f2fs: avoid unneeded memory allocation in __add_ino_entry()
[linux-2.6-microblaze.git] / fs / f2fs / checkpoint.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/checkpoint.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/bio.h>
10 #include <linux/mpage.h>
11 #include <linux/writeback.h>
12 #include <linux/blkdev.h>
13 #include <linux/f2fs_fs.h>
14 #include <linux/pagevec.h>
15 #include <linux/swap.h>
16 #include <linux/kthread.h>
17
18 #include "f2fs.h"
19 #include "node.h"
20 #include "segment.h"
21 #include <trace/events/f2fs.h>
22
23 #define DEFAULT_CHECKPOINT_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
24
25 static struct kmem_cache *ino_entry_slab;
26 struct kmem_cache *f2fs_inode_entry_slab;
27
28 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io)
29 {
30         f2fs_build_fault_attr(sbi, 0, 0);
31         set_ckpt_flags(sbi, CP_ERROR_FLAG);
32         if (!end_io)
33                 f2fs_flush_merged_writes(sbi);
34 }
35
36 /*
37  * We guarantee no failure on the returned page.
38  */
39 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
40 {
41         struct address_space *mapping = META_MAPPING(sbi);
42         struct page *page;
43 repeat:
44         page = f2fs_grab_cache_page(mapping, index, false);
45         if (!page) {
46                 cond_resched();
47                 goto repeat;
48         }
49         f2fs_wait_on_page_writeback(page, META, true, true);
50         if (!PageUptodate(page))
51                 SetPageUptodate(page);
52         return page;
53 }
54
55 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
56                                                         bool is_meta)
57 {
58         struct address_space *mapping = META_MAPPING(sbi);
59         struct page *page;
60         struct f2fs_io_info fio = {
61                 .sbi = sbi,
62                 .type = META,
63                 .op = REQ_OP_READ,
64                 .op_flags = REQ_META | REQ_PRIO,
65                 .old_blkaddr = index,
66                 .new_blkaddr = index,
67                 .encrypted_page = NULL,
68                 .is_por = !is_meta,
69         };
70         int err;
71
72         if (unlikely(!is_meta))
73                 fio.op_flags &= ~REQ_META;
74 repeat:
75         page = f2fs_grab_cache_page(mapping, index, false);
76         if (!page) {
77                 cond_resched();
78                 goto repeat;
79         }
80         if (PageUptodate(page))
81                 goto out;
82
83         fio.page = page;
84
85         err = f2fs_submit_page_bio(&fio);
86         if (err) {
87                 f2fs_put_page(page, 1);
88                 return ERR_PTR(err);
89         }
90
91         f2fs_update_iostat(sbi, FS_META_READ_IO, F2FS_BLKSIZE);
92
93         lock_page(page);
94         if (unlikely(page->mapping != mapping)) {
95                 f2fs_put_page(page, 1);
96                 goto repeat;
97         }
98
99         if (unlikely(!PageUptodate(page))) {
100                 f2fs_put_page(page, 1);
101                 return ERR_PTR(-EIO);
102         }
103 out:
104         return page;
105 }
106
107 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
108 {
109         return __get_meta_page(sbi, index, true);
110 }
111
112 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index)
113 {
114         struct page *page;
115         int count = 0;
116
117 retry:
118         page = __get_meta_page(sbi, index, true);
119         if (IS_ERR(page)) {
120                 if (PTR_ERR(page) == -EIO &&
121                                 ++count <= DEFAULT_RETRY_IO_COUNT)
122                         goto retry;
123                 f2fs_stop_checkpoint(sbi, false);
124         }
125         return page;
126 }
127
128 /* for POR only */
129 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
130 {
131         return __get_meta_page(sbi, index, false);
132 }
133
134 static bool __is_bitmap_valid(struct f2fs_sb_info *sbi, block_t blkaddr,
135                                                         int type)
136 {
137         struct seg_entry *se;
138         unsigned int segno, offset;
139         bool exist;
140
141         if (type != DATA_GENERIC_ENHANCE && type != DATA_GENERIC_ENHANCE_READ)
142                 return true;
143
144         segno = GET_SEGNO(sbi, blkaddr);
145         offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
146         se = get_seg_entry(sbi, segno);
147
148         exist = f2fs_test_bit(offset, se->cur_valid_map);
149         if (!exist && type == DATA_GENERIC_ENHANCE) {
150                 f2fs_err(sbi, "Inconsistent error blkaddr:%u, sit bitmap:%d",
151                          blkaddr, exist);
152                 set_sbi_flag(sbi, SBI_NEED_FSCK);
153                 WARN_ON(1);
154         }
155         return exist;
156 }
157
158 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
159                                         block_t blkaddr, int type)
160 {
161         switch (type) {
162         case META_NAT:
163                 break;
164         case META_SIT:
165                 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
166                         return false;
167                 break;
168         case META_SSA:
169                 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
170                         blkaddr < SM_I(sbi)->ssa_blkaddr))
171                         return false;
172                 break;
173         case META_CP:
174                 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
175                         blkaddr < __start_cp_addr(sbi)))
176                         return false;
177                 break;
178         case META_POR:
179                 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
180                         blkaddr < MAIN_BLKADDR(sbi)))
181                         return false;
182                 break;
183         case DATA_GENERIC:
184         case DATA_GENERIC_ENHANCE:
185         case DATA_GENERIC_ENHANCE_READ:
186                 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
187                                 blkaddr < MAIN_BLKADDR(sbi))) {
188                         f2fs_warn(sbi, "access invalid blkaddr:%u",
189                                   blkaddr);
190                         set_sbi_flag(sbi, SBI_NEED_FSCK);
191                         WARN_ON(1);
192                         return false;
193                 } else {
194                         return __is_bitmap_valid(sbi, blkaddr, type);
195                 }
196                 break;
197         case META_GENERIC:
198                 if (unlikely(blkaddr < SEG0_BLKADDR(sbi) ||
199                         blkaddr >= MAIN_BLKADDR(sbi)))
200                         return false;
201                 break;
202         default:
203                 BUG();
204         }
205
206         return true;
207 }
208
209 /*
210  * Readahead CP/NAT/SIT/SSA/POR pages
211  */
212 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
213                                                         int type, bool sync)
214 {
215         struct page *page;
216         block_t blkno = start;
217         struct f2fs_io_info fio = {
218                 .sbi = sbi,
219                 .type = META,
220                 .op = REQ_OP_READ,
221                 .op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD,
222                 .encrypted_page = NULL,
223                 .in_list = false,
224                 .is_por = (type == META_POR),
225         };
226         struct blk_plug plug;
227         int err;
228
229         if (unlikely(type == META_POR))
230                 fio.op_flags &= ~REQ_META;
231
232         blk_start_plug(&plug);
233         for (; nrpages-- > 0; blkno++) {
234
235                 if (!f2fs_is_valid_blkaddr(sbi, blkno, type))
236                         goto out;
237
238                 switch (type) {
239                 case META_NAT:
240                         if (unlikely(blkno >=
241                                         NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
242                                 blkno = 0;
243                         /* get nat block addr */
244                         fio.new_blkaddr = current_nat_addr(sbi,
245                                         blkno * NAT_ENTRY_PER_BLOCK);
246                         break;
247                 case META_SIT:
248                         if (unlikely(blkno >= TOTAL_SEGS(sbi)))
249                                 goto out;
250                         /* get sit block addr */
251                         fio.new_blkaddr = current_sit_addr(sbi,
252                                         blkno * SIT_ENTRY_PER_BLOCK);
253                         break;
254                 case META_SSA:
255                 case META_CP:
256                 case META_POR:
257                         fio.new_blkaddr = blkno;
258                         break;
259                 default:
260                         BUG();
261                 }
262
263                 page = f2fs_grab_cache_page(META_MAPPING(sbi),
264                                                 fio.new_blkaddr, false);
265                 if (!page)
266                         continue;
267                 if (PageUptodate(page)) {
268                         f2fs_put_page(page, 1);
269                         continue;
270                 }
271
272                 fio.page = page;
273                 err = f2fs_submit_page_bio(&fio);
274                 f2fs_put_page(page, err ? 1 : 0);
275
276                 if (!err)
277                         f2fs_update_iostat(sbi, FS_META_READ_IO, F2FS_BLKSIZE);
278         }
279 out:
280         blk_finish_plug(&plug);
281         return blkno - start;
282 }
283
284 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
285 {
286         struct page *page;
287         bool readahead = false;
288
289         page = find_get_page(META_MAPPING(sbi), index);
290         if (!page || !PageUptodate(page))
291                 readahead = true;
292         f2fs_put_page(page, 0);
293
294         if (readahead)
295                 f2fs_ra_meta_pages(sbi, index, BIO_MAX_VECS, META_POR, true);
296 }
297
298 static int __f2fs_write_meta_page(struct page *page,
299                                 struct writeback_control *wbc,
300                                 enum iostat_type io_type)
301 {
302         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
303
304         trace_f2fs_writepage(page, META);
305
306         if (unlikely(f2fs_cp_error(sbi)))
307                 goto redirty_out;
308         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
309                 goto redirty_out;
310         if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
311                 goto redirty_out;
312
313         f2fs_do_write_meta_page(sbi, page, io_type);
314         dec_page_count(sbi, F2FS_DIRTY_META);
315
316         if (wbc->for_reclaim)
317                 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, META);
318
319         unlock_page(page);
320
321         if (unlikely(f2fs_cp_error(sbi)))
322                 f2fs_submit_merged_write(sbi, META);
323
324         return 0;
325
326 redirty_out:
327         redirty_page_for_writepage(wbc, page);
328         return AOP_WRITEPAGE_ACTIVATE;
329 }
330
331 static int f2fs_write_meta_page(struct page *page,
332                                 struct writeback_control *wbc)
333 {
334         return __f2fs_write_meta_page(page, wbc, FS_META_IO);
335 }
336
337 static int f2fs_write_meta_pages(struct address_space *mapping,
338                                 struct writeback_control *wbc)
339 {
340         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
341         long diff, written;
342
343         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
344                 goto skip_write;
345
346         /* collect a number of dirty meta pages and write together */
347         if (wbc->sync_mode != WB_SYNC_ALL &&
348                         get_pages(sbi, F2FS_DIRTY_META) <
349                                         nr_pages_to_skip(sbi, META))
350                 goto skip_write;
351
352         /* if locked failed, cp will flush dirty pages instead */
353         if (!down_write_trylock(&sbi->cp_global_sem))
354                 goto skip_write;
355
356         trace_f2fs_writepages(mapping->host, wbc, META);
357         diff = nr_pages_to_write(sbi, META, wbc);
358         written = f2fs_sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO);
359         up_write(&sbi->cp_global_sem);
360         wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
361         return 0;
362
363 skip_write:
364         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
365         trace_f2fs_writepages(mapping->host, wbc, META);
366         return 0;
367 }
368
369 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
370                                 long nr_to_write, enum iostat_type io_type)
371 {
372         struct address_space *mapping = META_MAPPING(sbi);
373         pgoff_t index = 0, prev = ULONG_MAX;
374         struct pagevec pvec;
375         long nwritten = 0;
376         int nr_pages;
377         struct writeback_control wbc = {
378                 .for_reclaim = 0,
379         };
380         struct blk_plug plug;
381
382         pagevec_init(&pvec);
383
384         blk_start_plug(&plug);
385
386         while ((nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
387                                 PAGECACHE_TAG_DIRTY))) {
388                 int i;
389
390                 for (i = 0; i < nr_pages; i++) {
391                         struct page *page = pvec.pages[i];
392
393                         if (prev == ULONG_MAX)
394                                 prev = page->index - 1;
395                         if (nr_to_write != LONG_MAX && page->index != prev + 1) {
396                                 pagevec_release(&pvec);
397                                 goto stop;
398                         }
399
400                         lock_page(page);
401
402                         if (unlikely(page->mapping != mapping)) {
403 continue_unlock:
404                                 unlock_page(page);
405                                 continue;
406                         }
407                         if (!PageDirty(page)) {
408                                 /* someone wrote it for us */
409                                 goto continue_unlock;
410                         }
411
412                         f2fs_wait_on_page_writeback(page, META, true, true);
413
414                         if (!clear_page_dirty_for_io(page))
415                                 goto continue_unlock;
416
417                         if (__f2fs_write_meta_page(page, &wbc, io_type)) {
418                                 unlock_page(page);
419                                 break;
420                         }
421                         nwritten++;
422                         prev = page->index;
423                         if (unlikely(nwritten >= nr_to_write))
424                                 break;
425                 }
426                 pagevec_release(&pvec);
427                 cond_resched();
428         }
429 stop:
430         if (nwritten)
431                 f2fs_submit_merged_write(sbi, type);
432
433         blk_finish_plug(&plug);
434
435         return nwritten;
436 }
437
438 static int f2fs_set_meta_page_dirty(struct page *page)
439 {
440         trace_f2fs_set_page_dirty(page, META);
441
442         if (!PageUptodate(page))
443                 SetPageUptodate(page);
444         if (!PageDirty(page)) {
445                 __set_page_dirty_nobuffers(page);
446                 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
447                 set_page_private_reference(page);
448                 return 1;
449         }
450         return 0;
451 }
452
453 const struct address_space_operations f2fs_meta_aops = {
454         .writepage      = f2fs_write_meta_page,
455         .writepages     = f2fs_write_meta_pages,
456         .set_page_dirty = f2fs_set_meta_page_dirty,
457         .invalidatepage = f2fs_invalidate_page,
458         .releasepage    = f2fs_release_page,
459 #ifdef CONFIG_MIGRATION
460         .migratepage    = f2fs_migrate_page,
461 #endif
462 };
463
464 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino,
465                                                 unsigned int devidx, int type)
466 {
467         struct inode_management *im = &sbi->im[type];
468         struct ino_entry *e = NULL, *new = NULL;
469
470         if (type == FLUSH_INO) {
471                 rcu_read_lock();
472                 e = radix_tree_lookup(&im->ino_root, ino);
473                 rcu_read_unlock();
474         }
475
476 retry:
477         if (!e)
478                 new = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS);
479
480         radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
481
482         spin_lock(&im->ino_lock);
483         e = radix_tree_lookup(&im->ino_root, ino);
484         if (!e) {
485                 if (!new) {
486                         spin_unlock(&im->ino_lock);
487                         goto retry;
488                 }
489                 e = new;
490                 if (unlikely(radix_tree_insert(&im->ino_root, ino, e)))
491                         f2fs_bug_on(sbi, 1);
492
493                 memset(e, 0, sizeof(struct ino_entry));
494                 e->ino = ino;
495
496                 list_add_tail(&e->list, &im->ino_list);
497                 if (type != ORPHAN_INO)
498                         im->ino_num++;
499         }
500
501         if (type == FLUSH_INO)
502                 f2fs_set_bit(devidx, (char *)&e->dirty_device);
503
504         spin_unlock(&im->ino_lock);
505         radix_tree_preload_end();
506
507         if (new && e != new)
508                 kmem_cache_free(ino_entry_slab, new);
509 }
510
511 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
512 {
513         struct inode_management *im = &sbi->im[type];
514         struct ino_entry *e;
515
516         spin_lock(&im->ino_lock);
517         e = radix_tree_lookup(&im->ino_root, ino);
518         if (e) {
519                 list_del(&e->list);
520                 radix_tree_delete(&im->ino_root, ino);
521                 im->ino_num--;
522                 spin_unlock(&im->ino_lock);
523                 kmem_cache_free(ino_entry_slab, e);
524                 return;
525         }
526         spin_unlock(&im->ino_lock);
527 }
528
529 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
530 {
531         /* add new dirty ino entry into list */
532         __add_ino_entry(sbi, ino, 0, type);
533 }
534
535 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
536 {
537         /* remove dirty ino entry from list */
538         __remove_ino_entry(sbi, ino, type);
539 }
540
541 /* mode should be APPEND_INO, UPDATE_INO or TRANS_DIR_INO */
542 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
543 {
544         struct inode_management *im = &sbi->im[mode];
545         struct ino_entry *e;
546
547         spin_lock(&im->ino_lock);
548         e = radix_tree_lookup(&im->ino_root, ino);
549         spin_unlock(&im->ino_lock);
550         return e ? true : false;
551 }
552
553 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all)
554 {
555         struct ino_entry *e, *tmp;
556         int i;
557
558         for (i = all ? ORPHAN_INO : APPEND_INO; i < MAX_INO_ENTRY; i++) {
559                 struct inode_management *im = &sbi->im[i];
560
561                 spin_lock(&im->ino_lock);
562                 list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
563                         list_del(&e->list);
564                         radix_tree_delete(&im->ino_root, e->ino);
565                         kmem_cache_free(ino_entry_slab, e);
566                         im->ino_num--;
567                 }
568                 spin_unlock(&im->ino_lock);
569         }
570 }
571
572 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
573                                         unsigned int devidx, int type)
574 {
575         __add_ino_entry(sbi, ino, devidx, type);
576 }
577
578 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
579                                         unsigned int devidx, int type)
580 {
581         struct inode_management *im = &sbi->im[type];
582         struct ino_entry *e;
583         bool is_dirty = false;
584
585         spin_lock(&im->ino_lock);
586         e = radix_tree_lookup(&im->ino_root, ino);
587         if (e && f2fs_test_bit(devidx, (char *)&e->dirty_device))
588                 is_dirty = true;
589         spin_unlock(&im->ino_lock);
590         return is_dirty;
591 }
592
593 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi)
594 {
595         struct inode_management *im = &sbi->im[ORPHAN_INO];
596         int err = 0;
597
598         spin_lock(&im->ino_lock);
599
600         if (time_to_inject(sbi, FAULT_ORPHAN)) {
601                 spin_unlock(&im->ino_lock);
602                 f2fs_show_injection_info(sbi, FAULT_ORPHAN);
603                 return -ENOSPC;
604         }
605
606         if (unlikely(im->ino_num >= sbi->max_orphans))
607                 err = -ENOSPC;
608         else
609                 im->ino_num++;
610         spin_unlock(&im->ino_lock);
611
612         return err;
613 }
614
615 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi)
616 {
617         struct inode_management *im = &sbi->im[ORPHAN_INO];
618
619         spin_lock(&im->ino_lock);
620         f2fs_bug_on(sbi, im->ino_num == 0);
621         im->ino_num--;
622         spin_unlock(&im->ino_lock);
623 }
624
625 void f2fs_add_orphan_inode(struct inode *inode)
626 {
627         /* add new orphan ino entry into list */
628         __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, 0, ORPHAN_INO);
629         f2fs_update_inode_page(inode);
630 }
631
632 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
633 {
634         /* remove orphan entry from orphan list */
635         __remove_ino_entry(sbi, ino, ORPHAN_INO);
636 }
637
638 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
639 {
640         struct inode *inode;
641         struct node_info ni;
642         int err;
643
644         inode = f2fs_iget_retry(sbi->sb, ino);
645         if (IS_ERR(inode)) {
646                 /*
647                  * there should be a bug that we can't find the entry
648                  * to orphan inode.
649                  */
650                 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
651                 return PTR_ERR(inode);
652         }
653
654         err = dquot_initialize(inode);
655         if (err) {
656                 iput(inode);
657                 goto err_out;
658         }
659
660         clear_nlink(inode);
661
662         /* truncate all the data during iput */
663         iput(inode);
664
665         err = f2fs_get_node_info(sbi, ino, &ni);
666         if (err)
667                 goto err_out;
668
669         /* ENOMEM was fully retried in f2fs_evict_inode. */
670         if (ni.blk_addr != NULL_ADDR) {
671                 err = -EIO;
672                 goto err_out;
673         }
674         return 0;
675
676 err_out:
677         set_sbi_flag(sbi, SBI_NEED_FSCK);
678         f2fs_warn(sbi, "%s: orphan failed (ino=%x), run fsck to fix.",
679                   __func__, ino);
680         return err;
681 }
682
683 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi)
684 {
685         block_t start_blk, orphan_blocks, i, j;
686         unsigned int s_flags = sbi->sb->s_flags;
687         int err = 0;
688 #ifdef CONFIG_QUOTA
689         int quota_enabled;
690 #endif
691
692         if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG))
693                 return 0;
694
695         if (bdev_read_only(sbi->sb->s_bdev)) {
696                 f2fs_info(sbi, "write access unavailable, skipping orphan cleanup");
697                 return 0;
698         }
699
700         if (s_flags & SB_RDONLY) {
701                 f2fs_info(sbi, "orphan cleanup on readonly fs");
702                 sbi->sb->s_flags &= ~SB_RDONLY;
703         }
704
705 #ifdef CONFIG_QUOTA
706         /* Needed for iput() to work correctly and not trash data */
707         sbi->sb->s_flags |= SB_ACTIVE;
708
709         /*
710          * Turn on quotas which were not enabled for read-only mounts if
711          * filesystem has quota feature, so that they are updated correctly.
712          */
713         quota_enabled = f2fs_enable_quota_files(sbi, s_flags & SB_RDONLY);
714 #endif
715
716         start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
717         orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
718
719         f2fs_ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
720
721         for (i = 0; i < orphan_blocks; i++) {
722                 struct page *page;
723                 struct f2fs_orphan_block *orphan_blk;
724
725                 page = f2fs_get_meta_page(sbi, start_blk + i);
726                 if (IS_ERR(page)) {
727                         err = PTR_ERR(page);
728                         goto out;
729                 }
730
731                 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
732                 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
733                         nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
734
735                         err = recover_orphan_inode(sbi, ino);
736                         if (err) {
737                                 f2fs_put_page(page, 1);
738                                 goto out;
739                         }
740                 }
741                 f2fs_put_page(page, 1);
742         }
743         /* clear Orphan Flag */
744         clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG);
745 out:
746         set_sbi_flag(sbi, SBI_IS_RECOVERED);
747
748 #ifdef CONFIG_QUOTA
749         /* Turn quotas off */
750         if (quota_enabled)
751                 f2fs_quota_off_umount(sbi->sb);
752 #endif
753         sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */
754
755         return err;
756 }
757
758 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
759 {
760         struct list_head *head;
761         struct f2fs_orphan_block *orphan_blk = NULL;
762         unsigned int nentries = 0;
763         unsigned short index = 1;
764         unsigned short orphan_blocks;
765         struct page *page = NULL;
766         struct ino_entry *orphan = NULL;
767         struct inode_management *im = &sbi->im[ORPHAN_INO];
768
769         orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
770
771         /*
772          * we don't need to do spin_lock(&im->ino_lock) here, since all the
773          * orphan inode operations are covered under f2fs_lock_op().
774          * And, spin_lock should be avoided due to page operations below.
775          */
776         head = &im->ino_list;
777
778         /* loop for each orphan inode entry and write them in Jornal block */
779         list_for_each_entry(orphan, head, list) {
780                 if (!page) {
781                         page = f2fs_grab_meta_page(sbi, start_blk++);
782                         orphan_blk =
783                                 (struct f2fs_orphan_block *)page_address(page);
784                         memset(orphan_blk, 0, sizeof(*orphan_blk));
785                 }
786
787                 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
788
789                 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
790                         /*
791                          * an orphan block is full of 1020 entries,
792                          * then we need to flush current orphan blocks
793                          * and bring another one in memory
794                          */
795                         orphan_blk->blk_addr = cpu_to_le16(index);
796                         orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
797                         orphan_blk->entry_count = cpu_to_le32(nentries);
798                         set_page_dirty(page);
799                         f2fs_put_page(page, 1);
800                         index++;
801                         nentries = 0;
802                         page = NULL;
803                 }
804         }
805
806         if (page) {
807                 orphan_blk->blk_addr = cpu_to_le16(index);
808                 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
809                 orphan_blk->entry_count = cpu_to_le32(nentries);
810                 set_page_dirty(page);
811                 f2fs_put_page(page, 1);
812         }
813 }
814
815 static __u32 f2fs_checkpoint_chksum(struct f2fs_sb_info *sbi,
816                                                 struct f2fs_checkpoint *ckpt)
817 {
818         unsigned int chksum_ofs = le32_to_cpu(ckpt->checksum_offset);
819         __u32 chksum;
820
821         chksum = f2fs_crc32(sbi, ckpt, chksum_ofs);
822         if (chksum_ofs < CP_CHKSUM_OFFSET) {
823                 chksum_ofs += sizeof(chksum);
824                 chksum = f2fs_chksum(sbi, chksum, (__u8 *)ckpt + chksum_ofs,
825                                                 F2FS_BLKSIZE - chksum_ofs);
826         }
827         return chksum;
828 }
829
830 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr,
831                 struct f2fs_checkpoint **cp_block, struct page **cp_page,
832                 unsigned long long *version)
833 {
834         size_t crc_offset = 0;
835         __u32 crc;
836
837         *cp_page = f2fs_get_meta_page(sbi, cp_addr);
838         if (IS_ERR(*cp_page))
839                 return PTR_ERR(*cp_page);
840
841         *cp_block = (struct f2fs_checkpoint *)page_address(*cp_page);
842
843         crc_offset = le32_to_cpu((*cp_block)->checksum_offset);
844         if (crc_offset < CP_MIN_CHKSUM_OFFSET ||
845                         crc_offset > CP_CHKSUM_OFFSET) {
846                 f2fs_put_page(*cp_page, 1);
847                 f2fs_warn(sbi, "invalid crc_offset: %zu", crc_offset);
848                 return -EINVAL;
849         }
850
851         crc = f2fs_checkpoint_chksum(sbi, *cp_block);
852         if (crc != cur_cp_crc(*cp_block)) {
853                 f2fs_put_page(*cp_page, 1);
854                 f2fs_warn(sbi, "invalid crc value");
855                 return -EINVAL;
856         }
857
858         *version = cur_cp_version(*cp_block);
859         return 0;
860 }
861
862 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
863                                 block_t cp_addr, unsigned long long *version)
864 {
865         struct page *cp_page_1 = NULL, *cp_page_2 = NULL;
866         struct f2fs_checkpoint *cp_block = NULL;
867         unsigned long long cur_version = 0, pre_version = 0;
868         int err;
869
870         err = get_checkpoint_version(sbi, cp_addr, &cp_block,
871                                         &cp_page_1, version);
872         if (err)
873                 return NULL;
874
875         if (le32_to_cpu(cp_block->cp_pack_total_block_count) >
876                                         sbi->blocks_per_seg) {
877                 f2fs_warn(sbi, "invalid cp_pack_total_block_count:%u",
878                           le32_to_cpu(cp_block->cp_pack_total_block_count));
879                 goto invalid_cp;
880         }
881         pre_version = *version;
882
883         cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
884         err = get_checkpoint_version(sbi, cp_addr, &cp_block,
885                                         &cp_page_2, version);
886         if (err)
887                 goto invalid_cp;
888         cur_version = *version;
889
890         if (cur_version == pre_version) {
891                 *version = cur_version;
892                 f2fs_put_page(cp_page_2, 1);
893                 return cp_page_1;
894         }
895         f2fs_put_page(cp_page_2, 1);
896 invalid_cp:
897         f2fs_put_page(cp_page_1, 1);
898         return NULL;
899 }
900
901 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi)
902 {
903         struct f2fs_checkpoint *cp_block;
904         struct f2fs_super_block *fsb = sbi->raw_super;
905         struct page *cp1, *cp2, *cur_page;
906         unsigned long blk_size = sbi->blocksize;
907         unsigned long long cp1_version = 0, cp2_version = 0;
908         unsigned long long cp_start_blk_no;
909         unsigned int cp_blks = 1 + __cp_payload(sbi);
910         block_t cp_blk_no;
911         int i;
912         int err;
913
914         sbi->ckpt = f2fs_kvzalloc(sbi, array_size(blk_size, cp_blks),
915                                   GFP_KERNEL);
916         if (!sbi->ckpt)
917                 return -ENOMEM;
918         /*
919          * Finding out valid cp block involves read both
920          * sets( cp pack 1 and cp pack 2)
921          */
922         cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
923         cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
924
925         /* The second checkpoint pack should start at the next segment */
926         cp_start_blk_no += ((unsigned long long)1) <<
927                                 le32_to_cpu(fsb->log_blocks_per_seg);
928         cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
929
930         if (cp1 && cp2) {
931                 if (ver_after(cp2_version, cp1_version))
932                         cur_page = cp2;
933                 else
934                         cur_page = cp1;
935         } else if (cp1) {
936                 cur_page = cp1;
937         } else if (cp2) {
938                 cur_page = cp2;
939         } else {
940                 err = -EFSCORRUPTED;
941                 goto fail_no_cp;
942         }
943
944         cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
945         memcpy(sbi->ckpt, cp_block, blk_size);
946
947         if (cur_page == cp1)
948                 sbi->cur_cp_pack = 1;
949         else
950                 sbi->cur_cp_pack = 2;
951
952         /* Sanity checking of checkpoint */
953         if (f2fs_sanity_check_ckpt(sbi)) {
954                 err = -EFSCORRUPTED;
955                 goto free_fail_no_cp;
956         }
957
958         if (cp_blks <= 1)
959                 goto done;
960
961         cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
962         if (cur_page == cp2)
963                 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
964
965         for (i = 1; i < cp_blks; i++) {
966                 void *sit_bitmap_ptr;
967                 unsigned char *ckpt = (unsigned char *)sbi->ckpt;
968
969                 cur_page = f2fs_get_meta_page(sbi, cp_blk_no + i);
970                 if (IS_ERR(cur_page)) {
971                         err = PTR_ERR(cur_page);
972                         goto free_fail_no_cp;
973                 }
974                 sit_bitmap_ptr = page_address(cur_page);
975                 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
976                 f2fs_put_page(cur_page, 1);
977         }
978 done:
979         f2fs_put_page(cp1, 1);
980         f2fs_put_page(cp2, 1);
981         return 0;
982
983 free_fail_no_cp:
984         f2fs_put_page(cp1, 1);
985         f2fs_put_page(cp2, 1);
986 fail_no_cp:
987         kvfree(sbi->ckpt);
988         return err;
989 }
990
991 static void __add_dirty_inode(struct inode *inode, enum inode_type type)
992 {
993         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
994         int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
995
996         if (is_inode_flag_set(inode, flag))
997                 return;
998
999         set_inode_flag(inode, flag);
1000         if (!f2fs_is_volatile_file(inode))
1001                 list_add_tail(&F2FS_I(inode)->dirty_list,
1002                                                 &sbi->inode_list[type]);
1003         stat_inc_dirty_inode(sbi, type);
1004 }
1005
1006 static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
1007 {
1008         int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
1009
1010         if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag))
1011                 return;
1012
1013         list_del_init(&F2FS_I(inode)->dirty_list);
1014         clear_inode_flag(inode, flag);
1015         stat_dec_dirty_inode(F2FS_I_SB(inode), type);
1016 }
1017
1018 void f2fs_update_dirty_page(struct inode *inode, struct page *page)
1019 {
1020         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1021         enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
1022
1023         if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1024                         !S_ISLNK(inode->i_mode))
1025                 return;
1026
1027         spin_lock(&sbi->inode_lock[type]);
1028         if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH))
1029                 __add_dirty_inode(inode, type);
1030         inode_inc_dirty_pages(inode);
1031         spin_unlock(&sbi->inode_lock[type]);
1032
1033         set_page_private_reference(page);
1034 }
1035
1036 void f2fs_remove_dirty_inode(struct inode *inode)
1037 {
1038         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1039         enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
1040
1041         if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1042                         !S_ISLNK(inode->i_mode))
1043                 return;
1044
1045         if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
1046                 return;
1047
1048         spin_lock(&sbi->inode_lock[type]);
1049         __remove_dirty_inode(inode, type);
1050         spin_unlock(&sbi->inode_lock[type]);
1051 }
1052
1053 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type)
1054 {
1055         struct list_head *head;
1056         struct inode *inode;
1057         struct f2fs_inode_info *fi;
1058         bool is_dir = (type == DIR_INODE);
1059         unsigned long ino = 0;
1060
1061         trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
1062                                 get_pages(sbi, is_dir ?
1063                                 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1064 retry:
1065         if (unlikely(f2fs_cp_error(sbi))) {
1066                 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
1067                                 get_pages(sbi, is_dir ?
1068                                 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1069                 return -EIO;
1070         }
1071
1072         spin_lock(&sbi->inode_lock[type]);
1073
1074         head = &sbi->inode_list[type];
1075         if (list_empty(head)) {
1076                 spin_unlock(&sbi->inode_lock[type]);
1077                 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
1078                                 get_pages(sbi, is_dir ?
1079                                 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1080                 return 0;
1081         }
1082         fi = list_first_entry(head, struct f2fs_inode_info, dirty_list);
1083         inode = igrab(&fi->vfs_inode);
1084         spin_unlock(&sbi->inode_lock[type]);
1085         if (inode) {
1086                 unsigned long cur_ino = inode->i_ino;
1087
1088                 F2FS_I(inode)->cp_task = current;
1089
1090                 filemap_fdatawrite(inode->i_mapping);
1091
1092                 F2FS_I(inode)->cp_task = NULL;
1093
1094                 iput(inode);
1095                 /* We need to give cpu to another writers. */
1096                 if (ino == cur_ino)
1097                         cond_resched();
1098                 else
1099                         ino = cur_ino;
1100         } else {
1101                 /*
1102                  * We should submit bio, since it exists several
1103                  * wribacking dentry pages in the freeing inode.
1104                  */
1105                 f2fs_submit_merged_write(sbi, DATA);
1106                 cond_resched();
1107         }
1108         goto retry;
1109 }
1110
1111 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi)
1112 {
1113         struct list_head *head = &sbi->inode_list[DIRTY_META];
1114         struct inode *inode;
1115         struct f2fs_inode_info *fi;
1116         s64 total = get_pages(sbi, F2FS_DIRTY_IMETA);
1117
1118         while (total--) {
1119                 if (unlikely(f2fs_cp_error(sbi)))
1120                         return -EIO;
1121
1122                 spin_lock(&sbi->inode_lock[DIRTY_META]);
1123                 if (list_empty(head)) {
1124                         spin_unlock(&sbi->inode_lock[DIRTY_META]);
1125                         return 0;
1126                 }
1127                 fi = list_first_entry(head, struct f2fs_inode_info,
1128                                                         gdirty_list);
1129                 inode = igrab(&fi->vfs_inode);
1130                 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1131                 if (inode) {
1132                         sync_inode_metadata(inode, 0);
1133
1134                         /* it's on eviction */
1135                         if (is_inode_flag_set(inode, FI_DIRTY_INODE))
1136                                 f2fs_update_inode_page(inode);
1137                         iput(inode);
1138                 }
1139         }
1140         return 0;
1141 }
1142
1143 static void __prepare_cp_block(struct f2fs_sb_info *sbi)
1144 {
1145         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1146         struct f2fs_nm_info *nm_i = NM_I(sbi);
1147         nid_t last_nid = nm_i->next_scan_nid;
1148
1149         next_free_nid(sbi, &last_nid);
1150         ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
1151         ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
1152         ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
1153         ckpt->next_free_nid = cpu_to_le32(last_nid);
1154 }
1155
1156 static bool __need_flush_quota(struct f2fs_sb_info *sbi)
1157 {
1158         bool ret = false;
1159
1160         if (!is_journalled_quota(sbi))
1161                 return false;
1162
1163         down_write(&sbi->quota_sem);
1164         if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH)) {
1165                 ret = false;
1166         } else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR)) {
1167                 ret = false;
1168         } else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_FLUSH)) {
1169                 clear_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
1170                 ret = true;
1171         } else if (get_pages(sbi, F2FS_DIRTY_QDATA)) {
1172                 ret = true;
1173         }
1174         up_write(&sbi->quota_sem);
1175         return ret;
1176 }
1177
1178 /*
1179  * Freeze all the FS-operations for checkpoint.
1180  */
1181 static int block_operations(struct f2fs_sb_info *sbi)
1182 {
1183         struct writeback_control wbc = {
1184                 .sync_mode = WB_SYNC_ALL,
1185                 .nr_to_write = LONG_MAX,
1186                 .for_reclaim = 0,
1187         };
1188         int err = 0, cnt = 0;
1189
1190         /*
1191          * Let's flush inline_data in dirty node pages.
1192          */
1193         f2fs_flush_inline_data(sbi);
1194
1195 retry_flush_quotas:
1196         f2fs_lock_all(sbi);
1197         if (__need_flush_quota(sbi)) {
1198                 int locked;
1199
1200                 if (++cnt > DEFAULT_RETRY_QUOTA_FLUSH_COUNT) {
1201                         set_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH);
1202                         set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
1203                         goto retry_flush_dents;
1204                 }
1205                 f2fs_unlock_all(sbi);
1206
1207                 /* only failed during mount/umount/freeze/quotactl */
1208                 locked = down_read_trylock(&sbi->sb->s_umount);
1209                 f2fs_quota_sync(sbi->sb, -1);
1210                 if (locked)
1211                         up_read(&sbi->sb->s_umount);
1212                 cond_resched();
1213                 goto retry_flush_quotas;
1214         }
1215
1216 retry_flush_dents:
1217         /* write all the dirty dentry pages */
1218         if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
1219                 f2fs_unlock_all(sbi);
1220                 err = f2fs_sync_dirty_inodes(sbi, DIR_INODE);
1221                 if (err)
1222                         return err;
1223                 cond_resched();
1224                 goto retry_flush_quotas;
1225         }
1226
1227         /*
1228          * POR: we should ensure that there are no dirty node pages
1229          * until finishing nat/sit flush. inode->i_blocks can be updated.
1230          */
1231         down_write(&sbi->node_change);
1232
1233         if (get_pages(sbi, F2FS_DIRTY_IMETA)) {
1234                 up_write(&sbi->node_change);
1235                 f2fs_unlock_all(sbi);
1236                 err = f2fs_sync_inode_meta(sbi);
1237                 if (err)
1238                         return err;
1239                 cond_resched();
1240                 goto retry_flush_quotas;
1241         }
1242
1243 retry_flush_nodes:
1244         down_write(&sbi->node_write);
1245
1246         if (get_pages(sbi, F2FS_DIRTY_NODES)) {
1247                 up_write(&sbi->node_write);
1248                 atomic_inc(&sbi->wb_sync_req[NODE]);
1249                 err = f2fs_sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO);
1250                 atomic_dec(&sbi->wb_sync_req[NODE]);
1251                 if (err) {
1252                         up_write(&sbi->node_change);
1253                         f2fs_unlock_all(sbi);
1254                         return err;
1255                 }
1256                 cond_resched();
1257                 goto retry_flush_nodes;
1258         }
1259
1260         /*
1261          * sbi->node_change is used only for AIO write_begin path which produces
1262          * dirty node blocks and some checkpoint values by block allocation.
1263          */
1264         __prepare_cp_block(sbi);
1265         up_write(&sbi->node_change);
1266         return err;
1267 }
1268
1269 static void unblock_operations(struct f2fs_sb_info *sbi)
1270 {
1271         up_write(&sbi->node_write);
1272         f2fs_unlock_all(sbi);
1273 }
1274
1275 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type)
1276 {
1277         DEFINE_WAIT(wait);
1278
1279         for (;;) {
1280                 if (!get_pages(sbi, type))
1281                         break;
1282
1283                 if (unlikely(f2fs_cp_error(sbi)))
1284                         break;
1285
1286                 if (type == F2FS_DIRTY_META)
1287                         f2fs_sync_meta_pages(sbi, META, LONG_MAX,
1288                                                         FS_CP_META_IO);
1289                 else if (type == F2FS_WB_CP_DATA)
1290                         f2fs_submit_merged_write(sbi, DATA);
1291
1292                 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
1293                 io_schedule_timeout(DEFAULT_IO_TIMEOUT);
1294         }
1295         finish_wait(&sbi->cp_wait, &wait);
1296 }
1297
1298 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1299 {
1300         unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
1301         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1302         unsigned long flags;
1303
1304         spin_lock_irqsave(&sbi->cp_lock, flags);
1305
1306         if ((cpc->reason & CP_UMOUNT) &&
1307                         le32_to_cpu(ckpt->cp_pack_total_block_count) >
1308                         sbi->blocks_per_seg - NM_I(sbi)->nat_bits_blocks)
1309                 disable_nat_bits(sbi, false);
1310
1311         if (cpc->reason & CP_TRIMMED)
1312                 __set_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1313         else
1314                 __clear_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1315
1316         if (cpc->reason & CP_UMOUNT)
1317                 __set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1318         else
1319                 __clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1320
1321         if (cpc->reason & CP_FASTBOOT)
1322                 __set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1323         else
1324                 __clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1325
1326         if (orphan_num)
1327                 __set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1328         else
1329                 __clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1330
1331         if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1332                 __set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1333
1334         if (is_sbi_flag_set(sbi, SBI_IS_RESIZEFS))
1335                 __set_ckpt_flags(ckpt, CP_RESIZEFS_FLAG);
1336         else
1337                 __clear_ckpt_flags(ckpt, CP_RESIZEFS_FLAG);
1338
1339         if (is_sbi_flag_set(sbi, SBI_CP_DISABLED))
1340                 __set_ckpt_flags(ckpt, CP_DISABLED_FLAG);
1341         else
1342                 __clear_ckpt_flags(ckpt, CP_DISABLED_FLAG);
1343
1344         if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK))
1345                 __set_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG);
1346         else
1347                 __clear_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG);
1348
1349         if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH))
1350                 __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1351         else
1352                 __clear_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1353
1354         if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR))
1355                 __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1356
1357         /* set this flag to activate crc|cp_ver for recovery */
1358         __set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG);
1359         __clear_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG);
1360
1361         spin_unlock_irqrestore(&sbi->cp_lock, flags);
1362 }
1363
1364 static void commit_checkpoint(struct f2fs_sb_info *sbi,
1365         void *src, block_t blk_addr)
1366 {
1367         struct writeback_control wbc = {
1368                 .for_reclaim = 0,
1369         };
1370
1371         /*
1372          * pagevec_lookup_tag and lock_page again will take
1373          * some extra time. Therefore, f2fs_update_meta_pages and
1374          * f2fs_sync_meta_pages are combined in this function.
1375          */
1376         struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
1377         int err;
1378
1379         f2fs_wait_on_page_writeback(page, META, true, true);
1380
1381         memcpy(page_address(page), src, PAGE_SIZE);
1382
1383         set_page_dirty(page);
1384         if (unlikely(!clear_page_dirty_for_io(page)))
1385                 f2fs_bug_on(sbi, 1);
1386
1387         /* writeout cp pack 2 page */
1388         err = __f2fs_write_meta_page(page, &wbc, FS_CP_META_IO);
1389         if (unlikely(err && f2fs_cp_error(sbi))) {
1390                 f2fs_put_page(page, 1);
1391                 return;
1392         }
1393
1394         f2fs_bug_on(sbi, err);
1395         f2fs_put_page(page, 0);
1396
1397         /* submit checkpoint (with barrier if NOBARRIER is not set) */
1398         f2fs_submit_merged_write(sbi, META_FLUSH);
1399 }
1400
1401 static inline u64 get_sectors_written(struct block_device *bdev)
1402 {
1403         return (u64)part_stat_read(bdev, sectors[STAT_WRITE]);
1404 }
1405
1406 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi)
1407 {
1408         if (f2fs_is_multi_device(sbi)) {
1409                 u64 sectors = 0;
1410                 int i;
1411
1412                 for (i = 0; i < sbi->s_ndevs; i++)
1413                         sectors += get_sectors_written(FDEV(i).bdev);
1414
1415                 return sectors;
1416         }
1417
1418         return get_sectors_written(sbi->sb->s_bdev);
1419 }
1420
1421 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1422 {
1423         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1424         struct f2fs_nm_info *nm_i = NM_I(sbi);
1425         unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags;
1426         block_t start_blk;
1427         unsigned int data_sum_blocks, orphan_blocks;
1428         __u32 crc32 = 0;
1429         int i;
1430         int cp_payload_blks = __cp_payload(sbi);
1431         struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1432         u64 kbytes_written;
1433         int err;
1434
1435         /* Flush all the NAT/SIT pages */
1436         f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1437
1438         /* start to update checkpoint, cp ver is already updated previously */
1439         ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi, true));
1440         ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
1441         for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
1442                 ckpt->cur_node_segno[i] =
1443                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
1444                 ckpt->cur_node_blkoff[i] =
1445                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
1446                 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
1447                                 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
1448         }
1449         for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
1450                 ckpt->cur_data_segno[i] =
1451                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
1452                 ckpt->cur_data_blkoff[i] =
1453                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
1454                 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
1455                                 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
1456         }
1457
1458         /* 2 cp + n data seg summary + orphan inode blocks */
1459         data_sum_blocks = f2fs_npages_for_summary_flush(sbi, false);
1460         spin_lock_irqsave(&sbi->cp_lock, flags);
1461         if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
1462                 __set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1463         else
1464                 __clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1465         spin_unlock_irqrestore(&sbi->cp_lock, flags);
1466
1467         orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
1468         ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
1469                         orphan_blocks);
1470
1471         if (__remain_node_summaries(cpc->reason))
1472                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1473                                 cp_payload_blks + data_sum_blocks +
1474                                 orphan_blocks + NR_CURSEG_NODE_TYPE);
1475         else
1476                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1477                                 cp_payload_blks + data_sum_blocks +
1478                                 orphan_blocks);
1479
1480         /* update ckpt flag for checkpoint */
1481         update_ckpt_flags(sbi, cpc);
1482
1483         /* update SIT/NAT bitmap */
1484         get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1485         get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1486
1487         crc32 = f2fs_checkpoint_chksum(sbi, ckpt);
1488         *((__le32 *)((unsigned char *)ckpt +
1489                                 le32_to_cpu(ckpt->checksum_offset)))
1490                                 = cpu_to_le32(crc32);
1491
1492         start_blk = __start_cp_next_addr(sbi);
1493
1494         /* write nat bits */
1495         if (enabled_nat_bits(sbi, cpc)) {
1496                 __u64 cp_ver = cur_cp_version(ckpt);
1497                 block_t blk;
1498
1499                 cp_ver |= ((__u64)crc32 << 32);
1500                 *(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver);
1501
1502                 blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks;
1503                 for (i = 0; i < nm_i->nat_bits_blocks; i++)
1504                         f2fs_update_meta_page(sbi, nm_i->nat_bits +
1505                                         (i << F2FS_BLKSIZE_BITS), blk + i);
1506         }
1507
1508         /* write out checkpoint buffer at block 0 */
1509         f2fs_update_meta_page(sbi, ckpt, start_blk++);
1510
1511         for (i = 1; i < 1 + cp_payload_blks; i++)
1512                 f2fs_update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1513                                                         start_blk++);
1514
1515         if (orphan_num) {
1516                 write_orphan_inodes(sbi, start_blk);
1517                 start_blk += orphan_blocks;
1518         }
1519
1520         f2fs_write_data_summaries(sbi, start_blk);
1521         start_blk += data_sum_blocks;
1522
1523         /* Record write statistics in the hot node summary */
1524         kbytes_written = sbi->kbytes_written;
1525         kbytes_written += (f2fs_get_sectors_written(sbi) -
1526                                 sbi->sectors_written_start) >> 1;
1527         seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
1528
1529         if (__remain_node_summaries(cpc->reason)) {
1530                 f2fs_write_node_summaries(sbi, start_blk);
1531                 start_blk += NR_CURSEG_NODE_TYPE;
1532         }
1533
1534         /* update user_block_counts */
1535         sbi->last_valid_block_count = sbi->total_valid_block_count;
1536         percpu_counter_set(&sbi->alloc_valid_block_count, 0);
1537
1538         /* Here, we have one bio having CP pack except cp pack 2 page */
1539         f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1540         /* Wait for all dirty meta pages to be submitted for IO */
1541         f2fs_wait_on_all_pages(sbi, F2FS_DIRTY_META);
1542
1543         /* wait for previous submitted meta pages writeback */
1544         f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
1545
1546         /* flush all device cache */
1547         err = f2fs_flush_device_cache(sbi);
1548         if (err)
1549                 return err;
1550
1551         /* barrier and flush checkpoint cp pack 2 page if it can */
1552         commit_checkpoint(sbi, ckpt, start_blk);
1553         f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
1554
1555         /*
1556          * invalidate intermediate page cache borrowed from meta inode which are
1557          * used for migration of encrypted, verity or compressed inode's blocks.
1558          */
1559         if (f2fs_sb_has_encrypt(sbi) || f2fs_sb_has_verity(sbi) ||
1560                 f2fs_sb_has_compression(sbi))
1561                 invalidate_mapping_pages(META_MAPPING(sbi),
1562                                 MAIN_BLKADDR(sbi), MAX_BLKADDR(sbi) - 1);
1563
1564         f2fs_release_ino_entry(sbi, false);
1565
1566         f2fs_reset_fsync_node_info(sbi);
1567
1568         clear_sbi_flag(sbi, SBI_IS_DIRTY);
1569         clear_sbi_flag(sbi, SBI_NEED_CP);
1570         clear_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH);
1571
1572         spin_lock(&sbi->stat_lock);
1573         sbi->unusable_block_count = 0;
1574         spin_unlock(&sbi->stat_lock);
1575
1576         __set_cp_next_pack(sbi);
1577
1578         /*
1579          * redirty superblock if metadata like node page or inode cache is
1580          * updated during writing checkpoint.
1581          */
1582         if (get_pages(sbi, F2FS_DIRTY_NODES) ||
1583                         get_pages(sbi, F2FS_DIRTY_IMETA))
1584                 set_sbi_flag(sbi, SBI_IS_DIRTY);
1585
1586         f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS));
1587
1588         return unlikely(f2fs_cp_error(sbi)) ? -EIO : 0;
1589 }
1590
1591 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1592 {
1593         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1594         unsigned long long ckpt_ver;
1595         int err = 0;
1596
1597         if (f2fs_readonly(sbi->sb) || f2fs_hw_is_readonly(sbi))
1598                 return -EROFS;
1599
1600         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
1601                 if (cpc->reason != CP_PAUSE)
1602                         return 0;
1603                 f2fs_warn(sbi, "Start checkpoint disabled!");
1604         }
1605         if (cpc->reason != CP_RESIZE)
1606                 down_write(&sbi->cp_global_sem);
1607
1608         if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1609                 ((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) ||
1610                 ((cpc->reason & CP_DISCARD) && !sbi->discard_blks)))
1611                 goto out;
1612         if (unlikely(f2fs_cp_error(sbi))) {
1613                 err = -EIO;
1614                 goto out;
1615         }
1616
1617         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1618
1619         err = block_operations(sbi);
1620         if (err)
1621                 goto out;
1622
1623         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1624
1625         f2fs_flush_merged_writes(sbi);
1626
1627         /* this is the case of multiple fstrims without any changes */
1628         if (cpc->reason & CP_DISCARD) {
1629                 if (!f2fs_exist_trim_candidates(sbi, cpc)) {
1630                         unblock_operations(sbi);
1631                         goto out;
1632                 }
1633
1634                 if (NM_I(sbi)->nat_cnt[DIRTY_NAT] == 0 &&
1635                                 SIT_I(sbi)->dirty_sentries == 0 &&
1636                                 prefree_segments(sbi) == 0) {
1637                         f2fs_flush_sit_entries(sbi, cpc);
1638                         f2fs_clear_prefree_segments(sbi, cpc);
1639                         unblock_operations(sbi);
1640                         goto out;
1641                 }
1642         }
1643
1644         /*
1645          * update checkpoint pack index
1646          * Increase the version number so that
1647          * SIT entries and seg summaries are written at correct place
1648          */
1649         ckpt_ver = cur_cp_version(ckpt);
1650         ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1651
1652         /* write cached NAT/SIT entries to NAT/SIT area */
1653         err = f2fs_flush_nat_entries(sbi, cpc);
1654         if (err) {
1655                 f2fs_err(sbi, "f2fs_flush_nat_entries failed err:%d, stop checkpoint", err);
1656                 f2fs_bug_on(sbi, !f2fs_cp_error(sbi));
1657                 goto stop;
1658         }
1659
1660         f2fs_flush_sit_entries(sbi, cpc);
1661
1662         /* save inmem log status */
1663         f2fs_save_inmem_curseg(sbi);
1664
1665         err = do_checkpoint(sbi, cpc);
1666         if (err) {
1667                 f2fs_err(sbi, "do_checkpoint failed err:%d, stop checkpoint", err);
1668                 f2fs_bug_on(sbi, !f2fs_cp_error(sbi));
1669                 f2fs_release_discard_addrs(sbi);
1670         } else {
1671                 f2fs_clear_prefree_segments(sbi, cpc);
1672         }
1673
1674         f2fs_restore_inmem_curseg(sbi);
1675 stop:
1676         unblock_operations(sbi);
1677         stat_inc_cp_count(sbi->stat_info);
1678
1679         if (cpc->reason & CP_RECOVERY)
1680                 f2fs_notice(sbi, "checkpoint: version = %llx", ckpt_ver);
1681
1682         /* update CP_TIME to trigger checkpoint periodically */
1683         f2fs_update_time(sbi, CP_TIME);
1684         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1685 out:
1686         if (cpc->reason != CP_RESIZE)
1687                 up_write(&sbi->cp_global_sem);
1688         return err;
1689 }
1690
1691 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi)
1692 {
1693         int i;
1694
1695         for (i = 0; i < MAX_INO_ENTRY; i++) {
1696                 struct inode_management *im = &sbi->im[i];
1697
1698                 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1699                 spin_lock_init(&im->ino_lock);
1700                 INIT_LIST_HEAD(&im->ino_list);
1701                 im->ino_num = 0;
1702         }
1703
1704         sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1705                         NR_CURSEG_PERSIST_TYPE - __cp_payload(sbi)) *
1706                                 F2FS_ORPHANS_PER_BLOCK;
1707 }
1708
1709 int __init f2fs_create_checkpoint_caches(void)
1710 {
1711         ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1712                         sizeof(struct ino_entry));
1713         if (!ino_entry_slab)
1714                 return -ENOMEM;
1715         f2fs_inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1716                         sizeof(struct inode_entry));
1717         if (!f2fs_inode_entry_slab) {
1718                 kmem_cache_destroy(ino_entry_slab);
1719                 return -ENOMEM;
1720         }
1721         return 0;
1722 }
1723
1724 void f2fs_destroy_checkpoint_caches(void)
1725 {
1726         kmem_cache_destroy(ino_entry_slab);
1727         kmem_cache_destroy(f2fs_inode_entry_slab);
1728 }
1729
1730 static int __write_checkpoint_sync(struct f2fs_sb_info *sbi)
1731 {
1732         struct cp_control cpc = { .reason = CP_SYNC, };
1733         int err;
1734
1735         down_write(&sbi->gc_lock);
1736         err = f2fs_write_checkpoint(sbi, &cpc);
1737         up_write(&sbi->gc_lock);
1738
1739         return err;
1740 }
1741
1742 static void __checkpoint_and_complete_reqs(struct f2fs_sb_info *sbi)
1743 {
1744         struct ckpt_req_control *cprc = &sbi->cprc_info;
1745         struct ckpt_req *req, *next;
1746         struct llist_node *dispatch_list;
1747         u64 sum_diff = 0, diff, count = 0;
1748         int ret;
1749
1750         dispatch_list = llist_del_all(&cprc->issue_list);
1751         if (!dispatch_list)
1752                 return;
1753         dispatch_list = llist_reverse_order(dispatch_list);
1754
1755         ret = __write_checkpoint_sync(sbi);
1756         atomic_inc(&cprc->issued_ckpt);
1757
1758         llist_for_each_entry_safe(req, next, dispatch_list, llnode) {
1759                 diff = (u64)ktime_ms_delta(ktime_get(), req->queue_time);
1760                 req->ret = ret;
1761                 complete(&req->wait);
1762
1763                 sum_diff += diff;
1764                 count++;
1765         }
1766         atomic_sub(count, &cprc->queued_ckpt);
1767         atomic_add(count, &cprc->total_ckpt);
1768
1769         spin_lock(&cprc->stat_lock);
1770         cprc->cur_time = (unsigned int)div64_u64(sum_diff, count);
1771         if (cprc->peak_time < cprc->cur_time)
1772                 cprc->peak_time = cprc->cur_time;
1773         spin_unlock(&cprc->stat_lock);
1774 }
1775
1776 static int issue_checkpoint_thread(void *data)
1777 {
1778         struct f2fs_sb_info *sbi = data;
1779         struct ckpt_req_control *cprc = &sbi->cprc_info;
1780         wait_queue_head_t *q = &cprc->ckpt_wait_queue;
1781 repeat:
1782         if (kthread_should_stop())
1783                 return 0;
1784
1785         if (!llist_empty(&cprc->issue_list))
1786                 __checkpoint_and_complete_reqs(sbi);
1787
1788         wait_event_interruptible(*q,
1789                 kthread_should_stop() || !llist_empty(&cprc->issue_list));
1790         goto repeat;
1791 }
1792
1793 static void flush_remained_ckpt_reqs(struct f2fs_sb_info *sbi,
1794                 struct ckpt_req *wait_req)
1795 {
1796         struct ckpt_req_control *cprc = &sbi->cprc_info;
1797
1798         if (!llist_empty(&cprc->issue_list)) {
1799                 __checkpoint_and_complete_reqs(sbi);
1800         } else {
1801                 /* already dispatched by issue_checkpoint_thread */
1802                 if (wait_req)
1803                         wait_for_completion(&wait_req->wait);
1804         }
1805 }
1806
1807 static void init_ckpt_req(struct ckpt_req *req)
1808 {
1809         memset(req, 0, sizeof(struct ckpt_req));
1810
1811         init_completion(&req->wait);
1812         req->queue_time = ktime_get();
1813 }
1814
1815 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi)
1816 {
1817         struct ckpt_req_control *cprc = &sbi->cprc_info;
1818         struct ckpt_req req;
1819         struct cp_control cpc;
1820
1821         cpc.reason = __get_cp_reason(sbi);
1822         if (!test_opt(sbi, MERGE_CHECKPOINT) || cpc.reason != CP_SYNC) {
1823                 int ret;
1824
1825                 down_write(&sbi->gc_lock);
1826                 ret = f2fs_write_checkpoint(sbi, &cpc);
1827                 up_write(&sbi->gc_lock);
1828
1829                 return ret;
1830         }
1831
1832         if (!cprc->f2fs_issue_ckpt)
1833                 return __write_checkpoint_sync(sbi);
1834
1835         init_ckpt_req(&req);
1836
1837         llist_add(&req.llnode, &cprc->issue_list);
1838         atomic_inc(&cprc->queued_ckpt);
1839
1840         /*
1841          * update issue_list before we wake up issue_checkpoint thread,
1842          * this smp_mb() pairs with another barrier in ___wait_event(),
1843          * see more details in comments of waitqueue_active().
1844          */
1845         smp_mb();
1846
1847         if (waitqueue_active(&cprc->ckpt_wait_queue))
1848                 wake_up(&cprc->ckpt_wait_queue);
1849
1850         if (cprc->f2fs_issue_ckpt)
1851                 wait_for_completion(&req.wait);
1852         else
1853                 flush_remained_ckpt_reqs(sbi, &req);
1854
1855         return req.ret;
1856 }
1857
1858 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi)
1859 {
1860         dev_t dev = sbi->sb->s_bdev->bd_dev;
1861         struct ckpt_req_control *cprc = &sbi->cprc_info;
1862
1863         if (cprc->f2fs_issue_ckpt)
1864                 return 0;
1865
1866         cprc->f2fs_issue_ckpt = kthread_run(issue_checkpoint_thread, sbi,
1867                         "f2fs_ckpt-%u:%u", MAJOR(dev), MINOR(dev));
1868         if (IS_ERR(cprc->f2fs_issue_ckpt)) {
1869                 cprc->f2fs_issue_ckpt = NULL;
1870                 return -ENOMEM;
1871         }
1872
1873         set_task_ioprio(cprc->f2fs_issue_ckpt, cprc->ckpt_thread_ioprio);
1874
1875         return 0;
1876 }
1877
1878 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi)
1879 {
1880         struct ckpt_req_control *cprc = &sbi->cprc_info;
1881
1882         if (cprc->f2fs_issue_ckpt) {
1883                 struct task_struct *ckpt_task = cprc->f2fs_issue_ckpt;
1884
1885                 cprc->f2fs_issue_ckpt = NULL;
1886                 kthread_stop(ckpt_task);
1887
1888                 flush_remained_ckpt_reqs(sbi, NULL);
1889         }
1890 }
1891
1892 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi)
1893 {
1894         struct ckpt_req_control *cprc = &sbi->cprc_info;
1895
1896         atomic_set(&cprc->issued_ckpt, 0);
1897         atomic_set(&cprc->total_ckpt, 0);
1898         atomic_set(&cprc->queued_ckpt, 0);
1899         cprc->ckpt_thread_ioprio = DEFAULT_CHECKPOINT_IOPRIO;
1900         init_waitqueue_head(&cprc->ckpt_wait_queue);
1901         init_llist_head(&cprc->issue_list);
1902         spin_lock_init(&cprc->stat_lock);
1903 }