED;
960                 goto fail_no_cp;
961         }
962
963         cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
964         memcpy(sbi->ckpt, cp_block, blk_size);
965
966         if (cur_page == cp1)
967                 sbi->cur_cp_pack = 1;
968         else
969                 sbi->cur_cp_pack = 2;
970
971         /* Sanity checking of checkpoint */
972         if (f2fs_sanity_check_ckpt(sbi)) {
973                 err = -EFSCORRUPTED;
974                 goto free_fail_no_cp;
975         }
976
977         if (cp_blks <= 1)
978                 goto done;
979
980         cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
981         if (cur_page == cp2)
982                 cp_blk_no += BIT(le32_to_cpu(fsb->log_blocks_per_seg));
983
984         for (i = 1; i < cp_blks; i++) {
985                 void *sit_bitmap_ptr;
986                 unsigned char *ckpt = (unsigned char *)sbi->ckpt;
987
988                 cur_page = f2fs_get_meta_page(sbi, cp_blk_no + i);
989                 if (IS_ERR(cur_page)) {
990                         err = PTR_ERR(cur_page);
991                         goto free_fail_no_cp;
992                 }
993                 sit_bitmap_ptr = page_address(cur_page);
994                 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
995                 f2fs_put_page(cur_page, 1);
996         }
997 done:
998         f2fs_put_page(cp1, 1);
999         f2fs_put_page(cp2, 1);
1000         return 0;
1001
1002 free_fail_no_cp:
1003         f2fs_put_page(cp1, 1);
1004         f2fs_put_page(cp2, 1);
1005 fail_no_cp:
1006         kvfree(sbi->ckpt);
1007         return err;
1008 }
1009
1010 static void __add_dirty_inode(struct inode *inode, enum inode_type type)
1011 {
1012         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1013         int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
1014
1015         if (is_inode_flag_set(inode, flag))
1016                 return;
1017
1018         set_inode_flag(inode, flag);
1019         list_add_tail(&F2FS_I(inode)->dirty_list, &sbi->inode_list[type]);
1020         stat_inc_dirty_inode(sbi, type);
1021 }
1022
1023 static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
1024 {
1025         int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
1026
1027         if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag))
1028                 return;
1029
1030         list_del_init(&F2FS_I(inode)->dirty_list);
1031         clear_inode_flag(inode, flag);
1032         stat_dec_dirty_inode(F2FS_I_SB(inode), type);
1033 }
1034
1035 void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio)
1036 {
1037         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1038         enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
1039
1040         if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1041                         !S_ISLNK(inode->i_mode))
1042                 return;
1043
1044         spin_lock(&sbi->inode_lock[type]);
1045         if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH))
1046                 __add_dirty_inode(inode, type);
1047         inode_inc_dirty_pages(inode);
1048         spin_unlock(&sbi->inode_lock[type]);
1049
1050         set_page_private_reference(&folio->page);
1051 }
1052
1053 void f2fs_remove_dirty_inode(struct inode *inode)
1054 {
1055         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1056         enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
1057
1058         if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1059                         !S_ISLNK(inode->i_mode))
1060                 return;
1061
1062         if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
1063                 return;
1064
1065         spin_lock(&sbi->inode_lock[type]);
1066         __remove_dirty_inode(inode, type);
1067         spin_unlock(&sbi->inode_lock[type]);
1068 }
1069
1070 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type,
1071                                                 bool from_cp)
1072 {
1073         struct list_head *head;
1074         struct inode *inode;
1075         struct f2fs_inode_info *fi;
1076         bool is_dir = (type == DIR_INODE);
1077         unsigned long ino = 0;
1078
1079         trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
1080                                 get_pages(sbi, is_dir ?
1081                                 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1082 retry:
1083         if (unlikely(f2fs_cp_error(sbi))) {
1084                 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
1085                                 get_pages(sbi, is_dir ?
1086                                 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1087                 return -EIO;
1088         }
1089
1090         spin_lock(&sbi->inode_lock[type]);
1091
1092         head = &sbi->inode_list[type];
1093         if (list_empty(head)) {
1094                 spin_unlock(&sbi->inode_lock[type]);
1095                 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
1096                                 get_pages(sbi, is_dir ?
1097                                 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1098                 return 0;
1099         }
1100         fi = list_first_entry(head, struct f2fs_inode_info, dirty_list);
1101         inode = igrab(&fi->vfs_inode);
1102         spin_unlock(&sbi->inode_lock[type]);
1103         if (inode) {
1104                 unsigned long cur_ino = inode->i_ino;
1105
1106                 if (from_cp)
1107                         F2FS_I(inode)->cp_task = current;
1108                 F2FS_I(inode)->wb_task = current;
1109
1110                 filemap_fdatawrite(inode->i_mapping);
1111
1112                 F2FS_I(inode)->wb_task = NULL;
1113                 if (from_cp)
1114                         F2FS_I(inode)->cp_task = NULL;
1115
1116                 iput(inode);
1117                 /* We need to give cpu to another writers. */
1118                 if (ino == cur_ino)
1119                         cond_resched();
1120                 else
1121                         ino = cur_ino;
1122         } else {
1123                 /*
1124                  * We should submit bio, since it exists several
1125                  * writebacking dentry pages in the freeing inode.
1126                  */
1127                 f2fs_submit_merged_write(sbi, DATA);
1128                 cond_resched();
1129         }
1130         goto retry;
1131 }
1132
1133 static int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi)
1134 {
1135         struct list_head *head = &sbi->inode_list[DIRTY_META];
1136         struct inode *inode;
1137         struct f2fs_inode_info *fi;
1138         s64 total = get_pages(sbi, F2FS_DIRTY_IMETA);
1139
1140         while (total--) {
1141                 if (unlikely(f2fs_cp_error(sbi)))
1142                         return -EIO;
1143
1144                 spin_lock(&sbi->inode_lock[DIRTY_META]);
1145                 if (list_empty(head)) {
1146                         spin_unlock(&sbi->inode_lock[DIRTY_META]);
1147                         return 0;
1148                 }
1149                 fi = list_first_entry(head, struct f2fs_inode_info,
1150                                                         gdirty_list);
1151                 inode = igrab(&fi->vfs_inode);
1152                 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1153                 if (inode) {
1154                         sync_inode_metadata(inode, 0);
1155
1156                         /* it's on eviction */
1157                         if (is_inode_flag_set(inode, FI_DIRTY_INODE))
1158                                 f2fs_update_inode_page(inode);
1159                         iput(inode);
1160                 }
1161         }
1162         return 0;
1163 }
1164
1165 static void __prepare_cp_block(struct f2fs_sb_info *sbi)
1166 {
1167         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1168         struct f2fs_nm_info *nm_i = NM_I(sbi);
1169         nid_t last_nid = nm_i->next_scan_nid;
1170
1171         next_free_nid(sbi, &last_nid);
1172         ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
1173         ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
1174         ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
1175         ckpt->next_free_nid = cpu_to_le32(last_nid);
1176 }
1177
1178 static bool __need_flush_quota(struct f2fs_sb_info *sbi)
1179 {
1180         bool ret = false;
1181
1182         if (!is_journalled_quota(sbi))
1183                 return false;
1184
1185         if (!f2fs_down_write_trylock(&sbi->quota_sem))
1186                 return true;
1187         if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH)) {
1188                 ret = false;
1189         } else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR)) {
1190                 ret = false;
1191         } else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_FLUSH)) {
1192                 clear_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
1193                 ret = true;
1194         } else if (get_pages(sbi, F2FS_DIRTY_QDATA)) {
1195                 ret = true;
1196         }
1197         f2fs_up_write(&sbi->quota_sem);
1198         return ret;
1199 }
1200
1201 /*
1202  * Freeze all the FS-operations for checkpoint.
1203  */
1204 static int block_operations(struct f2fs_sb_info *sbi)
1205 {
1206         struct writeback_control wbc = {
1207                 .sync_mode = WB_SYNC_ALL,
1208                 .nr_to_write = LONG_MAX,
1209                 .for_reclaim = 0,
1210         };
1211         int err = 0, cnt = 0;
1212
1213         /*
1214          * Let's flush inline_data in dirty node pages.
1215          */
1216         f2fs_flush_inline_data(sbi);
1217
1218 retry_flush_quotas:
1219         f2fs_lock_all(sbi);
1220         if (__need_flush_quota(sbi)) {
1221                 int locked;
1222
1223                 if (++cnt > DEFAULT_RETRY_QUOTA_FLUSH_COUNT) {
1224                         set_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH);
1225                         set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
1226                         goto retry_flush_dents;
1227                 }
1228                 f2fs_unlock_all(sbi);
1229
1230                 /* only failed during mount/umount/freeze/quotactl */
1231                 locked = down_read_trylock(&sbi->sb->s_umount);
1232                 f2fs_quota_sync(sbi->sb, -1);
1233                 if (locked)
1234                         up_read(&sbi->sb->s_umount);
1235                 cond_resched();
1236                 goto retry_flush_quotas;
1237         }
1238
1239 retry_flush_dents:
1240         /* write all the dirty dentry pages */
1241         if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
1242                 f2fs_unlock_all(sbi);
1243                 err = f2fs_sync_dirty_inodes(sbi, DIR_INODE, true);
1244                 if (err)
1245                         return err;
1246                 cond_resched();
1247                 goto retry_flush_quotas;
1248         }
1249
1250         /*
1251          * POR: we should ensure that there are no dirty node pages
1252          * until finishing nat/sit flush. inode->i_blocks can be updated.
1253          */
1254         f2fs_down_write(&sbi->node_change);
1255
1256         if (get_pages(sbi, F2FS_DIRTY_IMETA)) {
1257                 f2fs_up_write(&sbi->node_change);
1258                 f2fs_unlock_all(sbi);
1259                 err = f2fs_sync_inode_meta(sbi);
1260                 if (err)
1261                         return err;
1262                 cond_resched();
1263                 goto retry_flush_quotas;
1264         }
1265
1266 retry_flush_nodes:
1267         f2fs_down_write(&sbi->node_write);
1268
1269         if (get_pages(sbi, F2FS_DIRTY_NODES)) {
1270                 f2fs_up_write(&sbi->node_write);
1271                 atomic_inc(&sbi->wb_sync_req[NODE]);
1272                 err = f2fs_sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO);
1273                 atomic_dec(&sbi->wb_sync_req[NODE]);
1274                 if (err) {
1275                         f2fs_up_write(&sbi->node_change);
1276                         f2fs_unlock_all(sbi);
1277                         return err;
1278                 }
1279                 cond_resched();
1280                 goto retry_flush_nodes;
1281         }
1282
1283         /*
1284          * sbi->node_change is used only for AIO write_begin path which produces
1285          * dirty node blocks and some checkpoint values by block allocation.
1286          */
1287         __prepare_cp_block(sbi);
1288         f2fs_up_write(&sbi->node_change);
1289         return err;
1290 }
1291
1292 static void unblock_operations(struct f2fs_sb_info *sbi)
1293 {
1294         f2fs_up_write(&sbi->node_write);
1295         f2fs_unlock_all(sbi);
1296 }
1297
1298 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type)
1299 {
1300         DEFINE_WAIT(wait);
1301
1302         for (;;) {
1303                 if (!get_pages(sbi, type))
1304                         break;
1305
1306                 if (unlikely(f2fs_cp_error(sbi) &&
1307                         !is_sbi_flag_set(sbi, SBI_IS_CLOSE)))
1308                         break;
1309
1310                 if (type == F2FS_DIRTY_META)
1311                         f2fs_sync_meta_pages(sbi, META, LONG_MAX,
1312                                                         FS_CP_META_IO);
1313                 else if (type == F2FS_WB_CP_DATA)
1314                         f2fs_submit_merged_write(sbi, DATA);
1315
1316                 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
1317                 io_schedule_timeout(DEFAULT_IO_TIMEOUT);
1318         }
1319         finish_wait(&sbi->cp_wait, &wait);
1320 }
1321
1322 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1323 {
1324         unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
1325         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1326         unsigned long flags;
1327
1328         if (cpc->reason & CP_UMOUNT) {
1329                 if (le32_to_cpu(ckpt->cp_pack_total_block_count) +
1330                         NM_I(sbi)->nat_bits_blocks > sbi->blocks_per_seg) {
1331                         clear_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1332                         f2fs_notice(sbi, "Disable nat_bits due to no space");
1333                 } else if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG) &&
1334                                                 f2fs_nat_bitmap_enabled(sbi)) {
1335                         f2fs_enable_nat_bits(sbi);
1336                         set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1337                         f2fs_notice(sbi, "Rebuild and enable nat_bits");
1338                 }
1339         }
1340
1341         spin_lock_irqsave(&sbi->cp_lock, flags);
1342
1343         if (cpc->reason & CP_TRIMMED)
1344                 __set_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1345         else
1346                 __clear_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1347
1348         if (cpc->reason & CP_UMOUNT)
1349                 __set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1350         else
1351                 __clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1352
1353         if (cpc->reason & CP_FASTBOOT)
1354                 __set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1355         else
1356                 __clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1357
1358         if (orphan_num)
1359                 __set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1360         else
1361                 __clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1362
1363         if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1364                 __set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1365
1366         if (is_sbi_flag_set(sbi, SBI_IS_RESIZEFS))
1367                 __set_ckpt_flags(ckpt, CP_RESIZEFS_FLAG);
1368         else
1369                 __clear_ckpt_flags(ckpt, CP_RESIZEFS_FLAG);
1370
1371         if (is_sbi_flag_set(sbi, SBI_CP_DISABLED))
1372                 __set_ckpt_flags(ckpt, CP_DISABLED_FLAG);
1373         else
1374                 __clear_ckpt_flags(ckpt, CP_DISABLED_FLAG);
1375
1376         if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK))
1377                 __set_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG);
1378         else
1379                 __clear_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG);
1380
1381         if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH))
1382                 __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1383         else
1384                 __clear_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1385
1386         if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR))
1387                 __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1388
1389         /* set this flag to activate crc|cp_ver for recovery */
1390         __set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG);
1391         __clear_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG);
1392
1393         spin_unlock_irqrestore(&sbi->cp_lock, flags);
1394 }
1395
1396 static void commit_checkpoint(struct f2fs_sb_info *sbi,
1397         void *src, block_t blk_addr)
1398 {
1399         struct writeback_control wbc = {
1400                 .for_reclaim = 0,
1401         };
1402
1403         /*
1404          * filemap_get_folios_tag and lock_page again will take
1405          * some extra time. Therefore, f2fs_update_meta_pages and
1406          * f2fs_sync_meta_pages are combined in this function.
1407          */
1408         struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
1409         int err;
1410
1411         f2fs_wait_on_page_writeback(page, META, true, true);
1412
1413         memcpy(page_address(page), src, PAGE_SIZE);
1414
1415         set_page_dirty(page);
1416         if (unlikely(!clear_page_dirty_for_io(page)))
1417                 f2fs_bug_on(sbi, 1);
1418
1419         /* writeout cp pack 2 page */
1420         err = __f2fs_write_meta_page(page, &wbc, FS_CP_META_IO);
1421         if (unlikely(err && f2fs_cp_error(sbi))) {
1422                 f2fs_put_page(page, 1);
1423                 return;
1424         }
1425
1426         f2fs_bug_on(sbi, err);
1427         f2fs_put_page(page, 0);
1428
1429         /* submit checkpoint (with barrier if NOBARRIER is not set) */
1430         f2fs_submit_merged_write(sbi, META_FLUSH);
1431 }
1432
1433 static inline u64 get_sectors_written(struct block_device *bdev)
1434 {
1435         return (u64)part_stat_read(bdev, sectors[STAT_WRITE]);
1436 }
1437
1438 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi)
1439 {
1440         if (f2fs_is_multi_device(sbi)) {
1441                 u64 sectors = 0;
1442                 int i;
1443
1444                 for (i = 0; i < sbi->s_ndevs; i++)
1445                         sectors += get_sectors_written(FDEV(i).bdev);
1446
1447                 return sectors;
1448         }
1449
1450         return get_sectors_written(sbi->sb->s_bdev);
1451 }
1452
1453 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1454 {
1455         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1456         struct f2fs_nm_info *nm_i = NM_I(sbi);
1457         unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags;
1458         block_t start_blk;
1459         unsigned int data_sum_blocks, orphan_blocks;
1460         __u32 crc32 = 0;
1461         int i;
1462         int cp_payload_blks = __cp_payload(sbi);
1463         struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1464         u64 kbytes_written;
1465         int err;
1466
1467         /* Flush all the NAT/SIT pages */
1468         f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1469
1470         /* start to update checkpoint, cp ver is already updated previously */
1471         ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi, true));
1472         ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
1473         for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
1474                 struct curseg_info *curseg = CURSEG_I(sbi, i + CURSEG_HOT_NODE);
1475
1476                 ckpt->cur_node_segno[i] = cpu_to_le32(curseg->segno);
1477                 ckpt->cur_node_blkoff[i] = cpu_to_le16(curseg->next_blkoff);
1478                 ckpt->alloc_type[i + CURSEG_HOT_NODE] = curseg->alloc_type;
1479         }
1480         for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
1481                 struct curseg_info *curseg = CURSEG_I(sbi, i + CURSEG_HOT_DATA);
1482
1483                 ckpt->cur_data_segno[i] = cpu_to_le32(curseg->segno);
1484                 ckpt->cur_data_blkoff[i] = cpu_to_le16(curseg->next_blkoff);
1485                 ckpt->alloc_type[i + CURSEG_HOT_DATA] = curseg->alloc_type;
1486         }
1487
1488         /* 2 cp + n data seg summary + orphan inode blocks */
1489         data_sum_blocks = f2fs_npages_for_summary_flush(sbi, false);
1490         spin_lock_irqsave(&sbi->cp_lock, flags);
1491         if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
1492                 __set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1493         else
1494                 __clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1495         spin_unlock_irqrestore(&sbi->cp_lock, flags);
1496
1497         orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
1498         ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
1499                         orphan_blocks);
1500
1501         if (__remain_node_summaries(cpc->reason))
1502                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1503                                 cp_payload_blks + data_sum_blocks +
1504                                 orphan_blocks + NR_CURSEG_NODE_TYPE);
1505         else
1506                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1507                                 cp_payload_blks + data_sum_blocks +
1508                                 orphan_blocks);
1509
1510         /* update ckpt flag for checkpoint */
1511         update_ckpt_flags(sbi, cpc);
1512
1513         /* update SIT/NAT bitmap */
1514         get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1515         get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1516
1517         crc32 = f2fs_checkpoint_chksum(sbi, ckpt);
1518         *((__le32 *)((unsigned char *)ckpt +
1519                                 le32_to_cpu(ckpt->checksum_offset)))
1520                                 = cpu_to_le32(crc32);
1521
1522         start_blk = __start_cp_next_addr(sbi);
1523
1524         /* write nat bits */
1525         if ((cpc->reason & CP_UMOUNT) &&
1526                         is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG)) {
1527                 __u64 cp_ver = cur_cp_version(ckpt);
1528                 block_t blk;
1529
1530                 cp_ver |= ((__u64)crc32 << 32);
1531                 *(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver);
1532
1533                 blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks;
1534                 for (i = 0; i < nm_i->nat_bits_blocks; i++)
1535                         f2fs_update_meta_page(sbi, nm_i->nat_bits +
1536                                         (i << F2FS_BLKSIZE_BITS), blk + i);
1537         }
1538
1539         /* write out checkpoint buffer at block 0 */
1540         f2fs_update_meta_page(sbi, ckpt, start_blk++);
1541
1542         for (i = 1; i < 1 + cp_payload_blks; i++)
1543                 f2fs_update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1544                                                         start_blk++);
1545
1546         if (orphan_num) {
1547                 write_orphan_inodes(sbi, start_blk);
1548                 start_blk += orphan_blocks;
1549         }
1550
1551         f2fs_write_data_summaries(sbi, start_blk);
1552         start_blk += data_sum_blocks;
1553
1554         /* Record write statistics in the hot node summary */
1555         kbytes_written = sbi->kbytes_written;
1556         kbytes_written += (f2fs_get_sectors_written(sbi) -
1557                                 sbi->sectors_written_start) >> 1;
1558         seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
1559
1560         if (__remain_node_summaries(cpc->reason)) {
1561                 f2fs_write_node_summaries(sbi, start_blk);
1562                 start_blk += NR_CURSEG_NODE_TYPE;
1563         }
1564
1565         /* update user_block_counts */
1566         sbi->last_valid_block_count = sbi->total_valid_block_count;
1567         percpu_counter_set(&sbi->alloc_valid_block_count, 0);
1568         percpu_counter_set(&sbi->rf_node_block_count, 0);
1569
1570         /* Here, we have one bio having CP pack except cp pack 2 page */
1571         f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1572         /* Wait for all dirty meta pages to be submitted for IO */
1573         f2fs_wait_on_all_pages(sbi, F2FS_DIRTY_META);
1574
1575         /* wait for previous submitted meta pages writeback */
1576         f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
1577
1578         /* flush all device cache */
1579         err = f2fs_flush_device_cache(sbi);
1580         if (err)
1581                 return err;
1582
1583         /* barrier and flush checkpoint cp pack 2 page if it can */
1584         commit_checkpoint(sbi, ckpt, start_blk);
1585         f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
1586
1587         /*
1588          * invalidate intermediate page cache borrowed from meta inode which are
1589          * used for migration of encrypted, verity or compressed inode's blocks.
1590          */
1591         if (f2fs_sb_has_encrypt(sbi) || f2fs_sb_has_verity(sbi) ||
1592                 f2fs_sb_has_compression(sbi))
1593                 invalidate_mapping_pages(META_MAPPING(sbi),
1594                                 MAIN_BLKADDR(sbi), MAX_BLKADDR(sbi) - 1);
1595
1596         f2fs_release_ino_entry(sbi, false);
1597
1598         f2fs_reset_fsync_node_info(sbi);
1599
1600         clear_sbi_flag(sbi, SBI_IS_DIRTY);
1601         clear_sbi_flag(sbi, SBI_NEED_CP);
1602         clear_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH);
1603
1604         spin_lock(&sbi->stat_lock);
1605         sbi->unusable_block_count = 0;
1606         spin_unlock(&sbi->stat_lock);
1607
1608         __set_cp_next_pack(sbi);
1609
1610         /*
1611          * redirty superblock if metadata like node page or inode cache is
1612          * updated during writing checkpoint.
1613          */
1614         if (get_pages(sbi, F2FS_DIRTY_NODES) ||
1615                         get_pages(sbi, F2FS_DIRTY_IMETA))
1616                 set_sbi_flag(sbi, SBI_IS_DIRTY);
1617
1618         f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS));
1619
1620         return unlikely(f2fs_cp_error(sbi)) ? -EIO : 0;
1621 }
1622
1623 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1624 {
1625         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1626         unsigned long long ckpt_ver;
1627         int err = 0;
1628
1629         if (f2fs_readonly(sbi->sb) || f2fs_hw_is_readonly(sbi))
1630                 return -EROFS;
1631
1632         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
1633                 if (cpc->reason != CP_PAUSE)
1634                         return 0;
1635                 f2fs_warn(sbi, "Start checkpoint disabled!");
1636         }
1637         if (cpc->reason != CP_RESIZE)
1638                 f2fs_down_write(&sbi->cp_global_sem);
1639
1640         if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1641                 ((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) ||
1642                 ((cpc->reason & CP_DISCARD) && !sbi->discard_blks)))
1643                 goto out;
1644         if (unlikely(f2fs_cp_error(sbi))) {
1645                 err = -EIO;
1646                 goto out;
1647         }
1648
1649         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1650
1651         err = block_operations(sbi);
1652         if (err)
1653                 goto out;
1654
1655         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1656
1657         f2fs_flush_merged_writes(sbi);
1658
1659         /* this is the case of multiple fstrims without any changes */
1660         if (cpc->reason & CP_DISCARD) {
1661                 if (!f2fs_exist_trim_candidates(sbi, cpc)) {
1662                         unblock_operations(sbi);
1663                         goto out;
1664                 }
1665
1666                 if (NM_I(sbi)->nat_cnt[DIRTY_NAT] == 0 &&
1667                                 SIT_I(sbi)->dirty_sentries == 0 &&
1668                                 prefree_segments(sbi) == 0) {
1669                         f2fs_flush_sit_entries(sbi, cpc);
1670                         f2fs_clear_prefree_segments(sbi, cpc);
1671                         unblock_operations(sbi);
1672                         goto out;
1673                 }
1674         }
1675
1676         /*
1677          * update checkpoint pack index
1678          * Increase the version number so that
1679          * SIT entries and seg summaries are written at correct place
1680          */
1681         ckpt_ver = cur_cp_version(ckpt);
1682         ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1683
1684         /* write cached NAT/SIT entries to NAT/SIT area */
1685         err = f2fs_flush_nat_entries(sbi, cpc);
1686         if (err) {
1687                 f2fs_err(sbi, "f2fs_flush_nat_entries failed err:%d, stop checkpoint", err);
1688                 f2fs_bug_on(sbi, !f2fs_cp_error(sbi));
1689                 goto stop;
1690         }
1691
1692         f2fs_flush_sit_entries(sbi, cpc);
1693
1694         /* save inmem log status */
1695         f2fs_save_inmem_curseg(sbi);
1696
1697         err = do_checkpoint(sbi, cpc);
1698         if (err) {
1699                 f2fs_err(sbi, "do_checkpoint failed err:%d, stop checkpoint", err);
1700                 f2fs_bug_on(sbi, !f2fs_cp_error(sbi));
1701                 f2fs_release_discard_addrs(sbi);
1702         } else {
1703                 f2fs_clear_prefree_segments(sbi, cpc);
1704         }
1705
1706         f2fs_restore_inmem_curseg(sbi);
1707 stop:
1708         unblock_operations(sbi);
1709         stat_inc_cp_count(sbi->stat_info);
1710
1711         if (cpc->reason & CP_RECOVERY)
1712                 f2fs_notice(sbi, "checkpoint: version = %llx", ckpt_ver);
1713
1714         /* update CP_TIME to trigger checkpoint periodically */
1715         f2fs_update_time(sbi, CP_TIME);
1716         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1717 out:
1718         if (cpc->reason != CP_RESIZE)
1719                 f2fs_up_write(&sbi->cp_global_sem);
1720         return err;
1721 }
1722
1723 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi)
1724 {
1725         int i;
1726
1727         for (i = 0; i < MAX_INO_ENTRY; i++) {
1728                 struct inode_management *im = &sbi->im[i];
1729
1730                 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1731                 spin_lock_init(&im->ino_lock);
1732                 INIT_LIST_HEAD(&im->ino_list);
1733                 im->ino_num = 0;
1734         }
1735
1736         sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1737                         NR_CURSEG_PERSIST_TYPE - __cp_payload(sbi)) *
1738                                 F2FS_ORPHANS_PER_BLOCK;
1739 }
1740
1741 int __init f2fs_create_checkpoint_caches(void)
1742 {
1743         ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1744                         sizeof(struct ino_entry));
1745         if (!ino_entry_slab)
1746                 return -ENOMEM;
1747         f2fs_inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1748                         sizeof(struct inode_entry));
1749         if (!f2fs_inode_entry_slab) {
1750                 kmem_cache_destroy(ino_entry_slab);
1751                 return -ENOMEM;
1752         }
1753         return 0;
1754 }
1755
1756 void f2fs_destroy_checkpoint_caches(void)
1757 {
1758         kmem_cache_destroy(ino_entry_slab);
1759         kmem_cache_destroy(f2fs_inode_entry_slab);
1760 }
1761
1762 static int __write_checkpoint_sync(struct f2fs_sb_info *sbi)
1763 {
1764         struct cp_control cpc = { .reason = CP_SYNC, };
1765         int err;
1766
1767         f2fs_down_write(&sbi->gc_lock);
1768         err = f2fs_write_checkpoint(sbi, &cpc);
1769         f2fs_up_write(&sbi->gc_lock);
1770
1771         return err;
1772 }
1773
1774 static void __checkpoint_and_complete_reqs(struct f2fs_sb_info *sbi)
1775 {
1776         struct ckpt_req_control *cprc = &sbi->cprc_info;
1777         struct ckpt_req *req, *next;
1778         struct llist_node *dispatch_list;
1779         u64 sum_diff = 0, diff, count = 0;
1780         int ret;
1781
1782         dispatch_list = llist_del_all(&cprc->issue_list);
1783         if (!dispatch_list)
1784                 return;
1785         dispatch_list = llist_reverse_order(dispatch_list);
1786
1787         ret = __write_checkpoint_sync(sbi);
1788         atomic_inc(&cprc->issued_ckpt);
1789
1790         llist_for_each_entry_safe(req, next, dispatch_list, llnode) {
1791                 diff = (u64)ktime_ms_delta(ktime_get(), req->queue_time);
1792                 req->ret = ret;
1793                 complete(&req->wait);
1794
1795                 sum_diff += diff;
1796                 count++;
1797         }
1798         atomic_sub(count, &cprc->queued_ckpt);
1799         atomic_add(count, &cprc->total_ckpt);
1800
1801         spin_lock(&cprc->stat_lock);
1802         cprc->cur_time = (unsigned int)div64_u64(sum_diff, count);
1803         if (cprc->peak_time < cprc->cur_time)
1804                 cprc->peak_time = cprc->cur_time;
1805         spin_unlock(&cprc->stat_lock);
1806 }
1807
1808 static int issue_checkpoint_thread(void *data)
1809 {
1810         struct f2fs_sb_info *sbi = data;
1811         struct ckpt_req_control *cprc = &sbi->cprc_info;
1812         wait_queue_head_t *q = &cprc->ckpt_wait_queue;
1813 repeat:
1814         if (kthread_should_stop())
1815                 return 0;
1816
1817         if (!llist_empty(&cprc->issue_list))
1818                 __checkpoint_and_complete_reqs(sbi);
1819
1820         wait_event_interruptible(*q,
1821                 kthread_should_stop() || !llist_empty(&cprc->issue_list));
1822         goto repeat;
1823 }
1824
1825 static void flush_remained_ckpt_reqs(struct f2fs_sb_info *sbi,
1826                 struct ckpt_req *wait_req)
1827 {
1828         struct ckpt_req_control *cprc = &sbi->cprc_info;
1829
1830         if (!llist_empty(&cprc->issue_list)) {
1831                 __checkpoint_and_complete_reqs(sbi);
1832         } else {
1833                 /* already dispatched by issue_checkpoint_thread */
1834                 if (wait_req)
1835                         wait_for_completion(&wait_req->wait);
1836         }
1837 }
1838
1839 static void init_ckpt_req(struct ckpt_req *req)
1840 {
1841         memset(req, 0, sizeof(struct ckpt_req));
1842
1843         init_completion(&req->wait);
1844         req->queue_time = ktime_get();
1845 }
1846
1847 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi)
1848 {
1849         struct ckpt_req_control *cprc = &sbi->cprc_info;
1850         struct ckpt_req req;
1851         struct cp_control cpc;
1852
1853         cpc.reason = __get_cp_reason(sbi);
1854         if (!test_opt(sbi, MERGE_CHECKPOINT) || cpc.reason != CP_SYNC) {
1855                 int ret;
1856
1857                 f2fs_down_write(&sbi->gc_lock);
1858                 ret = f2fs_write_checkpoint(sbi, &cpc);
1859                 f2fs_up_write(&sbi->gc_lock);
1860
1861                 return ret;
1862         }
1863
1864         if (!cprc->f2fs_issue_ckpt)
1865                 return __write_checkpoint_sync(sbi);
1866
1867         init_ckpt_req(&req);
1868
1869         llist_add(&req.llnode, &cprc->issue_list);
1870         atomic_inc(&cprc->queued_ckpt);
1871
1872         /*
1873          * update issue_list before we wake up issue_checkpoint thread,
1874          * this smp_mb() pairs with another barrier in ___wait_event(),
1875          * see more details in comments of waitqueue_active().
1876          */
1877         smp_mb();
1878
1879         if (waitqueue_active(&cprc->ckpt_wait_queue))
1880                 wake_up(&cprc->ckpt_wait_queue);
1881
1882         if (cprc->f2fs_issue_ckpt)
1883                 wait_for_completion(&req.wait);
1884         else
1885                 flush_remained_ckpt_reqs(sbi, &req);
1886
1887         return req.ret;
1888 }
1889
1890 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi)
1891 {
1892         dev_t dev = sbi->sb->s_bdev->bd_dev;
1893         struct ckpt_req_control *cprc = &sbi->cprc_info;
1894
1895         if (cprc->f2fs_issue_ckpt)
1896                 return 0;
1897
1898         cprc->f2fs_issue_ckpt = kthread_run(issue_checkpoint_thread, sbi,
1899                         "f2fs_ckpt-%u:%u", MAJOR(dev), MINOR(dev));
1900         if (IS_ERR(cprc->f2fs_issue_ckpt)) {
1901                 int err = PTR_ERR(cprc->f2fs_issue_ckpt);
1902
1903                 cprc->f2fs_issue_ckpt = NULL;
1904                 return err;
1905         }
1906
1907         set_task_ioprio(cprc->f2fs_issue_ckpt, cprc->ckpt_thread_ioprio);
1908
1909         return 0;
1910 }
1911
1912 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi)
1913 {
1914         struct ckpt_req_control *cprc = &sbi->cprc_info;
1915         struct task_struct *ckpt_task;
1916
1917         if (!cprc->f2fs_issue_ckpt)
1918                 return;
1919
1920         ckpt_task = cprc->f2fs_issue_ckpt;
1921         cprc->f2fs_issue_ckpt = NULL;
1922         kthread_stop(ckpt_task);
1923
1924         f2fs_flush_ckpt_thread(sbi);
1925 }
1926
1927 void f2fs_flush_ckpt_thread(struct f2fs_sb_info *sbi)
1928 {
1929         struct ckpt_req_control *cprc = &sbi->cprc_info;
1930
1931         flush_remained_ckpt_reqs(sbi, NULL);
1932
1933         /* Let's wait for the previous dispatched checkpoint. */
1934         while (atomic_read(&cprc->queued_ckpt))
1935                 io_schedule_timeout(DEFAULT_IO_TIMEOUT);
1936 }
1937
1938 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi)
1939 {
1940         struct ckpt_req_control *cprc = &sbi->cprc_info;
1941
1942         atomic_set(&cprc->issued_ckpt, 0);
1943         atomic_set(&cprc->total_ckpt, 0);
1944         atomic_set(&cprc->queued_ckpt, 0);
1945         cprc->ckpt_thread_ioprio = DEFAULT_CHECKPOINT_IOPRIO;
1946         init_waitqueue_head(&cprc->ckpt_wait_queue);
1947         init_llist_head(&cprc->issue_list);
1948         spin_lock_init(&cprc->stat_lock);
1949 }